WorldWideScience

Sample records for human postural control

  1. Sensorimotor integration in human postural control

    Science.gov (United States)

    Peterka, R. J.

    2002-01-01

    It is generally accepted that human bipedal upright stance is achieved by feedback mechanisms that generate an appropriate corrective torque based on body-sway motion detected primarily by visual, vestibular, and proprioceptive sensory systems. Because orientation information from the various senses is not always available (eyes closed) or accurate (compliant support surface), the postural control system must somehow adjust to maintain stance in a wide variety of environmental conditions. This is the sensorimotor integration problem that we investigated by evoking anterior-posterior (AP) body sway using pseudorandom rotation of the visual surround and/or support surface (amplitudes 0.5-8 degrees ) in both normal subjects and subjects with severe bilateral vestibular loss (VL). AP rotation of body center-of-mass (COM) was measured in response to six conditions offering different combinations of available sensory information. Stimulus-response data were analyzed using spectral analysis to compute transfer functions and coherence functions over a frequency range from 0.017 to 2.23 Hz. Stimulus-response data were quite linear for any given condition and amplitude. However, overall behavior in normal subjects was nonlinear because gain decreased and phase functions sometimes changed with increasing stimulus amplitude. "Sensory channel reweighting" could account for this nonlinear behavior with subjects showing increasing reliance on vestibular cues as stimulus amplitudes increased. VL subjects could not perform this reweighting, and their stimulus-response behavior remained quite linear. Transfer function curve fits based on a simple feedback control model provided estimates of postural stiffness, damping, and feedback time delay. There were only small changes in these parameters with increasing visual stimulus amplitude. However, stiffness increased as much as 60% with increasing support surface amplitude. To maintain postural stability and avoid resonant behavior, an

  2. Control of human mandibular posture during locomotion

    Science.gov (United States)

    Miles, Timothy S; Flavel, Stanley C; Nordstrom, Michael A

    2004-01-01

    Mandibular movements and masseter muscle activity were measured in humans during hopping, walking and running to determine whether reflexes contribute to the maintenance of jaw position during locomotion. In initial experiments, subjects hopped so that they landed either on their toes or on their heel. Landing on the toes provoked only small mandibular movements and no reflex responses in the masseter electromyogram (EMG). Landing on the heels with the jaw muscles relaxed caused the mandible to move vertically downwards relative to the maxilla, and evoked a brisk reflex response in the masseter at monosynaptic latency. Neither this relative movement of the mandible nor the reflex was seen when the teeth were clenched: hence the reflex is not the result of vestibular activation during head movement. The same variables were measured in a second series of experiments while subjects stood, walked and ran at various speeds and at various inclinations on a treadmill. During walking, the vertical movements of the head and therefore the mandible were slow and small, and there was no tonic masseter EMG or gait-related activity in the jaw-closing muscles. When subjects ran, the vertical head and jaw movement depended on the running speed and the inclination of the treadmill. Landing on the heels induced larger movements than landing on the toes. About 10 ms after each foot-strike, the mandible moved downwards relative to the maxilla, thereby stretching the jaw-closing muscles and activating them at segmental reflex latency. This caused the mandible to move back upwards. The strength of the reflex response was related to the speed and amplitude of the vertical jaw movement following landing. It is concluded that, during walking, the small, slow movements of the mandible relative to the maxilla are subthreshold for stretch reflexes in the jaw muscles: i.e. the mandible is supported by visco-elasticity of the soft tissues in the masticatory system. However, the brisker downward

  3. Fingertip contact influences human postural control

    Science.gov (United States)

    Jeka, J. J.; Lackner, J. R.

    1994-01-01

    Touch and pressure stimulation of the body surface can strongly influence apparent body orientation, as well as the maintenance of upright posture during quiet stance. In the present study, we investigated the relationship between postural sway and contact forces at the fingertip while subjects touched a rigid metal bar. Subjects were tested in the tandem Romberg stance with eyes open or closed under three conditions of fingertip contact: no contact, touch contact (postural sway when compared to the no contact, eyes closed condition. Body sway and fingertip forces were essentially in phase with force contact, suggesting that fingertip contact forces are physically counteracting body sway. Time delays between body sway and fingertip forces were much larger with light touch contact, suggesting that the fingertip is providing information that allows anticipatory innervation of musculature to reduce body sway. The results are related to observations on precision grip as well as the somatosensory, proprioceptive, and motor mechanisms involved in the reduction of body sway.

  4. A cognitive intersensory interaction mechanism in human postural control.

    Science.gov (United States)

    Blümle, A; Maurer, C; Schweigart, G; Mergner, T

    2006-08-01

    Human control of upright body posture involves inputs from several senses (visual, vestibular, proprioceptive, somatosensory) and their central interactions. We recently studied visual effects on posture control and their intersensory interactions and found evidence for the existence of an indirect and presumably cognitive mode of interaction, in addition to a direct interaction (we found, e.g., that a 'virtual reality' visual stimulus has a weaker postural effect than a 'real world' scene, because of its illusory character). Here we focus on the presumed cognitive interaction mechanism. We report experiments in healthy subjects and vestibular loss patients. We investigated to what extent a postural response to lateral platform tilt is modulated by tilt of a visual scene in an orthogonal rotational plane (anterior-posterior, a-p, direction). The a-p visual stimulus did not evoke a lateral postural response on its own. But it enhanced the response to the lateral platform tilt (i.e., it increased the evoked body excursion). The effect was related to the velocity of the visual stimulus, showed a threshold at 0.31 degrees /s, and increased monotonically with increasing velocity. These characteristics were similar in normals and patients, but body excursions were larger in patients. In conclusion, the orthogonal stimulus arrangement in our experiments allowed us to selectively assess a cognitive intersensory interaction that upon co-planar stimulation tends to be merged with direct interaction. The observed threshold corresponds to the conscious perceptual detection threshold of the visual motion, which is clearly higher than the visual postural response threshold. This finding is in line with our notion of a cognitive phenomenon. We postulate that the cognitive mechanism in normals interferes with a central visual-vestibular interaction mechanism. This appears to be similar in vestibular loss patients, but patients use less effective somatosensory instead of vestibular

  5. Dynamic regulation of sensorimotor integration in human postural control.

    Science.gov (United States)

    Peterka, Robert J; Loughlin, Patrick J

    2004-01-01

    Upright stance in humans is inherently unstable, requiring corrective action based on spatial-orientation information from sensory systems. One might logically predict that environments providing access to accurate orientation information from multiple sensory systems would facilitate postural stability. However, we show that, after a period in which access to accurate sensory information was reduced, the restoration of accurate information disrupted postural stability. In eyes-closed trials, proprioceptive information was altered by rotating the support surface in proportion to body sway (support surface "sway-referencing"). When the support surface returned to a level orientation, most subjects developed a transient 1-Hz body sway oscillation that differed significantly from the low-amplitude body sway typically observed during quiet stance. Additional experiments showed further enhancement of the 1-Hz oscillation when the surface transitioned from a sway-referenced to a reverse sway-referenced motion. Oscillatory behavior declined with repetition of trials, suggesting a learning effect. A simple negative feedback-control model of the postural control system predicted the occurrence of this 1-Hz oscillation in conditions where too much corrective torque is generated in proportion to body sway. Model simulations were used to distinguish between two alternative explanations for the excessive corrective torque generation. Simulation results favor an explanation based on the dynamic reweighting of sensory contributions to postural control rather than a load-compensation mechanism that scales torque in proportion to a fixed combination of sensory-orientation information.

  6. Characterizing the human postural control system using detrended fluctuation analysis

    Science.gov (United States)

    Teresa Blázquez, M.; Anguiano, Marta; de Saavedra, Fernando Arias; Lallena, Antonio M.; Carpena, Pedro

    2010-01-01

    Detrended fluctuation analysis is used to study the behaviour of the time series of the position of the center of pressure, output from the activity of a human postural control system. The results suggest that these trajectories present a crossover in their scaling properties from persistent (for high frequencies, short-range time scale) to anti-persistent (for low frequencies, long-range time scale) behaviours. The values of the scaling exponent found for the persistent parts of the trajectories are very similar for all the cases analysed. The similarity of the results obtained for the measurements done with both eyes open and both eyes closed indicate either that the visual system may be disregarded by the postural control system, while maintaining quiet standing, or that the control mechanisms associated with each type of information (visual, vestibular and somatosensory) cannot be disentangled with this technique.

  7. Effect of intermittent feedback control on robustness of human-like postural control system

    National Research Council Canada - National Science Library

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-01-01

    .... Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown...

  8. Effect of intermittent feedback control on robustness of human-like postural control system

    Science.gov (United States)

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-03-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.

  9. A mathematical model for incorporating biofeedback into human postural control

    Directory of Open Access Journals (Sweden)

    Ersal Tulga

    2013-02-01

    Full Text Available Abstract Background Biofeedback of body motion can serve as a balance aid and rehabilitation tool. To date, mathematical models considering the integration of biofeedback into postural control have represented this integration as a sensory addition and limited their application to a single degree-of-freedom representation of the body. This study has two objectives: 1 to develop a scalable method for incorporating biofeedback into postural control that is independent of the model’s degrees of freedom, how it handles sensory integration, and the modeling of its postural controller; and 2 to validate this new model using multidirectional perturbation experimental results. Methods Biofeedback was modeled as an additional torque to the postural controller torque. For validation, this biofeedback modeling approach was applied to a vibrotactile biofeedback device and incorporated into a two-link multibody model with full-state-feedback control that represents the dynamics of bipedal stance. Average response trajectories of body sway and center of pressure (COP to multidirectional surface perturbations of subjects with vestibular deficits were used for model parameterization and validation in multiple perturbation directions and for multiple display resolutions. The quality of fit was quantified using average error and cross-correlation values. Results The mean of the average errors across all tactor configurations and perturbations was 0.24° for body sway and 0.39 cm for COP. The mean of the cross-correlation value was 0.97 for both body sway and COP. Conclusions The biofeedback model developed in this study is capable of capturing experimental response trajectory shapes with low average errors and high cross-correlation values in both the anterior-posterior and medial-lateral directions for all perturbation directions and spatial resolution display configurations considered. The results validate that biofeedback can be modeled as an additional

  10. Temporal parameter change of human postural control ability during upright swing using recursive least square method

    Science.gov (United States)

    Goto, Akifumi; Ishida, Mizuri; Sagawa, Koichi

    2010-01-01

    The purpose of this study is to derive quantitative assessment indicators of the human postural control ability. An inverted pendulum is applied to standing human body and is controlled by ankle joint torque according to PD control method in sagittal plane. Torque control parameters (KP: proportional gain, KD: derivative gain) and pole placements of postural control system are estimated with time from inclination angle variation using fixed trace method as recursive least square method. Eight young healthy volunteers are participated in the experiment, in which volunteers are asked to incline forward as far as and as fast as possible 10 times over 10 [s] stationary intervals with their neck joint, hip joint and knee joint fixed, and then return to initial upright posture. The inclination angle is measured by an optical motion capture system. Three conditions are introduced to simulate unstable standing posture; 1) eyes-opened posture for healthy condition, 2) eyes-closed posture for visual impaired and 3) one-legged posture for lower-extremity muscle weakness. The estimated parameters Kp, KD and pole placements are applied to multiple comparison test among all stability conditions. The test results indicate that Kp, KD and real pole reflect effect of lower-extremity muscle weakness and KD also represents effect of visual impairment. It is suggested that the proposed method is valid for quantitative assessment of standing postural control ability.

  11. Is there interaction between vision and local fatigue of the lower limbs on postural control and postural stability in human posture?

    Science.gov (United States)

    Caron, Olivier

    2004-06-03

    An investigation of the interaction between local fatigue and vision on postural control and postural stability was carried out. Fatigue was effected in a sitting position and was assumed based on a shortening of the exertion time of the soleus muscles (60% of their maximal voluntary contractions). Postural stability was assessed by centre of gravity motion, which was computed from centre of pressure motion, evaluating postural control. Ten healthy male subjects were asked to stand as still as possible with eyes open (EO) and eyes closed (EC) before and after the fatigue protocol. Results showed that fatigue produced similar effects for the two vision conditions on postural control and postural stability analyzed separately, increasing postural control and leaving postural stability unchanged. Local fatigue essentially produced an increase of neuromuscular activity in high frequencies. However, this increase was more pronounced for the EO, as compared to the EC condition.

  12. Amplitude Demodulation of Entrained Sway to Analyze Human Postural Control

    Science.gov (United States)

    Bhatkar, Viprali V.; Pilkar, Rakesh B.; Storey, Christopher M.; Robinson, Charles J.

    2008-01-01

    This paper presents an innovative technique to study postural control. Our translating platform, the Sliding Linear Investigative Platform For Analyzing Lower Limb Stability and Simultaneous Tracking, EMG and Pressure mapping (SLIP-FALLS-STEPm), makes precise, vibration movements under controlled conditions. We look at the psychophysical thresholds to the perception of a sinusoidally induced sway. In the Sine Lock experiments described, an induced sinusoidal perturbation locks the subject's natural sway pattern at the frequency of the perturbation. The input / output system is treated as an Amplitude Shift Key (ASK) modulated signal modulating a carrier frequency (at or about a subject's natural sway frequency). The Position signal (input) and the Anterior-Posterior Center of Pressure (APCOP) signal (output) or the ankle angle are demodulated by mixing them with the pure sine wave carrier at the frequency of underlying oscillation and then low-pass filtering it to detect the amplitude envelope. These detected envelopes elucidate that the square pulse increase in the position sine wave amplitude yields a triangular increase in APCOP demodulated signal. PMID:18003110

  13. A pinned polymer model of posture control

    CERN Document Server

    Chow, C C; Chow, Carson C; Collins, J J

    1995-01-01

    A phenomenological model of human posture control is posited. The dynamics are modelled as an elastically pinned polymer under the influence of noise. The model accurately reproduces the two-point correlation functions of experimental posture data and makes predictions for the response function of the postural control system. The physiological and clinical significance of the model is discussed.

  14. Study of the human postural control system during quiet standing using detrended fluctuation analysis

    Science.gov (United States)

    Teresa Blázquez, M.; Anguiano, Marta; de Saavedra, Fernando Arias; Lallena, Antonio M.; Carpena, Pedro

    2009-05-01

    The detrended fluctuation analysis is used to study the behavior of different time series obtained from the trajectory of the center of pressure, the output of the activity of the human postural control system. The results suggest that these trajectories present two different regimes in their scaling properties: persistent (for high frequencies, short-range time scale) to antipersistent (for low frequencies, long-range time scale) behaviors. The similitude between the results obtained for the measurements, done with both eyes open and eyes closed, indicate either that the visual system may be disregarded by the postural control system while maintaining the quiet standing, or that the control mechanisms associated with each type of information (visual, vestibular and somatosensory) cannot be disentangled with the type of analysis performed here.

  15. Postural control in underachieving students

    National Research Council Canada - National Science Library

    Tomaz, Andreza; Ganança, Maurício Malavasi; Garcia, Adriana Pontin; Kessler, Natalia; Caovilla, Heloisa Helena

    2014-01-01

    Postural balance is a sensory-motor function resulting from a learning process. To evaluate the postural control of underachieving students through static posturography together with virtual reality stimulation...

  16. Noise and complexity in human postural control: interpreting the different estimations of entropy.

    Science.gov (United States)

    Rhea, Christopher K; Silver, Tobin A; Hong, S Lee; Ryu, Joong Hyun; Studenka, Breanna E; Hughes, Charmayne M L; Haddad, Jeffrey M

    2011-03-17

    Over the last two decades, various measures of entropy have been used to examine the complexity of human postural control. In general, entropy measures provide information regarding the health, stability and adaptability of the postural system that is not captured when using more traditional analytical techniques. The purpose of this study was to examine how noise, sampling frequency and time series length influence various measures of entropy when applied to human center of pressure (CoP) data, as well as in synthetic signals with known properties. Such a comparison is necessary to interpret data between and within studies that use different entropy measures, equipment, sampling frequencies or data collection durations. The complexity of synthetic signals with known properties and standing CoP data was calculated using Approximate Entropy (ApEn), Sample Entropy (SampEn) and Recurrence Quantification Analysis Entropy (RQAEn). All signals were examined at varying sampling frequencies and with varying amounts of added noise. Additionally, an increment time series of the original CoP data was examined to remove long-range correlations. Of the three measures examined, ApEn was the least robust to sampling frequency and noise manipulations. Additionally, increased noise led to an increase in SampEn, but a decrease in RQAEn. Thus, noise can yield inconsistent results between the various entropy measures. Finally, the differences between the entropy measures were minimized in the increment CoP data, suggesting that long-range correlations should be removed from CoP data prior to calculating entropy. The various algorithms typically used to quantify the complexity (entropy) of CoP may yield very different results, particularly when sampling frequency and noise are different. The results of this study are discussed within the context of the neural noise and loss of complexity hypotheses.

  17. Noise and complexity in human postural control: interpreting the different estimations of entropy.

    Directory of Open Access Journals (Sweden)

    Christopher K Rhea

    Full Text Available BACKGROUND: Over the last two decades, various measures of entropy have been used to examine the complexity of human postural control. In general, entropy measures provide information regarding the health, stability and adaptability of the postural system that is not captured when using more traditional analytical techniques. The purpose of this study was to examine how noise, sampling frequency and time series length influence various measures of entropy when applied to human center of pressure (CoP data, as well as in synthetic signals with known properties. Such a comparison is necessary to interpret data between and within studies that use different entropy measures, equipment, sampling frequencies or data collection durations. METHODS AND FINDINGS: The complexity of synthetic signals with known properties and standing CoP data was calculated using Approximate Entropy (ApEn, Sample Entropy (SampEn and Recurrence Quantification Analysis Entropy (RQAEn. All signals were examined at varying sampling frequencies and with varying amounts of added noise. Additionally, an increment time series of the original CoP data was examined to remove long-range correlations. Of the three measures examined, ApEn was the least robust to sampling frequency and noise manipulations. Additionally, increased noise led to an increase in SampEn, but a decrease in RQAEn. Thus, noise can yield inconsistent results between the various entropy measures. Finally, the differences between the entropy measures were minimized in the increment CoP data, suggesting that long-range correlations should be removed from CoP data prior to calculating entropy. CONCLUSIONS: The various algorithms typically used to quantify the complexity (entropy of CoP may yield very different results, particularly when sampling frequency and noise are different. The results of this study are discussed within the context of the neural noise and loss of complexity hypotheses.

  18. Virtual reality applications in assessing the effect of anxiety on sensorimotor integration in human postural control.

    Science.gov (United States)

    Widdowson, Christopher; Ganhotra, Jatin; Faizal, Mohammed; Wilko, Marissa; Parikh, Saurin; Adhami, Zainulabidin; Hernandez, Manuel E

    2016-08-01

    Falls are a leading cause of injury and mortality among adults over the age of 65 years. Given the strong relation between fear of falling and fall risk, identification of the mechanisms that underlie anxiety-related changes in postural control may pave the way to the development of novel therapeutic strategies aimed at reducing fall risk in older adults. First, we review potential mechanisms underlying anxiety-mediated changes in postural control in older adults with and without neurological conditions. We then present a system that allows for the simultaneous recording of neural, physiological, and behavioral data in an immersive virtual reality (VR) environment while implementing sensory and mechanical perturbations to evaluate alterations in sensorimotor integration under conditions with high postural threat. We also discuss applications of VR in minimizing falls in older adults and potential future studies.

  19. Neuromechanical tuning of nonlinear postural control dynamics

    Science.gov (United States)

    Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.

    2009-06-01

    Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.

  20. The role of haptic cues from rough and slippery surfaces in human postural control

    Science.gov (United States)

    Jeka, J. J.; Lackner, J. R.

    1995-01-01

    Haptic information is critically important in complex sensory-motor tasks such as manipulating objects. Its comparable importance in spatial orientation is only beginning to be recognized. We have shown that postural sway in humans is significantly reduced by lightly touching a stable surface with a fingertip at contact force levels far below those physically necessary to stabilize the body. To investigate further the functional relationship between contact forces at the hand and postural equilibrium, we had subjects stand in the tandem Romberg stance while being allowed physically supportive (force contact) and non-physically supportive (touch contact) amounts of index fingertip force on surfaces with different frictional characteristics. Mean sway amplitude (MSA) was reduced by over 50% with both touch and force contact of the fingertip, compared to standing without fingertip contact. No differences in MSA were observed when touching rough or slippery surfaces. The amplitude of EMG activity in the peroneal muscles and the timing relationships between fingertip forces, body sway and EMG activity suggested that with touch contact of the finger or with force contact on a slippery surface long-loop "reflexes" involving postural muscles were stabilizing sway. With force contact of the fingertip on a rough surface, MSA reduction was achieved primarily through physical support of the body. This pattern of results indicates that light touch contact cues from the fingertip in conjunction with proprioceptive signals about arm configuration are providing information about body sway that can be used to reduce MSA through postural muscle activation.

  1. Fall prevention in the young old using an exoskeleton human body posturizer: a randomized controlled trial.

    Science.gov (United States)

    Verrusio, W; Gianturco, V; Cacciafesta, M; Marigliano, V; Troisi, G; Ripani, M

    2017-04-01

    Fall risk in elderly has been related with physical decline, low quality of life and reduced survival. To evaluate the impact of exoskeleton human body posturizer (HBP) on the fall risk in the elderly. 150 subjects (mean age 64.85; 79 M/71 F) with mild fall risk were randomized into two groups: 75 for group treated with human body posturizer (HBP group) and 75 for physical training without HBP group (exercise group). The effects of interventions were assessed by differences in tests related to balance and falls. Medically eligible patients were screened with Tinetti balance and Gait evaluation scale, short physical performance battery and numeric pain rating scale to determine fall risk in elderly people. In the HBP group there was a significant improvement in short physical performance battery, Tinetti scale and Pain Numeric rating scale with a significant reduction in fall risk (p exoskeleton human body posturizer seems to be a new significant device for prevention of fall in elderly patients. Further research should be carried out to obtain more evidence on effects of robotic technology for fall prevention in the elderly.

  2. Postural control in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Jackeline Yumi Fukunaga

    2014-12-01

    Full Text Available Introduction: Postural instability is one of the most disabling features of Parkinson's disease. Objective: To evaluate postural balance in Parkinson's disease. Methods: Thirty patients with Parkinson's disease were compared with controls using Tetrax™ interactive balance system posturography. Results: For different positions, patients with Parkinson's disease showed a significantly higher weight distribution index, fall index, Fourier transformation at low-medium frequencies (F2–F4, and significantly lower right/left and toe/heel synchronization versus controls. Conclusion: Postural imbalance in Parkinson's disease patients is characterized by the abnormalities of weight distribution index, synchronization index, Fourier transformation index, and fall index as measured by Tetrax™ posturography.

  3. An Engineering Model to Test for Sensory Reweighting: Nonhuman Primates Serve as a Model for Human Postural Control and Vestibular Dysfunction.

    Science.gov (United States)

    Thompson, Lara A; Haburcakova, Csilla; Goodworth, Adam D; Lewis, Richard F

    2018-01-01

    Quantitative animal models are critically needed to provide proof of concept for the investigation of rehabilitative balance therapies (e.g., invasive vestibular prostheses) and treatment response prior to, or in conjunction with, human clinical trials. This paper describes a novel approach to modeling the nonhuman primate postural control system. Our observation that rhesus macaques and humans have even remotely similar postural control motivates the further application of the rhesus macaque as a model for studying the effects of vestibular dysfunction, as well as vestibular prosthesis-assisted states, on human postural control. Previously, system identification methodologies and models were only used to describe human posture. However, here we utilized pseudorandom, roll-tilt balance platform stimuli to perturb the posture of a rhesus monkey in normal and mild vestibular (equilibrium) loss states. The relationship between rhesus monkey trunk sway and platform roll-tilt was determined via stimulus-response curves and transfer function results. A feedback controller model was then used to explore sensory reweighting (i.e., changes in sensory reliance), which prevented the animal from falling off of the tilting platform. Conclusions involving sensory reweighting in the nonhuman primate for a normal sensory state and a state of mild vestibular loss led to meaningful insights. This first-phase effort to model the balance control system in nonhuman primates is essential for future investigations toward the effects of invasive rehabilitative (balance) technologies on postural control in primates, and ultimately, humans.

  4. Postural control in underachieving students.

    Science.gov (United States)

    Tomaz, Andreza; Ganança, Maurício Malavasi; Garcia, Adriana Pontin; Kessler, Natalia; Caovilla, Heloisa Helena

    2014-04-01

    Postural balance is a sensory-motor function resulting from a learning process. To evaluate the postural control of underachieving students through static posturography together with virtual reality stimulation. This was a controlled cross-sectional study of a group of 51 underachieving students and a control group of 60 students with good school performance, with no history of vestibular disorders or neurotological complaints, volunteers from the community, age- and gender-matched. The students were submitted to Balance Rehabilitation Unit (BRU™) posturography. A total of 111 students aged 7 to 12 years old were evaluated. At posturography evaluation, there was no significant difference between the limit of stability area (cm2) of the control group and the experimental group. The comparison between groups demonstrated a statistically significant difference (p center of pressure area (cm2) in the ten sensory conditions evaluated. Posturography with virtual reality stimulation, allows for the identification of incapacity to maintain postural control, with or without visual deprivation, and the assessment of visual, somatosensory, and vestibular-visual interaction conflict in underachieving students.

  5. Postural Control in Deaf Children

    Directory of Open Access Journals (Sweden)

    Amir-Abbas Ebrahimi

    2017-02-01

    Full Text Available This cross-sectional study aimed to determine the reliability of static control evaluation with Synapsys Posturography System (SPS, Marseille, France and to compare the static postural control of deaf children with typically developing children. This study was conducted in 2 phases on 81 children of 7 to 12 years old in Tehran schools. The first phase examined the reliability of static balance evaluation with SPS. In this phase, a total of 12 children with typical development were evaluated and then do a re-test 1 week later. In the second phase, 30 children with profound sensorineural hearing loss (SNHL and high risk in their balance (selected from Baghcheban Schools for the Deaf as the experimental group, and 37 children with typical development (selected randomly from 2 primary schools for girls and boys in District 12 of Tehran Department of Education as control group were enrolled in the study. They were all placed under sensory organization test evaluation. Based on the results of intraclass correlation coefficient (ICC, the unilateral random effects model, test-retest reliability in different sensory conditions, the moderate to excellent results were obtained (ICC between 0.68 and 0.94. Also, the mean displacement of pressure center in all sensory conditions, the limits of stability (LOS area, the overall balance scores, and scores for balance sensory ratio (except the somatosensory ratio of children with typical development were better than the deaf peers (P˂0.05. The SPS has acceptable reliability to evaluate static posture in children between the ages of 7 and 12 years. Furthermore, deaf children as compared to children with typical development had a lower static postural control in all sensory conditions. This finding confirms the need to examine the postural control for identifying the extent of sensory deficit that has caused poor balance function, and also the need for early intervention to address the balance deficit in deaf

  6. Planckian Power Spectral Densities from Human Calves during Posture Maintenance and Controlled Isometric Contractions.

    Directory of Open Access Journals (Sweden)

    J E Lugo

    Full Text Available The relationship between muscle anatomy and physiology and its corresponding electromyography activity (EMGA is complex and not well understood. EMGA models may be broadly divided in stochastic and motor-unit-based models. For example, these models have successfully described many muscle physiological variables such as the value of the muscle fiber velocity and the linear relationship between median frequency and muscle fiber velocity. However they cannot explain the behavior of many of these variables with changes in intramuscular temperature, or muscle PH acidity, for instance. Here, we propose that the motor unit action potential can be treated as an electromagnetic resonant mode confined at thermal equilibrium inside the muscle. The motor units comprising the muscle form a system of standing waves or modes, where the energy of each mode is proportional to its frequency. Therefore, the power spectral density of the EMGA is well described and fit by Planck's law and from its distribution we developed theoretical relationships that explain the behavior of known physiological variables with changes in intramuscular temperature or muscle PH acidity, for instance.EMGA of the calf muscle was recorded during posture maintenance in seven participants and during controlled isometric contractions in two participants. The power spectral density of the EMGA was then fit with the Planckian distribution. Then, we inferred nine theoretical relationships from the distribution and compared the theoretically derived values with experimentally obtained values.The power spectral density of EMGA was fit by Planckian distributions and all the theoretical relationships were validated by experimental results.Only by considering the motor unit action potentials as electromagnetic resonant modes confined at thermal equilibrium inside the muscle suffices to predict known or new theoretical relationships for muscle physiological variables that other models have failed

  7. Postural control in blind subjects

    Directory of Open Access Journals (Sweden)

    Antonio Vinicius Soares

    2011-12-01

    Full Text Available Objective: To analyze postural control in acquired and congenitally blind adults. Methods: A total of 40 visually impaired adults participated in the research, divided into 2 groups, 20 with acquired blindness and 20 with congenital blindness - 21 males and 19 females, mean age 35.8 ± 10.8. The Brazilian version of Berg Balance Scale and the motor domain of functional independence measure were utilized. Results: On Berg Balance Scale the mean for acquired blindness was 54.0 ± 2.4 and 54.4 ± 2.5 for congenitally blind subjects; on functional independence measure the mean for acquired blind group was 87.1 ± 4.8 and 87.3 ± 2.3 for congenitally blind group. Conclusion: Based upon the scale used the results suggest the ability to control posture can be developed by compensatory mechanisms and it is not affected by visual loss in congenitally and acquired blindness.

  8. Nature and nurture in the development of postural control in human infants

    NARCIS (Netherlands)

    HaddersAlgra, M; Brogren, E; Forssberg, H

    Nowadays, the controversy on ''nature'' and ''nurture'' in motor development focuses on the development of automatic motor patterns. The present paper discusses this issue within the framework of a recent study on the effect of maturation and training on the development of postural adjustments in

  9. Postural Control in Children with Autism.

    Science.gov (United States)

    Kohen-Raz, Reuven; And Others

    1992-01-01

    Postural control was evaluated in 91 autistic, 166 normal, and 18 mentally retarded children using a computerized posturographic procedure. In comparison to normal children, the autistic subjects were less likely to exhibit age-related changes in postural performance, and postures were more variable and less stable. (Author/JDD)

  10. Eye Movements Affect Postural Control in Young and Older Females.

    Science.gov (United States)

    Thomas, Neil M; Bampouras, Theodoros M; Donovan, Tim; Dewhurst, Susan

    2016-01-01

    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions.

  11. A method to model anticipatory postural control in driver braking events

    NARCIS (Netherlands)

    Osth, J.; Eliasson, E.; Happee, R.; Brolin, K.

    2014-01-01

    Human body models (HBMs) for vehicle occupant simulations have recently been extended with active muscles and postural control strategies. Feedback control has been used to model occupant responses to autonomous braking interventions. However, driver postural responses during driver initiated

  12. Spinal mechanisms may provide a combination of intermittent and continuous control of human posture: predictions from a biologically based neuromusculoskeletal model.

    Directory of Open Access Journals (Sweden)

    Leonardo Abdala Elias

    2014-11-01

    Full Text Available Several models have been employed to study human postural control during upright quiet stance. Most have adopted an inverted pendulum approximation to the standing human and theoretical models to account for the neural feedback necessary to keep balance. The present study adds to the previous efforts in focusing more closely on modelling the physiological mechanisms of important elements associated with the control of human posture. This paper studies neuromuscular mechanisms behind upright stance control by means of a biologically based large-scale neuromusculoskeletal (NMS model. It encompasses: i conductance-based spinal neuron models (motor neurons and interneurons; ii muscle proprioceptor models (spindle and Golgi tendon organ providing sensory afferent feedback; iii Hill-type muscle models of the leg plantar and dorsiflexors; and iv an inverted pendulum model for the body biomechanics during upright stance. The motor neuron pools are driven by stochastic spike trains. Simulation results showed that the neuromechanical outputs generated by the NMS model resemble experimental data from subjects standing on a stable surface. Interesting findings were that: i an intermittent pattern of muscle activation emerged from this posture control model for two of the leg muscles (Medial and Lateral Gastrocnemius; and ii the Soleus muscle was mostly activated in a continuous manner. These results suggest that the spinal cord anatomy and neurophysiology (e.g., motor unit types, synaptic connectivities, ordered recruitment, along with the modulation of afferent activity, may account for the mixture of intermittent and continuous control that has been a subject of debate in recent studies on postural control. Another finding was the occurrence of the so-called "paradoxical" behaviour of muscle fibre lengths as a function of postural sway. The simulations confirmed previous conjectures that reciprocal inhibition is possibly contributing to this effect, but

  13. Learning an Intermittent Control Strategy for Postural Balancing Using an EMG-Based Human-Computer Interface

    Science.gov (United States)

    Asai, Yoshiyuki; Tateyama, Shota; Nomura, Taishin

    2013-01-01

    It has been considered that the brain stabilizes unstable body dynamics by regulating co-activation levels of antagonist muscles. Here we critically reexamined this established theory of impedance control in a postural balancing task using a novel EMG-based human-computer interface, in which subjects were asked to balance a virtual inverted pendulum using visual feedback information on the pendulum's position. The pendulum was actuated by a pair of antagonist joint torques determined in real-time by activations of the corresponding pair of antagonist ankle muscles of subjects standing upright. This motor-task raises a frustrated environment; a large feedback time delay in the sensorimotor loop, as a source of instability, might favor adopting the non-reactive, preprogrammed impedance control, but the ankle muscles are relatively hard to co-activate, which hinders subjects from adopting the impedance control. This study aimed at discovering how experimental subjects resolved this frustrated environment through motor learning. One third of subjects adapted to the balancing task in a way of the impedance-like control. It was remarkable, however, that the majority of subjects did not adopt the impedance control. Instead, they acquired a smart and energetically efficient strategy, in which two muscles were inactivated simultaneously at a sequence of optimal timings, leading to intermittent appearance of periods of time during which the pendulum was not actively actuated. Characterizations of muscle inactivations and the pendulum¡Çs sway showed that the strategy adopted by those subjects was a type of intermittent control that utilizes a stable manifold of saddle-type unstable upright equilibrium that appeared in the state space of the pendulum when the active actuation was turned off. PMID:23717398

  14. Learning an intermittent control strategy for postural balancing using an EMG-based human-computer interface.

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Asai

    Full Text Available It has been considered that the brain stabilizes unstable body dynamics by regulating co-activation levels of antagonist muscles. Here we critically reexamined this established theory of impedance control in a postural balancing task using a novel EMG-based human-computer interface, in which subjects were asked to balance a virtual inverted pendulum using visual feedback information on the pendulum's position. The pendulum was actuated by a pair of antagonist joint torques determined in real-time by activations of the corresponding pair of antagonist ankle muscles of subjects standing upright. This motor-task raises a frustrated environment; a large feedback time delay in the sensorimotor loop, as a source of instability, might favor adopting the non-reactive, preprogrammed impedance control, but the ankle muscles are relatively hard to co-activate, which hinders subjects from adopting the impedance control. This study aimed at discovering how experimental subjects resolved this frustrated environment through motor learning. One third of subjects adapted to the balancing task in a way of the impedance-like control. It was remarkable, however, that the majority of subjects did not adopt the impedance control. Instead, they acquired a smart and energetically efficient strategy, in which two muscles were inactivated simultaneously at a sequence of optimal timings, leading to intermittent appearance of periods of time during which the pendulum was not actively actuated. Characterizations of muscle inactivations and the pendulum¡Çs sway showed that the strategy adopted by those subjects was a type of intermittent control that utilizes a stable manifold of saddle-type unstable upright equilibrium that appeared in the state space of the pendulum when the active actuation was turned off.

  15. Learning an intermittent control strategy for postural balancing using an EMG-based human-computer interface.

    Science.gov (United States)

    Asai, Yoshiyuki; Tateyama, Shota; Nomura, Taishin

    2013-01-01

    It has been considered that the brain stabilizes unstable body dynamics by regulating co-activation levels of antagonist muscles. Here we critically reexamined this established theory of impedance control in a postural balancing task using a novel EMG-based human-computer interface, in which subjects were asked to balance a virtual inverted pendulum using visual feedback information on the pendulum's position. The pendulum was actuated by a pair of antagonist joint torques determined in real-time by activations of the corresponding pair of antagonist ankle muscles of subjects standing upright. This motor-task raises a frustrated environment; a large feedback time delay in the sensorimotor loop, as a source of instability, might favor adopting the non-reactive, preprogrammed impedance control, but the ankle muscles are relatively hard to co-activate, which hinders subjects from adopting the impedance control. This study aimed at discovering how experimental subjects resolved this frustrated environment through motor learning. One third of subjects adapted to the balancing task in a way of the impedance-like control. It was remarkable, however, that the majority of subjects did not adopt the impedance control. Instead, they acquired a smart and energetically efficient strategy, in which two muscles were inactivated simultaneously at a sequence of optimal timings, leading to intermittent appearance of periods of time during which the pendulum was not actively actuated. Characterizations of muscle inactivations and the pendulum¡Çs sway showed that the strategy adopted by those subjects was a type of intermittent control that utilizes a stable manifold of saddle-type unstable upright equilibrium that appeared in the state space of the pendulum when the active actuation was turned off.

  16. Monocular versus binocular vision in postural control.

    Science.gov (United States)

    Isotalo, Elina; Kapoula, Zoi; Feret, Pierre-Henri; Gauchon, Karine; Zamfirescu, Françoise; Gagey, Pierre-Marie

    2004-03-01

    In previous studies about the control of posture there have been controversial findings. Our aim was to examine the role of monocular and binocular vision in controlling posture in quiet stance. Twenty-eight normal subjects were tested. We used a force platform in measuring postural stability. In main experiment, postural stability was measured in four conditions: both eyes open (BEO), dominant eye open (DEO) non-dominant eye open (NDEO), and both eyes closed (BEC). In a further experiment, 11 subjects were tested in conditions where a vertical prism was placed in front of dominant eye. Prism was strong enough to cause diplopia. Our interest was to see, if diplopia affected the balance. In main experiment, at level of group the body-sway in any of the three ocular (viewing) conditions did not differ from each other. At level of individuals, binocular vision was more effective on controlling posture in only half of subjects. In prism experiment, relative to normal binocular viewing the postural stability was modified in both prism conditions, but there was no difference between monocular and binocular viewing with prism. In quiet stance and in subjects with perfect binocular vision and stereopsis, the benefit out of binocular viewing in postural stability is subject-dependent. At the level of group, monocular vision provides equally good postural stability as binocular vision.

  17. A Methodology for Investigating Adaptive Postural Control

    Science.gov (United States)

    McDonald, P. V.; Riccio, G. E.

    1999-01-01

    Our research on postural control and human-environment interactions provides an appropriate scientific foundation for understanding the skill of mass handling by astronauts in weightless conditions (e.g., extravehicular activity or EVA). We conducted an investigation of such skills in NASA's principal mass-handling simulator, the Precision Air-Bearing Floor, at the Johnson Space Center. We have studied skilled movement-body within a multidisciplinary context that draws on concepts and methods from biological and behavioral sciences (e.g., psychology, kinesiology and neurophysiology) as well as bioengineering. Our multidisciplinary research has led to the development of measures, for manual interactions between individuals and the substantial environment, that plausibly are observable by human sensory systems. We consider these methods to be the most important general contribution of our EVA investigation. We describe our perspective as control theoretic because it draws more on fundamental concepts about control systems in engineering than it does on working constructs from the subdisciplines of biomechanics and motor control in the bio-behavioral sciences. At the same time, we have attempted to identify the theoretical underpinnings of control-systems engineering that are most relevant to control by human beings. We believe that these underpinnings are implicit in the assumptions that cut across diverse methods in control-systems engineering, especially the various methods associated with "nonlinear control", "fuzzy control," and "adaptive control" in engineering. Our methods are based on these theoretical foundations rather than on the mathematical formalisms that are associated with particular methods in control-systems engineering. The most important aspects of the human-environment interaction in our investigation of mass handling are the functional consequences that body configuration and stability have for the pick up of information or the achievement of

  18. From reaching to reach-to-grasp: the arm posture difference and its implications on human motion control strategy.

    Science.gov (United States)

    Li, Zhi; Milutinović, Dejan; Rosen, Jacob

    2017-05-01

    Reach-to-grasp arm postures differ from those in pure reaching because they are affected by grasp position/orientation, rather than simple transport to a position during a reaching motion. This paper investigates this difference via an analysis of experimental  data collected on reaching and reach-to-grasp motions. A seven-degree-of-freedom (DOFs) kinematic arm model with the swivel angle is used for the motion analysis. Compared to a widely used anatomical arm model, this model distinguishes clearly the four grasping-relevant DOFs (GR-DOFs) that are affected by positions and orientations of the objects to be grasped. These four GR-DOFs include the swivel angle that measures the elbow rotation about the shoulder-wrist axis, and three wrist joint angles. For each GR-DOF, we quantify position vs orientation task-relevance bias that measures how much the DOF is affected by the grasping position vs orientation. The swivel angle and forearm supination have similar bias, and the analysis of their motion suggests two hypotheses regarding the synergistic coordination of the macro- and micro-structures of the human arm (1) DOFs with similar task-relevance are synergistically coordinated; and (2) such synergy breaks when a task-relevant DOF is close to its joint limit without necessarily reaching the limit. This study provides a motion analysis method to reduce the control complexity for reach-to-grasp tasks, and suggests using dynamic coupling to coordinate the hand and arm of upper-limb exoskeletons.

  19. Dental occlusion and postural control in adults.

    Science.gov (United States)

    Tardieu, Corinne; Dumitrescu, Michel; Giraudeau, Anne; Blanc, Jean-Luc; Cheynet, François; Borel, Liliane

    2009-01-30

    We studied the influence of a dental occlusion perturbation on postural control. The tests were performed in three dental occlusion conditions: (Rest Position: no dental contact, Maximal Intercuspal Occlusion: maximal dental contact, and Thwarted Laterality Occlusion: simulation of a dental malocclusion) and four postural conditions: static (stable platform) and dynamic (unstable platform), with eyes open and eyes closed. A decay of postural control was noted between the Rest Position and Thwarted Laterality Occlusion conditions with regard to average speed and power indexes in dynamic conditions and with eyes closed. However, the head position and stabilization were not different from those in the other experimental conditions, which means that the same functional goal was reached with an increase in the total energetic cost. This work shows that dental occlusion differently affects postural control, depending on the static or dynamic conditions. Indeed, dental occlusion impaired postural control only in dynamic postural conditions and in absence of visual cues. The sensory information linked to the dental occlusion comes into effect only during difficult postural tasks and its importance grows as the other sensory cues become scarce.

  20. Postural control in sitting children with cerebral palsy

    NARCIS (Netherlands)

    Brogren, E; Hadders-Algra, M; Forssberg, H

    Children with cerebral palsy (CP) display postural problems, largely interfering with daily life activities. Clarification of neural mechanisms controlling posture in these children could serve as a base for more successful intervention. Studies on postural adjustments following horizontal forward

  1. Otolith and Vertical Canal Contributions to Dynamic Postural Control

    Science.gov (United States)

    Black, F. Owen

    1999-01-01

    The objective of this project is to determine: 1) how do normal subjects adjust postural movements in response to changing or altered otolith input, for example, due to aging? and 2) how do patients adapt postural control after altered unilateral or bilateral vestibular sensory inputs such as ablative inner ear surgery or ototoxicity, respectively? The following hypotheses are under investigation: 1) selective alteration of otolith input or abnormalities of otolith receptor function will result in distinctive spatial, frequency, and temporal patterns of head movements and body postural sway dynamics. 2) subjects with reduced, altered, or absent vertical semicircular canal receptor sensitivity but normal otolith receptor function or vice versa, should show predictable alterations of body and head movement strategies essential for the control of postural sway and movement. The effect of altered postural movement control upon compensation and/or adaptation will be determined. These experiments provide data for the development of computational models of postural control in normals, vestibular deficient subjects and normal humans exposed to unusual force environments, including orbital space flight.

  2. Self versus environment motion in postural control.

    Directory of Open Access Journals (Sweden)

    Kalpana Dokka

    2010-02-01

    Full Text Available To stabilize our position in space we use visual information as well as non-visual physical motion cues. However, visual cues can be ambiguous: visually perceived motion may be caused by self-movement, movement of the environment, or both. The nervous system must combine the ambiguous visual cues with noisy physical motion cues to resolve this ambiguity and control our body posture. Here we have developed a Bayesian model that formalizes how the nervous system could solve this problem. In this model, the nervous system combines the sensory cues to estimate the movement of the body. We analytically demonstrate that, as long as visual stimulation is fast in comparison to the uncertainty in our perception of body movement, the optimal strategy is to weight visually perceived movement velocities proportional to a power law. We find that this model accounts for the nonlinear influence of experimentally induced visual motion on human postural behavior both in our data and in previously published results.

  3. PALMILHAS PROPRIOCEPTIVAS PARA O CONTROLE POSTURAL

    Directory of Open Access Journals (Sweden)

    Alessandra Madia Mantovani

    2010-12-01

    Full Text Available The postural control and balance depend of the sensory system and musculoskeletal biomechanics being the feet one of the main sensors of the sensory system. The aim were to evaluate postural control and plantar pressures before, during and after the use of proprioceptive insoles. Participated 15 subjects, age 19,62,1 years old, and body mass índex (BMI of 24,45,4 kg/m2. Postural assessment values have been measured the arrows on the spine curvature, followed by analysis of plantar pressures and measures for pedobarometricstabilometric for measuring of displacement of center of pressure before, during andafter the use of insoles. In the results we saw normal arrows post insole plantar pressureand stabilometry not statistically significant after its use. Conclued that after using these insole, was saw an adequate postural realignment, probably due to adequate muscle and posture tonedemonstrating the importance of assessing the captor podal for understanding postural disordens.

  4. [Postural control depends on testing situation].

    Science.gov (United States)

    Turbanski, Stephan; Schmidtbleicher, Ditmar

    2010-09-01

    Most often postural control is evaluated in posturography, i. e. in a static testing condition. The aim of this study was to evaluate correlations and differences between posturography and dynamic testing situations to get information about the informative value of static testing situations on dynamic conditions. 40 healthy subjects participated in this study (m=23; w=17; age: 23.8±2.9 years; height: 177.0±8.5 cm; weight: 71.5±10.5 kg). Subjects were tested on their ability to maintain postural stability on a force platform (posturography, static condition) and on a movable and instable plate (dynamic condition). Furthermore, we analyzed balance correcting responses to a standardised disturbance of postural stability. EMG-activity was recorded of the following muscles: m. tibialis anterior, m. gastrocnemius lateralis, m. vastus lateralis, m. biceps femoris, and m. erector spinae. Pearson's Correlations were used to examine the relationship between postural control in static and in dynamic testing situations. Student's t-tests were used to examine differences in several parameters between static and dynamic testing situations. Comparisons of postural control in static and in dynamic conditions lead to marginal correlations between performances in these test situations (r=-0.02 to r=0.45). Moreover, EMGactivity showed changes concerning quantitative parameters and coordination patterns. Regarding correlations and analyses of EMG-activity we hypothesised different postural control strategies depending on each testing situation. Therefore, postural control seems not to be a generalizable ability. These data suggest that there is doubt on the use of posturography in static condition to predict performance in dynamic situations that could induce falls in elderly people or injuries in athletes. It appears comprehensible that dynamic testing situations are more suitable.

  5. Detecting altered postural control after cerebral concussion in athletes with normal postural stability

    OpenAIRE

    Cavanaugh, J; Guskiewicz, K.; Giuliani, C.; Marshall, S.; Mercer, V; Stergiou, N

    2005-01-01

    Objective: To determine if approximate entropy (ApEn), a regularity statistic from non-linear dynamics, could detect changes in postural control during quiet standing in athletes with normal postural stability after cerebral concussion.

  6. Reeducation of vergence dynamics improves postural control.

    Science.gov (United States)

    Morize, Aurélien; Kapoula, Zoï

    2017-08-24

    The purpose was to investigate the effect of vergence reeducation on postural control, in subjects with isolated vergence disorders. We studied the dynamics of vergence in 19 subjects (20-44 years old) using video-oculography (Eye See Cam). On the basis of orthoptic and symptomatology assessments, ten of the subjects were diagnosed for vergence disorders then vergence eye movements were reeducated with the REMOBI method (US8851669, 5 weekly sessions lasting for 35min). Postural control was measured before and after reeducation, postural recording was done in upright stance (Dynaport), with both eyes closed or open and looking a visual target located at 2m distance. After reeducation with REMOBI, the visual symptomatology faded away and the stereoacuity improved at least for some subjects; the vergence latency decreased significantly and the vergence accuracy increased significantly. In terms of posture, the Mean Power Frequency (MPF) of the body sway decreased significantly in both eyes open and eyes closed conditions. Considering all subjects together (i.e. healthy subjects and subjects with vergence disorders before the reeducation), the antero-posterior body sway (Root Mean Square A/P) was positively correlated with the visual symptomatology: the higher the visual symptomatology, the higher was the body sway. The results bring evidence for synergy between the quality of vergence and the quality of postural control. They open a new research line that bridges the gap between neuroscience, ophthalmology-orthoptics and posturology. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Reflex control of the spine and posture: a review of the literature from a chiropractic perspective

    Directory of Open Access Journals (Sweden)

    Schlappi Mark

    2005-08-01

    Full Text Available Abstract Objective This review details the anatomy and interactions of the postural and somatosensory reflexes. We attempt to identify the important role the nervous system plays in maintaining reflex control of the spine and posture. We also review, illustrate, and discuss how the human vertebral column develops, functions, and adapts to Earth's gravity in an upright position. We identify functional characteristics of the postural reflexes by reporting previous observations of subjects during periods of microgravity or weightlessness. Background Historically, chiropractic has centered around the concept that the nervous system controls and regulates all other bodily systems; and that disruption to normal nervous system function can contribute to a wide variety of common ailments. Surprisingly, the chiropractic literature has paid relatively little attention to the importance of neurological regulation of static upright human posture. With so much information available on how posture may affect health and function, we felt it important to review the neuroanatomical structures and pathways responsible for maintaining the spine and posture. Maintenance of static upright posture is regulated by the nervous system through the various postural reflexes. Hence, from a chiropractic standpoint, it is clinically beneficial to understand how the individual postural reflexes work, as it may explain some of the clinical presentations seen in chiropractic practice. Method We performed a manual search for available relevant textbooks, and a computer search of the MEDLINE, MANTIS, and Index to Chiropractic Literature databases from 1970 to present, using the following key words and phrases: "posture," "ocular," "vestibular," "cervical facet joint," "afferent," "vestibulocollic," "cervicocollic," "postural reflexes," "spaceflight," "microgravity," "weightlessness," "gravity," "posture," and "postural." Studies were selected if they specifically tested any or

  8. Reflex control of the spine and posture: a review of the literature from a chiropractic perspective.

    Science.gov (United States)

    Morningstar, Mark W; Pettibon, Burl R; Schlappi, Heidi; Schlappi, Mark; Ireland, Trevor V

    2005-08-09

    This review details the anatomy and interactions of the postural and somatosensory reflexes. We attempt to identify the important role the nervous system plays in maintaining reflex control of the spine and posture. We also review, illustrate, and discuss how the human vertebral column develops, functions, and adapts to Earth's gravity in an upright position. We identify functional characteristics of the postural reflexes by reporting previous observations of subjects during periods of microgravity or weightlessness. Historically, chiropractic has centered around the concept that the nervous system controls and regulates all other bodily systems; and that disruption to normal nervous system function can contribute to a wide variety of common ailments. Surprisingly, the chiropractic literature has paid relatively little attention to the importance of neurological regulation of static upright human posture. With so much information available on how posture may affect health and function, we felt it important to review the neuroanatomical structures and pathways responsible for maintaining the spine and posture. Maintenance of static upright posture is regulated by the nervous system through the various postural reflexes. Hence, from a chiropractic standpoint, it is clinically beneficial to understand how the individual postural reflexes work, as it may explain some of the clinical presentations seen in chiropractic practice. We performed a manual search for available relevant textbooks, and a computer search of the MEDLINE, MANTIS, and Index to Chiropractic Literature databases from 1970 to present, using the following key words and phrases: "posture," "ocular," "vestibular," "cervical facet joint," "afferent," "vestibulocollic," "cervicocollic," "postural reflexes," "spaceflight," "microgravity," "weightlessness," "gravity," "posture," and "postural." Studies were selected if they specifically tested any or all of the postural reflexes either in Earth's gravity or

  9. Postural Control in Children: Implications for Pediatric Practice

    Science.gov (United States)

    Westcott, Sarah L.; Burtner, Patricia

    2004-01-01

    Based on a systems theory of motor control, reactive postural control (RPA) and anticipatory postural control (APA) in children are reviewed from several perspectives in order to develop an evidence-based intervention strategy for improving postural control in children with limitations in motor function. Research on development of postural…

  10. Development of the Coordination between Posture and Manual Control

    Science.gov (United States)

    Haddad, Jeffrey M.; Claxton, Laura J.; Keen, Rachel; Berthier, Neil E.; Riccio, Gary E.; Hamill, Joseph; Van Emmerik, Richard E. A.

    2012-01-01

    Studies have suggested that proper postural control is essential for the development of reaching. However, little research has examined the development of the coordination between posture and manual control throughout childhood. We investigated the coordination between posture and manual control in children (7- and 10-year-olds) and adults during…

  11. Postural control in women with breast hypertrophy

    Directory of Open Access Journals (Sweden)

    Alessandra Ferreira Barbosa

    2012-07-01

    Full Text Available OBJECTIVES: The consequences of breast hypertrophy have been described based on the alteration of body mass distribution, leading to an impact on psychological and physical aspects. The principles of motor control suggest that breast hypertrophy can lead to sensorimotor alterations and the impairment of body balance due to postural misalignment. The aim of this study is to evaluate the postural control of women with breast hypertrophy under different sensory information conditions. METHOD: This cross-sectional study included 14 women with breast hypertrophy and 14 without breast hypertrophy, and the mean ages of the groups were 39 ±15 years and 39±16 years, respectively. A force platform was used to assess the sensory systems that contribute to postural control: somatosensory, visual and vestibular. Four postural conditions were sequentially tested: eyes open and fixed platform, eyes closed and fixed platform, eyes open and mobile platform, and eyes closed and mobile platform. The data were processed, and variables related to the center of pressure were analyzed for each condition. The Kruskal-Wallis test was used to compare the conditions between the groups for the area of center of pressure displacement and the velocity of center of pressure displacement in the anterior-posterior and medial-lateral directions. The alpha level error was set at 0.05. RESULTS: Women with breast hypertrophy presented an area that was significantly higher for three out of four conditions and a higher velocity of center of pressure displacement in the anterior-posterior direction under two conditions: eyes open and mobile platform and eyes closed and mobile platform. CONCLUSIONS: Women with breast hypertrophy have altered postural control, which was demonstrated by the higher area and velocity of center of pressure displacement.

  12. Is postural control affected by expertise in alpine skiing?

    OpenAIRE

    Noe, F.; Paillard, T

    2005-01-01

    Objectives: This study examined the postural performance of two groups of male skiers competing at different levels and the consequences on postural control of the suppression of visual afferences by eye closure.

  13. Postural control and central motor pathway involvement in type 2 ...

    African Journals Online (AJOL)

    Background: Postural instability causes limitations in daily activities of diabetic patients. There is paucity of data regarding central motor pathway involvement in these patients and its relation to postural control. Aim: To evaluate postural control and centralmotor pathway involvement in type 2 diabetic patients. Subjects and ...

  14. Postural control and central motor pathway involvement in type 2 ...

    African Journals Online (AJOL)

    Mona Mokhtar El Bardawil

    2013-04-18

    Apr 18, 2013 ... Abstract Background: Postural instability causes limitations in daily activities of diabetic patients. There is paucity of data regarding central motor pathway involvement in these patients and its relation to postural control. Aim: To evaluate postural control and central motor pathway involvement in type 2 ...

  15. Task, muscle and frequency dependent vestibular control of posture

    Directory of Open Access Journals (Sweden)

    Patrick A Forbes

    2015-01-01

    Full Text Available The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwidth of vestibular input on neck muscles is much broader than appendicular muscles (up to a factor of 3. This result challenges the notion that vestibular reflexes only contribute to postural control across the behavioral and physiological frequency range of the vestibular organ (i.e., 0-20 Hz. In this review, we explore and integrate these task-, muscle- and frequency-related differences in the vestibular system’s contribution to posture, and propose that the human nervous system has adapted vestibular signals to match the mechanical properties of the system that each group of muscles controls.

  16. Task, muscle and frequency dependent vestibular control of posture.

    Science.gov (United States)

    Forbes, Patrick A; Siegmund, Gunter P; Schouten, Alfred C; Blouin, Jean-Sébastien

    2014-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwidth of vestibular input on neck muscles is much broader than appendicular muscles (up to a factor of 3). This result challenges the notion that vestibular reflexes only contribute to postural control across the behavioral and physiological frequency range of the vestibular organ (i.e., 0-20 Hz). In this review, we explore and integrate these task-, muscle- and frequency-related differences in the vestibular system's contribution to posture, and propose that the human nervous system has adapted vestibular signals to match the mechanical properties of the system that each group of muscles controls.

  17. Balance and postural control in basketball players

    Directory of Open Access Journals (Sweden)

    Murilo Curtolo

    Full Text Available Abstract Introduction: Basketball is one of the most popular sports involving gestures and movements that require single-leg based support. Dorsiflexion range of motion (DROM, balance and postural control may influence the performance of this sport. Objective: To compare and correlate measures of balance, postural control and ankle DROM between amateur basketball athletes and non-athletes. Methods: Cross-sectional study, composed by 122 subjects allocated into one control group (CG = 61 and one basketball group (BG = 61. These groups were subdivided into two other groups by age: 12-14 years and 15-18 years. The participants were all tested for postural balance with the Star Excursion Balance Test (SEBT, postural control with the Step-down test and DROM with the Weight-bearing lunge test (WBLT. Between-groups differences were compared using repeated-measures multivariate analysis of variance. Normalized reaching distances were analyzed and correlated with the WBLT and Step-down test. Results: There was no difference in the scores of WBLT (P = .488 and Step-down test (P =. 916 between the groups. Scores for the anterior reach (P = .001 and total score of SEBT (P = .030 were higher in BG. The values for the posterolateral (P = .001 and posteromedial reach (P = .001 of SEBT were higher in BG at the age of 15-18. The correlation between the anterior reach of the SEBT and WBLT was significant in BG between 12-14 years (r = 0.578, P = .008, and in the CG between 15-18 years (r = 0.608, P=.001. Conclusion: The balance was better in the BG, although adolescents between 15-18 years have better balance control for the posteromedial and posterolateral reaches of the SEBT.

  18. Reflex control of the spine and posture: a review of the literature from a chiropractic perspective

    OpenAIRE

    Schlappi Mark; Schlappi Heidi; Pettibon Burl R; Morningstar Mark W; Ireland Trevor V

    2005-01-01

    Abstract Objective This review details the anatomy and interactions of the postural and somatosensory reflexes. We attempt to identify the important role the nervous system plays in maintaining reflex control of the spine and posture. We also review, illustrate, and discuss how the human vertebral column develops, functions, and adapts to Earth's gravity in an upright position. We identify functional characteristics of the postural reflexes by reporting previous observations of subjects durin...

  19. Development of Human Posture Simulation Method for Assessing Posture Angles and Spinal Loads

    Science.gov (United States)

    Lu, Ming-Lun; Waters, Thomas; Werren, Dwight

    2015-01-01

    Video-based posture analysis employing a biomechanical model is gaining a growing popularity for ergonomic assessments. A human posture simulation method of estimating multiple body postural angles and spinal loads from a video record was developed to expedite ergonomic assessments. The method was evaluated by a repeated measures study design with three trunk flexion levels, two lift asymmetry levels, three viewing angles and three trial repetitions as experimental factors. The study comprised two phases evaluating the accuracy of simulating self and other people’s lifting posture via a proxy of a computer-generated humanoid. The mean values of the accuracy of simulating self and humanoid postures were 12° and 15°, respectively. The repeatability of the method for the same lifting condition was excellent (~2°). The least simulation error was associated with side viewing angle. The estimated back compressive force and moment, calculated by a three dimensional biomechanical model, exhibited a range of 5% underestimation. The posture simulation method enables researchers to simultaneously quantify body posture angles and spinal loading variables with accuracy and precision comparable to on-screen posture matching methods. PMID:26361435

  20. Relationship between antigravity control and postural control in young children.

    Science.gov (United States)

    Sellers, J S

    1988-04-01

    The purposes of this study were 1) to determine the relationship between antigravity control (supine flexion and prone extension) and postural control (static and dynamic balance), 2) to determine the quality of antigravity and postural control, and 3) to determine whether sex and ethnic group differences correlate with differences in antigravity control and postural control in young children. I tested 107 black, Hispanic, and Caucasian children in a Head Start program, with a mean age of 61 months. The study results showed significant relationships between antigravity control and postural control. Subjects' supine flexion performance was significantly related to the quantity and quality of their static and dynamic balance performance, whereas prone extension performance was related only to the quality of dynamic balance performance. Quality scale measurements (r = .90) indicated that the children in this study had not yet developed full antigravity or postural control. The study results revealed differences between sexes in the quality of static balance and prone extension performance and ethnic differences in static balance, dynamic balance, and prone extension performance.

  1. Catecholamine responses to changes in posture during human pregnancy.

    Science.gov (United States)

    Whittaker, P G; Gerrard, J; Lind, T

    1985-06-01

    Human pregnancy may induce changes in the sensitivity of the cardiovascular system to endogenous catecholamines. This was investigated in multigravid women with little likelihood of unsuspected vascular disease. The responses of blood pressure, pulse rate, plasma noradrenaline and adrenaline to a change in posture from semi-recumbency to standing were assessed in six normotensive women at 36 weeks gestation and in six non-pregnant control subjects. Standing for 10 min caused a surge in blood pressure, pulse rate and plasma noradrenaline in non-pregnant women. The pregnant women, whose basal levels of noradrenaline were higher than those in non-pregnant women, showed a slower noradrenergic response to postural change, and this response had less effect upon the cardiovascular indices. Blood pressure dropped immediately on standing and pulse rate remained unaffected throughout. It is suggested that some women may maintain a non-pregnant level of pressor sensitivity during pregnancy and thereby become hypertensive.

  2. Perinatal Development of the Motor Systems Involved in Postural Control

    Directory of Open Access Journals (Sweden)

    Laurent Vinay

    2005-01-01

    Full Text Available Motor behaviors of some species, such as the rat and the human baby, are quite immature at birth. Here we review recent data on some of the mechanisms underlying the postnatal maturation of posture in the rat, in particular the development of pathways descending from the brain stem and projecting onto the lumbar enlargement of the spinal cord. A short-lasting depletion in serotonin affects both posture and the excitability of motoneurons. Here we try to extrapolate to human development and suggest that the abnormalities in motor control observed in childhood—e.g, deficits in motor coordination—might have their roots in the prenatal period, in particular serotonin depletion due to exposure to several environmental and toxicological factors during pregnancy.

  3. Age-related changes in posture control are differentially affected by postural and cognitive task complexity.

    Science.gov (United States)

    Bernard-Demanze, L; Dumitrescu, M; Jimeno, P; Borel, L; Lacour, M

    2009-07-01

    The simple postural task of quiet standing, which requires minimal attentional resources, is generally paired with cognitive activity. Competition for attentional resources is a consequence of simultaneously performing balance tasks and cognitive tasks, and impairment of attentional resource allocation with aging leads to increased risks of fall. We investigated age-related changes in posture control during dual task performance, using a paradigm that crossed a static (quiet standing) and a dynamic (keeping balance on a translational force plate) postural task and cognitive tasks of low demand (mental arithmetic) and high demand (spatial memory). Postural performance was analyzed through center-of-pressure displacements using both statistical (body sway area/sway velocity) and nonlinear (wavelet transform) methods in three age groups (younger, middle-aged, and older healthy participants). Results showed that 1) the nonlinear analysis method was more sensitive than the traditional approach in distinguishing performance between age groups, a result that explains discrepancies in the dual-task literature; 2) dual-tasking costs were dependent on both postural task difficulty and cognitive task complexity, corroborating previous investigations; 3) younger adults improved their postural performance during dual-tasking, but older adults lowered their performance; 4) balance recovery strategies in the dynamic postural task appeared to differ in younger versus older adults. Together, our findings on dual-tasking can be interpreted within the conceptual frame of task prioritization: shifting attention away from postural task automates posture control in the younger adults, whereas prioritization of postural task and selection of compensatory strategy are the main characteristics of posture control in the older population.

  4. The Reactive Postural Control in Spastic Cerebral Palsy Children

    Directory of Open Access Journals (Sweden)

    Nazila Akbar Fahimi

    2012-04-01

    Full Text Available Objectives: Postural control deficit is one of the most important problems in children with spastic cerebral palsy (CP. The purpose of this paper is to review the reactive postural control in spastic children with CP. Methods: Researches on development of reactive postural control in typically developing (TD children and children with Cerebral Palsy (CP were analyzed. Results: The results of this review revealed at least three main systems of reactive postural control, including: sensory, motor, and cognitive systems. These systems develop in a nonlinear mode. Maturation of postural control depends on the reach of each system to an adequate threshold of development and organization. Discussion: limited data indicated the development of reactive postural control in children with CP occur similar to TD children but with limitation in motor function and sensory organization.

  5. Obesity impact on the attentional cost for controlling posture.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Mignardot

    Full Text Available BACKGROUND: This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing. METHODS: Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1 and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6 maintained postural stability on a force platform in two postural tasks (seated and unipedal. The two postural tasks were performed (1 alone and (2 in a dual-task paradigm in combination with an auditory reaction time task (RT. Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials. FINDINGS: (1 Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP, in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2 Whatever the postural task, the additional RT task did not affect postural stability. (3 Seated, RT did not differ between the two groups. (4 RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity. INTERPRETATION: Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities.

  6. Organizing sensory information for postural control in altered sensory environments.

    Science.gov (United States)

    McCollum, G; Shupert, C L; Nashner, L M

    1996-06-07

    Healthy human subjects can maintain adequate balance despite distorted somatosensory or visual feedback or vestibular feedback distorted by a peripheral vestibular disorder. Although it is not precisely known how this sensorimotor integration task is achieved, the nervous system coordinates information from multiple sensory systems to produce motor commands differently in different sensory environments. These different ways of coordinating sensory information and motor commands can be thought of as "sensorimotor states". The way the nervous system distributes the monitoring of postural sway among states is analysed in this paper as a logical structure of transitions between states. The form of the transition structure is specified and distinguished from a finite state machine. The hypothesis that the nervous system could use a transition structure to maintain balance is tested by developing transition structures which are consistent with a set of experimental observations of postural control in healthy subjects and three groups of patients with peripheral vestibular disease.

  7. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults.

    Science.gov (United States)

    Manor, Brad; Costa, Madalena D; Hu, Kun; Newton, Elizabeth; Starobinets, Olga; Kang, Hyun Gu; Peng, C K; Novak, Vera; Lipsitz, Lewis A

    2010-12-01

    The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors.

  8. Human Posture and Movement Prediction based on Musculoskeletal Modeling

    DEFF Research Database (Denmark)

    Farahani, Saeed Davoudabadi

    2014-01-01

    and motion using AnyBody Modeling System (AMS). AMS uses inverse dynamics to analyze musculoskeletal systems and is, therefore, limited by its dependency on input kinematics. We propose to alleviate this dependency by assuming that voluntary postures and movement strategies in humans are guided by a desire...... is capable of predicting realistic motions for a wide range of dynamic human movements remain open questions. In this thesis, we investigated the validity of different physiology-based cost functions for the prediction of kinematic and kinetic patterns for different human postures and motions. In each case......Abstract This thesis explores an optimization-based formulation, so-called inverse-inverse dynamics, for the prediction of human posture and motion dynamics performing various tasks. It is explained how this technique enables us to predict natural kinematic and kinetic patterns for human posture...

  9. Diurnal changes in postural control in normal children: Computerized static and dynamic assessments.

    Science.gov (United States)

    Bourelle, Sophie; Taiar, Redha; Berge, Benoit; Gautheron, Vincent; Cottalorda, Jerome

    2014-01-01

    Mild traumatic brain injury (mTBI) causes postural control deficits and accordingly comparison of aberrant postural control against normal postural control may help diagnose mTBI. However, in the current literature, little is known regarding the normal pattern of postural control in young children. This study was therefore conducted as an effort to fill this knowledge gap. Eight normal school-aged children participated. Posture assessment was conducted before (7-8 a.m. in the morning) and after (4-7 p.m. in the afternoon) school on regular school days using the Balance Master® evaluation system composed of 3 static tests and 2 dynamic balance tests. A significant difference in the weight-bearing squats was detected between morning hours and afternoon hours (P control of the lateral rhythmic weight shifts was observed at the end of the afternoon than at morning hours (P posture control in humans. On a regular school day, the capacity of postural control and laterality or medio-lateral balance in children varies between morning and afternoon hours. We suggest that posturographic assessment in children, either in normal (e.g., physical education and sports training) or in abnormal conditions (e.g., mTBI-associated balance disorders), be better performed late in the afternoon.

  10. Saccades improve postural control: a developmental study in normal children.

    Directory of Open Access Journals (Sweden)

    Layla Ajrezo

    Full Text Available INTRODUCTION: Dual-task performance is known to affect postural stability in children. This study focused on the effect of oculomotor tasks like saccadic eye movements on postural stability, studied in a large population of children by recording simultaneously their eye movements and posture. MATERIALS AND METHODS: Ninety-five healthy children from 5.8 to 17.6 years old were examined. All children were free of any vestibular, neurological, ophtalmologic and orthoptic abnormalities. Postural control was measured with a force platform TechnoConcept®, and eye movements with video oculography (MobilEBT®. Children performed two oculomotor tasks: fixation of a stable central target and horizontal saccades. We measured the saccade latency and the number of saccades during fixation as well as the surface, length and mean velocity of the center of pressure. RESULTS: During postural measurement, we observed a correlation between the age on the one hand and a decrease in saccade latency as well as an improvement in the quality of fixation on the other. Postural sway decreases with age and is reduced in the dual task (saccades in comparison with a simple task of fixation. DISCUSSION - CONCLUSION: These results suggest a maturation of neural circuits controlling posture and eye movements during childhood. This study also shows the presence of an interaction between the oculomotor system and the postural system. Engaging in oculomotor tasks results in a reduction of postural sway.

  11. Saccades improve postural control: a developmental study in normal children.

    Science.gov (United States)

    Ajrezo, Layla; Wiener-Vacher, Sylvette; Bucci, Maria Pia

    2013-01-01

    Dual-task performance is known to affect postural stability in children. This study focused on the effect of oculomotor tasks like saccadic eye movements on postural stability, studied in a large population of children by recording simultaneously their eye movements and posture. Ninety-five healthy children from 5.8 to 17.6 years old were examined. All children were free of any vestibular, neurological, ophtalmologic and orthoptic abnormalities. Postural control was measured with a force platform TechnoConcept®, and eye movements with video oculography (MobilEBT®). Children performed two oculomotor tasks: fixation of a stable central target and horizontal saccades. We measured the saccade latency and the number of saccades during fixation as well as the surface, length and mean velocity of the center of pressure. During postural measurement, we observed a correlation between the age on the one hand and a decrease in saccade latency as well as an improvement in the quality of fixation on the other. Postural sway decreases with age and is reduced in the dual task (saccades) in comparison with a simple task of fixation. These results suggest a maturation of neural circuits controlling posture and eye movements during childhood. This study also shows the presence of an interaction between the oculomotor system and the postural system. Engaging in oculomotor tasks results in a reduction of postural sway.

  12. Human posture classification for intelligent visual surveillance systems

    Science.gov (United States)

    Rababaah, Haroun; Shirkhodaie, Amir

    2008-04-01

    Intelligent surveillance systems (ISS) have gained a significant attention in recent years due to the nationwide security concerns. Some of the important applications of ISS include: homeland security, border monitoring, battlefield intelligence, and sensitive facility monitoring. The essential requirements of an ISS include: (1) multi-modality multi-sensor data and information fusion, (2) communication networking, (3) distributed data/information processing,(4) Automatic target recognition and tracking, (5) Scenario profiling from discrete correlated/uncorrelated events, (6) Context-based situation reasoning, and (7) Collaborative resource sharing and decision support systems. In this paper we have addressed the problem of humanposture classification in crowded urban terrain environments. Certain range of human postures can be attributed to different suspicious acts of intruders in a constrained environment. By proper time analysis of human trespassers' postures in an environment, it would be possible to identify and differentiate malicious intention of the trespassers from other normal human behaviors. Specifically in this paper, we have proposed an image processing-based approach for characterization of five different human postures including: standing, bending, crawling, carrying a heavy object, and holding a long object. Two approaches were introduced to address the problem: template-matching and Hamming Adaptive Neural Network (HANN) classifiers. The former approach performs human posture characterization via binary-profile projection and applies a correlation-based method for classification of human postures. The latter approach is based a HANN technique. For training of the neural, the posture-patterns are initially compressed, thresholded, and serialized. The binary posture-pattern arrays were then used for training of the HANN. The comparative performance evaluation of both approaches the same set of training and testing examples were used to measure

  13. Postural sway under muscle vibration and muscle fatigue in humans.

    Science.gov (United States)

    Vuillerme, Nicolas; Danion, Frédéric; Forestier, Nicolas; Nougier, Vincent

    2002-11-22

    Separate studies have demonstrated that vibration and fatigue of ankle muscles alter postural control. The purpose of the present experiment was to investigate the effect of ankle muscle vibration on the regulation of postural sway in bipedal stance following ankle muscle fatigue. Center of foot pressure displacements were recorded using a force platform. Results showed a similar increase in postural sway under muscle fatigue as well as under muscle vibration. Interestingly, under muscle fatigue muscle vibration did not induce a further increase in postural sway. Two hypotheses could, at least, account for this observation: (1). fatigued muscles are less sensitive to muscle vibration and (2). the central nervous system relies less upon proprioceptive information originating from fatigued muscles for regulating postural sway.

  14. Effects of Dyslexia on Postural Control in Adults

    Science.gov (United States)

    Patel, M.; Magnusson, M.; Lush, D.; Gomez, S.; Fransson, P. A.

    2010-01-01

    Dyslexia has been shown to affect postural control. The aim of the present study was to investigate the difference in postural stability measured as torque variance in an adult dyslexic group (n=14, determined using the Adult Dyslexia Checklist (ADCL) and nonsense word repetition test) and an adult non-dyslexic group (n=39) on a firm surface and…

  15. Effects of saccadic eye movements on postural control stabilization

    Directory of Open Access Journals (Sweden)

    Sérgio Tosi Rodrigues

    2013-09-01

    Full Text Available Several structures of the central nervous system share involvement in both ocular and postural control, but the visual mechanisms in postural control are still unclear. There are discrepant evidences on whether saccades would improve or deteriorate stabilization of posture. The purpose of this study was to determine the influence of saccadic eye movements on postural control while standing in different basis of support. Twelve young adults stood upright in wide and narrow stances while performing fixation and saccades of low and high frequencies. Body sway was attenuated during saccades. Trunk anterior-posterior sway and trunk total displacement decreased during saccades compared to fixation; higher sway mean frequency in anterior-posterior direction during saccades was observed. Body sway was reduced in wide compared to narrow stance during high frequency saccades. These results indicate that eye movement improves postural stabilization and this effect is stronger in combination of wide stance-high frequency gaze condition.

  16. Postural control in chronic obstructive pulmonary disease: a systematic review.

    Science.gov (United States)

    Porto, E F; Castro, A A M; Schmidt, V G S; Rabelo, H M; Kümpel, C; Nascimento, O A; Jardim, J R

    2015-01-01

    Patients with chronic obstructive pulmonary disease (COPD) fall frequently, although the risk of falls may seem less important than the respiratory consequences of the disease. Nevertheless, falls are associated to increased mortality, decreased independence and physical activity levels, and worsening of quality of life. The aims of this systematic review was to evaluate information in the literature with regard to whether impaired postural control is more prevalent in COPD patients than in healthy age-matched subjects, and to assess the main characteristics these patients present that contribute to impaired postural control. Five databases were searched with no dates or language limits. The MEDLINE, PubMed, EMBASE, Web of Science, and PEDro databases were searched using "balance", "postural control", and "COPD" as keywords. The search strategies were oriented and guided by a health science librarian and were performed on March 27, 2014. The studies included were those that evaluated postural control in COPD patients as their main outcome and scored more than five points on the PEDro scale. Studies supplied by the database search strategy were assessed independently by two blinded researchers. A total of 484 manuscripts were found using the "balance in COPD or postural control in COPD" keywords. Forty-three manuscripts appeared more than once, and 397 did not evaluate postural control in COPD patients as the primary outcome. Thus, only 14 studies had postural control as their primary outcome. Our study examiners found only seven studies that had a PEDro score higher than five points. The examiners' interrater agreement was 76.4%. Six of those studies were accomplished with a control group and one study used their patients as their own controls. The studies were published between 2004 and 2013. Patients with COPD present postural control impairment when compared with age-matched healthy controls. Associated factors contributing to impaired postural control were

  17. Dental occlusion modifies gaze and posture stabilization in human subjects.

    Science.gov (United States)

    Gangloff, P; Louis, J P; Perrin, P P

    2000-11-03

    Repercussion of dental occlusion was tested upon postural and gaze stabilization, the latter with a visuo-motor task evaluated by shooting performances. Eighteen permit holders shooters and 18 controls were enrolled in this study. Postural control was evaluated in both groups according to four mandibular positions imposed by interocclusal splints: (i) intercuspal occlusion (IO), (ii) centric relation (CR), (iii) physiological side lateral occlusion and (iv) controlateral occlusion, in order to appreciate the impact of the splints upon orthostatism. Postural control and gaze stabilization quality decreased, from the best to the worst, with splints in CR, IO and lateral occlusion. In shooters, the improvement in postural control was parallel to superior shooting performance. A repercussion of dental occlusion upon proprioception and visual stabilization is suggested by these data.

  18. Posture-dependent control of stimulation in standing neuroprosthesis: simulation feasibility study.

    Science.gov (United States)

    Audu, Musa L; Gartman, Steven J; Nataraj, Raviraj; Triolo, Ronald J

    2014-01-01

    We used a three-dimensional biomechanical model of human standing to test the feasibility of feed-forward control systems that vary stimulation to paralyzed muscles based on the user's posture and desire to effect a postural change. The controllers examined were (1) constant baseline stimulation, which represented muscle activation required to maintain erect standing, and (2) posture follower, which varied muscle activation as a function of the location of the projection of whole-body center of mass on the base of support. Posture-dependent control of stimulation demonstrated significant benefits over open-loop stimulation. Posture follower reduced upper-limb (UL) effort by an average of 50% compared with UL effort alone and by an average of 34% compared with baseline stimulation. On the other hand, reduction in UL effort was an average of 32% when using baseline stimulation. Compared with using UL effort alone, both controllers result in more than a 50% reduction in effort. The results of this study indicate that control systems that facilitate user-driven, task-dependent postures can be more effective and efficient than conventional open-loop stimulation. Also, they obviate the need for complicated posture-setting devices such as switches and joysticks. Functional implications include the potential to expand reachable workspace and better preparation for anticipated disturbances that could challenge balance over existing neuroprostheses for standing.

  19. Models of the vestibular system and postural control

    Science.gov (United States)

    Young, L. R.; Weiss, A.

    1974-01-01

    Applications of control theory and systems analysis to the problem of orientation and posture control are discussed, with the possible long range goals of contributing to the development of hardware for rehabilitation of the handicapped.

  20. Postural dependence of human locomotion during gait initiation

    Science.gov (United States)

    Mille, Marie-Laure; Simoneau, Martin

    2014-01-01

    The initiation of human walking involves postural motor actions for body orientation and balance stabilization that must be effectively integrated with locomotion to allow safe and efficient transport. Our ability to coordinately adapt these functions to environmental or bodily changes through error-based motor learning is essential to effective performance. Predictive compensations for postural perturbations through anticipatory postural adjustments (APAs) that stabilize mediolateral (ML) standing balance normally precede and accompany stepping. The temporal sequencing between these events may involve neural processes that suppress stepping until the expected stability conditions are achieved. If so, then an unexpected perturbation that disrupts the ML APAs should delay locomotion. This study investigated how the central nervous system (CNS) adapts posture and locomotion to perturbations of ML standing balance. Healthy human adults initiated locomotion while a resistance force was applied at the pelvis to perturb posture. In experiment 1, using random perturbations, step onset timing was delayed relative to the APA onset indicating that locomotion was withheld until expected stability conditions occurred. Furthermore, stepping parameters were adapted with the APAs indicating that motor prediction of the consequences of the postural changes likely modified the step motor command. In experiment 2, repetitive postural perturbations induced sustained locomotor aftereffects in some parameters (i.e., step height), immediate but rapidly readapted aftereffects in others, or had no aftereffects. These results indicated both rapid but transient reactive adaptations in the posture and gait assembly and more durable practice-dependent changes suggesting feedforward adaptation of locomotion in response to the prevailing postural conditions. PMID:25231611

  1. Measuring postural control during mini-squat posture in men with early knee osteoarthritis.

    Science.gov (United States)

    Petrella, M; Gramani-Say, K; Serrão, P R M S; Lessi, G C; Barela, J A; Carvalho, R P; Mattiello, S M

    2017-04-01

    Studies have suggested a compromised postural control in individuals with knee osteoarthritis (OA) evidenced by larger and faster displacement of center of pressure (COP). However, quantification of postural control in the mini-squat posture performed by patients with early knee OA and its relation to muscle strength and self-reported symptoms have not been investigated. The main aim of this cross-sectional, observational, controlled study was to determine whether postural control in the mini-squat posture differs between individuals with early knee OA and a control group (CG) and verify the relation among knee extensor torque (KET) and self-reported physical function, stiffness and pain. Twenty four individuals with knee OA grades I and II (OAG) (mean age: 52.35±5.00) and twenty subjects without knee injuries (CG) (mean age: 51.40±8.07) participated in this study. Participants were assessed in postural control through a force plate (Bertec Mod. USA), which provided information about the anterior-posterior (AP) and medial-lateral (ML) COP displacement during the mini-squat, in isometric, concentric and eccentric knee extensor torque (KET) (90°/s) through an isokinetic dynamometer (BiodexMulti-Joint System3, Biodex Medical Incorporation, New York, NY, USA), and in self-reported symptoms through the WOMAC questionnaire. The main outcomes measured were the AP and ML COP amplitude and velocity of displacement; isometric, concentric, and eccentric KET and self-reported physical function, stiffness and pain. No significant differences were found between groups for postural control (p>0.05). Significant lower eccentric KET (p=0.01) and higher scores for the WOMAC subscales of pain (p=postural instability and the need to include quadriceps muscle strengthening, especially by eccentric contractions. The relationship between the self-reported symptoms and a lower and slower COP displacement suggest that the postural control strategy during tasks with a semi-flexed knee

  2. Proprioceptive impairment and postural orientation control in Parkinson's disease.

    Science.gov (United States)

    Vaugoyeau, Marianne; Hakam, Hussein; Azulay, Jean-Philippe

    2011-04-01

    Impairment of postural control is a common consequence of Parkinson's disease (PD). Increasing evidences demonstrate that the pathophysiology of postural disorders in PD includes deficits in proprioceptive processing and integration. However, the nature of these deficits has not been thoroughly examined. We propose to establish a link between proprioceptive impairments and postural deficits in PD using two different experimental approaches manipulating proprioceptive information. In the first one, the subjects stood on a platform that tilted slowly with oscillatory angular movements in the frontal or sagittal planes. The amplitude and frequency of these movements were kept below the semicircular canal perception threshold. Subjects were asked to maintain vertical body posture with and without vision. The orientations of body segments were analyzed. In the second one, the postural control was tested using the tendon-vibration method, which is known to generate illusory movement sensations and postural reactions. Vibrations were applied to ankle muscles. The subject's whole-body motor responses were analyzed from center of pressure displacements. In the first experiment, the parkinsonian patients (PP) were unable to maintain the vertical trunk orientation without vision. Their performances with vision improved, without fully reaching the level of control subjects (CS). In the second experiment, the postural reactions of the PP were similar to those of the CS at the beginning of the perturbation and increased drastically at the end of the perturbation's period as compared to those of CS and could induce fall. These results will bring new concepts to the sensorimotor postural control, to the physiopathology of posture, equilibrium and falls in PD and to the role of basal ganglia pathways in proprioception integration. Nevertheless, in order to assess precisely the role played by sensorimotor integration deficits in postural impairments in PD, further studies

  3. Chronic Low Quality Sleep Impairs Postural Control in Healthy Adults.

    Directory of Open Access Journals (Sweden)

    Fabianne Furtado

    Full Text Available The lack of sleep, both in quality and quantity, is an increasing problem in modern society, often related to workload and stress. A number of studies have addressed the effects of acute (total sleep deprivation on postural control. However, up to date, the effects of chronic sleep deficits, either in quantity or quality, have not been analyzed. Thirty healthy adults participated in the study that consisted of registering activity with a wrist actigraph for more than a week before performing a series of postural control tests. Sleep and circadian rhythm variables were correlated and the sum of activity of the least active 5-h period, L5, a rhythm variable, obtained the greater coefficient value with sleep quality variables (wake after sleep onset WASO and efficiency sleep. Cluster analysis was performed to classify subjects into two groups based on L5 (low and high. The balance tests scores used to asses postural control were measured using Biodex Balance System and were compared between the two groups with different sleep quality. The postural tests were divided into dynamic (platform tilt with eyes open, closed and cursor and static (clinical test of sensory integration. The results showed that during the tests with eyes closed, the group with worse sleep quality had also worse postural control performance. Lack of vision impairs postural balance more deeply in subjects with chronic sleep inefficiency. Chronic poor sleep quality impairs postural control similarly to total sleep deprivation.

  4. Chronic Low Quality Sleep Impairs Postural Control in Healthy Adults.

    Science.gov (United States)

    Furtado, Fabianne; Gonçalves, Bruno da Silva B; Abranches, Isabela Lopes Laguardia; Abrantes, Ana Flávia; Forner-Cordero, Arturo

    2016-01-01

    The lack of sleep, both in quality and quantity, is an increasing problem in modern society, often related to workload and stress. A number of studies have addressed the effects of acute (total) sleep deprivation on postural control. However, up to date, the effects of chronic sleep deficits, either in quantity or quality, have not been analyzed. Thirty healthy adults participated in the study that consisted of registering activity with a wrist actigraph for more than a week before performing a series of postural control tests. Sleep and circadian rhythm variables were correlated and the sum of activity of the least active 5-h period, L5, a rhythm variable, obtained the greater coefficient value with sleep quality variables (wake after sleep onset WASO and efficiency sleep). Cluster analysis was performed to classify subjects into two groups based on L5 (low and high). The balance tests scores used to asses postural control were measured using Biodex Balance System and were compared between the two groups with different sleep quality. The postural tests were divided into dynamic (platform tilt with eyes open, closed and cursor) and static (clinical test of sensory integration). The results showed that during the tests with eyes closed, the group with worse sleep quality had also worse postural control performance. Lack of vision impairs postural balance more deeply in subjects with chronic sleep inefficiency. Chronic poor sleep quality impairs postural control similarly to total sleep deprivation.

  5. Postural control and cognitive task performance in healthy participants while balancing on different support-surface configurations

    NARCIS (Netherlands)

    Dault, MC; Mulder, TW; Duysens, J

    2001-01-01

    Postural control during normal upright stance in humans is a well-learned task. Hence, it has often been argued that it requires very little attention. However, many studies have recently shown that postural control is modified when a cognitive task is executed simultaneously especially in the

  6. Sensory Re-Weighting in Human Bipedal Postural Control: The Effects of Experimentally-Induced Plantar Pain.

    Directory of Open Access Journals (Sweden)

    Antoine Pradels

    Full Text Available The present study was designed to assess the effects of experimentally-induced plantar pain on the displacement of centre of foot pressure during unperturbed upright stance in different sensory conditions of availability and/or reliability of visual input and somatosensory input from the vestibular system and neck. To achieve this goal, fourteen young healthy adults were asked to stand as still as possible in three sensory conditions: (1 No-vision, (2 Vision, and (3 No-vision - Head tilted backward, during two experimental conditions: (1 a No-pain condition, and (2 a condition when a painful stimulation was applied to the plantar surfaces of both feet (Plantar-pain condition. Centre of foot pressure (CoP displacements were recorded using a force platform. Results showed that (1 experimentally-induced plantar pain increased CoP displacements in the absence of vision (No-vision condition, (2 this deleterious effect was more accentuated when somatosensory information from the vestibular and neck was altered (No-vision - Head tilted backward condition and (3 this deleterious effect was suppressed when visual information was available (Vision condition. From a fundamental point of view, these results lend support to the sensory re-weighting hypothesis whereby the central nervous system dynamically and selectively adjusts the relative contributions of sensory inputs (i.e. the sensory weightings in order to maintain balance when one or more sensory channels are altered by the task (novel or challenging, environmental or individual conditions. From a clinical point of view, the present findings further suggest that prevention and treatment of plantar pain may be relevant for the preservation or improvement of balance control, particularly in situations (or individuals in which information provided by the visual, neck proprioceptive and vestibular systems is unavailable or disrupted.

  7. Spatial and temporal analysis of postural control in dyslexic children.

    Science.gov (United States)

    Gouleme, Nathalie; Gerard, Christophe Loic; Bui-Quoc, Emmanuel; Bucci, Maria Pia

    2015-07-01

    The aim of this study is to examine postural control of dyslexic children using both spatial and temporal analysis. Thirty dyslexic (mean age 9.7±0.3years) and thirty non-dyslexic age-matched children participated in the study. Postural stability was evaluated using Multitest Equilibre from Framiral®. Posture was recorded in the following conditions: eyes open fixating a target (EO) and eyes closed (EC) on stable (-S-) and unstable (-U-) platforms. The findings of this study showed poor postural stability in dyslexic children with respect to the non-dyslexic children group, as demonstrated by both spatial and temporal analysis. In both groups of children postural control depends on the condition, and improves when the eyes are open on a stable platform. Dyslexic children have spectral power indices that are higher than in non-dyslexic children and they showed a shorter cancelling time. Poor postural control in dyslexic children could be due to a deficit in using sensory information most likely caused by impairment in cerebellar activity. The reliability of brain activation patterns, namely in using sensory input and cerebellar activity may explain the deficit in postural control in dyslexic children. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Postural control in chronic obstructive pulmonary disease: a systematic review

    Directory of Open Access Journals (Sweden)

    Porto EF

    2015-06-01

    Full Text Available EF Porto,1,2 AAM Castro,1,3 VGS Schmidt,4 HM Rabelo,4 C Kümpel,2 OA Nascimento,5 JR Jardim5 1Pulmonary Rehabilitation Center, Federal University of São Paulo, 2Adventist University, São Paulo, 3Federal University of Pampa, Rio Grande do Sul, 4Pulmonary Rehabilitation Center, Adventist University, 5Respiratory Diseases, Pulmonary Rehabilitation Center, Federal University of São Paulo, São Paulo, Brazil Abstract: Patients with chronic obstructive pulmonary disease (COPD fall frequently, although the risk of falls may seem less important than the respiratory consequences of the disease. Nevertheless, falls are associated to increased mortality, decreased independence and physical activity levels, and worsening of quality of life. The aims of this systematic review was to evaluate information in the literature with regard to whether impaired postural control is more prevalent in COPD patients than in healthy age-matched subjects, and to assess the main characteristics these patients present that contribute to impaired postural control.Methods: Five databases were searched with no dates or language limits. The MEDLINE, PubMed, EMBASE, Web of Science, and PEDro databases were searched using “balance”, “postural control”, and “COPD” as keywords. The search strategies were oriented and guided by a health science librarian and were performed on March 27, 2014. The studies included were those that evaluated postural control in COPD patients as their main outcome and scored more than five points on the PEDro scale. Studies supplied by the database search strategy were assessed independently by two blinded researchers.Results: A total of 484 manuscripts were found using the “balance in COPD or postural control in COPD” keywords. Forty-three manuscripts appeared more than once, and 397 did not evaluate postural control in COPD patients as the primary outcome. Thus, only 14 studies had postural control as their primary outcome. Our study

  9. Stress exposure and postural control in young females

    National Research Council Canada - National Science Library

    COCO, MARINELLA; FIORE, ANGELO SARRA; PERCIAVALLE, VINCENZO; MACI, TIZANA; PETRALIA, MARIA CRISTINA; PERCIAVALLE, VALENTINA

    The aim of this study was to determine if heightened stress had an adverse affect on the postural control of 14 young right-handed females during quiet standing in either the presence or the absence of visual input...

  10. Task, muscle and frequency dependent vestibular control of posture

    NARCIS (Netherlands)

    Forbes, P.A.; Siegmund, G.P.; Schouten, A.C.; Blouin, J.S.

    2015-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular

  11. Advantages and disadvantages of stiffness instructions when studying postural control.

    Science.gov (United States)

    Bonnet, Cédrick T

    2016-05-01

    To understand the maintenance of upright stance, researchers try to discover the fundamental mechanisms and attentional resources devoted to postural control and eventually to the performance of other tasks (e.g., counting in the head). During their studies, some researchers require participants to stand as steady as possible and other simply ask participants to stand naturally. Surprisingly, a clear and direct explanation of the usefulness of the steadiness requirement seems to be lacking, both in experimental and methodological discussions. Hence, the objective of the present note was to provide advantages and disadvantages of this steadiness requirement in studies of postural control. The advantages may be to study fundamental postural control, to eliminate useless postural variability, to control spurious body motions and to control the participants' thoughts. As disadvantages, this steadiness requirement only leads to study postural control in unnatural upright stance, it changes the focus of attention (internal vs. external) and the nature of postural control (unconscious vs. conscious), it increases the difficulty of a supposedly easy control task and it eliminates or reduces the opportunity to record exploratory behaviors. When looking carefully at the four advantages of the steadiness requirement, one can believe that they are, in fact, more disadvantageous than advantageous. Overall therefore, this requirement seems illegitimate and it is proposed that researchers should not use it in the study of postural control. They may use this requirement only if they search to know the limit until which participants can consciously reduce their postural sway. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Resistance versus Balance Training to Improve Postural Control in Parkinson's Disease: A Randomized Rater Blinded Controlled Study

    National Research Council Canada - National Science Library

    Schlenstedt, Christian; Paschen, Steffen; Kruse, Annika; Raethjen, Jan; Weisser, Burkhard; Deuschl, Günther

    2015-01-01

    .... The ability of resistance training to improve postural control still remains unclear. To compare resistance training with balance training to improve postural control in people with Parkinson's disease...

  13. Foot anatomy specialization for postural sensation and control

    Science.gov (United States)

    Ivanenko, Y. P.; Gurfinkel, V. S.

    2012-01-01

    Anthropological and biomechanical research suggests that the human foot evolved a unique design for propulsion and support. In theory, the arch and toes must play an important role, however, many postural studies tend to focus on the simple hinge action of the ankle joint. To investigate further the role of foot anatomy and sensorimotor control of posture, we quantified the deformation of the foot arch and studied the effects of local perturbations applied to the toes (TOE) or 1st/2nd metatarsals (MT) while standing. In sitting position, loading and lifting a 10-kg weight on the knee respectively lowered and raised the foot arch between 1 and 1.5 mm. Less than 50% of this change could be accounted for by plantar surface skin compression. During quiet standing, the foot arch probe and shin sway revealed a significant correlation, which shows that as the tibia tilts forward, the foot arch flattens and vice versa. During TOE and MT perturbations (a 2- to 6-mm upward shift of an appropriate part of the foot at 2.5 mm/s), electromyogram (EMG) measures of the tibialis anterior and gastrocnemius revealed notable changes, and the root-mean-square (RMS) variability of shin sway increased significantly, these increments being greater in the MT condition. The slow return of RMS to baseline level (>30 s) suggested that a very small perturbation changes the surface reference frame, which then takes time to reestablish. These findings show that rather than serving as a rigid base of support, the foot is compliant, in an active state, and sensitive to minute deformations. In conclusion, the architecture and physiology of the foot appear to contribute to the task of bipedal postural control with great sensitivity. PMID:22157121

  14. Foot anatomy specialization for postural sensation and control.

    Science.gov (United States)

    Wright, W G; Ivanenko, Y P; Gurfinkel, V S

    2012-03-01

    Anthropological and biomechanical research suggests that the human foot evolved a unique design for propulsion and support. In theory, the arch and toes must play an important role, however, many postural studies tend to focus on the simple hinge action of the ankle joint. To investigate further the role of foot anatomy and sensorimotor control of posture, we quantified the deformation of the foot arch and studied the effects of local perturbations applied to the toes (TOE) or 1st/2nd metatarsals (MT) while standing. In sitting position, loading and lifting a 10-kg weight on the knee respectively lowered and raised the foot arch between 1 and 1.5 mm. Less than 50% of this change could be accounted for by plantar surface skin compression. During quiet standing, the foot arch probe and shin sway revealed a significant correlation, which shows that as the tibia tilts forward, the foot arch flattens and vice versa. During TOE and MT perturbations (a 2- to 6-mm upward shift of an appropriate part of the foot at 2.5 mm/s), electromyogram (EMG) measures of the tibialis anterior and gastrocnemius revealed notable changes, and the root-mean-square (RMS) variability of shin sway increased significantly, these increments being greater in the MT condition. The slow return of RMS to baseline level (>30 s) suggested that a very small perturbation changes the surface reference frame, which then takes time to reestablish. These findings show that rather than serving as a rigid base of support, the foot is compliant, in an active state, and sensitive to minute deformations. In conclusion, the architecture and physiology of the foot appear to contribute to the task of bipedal postural control with great sensitivity.

  15. Postural control deficits identify lingering post-concussion neurological deficits

    Directory of Open Access Journals (Sweden)

    Thomas A. Buckley

    2016-03-01

    Full Text Available Concussion, or mild traumatic brain injury, incidence rates have reached epidemic levels and impaired postural control is a cardinal symptom. The purpose of this review is to provide an overview of the linear and non-linear assessments of post-concussion postural control. The current acute evaluation for concussion utilizes the subjective balance error scoring system (BESS to assess postural control. While the sensitivity of the overall test battery is high, the sensitivity of the BESS is unacceptably low and, with repeat administration, is unable to accurately identify recovery. Sophisticated measures of postural control, utilizing traditional linear assessments, have identified impairments in postural control well beyond BESS recovery. Both assessments of quiet stance and gait have identified lingering impairments for at least 1 month post-concussion. Recently, the application of non-linear metrics to concussion recovery have begun to receive limited attention with the most commonly utilized metric being approximate entropy (ApEn. ApEn, most commonly in the medial-lateral plane, has successfully identified impaired postural control in the acute post-concussion timeframe even when linear assessments of instrumented measures are equivalent to healthy pre-injury values; unfortunately these studies have not gone beyond the acute phase of recovery. One study has identified lingering deficits in postural control, utilizing Shannon and Renyi entropy metrics, which persist at least through clinical recovery and return to participation. Finally, limited evidence from two studies suggest that individuals with a previous history of a single concussion, even months or years prior, may display altered ApEn metrics. Overall, non-linear metrics provide a fertile area for future study to further the understanding of postural control impairments acutely post-concussion and address the current challenge of sensitive identification of recovery.

  16. Task, muscle and frequency dependent vestibular control of posture

    OpenAIRE

    Forbes, Patrick A.; Gunter P Siegmund; Schouten, Alfred C.; Blouin, Jean-Sébastien

    2015-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwid...

  17. The influence of foot posture on dorsiflexion range of motion and postural control in those with chronic ankle instability.

    Science.gov (United States)

    Hogan, Kathleen K; Powden, Cameron J; Hoch, Matthew C

    2016-10-01

    To investigate the effect of foot posture on postural control and dorsiflexion range of motion in individuals with chronic ankle instability. The study employed a cross-sectional, single-blinded design. Twenty-one individuals with self-reported chronic ankle instability (male=5; age=23.76(4.18)years; height=169.27(11.46)cm; weight=73.65(13.37)kg; number of past ankle sprains=4.71(4.10); episode of giving way=17.00(18.20); Cumberland Ankle Instability Score=18.24(4.52); Ankle Instability Index=5.86(1.39)) participated. The foot posture index was used to categorize subjects into pronated (n=8; Foot Posture Index=7.50(0.93)) and neutral (n=13; Foot Posture Index=3.08(1.93)) groups. The dependent variables of dorsiflexion ROM and dynamic and static postural control were collected for both groups at a single session. There were no significant differences in dorsiflexion range of motion between groups (p=0.22) or any of the eyes open time-to-boundary variables (p>0.13). The pronated group had significantly less dynamic postural control than the neutral group as assessed by the anterior direction of the Star Excursion Balance Test (p<0.04). However, the pronated group had significantly higher time-to-boundary values than the neutral group for all eyes closed time-to-boundary variables (p≤0.05), which indicates better eyes closed static postural control. Foot posture had a significant effect on dynamic postural control and eyes closed static postural control in individuals with chronic ankle instability. These findings suggest that foot posture may influence postural control in those with chronic ankle instability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Postural control in children with strabismus: effect of eye surgery.

    Science.gov (United States)

    Legrand, Agathe; Quoc, Emmanuel Bui; Vacher, Sylvette Wiener; Ribot, Jérôme; Lebas, Nicolas; Milleret, Chantal; Bucci, Maria Pia

    2011-08-26

    The purpose of this study was to examine the postural control in children with strabismus before and after eye surgery. Control of posture is a complex multi-sensorial process relying on visual, vestibular and proprioceptive systems. Reduced influence of one of such systems leads to postural adaptation due to a compensation of one of the other systems [3]. Nine children with strabismus (4-8 years old) participated in the study. Ophthalmologic, orthoptic, vestibular and postural tests were done before and twice (2 and 8 weeks) after eye surgery. Postural stability was measured by a platform (TechnoConcept): two components of the optic flux were used for stimulation (contraction and expansion) and two conditions were tested eyes open and eyes closed. The surface area of the center of pressure (CoP), the variance of speed of the CoP and the frequency spectrum of the platform oscillations by fast Fourier transformation were analysed. Before surgery, similar to typically developing children, postural stability was better in the eyes open condition. The frequency analysis revealed that for the low frequency band more energy was spent in the antero-posterior direction compared to the medio-lateral one while the opposite occurred for the middle and the high frequency bands. After surgery, the eye deviation was reduced in all children and their postural stability also improved. However, the energy of the high frequency band in the medio-lateral direction increased significantly. These findings suggest that eye surgery influences somatosensory properties of extra-ocular muscles leading to improvement of postural control and that binocular visual perception could influence the whole body. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Tai Chi training reduced coupling between respiration and postural control.

    Science.gov (United States)

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2016-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (ppostural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. Copyright © 2015

  20. Geometrical approach to neural net control of movements and posture

    Science.gov (United States)

    Pellionisz, A. J.; Ramos, C. F.

    1993-01-01

    In one approach to modeling brain function, sensorimotor integration is described as geometrical mapping among coordinates of non-orthogonal frames that are intrinsic to the system; in such a case sensors represent (covariant) afferents and motor effectors represent (contravariant) motor efferents. The neuronal networks that perform such a function are viewed as general tensor transformations among different expressions and metric tensors determining the geometry of neural functional spaces. Although the non-orthogonality of a coordinate system does not impose a specific geometry on the space, this "Tensor Network Theory of brain function" allows for the possibility that the geometry is non-Euclidean. It is suggested that investigation of the non-Euclidean nature of the geometry is the key to understanding brain function and to interpreting neuronal network function. This paper outlines three contemporary applications of such a theoretical modeling approach. The first is the analysis and interpretation of multi-electrode recordings. The internal geometries of neural networks controlling external behavior of the skeletomuscle system is experimentally determinable using such multi-unit recordings. The second application of this geometrical approach to brain theory is modeling the control of posture and movement. A preliminary simulation study has been conducted with the aim of understanding the control of balance in a standing human. The model appears to unify postural control strategies that have previously been considered to be independent of each other. Third, this paper emphasizes the importance of the geometrical approach for the design and fabrication of neurocomputers that could be used in functional neuromuscular stimulation (FNS) for replacing lost motor control.

  1. Individual differences in brainstem and basal ganglia structure predict postural control and balance loss in young and older adults.

    Science.gov (United States)

    Boisgontier, Matthieu P; Cheval, Boris; Chalavi, Sima; van Ruitenbeek, Peter; Leunissen, Inge; Levin, Oron; Nieuwboer, Alice; Swinnen, Stephan P

    2017-02-01

    It remains unclear which specific brain regions are the most critical for human postural control and balance, and whether they mediate the effect of age. Here, associations between postural performance and corticosubcortical brain regions were examined in young and older adults using multiple structural imaging and linear mixed models. Results showed that of the regions involved in posture, the brainstem was the strongest predictor of postural control and balance: lower brainstem volume predicted larger center of pressure deviation and higher odds of balance loss. Analyses of white and gray matter in the brainstem showed that the pedunculopontine nucleus area appeared to be critical for postural control in both young and older adults. In addition, the brainstem mediated the effect of age on postural control, underscoring the brainstem's fundamental role in aging. Conversely, lower basal ganglia volume predicted better postural performance, suggesting an association between greater neural resources in the basal ganglia and greater movement vigor, resulting in exaggerated postural adjustments. Finally, results showed that practice, shorter height and heavier weight (i.e., higher body mass index), higher total physical activity, and larger ankle active (but not passive) range of motion were predictive of more stable posture, irrespective of age. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Postural control and freezing of gait in Parkinson's disease.

    Science.gov (United States)

    Schlenstedt, Christian; Muthuraman, Muthuraman; Witt, Karsten; Weisser, Burkhard; Fasano, Alfonso; Deuschl, Günther

    2016-03-01

    The relationship between freezing of gait (FOG) and postural instability in Parkinson's disease (PD) is unclear. We analyzed the impact of FOG on postural control. 31 PD patients with FOG (PD+FOG), 27 PD patients without FOG (PD-FOG) and 22 healthy control (HC) were assessed in the ON state. Postural control was measured with the Fullerton Advanced Balance (FAB) scale and with center of pressure (COP) analysis during quiet stance and maximal voluntary forward/backward leaning. The groups were balanced concerning age, disease duration and disease severity. PD+FOG performed significantly worse in the FAB scale (21.8 ± 5.8) compared to PD-FOG (25.6 ± 5.0) and HC (34.9 ± 2.4) (mean ± SD, p postural control asymmetry. PD+FOG have reduced postural control compared to PD-FOG and HC. Our results show a relationship between the anterior-posterior COP position during quiet stance and FOG. The COP shift towards posterior in PD+FOG leads to a restricted precondition to generate forward progression during gait initiation. This may contribute to the occurrence of FOG or might be a compensatory strategy to avoid forward falls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effects of immersion in virtual reality on postural control.

    Science.gov (United States)

    Akizuki, Hironori; Uno, Atsuhiko; Arai, Kouichi; Morioka, Soukichi; Ohyama, Seizo; Nishiike, Suetaka; Tamura, Koichi; Takeda, Noriaki

    2005-04-29

    In the present study, we examined the effects of the time lag between visual scene and the head movement in the virtual reality (VR) world on motion sickness and postural control in healthy volunteers. After immersion in VR with additional time lags (from 0 to 0.8 s) to the inherent delay (about 250 ms), the visual-vestibular conflict induced a slight motion sickness in experimental subjects, but no change was noticed in the body sway path with eyes open and closed. However, Romberg ratio of body sway path with eyes closed divided by that with eyes open after immersion in VR was significantly decreased in comparison with that before immersion in VR. Since Romberg ratio is an index of visual dependency on postural control, this finding indicates that the immersion in VR decreases the visual dependency on postural control. It is suggested that adaptation to visual-vestibular conflict in VR immersion increases the contribution of vestibular and somatosensory inputs to postural control by ignoring the conflicting delayed visual input in the VR world. VR may be a promising treatment for visual vertigo in vestibular patients with unsuccessful compensation by its ability to induce vestibular and somatosensory reweighing for postural control.

  4. Control of postural alignment in patients with Parkinsons disease: analysis through postural software (SAPO

    Directory of Open Access Journals (Sweden)

    Lucia Martins Barbatto

    2013-10-01

    Full Text Available This study assesses the alignment of posture and postural control in patients with Parkinson’s disease (PD. Fifty individuals, aged 60–80 years, were viewed in the anterior, posterior, right lateral, and left positions by software for postural assessment (SAPO. The individuals were grouped according to the disease stage and the stage of medication (i.e. “on” or “off” levodopa. In the intermediate to advanced stages, there was a significant standard deviation in the horizontal alignment acromions, in the horizontal alignment of the anterior superior iliac spines, and in the angle between the acromia and the two anterior superior iliac spines. The side view of the left and right relationships was statistically significant for all variables. The “on” stage and the “off” stage groups showed no significant deviation. There was no statistically significant correlation between the center of gravity in the frontal and sagittal planes of the dominant hand and the side of symptom onset. In PD, individuals have increased cervical lordosis and thoracic kyphosis; an anteriorized head; reduced lumbar curvature; increased valgus, increased knee flexion angle; a decline in the support base; zero step; reduced postural stability; anteriorized center of gravity; and changes in the base of support.

  5. Effects of air bottle design on postural control of firefighters.

    Science.gov (United States)

    Hur, Pilwon; Park, Kiwon; Rosengren, Karl S; Horn, Gavin P; Hsiao-Wecksler, Elizabeth T

    2015-05-01

    The purpose of this study was to investigate the effect of firefighter's self-contained breathing apparatus (SCBA) air bottle design and vision on postural control of firefighters. Twenty-four firefighters were tested using four 30-minute SCBA bottle designs that varied by mass and size. Postural sway measures were collected using a forceplate under two visual conditions (eyes open and closed) and two stance conditions (quiet and perturbed stances). For perturbed stance, a mild backward impulsive pull at the waist was applied. In addition to examining center of pressure postural sway measures for both stance conditions, a robustness measure was assessed for the perturbation condition. The results suggest that wearing heavy bottles significantly increased excursion and randomness of postural sway only in medial-lateral direction but not in anterior-posterior direction. This result may be due to stiffening of plantar-flexor muscles. A significant interaction was obtained between SCBA bottle design and vision in anterior-posterior postural sway, suggesting that wearing heavy and large SCBA air bottles can significantly threaten postural stability in AP direction in the absence of vision. SCBA bottle should be redesigned with reduced weight, smaller height, and COM closer to the body of the firefighters. Firefighters should also widen their stance width when wearing heavy PPE with SCBA. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Cardiovascular and Postural Control Interactions during Hypergravity: Effects on Cerebral Autoregulation in Males and Females

    Science.gov (United States)

    Goswami, Nandu; Blaber, Andrew; Bareille, Marie-Pierre; Beck, Arnaud; Avan, Paul; Bruner, Michelle; Hinghofer-Szalkay, Helmut

    2012-07-01

    Orthostatic intolerance remains a problem upon return to Earth from the microgravity environment of spaceflight. A variety of conditions including hypovolemia, cerebral vasoconstriction, cerebral or peripheral vascular disease, or cardiac arrhythmias may result in syncope if the person remains upright. Current research indicates that there is a greater dependence on visual and somatosensory information at the beginning of space flight with a decreased otolith gain during prolonged space flight (Herault et al., 2002). The goal of the research is to further our understanding of the fundamental adaptive homeostatic mechanisms involved in gravity related changes in cardiovascular and postural function. Cardiovascular, cerebrovascular, and postural sensory motor control systems in male and female participants before, during, and after exposure to graded levels of hyper-G were investigated. Hypotheses: 1) Activation of skeletal muscle pump will be directly related to the degree of orthostatic stress. 2) Simultaneous measurement of heart rate, blood pressure and postural sway will predict cardio-postural stability. Blood pressure and heart rate (means and variability), postural sway, center of pressure (COP), baroreflex function, calf blood flow, middle cerebral artery blood flow, non-invasive intracranial pressure measurements, and two-breath CO2 were measured. Results from the study will be used to provide an integrated insight into mechanisms of cardio-postural control and cerebral autoregulation, which are important aspects of human health in flights to Moon, Mars and distant planets.

  7. Diurnal changes in postural control in normal children: Computerized static and dynamic assessments

    Directory of Open Access Journals (Sweden)

    Sophie Bourelle

    2014-07-01

    Full Text Available Mild traumatic brain injury (mTBI causes postural control deficits and accordingly comparison of aberrant postural control against normal postural control may help diagnose mTBI. However, in the current literature, little is known regarding the normal pattern of postural control in young children. This study was therefore conducted as an effort to fill this knowledge gap. Eight normal school-aged children participated. Posture assessment was conducted before (7-8 a.m. in the morning and after (4-7 p.m. in the afternoon school on regular school days using the Balance Master ® evaluation system composed of 3 static tests and 2 dynamic balance tests. A significant difference in the weight-bearing squats was detected between morning hours and afternoon hours (P < 0.05. By end of afternoon, the body weight was borne mainly on the left side with the knee fully extended and at various degrees of knee flexion. A significantly better directional control of the lateral rhythmic weight shifts was observed at the end of the afternoon than at morning hours (P < 0.05. In summary, most of our findings are inconsistent with results from previous studies in adults, suggesting age-related differences in posture control in humans. On a regular school day, the capacity of postural control and laterality or medio-lateral balance in children varies between morning and afternoon hours. We suggest that posturographic assessment in children, either in normal (e.g., physical education and sports training or in abnormal conditions (e.g., mTBI-associated balance disorders, be better performed late in the afternoon.

  8. Models of Postural Control: Shared Variance in Joint and COM Motions.

    Directory of Open Access Journals (Sweden)

    Melissa C Kilby

    Full Text Available This paper investigated the organization of the postural control system in human upright stance. To this aim the shared variance between joint and 3D total body center of mass (COM motions was analyzed using multivariate canonical correlation analysis (CCA. The CCA was performed as a function of established models of postural control that varied in their joint degrees of freedom (DOF, namely, an inverted pendulum ankle model (2DOF, ankle-hip model (4DOF, ankle-knee-hip model (5DOF, and ankle-knee-hip-neck model (7DOF. Healthy young adults performed various postural tasks (two-leg and one-leg quiet stances, voluntary AP and ML sway on a foam and rigid surface of support. Based on CCA model selection procedures, the amount of shared variance between joint and 3D COM motions and the cross-loading patterns we provide direct evidence of the contribution of multi-DOF postural control mechanisms to human balance. The direct model fitting of CCA showed that incrementing the DOFs in the model through to 7DOF was associated with progressively enhanced shared variance with COM motion. In the 7DOF model, the first canonical function revealed more active involvement of all joints during more challenging one leg stances and dynamic posture tasks. Furthermore, the shared variance was enhanced during the dynamic posture conditions, consistent with a reduction of dimension. This set of outcomes shows directly the degeneracy of multivariate joint regulation in postural control that is influenced by stance and surface of support conditions.

  9. Skeletal Muscle Pump Drives Control of Cardiovascular and Postural Systems

    Science.gov (United States)

    Verma, Ajay K.; Garg, Amanmeet; Xu, Da; Bruner, Michelle; Fazel-Rezai, Reza; Blaber, Andrew P.; Tavakolian, Kouhyar

    2017-03-01

    The causal interaction between cardio-postural-musculoskeletal systems is critical in maintaining postural stability under orthostatic challenge. The absence or reduction of such interactions could lead to fainting and falls often experienced by elderly individuals. The causal relationship between systolic blood pressure (SBP), calf electromyography (EMG), and resultant center of pressure (COPr) can quantify the behavior of cardio-postural control loop. Convergent cross mapping (CCM) is a non-linear approach to establish causality, thus, expected to decipher nonlinear causal cardio-postural-musculoskeletal interactions. Data were acquired simultaneously from young participants (25 ± 2 years, n = 18) during a 10-minute sit-to-stand test. In the young population, skeletal muscle pump was found to drive blood pressure control (EMG → SBP) as well as control the postural sway (EMG → COPr) through the significantly higher causal drive in the direction towards SBP and COPr. Furthermore, the effect of aging on muscle pump activation associated with blood pressure regulation was explored. Simultaneous EMG and SBP were acquired from elderly group (69 ± 4 years, n = 14). A significant (p = 0.002) decline in EMG → SBP causality was observed in the elderly group, compared to the young group. The results highlight the potential of causality to detect alteration in blood pressure regulation with age, thus, a potential clinical utility towards detection of fall proneness.

  10. Robust hopping based on virtual pendulum posture control.

    Science.gov (United States)

    Sharbafi, Maziar A; Maufroy, Christophe; Ahmadabadi, Majid Nili; Yazdanpanah, Mohammad J; Seyfarth, Andre

    2013-09-01

    A new control approach to achieve robust hopping against perturbations in the sagittal plane is presented in this paper. In perturbed hopping, vertical body alignment has a significant role for stability. Our approach is based on the virtual pendulum concept, recently proposed, based on experimental findings in human and animal locomotion. In this concept, the ground reaction forces are pointed to a virtual support point, named virtual pivot point (VPP), during motion. This concept is employed in designing the controller to balance the trunk during the stance phase. New strategies for leg angle and length adjustment besides the virtual pendulum posture control are proposed as a unified controller. This method is investigated by applying it on an extension of the spring loaded inverted pendulum (SLIP) model. Trunk, leg mass and damping are added to the SLIP model in order to make the model more realistic. The stability is analyzed by Poincaré map analysis. With fixed VPP position, stability, disturbance rejection and moderate robustness are achieved, but with a low convergence speed. To improve the performance and attain higher robustness, an event-based control of the VPP position is introduced, using feedback of the system states at apexes. Discrete linear quartic regulator is used to design the feedback controller. Considerable enhancements with respect to stability, convergence speed and robustness against perturbations and parameter changes are achieved.

  11. Characteristics of the control of standing posture during pregnancy.

    Science.gov (United States)

    Nagai, Masanori; Isida, Mitsuo; Saitoh, Junko; Hirata, Yoshie; Natori, Hatsumi; Wada, Maki

    2009-09-22

    During pregnancy, the physical and mental states greatly change. We investigated the influences of pregnancy and anxiety on postural control in pregnant women (P) standing upright in the late trimester. An analysis of posturograms revealed that the area of body sway and length of antero-posterior body sway were greater in P than those in non-pregnant controls (NP). No difference was found in the medio-lateral body sway between P and NP. Fast Fourier transform analysis of body sway showed that the percentile power of the 1.0-10.0Hz band in the medio-lateral axis was smaller in P than in NP irrespective of whether the eyes were open or closed. P were divided into a high (HA) and low (LA) anxiety group on the basis of state anxiety scored by Spielberger's State- and Trait-Anxiety Inventory. A positive correlation was identified between state anxiety and the area of body sway in HA standing with eyes open. This correlation was diminished when the eyes were closed. Body sway of over 1Hz is generally stabilized by somatosensory input, therefore, the results show that body sway in the medio-lateral axis is stabilized in P by increasing the sensitivity to somatosensory cues. High anxiety during pregnancy destabilizes the standing posture when the eyes are open. The correlation between anxiety and body sway revealed by our previous studies in college students was also confirmed in P, suggesting that humans with high anxiety abstract visual cues differently from those with low anxiety.

  12. Postural control in patients with anterior cruciate ligament injury

    OpenAIRE

    Borin, Gabriela; Masullo, Catia de Lourdes; Bonfim, Thatia Regina; Oliveira, Anamaria Siriani de; Paccola, Cleber Antônio Jansen; Barela, José Ângelo; Bevilaqua-Grossi, Débora

    2010-01-01

    A lesão do ligamento cruzado anterior (LCA) do joelho acarreta alterações somatosensoriais em função da perda de informações provenientes dos mecanorreceptores presentes no LCA. Esses receptores constituem importante fonte de informação sensorial, afetando o desempenho de vários atos motores, dentre os quais o controle postural. O estudo objetivou analisar o controle postural de indivíduos com joelhos normais e com lesão unilateral do LCA. Participaram 15 voluntários com lesão do LCA (grupo l...

  13. Novel postural control algorithm for control of multifunctional myoelectric prosthetic hands

    OpenAIRE

    Jacob L. Segil, PhD; Richard F. ƒƒ Weir, PhD

    2015-01-01

    The myoelectric controller (MEC) remains a technological bottleneck in the development of multifunctional prosthetic hands. Current MECs require physiologically inappropriate commands to indicate intent and lack effectiveness in a clinical setting. Postural control schemes use surface electromyography signals to drive a cursor in a continuous two-dimensional domain that is then transformed into a hand posture. Here, we present a novel algorithm for a postural controller and test the efficacy ...

  14. Effects of emotional videos on postural control in children.

    Science.gov (United States)

    Brandão, Arthur de Freitas; Palluel, Estelle; Olivier, Isabelle; Nougier, Vincent

    2016-03-01

    The link between emotions and postural control has been rather unexplored in children. The objective of the present study was to establish whether the projection of pleasant and unpleasant videos with similar arousal would lead to specific postural responses such as postural freezing, aversive or appetitive behaviours as a function of age. We hypothesized that postural sway would similarly increase with the viewing of high arousal videos in children and adults, whatever the emotional context. 40 children participated in the study and were divided into two groups of age: group 7-9 years (n=23; mean age=8 years ± 0.7) and group 10-12 years (n=17; mean age=11 years ± 0.7). 19 adults (mean age=25.8 years ± 4.4) also took part in the experiment. They viewed emotional videos while standing still on a force platform. Centre of foot pressure (CoP) displacements were analysed. Antero-posterior, medio-lateral mean speed and sway path length increased similarly with the viewing of high arousal movies in the younger, older children, and adults. Our findings suggest that the development of postural control is not influenced by the maturation of the emotional processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Static postural control in children with developmental dyslexia.

    Science.gov (United States)

    Pozzo, Thierry; Vernet, Paul; Creuzot-Garcher, Catherine; Robichon, Fabrice; Bron, Alain; Quercia, Patrick

    2006-08-07

    The present investigation tries to better understand potential association and causal relationship between phonological and postural impairment due to developmental dyslexia. The study included 50 boys with developmental dyslexia and selected on the basis of their overall reading difficulties, and 42 control boys. Body sway during a quite standing posture eye open and eye closed on a force platform were tested in the two groups of subjects that were between 10 and 13 years of age. Analysis of classical parameters quantifying the centre of pressure (CP) displacements along antero-posterior and lateral axes showed a significant difference between the two groups. Dyslexic children showed on average greater instability, with greater length, variability and mean power frequency of CP displacements with or without vision. Our results demonstrate that postural parameters may discriminate between children with dyslexia and age-equivalent controls.

  16. Human left ventral premotor cortex mediates matching of hand posture to object use.

    Directory of Open Access Journals (Sweden)

    Guy Vingerhoets

    Full Text Available Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP has been identified as the anterior part of the intraparietal sulcus (aIPS, whereas the putative human equivalent of the monkey frontal region (F5 is located in the ventral part of the premotor cortex (vPMC. Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object - hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS, the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA 44. We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands.

  17. Effects of four days hiking on postural control.

    Directory of Open Access Journals (Sweden)

    Marcus Fraga Vieira

    Full Text Available Hiking is a demanding form of exercise that may cause delayed responses of the postural muscles and a loss of somatosensory information, particularly when repeatedly performed for several days. These effects may negatively influence the postural control of hikers. Therefore, the aim of this study was to investigate the effects of a four-day hike on postural control. Twenty-six adults of both sexes travelled 262 kilometers, stopping for lunch and resting in the early evening each day. Force platforms were used to collect center of pressure (COP data at 100 Hz for 70 seconds before hiking started and immediately after arriving at the rest station each day. The COP time course data were analyzed according to global stabilometric descriptors, spectral analysis and structural descriptors using sway density curve (SDC and stabilometric diffusion analysis (SDA. Significant increases were found for global variables in both the anterior-posterior and medial-lateral directions (COP sway area, COP total sway path, COP mean velocity, COP root mean square value and COP range. In the spectral analysis, only the 80% power frequency (F80 in the anterior-posterior direction showed a significant increase, reflecting the increase of the sway frequencies. The SDC revealed a significant increase in the mean distance between peaks (MD and a significant decrease in the mean peak amplitudes (MP, suggesting that a larger torque amplitude is required for stabilization and that the postural stability is reduced. The SDA revealed a decrease in the long-term slope (Hl and increases in the short-term (Ks and the long-term (Kl intercepts. We considered the likelihood that the presence of local and general fatigue, pain and related neuromuscular adaptations and somatosensory deficits may have contributed to these postural responses. Together, these results demonstrated that four days of hiking increased sway frequencies and deteriorated postural control in the standing

  18. Postural control in horizontal benign paroxysmal positional vertigo.

    Science.gov (United States)

    Di Girolamo, S; Ottaviani, F; Scarano, E; Picciotti, P; Di Nardo, W

    2000-01-01

    Sixteen patients affected by benign paroxysmal positional vertigo of the horizontal semicircular canal (BPPV-HSC) were investigated by means of dynamic posturography (DP) and during bithermal caloric stimulation. Data were compared to data from 40 patients with benign paroxysmal positional vertigo of the posterior semicircular canal (BPPV-PSC) and 20 healthy controls. No postural deficit was observed before or after a liberative Lempert's manoeuvre when patients were compared to control subjects. BPPV-PSC postural scores were significantly impaired compared to scores from the BPPV-HSC group. A residual significant postural impairment was also observed after a successful liberative manoeuvre in the BPPV-PSC group. Electronystagmographic recordings before recovery revealed significant hypoexcitability of the affected ear in 8/16 patients of the BPPV-HSC group. After the liberative manoeuvre, a symmetric bilateral response to caloric stimulation was recorded in all patients. Three main conclusions can be drawn from the present data. First, disorders of the horizontal semicircular canal do not change postural control. Second, dynamic posturography can detect the postural imbalance due to posterior semicircular canal dysfunction even after resolution of paroxysmal vertigo attacks. Third, utricular dysfunction can be ruled out as a cause of the residual postural deficit observed in BPPV-PSC patients. Therefore the recovery delay observed even 1 month after the liberative manoeuvre in the BPPV-PSC-group might be due to the persistence of small amounts of residual debris in the canal, to paralysis of ampullar receptors, or to the time needed for central vestibular re-adaptation.

  19. Coordinated Alpha and Gamma Control of Muscles and Spindles in Movement and Posture

    Directory of Open Access Journals (Sweden)

    Si eLi

    2015-10-01

    Full Text Available Mounting evidence suggests that both α and γ motoneurons are active during movement and posture, but how does the central motor system coordinate the α-γ controls in these tasks remains sketchy due to lack of in vivo data. Here a computational model of α-γ control of muscles and spindles was used to investigate α-γ integration and coordination for movement and posture. The model comprised physiologically realistic spinal circuitry, muscles, proprioceptors, and skeletal biomechanics. In the model, we divided the cortical descending commands into static and dynamic sets, where static commands (static α and γ were for posture maintenance and dynamic commands (dynamic α and γ were responsible for movement. We matched our model to human reaching movement data by straightforward adjustments of descending commands derived from either minimal-jerk trajectories or human EMGs. The matched movement showed smooth reach-to-hold trajectories qualitatively close to human behaviors, and the reproduced EMGs showed the classic tri-phasic patterns. In particular, the function of dynamic γ was to gate the αd command at the propriospinal neurons (PN such that antagonistic muscles can accelerate or decelerate the limb with proper timing. Independent control of joint position and stiffness could be achieved by adjusting static commands. Deefferentation in the model indicated that accurate static commands of static α and γ are essential to achieve stable terminal posture precisely, and that the dynamic γ command is as important as the dynamic α command in controlling antagonistic muscles for desired movements. Deafferentation in the model showed that losing proprioceptive afferents mainly affected the termination position of movement, similar to the abnormal behaviors observed in human and animals. Our results illustrated that tuning the simple forms of α-γ commands can reproduce a range of human reach-to-hold movements, and it is necessary to

  20. Coordinated alpha and gamma control of muscles and spindles in movement and posture.

    Science.gov (United States)

    Li, Si; Zhuang, Cheng; Hao, Manzhao; He, Xin; Marquez, Juan C; Niu, Chuanxin M; Lan, Ning

    2015-01-01

    Mounting evidence suggests that both α and γ motoneurons are active during movement and posture, but how does the central motor system coordinate the α-γ controls in these tasks remains sketchy due to lack of in vivo data. Here a computational model of α-γ control of muscles and spindles was used to investigate α-γ integration and coordination for movement and posture. The model comprised physiologically realistic spinal circuitry, muscles, proprioceptors, and skeletal biomechanics. In the model, we divided the cortical descending commands into static and dynamic sets, where static commands (α s and γ s ) were for posture maintenance and dynamic commands (α d and γ d ) were responsible for movement. We matched our model to human reaching movement data by straightforward adjustments of descending commands derived from either minimal-jerk trajectories or human EMGs. The matched movement showed smooth reach-to-hold trajectories qualitatively close to human behaviors, and the reproduced EMGs showed the classic tri-phasic patterns. In particular, the function of γ d was to gate the α d command at the propriospinal neurons (PN) such that antagonistic muscles can accelerate or decelerate the limb with proper timing. Independent control of joint position and stiffness could be achieved by adjusting static commands. Deefferentation in the model indicated that accurate static commands of α s and γ s are essential to achieve stable terminal posture precisely, and that the γ d command is as important as the α d command in controlling antagonistic muscles for desired movements. Deafferentation in the model showed that losing proprioceptive afferents mainly affected the terminal position of movement, similar to the abnormal behaviors observed in human and animals. Our results illustrated that tuning the simple forms of α-γ commands can reproduce a range of human reach-to-hold movements, and it is necessary to coordinate the set of α-γ descending commands

  1. Testing postural control among various osteoporotic patient groups: a literature review.

    Science.gov (United States)

    de Groot, Maartje H; van der Jagt-Willems, Hanna C; van Campen, Jos P C M; Lems, Willem F; Lamoth, Claudine J C

    2012-10-01

    Osteoporosis can cause vertebral fractures, which might lead to a flexed posture, impaired postural control and consequently increased fall risk. Therefore, the aim of the present review was to examine whether postural control of patients with osteoporosis, vertebral fractures, thoracic kyphosis and flexed posture is affected. Furthermore, instruments measuring postural control were evaluated and examined for sensitivity and easy clinical use. Until February 2011, electronic databases were systematically searched for cross-sectional studies. Methodological quality was assessed with a modified Downs & Black scale. Of the 518 found studies, 18 studies were included. Postural control was generally affected for patients with vertebral fractures, thoracic kyphosis and flexed posture. Patients with osteoporosis had impaired postural control when assessed with computerized instruments. Easy performance-based tests did not show any impairments. There is evidence for an impaired postural control in all patient groups included. Impaired postural control is an important risk factor for falls. Functional performance tests are not sensitive and specific enough to detect affected postural control in patients with osteoporosis. To detect impaired postural control among osteoporotic patients and to obtain more insight into the underlying mechanisms of postural control, computerized instruments are recommended, such as easy-to-use ambulant motion-sensing (accelerometry) technology. © 2012 Japan Geriatrics Society.

  2. Time-of-Day Influences on Static and Dynamic Postural Control

    OpenAIRE

    Gribble, Phillip A.; Tucker, W Steven; White, Paul A

    2007-01-01

    Context: Assessment of postural control is used extensively in clinical and research applications. Time of day affects aspects of physical performance, but whether it also affects postural control is unknown.

  3. On the functional aspects of variability in postural control

    NARCIS (Netherlands)

    Van Emmerik, Richard E.A.; Van Wegen, Erwin E.H.

    2002-01-01

    Current research in nonlinear dynamics and chaos theory has challenged traditional perspectives that associate high variability with performance decrement and pathology. It is argued that variability can play a functional role in postural control and that reduction of variability is associated with

  4. Postural control during reaching in preterm children with cerebral palsy

    NARCIS (Netherlands)

    van der Heide, JC; Begeer, C; Fock, JM; Otten, Bert; Stremmelaar, E; van Eykern, LA; Hadders-Algra, M

    Postural control during reaching with the dominant arm was assessed in 58 preterm children with cerebral palsy (CP) aged 2 to 11 years, comprising 34 with spastic hemiplegia (17 males, 17 females) and 24 with bilateral spastic CP (bilateral CP; 15 male, 9 females). Assessments were made by multiple

  5. Postural control of elderly: moving to predictable and unpredictable targets.

    NARCIS (Netherlands)

    Jongman, Vera; Lamoth, Claudine J C; van Keeken, Helco; Caljouw, Simone R

    2012-01-01

    Impaired postural control with muscle weakness is an important predictor of falls within the elderly population.Particular daily activities that require weight shifting in order to be able to reach a specific target (a cup on a table) require continuous adjustments to keep the body's center of mass

  6. Postural Control in Children, Teenagers and Adults with Down Syndrome

    Science.gov (United States)

    Rigoldi, Chiara; Galli, Manuela; Mainardi, Luca; Crivellini, Marcello; Albertini, Giorgio

    2011-01-01

    The goal of this work was to analyze postural control in Down syndrome (DS) participants considering three different groups composed by children, teenagers and adults with DS. An analysis of the centre of pressure (COP) displacement during standing position was therefore performed for the three groups of subjects. The obtained signal of COP was…

  7. Attention Demand and Postural Control in Children with Hearing Deficit

    Science.gov (United States)

    Derlich, Malgorzata; Krecisz, Krzysztof; Kuczynski, Michal

    2011-01-01

    To elucidate the mechanisms responsible for deteriorated postural control in children with hearing deficit (CwHD), we measured center-of-pressure (COP) variability, mean velocity and entropy in bipedal quiet stance (feet together) with or without the concurrent cognitive task (reaction to visual stimulus) on hard or foam surface in 29 CwHD and a…

  8. Domestic horses (Equus caballus) prefer to approach humans displaying a submissive body posture rather than a dominant body posture.

    Science.gov (United States)

    Smith, Amy Victoria; Wilson, Clara; McComb, Karen; Proops, Leanne

    2017-10-13

    Signals of dominance and submissiveness are central to conspecific communication in many species. For domestic animals, sensitivities to these signals in humans may also be beneficial. We presented domestic horses with a free choice between two unfamiliar humans, one adopting a submissive and the other a dominant body posture, with vocal and facial cues absent. Horses had previously been given food rewards by both human demonstrators, adopting neutral postures, to encourage approach behaviour. Across four counterbalanced test trials, horses showed a significant preference for approaching the submissive posture in both the first trial and across subsequent trials, and no individual subject showed an overall preference for dominant postures. There was no significant difference in latency to approach the two postures. This study provides novel evidence that domestic horses may spontaneously discriminate between, and attribute communicative significance to, human body postures of dominance; and further, that familiarity with the signaller is not a requirement for this response. These findings raise interesting questions about the plasticity of social signal perception across the species barrier.

  9. Validity of the Microsoft Kinect for assessment of postural control.

    Science.gov (United States)

    Clark, Ross A; Pua, Yong-Hao; Fortin, Karine; Ritchie, Callan; Webster, Kate E; Denehy, Linda; Bryant, Adam L

    2012-07-01

    Clinically feasible methods of assessing postural control such as timed standing balance and functional reach tests provide important information, however, they cannot accurately quantify specific postural control mechanisms. The Microsoft Kinect™ system provides real-time anatomical landmark position data in three dimensions (3D), and given that it is inexpensive, portable and simple to setup it may bridge this gap. This study assessed the concurrent validity of the Microsoft Kinect™ against a benchmark reference, a multiple-camera 3D motion analysis system, in 20 healthy subjects during three postural control tests: (i) forward reach, (ii) lateral reach, and (iii) single-leg eyes-closed standing balance. For the reach tests, the outcome measures consisted of distance reached and trunk flexion angle in the sagittal (forward reach) and coronal (lateral reach) planes. For the standing balance test the range and deviation of movement in the anatomical landmark positions for the sternum, pelvis, knee and ankle and the lateral and anterior trunk flexion angle were assessed. The Microsoft Kinect™ and 3D motion analysis systems had comparable inter-trial reliability (ICC difference=0.06±0.05; range, 0.00-0.16) and excellent concurrent validity, with Pearson's r-values >0.90 for the majority of measurements (r=0.96±0.04; range, 0.84-0.99). However, ordinary least products analyses demonstrated proportional biases for some outcome measures associated with the pelvis and sternum. These findings suggest that the Microsoft Kinect™ can validly assess kinematic strategies of postural control. Given the potential benefits it could therefore become a useful tool for assessing postural control in the clinical setting. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Influence of Sensory Dependence on Postural Control

    Science.gov (United States)

    Santana, Patricia A.; Mulavara, Ajitkumar P.; Fiedler, Matthew J.

    2011-01-01

    The current project is part of an NSBRI funded project, "Development of Countermeasures to Aid Functional Egress from the Crew Exploration Vehicle Following Long-Duration Spaceflight." The development of this countermeasure is based on the use of imperceptible levels of electrical stimulation to the balance organs of the inner ear to assist and enhance the response of a person s sensorimotor function. These countermeasures could be used to increase an astronaut s re-adaptation rate to Earth s gravity following long-duration space flight. The focus of my project is to evaluate and examine the correlation of sensory preferences for vision and vestibular systems. Disruption of the sensorimotor functions following space flight affects posture, locomotion and spatial orientation tasks in astronauts. The Group Embedded Figures Test (GEFT), the Rod and Frame Test (RFT) and the Computerized Dynamic Posturography Test (CDP) are measurements used to examine subjects visual and vestibular sensory preferences. The analysis of data from these tasks will assist in relating the visual dependence measures recognized in the GEFT and RFT with vestibular dependence measures recognized in the stability measures obtained during CDP. Studying the impact of sensory dependence on the performance in varied tasks will help in the development of targeted countermeasures to help astronauts readapt to gravitational changes after long duration space flight.

  11. Assessment of Postural Control in Children with Cerebral Palsy: A Review

    Science.gov (United States)

    Pavao, Silvia Leticia; dos Santos, Adriana Neves; Woollacott, Marjorie Hines; Rocha, Nelci Adriana Cicuto Ferreira

    2013-01-01

    This paper aimed to review studies that assessed postural control (PC) in children with cerebral palsy (CP) and describe the methods used to investigate postural control in this population. It also intended to describe the performance of children with CP in postural control. An extensive database search was performed using the keywords: postural…

  12. Postural Stability of Patients with Schizophrenia during Challenging Sensory Conditions: Implication of Sensory Integration for Postural Control.

    Directory of Open Access Journals (Sweden)

    Ya-Ling Teng

    Full Text Available Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99; controls (76.53±7.47; t1,59 = -3.28, p<0.001]. The results of mixed-model ANOVAs showed a significant interaction between the group and sensory conditions [F5,295 = 5.55, p<0.001]. Further analysis indicated that AP postural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory

  13. Relationship between postural alignment in sitting by photogrammetry and seated postural control in post-stroke subjects.

    Science.gov (United States)

    Iyengar, Y R; Vijayakumar, K; Abraham, J M; Misri, Z K; Suresh, B V; Unnikrishnan, B

    2014-01-01

    This study was executed to find out correlation between postural alignment in sitting measured through photogrammetry and postural control in sitting following stroke. A cross-sectional study with convenient sampling consisting of 45 subjects with acute and sub-acute stroke. Postural alignment in sitting was measured through photogrammetry and relevant angles were obtained through software MB Ruler (version 5.0). Seated postural control was measured through Function in Sitting Test (FIST). Correlation was obtained using Spearman's Rank Correlation co-efficient in SPSS software (version 17.0). Moderate positive correlation (r = 0.385; p < 0.01) was found between angle of lordosis and angle between acromion, lateral epicondyle and point between radius and ulna. Strong negative correlation (r = -0.435; p < 0.01) was found between cranio-vertebral angle and kyphosis. FIST showed moderate positive correlation (r = 0.3446; p < 0.05) with cranio-vertebral angle and strong positive correlation (r = 0.4336; p < 0.01) with Brunnstrom's stage of recovery in upper extremity. Degree of forward head posture in sitting correlates directly with seated postural control and inversely with degree of kyphosis in sitting post-stroke. Postural control in sitting post-stroke is directly related with Brunnstrom's stage of recovery in affected upper extremity in sitting.

  14. Practice of contemporary dance promotes stochastic postural control in aging.

    Science.gov (United States)

    Ferrufino, Lena; Bril, Blandine; Dietrich, Gilles; Nonaka, Tetsushi; Coubard, Olivier A

    2011-01-01

    As society ages and the frequency of falls increases, counteracting gait and posture decline is a challenging issue for countries of the developed world. Previous studies have shown that exercise and hazard management help to improve balance and/or decrease the risks for falling in normal aging. Motor activity based on motor-skill learning, particularly dance, can also benefit balance and decreases falls with age. Recent studies have suggested that older dancers have better balance, posture, or gait than non-dancers. Additionally, clinical or laboratory measures have shown improvements in some aspects of balance after dance interventions in elderly trainees. This study examined the impact of contemporary dance (CD) and of fall prevention (FP) programs on postural control of older adults. Posturography of quiet upright stance was performed in 41 participants aged 59-86 years before and after 4.4-month training in either CD or FP once a week. Though classical statistic scores failed to show any effect, dynamic analyses of the center-of-pressure displacements revealed significant changes after training. Specifically, practice of CD enhanced the critical time interval in diffusion analysis, and reduced recurrence and mathematical stability in recurrence quantification analysis, whereas practice of FP induced or tended to induce the reverse patterns. Such effects were obtained only in the eyes open condition. We suggest that CD training based on motor improvisation favored stochastic posture inducing plasticity in motor control, while FP training based on more stereotyped behaviors did not.

  15. Practice of contemporary dance promotes stochastic postural control in aging

    Directory of Open Access Journals (Sweden)

    Lena eFerrufino

    2011-12-01

    Full Text Available As society ages and the frequency of falls increases, counteracting gait and posture decline is a challenging issue for countries of the developed world. Previous studies have shown that exercise and hazard management help to improve balance and/or decrease the risks for falling in normal aging. Motor activity based on motor-skill learning, particularly dance, can also benefit balance and decreases falls with age. Recent studies have suggested that older dancers had better balance, posture, or gait than non-dancers. Additionally, clinical or laboratory measures have shown improvements in some aspects of balance after dance interventions in elderly trainees. This study examined the impact of contemporary dance (CD and of fall prevention (FP programs on postural control of older adults. Posturography of quiet upright stance was performed in forty-one participants aged 59-86 years before and after 4.4-month training in either CD or FP once a week. Though classical statistic scores failed to show any effect, dynamic analyses of the center-of-pressure displacements revealed significant changes after training. Specifically, practice of CD enhanced the critical time interval in diffusion analysis, and reduced recurrence and mathematical stability in recurrence quantification analysis, whereas practice of FP induced or tended to induce the reverse patterns. We suggest that CD training based on motor improvisation favored stochastic posture inducing plasticity in motor control, while FP training based on more stereotyped behaviors did not.

  16. Modular control of movement and posture by the corticospinal alpha-gamma motor systems.

    Science.gov (United States)

    Si Li; Xin He; Ning Lan

    2014-01-01

    It is widely assumed that neural control of movement is carried out by the a motor system sufficiently. The role of the γ motor system in movement and posture has not been adequately addressed in motor control studies. Here, we propose a modular control model for movement and posture based on propriospinal neuronal (PN) network and spinal α-γ motor system. In the modular control model, the a and γ motor commands are divided into static and dynamic functions. The static commands are specified by the higher center of brain for posture control, and the dynamic commands for movement generation, respectively. Centrally planned kinematics based on the minimal jerk criterion is conveyed to the periphery via the γ motor system, while centrally programmed bi-phasic burst pattern of muscle activation is relayed to a pair of antagonistic muscles through the a motor system via the PN. Results of simulation showed that elbow kinematics and biceps and triceps activations displayed the similar kinematic and EMG features of fast reaching movement in human. This suggests a hypothesis that the α-γ motor systems can achieve modular control of movement and posture in parallel.

  17. Support afferentation in the posture and locomotion control system

    Science.gov (United States)

    Grigoriev, Anatoly; Tomilovskaya, Elena; Kozlovskaya, Inesa

    Mechanisms of support afferentation contribution in posture and locomotion control, which were uncertain up to now, became the point of intensive studies recently. This became possible since the space flights era started which created the conditions for simulated microgravity experiments under conditions of dry immersion and bedrest. The results of neurophysiological studies performed under the conditions of supportlessness have shown that decline or elimination of support loads is followed by deep and fast developing alterations in postural tonic system, including development of postural muscle atonia, changes of recruitment order of motoneurons innervating the shin muscles, spinal hyperreflexia development etc. (Kozlovskaya I.B. et al., 1987). It has been also shown that application of artificial support stimulation in the regimen of natural locomotion under these conditions decreases significantly or even eliminates the development of mentioned changes. The results of these studies laid down the basis for a new hypothesis on the trigger role of support afferentation in postural tonic system and its role in organization and control of postural synergies (Grigoriev A.I. et al., 2004). According to this hypothesis the muscle reception is considered to be the leading afferent input in the control of locomotion. However the data of recent studies pointed out strongly to the participation of support afferentation in definition of cognitive strategies and motor programs of locomotor movements (Chernikova L.A. et al., 2013) and, consequently, in the processes of their initiation (Gerasimenko Yu.P. et al., 2012). The cortical locomotor reflex composes apparently the basis of these processes. The receptive field of this reflex is located in the support zones of the soles and the central part is located in the posterior parietal areas (IPL) of brain cortex. The study is supported by RFBR grant N 13-04-12091 OFI-m.

  18. Evaluation of postural control in unilateral vestibular hypofunction

    Directory of Open Access Journals (Sweden)

    Rafaela Maia Quitschal

    2014-07-01

    Full Text Available INTRODUCTION: Patients with vestibular hypofunction, a typical finding in peripheral vestibular disorders, show body balance alterations. OBJECTIVE: To evaluate the postural control of patients with vertigo and unilateral vestibular hypofunction. METHOD: This is a clinical cross-sectional study. Twenty-five patients with vertigo and unilateral vestibular hypofunction and a homogeneous control group consisting of 32 healthy individuals were submitted to a neurotological evaluation including the Tetrax Interactive Balance System posturography in eight different sensory conditions. RESULTS: For different positions, vertiginous patients with unilateral vestibular hypofunction showed significantly higher values of general stability index, weight distribution index, right/left and tool/heel synchronizations, Fourier transformation index and fall index than controls. CONCLUSION: Increased values in the indices of weight distribution, right/left and tool/heel synchronizations, Fourier transformation and fall risk characterize the impairment of postural control in patients with vertigo and unilateral vestibular hypofunction.

  19. INFLUENCE OF INJURY ON DYNAMIC POSTURAL CONTROL IN RUNNERS.

    Science.gov (United States)

    Meardon, Stacey; Klusendorf, Anna; Kernozek, Thomas

    2016-06-01

    Injury has been linked with altered postural control in active populations. The association between running injury and dynamic postural control has not been examined. The purpose of this study was to examine dynamic postural control in injured and uninjured runners using the Star Excursion Balance Test (SEBT), Time to Stabilization (TTS) of ground reaction forces following a single-leg landing, and postural stability indices reflecting the fluctuations in GRFs during single-leg landing and stabilization tasks (forward and lateral hop). It was hypothesized that dynamic postural control differences would exist between runners with a history of injury that interrupted training for ≥7 days (INJ) when compared to runners without injury (CON). Case-control study. Twenty-two INJ (14 F, 8 M; 23.7 ± 2.1 y; 22.3 ± 2.8 kg/m2; 29.5 ± 16.3 mi/wk) currently running > 50% pre-injury mileage without pain were compared with twenty-two matched CON (14F, 8M; 22.7 ± 1.2 y; 22.7 ± 2.7 kg/m2; 31.2 ± 19.6 mi/wk). INJ group was stratified by site of injury into two groups (Hip/Thigh/Knee and Lower Leg/Ankle/Foot) for secondary analysis. Leg length-normalized anterior, posterolateral, and posteromedial reach distances on the SEBT, medial/lateral and anterior/posterior ground reaction force TTS, directional postural stability indices, and a composite dynamic postural stability index (DPSI), were assessed using mixed model ANOVA (α=0.05) and effect sizes (d). No group X direction interaction or group differences were observed for the SEBT (p=0.51, 0.71) or TTS (p=0.83, 0.72) measures. A group X direction interaction was found for postural stability indices during the forward landing task (ppostural stability index (VPSI) (p=0.01 for both, d=0.80, 0.95) and DPSI (p=0.01, 0.02, d=0.75, 0.93) when compared to CON suggesting impaired balance control. A group X direction interaction was also found for postural stability indices during the lateral landing

  20. Effects of adiposity on postural control and cognition.

    Science.gov (United States)

    Meng, Hao; O'Connor, Daniel P; Lee, Beom-Chan; Layne, Charles S; Gorniak, Stacey L

    2016-01-01

    In the U.S., it is estimated that over one-third of adults are obese (Body Mass Index (BMI)>30kg/m(2)). Previous studies suggest that obesity may be associated with deficits in cognitive performance and postural control. Increased BMI may challenge cognitive and postural performance in a variety of populations; however, most relevant studies have classified participants based on BMI values, which cannot be used to accurately assess the effects of adiposity on cognitive performance and postural control. The objective of the current study was to examine motor and cognitive responses for overweight and obese adults compared to normal weight individuals by using both BMI and adiposity measures. Ten normal weight (BMI=18-24.9kg/m(2)), ten overweight (BMI=25-29.9kg/m(2)), and ten obese (BMI=30-40kg/m(2)) adults were evaluated (age: 24±4 years). Participants were classified into three groups based on BMI values at the onset of the study, prior to body composition analysis. Participants performed (1) working memory task while maintaining upright stance, and (2) a battery of sensorimotor evaluations. Working memory reaction times, response accuracy, center-of-pressure (COP) path length, velocity, migration area, time to boundary values in anterior-posterior direction, and ankle-hip strategy-scores were calculated to evaluate cognitive-motor performance. No significant deficits in working memory performance were observed. Overall, measures of motor function deteriorated as BMI and body fat percentage increased. The relationship between deteriorating postural performance indices and body fat percentage were greater than those found between BMI and postural performance indices. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Testing postural control among various osteoporotic patient groups : A literature review

    NARCIS (Netherlands)

    de Groot, Maartje H.; van der Jagt-Willems, Hanna C.; van Campen, Jos P. C. M.; Lems, Willem F.; Lamoth, Claudine J. C.

    2012-01-01

    Aim: Osteoporosis can cause vertebral fractures, which might lead to a flexed posture, impaired postural control and consequently increased fall risk. Therefore, the aim of the present review was to examine whether postural control of patients with osteoporosis, vertebral fractures, thoracic

  2. Standing Postural Control in Individuals with Autism Spectrum Disorder: Systematic Review and Meta-Analysis

    Science.gov (United States)

    Lim, Yi Huey; Partridge, Katie; Girdler, Sonya; Morris, Susan L.

    2017-01-01

    Impairments in postural control affect the development of motor and social skills in individuals with autism spectrum disorder (ASD). This review compared the effect of different sensory conditions on static standing postural control between ASD and neurotypical individuals. Results from 19 studies indicated a large difference in postural control…

  3. Walking Posture Control of Transmission Line Single Arm Inspection Robot

    Science.gov (United States)

    Yan, Yu; Liu, Xiaqing; Li, Jinliang; Ou, Yuexiong

    2017-07-01

    To control the walking posture according to transmission line single arm inspection robot, the robot is divided into normal walking and climbing walking two state, and gives the definition, then based on the state space method of state variable feedback and PD control method is used to control the two states, two kinds of control method of simulation by using Matlab, in the end, the two control methods proposed is validated in the actual circuit structures. The results show that, the proposed control method is rapid and effective, and can meet the needs of practical application.

  4. Postural Stability of Patients with Schizophrenia during Challenging Sensory Conditions: Implication of Sensory Integration for Postural Control.

    Science.gov (United States)

    Teng, Ya-Ling; Chen, Chiung-Ling; Lou, Shu-Zon; Wang, Wei-Tsan; Wu, Jui-Yen; Ma, Hui-Ing; Chen, Vincent Chin-Hung

    2016-01-01

    Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP) postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99); controls (76.53±7.47); t1,59 = -3.28, ppostural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory conditions, which was independent of clinical characteristics. Patients further demonstrated similar pattern and level of utilizing sensory information to maintain balance compared to the controls.

  5. Postural Control Disturbances Produced By Exposure to HMD and Dome Vr Systems

    Science.gov (United States)

    Harm, D. L.; Taylor, L. C.

    2005-01-01

    Two critical and unresolved human factors issues in VR systems are: 1) potential "cybersickness", a form of motion sickness which is experienced in virtual worlds, and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Most astronauts and cosmonauts experience perceptual and sensorimotor disturbances during and following space flight. All astronauts exhibit decrements in postural control following space flight. It has been suggested that training in virtual reality (VR) may be an effective countermeasure for minimizing perceptual and/or sensorimotor disturbances. People adapt to consistent, sustained alterations of sensory input such as those produced by microgravity, and experimentally-produced stimulus rearrangements (e.g., reversing prisms, magnifying lenses, flight simulators, and VR systems). Adaptation is revealed by aftereffects including perceptual disturbances and sensorimotor control disturbances. The purpose of the current study was to compare disturbances in postural control produced by dome and head-mounted virtual environment displays. Individuals recovered from motion sickness and the detrimental effects of exposure to virtual reality on postural control within one hour. Sickness severity and initial decrements in postural equilibrium decreases over days, which suggests that subjects become dual-adapted over time. These findings provide some direction for developing training schedules for VR users that facilitate adaptation, and address safety concerns about aftereffects.

  6. Real-time visual feedback of COM and COP motion properties differentially modifies postural control structures.

    Science.gov (United States)

    Kilby, Melissa C; Molenaar, Peter C M; Slobounov, Semyon M; Newell, Karl M

    2017-01-01

    The experiment was setup to investigate the control of human quiet standing through the manipulation of augmented visual information feedback of selective properties of the motion of two primary variables in postural control: center of pressure (COP) and center of mass (COM). Five properties of feedback information were contrasted to a no feedback dual-task (watching a movie) control condition to determine the impact of visual real-time feedback on the coordination of the joint motions in postural control in both static and dynamic one-leg standing postures. The feedback information included 2D COP or COM position and macro variables derived from the COP and COM motions, namely virtual time-to-contact (VTC) and the COP-COM coupling. The findings in the static condition showed that the VTC and COP-COM coupling feedback conditions decreased postural motion more than the 2D COP or COM positional information. These variables also induced larger sway amplitudes in the dynamic condition showing a more progressive search strategy in exploring the stability limits. Canonical correlation analysis (CCA) found that COP-COM coupling contributed less than the other feedback variables to the redundancy of the system reflected in the common variance between joint motions and properties of sway motion. The COP-COM coupling had the lowest weighting of the motion properties to redundancy under the feedback conditions but overall the qualitative pattern of the joint motion structures was preserved within the respective static and dynamic balance conditions.

  7. Resistance versus Balance Training to Improve Postural Control in Parkinson's Disease: A Randomized Rater Blinded Controlled Study: e0140584

    National Research Council Canada - National Science Library

    Christian Schlenstedt; Steffen Paschen; Annika Kruse; Jan Raethjen; Burkhard Weisser; Günther Deuschl

    2015-01-01

    .... The ability of resistance training to improve postural control still remains unclear. Objective To compare resistance training with balance training to improve postural control in people with Parkinson's disease...

  8. Postural control is altered in patients with ankylosing spondylitis.

    Science.gov (United States)

    Vergara, Martin E; O'Shea, Finbar D; Inman, Robert D; Gage, William H

    2012-05-01

    Ankylosing spondylitis is a chronic inflammatory disorder that can lead to increased axial and peripheral joint stiffness, impairing joint mobility. Impaired axial mobility due to vertebral ankylosis may result in changes in standing postural control. Little research has addressed changes in standing postural control in the ankylosing spondylitis population, nor how these issues might affect clinical understanding and treatment. Sixteen ankylosing spondylitis patients, and 17 healthy controls participated. Each individual completed two 120-second quiet standing trials with eyes open and eyes closed, while standing upon two force platforms. Net center of pressure displacement and mean power frequency in the frontal and sagittal planes were calculated. A Spearman's rank correlation analysis was performed between net center of pressure measures and several clinical measures of disease activity. Frontal plane net center of pressure displacement and frequency content, and sagittal plane net center of pressure displacement were significantly greater within the ankylosing spondylitis patient group. Ankylosing spondylitis patients demonstrated a significant increase in frontal plane net center of pressure displacement in the eyes-closed condition. Net center of pressure displacement and frequency were significantly correlated to the Bath Ankylosing Spondylitis Functional Index, and individual components of the Bath Ankylosing Spondylitis Metrology Index. Quiet standing postural control was altered particularly so in the frontal plane in patients with ankylosing spondylitis, which may be associated with increased fall risk. Posturographic measures of postural control may serve as valuable clinical tools for the monitoring of disease progression and disease status in ankylosing spondylitis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Effects of disease severity and medication state on postural control asymmetry during challenging postural tasks in individuals with Parkinson's disease.

    Science.gov (United States)

    Barbieri, Fabio A; Polastri, Paula F; Baptista, André M; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Beretta, Victor S; Gobbi, Lilian T B

    2016-04-01

    The aim of this study was to investigate the effects of disease severity and medication state on postural control asymmetry during challenging tasks in individuals with Parkinson's disease (PD). Nineteen people with PD and 11 neurologically healthy individuals performed three standing task conditions: bipedal standing, tandem and unipedal adapted standing; the individuals with PD performed the tasks in ON and OFF medication state. The participants with PD were distributed into 2 groups according to disease severity: unilateral group (n=8) and bilateral group (n=11). The two PD groups performed the evaluations both under and without the medication. Two force plates were used to analyze the posture. The symmetric index was calculated for various of center of pressure. ANOVA one-way (groups) and two-way (PD groups×medication), with repeated measures for medication, were calculated. For main effects of group, the bilateral group was more asymmetric than CG. For main effects of medication, only unipedal adapted standing presented effects of PD medication. There was PD groups×medication interaction. Under the effects of medication, the unilateral group presented lower asymmetry of RMS in anterior-posterior direction and area than the bilateral group in unipedal adapted standing. In addition, the unilateral group presented lower asymmetry of mean velocity, RMS in anterior-posterior direction and area in unipedal standing and area in tandem adapted standing after a medication dose. Postural control asymmetry during challenging postural tasks was dependent on disease severity and medication state in people with PD. The bilateral group presented higher postural control asymmetry than the control and unilateral groups in challenging postural tasks. Finally, the medication dose was able to reduce postural control asymmetry in the unilateral group during challenging postural tasks. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Postural control in elderly subjects participating in balance training.

    Science.gov (United States)

    Nagy, Edit; Feher-Kiss, Anna; Barnai, Mária; Domján-Preszner, Andrea; Angyan, Lajos; Horvath, Gyöngyi

    2007-05-01

    The changes in postural control in elderly people after an 8-week training course were characterized. Static postural stability was measured during standing on a single force platform first with the eyes open and then with the eyes closed. Body sway was analysed on a force plate in groups of elderly and of young subjects. Half of the elderly subjects then took part in the training course. The posturographic measurements were repeated after the course. The sway in anteroposterior (AP) and mediolateral (ML) directions was subjected to spectral analysis. The frequency spectrum of the platform oscillations was calculated by fast Fourier transformation in the intervals 0.1-0.3, 0.3-1 and 1-3 Hz. It was found that the sway path was longer and the frequency power was higher in the elderly group. The training caused a significant improvement in functional performance, but a significantly longer sway path was observed after the training in the ML direction. The frequency analysis revealed a significantly higher power after 8 weeks without visual control in the ML direction in the training group in the low and the middle frequency bands. The results suggest that the participants' balance confidence and the control of ML balance improved in response to the training. The higher ML frequency power exhibited after the training may be indicative of a better balance performance. Thus, the increase in the sway path in this age group did not mean a further impairment of the postural control.

  11. Aging worsens the effects of sleep deprivation on postural control.

    Directory of Open Access Journals (Sweden)

    Rébecca Robillard

    Full Text Available Falls increase with age and cause significant injuries in the elderly. This study aimed to determine whether age modulates the interactions between sleep deprivation and postural control and to evaluate how attention influences these interactions in the elderly. Fifteen young (24±2.7 y.o. and 15 older adults (64±3.2 y.o. stood still on a force plate after a night of sleep and after total sleep deprivation. Center of pressure range and velocity were measured with eyes open and with eyes closed while participants performed an interference task, a control task, and no cognitive task. Sleep deprivation increased the antero-posterior range of center of pressure in both age groups and center of pressure speed in older participants only. In elderly participants, the destabilizing effects of sleep deprivation were more pronounced with eyes closed. The interference task did not alter postural control beyond the destabilization induced by sleep loss in older subjects. It was concluded that sleep loss has greater destabilizing effects on postural control in older than in younger participants, and may therefore increase the risk of falls in the elderly.

  12. Aging worsens the effects of sleep deprivation on postural control.

    Science.gov (United States)

    Robillard, Rébecca; Prince, François; Filipini, Daniel; Carrier, Julie

    2011-01-01

    Falls increase with age and cause significant injuries in the elderly. This study aimed to determine whether age modulates the interactions between sleep deprivation and postural control and to evaluate how attention influences these interactions in the elderly. Fifteen young (24±2.7 y.o.) and 15 older adults (64±3.2 y.o.) stood still on a force plate after a night of sleep and after total sleep deprivation. Center of pressure range and velocity were measured with eyes open and with eyes closed while participants performed an interference task, a control task, and no cognitive task. Sleep deprivation increased the antero-posterior range of center of pressure in both age groups and center of pressure speed in older participants only. In elderly participants, the destabilizing effects of sleep deprivation were more pronounced with eyes closed. The interference task did not alter postural control beyond the destabilization induced by sleep loss in older subjects. It was concluded that sleep loss has greater destabilizing effects on postural control in older than in younger participants, and may therefore increase the risk of falls in the elderly.

  13. Dual task and postural control in Alzheimer's and Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Larissa Pires de Andrade

    2014-03-01

    Full Text Available Patients with neurodegenerative diseases are required to use cognitive resources while maintaining postural control. The aim of this study was to investigate the effects of a frontal cognitive task on postural control in patients with Alzheimer, Parkinson and controls. Thirty-eight participants were instructed to stand upright on a force platform in two experimental conditions: single and dual task. Participants with Parkinson's disease presented an increase in the coefficient of variation greater than 100% in the dual task as compared to the single task for center of pressure (COP area and COP path. In addition, patients with Parkinson's and Alzheimer's disease had a higher number of errors during the execution of the cognitive task when compared to the group of elderly without neurodegenerative diseases. The motor cortex, which is engaged in postural control, does not seem to compete with frontal brain regions in the performance of the cognitive task. However, patients with Parkinson's and Alzheimer's disease presented worsened performance in cognitive task.

  14. The effects of deuterium on static posture control

    Science.gov (United States)

    Layne, Charles S.

    1990-01-01

    A significant operational problem impacting upon the Space Shuttle program involves the astronaut's ability to safely egress from the Orbiter during an emergency situation. Following space flight, astronauts display significant movement problems. One variable which may contribute to increased movement ataxia is deuterium (D2O). Deuterium is present in low levels within the Orbiter's water supply but may accumulate to significant physiological levels during lengthy missions. Deuterium was linked to a number of negative physiological responses, including motion sickness, decreased metabolism, and slowing of neural conduction velocity. The effects of D2O on static postural control in response to a range of dosage levels were investigated. Nine sugjects were divided into three groups of three subjects each. The groups were divided into a low, medium, and a high D2O dosage group. The subjects static posture was assessed with the use of the EquiTest systems, a commercially available postural control evaluation system featuring movable force plates and a visual surround that can be servoed to the subject's sway. In addition to the force plate information, data about the degree of subject sway about the hips and shoulders was obtained. Additionally, surface electromyographic (EMG) data from the selected lower limb muscles were collected along with saliva samples used to determine the amount of deuterium enrichment following D2O ingestion. Two baseline testing sessions were performed using the EquiTest testing protocol prior to ingestion of the D2O. Thirty minutes after dosing, subjects again performed the tests. Two more post-dosing tests were run with an interest interval of one hour. Preliminary data anlaysis indicates that only subjects in the igh dose group displayed any significant static postural problems. Future analyses of the sway and EMG is expected to reveal significant variations in the subject's postural control strategy following D2O dosing. While

  15. Application of postured human model for SAR measurements

    Science.gov (United States)

    Vuchkovikj, M.; Munteanu, I.; Weiland, T.

    2013-07-01

    In the last two decades, the increasing number of electronic devices used in day-to-day life led to a growing interest in the study of the electromagnetic field interaction with biological tissues. The design of medical devices and wireless communication devices such as mobile phones benefits a lot from the bio-electromagnetic simulations in which digital human models are used. The digital human models currently available have an upright position which limits the research activities in realistic scenarios, where postured human bodies must be considered. For this reason, a software application called "BodyFlex for CST STUDIO SUITE" was developed. In its current version, this application can deform the voxel-based human model named HUGO (Dipp GmbH, 2010) to allow the generation of common postures that people use in normal life, ensuring the continuity of tissues and conserving the mass to an acceptable level. This paper describes the enhancement of the "BodyFlex" application, which is related to the movements of the forearm and the wrist of a digital human model. One of the electromagnetic applications in which the forearm and the wrist movement of a voxel based human model has a significant meaning is the measurement of the specific absorption rate (SAR) when a model is exposed to a radio frequency electromagnetic field produced by a mobile phone. Current SAR measurements of the exposure from mobile phones are performed with the SAM (Specific Anthropomorphic Mannequin) phantom which is filled with a dispersive but homogeneous material. We are interested what happens with the SAR values if a realistic inhomogeneous human model is used. To this aim, two human models, a homogeneous and an inhomogeneous one, in two simulation scenarios are used, in order to examine and observe the differences in the results for the SAR values.

  16. Development of postural control in typically developing children and children with cerebral palsy : Possibilities for intervention?

    NARCIS (Netherlands)

    de Graaf-Peters, Victorine B.; Blauw-Hospers, Cornill H.; Dirks, Tineke; Bakker, Hanneke; Bos, Arie F.; Hadders-Algra, Mijna

    2007-01-01

    The basic level of postural control is functionally active from early infancy onwards: young infants possess a repertoire of direction-specific postural adjustments. Whether or not direction-specific adjustments are used depends on the child's age and the nature of the postural task. The second

  17. Hemodynamic Response of the Supplementary Motor Area during Locomotor Tasks with Upright versus Horizontal Postures in Humans

    Directory of Open Access Journals (Sweden)

    Arito Yozu

    2016-01-01

    Full Text Available To understand cortical mechanisms related to truncal posture control during human locomotion, we investigated hemodynamic responses in the supplementary motor area (SMA with quadrupedal and bipedal gaits using functional near-infrared spectroscopy in 10 healthy adults. The subjects performed three locomotor tasks where the degree of postural instability varied biomechanically, namely, hand-knee quadrupedal crawling (HKQuad task, upright quadrupedalism using bilateral Lofstrand crutches (UpQuad task, and typical upright bipedalism (UpBi task, on a treadmill. We measured the concentration of oxygenated hemoglobin (oxy-Hb during the tasks. The oxy-Hb significantly decreased in the SMA during the HKQuad task, whereas it increased during the UpQuad task. No significant responses were observed during the UpBi task. Based on the degree of oxy-Hb responses, we ranked these locomotor tasks as UpQuad > UpBi > HKQuad. The order of the different tasks did not correspond with postural instability of the tasks. However, qualitative inspection of oxy-Hb time courses showed that oxy-Hb waveform patterns differed between upright posture tasks (peak-plateau-trough pattern for the UpQuad and UpBi tasks and horizontal posture task (downhill pattern for the HKQuad task. Thus, the SMA may contribute to the control of truncal posture accompanying locomotor movements in humans.

  18. The degrees of freedom problem in human standing posture: collective and component dynamics.

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    Full Text Available The experiment was setup to investigate the coordination and control of the degrees of freedom (DFs of human standing posture with particular reference to the identification of the collective and component variables. Subjects stood in 3 postural tasks: feet side by side, single left foot quiet stance and single left foot stance with body rocking at the ankle joint in the sagittal plane. All three postural tasks showed very high coherence (∼ 1 of center of pressure (COP--center of mass (COM in the low frequency range. The ankle and hip coherence was mid range (∼.5 with the tasks having different ankle/hip compensatory cophase patterns. The findings support the view that the in-phase relation of the low frequency components of the COP-COM dynamic is the collective variable in the postural tasks investigated. The motions of the individual joints (ankle, knee, hip, neck and couplings of pair wise joint synergies (e.g., ankle-hip provide a supporting cooperative role to the preservation of the collective variable in maintaining the COM within the stability region of the base of support (BOS and minimizing the amount of body motion consistent with the task constraint.

  19. Effects of the Central Executive on Postural Control.

    Science.gov (United States)

    Fujita, Hiroyuki; Kasubuchi, Kenji; Osumi, Michihiro; Morioka, Shu

    2016-01-01

    The authors focused on individual working memory (WM) capacity and examined its effect on postural control. Participants were 79 young volunteers split into two groups of low- and high WM span, based on scores from the Reading Span Test. The length of unrest was measured in the following conditions: double-leg standing as a single (D-S) task, single-leg standing as a single (S-S) task, double-leg standing as a dual (D-D) task, and single-leg standing as a dual (S-D) task. Regarding inte-group comparisons, total length was prolonged significantly between the low- and the high-span groups but only on the S-D task. The present results revealed that dual-task interference emerged in the low-span group when in a more unstable posture.

  20. Controlling posture using a plantar pressure-based, tongue-placed tactile biofeedback system

    CERN Document Server

    Vuillerme, Nicolas; Demongeot, Jacques; Payan, Yohan

    2007-01-01

    The present paper introduces an original biofeedback system for improving human balance control, whose underlying principle consists in providing additional sensory information related to foot sole pressure distribution to the user through a tongue-placed tactile output device. To assess the effect of this biofeedback system on postural control during quiet standing, ten young healthy adults were asked to stand as immobile as possible with their eyes closed in two conditions of No-biofeedback and Biofeedback. Centre of foot pressure (CoP) displacements were recorded using a force platform. Results showed reduced CoP displacements in the Biofeedback relative to the No-biofeedback condition. The present findings evidenced the ability of the central nervous system to efficiently integrate an artificial plantar-based, tongue-placed tactile biofeedback for controlling control posture during quiet standing.

  1. ISway: a sensitive, valid and reliable measure of postural control

    Directory of Open Access Journals (Sweden)

    Mancini Martina

    2012-08-01

    Full Text Available Abstract Background Clinicians need a practical, objective test of postural control that is sensitive to mild neurological disease, shows experimental and clinical validity, and has good test-retest reliability. We developed an instrumented test of postural sway (ISway using a body-worn accelerometer to offer an objective and practical measure of postural control. Methods We conducted two separate studies with two groups of subjects. Study I: sensitivity and experimental concurrent validity. Thirteen subjects with early, untreated Parkinson’s disease (PD and 12 age-matched control subjects (CTR were tested in the laboratory, to compare sway from force-plate COP and inertial sensors. Study II: test-retest reliability and clinical concurrent validity. A different set of 17 early-to-moderate, treated PD (tested ON medication, and 17 age-matched CTR subjects were tested in the clinic to compare clinical balance tests with sway from inertial sensors. For reliability, the sensor was removed, subjects rested for 30 min, and the protocol was repeated. Thirteen sway measures (7 time-domain, 5 frequency-domain measures, and JERK were computed from the 2D time series acceleration (ACC data to determine the best metrics for a clinical balance test. Results Both center of pressure (COP and ACC measures differentiated sway between CTR and untreated PD. JERK and time-domain measures showed the best test-retest reliability (JERK ICC was 0.86 in PD and 0.87 in CTR; time-domain measures ICC ranged from 0.55 to 0.84 in PD and from 0.60 to 0.89 in CTR. JERK, all but one time-domain measure, and one frequency measure were significantly correlated with the clinical postural stability score (r ranged from 0.50 to 0.63, 0.01 Conclusions Based on these results, we recommend a subset of the most sensitive, reliable, and valid ISway measures to characterize posture control in PD: 1 JERK, 2 RMS amplitude and mean velocity from the time-domain measures, and 3 centroidal

  2. Influence of pain on postural control in women with neck pain

    Directory of Open Access Journals (Sweden)

    Juliana Soares

    2013-04-01

    Full Text Available The objective of this study was to investigate the influence of pain on postural control in women with neck pain and the relationship with possible changes in sensory systems and posture. The neck pain group was composed of women, aged between 20 and 50years, complaining of neck pain for more than three months; the control group was composed of women without complaints of neck pain. For the characterization of the groups, we used anamnesis, neck disability index and Visual Analogue Scale. Postural balance was assessed on force platform. Postural balance with manipulation of the sensory systems was measured by Foam Laser Dynamic Posturography, exposing the individual to six sensory organization tests. Posture was assessed by the Postural Assessment Software. The normality of the variables were verified using Shapiro-Wilk test, Student’s t-test and Mann-Whitney test for comparison between groups, with a significance level of5%. Groups were homogeneous in demographic variables. We observed higher amplitude and displacement velocity of the center of pressure in the neck pain group, showing greater postural balance. There were significant diferences incraniovertebral angle, showing forward head posture in symptomatic women. In dynamics posturography, we observed a difference between the groups: the score obtainedin the six sensory conditions showed that neck pain group presented greater balance impairment. Neck pain and forward head posture have a deleterious effect on postural control in symptomatic women, both in the static posture and dynamic posture.

  3. The Effect of Training on Postural Control in Dyslexic Children

    OpenAIRE

    Nathalie Goulème; Christophe-Loïc Gérard; Maria Pia Bucci

    2015-01-01

    The aim of this study was to explore whether a short postural training period could affect postural stability in dyslexic children. Postural performances were evaluated using Multitest Equilibre from Framiral. Posture was recorded in three different viewing conditions (eyes open fixating a target, eyes closed and eyes open with perturbed vision) and in two different postural conditions (on stable and unstable support). Two groups of dyslexic children participated in the study, i.e. G1: 16 dys...

  4. Virtual Balancing for Studying and Training Postural Control

    Directory of Open Access Journals (Sweden)

    Daniela Buettner

    2017-09-01

    Full Text Available Postural control during free stance has been frequently interpreted in terms of balancing an inverted pendulum. This even holds, if subjects do not balance their own, but an external body weight. We introduce here a virtual balancing apparatus, which produces torque in the ankle joint as a function of ankle angle resembling the gravity and inertial effects of free standing. As a first aim of this study, we systematically modified gravity, damping, and inertia to examine its effect on postural control beyond the physical constraints given in the real world. As a second aim, we compared virtual balancing to free stance to test its suitability for balance training in patients who are not able to balance their full body weight due to certain medical conditions. In a feasibility study, we analyzed postural control during free stance and virtual balancing in 15 healthy subjects. Postural control was characterized by spontaneous sway measures and measures of perturbed stance. During free stance, perturbations were induced by pseudorandom anterior-posterior tilts of the body support surface. In the virtual balancing task, we systematically varied the anterior-posterior position of the foot plate where the balancing forces are zero following a similar pseudorandom stimulus profile. We found that subjects' behavior during virtual balancing resembles free stance on a tilting platform. This specifically holds for the profile of body excursions as a function of stimulus frequencies. Moreover, non-linearity between stimulus and response amplitude is similar in free and virtual balancing. The overall larger stimulus induced body excursions together with an altered phase behavior between stimulus and response could be in part explained by the limited use of vestibular and visual feedback in our experimental setting. Varying gravity or damping significantly affected postural behavior. Inertia as an isolated factor had a mild effect on the response functions. We

  5. Virtual Balancing for Studying and Training Postural Control.

    Science.gov (United States)

    Buettner, Daniela; Dalin, Daniela; Wiesmeier, Isabella K; Maurer, Christoph

    2017-01-01

    Postural control during free stance has been frequently interpreted in terms of balancing an inverted pendulum. This even holds, if subjects do not balance their own, but an external body weight. We introduce here a virtual balancing apparatus, which produces torque in the ankle joint as a function of ankle angle resembling the gravity and inertial effects of free standing. As a first aim of this study, we systematically modified gravity, damping, and inertia to examine its effect on postural control beyond the physical constraints given in the real world. As a second aim, we compared virtual balancing to free stance to test its suitability for balance training in patients who are not able to balance their full body weight due to certain medical conditions. In a feasibility study, we analyzed postural control during free stance and virtual balancing in 15 healthy subjects. Postural control was characterized by spontaneous sway measures and measures of perturbed stance. During free stance, perturbations were induced by pseudorandom anterior-posterior tilts of the body support surface. In the virtual balancing task, we systematically varied the anterior-posterior position of the foot plate where the balancing forces are zero following a similar pseudorandom stimulus profile. We found that subjects' behavior during virtual balancing resembles free stance on a tilting platform. This specifically holds for the profile of body excursions as a function of stimulus frequencies. Moreover, non-linearity between stimulus and response amplitude is similar in free and virtual balancing. The overall larger stimulus induced body excursions together with an altered phase behavior between stimulus and response could be in part explained by the limited use of vestibular and visual feedback in our experimental setting. Varying gravity or damping significantly affected postural behavior. Inertia as an isolated factor had a mild effect on the response functions. We conclude that

  6. A New Standing Posture Detector to Enable People with Multiple Disabilities to Control Environmental Stimulation by Changing Their Standing Posture through a Commercial Wii Balance Board

    Science.gov (United States)

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chiang, Ming-Shan

    2010-01-01

    This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture) and a Wii Balance Board with a newly developed standing posture detection program (i.e. a new software program turns a Wii Balance Board into a precise standing posture detector). The…

  7. Novel postural control algorithm for control of multifunctional myoelectric prosthetic hands.

    Science.gov (United States)

    Segil, Jacob L; Weir, Richard F

    2015-01-01

    The myoelectric controller (MEC) remains a technological bottleneck in the development of multifunctional prosthetic hands. Current MECs require physiologically inappropriate commands to indicate intent and lack effectiveness in a clinical setting. Postural control schemes use surface electromyography signals to drive a cursor in a continuous two-dimensional domain that is then transformed into a hand posture. Here, we present a novel algorithm for a postural controller and test the efficacy of the system during two experiments with 11 total subjects. In the first experiment, we found that performance increased when a velocity cursor-control technique versus a position cursor-control technique was used. Also, performance did not change when using 3, 4, or 12 surface electrodes. In the second experiment, subjects commanded a six degree-of-freedom virtual hand into seven functional postures without training, with completion rates of 82 +/- 4%, movement times of 3.5 +/- 0.2 s, and path efficiencies of 45 +/- 3%. Subjects retained the ability to use the postural controller at a high level across days after a single 1 hr training session. Our results substantiate the novel algorithm for a postural controller as a robust and advantageous design for a MEC of multifunction prosthetic hands.

  8. Falls and postural control in older adults with cataracts.

    Science.gov (United States)

    Nodehi Moghadam, Afsun; Goudarzian, Maryam; Azadi, Farhad; Hosseini, Seide Masume; Mosallanezhad, Zahra; Karimi, Nouraddin; Larne, Yassin; Habibi, Maryam; Yaghmaei, Poorya

    2015-01-01

    There is increasing evidence that visual impairment contribute to falling. The aim of this study was to determine the influence of vision impairment of old adult patients with cataract on the occurrence of falls and postural control. According to the results of screening ophthalmic examination, 48 cataract patients (mean±SD aged 68.5 ± 6.08 yrs.) and 50 individuals without any obvious eye disorders (mean age ± SD 70.7 ± 5.97 yrs.) were enrolled in this study. The postural control was determined using the clinical test of Sensory Interaction and Balance (CTSIB) and Timed up and Go (TUG) test. The results of this study revealed that 18% (n = 9) of the normal individuals and 22.9% (n =11) of the cataract patients had at least two falls in the past 12 months. However, the result of chisquare test did not show any differences between the two groups (p= 0.36). The mean ± SD TUG times in cataract and control groups in our study were15.17 ± 3.58 and13.77 ± 4.90, respectively. However, no significant differences were found between the two groups (p= 0.12).The results of CTSIB test showed no significant differences between the two groups on standing on the floor with eyes open and eyes closed (p= 0.61, p= 0.89) and on standing on the foam with eyes open and eyes closed (p= 0.32, p= 0.74 ). According to the results of CTSIB and TUG tests, vision impairment of old adult patients with cataract is not associated with falls and balance disorders. Further work including assessment of postural control with advanced devices and considering other falls risk factors are also required to identify predictors of falls in cataract patients.

  9. ISway: a sensitive, valid and reliable measure of postural control.

    Science.gov (United States)

    Mancini, Martina; Salarian, Arash; Carlson-Kuhta, Patricia; Zampieri, Cris; King, Laurie; Chiari, Lorenzo; Horak, Fay B

    2012-08-22

    Clinicians need a practical, objective test of postural control that is sensitive to mild neurological disease, shows experimental and clinical validity, and has good test-retest reliability. We developed an instrumented test of postural sway (ISway) using a body-worn accelerometer to offer an objective and practical measure of postural control. We conducted two separate studies with two groups of subjects. Study I: sensitivity and experimental concurrent validity. Thirteen subjects with early, untreated Parkinson's disease (PD) and 12 age-matched control subjects (CTR) were tested in the laboratory, to compare sway from force-plate COP and inertial sensors. Study II: test-retest reliability and clinical concurrent validity. A different set of 17 early-to-moderate, treated PD (tested ON medication), and 17 age-matched CTR subjects were tested in the clinic to compare clinical balance tests with sway from inertial sensors. For reliability, the sensor was removed, subjects rested for 30 min, and the protocol was repeated. Thirteen sway measures (7 time-domain, 5 frequency-domain measures, and JERK) were computed from the 2D time series acceleration (ACC) data to determine the best metrics for a clinical balance test. Both center of pressure (COP) and ACC measures differentiated sway between CTR and untreated PD. JERK and time-domain measures showed the best test-retest reliability (JERK ICC was 0.86 in PD and 0.87 in CTR; time-domain measures ICC ranged from 0.55 to 0.84 in PD and from 0.60 to 0.89 in CTR). JERK, all but one time-domain measure, and one frequency measure were significantly correlated with the clinical postural stability score (r ranged from 0.50 to 0.63, 0.01 control in PD: 1) JERK, 2) RMS amplitude and mean velocity from the time-domain measures, and 3) centroidal frequency as the best frequency measure, as valid and reliable measures of balance control from ISway.

  10. Coordinated alpha and gamma control of muscles and spindles in movement and posture

    Science.gov (United States)

    Li, Si; Zhuang, Cheng; Hao, Manzhao; He, Xin; Marquez, Juan C.; Niu, Chuanxin M.; Lan, Ning

    2015-01-01

    Mounting evidence suggests that both α and γ motoneurons are active during movement and posture, but how does the central motor system coordinate the α-γ controls in these tasks remains sketchy due to lack of in vivo data. Here a computational model of α-γ control of muscles and spindles was used to investigate α-γ integration and coordination for movement and posture. The model comprised physiologically realistic spinal circuitry, muscles, proprioceptors, and skeletal biomechanics. In the model, we divided the cortical descending commands into static and dynamic sets, where static commands (αs and γs) were for posture maintenance and dynamic commands (αd and γd) were responsible for movement. We matched our model to human reaching movement data by straightforward adjustments of descending commands derived from either minimal-jerk trajectories or human EMGs. The matched movement showed smooth reach-to-hold trajectories qualitatively close to human behaviors, and the reproduced EMGs showed the classic tri-phasic patterns. In particular, the function of γd was to gate the αd command at the propriospinal neurons (PN) such that antagonistic muscles can accelerate or decelerate the limb with proper timing. Independent control of joint position and stiffness could be achieved by adjusting static commands. Deefferentation in the model indicated that accurate static commands of αs and γs are essential to achieve stable terminal posture precisely, and that the γd command is as important as the αd command in controlling antagonistic muscles for desired movements. Deafferentation in the model showed that losing proprioceptive afferents mainly affected the terminal position of movement, similar to the abnormal behaviors observed in human and animals. Our results illustrated that tuning the simple forms of α-γ commands can reproduce a range of human reach-to-hold movements, and it is necessary to coordinate the set of α-γ descending commands for accurate

  11. Human object inpainting using manifold learning-based posture sequence estimation.

    Science.gov (United States)

    Ling, Chih-Hung; Liang, Yu-Ming; Lin, Chia-Wen; Chen, Yong-Sheng; Liao, Hong-Yuan Mark

    2011-11-01

    We propose a human object inpainting scheme that divides the process into three steps: 1) human posture synthesis; 2) graphical model construction; and 3) posture sequence estimation. Human posture synthesis is used to enrich the number of postures in the database, after which all the postures are used to build a graphical model that can estimate the motion tendency of an object. We also introduce two constraints to confine the motion continuity property. The first constraint limits the maximum search distance if a trajectory in the graphical model is discontinuous, and the second confines the search direction in order to maintain the tendency of an object's motion. We perform both forward and backward predictions to derive local optimal solutions. Then, to compute an overall best solution, we apply the Markov random field model and take the potential trajectory with the maximum total probability as the final result. The proposed posture sequence estimation model can help identify a set of suitable postures from the posture database to restore damaged/missing postures. It can also make a reconstructed motion sequence look continuous.

  12. Evaluation of postural control in unilateral vestibular hypofunction.

    Science.gov (United States)

    Quitschal, Rafaela Maia; Fukunaga, Jackeline Yumi; Ganança, Maurício Malavasi; Caovilla, Heloísa Helena

    2014-01-01

    Patients with vestibular hypofunction, a typical finding in peripheral vestibular disorders, show body balance alterations. To evaluate the postural control of patients with vertigo and unilateral vestibular hypofunction. This is a clinical cross-sectional study. Twenty-five patients with vertigo and unilateral vestibular hypofunction and a homogeneous control group consisting of 32 healthy individuals were submitted to a neurotological evaluation including the Tetrax Interactive Balance System posturography in eight different sensory conditions. For different positions, vertiginous patients with unilateral vestibular hypofunction showed significantly higher values of general stability index, weight distribution index, right/left and tool/heel synchronizations, Fourier transformation index and fall index than controls. Increased values in the indices of weight distribution, right/left and tool/heel synchronizations, Fourier transformation and fall risk characterize the impairment of postural control in patients with vertigo and unilateral vestibular hypofunction. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  13. The effect of inspiratory muscles fatigue on postural control in persons with and without recurrent low back pain

    OpenAIRE

    Janssens, Lotte; Brumagne, Simon; Polspoel, Kathelijn; Troosters, Thierry; McConnell, Alison

    2010-01-01

    Study Design. A two-group experimental design. Objective. To determine postural stability and proprioceptive postural control strategies of healthy subjects and subjects with recurrent low back pain (LBP) during acute inspiratory muscles fatigue (IMF). Summary of Background Data. People with LBP use a more rigid proprioceptive postural control strategy than control subjects during postural perturbations. Recent evidence suggests that respiratory movements create postural instability i...

  14. Stroboscopic Vision to Induce Sensory Reweighting During Postural Control.

    Science.gov (United States)

    Kim, Kyung-Min; Kim, Joo-Sung; Grooms, Dustin R

    2017-06-12

    Patients with somatosensory deficits have been found to rely more on visual feedback for postural control. However, current balance tests may be limited in identifying increased visual dependence (sensory reweighting to the visual system), as options are typically limited to eyes open or closed conditions with no progressions between. To assess the capability of stroboscopic glasses to induce sensory reweighting of visual input during single-leg balance. Descriptive Setting: Laboratory Participants: Eighteen healthy subjects without vision or balance disorders or lower extremity injury history (9 females; age=22.1±2.1 years; height=169.8±8.5cm; mass=66.5±10.6kg) participated. Subjects performed 3 trials of unipedal stance for 10 seconds with eyes open (EO) and closed (EC), and with stroboscopic vision (SV) that was completed with specialized eyewear that intermittently cycled between opaque and transparent for 100 milliseconds at a time. Balance tasks were performed on firm and foam surfaces, with the order randomized. Ten center-of-pressure parameters were computed. Separate ANOVAs with repeated measures found significant differences between the 3 visual conditions on both firm (Ps=postural stability measures demonstrated significant impairments with SV compared with EO, but the impairment with SV was similar to EC. SV impairment of single-leg balance was large on the firm surface, but not to the same degree as EC. However, the foam surface disruption to somatosensory processing and sensory reweighting to vision lead to greater disruptive effects of SV to the same level as EC. This indicates that when the somatosensory system is perturbed even a moderate decrease in visual feedback (SV) may induce an EC level impairment to postural control during single-leg stance.

  15. Effects of affective picture viewing on postural control

    Directory of Open Access Journals (Sweden)

    Beek Peter J

    2007-10-01

    Full Text Available Abstract Background Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis that pictures with negative valence have a greater impact on postural control than neutral or positive ones. Thirty-four healthy subjects passively viewed a series of emotion eliciting images, while standing either in a bipedal or unipedal stance on a force plate. The images were adopted from the International Affective Picture System (IAPS. We analysed mean and variability of the COP and the length of the associated sway path as a function of emotion. Results The mean position of the COP was unaffected by emotion, but unipedal stance resulted in overall greater body sway than bipedal stance. We found a modest effect of emotion on COP: viewing pictures of mutilation resulted in a smaller sway path, but only in unipedal stance. We obtained valence and arousal ratings of the images with an independent sample of viewers. These subjects rated the unpleasant images as significantly less pleasant than neutral images, and the pleasant images as significantly more pleasant than neutral images. However, the subjects rated the images as overall less pleasant and less arousing than viewers in a closely comparable American study, pointing to unknown differences in viewer characteristics. Conclusion Overall, viewing emotion eliciting images had little effect on body sway. Our finding of a reduction in sway path length when viewing pictures of mutilation was indicative of a freezing strategy, i.e. fear bradycardia. The results are consistent with current knowledge about the

  16. Ankylosing Spondylitis and Posture Control: The Role of Visual Input

    Directory of Open Access Journals (Sweden)

    Alessandro Marco De Nunzio

    2015-01-01

    Full Text Available Objectives. To assess the motor control during quiet stance in patients with established ankylosing spondylitis (AS and to evaluate the effect of visual input on the maintenance of a quiet posture. Methods. 12 male AS patients (mean age 50.1 ± 13.2 years and 12 matched healthy subjects performed 2 sessions of 3 trials in quiet stance, with eyes open (EO and with eyes closed (EC on a baropodometric platform. The oscillation of the centre of feet pressure (CoP was acquired. Indices of stability and balance control were assessed by the sway path (SP of the CoP, the frequency bandwidth (FB1 that includes the 80% of the area under the amplitude spectrum, the mean amplitude of the peaks (MP of the sway density curve (SDC, and the mean distance (MD between 2 peaks of the SDC. Results. In severe AS patients, the MD between two peaks of the SDC and the SP of the center of feet pressure were significantly higher than controls during both EO and EC conditions. The MP was significantly reduced just on EC. Conclusions. Ankylosing spondylitis exerts negative effect on postural stability, not compensable by visual inputs. Our findings may be useful in the rehabilitative management of the increased risk of falling in AS.

  17. Responsiveness of a modified version of the postural assessment scale for stroke patients and longitudinal change in postural control after stroke- Postural Stroke Study in Gothenburg (POSTGOT -

    Directory of Open Access Journals (Sweden)

    Persson Carina U

    2013-01-01

    Full Text Available Abstract Background Responsiveness data certify that a change in a measurement output represents a real change, not a measurement error or biological variability. The objective was to evaluate the responsiveness of the modified version of the Postural Assessment Scale for Stroke Patients (SwePASS in patients with a first event of stroke. An additional aim was to estimate the change in postural control during the first 12 months after stroke onset. Methods The SwePASS assessments were conducted during the first week and 3, 6 and 12 months after stroke in 90 patients. Svensson’s method, Relative Position (RP, Relative Concentration (RC and Relative Rank Variance (RV, were used to estimate the scale’s responsiveness and the patients’ change in postural control over time. Results From the first week to 3 months after stroke, the patients improved in terms of postural control with 2 to 12 times larger systematic changes in Relative Position (RP, for which 9 items and the total score showed a significant responsiveness to change when compared to the intrarater reliability measurement error of the SwePASS reported in a previous study. When SwePASS was used to assess change in postural control between the first week and 3 months, 74% of the patients received higher scores while 10% received lower scores, RP 0.31 (95% CI 0.219-0.402. The corresponding figures between 3 and 6 and between 6 and 12 months were 37% and 16%, RP 0.09 (95% CI 0.030-0.152, and 18% and 26%, RP −0.07 (95% CI −0.134- (−0.010, respectively. Conclusions The SwePASS is responsive to change. Postural control evaluated using the SwePASS showed an improvement during the first 6 months after stroke. The measurement property, in the form of responsiveness, shows that the SwePASS scoring method can be considered for use in rehabilitation when assessing postural control in patients after stroke, especially during the first 3 months.

  18. Postural control and shoulder steadiness in F-16 pilots

    DEFF Research Database (Denmark)

    Lange, Britt; Murray, Mike; Chreiteh, Shadi S

    2014-01-01

    reports the results of the secondary objective, which was to increase the understanding of possible mechanisms underlying such neck pain and its intervention-related relief. METHODS: In a parallel, single-blinded, randomized controlled study, 55 F-16 pilots were evaluated at baseline and randomized......BACKGROUND: During maneuvering, fighter pilots experience loads of up to 50-70 kg on their necks. Neck disorders are common and have been linked to impairment in muscle control. We conducted an intervention study introducing targeted training for 24 wk that reduced neck pain. The current study...... to a control group (CG; N = 28) or training group (TG; N = 27). Postural control was tested in four different settings: Romberg with open and closed eyes, unilateral stance, and perturbation. Maximal voluntary contraction and force steadiness was measured for shoulder elevation. RESULTS: At follow...

  19. Developing and Evaluating New Methods for Assessing Postural Control and Dynamics

    OpenAIRE

    Zhang, Hong Bo

    2013-01-01

    Falls are the leading cause of injuries among older adults (>65) and frequently result in reduced mobility, loss of independence, decreased quality of life, injury, and death.  Extensive research has been conducted regarding postural coordination and control, and other mechanisms/processes involved in maintaining postural stability.  However, there is relatively limited knowledge regarding the patterns of joint coordination, the underlying postural controller, and efficient methods to assess ...

  20. Saccades horizontal or vertical at near or at far do not deteriorate postural control.

    OpenAIRE

    Rey, F.; THANH- THUAN, L; Bertin, R; Kapoula, Z

    2008-01-01

    There is a discrepancy about the effect of saccades on postural control: some studies reported a stabilization effect, other studies the opposite. Perturbation of posture by saccades could be related to loss of vision during saccades (saccades suppression) due to high velocity retinal slip. On the other hand, efferent and afferent proprioceptive signals related to saccades can be used for obtaining spatial stability over saccades and maintaining good postural control. In natural conditions sa...

  1. Decreasing Internal Focus of Attention Improves Postural Control during Quiet Standing in Young Healthy Adults

    Science.gov (United States)

    Nafati, Gilel; Vuillerme, Nicolas

    2011-01-01

    This experiment was designed to investigate whether and how decreasing the amount of attentional focus invested in postural control could affect bipedal postural control. Twelve participants were asked to stand upright as immobile as possible on a force platform in one control condition and one cognitive condition. In the latter condition, they…

  2. Postural control in degenerative diseases of the hip joint.

    Science.gov (United States)

    Sziver, Edit; Nagy, Edit; Preszner-Domján, Andrea; Pósa, Gabriella; Horvath, Gyöngyi; Balog, Attila; Tóth, Kálmán

    2016-06-01

    Few studies investigated the postural control in patients with hip joint impairments; in some cases, balance impairments have been found, while other researchers have seen no significant changes. The goal of this study was to characterize postural stability in patients suffering from unilateral osteoarthritis or rheumatoid arthritis in different balance tasks and to reveal potential differences between the two diseases in this respect. Ten patients with hip osteoarthritis (mean age: 62.3years), 10 patients with rheumatoid arthritis (mean age: 55.4years) and 10 healthy control subjects (mean age: 54.3years) took part in the study. Displacement of centre of pressure was measured with a force plate in mediolateral and anteroposterior directions during two-leg standing on firm and compliant surfaces with eyes opened and closed. Standing on a firm surface sway path increased significantly in the anteroposterior direction in both patient groups and in the mediolateral direction in all groups with eyes closed as compared to eyes opened condition. Standing on a compliant surface, sway paths increased significantly in both directions in all groups with eyes closed as compared to eyes opened condition; furthermore, sway paths were significantly longer with eyes closed in patients with rheumatoid arthritis in comparison with control and osteoarthritis groups. Our data revealed that the manipulation of both visual and somatosensory information can reveal subtle impairments in balance control. Thus, this paradigm can unmask the effects of decreased proprioception due to joint capsule lesion in patients with rheumatoid arthritis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The influence of foot posture on the cost of transport in humans.

    Science.gov (United States)

    Cunningham, C B; Schilling, N; Anders, C; Carrier, D R

    2010-03-01

    Although humans appear to be specialized for endurance running, the plantigrade posture of our feet, in which the heel contacts the substrate at the beginning of a step, seems incompatible with economical running. In this study, we tested the hypothesis that plantigrade foot posture reduces the energetic cost of transport (COT) during walking in humans. When human subjects walked with their heels slightly elevated in a 'low-digitigrade' posture, COT increased by 53% above that of normal plantigrade walking. By contrast, there was no difference in COT when subjects ran with digitigrade versus plantigrade foot posture. Stride frequency increased and stride length decreased when subjects switched to digitigrade walking; however, this change did not influence the COT. Additionally, we found that possible reductions in postural stability appear not to have caused the elevated cost of digitigrade walking. Digitigrade walking, however, did (1) increase the external mechanical work performed by the limbs; (2) reduce the pendular exchange of kinetic and potential energy of the center of mass; (3) increase the average ground reaction force moment at the ankle joint; and (4) increase the recruitment of major extensor muscles of the ankle, knee, hip and back. These observations suggest that plantigrade foot posture improves the economy of walking. Relative to other mammals, humans are economical walkers, but not economical runners. Given the great distances hunter-gatherers travel, it is not surprising that humans retained a foot posture, inherited from our more arboreal great ape ancestors, that facilitates economical walking.

  4. Effect of gaze on postural responses to neck proprioceptive and vestibular stimulation in humans

    Science.gov (United States)

    Ivanenko, Yuri P; Grasso, Renato; Lacquaniti, Francesco

    1999-01-01

    We studied the effect of gaze orientation on postural responses evoked by vibration of neck dorsal muscles or by galvanic stimulation of the vestibular system during quiet standing in healthy humans. Various gaze orientations were obtained by different combinations of horizontal head-on-feet (−90, −45, 0, 45, 90 deg) and eye-in-orbit (−30, 0, 30 deg) positions. The instantaneous centre of foot pressure was recorded with a force platform. With a symmetrical position of the vibrator relative to the spine, neck muscle vibration elicited a body sway in the direction of the head naso-occipital axis when the eyes were aligned with it. The same result was obtained both during head rotations and when the head and trunk were rotated together. For lateral eye deviations, the direction of the body sway was aligned with gaze orientation. The effect of gaze was present both with eyes open and eyes closed. After long-lasting (1 min) lateral fixation of the target the effect of gaze decreased significantly. Postural responses to galvanic vestibular stimulation tended to occur orthogonal to the head naso-occipital axis (towards the anodal ear) but in eight of the 11 subjects the responses were also biased by the direction of gaze. The prominent effect of gaze in reorienting automatic postural reactions indicates that both neck proprioceptive and vestibular stimuli are processed in the context of visual control of posture. The results point out the importance of a viewer-centred frame of reference for processing multisensory information. PMID:10432359

  5. Multisensory training for postural sway control in non-injured elderly ...

    African Journals Online (AJOL)

    The findings demonstrated that the trained ETG improved in their total Berg Balance Test (BBT) scores indicated that the training program successfully improved postural sway control for non-injured elderly females. Keywords: multisensory training, postural sway control, balance ability, visual input; vestibular input ...

  6. Precision control of an upright trunk posture in low back pain patients

    NARCIS (Netherlands)

    Willigenburg, N.W.; Kingma, I.; van Dieen, J.H.

    2012-01-01

    Background: Low back pain appears to be associated with impaired trunk postural control, which could be caused by proprioceptive deficits. We assessed control of trunk posture in conditions requiring high and low precision, with and without disturbance of proprioception by lumbar muscle vibration.

  7. Postural Control Deficits in Autism Spectrum Disorder: The Role of Sensory Integration

    Science.gov (United States)

    Doumas, Michail; McKenna, Roisin; Murphy, Blain

    2016-01-01

    We investigated the nature of sensory integration deficits in postural control of young adults with ASD. Postural control was assessed in a fixed environment, and in three environments in which sensory information about body sway from visual, proprioceptive or both channels was inaccurate. Furthermore, two levels of inaccurate information were…

  8. Postural control in a simulated saturation dive to 240 msw.

    OpenAIRE

    Goplen, Frederik Kragerud; Aasen, T. B.; Nordahl, Stein Helge G

    2007-01-01

    INTRODUCTION: There is evidence that increased ambient pressure causes an increase in postural sway. This article documents postural sway at pressures not previously studied and discusses possible mechanisms. METHODS: Eight subjects participated in a dry chamber dive to 240 msw (2.5 MPa) saturation pressure. Two subjects were excluded due to unilateral caloric weakness before the dive. Postural sway was measured on a force platform. The path length described by the center of pr...

  9. Intrasession reliability and influence of breathing during clinical assessment of lumbar spine postural control.

    Science.gov (United States)

    Lafond, Danik; Dimmock, Mathilde; Champagne, Annick; Descarreaux, Martin

    2009-04-01

    The aims of this study were to evaluate the influence of breathing when measuring lumbar postural control during a clinical progressive lumbar stabilization test (LST) and to estimate the intrasession reliability of the LST. The lumbar postural control index was calculated by using a biofeedback pressure unit. The LST was performed in two different positions (crook lying and upright) and two respiratory conditions (apnea and breathing) by 20 healthy individuals. The intrasession reliability of the lumbar postural control index of one trial was estimated with intraclass correlation coefficient (ICC) based on an Anova model. The results showed that the lumbar postural control index is similar between testing positions. There is an increase of the lumbar postural control index during breathing compared to the apnea. The reliability of the lumbar postural control index was fair to good (ICC 0.28-0.58). We also found that for the apnea, three trials had to be averaged to attain an ICC of 0.80 for both positions. The results of the present study indicate that the progressive LST can be similarly conducted in either supine or upright posture. Clinicians should be aware of the influence of breathing during LST. However, breathing could also serve as a clinical strategy to challenge lumbar spine postural control and stability during bracing therapeutic exercises.

  10. The Effect of Training on Postural Control in Dyslexic Children.

    Directory of Open Access Journals (Sweden)

    Nathalie Goulème

    Full Text Available The aim of this study was to explore whether a short postural training period could affect postural stability in dyslexic children. Postural performances were evaluated using Multitest Equilibre from Framiral. Posture was recorded in three different viewing conditions (eyes open fixating a target, eyes closed and eyes open with perturbed vision and in two different postural conditions (on stable and unstable support. Two groups of dyslexic children participated in the study, i.e. G1: 16 dyslexic participants (mean age 9.9 ± 0.3 years who performed short postural training and G2: 16 dyslexic participants of similar ages (mean age 9.1 ± 0.3 years who did not perform any short postural training. Findings showed that short postural training improved postural stability on unstable support surfaces with perturbed vision: indeed the surface, the mean velocity of CoP and the spectral power indices in both directions decreased significantly, and the cancelling time in the antero-posterior direction improved significantly. Such improvement could be due to brain plasticity, which allows better performance in sensory process and cerebellar integration.

  11. The Effect of Training on Postural Control in Dyslexic Children.

    Science.gov (United States)

    Goulème, Nathalie; Gérard, Christophe-Loïc; Bucci, Maria Pia

    2015-01-01

    The aim of this study was to explore whether a short postural training period could affect postural stability in dyslexic children. Postural performances were evaluated using Multitest Equilibre from Framiral. Posture was recorded in three different viewing conditions (eyes open fixating a target, eyes closed and eyes open with perturbed vision) and in two different postural conditions (on stable and unstable support). Two groups of dyslexic children participated in the study, i.e. G1: 16 dyslexic participants (mean age 9.9 ± 0.3 years) who performed short postural training and G2: 16 dyslexic participants of similar ages (mean age 9.1 ± 0.3 years) who did not perform any short postural training. Findings showed that short postural training improved postural stability on unstable support surfaces with perturbed vision: indeed the surface, the mean velocity of CoP and the spectral power indices in both directions decreased significantly, and the cancelling time in the antero-posterior direction improved significantly. Such improvement could be due to brain plasticity, which allows better performance in sensory process and cerebellar integration.

  12. The Effect of Training on Postural Control in Dyslexic Children

    Science.gov (United States)

    Goulème, Nathalie; Gérard, Christophe-Loïc; Bucci, Maria Pia

    2015-01-01

    The aim of this study was to explore whether a short postural training period could affect postural stability in dyslexic children. Postural performances were evaluated using Multitest Equilibre from Framiral. Posture was recorded in three different viewing conditions (eyes open fixating a target, eyes closed and eyes open with perturbed vision) and in two different postural conditions (on stable and unstable support). Two groups of dyslexic children participated in the study, i.e. G1: 16 dyslexic participants (mean age 9.9 ± 0.3 years) who performed short postural training and G2: 16 dyslexic participants of similar ages (mean age 9.1 ± 0.3 years) who did not perform any short postural training. Findings showed that short postural training improved postural stability on unstable support surfaces with perturbed vision: indeed the surface, the mean velocity of CoP and the spectral power indices in both directions decreased significantly, and the cancelling time in the antero-posterior direction improved significantly. Such improvement could be due to brain plasticity, which allows better performance in sensory process and cerebellar integration. PMID:26162071

  13. Postural control in restless legs syndrome with medication intervention using pramipexole.

    Science.gov (United States)

    Ahlgrén-Rimpiläinen, Aulikki; Lauerma, Hannu; Kähkönen, Seppo; Aalto, Heikki; Tuisku, Katinka; Holi, Matti; Pyykkö, Ilmari; Rimpiläinen, Ilpo

    2014-02-01

    Central dopamine regulation is involved in postural control and in the pathophysiology of restless legs syndrome (RLS) and Parkinson's disease (PD). Postural control abnormalities have been detected in PD, but there are no earlier studies with regard to RLS and postural control. Computerized force platform posturography was applied to measure the shift and the velocity (CPFV) of center point of forces (CPF) with eyes open (EO) and eyes closed (EC) in controls (n = 12) and prior and after a single day intervention with pramipexole in RLS subjects (n = 12). CPFV (EO) was significantly lower in the RLS group (p postural stability. Further research is needed to clarify altered feedback in the central nervous system and involvement of dopamine and vision in the postural control in RLS.

  14. Postural control in older patients with benign paroxysmal positional vertigo.

    Science.gov (United States)

    Kasse, Cristiane Akemi; Santana, Graziela Gaspar; Branco-Barreiro, Fátima Cristina Alves; Scharlach, Renata Coelho; Gazzola, Juliana Maria; Ganança, Fernando Freitas; Doná, Flávia

    2012-05-01

    To evaluate the effectiveness of a canalith-repositioning procedure in postural control of older patients with idiopathic benign paroxysmal positional vertigo (BPPV). Prospective clinical trial. A tertiary referral center. A 9-month follow-up survey with a prospective design was conducted among 33 older patients with BPPV. Patients underwent static posturography (Balance Rehabilitation Unit [BRU]) and were administered the Dizziness Handicap Inventory (DHI) before and after the maneuver. After the treatment, they were compared with 33 healthy older subjects. The posturography parameters were the limit of stability (LOS), the center of body-pressure area (COP), and the velocity of oscillation (VOS) under conditions of visual, somatosensory, and visual-vestibular conflict. One canalith-repositioning procedure relieved most patients' complaints (54.5%), and 100% were relieved with 1 to 3 maneuvers. Total DHI score and all subscales improved after treatment (P visual conflict and visual-vestibular interaction.

  15. Assessing the psychophysics of posture control and its physiological correlates.

    Science.gov (United States)

    Dong, Xiaoxi; Robinson, Charles J

    2008-01-01

    Graphical visualization methods are described that enable psychophysical detection data to be quantitatively correlated with underlying physiological data in postural control studies. Stitched, raster and ensemble averaged time-series plots are graphical tools that can guide later quantitative analysis. The examples presented point out the role that early Tibialis Anterior and later Gastrocnemius EMG activation might play in the 2-Alternative Forced Choice psychophysical detection of 16 mm horizontal anterior perturbations of a sliding platform on which a subject stands, and their linkage to AP and ML Center of Pressure changes brought about by a perturbation. These methods also give a preliminary indication that differing or no response patterns were seen at 4 and 1 mm.

  16. Multimodal Perception and Multicriterion Control of Nested Systems. 1; Coordination of Postural Control and Vehicular Control

    Science.gov (United States)

    Riccio, Gary E.; McDonald, P. Vernon

    1998-01-01

    The purpose of this report is to identify the essential characteristics of goal-directed whole-body motion. The report is organized into three major sections (Sections 2, 3, and 4). Section 2 reviews general themes from ecological psychology and control-systems engineering that are relevant to the perception and control of whole-body motion. These themes provide an organizational framework for analyzing the complex and interrelated phenomena that are the defining characteristics of whole-body motion. Section 3 of this report applies the organization framework from the first section to the problem of perception and control of aircraft motion. This is a familiar problem in control-systems engineering and ecological psychology. Section 4 examines an essential but generally neglected aspect of vehicular control: coordination of postural control and vehicular control. To facilitate presentation of this new idea, postural control and its coordination with vehicular control are analyzed in terms of conceptual categories that are familiar in the analysis of vehicular control.

  17. LASER SCANNING APPLICATION FOR DETECTION OF HUMAN POSTURE DISTORTION DURING MASS EXAMINATIONS

    Directory of Open Access Journals (Sweden)

    R. L. Voinov

    2014-03-01

    Full Text Available Identification of human posture distortion in the early stages is an important task, which makes it possible to adjust the onset of the disease with just exercise and without the use of drugs. Existing methods for monitoring of human posture assessment do not meet modern requirements for speed of data acquisition and processing. Real time evaluation of human posture distortion in static and dynamic modes is possible by using a laser scanner. The paper deals with a three-dimensional laser scanning method for determining human posture. The device designed on the basis of its examination gives the possibility for real-time static and dynamic modes. Characteristic feature of the laser scanner is the presence of automated servo rotatable measuring head in two planes (vertical and horizontal with a density of up to tens of measurement points per square centimeter.

  18. Human Posture Recognition Based on Images Captured by the Kinect Sensor

    National Research Council Canada - National Science Library

    Wang, Wen-June; Chang, Jun-Wei; Haung, Shih-Fu; Wang, Rong-Jyue

    2016-01-01

    In this paper we combine several image processing techniques with the depth images captured by a Kinect sensor to successfully recognize the five distinct human postures of sitting, standing, stooping...

  19. Pedunculopontine network dysfunction in Parkinson's disease with postural control and sleep disorders.

    Science.gov (United States)

    Gallea, Cecile; Ewenczyk, Claire; Degos, Bertrand; Welter, Marie-Laure; Grabli, David; Leu-Semenescu, Smaranda; Valabregue, Romain; Berroir, Pierre; Yahia-Cherif, Lydia; Bertasi, Eric; Fernandez-Vidal, Sara; Bardinet, Eric; Roze, Emmanuel; Benali, Habib; Poupon, Cyril; François, Chantal; Arnulf, Isabelle; Lehéricy, Stéphane; Vidailhet, Marie

    2017-05-01

    The objective of this study was to investigate pedunculopontine nucleus network dysfunctions that mediate impaired postural control and sleep disorder in Parkinson's disease. We examined (1) Parkinson's disease patients with impaired postural control and rapid eye movement sleep behavior disorder (further abbreviated as sleep disorder), (2) Parkinson's disease patients with sleep disorder only, (3) Parkinson's disease patients with neither impaired postural control nor sleep disorder, and (4) healthy volunteers. We assessed postural control with clinical scores and biomechanical recordings during gait initiation. Participants had video polysomnography, daytime sleepiness self-evaluation, and resting-state functional MRIs. Patients with impaired postural control and sleep disorder had longer duration of anticipatory postural adjustments during gait initiation and decreased functional connectivity between the pedunculopontine nucleus and the supplementary motor area in the locomotor network that correlated negatively with the duration of anticipatory postural adjustments. Both groups of patients with sleep disorder had decreased functional connectivity between the pedunculopontine nucleus and the anterior cingulate cortex in the arousal network that correlated with daytime sleepiness. The degree of dysfunction in the arousal network was related to the degree of connectivity in the locomotor network in all patients with sleep disorder, but not in patients without sleep disorder or healthy volunteers. These results shed light on the functional neuroanatomy of pedunculopontine nucleus networks supporting the clinical manifestation and the interdependence between sleep and postural control impairments in Parkinson's disease. © 2016 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  20. Differences in muscle coactivation during postural control between healthy older and young adults.

    Science.gov (United States)

    Nagai, Koutatsu; Yamada, Minoru; Uemura, Kazuki; Yamada, Yosuke; Ichihashi, Noriaki; Tsuboyama, Tadao

    2011-01-01

    The purpose of this study was to clarify the difference in muscle coactivation during postural control between older and young adults and to identify the characteristics of postural control strategies in older adults by investigating the relationship between muscle coactivation and postural control ability. Forty-six healthy older adults (82.0±7.5 years) and 34 healthy young adults (22.1±2.3 years) participated. The postural tasks selected consisted of static standing, functional reach, functional stability boundary and gait. Coactivation of the ankle joint was recorded during each task via electromyography (EMG). The older adults showed significantly higher coactivation than the young adults during the tasks of standing, functional reach, functional stability boundary (forward), and gait (pPostural sway area (ρ=0.42, polder adults, i.e., muscle coactivation was significantly higher in the elderly with low postural control ability than in the elderly with high balance ability. Increased muscle coactivation could be a necessary change to compensate for a deterioration in postural control accompanying healthy aging. Further research is needed to clarify in greater detail positive and negative effects of muscle coactivation on postural control. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Is there an association between variables of postural control and strength in adolescents?

    Science.gov (United States)

    Granacher, Urs; Gollhofer, Albert

    2011-06-01

    Is there an association between variables of postural control and strength in adolescents? The risk of sustaining sport injuries is particularly high in adolescents. Deficits in postural control and muscle strength represent 2 important intrinsic injury risk factors. Therefore, the purpose of this study was to investigate the relationship between variables of static and dynamic postural control and isometric and dynamic muscle strength and to find out whether there is an association between measures of postural control and muscle strength. Twenty-eight adolescents participated in this study (age 16.8 ± 0.6 years; body mass index 20.5 ± 1.8 kg · m(-2)). Biomechanic tests included the measurements of maximal isometric leg extension force (MIF) and rate of force development (RFDmax) of the leg extensors on a leg press with the feet resting on a force platform, vertical jumping force, and height (countermovement jump [CMJ]) on a force plate and the assessment of static (1-legged stance on a balance platform) and dynamic (mediolateral perturbation impulse on a balance platform) postural control. The significance level was set at p postural control. Significant positive correlations were detected between variables of isometric and dynamic muscle strength with r-values ranging from 0.441 to 0.779 (p postural control and muscle strength. The nonsignificant correlation between static/dynamic postural control and muscle strength implies that primarily dynamic measures of postural control should be incorporated in injury risk assessment and that postural control and muscle strength are independent of each other and may have to be trained complementary for lower extremity injury prevention and rehabilitation purposes.

  2. Adaptive postural control for joint immobilization during multitask performance.

    Science.gov (United States)

    Hsu, Wei-Li

    2014-01-01

    Motor abundance is an essential feature of adaptive control. The range of joint combinations enabled by motor abundance provides the body with the necessary freedom to adopt different positions, configurations, and movements that allow for exploratory postural behavior. This study investigated the adaptation of postural control to joint immobilization during multi-task performance. Twelve healthy volunteers (6 males and 6 females; 21-29 yr) without any known neurological deficits, musculoskeletal conditions, or balance disorders participated in this study. The participants executed a targeting task, alone or combined with a ball-balancing task, while standing with free or restricted joint motions. The effects of joint configuration variability on center of mass (COM) stability were examined using uncontrolled manifold (UCM) analysis. The UCM method separates joint variability into two components: the first is consistent with the use of motor abundance, which does not affect COM position (VUCM); the second leads to COM position variability (VORT). The analysis showed that joints were coordinated such that their variability had a minimal effect on COM position. However, the component of joint variability that reflects the use of motor abundance to stabilize COM (VUCM) was significant decreased when the participants performed the combined task with immobilized joints. The component of joint variability that leads to COM variability (VORT) tended to increase with a reduction in joint degrees of freedom. The results suggested that joint immobilization increases the difficulty of stabilizing COM when multiple tasks are performed simultaneously. These findings are important for developing rehabilitation approaches for patients with limited joint movements.

  3. Adaptive postural control for joint immobilization during multitask performance.

    Directory of Open Access Journals (Sweden)

    Wei-Li Hsu

    Full Text Available Motor abundance is an essential feature of adaptive control. The range of joint combinations enabled by motor abundance provides the body with the necessary freedom to adopt different positions, configurations, and movements that allow for exploratory postural behavior. This study investigated the adaptation of postural control to joint immobilization during multi-task performance. Twelve healthy volunteers (6 males and 6 females; 21-29 yr without any known neurological deficits, musculoskeletal conditions, or balance disorders participated in this study. The participants executed a targeting task, alone or combined with a ball-balancing task, while standing with free or restricted joint motions. The effects of joint configuration variability on center of mass (COM stability were examined using uncontrolled manifold (UCM analysis. The UCM method separates joint variability into two components: the first is consistent with the use of motor abundance, which does not affect COM position (VUCM; the second leads to COM position variability (VORT. The analysis showed that joints were coordinated such that their variability had a minimal effect on COM position. However, the component of joint variability that reflects the use of motor abundance to stabilize COM (VUCM was significant decreased when the participants performed the combined task with immobilized joints. The component of joint variability that leads to COM variability (VORT tended to increase with a reduction in joint degrees of freedom. The results suggested that joint immobilization increases the difficulty of stabilizing COM when multiple tasks are performed simultaneously. These findings are important for developing rehabilitation approaches for patients with limited joint movements.

  4. Postural Control Impairments in Individuals With Autism Spectrum Disorder: A Critical Review of Current Literature

    Science.gov (United States)

    Memari, Amir Hossein; Ghanouni, Parisa; Shayestehfar, Monir; Ghaheri, Banafsheh

    2014-01-01

    Context: Motor impairments in individuals with autism spectrum disorder (ASD) have been frequently reported. In this review, we narrow our focus on postural control impairments to summarize current literature for patterns, underlying mechanisms, and determinants of posture in this population. Evidence Acquisition: A literature search was conducted through Medline, ISI web of Knowledge, Scopus and Google Scholar to include studies between 1992 and February 2013. Results: Individuals with ASD have problems in maintaining postural control in infancy that well persists into later years. However, the patterns and underlying mechanisms are still unclear. Conclusions: Examining postural control as an endophenotype or early diagnostic marker of autism is a conceptual premise which should be considered in future investigations. At the end of the review, methodological recommendations on the assessment of postural control have also been provided. PMID:25520765

  5. Postural control impairments in individuals with autism spectrum disorder: a critical review of current literature.

    Science.gov (United States)

    Memari, Amir Hossein; Ghanouni, Parisa; Shayestehfar, Monir; Ghaheri, Banafsheh

    2014-09-01

    Motor impairments in individuals with autism spectrum disorder (ASD) have been frequently reported. In this review, we narrow our focus on postural control impairments to summarize current literature for patterns, underlying mechanisms, and determinants of posture in this population. A literature search was conducted through Medline, ISI web of Knowledge, Scopus and Google Scholar to include studies between 1992 and February 2013. Individuals with ASD have problems in maintaining postural control in infancy that well persists into later years. However, the patterns and underlying mechanisms are still unclear. Examining postural control as an endophenotype or early diagnostic marker of autism is a conceptual premise which should be considered in future investigations. At the end of the review, methodological recommendations on the assessment of postural control have also been provided.

  6. Measures of static postural control moderate the association of strength and power with functional dynamic balance.

    Science.gov (United States)

    Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina

    2014-12-01

    Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p balance tasks. Practical implications for assessment and training are discussed.

  7. Postural control deficits in people with fibromyalgia: a pilot study

    Science.gov (United States)

    2011-01-01

    Introduction Postural instability and falls are increasingly recognized problems in patients with fibromyalgia (FM). The purpose of this study was to determine whether FM patients, compared to age-matched healthy controls (HCs), have differences in dynamic posturography, including sensory, motor, and limits of stability. We further sought to determine whether postural instability is associated with strength, proprioception and lower-extremity myofascial trigger points (MTPs); FM symptoms and physical function; dyscognition; balance confidence; and medication use. Last, we evaluated self-reported of falls over the past six months. Methods In this cross-sectional study, we compared middle-aged FM patients and age-matched HCs who underwent computerized dynamic posturography testing and completed the Fibromyalgia Impact Questionnaire-Revised (FIQR) and balance and fall questionnaires. All subjects underwent a neurological and musculoskeletal examination. Descriptive statistics were used to characterize the sample and explore the relationships between variables. The relationships between subjective, clinical and objective variables were evaluated by correlation and regression analyses. Results Twenty-five FM patients and twenty-seven HCs (combined mean age ± standard deviation (SD): 48.6 ± 9.7 years) completed testing. FM patients scored statistically lower on composite sensory organization tests (primary outcome; P < 0.010), as well as with regard to vestibular, visual and somatosensory ratio scores on dynamic posturography. Balance confidence was significantly different between groups, with FM patients reporting less confidence than HCs (mean ± SD: 81.24 ± 19.52 vs. 98.52 ± 2.45; P < 0.001). Interestingly, 76% to 84% of FM patients had gastrocnemius and/or anterior tibialis MTPs. Postural stability was best predicted by dyscognition, FIQR score and body mass index. Regarding falls, 3 (11%) of 27 HCs had fallen only once during the past 6 months, whereas 18 (72

  8. Experimental System for Investigation of Visual Sensory Input in Postural Feedback Control

    Directory of Open Access Journals (Sweden)

    Jozef Pucik

    2012-01-01

    Full Text Available The human postural control system represents a biological feedback system responsible for maintenance of upright stance. Vestibular, proprioceptive and visual sensory inputs provide the most important information into the control system, which controls body centre of mass (COM in order to stabilize the human body resembling an inverted pendulum. The COM can be measured indirectly by means of a force plate as the centre of pressure (COP. Clinically used measurement method is referred to as posturography. In this paper, the conventional static posturography is extended by visual stimulation, which provides insight into a role of visual information in balance control. Visual stimuli have been designed to induce body sway in four specific directions – forward, backward, left and right. Stabilograms were measured using proposed single-PC based system and processed to calculate velocity waveforms and posturographic parameters. The parameters extracted from pre-stimulus and on-stimulus periods exhibit statistically significant differences.

  9. Lower limb joint alignment and postural control in elderly women

    Directory of Open Access Journals (Sweden)

    Míriam Raquel Meira Mainenti

    2014-03-01

    The aim of this study was to test whether quiet stance body sway is associated with ankle and knee joint angles in elderly women. Joint angles were measured using a manual goniometer and body sway was assessed using a force platform and four postural tasks with a combination of feet positions and eye condition. The sample (N = 58 showed the following angle values: 102 (100-104 for the tibiotarsal joint, 176 (174-180 for the subtalar joint, 184 (181-187 for knee flexion-extension, and 13 (10-15 for the Q-angle. Q-angle was significantly correlated (p < 0.05 with center of foot pressure (CP displacement area (r = 0.36, anteroposterior (SDy, r = 0.34 and lateral (SDx, r = 0.31 CP standard deviation, and anteroposterior CP range (r = 0.38 during the closed base, eyes opened trial (CBEO. The valgus group showed statistically higher values than the normal and varus groups for SDy (0.56 vs. 0.52 and 0.46 mm; p = 0.02, SDx (0.55 vs. 0.49 and 0.36 mm; p = 0.02 and anteroposterior range (3.32 vs. 2.78 and 2.38 mm; p = 0.01, CBEO. The displacement velocity of the CP was significantly higher for the asymmetric than the symmetric Q-angle group (8.0 vs. 5.3 mm/s – closed base, eyes closed trial. Knee alignment was correlated with measures of body sway in elderly women, but ankle alignment showed no correlation. Knee morphology should be considered an associated factor for quiet stance postural control.

  10. Improving Postural Control in the Battement Tendu: One Teacher's Reflections and Somatic Exercises

    Science.gov (United States)

    Batson, Glenna

    2010-01-01

    The battement tendu is introduced early in dance training, remaining integral to a dancer's vocabulary. Although appearing relatively simple to execute, the tendu aesthetic takes years to master. One reason might be that efficient performance requires complex coordination of postural balance. Known as postural control, this coordination appears in…

  11. Body segments decoupling in sitting: control of body posture from automatic chair adjustments

    NARCIS (Netherlands)

    van Geffen, P.; Molier, B.I.; Reenalda, Jasper; Veltink, Petrus H.; Koopman, Hubertus F.J.M.

    2008-01-01

    Background Individuals who cannot functionally reposition themselves adopt a passive body posture and suffer from physical discomfort in long-term sitting. To regulate body load and to prevent sitting related mobility problems, proper posture control is important. The inability to reposition

  12. Difference in postural control between patients with functional and mechanical ankle instability.

    Science.gov (United States)

    Chen, Henry; Li, Hong-Yun; Zhang, Jian; Hua, Ying-Hui; Chen, Shi-Yi

    2014-10-01

    Lateral ankle sprain is one of the most common injuries. Since the structural and pathological differences in mechanical ankle instability (MAI) and functional ankle instability (FAI) may not be the same, it may be better to treat these as separate groups. The purpose of this study was to compare the difference in postural sway between MAI and FAI in patients with chronic ankle instability (CAI). Twenty-six patients with CAI and 14 healthy control participants were included in the study. The CAI patients were subdivided into MAI (15 patients) and FAI (11 patients) groups. Patients who were diagnosed with lateral ankle ligaments rupture by magnetic resonance imaging and ultrasonography were assigned to the MAI group. All participants performed single-limb postural sway tests 3 times on each leg with eyes closed and open. The average distances from the mean center of pressure position in the mediolateral and anteroposterior directions were recorded and compared among the 3 groups. The unstable ankles in the MAI group showed significantly greater postural sway in the anterior, posterior, and medial directions compared with those in the control group with eyes closed. With eyes open, significantly greater postural sway was found in the anterior direction. In the FAI group, no difference was found in postural sway compared with those in the control group. The MAI group showed significantly greater postural sway in the anterior direction compared with the FAI group with eyes closed and open. No significant difference in postural sway was found between the unstable and stable ankles in the MAI or FAI groups, with or without vision. Patients with MAI have deficits in postural control, especially in anterior-posterior directions. However, no difference was found in postural sway in patients with FAI compared with healthy people. As MAI patients suffer from deficits in postural control, balance training should be applied in those patients. In addition, special training

  13. The effect of trunk coordination exercise on dynamic postural control using a Core Noodle.

    Science.gov (United States)

    Miyake, Yuki; Nakamura, Shinichiro; Nakajima, Masaaki

    2014-10-01

    To investigate the influence of trunk coordination exercise on dynamic postural control relative to postural sway. The effects of trunk coordination exercises were examined using a Core Noodle for the postural sway in healthy students who were assigned to an exercise or control group. The independent variable was the extent of exposure to Core Noodle exercise, and the dependent variable was dynamic postural control. A stabilometer, which measures dynamic postural control, was used to evaluate the effectiveness of the exercises. In addition, center of gravity movements were assessed using a Gravicorder G-620 stabilometer in which the subject was asked to shift their center of gravity between 2 circles on a computer monitor. Pre- and post-intervention dynamic postural control was statistically evaluated between the exercise group and control group using the Mann-Whitney test. Finally, we investigated the application of these exercises for a stroke patient. For post-intervention, the envelop area, mean length of the pathways between 2 circles, and the number of circles were significantly higher in the exercise group. Trunk coordination exercise performed Core Noodle may be used to enhance the dynamic postural balance of healthy young adults, and it can also be adapted for stroke patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Intermittent use of an "anchor system" improves postural control in healthy older adults.

    Science.gov (United States)

    Freitas, Milena de Bem Zavanella; Mauerberg-deCastro, Eliane; Moraes, Renato

    2013-07-01

    Haptic information, provided by a non-rigid tool (i.e., an "anchor system"), can reduce body sway in individuals who perform a standing postural task. However, it was not known whether or not continuous use of the anchor system would improve postural control after its removal. Additionally, it was unclear as to whether or not frequency of use of the anchor system is related to improved control in older adults. The present study evaluated the effect of the prolonged use of the anchor system on postural control in healthy older individuals, at different frequencies of use, while they performed a postural control task (semi-tandem position). Participants were divided into three groups according to the frequency of the anchor system's use (0%, 50%, and 100%). Pre-practice phase (without anchor) was followed by a practice phase (they used the anchor system at the predefined frequency), and a post-practice phase (immediate and late-without anchor). All three groups showed a persistent effect 15min after the end of the practice phase (immediate post-practice phase). However, only the 50% group showed a persistent effect in the late post-practice phase (24h after finishing the practice phase). Older adults can improve their postural control by practicing the standing postural task, and use of the anchor system limited to half of their practice time can provide additional improvement in their postural control. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. POSTURAL CONTROL IN HEALTHY YOUNG ADULTS WITH AND WITHOUT CHRONIC MOTION SENSITIVITY

    Directory of Open Access Journals (Sweden)

    Alyahya D

    2016-02-01

    Full Text Available Background: Postural control requires complex processing of peripheral sensory inputs from the visual, somatosensory and vestibular systems. Motion sensitivity and decreased postural control are influenced by visual-vestibular conflicts.The purpose of this study was to measure the difference between the postural control of healthy adults with and without history of sub-clinical chronic motion sensitivity using a computerized dynamic posturography in a virtual reality environment. Sub-clinical chronic motion sensitivity was operationally defined as a history of avoiding activities causing dizziness, nausea, imbalance, and/or blurred vision without having a related medical diagnosis. Methods: Twenty healthy adults between 22 and 33 years of age participated in the study. Eleven subjects had sub-clinical chronic motion sensitivity and 9 subjects did not. Postural control was measured in both groups using the Bertec Balance Advantage-Dynamic Computerized Dynamic Posturography with Immersion Virtual Reality (CDP-IVR. The CDP-IVR reports an over-all equilibrium score based on subjects’ center of gravity displacement and postural sway while immersed in a virtual reality environment. Subjects were tested on stable (condition 1 and unstable (condition2 platform conditions. Results: There was no significant difference between the two groups in terms of mean age, height, weight, body mass index in kg/m2, postural control scores for conditions 2, and average (p>0.05. However, significant differences were observed in mean postural control for condition 1 between groups (p=0.03. Conclusions: Results of this study suggest that healthy young adults without chronic sub-clinical motion sensitivity have better postural control than those with chronic sub-clinical motion sensitivity. Further investigation is warranted to explore wider age ranges with larger samples sizes as well as intervention strategies to improve postural control.

  16. Changes in Postural Sway After a Single Global Postural Reeducation Session in University Students: A Randomized Controlled Trial.

    Science.gov (United States)

    Lozano-Quijada, Carlos; Poveda-Pagán, Emilio J; Segura-Heras, José V; Hernández-Sánchez, Sergio; Prieto-Castelló, María J

    2017-09-01

    The purpose of this study was to assess the effectiveness of a single session of global postural reeducation (GPR) in postural sway in young adult university students who use data visualization screens. A randomized controlled trial with 2 parallel groups was performed. Sixty-four subjects were randomized in the experimental group (12 men and 20 women) who underwent the GPR session, and a control group (13 men and 19 women) that did not receive any intervention was included. Center of pressure (COP) was assessed using a stabilometric platform, with eyes open and eyes closed before, immediately after, 48 hours after, and 7 days after intervention in both groups. In the interaction of time and gender, statistically significant differences were found for the area covered by COP (P = .020) and for the standard deviation (SD) in the mediolateral axis (P = .035). Considering the complete interaction time, gender, and group, statistically significant differences were found (P = .015) for the anteroposterior rate covered by COP and the SD in the anteroposterior axis (P = .033). In eyes closed condition, the intersubject analysis showed statistically significant differences for the interaction between group and gender for the variable mediolateral SD (P = .043). Considering the interaction of time with group, statistically significant differences were found for full length covered by COP (P = .017). Changes in postural sway were observed after a single GPR session, mainly at 48 hours, with different behaviors between men and women. Copyright © 2017. Published by Elsevier Inc.

  17. Postural Control and Gait Performance in the Diabetic Peripheral Neuropathy: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Amirah Mustapa

    2016-01-01

    Full Text Available Purpose. The aim of this paper is to review the published studies on the characteristics of impairments in the postural control and gait performance in diabetic peripheral neuropathy (DPN. Methods. A review was performed by obtaining publication of all papers reporting on the postural control and gait performance in DPN from Google Scholar, Ovid, SAGE, Springerlink, Science Direct (SD, EBSCO Discovery Service, and Web of Science databases. The keywords used for searching were “postural control,” “balance,” “gait performance,” “diabetes mellitus,” and “diabetic peripheral neuropathy.” Results. Total of 4,337 studies were hit in the search. 1,524 studies were screened on their titles and citations. Then, 79 studies were screened on their abstract. Only 38 studies were eligible to be selected: 17 studies on postural control and 21 studies on the gait performance. Most previous researches were found to have strong evidence of postural control impairments and noticeable gait deficits in DPN. Deterioration of somatosensory, visual, and vestibular systems with the pathologic condition of diabetes on cognitive impairment causes further instability of postural and gait performance in DPN. Conclusions. Postural instability and gait imbalance in DPN may contribute to high risk of fall incidence, especially in the geriatric population. Thus, further works are crucial to highlight this fact in the hospital based and community adults.

  18. Postural Control and Gait Performance in the Diabetic Peripheral Neuropathy: A Systematic Review.

    Science.gov (United States)

    Mustapa, Amirah; Justine, Maria; Mohd Mustafah, Nadia; Jamil, Nursuriati; Manaf, Haidzir

    2016-01-01

    Purpose. The aim of this paper is to review the published studies on the characteristics of impairments in the postural control and gait performance in diabetic peripheral neuropathy (DPN). Methods. A review was performed by obtaining publication of all papers reporting on the postural control and gait performance in DPN from Google Scholar, Ovid, SAGE, Springerlink, Science Direct (SD), EBSCO Discovery Service, and Web of Science databases. The keywords used for searching were "postural control," "balance," "gait performance," "diabetes mellitus," and "diabetic peripheral neuropathy." Results. Total of 4,337 studies were hit in the search. 1,524 studies were screened on their titles and citations. Then, 79 studies were screened on their abstract. Only 38 studies were eligible to be selected: 17 studies on postural control and 21 studies on the gait performance. Most previous researches were found to have strong evidence of postural control impairments and noticeable gait deficits in DPN. Deterioration of somatosensory, visual, and vestibular systems with the pathologic condition of diabetes on cognitive impairment causes further instability of postural and gait performance in DPN. Conclusions. Postural instability and gait imbalance in DPN may contribute to high risk of fall incidence, especially in the geriatric population. Thus, further works are crucial to highlight this fact in the hospital based and community adults.

  19. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input.

    Science.gov (United States)

    Sprenger, Andreas; Wojak, Jann F; Jandl, Nico M; Helmchen, Christoph

    2017-01-01

    Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive

  20. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input

    Science.gov (United States)

    Sprenger, Andreas; Wojak, Jann F.; Jandl, Nico M.; Helmchen, Christoph

    2017-01-01

    Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive

  1. The personification of animals: coding of human and nonhuman body parts based on posture and function.

    Science.gov (United States)

    Welsh, Timothy N; McDougall, Laura; Paulson, Stephanie

    2014-09-01

    The purpose of the present research was to determine how humans represent the bodies and limbs of nonhuman mammals based on anatomical and functional properties. To this end, participants completed a series of body-part compatibility tasks in which they responded with a thumb or foot response to the color of a stimulus (red or blue, respectively) presented on different limbs of several animals. Across the studies, this compatibility task was conducted with images of human and nonhuman animals (bears, cows, and monkeys) in bipedal or quadrupedal postures. The results revealed that the coding of the limbs of nonhuman animals is strongly influenced by the posture of the body, but not the functional capacity of the limb. Specifically, body-part compatibility effects were present for both human and nonhuman animals when the figures were in a bipedal posture, but were not present when the animals were in a quadrupedal stance (Experiments 1a-c). Experiments 2a and 2b revealed that the posture-based body-part compatibility effects were not simply a vertical spatial compatibility effect or due to a mismatch between the posture of the body in the image and the participant. These data indicate that nonhuman animals in a bipedal posture are coded with respect to the "human" body representation, whereas nonhuman animals in a quadrupedal posture are not mapped to the human body representation. Overall, these studies provide new insight into the processes through which humans understand, mimic, and learn from the actions of nonhuman animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Do adolescent idiopathic scoliosis (AIS neglect proprioceptive information in sensory integration of postural control?

    Directory of Open Access Journals (Sweden)

    Christine Assaiante

    Full Text Available INTRODUCTION: It has been reported that AIS rely much more on ankle proprioception to control the amplitude of the balance control commands as compared to age-matched healthy adolescents. Our hypothesis was that AIS do not neglect proprioceptive information to control posture probably because of their vestibular deficits. We investigated the proprioceptive contribution to postural control in AIS which expresses spinal deformity during a crucial transitional period of ontogenesis. METHODS: 10 adolescents with idiopathic scoliosis (AIS with moderate spinal deformity (10° 35° and 10 control adolescents (CA had to maintain vertical stance while very slow oscillations in the frontal plane (below the detection threshold of the semicircular canal system were applied to the support with the eyes open and closed. Postural orientation and segmental stabilisation were analysed at head, shoulder, trunk and pelvis levels. RESULTS: Scoliosis did not affect vertical orientation control and segmental stabilization strategies. Vision improves postural control in both CA and AIS, which seem more dependent on visual cues than adults. CONCLUSIONS: AIS as CA were unable to control efficiently their postural orientation on the basis of the proprioceptive cues, the only sensory information available in the EC situation, whereas in the same condition healthy young adults present no difficulty to achieve the postural control. This suggests that AIS as CA transitory neglect proprioceptive information to control their posture. These results and previous studies suggest the existence of different afferent pathways for proprioceptive information subserving different parts in sensory integration of postural control. We conclude that the static proprioceptive system is not affected by the idiopathic scoliosis, while the dynamic proprioceptive system would be mainly affected.

  3. Photographic analysis of human posture: a literature review.

    Science.gov (United States)

    do Rosário, José Luís Pimentel

    2014-01-01

    The study of posture is not an easy task, mainly because postural assessment is still scientifically inaccurate. Photographs of bipedalism in the frontal and sagittal planes are one of the most widely used methods for this assessment. The aim of this literature review was to determine which anatomical markers authors of scientific papers have taken to minimize the chances of error in measurements. The Medline and Lilacs databases were searched for the period from 2002 to 2012, with the following keywords: "postura"; "posture" and "postural." A number of studies have shown a reasonable correlation between radiographic measurements and the placement of markers. It appears possible to use photography as a form of scientific assessment since the anatomical landmarks are well chosen. The markers that were suggested in this review: malleolus; posterior calcaneal tuberosity; fibular head; tibial tuberosity; greater trochanter of the femur; anterior angle and/or posterior lateral edge of the acromion; spinous processes (particularly C7); inferior angle of the scapula; sternum manubrium; mental protuberance; and the intertragic notch. Iliac spines, both anterior superior and posterior superior, should only be used with lean subjects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The influence of the aquatic environment on the control of postural sway.

    Science.gov (United States)

    Marinho-Buzelli, Andresa R; Rouhani, Hossein; Masani, Kei; Verrier, Mary C; Popovic, Milos R

    2017-01-01

    Balance training in the aquatic environment is often used in rehabilitation practice to improve static and dynamic balance. Although aquatic therapy is widely used in clinical practice, we still lack evidence on how immersion in water actually impacts postural control. We examined how postural sway measured using centre of pressure and trunk acceleration parameters are influenced by the aquatic environment along with the effects of visual information. Our results suggest that the aquatic environment increases postural instability, measured by the centre of pressure parameters in the time-domain. The mean velocity and area were more significantly affected when individuals stood with eyes closed in the aquatic environment. In addition, a more forward posture was assumed in water with eyes closed in comparison to standing on land. In water, the low frequencies of sway were more dominant compared to standing on dry land. Trunk acceleration differed in water and dry land only for the larger upper trunk acceleration in mediolateral direction during standing in water. This finding shows that the study participants potentially resorted to using their upper trunk to compensate for postural instability in mediolateral direction. Only the lower trunk seemed to change acceleration pattern in anteroposterior and mediolateral directions when the eyes were closed, and it did so depending on the environment conditions. The increased postural instability and the change in postural control strategies that the aquatic environment offers may be a beneficial stimulus for improving balance control. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effectiveness of an exercise program on postural control in frail older adults

    National Research Council Canada - National Science Library

    Alfieri, Fábio Marcon; Riberto, Marcelo; Abril-Carreres, Angels; Boldó-Alcaine, Maria; Rusca-Castellet, Elisabet; Garreta-Figuera, Roser; Battistella, Linamara Rizzo

    2012-01-01

    Exercise programs have proved to be helpful for frail older adults. This study aimed to investigate the effects of an exercise program with a focus on postural control exercises in frail older adults...

  6. Postural control of small for gestational age infants born at term Controle postural de lactentes nascidos a termo pequenos para a idade gestacional

    Directory of Open Access Journals (Sweden)

    D Campos

    2007-02-01

    Full Text Available OBJECTIVE: This study compared the postural control of small (SGA and appropriate (AGA for gestational age infants born at term, at the ages of 3, 6, 9 and 12 months. METHOD: This was a cohort study of infants born at term, with birth weight less than the 10th percentile for the SGA group and between the 10th and 90th percentiles for the AGA group. Infants with genetic syndromes, malformations, congenital infections and internment in neonatal intensive care unit were excluded. The evaluation instrument was the Alberta Infant Motor Scale. RESULTS: Comparison of the SGA and AGA groups did not show any significant differences (p>0.05 at the assessment times. However, the postural control of the SGA group was influenced by the gestational age (r=-0.83; p= 0.006 and 5th minute Apgar (r= 0.79; p= 0.01 in the 3rd month, and by maternal occupation (r= 0.67; p= 0.01 in the 6th month. CONCLUSION: It was concluded that the postural control was similar in the groups. However, the postural control of the SGA group was influenced by biological and environmental factors.OBJETIVO: Este estudo teve por objetivo comparar o controle postural de lactentes nascidos a termo, pequenos (PIG e adequados para a idade gestacional (AIG nos 3º, 6º, 9º e 12º meses. MÉTODO: Estudo longitudinal de lactentes nascidos a termo, com peso de nascimento menor que o percentil 10 para o grupo PIG e entre o percentil 10 e 90 para o grupo AIG. Síndromes genéticas, más-formações, infecções congênitas e internados em unidade de terapia intensiva neonatal foram excluídos. O instrumento de avaliação foi Alberta Infant Motor Scale. RESULTADOS: A comparação do grupo PIG e AIG não mostrou diferença significativa (p> 0,05 nos meses avaliados. Entretanto, o controle postural do grupo PIG foi influenciado pela idade gestacional (r= -0,83/p= 0,006 e Apgar de 5' (r= 0,79/p= 0,01 no 3º mês; e pela ocupação materna (r= 0,67/p= 0,01 no 6º mês. CONCLUSÃO: Concluiu-se que o

  7. Adolescent standing postural response to backpack loads: a randomised controlled experimental study

    Directory of Open Access Journals (Sweden)

    Pirunsan Ubon

    2002-04-01

    Full Text Available Abstract Background Backpack loads produce changes in standing posture when compared with unloaded posture. Although 'poor' unloaded standing posture has been related to spinal pain, there is little evidence of whether, and how much, exposure to posterior load produces injurious effects on spinal tissue. The objective of this study was to describe the effect on adolescent sagittal plane standing posture of different loads and positions of a common design of school backpack. The underlying study aim was to test the appropriateness of two adult 'rules-of-thumb'-that for postural efficiency, backpacks should be worn high on the spine, and loads should be limited to 10% of body weight. Method A randomised controlled experimental study was conducted on 250 adolescents (12–18 years, randomly selected from five South Australian metropolitan high schools. Sagittal view anatomical points were marked on head, neck, shoulder, hip, thigh, knee and ankle. There were nine experimental conditions: combinations of backpack loads (3, 5 or 10% of body weight and positions (backpack centred at T7, T12 or L3. Sagittal plane photographs were taken of unloaded standing posture (baseline, and standing posture under the experimental conditions. Posture was quantified from the x (horizontal coordinate of each anatomical point under each experimental condition. Differences in postural response were described, and differences between conditions were determined using Analysis of Variance models. Results Neither age nor gender was a significant factor when comparing postural response to backpack loads or conditions. Backpacks positioned at T7 produced the largest forward (horizontal displacement at all the anatomical points. The horizontal position of all anatomical points increased linearly with load. Conclusion There is evidence refuting the 'rule-of-thumb' to carry the backpack high on the back. Typical school backpacks should be positioned with the centre at waist or

  8. Postural control in children with Cerebral Palsy during reaching : assessment of two therapies based on neurophysiological principles

    NARCIS (Netherlands)

    Heide, Jolanda Catharina van der

    2005-01-01

    Dysfunctional postural control is one of the key problems in children with CP. Knowledge on the neurophysiological organisation and development of postural adjustments in children with CP is lacking. The aim of this thesis is therefore to increase our insight in postural problems of children with CR

  9. Return of postural control to baseline after anaerobic and aerobic exercise protocols.

    Science.gov (United States)

    Fox, Zachary G; Mihalik, Jason P; Blackburn, J Troy; Battaglini, Claudio L; Guskiewicz, Kevin M

    2008-01-01

    With regard to sideline concussion testing, the effect of fatigue associated with different types of exercise on postural control is unknown. To evaluate the effects of fatigue on postural control in healthy college-aged athletes performing anaerobic and aerobic exercise protocols and to establish an immediate recovery time course from each exercise protocol for postural control measures to return to baseline status. Counterbalanced, repeated measures. Research laboratory. Thirty-six collegiate athletes (18 males, 18 females; age = 19.00 +/- 1.01 years, height = 172.44 +/- 10.47 cm, mass = 69.72 +/- 12.84 kg). Participants completed 2 counterbalanced sessions within 7 days. Each session consisted of 1 exercise protocol followed by postexercise measures of postural control taken at 3-, 8-, 13-, and 18-minute time intervals. Baseline measures were established during the first session, before the specified exertion protocol was performed. Balance Error Scoring System (BESS) results, sway velocity, and elliptical sway area. We found a decrease in postural control after each exercise protocol for all dependent measures. An interaction was noted between exercise protocol and time for total BESS score (P = .002). For both exercise protocols, all measures of postural control returned to baseline within 13 minutes. Postural control was negatively affected after anaerobic and aerobic exercise protocols as measured by total BESS score, elliptical sway area, and sway velocity. The effect of exertion lasted up to 13 minutes after each exercise was completed. Certified athletic trainers and clinicians should be aware of these effects and their recovery time course when determining an appropriate time to administer sideline assessments of postural control after a suspected mild traumatic brain injury.

  10. Effect of Feldenkrais exercises on dual task postural control in older adults

    OpenAIRE

    Ullmann G; Williams HG

    2014-01-01

    Gerhild Ullmann,1 Harriet G Williams2 1Social and Behavioral Sciences, University of Memphis, School of Public Health, Memphis, TN, USA; 2Exercise Science, University of South Carolina, Columbia, SC, USAAgmon et al1 recently published an interesting systematic review of interventions to improve dual-task postural control in older adults. Given that many everyday activities (eg, walking and carrying groceries) require dual-task postural control, this is an important topic. This type of resea...

  11. Comparative Effectiveness of Plantar-Massage Techniques on Postural Control in Those With Chronic Ankle Instability.

    Science.gov (United States)

    Wikstrom, Erik A; Song, Kyeongtak; Lea, Ashley; Brown, Nastassia

    2017-07-01

      One of the major concerns after an acute lateral ankle sprain is the potential for development of chronic ankle instability (CAI). The existing research has determined that clinician-delivered plantar massage improves postural control in those with CAI. However, the effectiveness of self-administered treatments and the underlying cause of any improvements remain unclear.   To determine (1) the effectiveness of a self-administered plantar-massage treatment in those with CAI and (2) whether the postural-control improvements were due to the stimulation of the plantar cutaneous receptors.   Crossover study.   University setting.   A total of 20 physically active individuals (6 men and 14 women) with self-reported CAI.   All participants completed 3 test sessions involving 3 treatments: a clinician-delivered manual plantar massage, a patient-delivered self-massage with a ball, and a clinician-delivered sensory brush massage.   Postural control was assessed using single-legged balance with eyes open and the Star Excursion Balance Test.   Static postural control improved (P ≤ .014) after each of the interventions. However, no changes in dynamic postural control after any of the interventions were observed (P > .05). No differences were observed between a clinician-delivered manual plantar massage and either a patient-delivered self-massage with a ball or a clinician-delivered sensory brush massage in any postural-control outcome.   In those with CAI, single 5-minute sessions of traditional plantar massage, self-administered massage, and sensory brush massage each resulted in comparable static postural-control improvements. The results also provide empirical evidence suggesting that the mechanism for the postural-control improvements is the stimulation of the plantar cutaneous receptors.

  12. Human cerebral venous outflow pathway depends on posture and central venous pressure

    DEFF Research Database (Denmark)

    Gisolf, J; van Lieshout, J J; van Heusden, K

    2004-01-01

    Internal jugular veins are the major cerebral venous outflow pathway in supine humans. In upright humans the positioning of these veins above heart level causes them to collapse. An alternative cerebral outflow pathway is the vertebral venous plexus. We set out to determine the effect of posture...... and during a Valsalva manoeuvre in both body positions, correlate highly with model simulation of the jugular cross-sectional area (R(2) = 0.97). The results suggest that the cerebral venous flow distribution depends on posture and CVP: in supine humans the internal jugular veins are the primary pathway...

  13. Investigation of postural edema in the lower extremities of traffic control workers

    Directory of Open Access Journals (Sweden)

    Ana Paula Nunes Pereira Brito

    2013-12-01

    Full Text Available OBJECTIVE: Determine the prevalence of postural edema and investigate whether working posture - sitting down or standing up - affect its frequency. METHODS: Sixteen traffic control agents were assessed by water displacement volumetry and the results were analyzed in two groups, depending on working posture. Those who worked standing up for more than 4 hours were allocated to the SU group and those who worked sitting down for more than 4 hours were allocated to the SD group. Each worker was assessed before and after their working shift for three consecutive days. Data were analyzed using ANOVA and the test of equality of two proportions. The significance level was set at p ≤ 0.05. The assessment showed that members of both groups had postural edema of the lower extremities (p ≤ 0.001. RESULTS: When the frequency of postural edema was compared across groups, a trend was observed for greater edema formation in the SU group than in the SD group, although without statistically significant difference. CONCLUSION: It was concluded that traffic control agents suffer postural edema after 4 hours working in either of the postures investigated although with a predominance of edema formation among those who work standing up.

  14. Virtual reality applications in improving postural control and minimizing falls.

    Science.gov (United States)

    Virk, Sumandeep; McConville, Kristiina M Valter

    2006-01-01

    Maintaining balance under all conditions is an absolute requirement for humans. Orientation in space and balance maintenance requires inputs from the vestibular, the visual, the proprioceptive and the somatosensory systems. All the cues coming from these systems are integrated by the central nervous system (CNS) to employ different strategies for orientation and balance. How the CNS integrates all the inputs and makes cognitive decisions about balance strategies has been an area of interest for biomedical engineers for a long time. More interesting is the fact that in the absence of one or more cues, or when the input from one of the sensors is skewed, the CNS "adapts" to the new environment and gives less weight to the conflicting inputs [1]. The focus of this paper is a review of different strategies and models put forward by researchers to explain the integration of these sensory cues. Also, the paper compares the different approaches used by young and old adults in maintaining balance. Since with age the musculoskeletal, visual and vestibular system deteriorates, the older subjects have to compensate for these impaired sensory cues for postural stability. The paper also discusses the applications of virtual reality in rehabilitation programs not only for balance in the elderly but also in occupational falls. Virtual reality has profound applications in the field of balance rehabilitation and training because of its relatively low cost. Studies will be conducted to evaluate the effectiveness of virtual reality training in modifying the head and eye movement strategies, and determine the role of these responses in the maintenance of balance.

  15. The role of neuromuscular changes in aging and knee osteoarthritis on dynamic postural control.

    Science.gov (United States)

    Takacs, Judit; Carpenter, Mark G; Garland, S Jayne; Hunt, Michael A

    2013-04-01

    Knee osteoarthritis (OA) is a chronic joint condition, with 30% of those over the age of 75 exhibiting severe radiographic disease. Nearly 50% of those with knee OA have experienced a fall in the past year. Falls are a considerable public health concern, with a high risk of serious injury and a significant socioeconomic impact. The ability to defend against a fall relies on adequate dynamic postural control, and alterations in dynamic postural control are seen with normal aging. Neuromuscular changes associated with aging may be responsible for some of these alterations in dynamic postural control. Even greater neuromuscular deficits, which may impact dynamic postural control and the ability to defend against a fall, are seen in people with knee OA. There is little evidence to date on how knee OA affects the ability to respond to and defend against falls and the neuromuscular changes that contribute to balance deficits. As a result, this review will: summarize the key characteristics of postural responses to an external perturbation, highlight the changes in dynamic postural control seen with normal aging, review the neuromuscular changes associated with aging that have known and possible effects on dynamic postural control, and summarize the neuromuscular changes and balance problems in knee OA. Future research to better understand the role of neuromuscular changes in knee OA and their effect on dynamic postural control will be suggested. Such an understanding is critical to the successful creation and implementation of fall prevention and treatment programs, in order to reduce the excessive risk of falling in knee OA.

  16. Is there an association between variables of postural control and strength in prepubertal children?

    Science.gov (United States)

    Granacher, Urs; Gollhofer, Albert

    2012-01-01

    The risk of sustaining falls and sports-related injuries is particularly high in children. Deficits in balance and muscle strength represent 2 important intrinsic fall and injury-risk factors. Therefore, the purpose of this study was to investigate the relationship between variables of static and dynamic postural control and isometric and dynamic muscle strength and to find out whether there is an association between measures of postural control and muscle strength in prepubertal children. Thirty children participated in this study (age 6.7 ± 0.5 years; body mass index 16.0 ± 1.8 kg·m(-2)). Biomechanic tests included the measurements of maximal isometric torque and rate of force development (RFD) of the plantar flexors on an isokinetic device, jumping power and height (countermovement jump [CMJ]) on a force plate, and the assessment of static and dynamic posture during bipedal stance on a balance platform. The significance level was set at p < 0.05. No significant associations were observed between variables of static and dynamic postural control. Significant positive correlations were detected between the RFD of the plantar flexors and CMJ height (r = 0.425, p < 0.01). No statistically significant associations were found between measures of postural control and muscle strength. The nonsignificant correlations between static and dynamic postural control and muscle strength imply that primarily dynamic measures of postural control should be incorporated in fall and injury-risk assessment and that postural control and muscle strength appear to be independent of each other and may have to be trained in a complementary manner for fall and injury-preventive purposes.

  17. Postural control assessment in students with normal hearing and sensorineural hearing loss.

    Science.gov (United States)

    Melo, Renato de Souza; Lemos, Andrea; Macky, Carla Fabiana da Silva Toscano; Raposo, Maria Cristina Falcão; Ferraz, Karla Mônica

    2015-01-01

    Children with sensorineural hearing loss can present with instabilities in postural control, possibly as a consequence of hypoactivity of their vestibular system due to internal ear injury. To assess postural control stability in students with normal hearing (i.e., listeners) and with sensorineural hearing loss, and to compare data between groups, considering gender and age. This cross-sectional study evaluated the postural control of 96 students, 48 listeners and 48 with sensorineural hearing loss, aged between 7 and 18 years, of both genders, through the Balance Error Scoring Systems scale. This tool assesses postural control in two sensory conditions: stable surface and unstable surface. For statistical data analysis between groups, the Wilcoxon test for paired samples was used. Students with hearing loss showed more instability in postural control than those with normal hearing, with significant differences between groups (stable surface, unstable surface) (p<0.001). Students with sensorineural hearing loss showed greater instability in the postural control compared to normal hearing students of the same gender and age. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  18. Dog experts' brains distinguish socially relevant body postures similarly in dogs and humans.

    Science.gov (United States)

    Kujala, Miiamaaria V; Kujala, Jan; Carlson, Synnöve; Hari, Riitta

    2012-01-01

    We read conspecifics' social cues effortlessly, but little is known about our abilities to understand social gestures of other species. To investigate the neural underpinnings of such skills, we used functional magnetic resonance imaging to study the brain activity of experts and non-experts of dog behavior while they observed humans or dogs either interacting with, or facing away from a conspecific. The posterior superior temporal sulcus (pSTS) of both subject groups dissociated humans facing toward each other from humans facing away, and in dog experts, a distinction also occurred for dogs facing toward vs. away in a bilateral area extending from the pSTS to the inferior temporo-occipital cortex: the dissociation of dog behavior was significantly stronger in expert than control group. Furthermore, the control group had stronger pSTS responses to humans than dogs facing toward a conspecific, whereas in dog experts, the responses were of similar magnitude. These findings suggest that dog experts' brains distinguish socially relevant body postures similarly in dogs and humans.

  19. Balance versus resistance training on postural control in patients with Parkinson's disease: a randomized controlled trial.

    Science.gov (United States)

    Santos, Suhaila M; da Silva, Rubens A; Terra, Marcelle B; Almeida, Isabela A; de Melo, Lúcio B; Ferraz, Henrique B

    2017-04-01

    Evidences have shown that physiotherapy programs may improve the balance of individuals with Parkinson's disease (PD), although it is not clear which specific exercise program is better. The aim of this study was to compare the effectiveness of balance versus resistance training on postural control measures in PD patients. Randomized controlled trial. The study was conducted in a physiotherapy outpatient clinic of a university hospital. A total of 40 PD participants were randomly divided into two groups: balance training (BT) and resistance training (RT). The BT group focused on balance training, functional independence and gait while the RT group performed resistance exercises emphasizing the lower limbs and trunk, both supervised by trained physiotherapists. Therapy sessions were held twice a week (at 60 minutes), totaling 24 sessions. The primary outcome was evaluated by force platform with center of pressure sway measures in different balance conditions and the secondary outcome was evaluated by Balance Evaluation Systems Test (BESTest) scale to determine the effects of the intervention on postural control. Significant improvement of postural control (pre vs. post 15.1 vs. 9.6 cm2) was only reported in favor of BT group (d=1.17) for one-legged stand condition on force platform. The standardized mean difference between groups was significantly (PPostural control in Parkinson's disease is improved when training by a directional and specific balance program than a resistance training program. Balance training is superior to resistance training in regard to improving postural control of individuals with PD. Gold standard instruments (high in cost and difficult to access) were used to assess balance, as well as scales with clinical applicability (low cost, easily acceptable, applicable and valid), which can guide the management of physiotherapists both in their decision-making and in clinical practice.

  20. Relationship Between Postural Control and Restricted, Repetitive Behaviors in Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Krestin eRadonovich

    2013-05-01

    Full Text Available Restricted, repetitive behaviors (RRBs are one of the core diagnostic criteria of autism spectrum disorders (ASD, and include simple repetitive motor behaviors and more complex cognitive behaviors, such as compulsions and restricted interests. In addition to the core symptoms, impaired movement is often observed in ASD. Research suggests that the postural system in individuals with ASD is immature and may never reach adult levels. RRBs have been related to postural sway in individuals with mental retardation.Our goals were to determine whether subjects with ASD had greater postural sway and whether RBS-R scores were related to the magnitude of postural sway. We compared the center of pressure (COP sway area during quiet stance with scores on the Repetitive Behavior Scale-Revised (RBS-R in children with ASD and typically developing controls (TD ages 3-16. All subjects had Nonverbal IQ>70. Subjects performed four quiet stance trials at a self–selected stance width for 15 seconds. Subjects with ASD had greater postural sway area compared to controls. Not surprisingly, subjects with ASD exhibited greater frequencies and intensities of RRBs overall and on all 6 subscales. Further, there was a positive correlation between postural sway area and presence of RRBs. Interestingly, results of the postural sway area for the ASD group suggests that roughly half of the ASD subjects scored comparable to TD controls, whereas the other half scored >2 SD worse. Motor impaired children did not have significantly worse IQ scores, but were younger and had more RRBs.Results support previous findings of relationships between RRBs and postural control. It appears that motor control impairments may characterize a subset of individuals with ASD. Better delineation of motor control abilities in individuals with ASD will be important to help explain variations of abilities in ASD, inform treatment, and guide examination of underlying neural involvement in this diverse

  1. Relationship between postural control and restricted, repetitive behaviors in autism spectrum disorders.

    Science.gov (United States)

    Radonovich, K J; Fournier, K A; Hass, C J

    2013-01-01

    Restricted, repetitive behaviors (RRBs) are one of the core diagnostic criteria of autism spectrum disorders (ASD), and include simple repetitive motor behaviors and more complex cognitive behaviors, such as compulsions and restricted interests. In addition to the core symptoms, impaired movement is often observed in ASD. Research suggests that the postural system in individuals with ASD is immature and may never reach adult levels. RRBs have been related to postural sway in individuals with mental retardation. Our goals were to determine whether subjects with ASD had greater postural sway and whether RBS-R scores were related to the magnitude of postural sway. We compared the center of pressure (COP) sway area during quiet stance with scores on the Repetitive Behavior Scale-Revised (RBS-R) in children with ASD and typically developing (TD) controls ages 3-16. All subjects had Non-verbal IQ > 70. Subjects performed four quiet stance trials at a self-selected stance width for 20 s. Subjects with ASD had greater postural sway area compared to controls. Not surprisingly, subjects with ASD exhibited greater frequencies and intensities of RRBs overall and on all six subscales. Further, there was a positive correlation between postural sway area and presence of RRBs. Interestingly, results of the postural sway area for the ASD group suggests that roughly half of the ASD subjects scored comparable to TD controls, whereas the other half scored >2 SD worse. Motor impaired children did not have significantly worse IQ scores, but were younger and had more RRBs. Results support previous findings of relationships between RRBs and postural control. It appears that motor control impairments may characterize a subset of individuals with ASD. Better delineation of motor control abilities in individuals with ASD will be important to help explain variations of abilities in ASD, inform treatment, and guide examination of underlying neural involvement in this very diverse disorder.

  2. Aging causes a reorganization of cortical and spinal control of posture

    Directory of Open Access Journals (Sweden)

    Selma ePapegaaij

    2014-03-01

    Full Text Available Classical studies in animal preparations suggest a strong role for spinal control of posture. In young adults it is now established that the cerebral cortex contributes to postural control of unperturbed and perturbed standing. The age-related degeneration and accompanying functional changes in the brain, reported so far mainly in conjunction with simple manual motor tasks, may also affect the mechanisms that control complex motor tasks involving posture. This review outlines the age-related structural and functional changes at spinal and cortical levels and provides a mechanistic analysis of how such changes may be linked to the behaviorally manifest postural deficits in old adults. The emerging picture is that the age-related reorganization in motor control during voluntary tasks, characterized by differential modulation of spinal reflexes, greater cortical activation and cortical disinhibition, is also present during postural tasks. We discuss the possibility that this reorganization underlies the increased coactivation and dual task interference reported in elderly. Finally, we propose a model for future studies to unravel the structure-function-behavior relations in postural control and aging.

  3. Balance ability and postural stability among patients with painful shoulder disorders and healthy controls.

    Science.gov (United States)

    Baierle, Tobias; Kromer, Thilo; Petermann, Carmen; Magosch, Petra; Luomajoki, Hannu

    2013-10-02

    In therapeutic settings, patients with shoulder pain often exhibit deficient coordinative abilities in their trunk and lower extremities. The aim of the study was to investigate 1) if there is a connection between shoulder pain and deficits in balance ability and postural stability, 2) if pain intensity is related to balance ability and postural stability, and 3) if there is a connection between body mass index (BMI) and balance ability and postural stability. In this case-control study, patients (n = 40) with pathological shoulder pain (> 4 months) were matched with a healthy controls (n = 40) and were compared with regard to their balance ability and postural stability. Outcome parameters were postural stability, balance ability and symmetry index which were measured using the S3-Check system. In addition, the influence of shoulder pain intensity and BMI on the outcome parameters was analysed. Patients with shoulder pain showed significantly worse results in measurements of postural stability right/left (p shoulder pain group. There was no correlation between pain intensity and measurements of balance ability or postural stability. Likewise, no correlation between BMI and deficiencies in balance ability and postural stability was established. Patients with pathological shoulder pain (> 4 months) have deficiencies in balance ability and postural stability; however the underlying mechanisms for this remain unclear. Neither pain intensity nor BMI influenced the outcome parameters. Patients with shoulder pain shift their weight to the affected side. Further research is needed to determine if balance training can improve rehabilitation results in patients with shoulder pathologies.

  4. Vertical heterophoria and postural control in nonspecific chronic low back pain.

    Directory of Open Access Journals (Sweden)

    Eric Matheron

    Full Text Available The purpose of this study was to test postural control during quiet standing in nonspecific chronic low back pain (LBP subjects with vertical heterophoria (VH before and after cancellation of VH; also to compare with healthy subjects with, and without VH. Fourteen subjects with LBP took part in this study. The postural performance was measured through the center of pressure displacements with a force platform while the subjects fixated on a target placed at either 40 or 200 cm, before and after VH cancellation with an appropriate prism. Their postural performance was compared to that of 14 healthy subjects with VH and 12 without VH (i.e. vertical orthophoria studied previously in similar conditions. For LBP subjects, cancellation of VH with a prism improved postural performance. With respect to control subjects (with or without VH, the variance of speed of the center of pressure was higher, suggesting more energy was needed to stabilize their posture in quiet upright stance. Similarly to controls, LBP subjects showed higher postural sway when they were looking at a target at a far distance than at a close distance. The most important finding is that LBP subjects with VH can improve their performance after prism-cancellation of their VH. We suggest that VH reflects mild conflict between sensory and motor inputs involved in postural control i.e. a non optimal integration of the various signals. This could affect the performance of postural control and perhaps lead to pain. Nonspecific chronic back pain may results from such prolonged conflict.

  5. Influence of dental occlusion on postural control and plantar pressure distribution.

    Science.gov (United States)

    Scharnweber, Benjamin; Adjami, Frederic; Schuster, Gabriele; Kopp, Stefan; Natrup, Jörg; Erbe, Christina; Ohlendorf, Daniela

    2017-11-01

    The number of studies investigating correlations between the temporomandibular system and body posture, postural control or plantar pressure distribution is continuously increasing. If a connection can be found, it is often of minor influence or for only a single parameter. However, small subject groups are critical. This study was conducted to define correlations between dental parameters, postural control and plantar pressure distribution in healthy males. In this study, 87 male subjects with an average age of 25.23 ± 3.5 years (ranging from 18 to 35 years) were examined. Dental casts of the subjects were analyzed. Postural control and plantar pressure distribution were recorded by a force platform. Possible orthodontic and orthopedic factors of influence were determined by either an anamnesis or a questionnaire. All tests performed were randomized and repeated three times each for intercuspal position (ICP) and blocked occlusion (BO). For a statistical analysis of the results, non-parametric tests (Wilcoxon-Matched-Pairs-Test, Kruskall-Wallis-Test) were used. A revision of the results via Bonferroni-Holm correction was considered. ICP increases body sway in the frontal (p ≤ 0.01) and sagittal planes (p ≤ 0.03) compared to BO, whereas all other 29 correlations were independent of the occlusion position. For both of the ICP or BO cases, Angle-class, midline-displacement, crossbite, or orthodontic therapy were found to have no influence on postural control or plantar pressure distribution (p > 0.05). However, the contact time of the left foot decreased (p ≤ 0.001) while detecting the plantar pressure distribution in each position. Persistent dental parameters have no effect on postural sway. In addition, postural control and plantar pressure distribution have been found to be independent postural criteria.

  6. A randomized, controlled trial of physician postures when breaking bad news to cancer patients.

    Science.gov (United States)

    Bruera, Eduardo; Palmer, J Lynn; Pace, Ellen; Zhang, Karen; Willey, Jie; Strasser, Florian; Bennett, Michael I

    2007-09-01

    Medical training teaches physicians to sit when breaking bad news, though there have been no controlled studies to support this advice. We aimed to establish cancer patients' preference for physician posture when physicians break bad news using a randomized controlled crossover trial in a department of palliative care at a large US cancer center. Referred patients were blind to the hypothesis and watched video sequences of a sitting or standing physician breaking bad news to a cancer patient and 168 of 173 participants (88 female) completed the study. Sitting physicians were preferred and viewed as significantly more compassionate than standing physicians (P posture. In summary, cancer patients, especially females, prefer physicians to sit when breaking bad news and rate physicians who adopt this posture as more compassionate. However, sitting posture alone is unlikely to compensate for poor communication skills and lack of other respectful gestures during a consultation.

  7. Personality traits and individual differences predict threat-induced changes in postural control.

    Science.gov (United States)

    Zaback, Martin; Cleworth, Taylor W; Carpenter, Mark G; Adkin, Allan L

    2015-04-01

    This study explored whether specific personality traits and individual differences could predict changes in postural control when presented with a height-induced postural threat. Eighty-two healthy young adults completed questionnaires to assess trait anxiety, trait movement reinvestment (conscious motor processing, movement self-consciousness), physical risk-taking, and previous experience with height-related activities. Tests of static (quiet standing) and anticipatory (rise to toes) postural control were completed under low and high postural threat conditions. Personality traits and individual differences significantly predicted height-induced changes in static, but not anticipatory postural control. Individuals less prone to taking physical risks were more likely to lean further away from the platform edge and sway at higher frequencies and smaller amplitudes. Individuals more prone to conscious motor processing were more likely to lean further away from the platform edge and sway at larger amplitudes. Individuals more self-conscious about their movement appearance were more likely to sway at smaller amplitudes. Evidence is also provided that relationships between physical risk-taking and changes in static postural control are mediated through changes in fear of falling and physiological arousal. Results from this study may have indirect implications for balance assessment and treatment; however, further work exploring these factors in patient populations is necessary. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Ankylosing Spondylitis and Posture Control: The Role of Visual Input

    National Research Council Canada - National Science Library

    De Nunzio, Alessandro Marco; Iervolino, Salvatore; Zincarelli, Carmela; Di Gioia, Luisa; Rengo, Giuseppe; Multari, Vincenzo; Peluso, Rosario; Di Minno, Matteo Nicola Dario; Pappone, Nicola

    2015-01-01

    ...] and in performing daily living activities. Moreover, in this clinical setting, poor posture may induce impairment of balance and higher risk of falls [4]. On one hand, the pathophysiological mechanism of disability in AS represents a very intriguing issue to be addressed since it provides new therapeutic opportunities in the management of these patient...

  9. The effect of combined mechanism ankle support on postural control of patients with chronic ankle instability.

    Science.gov (United States)

    Hadadi, Mohammad; Ebrahimi, Ismaeil; Mousavi, Mohammad Ebrahim; Aminian, Gholamreza; Esteki, Ali; Rahgozar, Mehdi

    2017-02-01

    Chronic ankle instability is associated with neuromechanical changes and poor postural stability. Despite variety of mechanisms of foot and ankle orthoses, almost none apply comprehensive mechanisms to improve postural control in all subgroups of chronic ankle instability patients. The purpose of this study was to investigate the effect of an ankle support implementing combined mechanisms to improve postural control in chronic ankle instability patients. Cross-sectional study. An ankle support with combined mechanism was designed based on most effective action mechanisms of foot and ankle orthoses. The effect of this orthosis on postural control was evaluated in 20 participants with chronic ankle instability and 20 matched healthy participants. The single-limb stance balance test was measured in both groups with and without the new orthosis using a force platform. The results showed that application of combined mechanism ankle support significantly improved all postural sway parameters in chronic ankle instability patients. There were no differences in means of investigated parameters with and without the orthosis in the healthy group. No statistically significant differences were found in postural sway between chronic ankle instability patients and healthy participants after applying the combined mechanism ankle support. The combined mechanism ankle support is effective in improving static postural control of chronic ankle instability patients to close to the postural sway of healthy individual. the orthosis had no adverse effects on balance performance of healthy individuals. Clinical relevance Application of the combined mechanism ankle support for patients with chronic ankle instability is effective in improving static balance. This may be helpful in reduction of recurrence of ankle sprain although further research about dynamic conditions is needed.

  10. Interaction Between the Development of Postural Control and the Executive Function of Attention

    OpenAIRE

    Reilly, Dinah S.; van Donkelaar, Paul; Saavedra, Sandy; Woollacott, Marjorie H

    2008-01-01

    The authors examined the interaction between the development of postural control and the development of the executive function of attention in 13 children and 6 adults in dual-task conditions. Participants performed an attentionally demanding cognitive task and a postural task simultaneously. The authors equalized the attentional load of the cognitive task across age groups. Comparative changes in the center of pressure in dual- and single-task conditions indicated that dual tasks interfered ...

  11. Reflex postural control of patients with cerebral palsy for odontological assistance

    OpenAIRE

    Aguiar, Sandra Maria Herondina Coelho Ávila de [UNESP; Rezende, Maria Cristina Rosifini Alves [UNESP

    2013-01-01

    Cerebral palsy (CP) describes a group of permanent disorders of the development of movement and posture, causing activity limitation, that are attributed to non-progressive disturbances that occurred in the developing fetal or infant brain.A child with cerebral palsy may have impairments in motor control, which contributes to loss of functional abilities in posture and mobility. The severity of the impairment on the neuromuscular system determines the variations of functional mobility in chil...

  12. Postural stability and ankle sprain history in athletes compared to uninjured controls.

    Science.gov (United States)

    Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; Verhagen, Evert A L M; van Dieën, Jaap H

    2014-02-01

    Diminished postural stability is a risk factor for ankle sprain occurrence and ankle sprains result in impaired postural stability. To date, ankle sprain history has not been taken into account as a determinant of postural stability, while it could possibly specify subgroups of interest. Postural stability was compared between 18 field hockey athletes who had recovered from an ankle sprain (mean (SD); 3.6 (1.5) months post-injury), and 16 uninjured controls. Force plate and kinematics parameters were calculated during single-leg standing: mean center of pressure speed, mean absolute horizontal ground reaction force, mean absolute ankle angular velocity, and mean absolute hip angular velocity. Additionally, cluster analysis was applied to the 'injured' participants, and the cluster with diminished postural stability was compared to the other participants with respect to ankle sprain history. MANCOVA showed no significant difference between groups in postural stability (P = 0.68). A self-reported history of an (partial) ankle ligament rupture was typically present in the cluster with diminished postural stability. Subsequently, a 'preceding rupture' was added as a factor in the MANCOVA, which showed a significant association between diminished postural stability and a 'preceding rupture' (P = 0.01), for all four individual parameters (P: 0.001-0.029; Cohen's d: 0.96-2.23). Diminished postural stability is not apparent in all previously injured athletes. However, our analysis suggests that an (mild) ankle sprain with a preceding severe ankle sprain is associated with impaired balance ability. Therefore, sensorimotor training may be emphasized in this particular group and caution is warranted in return to play decisions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Active, non-spring-like muscle movements in human postural sway: how might paradoxical changes in muscle length be produced?

    National Research Council Canada - National Science Library

    Ian D Loram; Constantinos N Maganaris; Martin Lakie

    2005-01-01

    .... It has been generally assumed that these postural muscles behave like springs with dynamic stiffness reflecting their mechanical properties, reflex gain including higher derivatives, and central control...

  14. Human body area factors for radiation exchange analysis: standing and walking postures.

    Science.gov (United States)

    Park, Sookuk; Tuller, Stanton E

    2011-09-01

    Effective radiation area factors (f (eff)) and projected area factors (f (p)) of unclothed Caucasians' standing and walking postures used in estimating human radiation exchange with the surrounding environment were determined from a sample of adults in Canada. Several three-dimensional (3D) computer body models were created for standing and walking postures. Only small differences in f (eff) and f (p) values for standing posture were found between gender (male or female) and body type (normal- or over-weight). Differences between this study and previous studies were much larger: ≤0.173 in f (p) and ≤0.101 in f (eff). Directionless f (p) values for walking posture also had only minor differences between genders and positions in a stride. However, the differences of mean directional f (p) values of the positions dependent on azimuth angles were large enough, ≤0.072, to create important differences in modeled radiation receipt. Differences in f (eff) values were small: 0.02 between the normal-weight male and female models and up to 0.033 between positions in a stride. Variations of directional f (p) values depending on solar altitudes for walking posture were narrower than those for standing posture. When both standing and walking postures are considered, the mean f (eff) value, 0.836, of standing (0.826) and walking (0.846) could be used. However, f (p) values should be selected carefully because differences between directional and directionless f (p) values were large enough that they could influence the estimated level of human thermal sensation.

  15. Biomechanical analysis of postural control of persons with transtibial or transfemoral amputation.

    Science.gov (United States)

    Rougier, P R; Bergeau, J

    2009-11-01

    In human subjects, leg amputation impairs upright quiet-stance control. The inability to exert appropriate force reactions under the amputated leg and a slight weight-bearing asymmetry cause the amputee to develop compensatory mechanisms through the sound leg. This study is aimed at assessing these mechanisms and the influence of the level of amputation. The postural strategies of transtibial and transfemoral amputees for maintaining quiet stance were investigated using a dual-force platform. With this device, mean body weight distribution and plantar and resultant center of pressure trajectories can be measured and used to assess the likely compensatory mechanisms. Compensatory strategies were found in both transtibial and transfemoral groups, with a forward shift of the mean positions of the center of pressure under the amputated leg and greater resultant center of pressure displacements appearing along the anteroposterior axis, respectively. The transfemoral group presents a larger center of pressure displacements under the amputated leg than the transtibial group. These data emphasize the role played by the differences between the center-of-pressure magnitudes intervening under the sound and amputated legs and the size of the prosthesis-stump contact area in these postural strategies.

  16. Postural control among elderly women with and without osteoporosis: is there a difference?

    Directory of Open Access Journals (Sweden)

    Thomaz Nogueira Burke

    Full Text Available CONTEXT AND OBJECTIVE: Little is known about postural control among elderly individuals with osteoporosis and its relationship with falls. It has been suggested that elderly women with kyphosis and osteoporosis are at greater risk of falling. The aim of this study was to evaluate posture and postural control among elderly women with and without osteoporosis. DESIGN AND SETTING: Cross-sectional study conducted at the Physical Therapy and Electromyography Laboratory, School of Medicine, Universidade de São Paulo (USP. METHODS: Sixty-six elderly women were selected from the bone metabolism disorders clinic, Division of Rheumatology, USP, and were divided into two groups: osteoporosis and controls, according to their bone mineral density (BMD. Postural control was assessed using the Limits of Stability (LOS test and the Modified Clinical Test of Sensory Interaction and Balance (CTSIBm and posture, using photometry. RESULTS: The elderly women with osteoporosis swayed at higher velocity on a stable surface with opened eyes (0.30 versus 0.20 degrees/second; P = 0.038. In both groups, the center of pressure (COP was at 30% in the LOS, but with different placements: 156° in the osteoporosis group and 178° in the controls (P = 0.045. Osteoporosis patients fell more than controls did (1.0 versus 0.0; P = 0.036. CONCLUSIONS: The postural control in elderly women with osteoporosis differed from that of the controls, with higher sway velocity and maximum displacement of COP. Despite postural abnormalities such as hyperkyphosis and forward head, the COP position was posteriorized.

  17. Application of Machine Learning in Postural Control Kinematics for the Diagnosis of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Luís Costa

    2016-01-01

    Full Text Available The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer’s disease (AD. In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs, Multiple Layer Perceptrons (MLPs, Radial Basis Function Neural Networks (RBNs, and Deep Belief Networks (DBNs on 72 participants (36 AD patients and 36 healthy subjects exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight, with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA score, top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%, test (40%, and validation (10%. Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics.

  18. Musculoskeletal model of trunk and hips for development of seated-posture-control neuroprosthesis.

    Science.gov (United States)

    Lambrecht, Joris M; Audu, Musa L; Triolo, Ronald J; Kirsch, Robert F

    2009-01-01

    The paralysis resulting from spinal cord injury severely limits voluntary seated-posture control and increases predisposition to a number of health risks. We developed and verified a musculoskeletal model of the hips and lumbar spine using published data. We then used the model to select the optimal muscles for-and evaluate the likely functional recovery benefit of-an 8-channel seated-posture-control neuroprosthesis based on functional electrical stimulation (FES). We found that the model-predicted optimal muscle set included the erector spinae, oblique abdominals, gluteus maximus, and iliopsoas. We mapped muscle excitations to seated trunk posture so that the required excitations at any posture could be approximated using a static map. Using the optimal muscle set, the model predicted a maximum stimulated range of motion of 49 degrees flexion, 9 degrees extension, and 16 degrees lateral bend. In the nominal upright posture, the modeled user could hold almost 15 kg with arms at sides and elbows bent. We discuss in this article the practicality of using FES with the oblique abdominals. A seated-posture-control neuroprosthesis would increase the user's bimanual work space and include several secondary benefits.

  19. Human posture experiments under water: ways of applying the findings to microgravity

    Science.gov (United States)

    Dirlich, Thomas

    For the design and layout human spacecraft interiors the Neutral Body Posture (NBP) in micro-gravity is of great importance. The NBP has been defined as the stable, replicable and nearly constant posture the body "automatically" assumes when a human relaxes in microgravity. Furthermore the NBP, as published, suggests that there is one standard neutral posture for all individuals. Published experiments from space, parabolic flights and under water on the other hand show strong inter-individual variations of neutral (relaxed) postures. This might originate from the quite small sample sizes of subjects analyzed or the different experiment conditions, e. g. space and under water. Since 2008 a collaborative research project focussing on human postures and motions in microgravity has been ongoing at the Technische Univer-sitüt München (TUM). This collaborative effort is undertaken by the Institute of Astronautics a (LRT) and the Institute of Ergonomics (LfE). Several test campaigns have been conducted in simulated microgravity under water using a specially designed standardized experiment setup. Stereo-metric HD video footage and anthropometric data from over 50 subjects (female and male) has been gathered in over 80 experiments. The video data is analyzed using PCMAN software, developed by the LfE, resulting in a 3D volumetric CAD-based model of each subject and posture. Preliminary and ongoing analysis of the data offer evidence for the existence of intra-individually constant neutral postures, as well as continuously recurring relaxation strate-gies. But as with the data published prior the TUM experiments show quite a large variation of inter-individual postures. These variation might be induced or influenced by the special environmental conditions in the underwater experiment. Thus in present paper ways of stan-dardizing data and applying the findings gathered under water to real microgravity are being discussed. The following influences stemming from the

  20. Nintendo Wii remote controllers for head posture measurement: accuracy, validity, and reliability of the infrared optical head tracker.

    Science.gov (United States)

    Kim, Jongshin; Nam, Kyoung Won; Jang, Ik Gyu; Yang, Hee Kyung; Kim, Kwang Gi; Hwang, Jeong-Min

    2012-03-15

    To evaluate the accuracy, validity, and reliability of a newly developed infrared optical head tracker (IOHT) using Nintendo Wii remote controllers (WiiMote; Nintendo Co. Ltd., Kyoto, Japan) for measurement of the angle of head posture. The IOHT consists of two infrared (IR) receivers (WiiMote) that are fixed to a mechanical frame and connected to a monitoring computer via a Bluetooth communication channel and an IR beacon that consists of four IR light-emitting diodes (LEDs). With the use of the Cervical Range of Motion (CROM; Performance Attainment Associates, St. Paul, MN) as a reference, one- and three-dimensional (1- and 3-D) head postures of 20 normal adult subjects (20-37 years of age; 9 women and 11 men) were recorded with the IOHT. In comparison with the data from the CROM, the IOHT-derived results showed high consistency. The measurements of 1- and 3-D positions of the human head with the IOHT were very close to those of the CROM. The correlation coefficients of 1- and 3-D positions between the IOHT and the CROM were more than 0.99 and 0.96 (P posture-measuring device. Considering its high performance, ease of use, and low cost, the IOHT has the potential to be widely used as a head-posture-measuring device in clinical practice.

  1. Effect of a dual task on postural control in dyslexic children.

    Directory of Open Access Journals (Sweden)

    Agathe Legrand

    Full Text Available Several studies have examined postural control in dyslexic children; however, their results were inconclusive. This study investigated the effect of a dual task on postural stability in dyslexic children. Eighteen dyslexic children (mean age 10.3±1.2 years were compared with eighteen non-dyslexic children of similar age. Postural stability was recorded with a platform (TechnoConcept® while the child, in separate sessions, made reflex horizontal and vertical saccades of 10° of amplitude, and read a text silently. We measured the surface and the mean speed of the center of pressure (CoP. Reading performance was assessed by counting the number of words read during postural measures. Both groups of children were more stable while performing saccades than while reading a text. Furthermore, dyslexic children were significantly more unstable than non-dyslexic children, especially during the reading task. Finally, the number of words read by dyslexic children was significantly lower than that of non-dyslexic children and, in contrast to the non-dyslexic children. In line with the U-shaped non-linear interaction model, we suggest that the attention consumed by the reading task could be responsible for the loss of postural control in both groups of children. The postural instability observed in dyslexic children supports the hypothesis that such children have a lack of integration of multiple sensorimotor inputs.

  2. Systematic review of postural control and lateral ankle instability, part II: is balance training clinically effective?

    Science.gov (United States)

    McKeon, Patrick O; Hertel, Jay

    2008-01-01

    To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Balance training can be used prophylactically or after

  3. The Importance of Postural Control in Relation to Technical Abilities in Small-Sided Soccer Games.

    Science.gov (United States)

    Edis, Çağlar; Vural, Faik; Vurgun, Hikmet

    2016-12-01

    Making assessments regarding postural control and balance is very important for injury prevention in soccer. However, there has been no study that has associated postural control variables with branch-specific technical properties in a game. The aim of the present study was to determine the relationships between variables designating postural control levels and technical performance variables in different (1:1, 2:2 and 3:3) small-sided games (SSGs). Sixteen trained male amateur soccer players volunteered to take part in the study (age 17.2 ± 1.02 years, body height 176.25 ± 0.07 m, body mass 67.67 ± 13.27 kg). Following familiarization sessions, postural control was evaluated using one-leg and both-leg quiet-stance positions by measuring postural sway with a Tekscan HR Mat™ in anterior-posterior and medial-lateral directions. Later, 1:1, 2:2 and 3:3 SSGs were performed at two-day intervals and the technical variables specified for each game were analyzed. A Spearman's rank-order correlation analysis demonstrated the relationship between postural control and soccer-specific technical variables in 1:1 (r-values ranging from 0.582 to 0.776), 2:2 (rvalues ranging from 0.511 to 0.740) and 3:3 (r-values ranging from 0.502 to 0.834) SSGs. In addition, a Wilcoxon signed rank test revealed differences between SSGs in terms of several variables. The results of the study showed that higher postural control levels are among the important variables that affect success in the performance of technical skills under rival pressure and suddenly changing conditions. Therefore, it is recommended that in addition to its use for injury prevention purposes, balance training should be conducted to improve branch-specific technical skills and to increase the levels of their successful performance in a game.

  4. Age-related changes in dynamic postural control and attentional demands are minimally affected by local muscle fatigue.

    OpenAIRE

    Anthony eRemaud; Cecile eThuong-Cong; Martin eBilodeau

    2016-01-01

    Normal aging results in alterations in the visual, vestibular and somtaosensory systems, which in turn modify the control of balance. Muscle fatigue may exacerbate these age-related changes in sensory and motor functions, and also increase the attentional demands associated with dynamic postural control. The purpose of this study was to investigate the effect of aging on dynamic postural control and posture-related attentional demands before and after a plantar flexor fatigue protocol. Partic...

  5. Age-Related Changes in Dynamic Postural Control and Attentional Demands are Minimally Affected by Local Muscle Fatigue

    OpenAIRE

    Remaud, Anthony; Thuong-Cong, Cécile; Bilodeau, Martin

    2016-01-01

    Normal aging results in alterations in the visual, vestibular and somtaosensory systems, which in turn modify the control of balance. Muscle fatigue may exacerbate these age-related changes in sensory and motor functions, and also increase the attentional demands associated with dynamic postural control. The purpose of this study was to investigate the effect of aging on dynamic postural control and posture-related attentional demands before and after a plantar flexor fatigue protocol. Partic...

  6. Learning effects of dynamic postural control by auditory biofeedback versus visual biofeedback training.

    Science.gov (United States)

    Hasegawa, Naoya; Takeda, Kenta; Sakuma, Moe; Mani, Hiroki; Maejima, Hiroshi; Asaka, Tadayoshi

    2017-10-01

    Augmented sensory biofeedback (BF) for postural control is widely used to improve postural stability. However, the effective sensory information in BF systems of motor learning for postural control is still unknown. The purpose of this study was to investigate the learning effects of visual versus auditory BF training in dynamic postural control. Eighteen healthy young adults were randomly divided into two groups (visual BF and auditory BF). In test sessions, participants were asked to bring the real-time center of pressure (COP) in line with a hidden target by body sway in the sagittal plane. The target moved in seven cycles of sine curves at 0.23Hz in the vertical direction on a monitor. In training sessions, the visual and auditory BF groups were required to change the magnitude of a visual circle and a sound, respectively, according to the distance between the COP and target in order to reach the target. The perceptual magnitudes of visual and auditory BF were equalized according to Stevens' power law. At the retention test, the auditory but not visual BF group demonstrated decreased postural performance errors in both the spatial and temporal parameters under the no-feedback condition. These findings suggest that visual BF increases the dependence on visual information to control postural performance, while auditory BF may enhance the integration of the proprioceptive sensory system, which contributes to motor learning without BF. These results suggest that auditory BF training improves motor learning of dynamic postural control. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Biomechanical evaluation of the relationship between postural control and body mass index.

    Science.gov (United States)

    Ku, P X; Abu Osman, N A; Yusof, A; Wan Abas, W A B

    2012-06-01

    Postural stability is crucial in maintaining body balance during quiet standing, locomotion, and any activities that require a high degree of balance performance, such as participating in sports and dancing. Research has shown that there is a relationship between stability and body mass. The aims of this study were to examine the impact that two variables had on static postural control: body mass index (BMI) and gender. Eighty healthy young adults (age=21.7±1.8 yr; height=1.65±0.09 m; mass=67.5±19.0 kg) participated in the study and the static postural control was assessed using the Biodex Balance System, with a 20 Hz sampling rate in the bipedic stance (BLS) and unipedic stance (ULS) for 30s. Five test evaluations were performed for each balance test. Postural control was found to be negatively correlated with increased adiposity, as the obese BMI group performed significantly poorer than the underweight, normal weight and overweight groups during BLS and ULS tests. The underweight, normal weight and overweight groups exhibited greater anterior-posterior stability in postural control during quiet stance. In addition, female displayed a trend of having a greater postural sway than male young adults, although it was evidenced in only some BMI groups. This study revealed that BMI do have an impact on postural control during both BLS and ULS. As such, BMI and gender-specific effects should be taken into consideration when selecting individuals for different types of sporting activities, especially those that require quiet standing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Decerebrate posture

    Science.gov (United States)

    ... which can lead to: Coma Inability to communicate Paralysis Seizures Alternative Names Opisthotonos - decerebrate posture; Abnormal posturing - decerebrate posture; Traumatic brain injury - decerebrate posture; Decorticate posture - decerebrate posture References ...

  9. Athletes who train on unstable compared to stable surfaces exhibit unique postural control strategies in response to balance perturbations

    Directory of Open Access Journals (Sweden)

    D.S. Blaise Williams, III

    2016-03-01

    Conclusion: USA exhibit unique postural strategies compared to SSA. These unique strategies seemingly exhibit a direction-specific attribute and may be associated with divergent motor control strategies.

  10. Dynamic Postural Control in Female Athletes and Nonathletes After a Whole-Body Fatigue Protocol.

    Science.gov (United States)

    Baghbani, Fatemeh; Woodhouse, Linda J; Gaeini, Abbas A

    2016-07-01

    Baghbani, F, Woodhouse, LJ, and Gaeini, AA. Dynamic postural control in female athletes and nonathletes after a whole-body fatigue protocol. J Strength Cond Res 30(7): 1942-1947, 2016-Postural control is a crucial element in regular training of athletes, development of complex technical movement, and injury prevention; however, distributing factor of the postural control such as fatigue has been neglected by athletic trainers in novice and inexperienced athletes. The objective of this study was to compare changes in dynamic postural control of young female athletes and nonathletes after a fatigue protocol. Thirty females (15 athletes and 15 nonathletes) with no orthopedic problems were recruited to participate in this study. All participants completed the pre-SEBT (star excursion balance test) in 8 directions at baseline; then, they performed a 20-minute fatigue protocol after which post-SEBT was measured. Rating of perceived exertion was measured using the Borg scale immediately before, mid-way through (i.e., after the third station), and after performing the fatigue protocol (i.e., immediately before the post-SEBT). Female nonathlete groups had significant differences in dynamic balance performance after fatigue in the medial, posteromedial, and posterior directions (p postural control of the novice with progressing the exercise time. Our findings could also help coaches to develop trainings focused on the 3 directions of medial, posteromedial, and posterior directions and aimed at exercises increasing fatigue resistance.

  11. Fitness, Balance Efficacy, and Postural Control in Community-Dwelling Older Adults

    Directory of Open Access Journals (Sweden)

    Anna Lee

    2016-02-01

    Full Text Available Age-related declines in postural control and physical fitness are strong risk factors for falls in older adults. Balance efficacy has been utilized to identify poor postural control, reduced physical function, and fall risk. However, it is not clear as to whether balance efficacy is truly a better predictor of functional fitness outcomes or postural control. Distinguishing these associations is an important step in the future derivation of physiotherapeutic programming to remediate acute and chronic decline. Therefore, the purpose of this cross-sectional study was to partition which measures are more associated with balance efficacy, fitness, or postural control. One hundred eleven community-dwelling older adults participated and were asked to complete the Balance Efficacy Scale (BES, a functional fitness measure (the Senior Fitness Test [SFT], and a measure of postural control (the Sensory Organization Test [SOT].We found that the SFT was more significantly associated with balance efficacy (R2 = .37 than the SOT (R2 = .08 in older adults. Overall, aerobic endurance, functional mobility in the SFT, and the vestibular score on the SOT were significantly associated with balance efficacy. We concluded that clinicians utilizing the BES as a preliminary screen should recommend physiotherapy follow-up activities that build endurance (walking, lower extremity functional mobility (sit-to-stand, and vestibular function (head movement while walking. Understanding the links between a preliminary screening tool and the physiological needs of the patient will allow for targeted activities to be prescribed.

  12. Time course of the acute effects of core stabilisation exercise on seated postural control.

    Science.gov (United States)

    Lee, Jordan B; Brown, Stephen H M

    2017-09-20

    Core stabilisation exercises are often promoted for purposes ranging from general fitness to high-performance athletics, and the prevention and rehabilitation of back troubles. These exercises, when performed properly, may have the potential to enhance torso postural awareness and control, yet the potential for achieving immediate gains has not been completely studied. Fourteen healthy young participants performed a single bout of non-fatiguing core stabilisation exercise that consisted of repeated sets of 2 isometric exercises, the side bridge and the four-point contralateral arm-and-leg extension. Seated postural control, using an unstable balance platform on top of a force plate, was assessed before and after exercise, including multiple time points within a 20-minute follow-up period. Nine standard postural control variables were calculated at each time point, including sway displacement and velocity ranges, root mean squares and cumulative path length. Statistical analysis showed that none of the postural control variables were significantly different at any time point following completion of core stabilisation exercise. Thus, we conclude that a single bout of acute core stabilisation exercise is insufficient to immediately improve seated trunk postural control in young healthy individuals.

  13. Leisure sports and postural control: can a black belt protect your balance from aging?

    Science.gov (United States)

    Krampe, Ralf T; Smolders, Caroline; Doumas, Michail

    2014-03-01

    To determine potential benefits of intensive leisure sports for age-related changes in postural control, we tested 3 activity groups comprising 70 young (M = 21.67 years, SD = 2.80) and 73 older (M = 62.60 years, SD = 5.19) men. Activity groups were martial artists, who held at least 1st Dan (black belt), sportive individuals exercising sports without explicit balance components, and nonsportive controls. Martial artists had an advantage over sportive individuals in dynamic posture tasks (upright stance on a sway-referenced platform), and these 2 active groups showed better postural control than nonsportive participants. Age-related differences in postural control were larger in nonsportive men compared with the 2 active groups, who were similar in this respect. In contrast, negative age differences in other sensorimotor and cognitive functions did not differ between activity groups. We concluded that individuals engaging in intensive recreational sports have long-term advantages in postural control. However, even in older martial artists with years of practice in their sports, we observed considerable differences favoring the young. (c) 2014 APA, all rights reserved.

  14. Postural And Eye-Positional Effects On Human Biting Force: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Altay Tabancacı

    2012-06-01

    Full Text Available Muscle groups affected on biting force are called temporal muscle as a major and masseter muscle as a minor. According to the human posture stability, forces of these muscles vary with the force directions. In this case, experimental investigation is strictly important such that biting force under different postural and eye- positional situations is changed. In this study, seven-male and seven-female within the age-range of 17-24 are considered corresponding to having with restorated molar tooth and without that type of tooth. With the help of specially designed biting fork, different posture- and eye-positions are investigated for experimental biting force analysis. Changes in eye-positions are not indicated significant difference for all postural positions. On one hand, it is obtained that biting force of no-filling tooth in men becomes maximum if facial muscles give full effort to biting. On the other hand, effect of facial muscles for women is not clearly noticed depending on the postural differences.

  15. Postural control and shoulder steadiness in F-16 pilots: a randomized controlled study.

    Science.gov (United States)

    Lange, Britt; Murray, Mike; Chreiteh, Shadi S; Toft, Palle; Jørgensen, Marie B; Søgaard, Karen; Sjøgaard, Gisela

    2014-04-01

    During maneuvering, fighter pilots experience loads of up to 50-70 kg on their necks. Neck disorders are common and have been linked to impairment in muscle control. We conducted an intervention study introducing targeted training for 24 wk that reduced neck pain. The current study reports the results of the secondary objective, which was to increase the understanding of possible mechanisms underlying such neck pain and its intervention-related relief. In a parallel, single-blinded, randomized controlled study, 55 F-16 pilots were evaluated at baseline and randomized to a control group (CG; N = 28) or training group (TG; N = 27). Postural control was tested in four different settings: Romberg with open and closed eyes, unilateral stance, and perturbation. Maximal voluntary contraction and force steadiness was measured for shoulder elevation. At follow-up, there was a significant between-group difference in the Romberg test with closed eyes only (95% confidence ellipse area; CG: 761 +/- 311 mm2; TG: 650 +/- 405 mm2). Prior to randomization, there were no significant differences in postural control and steadiness between 30 pilots who experienced neck pain within the previous 3 mo and 25 pilots without such pain. Impaired postural control and steadiness may only be quantifiable in individuals experiencing acute neck pain of certain intensity, and there may be a ceiling effect in the ability to improve these parameters. For individuals with highly developed physiological capacity, a battery of tests with more stringent demands should be considered, e.g., increased number of repetitions, prolonged duration of the tests, or testing with eyes closed.

  16. Creative Dance Practice Improves Postural Control in a Child With Cerebral Palsy.

    Science.gov (United States)

    Stribling, Kate; Christy, Jennifer

    2017-10-01

    To investigate the effect of creative dance instruction on postural control and balance in an 11-year-old with spastic triplegic cerebral palsy, Gross Motor Function Classification Scale level II. We conducted 1-hour dance interventions twice weekly for 8 weeks, with a focus on somatosensory awareness and movement in all planes of motion. Computerized dynamic posturography using the SMART Balance Master/EquiTest (NeuroCom) was used to assess postural control and balance reactions before the first class and following the final class. Gains in standing stability, balance recovery, directional control, and endpoint excursion of movement were found. Participation in creative dance lessons appears to improve somatosensory effectiveness and postural control in a child with cerebral palsy. Dance is a fun way to improve balance and coordination. These interventions could be easily implemented into programs for children with cerebral palsy.

  17. Correlation between the cardiorespiratory endurance, dynamic postural control and thoracic kyphosis angle among the students

    Directory of Open Access Journals (Sweden)

    Farzaneh Saki

    2017-06-01

    Full Text Available Background: Any deviation in the normal spinal alignment can alter the cardiorespiratory endurance and the posture control. The aim of present study was to investigate the correlation between cardiorespiratory endurance, dynamic postural control and kyphosis angle among the students. Materials and Methods: This cross-sectional study was carried out on students (n=100; 48 girls and 52 boys selected randomly according to inclusion criteria. Cardiorespiratory endurance, postural control and kyphosis angle were assessed using shuttle run test, Y balance test and flexible ruler, respectively. Normal distribution of the data was assessed using the Kolmogorov–Smirnov test. Data were analyzed using Pearson correlation product moment and linear regression (P≤0.05. Results: The results showed a significant negative correlation between the cardiorespiratory endurance and kyphosis angle (P=0.012, r=-0.3.3. In addition, a significant negative correlation was observed between the dynamic postural control and kyphosis angle (P=0.003, r=-0.254. Conclusion: According to our findings it seems mandatory for health and school's, sport coaches to screen the student's spinal deformities and evaluate its associated complications (e.g. decreased cardiorespiratory endurance and postural balance.

  18. Postural control and ventilatory drive during voluntary hyperventilation and carbon dioxide rebreathing.

    Science.gov (United States)

    David, Pascal; Laval, David; Terrien, Jérémy; Petitjean, Michel

    2012-01-01

    The present study sought to establish links between hyperventilation and postural stability. Eight university students were asked to stand upright under two hyperventilation conditions applied randomly: (1) a metabolic hyperventilation induced by 5 min of hypercapnic-hyperoxic rebreathing (CO(2)-R); and, (2) a voluntary hyperventilation (VH) of 3 min imposed by a metronome set at 25 cycles per min. Recordings were obtained with eyes open, with the subjects standing on a force plate over 20-s periods. Ventilatory response, displacements in the centre of pressure in both the frontal and sagittal planes and fluctuations in the three planes of the ground reaction force were monitored in the time and frequency domains. Postural changes related to respiratory variations were quantified by coherence analysis. Myoelectric activities of the calf muscles were recorded using surface electromyography. Force plate measurements revealed a reduction in postural stability during both CO(2)-R and VH conditions, mainly in the sagittal plane. Coherence analysis provided evidence of a ventilatory origin in the vertical ground reaction force fluctuations during VH. Electromyographic analyses showed different leg muscles strategies, assuming the existence of links between the control of respiration and the control of posture. Our results suggest that the greater disturbing effects caused by voluntary hyperventilation on body balance are more compensated when respiration is under automatic control. These findings may have implications for understanding the organisation of postural and respiratory activities and suggest that stability of the body may be compromised in situations in which respiratory demand increases and requires voluntary control.

  19. Childhood cerebral palsy and the use of positioning systems to control body posture: Current practices.

    Science.gov (United States)

    Pérez-de la Cruz, S

    One of the consequences of poor postural control in children with cerebral palsy is hip dislocation. This is due to the lack of weight-bearing in the sitting and standing positions. Orthotic aids can be used to prevent onset and/or progression. The aim of this study is to analyse the effectiveness of positioning systems in achieving postural control in patients with cerebral palsy, and discuss these findings with an emphasis on what may be of interest in the field of neurology. We selected a total of 18 articles on interventions in cerebral palsy addressing posture and maintenance of ideal postures to prevent deformities and related problems. The main therapeutic approaches employed combinations of botulinum toxin and orthoses, which reduced the incidence of hip dislocation although these results were not significant. On the other hand, using positioning systems in 3 different positions decreases use of botulinum toxin and surgery in children under 5 years old. The drawback is that these systems are very uncomfortable. Postural control systems helps control hip deformities in children with cerebral palsy. However, these systems must be used for prolonged periods of time before their effects can be observed. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Controle postural em pacientes com lesão do ligamento cruzado anterior Postural control in patients with anterior cruciate ligament injury

    Directory of Open Access Journals (Sweden)

    Gabriela Borin

    2010-12-01

    Full Text Available A lesão do ligamento cruzado anterior (LCA do joelho acarreta alterações somatosensoriais em função da perda de informações provenientes dos mecanorreceptores presentes no LCA. Esses receptores constituem importante fonte de informação sensorial, afetando o desempenho de vários atos motores, dentre os quais o controle postural. O estudo objetivou analisar o controle postural de indivíduos com joelhos normais e com lesão unilateral do LCA. Participaram 15 voluntários com lesão do LCA (grupo lesado e 15 voluntários com joelhos normais (grupo controle. O controle postural foi analisado por plataforma de força, sendo o voluntário instruído a assumir a situação experimental em apoio unipodal direito e esquerdo, posicionado no centro da plataforma de modo estático e com os olhos fechados. A plataforma de força forneceu informações de forças e momentos no eixo vertical e horizontal, a partir das quais foi obtida a área de deslocamento do centro de pressão nas direções ântero-posterior e médio-lateral. Os resultados mostram que indivíduos com lesão do LCA apresentaram maior amplitude média de oscilação comparados aos do grupo controle, sugerindo que o deficit no controle postural seja devido à perda de informações proprioceptivas nos indivíduos com LCA. Esses resultados têm implicações para a abordagem clínica de indivíduos com lesão do LCA.Anterior cruciate ligament (ACL injury leads to sensorimotor changes due to lack of information from mechanoreceptors at the ACL. These receptors are an important source of sensory information, affecting the performance of various motor responses, among which postural control. The purpose of this study was to assess postural control in individuals with normal knees and with unilateral ACL injury. Fifteen subjects with ACL injury and 15 healthy young subjects (control group were submitted to postural control assessment by standing in single-leg stance (both right and left

  1. Use of galvanic vestibular feedback to control postural orientation in decerebrate rabbits.

    Science.gov (United States)

    Zelenin, P V; Hsu, L-J; Orlovsky, G N; Deliagina, T G

    2012-06-01

    In quadrupeds, the dorsal-side-up body orientation during standing is maintained due to a postural system that is driven by feedback signals coming mainly from limb mechanoreceptors. In caudally decerebrated (postmammillary) rabbits, the efficacy of this system is considerably reduced. In this paper, we report that the efficacy of postural control in these animals can be restored with galvanic vestibular stimulation (GVS) applied transcutaneously to the labyrinths. In standing intact rabbits, GVS causes a lateral body sway towards the positive electrode. We used this GVS-caused sway to counteract the lateral body sway resulting from a mechanical perturbation of posture. Experiments were performed on postmammillary rabbits that stood on the tilting platform with their hindlimbs. To make the GVS value dependent on the postural perturbation (i.e., on the lateral body sway caused by tilt of the platform), an artificial feedback loop was formed in the following ways: 1) Information about the body sway was provided by a mechanical sensor; 2) The GVS current was applied when the sway exceeded a threshold value; the polarity of the current was determined by the sway direction. This simple algorithm allowed the "hybrid" postural system to maintain the dorsal-side-up orientation of the hindquarters when the platform was tilted by ± 20°. Thus, an important postural function, i.e., securing lateral stability during standing, can be restored in decerebrate rabbits with the GVS-based artificial feedback. We suggest that such a control system can compensate for the loss of lateral stability of various etiologies, and can be used for restoration of balance control in patients with impaired postural functions.

  2. Precision control of an upright trunk posture in low back pain patients.

    Science.gov (United States)

    Willigenburg, Nienke W; Kingma, Idsart; van Dieën, Jaap H

    2012-11-01

    Low back pain appears to be associated with impaired trunk postural control, which could be caused by proprioceptive deficits. We assessed control of trunk posture in conditions requiring high and low precision, with and without disturbance of proprioception by lumbar muscle vibration. Twenty a-specific low back pain patients and 13 healthy controls maintained a self-chosen upright trunk posture. Initial frontal and sagittal plane angles of an opto-electronic marker on the 12th thoracic spinous process defined the center of a target area on a monitor. Subjects were instructed to stay within that target and visual feedback was provided when they left the target. The precision demand was manipulated by changing target size. The standard deviation of trunk angle quantified precision and mean Euclidian distance to target center quantified accuracy. Ratios of antagonistic co-activation were calculated from trunk muscle electromyography recordings. With the small target, visual feedback was present intermittently and patients controlled their trunk as accurately and precisely as healthy controls. For the large target, subjects mostly stayed within the target, and patients were on average 0.18° (31%) less accurate than healthy controls (P=0.025), due to a larger postural drift. Lumbar muscle vibration deteriorated control over trunk posture in both groups and ratios of antagonistic co-activation did not differ between groups or conditions. These results indicate that the weighting of proprioceptive feedback from lumbar muscle spindles did not differ between groups and that low back pain patients were less able to detect low frequency drift in posture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Effects of knee bracing on postural control after anterior cruciate ligament rupture.

    Science.gov (United States)

    Palm, Hans-Georg; Brattinger, Florian; Stegmueller, Bernd; Achatz, Gerhard; Riesner, Hans-Joachim; Friemert, Benedikt

    2012-10-01

    Randomized clinical trial. To investigate the effects of functional knee braces on postural control in patients with anterior cruciate ligament (ACL) rupture. ACL rupture leads to both mechanical knee instability and deficits in proprioception. Although elastic knee braces do not increase mechanical stability, patients report improved stability when wearing a brace. Elastic braces were found to reduce the loss of proprioception. It is, however, still unclear whether they also improve postural control, which involves the processing of proprioceptive input at a higher level. We studied 58 patients with isolated unilateral ACL rupture using computerized dynamic posturography and compared overall stability index (OSI) scores for injured and uninjured legs with and without a knee brace. In addition, patients were classified as copers and non-copers depending on knee function. Within subjects, OSI scores were 3.0 ± 1.1° for uninjured legs when unbraced, 2.8±1.3° for uninjured legs when braced (p=0.17), 3.7 ± 1.5° for unbraced injured legs, and 2.9 ± 1.3° for braced injured legs (pbraced condition (p=0.26). Elastic knee braces increase postural stability by approximately 22% in patients with ACL rupture. There was no difference in postural stability between uninjured and injured legs in the braced condition. One possible explanation is that bracing improves both proprioception and postural control. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Cognitive tasks promote automatization of postural control in young and older adults.

    Science.gov (United States)

    Potvin-Desrochers, Alexandra; Richer, Natalie; Lajoie, Yves

    2017-09-01

    Researchers looking at the effects of performing a concurrent cognitive task on postural control in young and older adults using traditional center-of-pressure measures and complexity measures found discordant results. Results of experiments showing improvements of stability have suggested the use of strategies such as automatization of postural control or stiffening strategy. This experiment aimed to confirm in healthy young and older adults that performing a cognitive task while standing leads to improvements that are due to automaticity of sway by using sample entropy. Twenty-one young adults and twenty-five older adults were asked to stand on a force platform while performing a cognitive task. There were four cognitive tasks: simple reaction time, go/no-go reaction time, equation and occurrence of a digit in a number sequence. Results demonstrated decreased sway area and variability as well as increased sample entropy for both groups when performing a cognitive task. Results suggest that performing a concurrent cognitive task promotes the adoption of an automatic postural control in young and older adults as evidenced by an increased postural stability and postural sway complexity. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Shared memory representations for programming of lifting movements and associated whole body postural adjustments in humans

    NARCIS (Netherlands)

    Forssberg, H; Jucaite, A; Hadders-Algra, M

    1999-01-01

    This study examined whether the same memory representation is used for the parametric control of precision lifting and associated postural adjustments (APAs). Fifteen adults lifted object of different weights between the thumb and index finger. The employed grip, load (vertical lifting) forces, and

  6. Modeling Cerebral Blood Flow Control During Posture Change from Sitting to Standing

    DEFF Research Database (Denmark)

    Olufsen, Mette; Tran, Hien; Ottesen, Johnny T.

    2004-01-01

    , the heart, and venous valves. We use physiologically based control mechanisms to describe the regulation of cerebral blood velocity and arterial pressure in response to orthostatic hypotension resulting from postural change. Beyond active control mechanisms we also have to include certain passive non...... mechanisms development, we will show validation results of our model against experimental data from a young subject....

  7. Human Body 3D Posture Estimation Using Significant Points and Two Cameras

    Directory of Open Access Journals (Sweden)

    Chia-Feng Juang

    2014-01-01

    Full Text Available This paper proposes a three-dimensional (3D human posture estimation system that locates 3D significant body points based on 2D body contours extracted from two cameras without using any depth sensors. The 3D significant body points that are located by this system include the head, the center of the body, the tips of the feet, the tips of the hands, the elbows, and the knees. First, a linear support vector machine- (SVM- based segmentation method is proposed to distinguish the human body from the background in red, green, and blue (RGB color space. The SVM-based segmentation method uses not only normalized color differences but also included angle between pixels in the current frame and the background in order to reduce shadow influence. After segmentation, 2D significant points in each of the two extracted images are located. A significant point volume matching (SPVM method is then proposed to reconstruct the 3D significant body point locations by using 2D posture estimation results. Experimental results show that the proposed SVM-based segmentation method shows better performance than other gray level- and RGB-based segmentation approaches. This paper also shows the effectiveness of the 3D posture estimation results in different postures.

  8. Human Body 3D Posture Estimation Using Significant Points and Two Cameras

    Science.gov (United States)

    Juang, Chia-Feng; Chen, Teng-Chang; Du, Wei-Chin

    2014-01-01

    This paper proposes a three-dimensional (3D) human posture estimation system that locates 3D significant body points based on 2D body contours extracted from two cameras without using any depth sensors. The 3D significant body points that are located by this system include the head, the center of the body, the tips of the feet, the tips of the hands, the elbows, and the knees. First, a linear support vector machine- (SVM-) based segmentation method is proposed to distinguish the human body from the background in red, green, and blue (RGB) color space. The SVM-based segmentation method uses not only normalized color differences but also included angle between pixels in the current frame and the background in order to reduce shadow influence. After segmentation, 2D significant points in each of the two extracted images are located. A significant point volume matching (SPVM) method is then proposed to reconstruct the 3D significant body point locations by using 2D posture estimation results. Experimental results show that the proposed SVM-based segmentation method shows better performance than other gray level- and RGB-based segmentation approaches. This paper also shows the effectiveness of the 3D posture estimation results in different postures. PMID:24883422

  9. Improving gross motor function and postural control with hippotherapy in children with Down syndrome: case reports.

    Science.gov (United States)

    Champagne, Danielle; Dugas, Claude

    2010-11-01

    The purpose of this case report is to describe the impact of an 11-week hippotherapy program on the gross motor functions of two children (respectively 28 and 37 months old) diagnosed with Down syndrome. Hippotherapy is a strategy that uses the horse's motion to stimulate and enhance muscle contraction and postural control. The children were assessed by the Gross Motor Function Measure (GMFM) and accelerometry. The results indicate that both children improved on many dimensions of the GMFM. Power spectral analysis of the acceleration signals showed improvement in postural control of either the head or trunk, because the children adopted two different adaptative strategies to perturbation induced by the moving horse.

  10. Controle postural em pacientes com lesão do ligamento cruzado anterior

    OpenAIRE

    Borin,Gabriela; Masullo,Catia de Lourdes; Bonfim,Thatia Regina; Oliveira,Anamaria Siriani de; Paccola,Cleber Antônio Jansen; Barela,José Ângelo; Bevilaqua-Grossi,Débora

    2010-01-01

    A lesão do ligamento cruzado anterior (LCA) do joelho acarreta alterações somatosensoriais em função da perda de informações provenientes dos mecanorreceptores presentes no LCA. Esses receptores constituem importante fonte de informação sensorial, afetando o desempenho de vários atos motores, dentre os quais o controle postural. O estudo objetivou analisar o controle postural de indivíduos com joelhos normais e com lesão unilateral do LCA. Participaram 15 voluntários com lesão do LCA (grupo l...

  11. Is "circling" behavior in humans related to postural asymmetry?

    Directory of Open Access Journals (Sweden)

    Emma Bestaven

    Full Text Available In attempting to walk rectilinearly in the absence of visual landmarks, persons will gradually turn in a circle to eventually become lost. The aim of the present study was to provide insights into the possible underlying mechanisms of this behavior. For each subject (N = 15 six trajectories were monitored during blindfolded walking in a large enclosed area to suppress external cues, and ground irregularities that may elicit unexpected changes in direction. There was a substantial variability from trial to trial for a given subject and between subjects who could either veer very early or relatively late. Of the total number of trials, 50% trajectories terminated on the left side, 39% on the right side and 11% were defined as "straight". For each subject, we established a "turning score" that reflected his/her preferential side of veering. The turning score was found to be unrelated to any evident biomechanical asymmetry or functional dominance (eye, hand.... Posturographic analysis, used to assess if there was a relationship between functional postural asymmetry and veering revealed that the mean position of the center of foot pressure during balance tests was correlated with the turning score. Finally, we established that the mean position of the center of pressure was correlated with perceived verticality assessed by a subjective verticality test. Together, our results suggest that veering is related to a "sense of straight ahead" that could be shaped by vestibular inputs.

  12. THE ROLE OF LEG AND TRUNK MUSCLES PROPRIOCEPTION ON STATIC AND DYNAMIC POSTURAL CONTROL

    Directory of Open Access Journals (Sweden)

    SEYED Hossein Hosseinimehr

    2010-04-01

    Full Text Available The proprioception information is a prerequisite for balance, body’s navigation system, and the movement coordinator. Due to changes between the angles of ankle, knee, and hip joints the aforementioned information are important in the coordination of the limbs and postural balance. The aim of this study was to investigate therole of leg and trunk muscles proprioception on static and dynamic postural control. Thirty males students of physical education and sport sciences (age =21.23 ± 2.95 years, height = 170.4 ± 5.1 cm, and weight = 70.7 ± 5.6 kg participated in this study volunteered. Vibration (100HZ was used to disturb of proprioception. Vibrationoperated on leg muscle (gasterocnemius and trunk muscles (erector spine muscle, at L1 level. Leg stance time and Star Excursion Balance Test were used for evaluation of static and dynamic postural control respectively.Subjects performed pre and post (with operated vibration leg stance time and star excursion balance test. Paired sample test used for investigation the effect of vibration on leg and trunk muscles in static and dynamic postural control. Result of this study showed in static postural control, there is no significant difference between pre and post test (operated vibration in leg and trunk muscles (p≤0.05. In contrast there is significant difference indynamic postural control between pre and post test in leg muscles in 8 directions of star excursion balance test (p≤0.05 while there is only significant difference in trunk muscle in antrolateral and lateral of star excursion balance test (p≤0.05. During physical training such conditions like fatigue and injury can disturbproprioceptions’ information. Thus, due to the importance of this information we recommend that coaches'additionally specific trainings any sport used specific exercises to enhance the proprioception information

  13. Effect of visual attention on postural control in children with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Bucci, Maria Pia; Seassau, Magali; Larger, Sandrine; Bui-Quoc, Emmanuel; Gerard, Christophe-Loic

    2014-06-01

    We compared the effect of oculomotor tasks on postural sway in two groups of ADHD children with and without methylphenidate (MPH) treatment against a group of control age-matched children. Fourteen MPH-untreated ADHD children, fourteen MPH-treated ADHD children and a group of control children participated to the study. Eye movements were recorded using a video-oculography system and postural sway measured with a force platform simultaneously. Children performed fixation, pursuits, pro- and anti-saccades. We analyzed the number of saccades during fixation, the number of catch-up saccades during pursuits, the latency of pro- and anti-saccades; the occurrence of errors in the anti-saccade task and the surface and mean velocity of the center of pressure (CoP). During the postural task, the quality of fixation was significantly worse in both groups of ADHD children with respect to control children; in contrast, the number of catch-up saccades during pursuits, the latency of pro-/anti-saccades and the rate of errors in the anti-saccade task did not differ in the three groups of children. The surface of the CoP in MPH-treated children was similar to that of control children, while MPH-untreated children showed larger postural sway. When performing any saccades, the surface of the CoP improved with respect to fixation or pursuits tasks. This study provides evidence of poor postural control in ADHD children, probably due to cerebellar deficiencies. Our study is also the first to show an improvement on postural sway in ADHD children performing saccadic eye movements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Influence of paravertebral muscles training on brain plasticity and postural control in chronic low back pain.

    Science.gov (United States)

    Massé-Alarie, Hugo; Beaulieu, Louis-David; Preuss, Richard; Schneider, Cyril

    2016-07-01

    Isometric activation (ISOM) of deep multifidi muscles (MF) can influence postural adjustments and primary motor cortex (M1) function in chronic low back pain (CLBP). In order to better understand how ISOM impacts on CLBP condition, the present study contrasted ISOM after-effects on M1 function, MF postural activation and pain with another training, the global activation of paravertebral muscles (GLOB, hip extension). The main objective of this study was to compare the effects of ISOM and GLOB (3-week training each) on MF postural activation and M1 function in a CLBP population. Twenty-four people with CLBP were randomly allocated to ISOM and GLOB groups for a 3-week daily practice. Pre/post-training after-effects were assessed by the onset of superficial MF (MF-S) activation during ballistic limb movements (bilateral shoulder flexion in standing; unilateral hip extension in prine lying), MF-S corticomotor control tested by transcranial magnetic stimulation of M1, and assessment of pain, kinesiophobia and disability by standardized questionnaires. Both ISOM and GLOB improved pain and disability. However, only ISOM influenced M1 function (decreased corticospinal excitability and increased intracortical inhibition), fastened MF-S postural activation and decreased kinesiophobia. Changes of corticospinal excitability and of MF-S postural adjustments suggest that ISOM better influenced brain plasticity. Future studies should further test whether our novel findings relate to an influence of the exercises on the lumbopelvic control of different muscles and on cognitive function. Clinically, individual's evaluation remains warranted before prescribing one or the other of these two conventional exercises for reducing pain. This original study presents how motor control exercises can influence brain plasticity and postural control in chronic low back pain. This knowledge will impact on the decision of clinicians to prescribe specific exercises with a view of improving motor

  15. Age-related changes in postural control to the demands of a precision task.

    Science.gov (United States)

    Yeh, Ting-Ting; Cinelli, Michael E; Lyons, James L; Lee, Timothy D

    2015-12-01

    Optimal sensorimotor integration is needed to maintain the precision of a visuomotor postural task. Furthermore, cognitive resources have been suggested to be involved in maintaining balance, especially in older adults. This study investigated how older and younger adults differed in employing sensorimotor strategies in a dual-task situation. Older (age 65-84 years) and younger adults (age 19-30 years) performed a visually-based, postural tracking task in different body orientations (from 0° to 45°), which necessitated slightly different task goals. On some trials, participants performed a concurrent silent arithmetic task with the visuomotor tracking task. The results demonstrated that sensorimotor control declined with age. Older adults showed greater medial-lateral center of pressure variability compared to younger adults in the precision task. Younger adults displayed a trend to decrease anterior-posterior variability, but older adults exhibited an opposite trend when the body orientation changed from 0° to 45°. The addition of a dual-task situation decreased overall postural variability in both age groups. Age-related changes in postural control may degrade the flexible coordination of the sensory feedback and motor execution. This study suggested that medial-lateral stability may be more sensitive to this age-related decline and may be closely associated with postural instability and falls. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Structural changes in postural sway lend insight into effects of balance training, vision, and support surface on postural control in a healthy population.

    Science.gov (United States)

    Strang, Adam J; Haworth, Joshua; Hieronymus, Mathias; Walsh, Mark; Smart, L James

    2011-07-01

    Postural sway was assessed [via center of pressure (COP) 95% elliptical area (EA), path length (PL), normalized path length (PL(n)) and sample entropy (SEn)] in four conditions of bipedal upright stance [compliant (Foam) vs. non-compliant (Hard) with eyes-open (EO) vs. eyes-closed (EC)] prior to, and immediately following, a six-week balance training intervention in a group of healthy adults (N = 26). The intervention was comprised of nine exercises progressed in difficulty based on the subjective assessments of individual competency. Results showed that EA and PL were increased, while PL(n) and SEn were decreased, in EC and Foam stance conditions (collapsed across effects of balance training). Interpretations were that restricted vision and a compliant surface represented constraints to postural control that caused increases in the amount (PL) and area (EA) of sway, but decreases in its coordinative twisting/turning (PL(n)) and temporal complexity (SEn). It was argued that these changes might represent compensatory adaptations in effort to maintain postural control given the demands of the imposed constraints. Balance training caused no change to EA, but did result in decreased PL, PL(n), and SEn for stance conditions performed on the Foam (either EO or EC). These changes were interpreted to reflect improved postural control, potentially through the learned adoption of a more deterministic postural control strategy that is uniquely defined by the constraints imposed on upright stance by the compliant surface.

  17. Ground surface nature can influence visual information contribution in postural control.

    Science.gov (United States)

    Jlid, Mohamed C; Kachlouf, Hajer R; Maaoui, Rim; Chelly, M Souhaiel; Paillard, Thierry

    2016-12-01

    In sport, the nature of ground surface is likely to influence the contribution of visual information on postural control. Boxing and wrestling are respectively practiced on firm and soft ground surfaces. The aim was to compare the postural control of boxers with that of wrestlers on stable (firm) and unstable (soft and dynamic) ground surfaces, with and without deprivation of vision. Fifteen male international boxers and 15 male international wrestlers presenting the same anthropometrics characteristics and the same number of years of sports practice were recruited. Spatiotemporal parameters of displacement of the center of feet pressure (COP) were measured on a force platform in static (firm and foam surfaces with eyes open and eyes closed) and dynamic conditions (medio/lateral and antero-posterior directions with eyes open and eyes closed). The results mainly showed a significant vision × group interaction in the antero-posterior direction for the dynamic postural condition (Pskills.

  18. Sport Skill-Specific Expertise Biases Sensory Integration for Spatial Referencing and Postural Control.

    Science.gov (United States)

    Thalassinos, Michalis; Fotiadis, Giorgos; Arabatzi, Fotini; Isableu, Brice; Hatzitaki, Vassilia

    2017-09-15

    The authors asked how sport expertise modulates visual field dependence and sensory reweighting for controlling posture. Experienced soccer athletes, ballet dancers, and nonathletes performed (a) a Rod and Frame test and (b) a 100-s bipedal stance task during which vision and proprioception were successively or concurrently disrupted in 20-s blocks. Postural adaptation was assessed in the mean center of pressure displacement, root mean square of center of pressure velocity and ankle muscles integrated electromyography activity. Soccer athletes were more field dependent than were nonathletes. During standing, dancers were more destabilized by vibration and required more time to reweigh sensory information compared with the other 2 groups. These findings reveal a sport skill-specific bias in the reweighing of sensory inputs for spatial orientation and postural control.

  19. A Critical Review of Position- and Velocity-Based Concepts of Postural Control During Upright Stance

    Directory of Open Access Journals (Sweden)

    Portela Fellipe Machado

    2014-12-01

    Full Text Available Purpose. Postural control during quiet standing has been modeled by concepts using kinematic variables estimated from center of pressure (COP signals. The concept of position-based postural control has had particular ramifications in the literature, although a more recent concept of velocity-based control has been proposed as being more relevant. Methods. This study reviews the literature investigating these concepts and their respective quantitative methods alongside current supporting evidence and criticisms. Results. The position-based control concept suggests the existence of two control loops that alternate whenever certain thresholds are exceeded. Such a theory is supported by studies describing the time delay between the skeletal muscle activation and CoP displacement. However, this concept has been criticized to be the result of statistical artifacts due to it not being adapted to the analysis of bounded time series. Conversely, the velocity-based control concept claims that velocity is the most relevant kinematic variable for postural control. Such a theory suggests that postural adjustments are executed to change the trajectory of the CoP whenever the velocity crosses a threshold. Both theories have their major methodological limitations, while interpretation of data from the position-based concept is difficult, velocity-based thresholds are empirical and still need verification in different motor tasks and populations. Conclusions. Given the observed similarities and mutual exclusivity of both concepts, there is a need for the development of methods that can quantitatively analyze stabilometric signals while simultaneously considering both kinematic variables.

  20. Controle postural em indivíduos portadores da síndrome de Down: revisão de literatura Postural control in individuals with Down syndrome: a review

    Directory of Open Access Journals (Sweden)

    Regiane Luz Carvalho

    2008-09-01

    Full Text Available Este trabalho consistiu numa revisão da literatura sobre controle postural em indivíduos portadores da síndrome de Down, por meio de consulta às bases de dados Medline, Lilacs e Web of Science. Dentre os artigos publicados nos últimos 16 anos, selecionaram-se 30, dos quais 7 focalizam a natureza dos défices no sistema de controle postural, como alterações neurobiológicas e biomecânicas, e 23 enfocam o controle postural no período de desenvolvimento (11 artigos e em adolescentes e adultos (12 artigos portadores da síndrome. Discutem-se os marcos teóricos que conformam a compreensão do desenvolvimento postural e seus défices, bem como as implicações dessa compreensão para a prática da fisioterapia.This is a review of literature on postural control in individuals with the Down syndrome, by searching in Medline, Lilacs and Web of Science data bases. Among articles published in the last 16 years, 30 were selected, of which 7 focus on postural control system deficits, such as neurobiological and biomechanical alterations, and 23 focus postural control development (11 articles and in adolescents and adults (12 articles with the Down syndrome. The theoretic bases for understanding posture control development and deficits are discussed, in view of their implications for physical therapy practice.

  1. Postural control model interpretation of stabilogram diffusion analysis

    Science.gov (United States)

    Peterka, R. J.

    2000-01-01

    Collins and De Luca [Collins JJ. De Luca CJ (1993) Exp Brain Res 95: 308-318] introduced a new method known as stabilogram diffusion analysis that provides a quantitative statistical measure of the apparently random variations of center-of-pressure (COP) trajectories recorded during quiet upright stance in humans. This analysis generates a stabilogram diffusion function (SDF) that summarizes the mean square COP displacement as a function of the time interval between COP comparisons. SDFs have a characteristic two-part form that suggests the presence of two different control regimes: a short-term open-loop control behavior and a longer-term closed-loop behavior. This paper demonstrates that a very simple closed-loop control model of upright stance can generate realistic SDFs. The model consists of an inverted pendulum body with torque applied at the ankle joint. This torque includes a random disturbance torque and a control torque. The control torque is a function of the deviation (error signal) between the desired upright body position and the actual body position, and is generated in proportion to the error signal, the derivative of the error signal, and the integral of the error signal [i.e. a proportional, integral and derivative (PID) neural controller]. The control torque is applied with a time delay representing conduction, processing, and muscle activation delays. Variations in the PID parameters and the time delay generate variations in SDFs that mimic real experimental SDFs. This model analysis allows one to interpret experimentally observed changes in SDFs in terms of variations in neural controller and time delay parameters rather than in terms of open-loop versus closed-loop behavior.

  2. Postural control during the Stroop test in dyslexic and non dyslexic teenagers.

    Directory of Open Access Journals (Sweden)

    Zoï Kapoula

    Full Text Available Postural control in quiet stance although simple still requires some cognitive resources; dual cognitive tasks influence further postural control. The present study examines whether or not dyslexic teenagers experience postural instability when performing a Stroop dual task for which their performances are known to be poor. Fifteen dyslexics and twelve non-dyslexics (14 to 17 years old were recruited from the same school. They were asked to perform three tasks: (1 fixate a target, (2 perform an interference Stroop test (naming the colour or the word rather than reading the word, (3 performing flexibility Stroop task: the subject performed the interference task as in (2 except when the word was in a box, in which case he had to read the word. Postural performances were measured with a force platform. The results showed a main task effect on the variance of speed of body sway only: such variance was higher in the flexibility task than for the other two tasks. No group effect was found for any of the parameters of posture (surface, mediolateral and anteroposterior sway, variance of speed. Further wavelet analysis in the time-frequency domain revealed an increase in the spectral power of the medium frequency range believed to be related to cerebellum control; an accompanying increase in the cancellation time of the high frequency band related to reflexive loops occurred for non-dyslexics only. These effects occurred for the flexibility task and could be due to its high cognitive difficulty. Dyslexics displayed shorter cancellation time for the medium frequency band for all tasks, suggesting less efficient cerebellar control, perhaps of eye fixation and attention influencing body sway. We conclude that there is no evidence for a primary posture deficit in 15 year old teenagers who come from the general population and who were recruited in schools.

  3. Impact of ankle muscle fatigue and recovery on the anticipatory postural adjustments to externally initiated perturbations in dynamic postural control.

    Science.gov (United States)

    Kennedy, Ashleigh; Guevel, Arnaud; Sveistrup, Heidi

    2012-12-01

    The aim of this study was to determine whether and how young participants modulate their postural response to compensate for postural muscle fatigue during predictable but externally initiated continuous and oscillatory perturbations. Twelve participants performed ten postural trials before and after an ankle muscle fatigue protocol. Each postural trial was 1 min long and consisted of continuous backward and forward oscillations of the platform. Fatigue was induced by intermittent, bilateral isometric contractions of the ankle plantar- and dorsiflexors until the force production was reduced to 50 % of the pre-fatigue maximal voluntary contraction. Changes in the center of mass (COM) displacement, center of pressure (COP) displacement, and anterior-posterior location of the COP within the base of support were quantified as well as the activity of the tibialis anterior (TA), medial gastrocnemius (MG), quadriceps, and hamstring. All participants demonstrated postural stability post-fatigue by maintaining the displacement of their COM. Everyone also demonstrated a general forward shift in the anterior-posterior location of the COP within the base of support; however, two distinct postural modifications, corresponding to either an immediate fatigue-induced increase or decrease in the COP displacement during the backward platform translation, were recorded immediately post-fatigue. The changes in muscle onset latencies lasted beyond the recovery of the force production of the fatigued postural muscles. By 10 min post-fatigue, the participants showed a decrease in the COP displacement as well as an earlier activation of the postural muscles and an increased TA/MG co-activation relative to pre-fatigue. Although different strategies were used, the participants were able to adjust to and overcome postural muscle fatigue and remain balanced during the postural perturbations regardless of the direction of the platform movement. These adjustments lasted beyond the recovery

  4. Spatiotemporal postural control deficits are present in those with chronic ankle instability

    Directory of Open Access Journals (Sweden)

    McKeon Patrick O

    2008-06-01

    Full Text Available Abstract Background Postural control deficits have been purported to be a potential contributing factor in chronic ankle instability (CAI. Summary forceplate measures such as center of pressure velocity and area have not consistently detected postural control deficits associated with CAI. A novel measurement technique derived from the dynamical systems theory of motor control known as Time-to-boundary (TTB has shown promise in detecting deficits in postural control related to chronic ankle instability (CAI. In a previous study, TTB deficits were detected in a sample of females with CAI. The purpose of this study was to examine postural control in sample of males and females with and without CAI using TTB measures. Methods This case-control study was performed in a research laboratory. Thirty-two subjects (18 males, 14 females with self-reported CAI were recruited and matched to healthy controls. All subjects performed three, ten-second trials of single-limb stance on a forceplate with eyes open and eyes closed. Main outcome measures included the TTB absolute minimum (s, mean of TTB minima (s, and standard deviation of TTB minima (s in the anteroposterior and mediolateral directions. A series of group by gender analyses of variance were conducted to evaluate the differences in postural control for all TTB variables separately with eyes open and eyes closed. Results There were no significant group by gender interactions or gender main effects for any of the measures. There, however, significant group main effects for 4 of the 6 measures with eyes closed as the CAI group demonstrated significant deficits in comparison to the control group. There were no significant differences between groups in any of the TTB measures with eyes open. Conclusion TTB deficits were present in the CAI group compared to the control group. These deficits were detected with concurrent removal of visual input. CAI may place significantly greater constraints on the

  5. Evaluation of Postural Control in Patients with Glaucoma Using a Virtual Reality Environment.

    Science.gov (United States)

    Diniz-Filho, Alberto; Boer, Erwin R; Gracitelli, Carolina P B; Abe, Ricardo Y; van Driel, Nienke; Yang, Zhiyong; Medeiros, Felipe A

    2015-06-01

    To evaluate postural control using a dynamic virtual reality environment and the relationship between postural metrics and history of falls in patients with glaucoma. Cross-sectional study. The study involved 42 patients with glaucoma with repeatable visual field defects on standard automated perimetry (SAP) and 38 control healthy subjects. Patients underwent evaluation of postural stability by a force platform during presentation of static and dynamic visual stimuli on stereoscopic head-mounted goggles. The dynamic visual stimuli presented rotational and translational ecologically valid peripheral background perturbations. Postural stability was also tested in a completely dark field to assess somatosensory and vestibular contributions to postural control. History of falls was evaluated by a standard questionnaire. Torque moments around the center of foot pressure on the force platform were measured, and the standard deviations of the torque moments (STD) were calculated as a measurement of postural stability and reported in Newton meters (Nm). The association with history of falls was investigated using Poisson regression models. Age, gender, body mass index, severity of visual field defect, best-corrected visual acuity, and STD on dark field condition were included as confounding factors. Patients with glaucoma had larger overall STD than controls during both translational (5.12 ± 2.39 Nm vs. 3.85 ± 1.82 Nm, respectively; P = 0.005) and rotational stimuli (5.60 ± 3.82 Nm vs. 3.93 ± 2.07 Nm, respectively; P = 0.022). Postural metrics obtained during dynamic visual stimuli performed better in explaining history of falls compared with those obtained in static and dark field condition. In the multivariable model, STD values in the mediolateral direction during translational stimulus were significantly associated with a history of falls in patients with glaucoma (incidence rate ratio, 1.85; 95% confidence interval, 1.30-2.63; P = 0.001). The study presented and

  6. Time course and dimensions of postural control changes following neuromuscular training in youth field hockey athletes.

    Science.gov (United States)

    Zech, Astrid; Klahn, Philipp; Hoeft, Jon; zu Eulenburg, Christine; Steib, Simon

    2014-02-01

    Injury prevention effects of neuromuscular training have been partly attributed to postural control adaptations. Uncertainty exists regarding the magnitude of these adaptations and on how they can be adequately monitored. The objective was to determine the time course of neuromuscular training effects on functional, dynamic and static balance measures. Thirty youth (14.9 ± 3 years) field hockey athletes were randomised to an intervention or control group. The intervention included a 20-min neuromuscular warm-up program performed twice weekly for 10 weeks. Balance assessments were performed at baseline, week three, week six and post-intervention. They included the star excursion balance test (SEBT), balance error scoring system (BESS), jump-landing time to stabilization (TTS) and center of pressure (COP) sway velocity during single-leg standing. No baseline differences were found between groups in demographic data and balance measures. Adherence was at 86%. All balance measures except the medial-lateral TTS improved significantly over time (p controls (31.8 ± 22.1%). There were no significant group by time interactions in the SEBT, TTS and COP sway velocity. Neuromuscular training was effective in improving postural control in youth team athletes. However, this effect was not reflected in all balance measures suggesting that the neuromuscular training did not influence all dimensions of postural control. Further studies are needed to confirm the potential of specific warm-up programs to improve postural control.

  7. Differences in intermittent postural control between normal-weight and obese children.

    Science.gov (United States)

    Villarrasa-Sapiña, Israel; García-Massó, Xavier; Serra-Añó, Pilar; Garcia-Lucerga, Consolación; Gonzalez, Luis-Millán; Lurbe, Empar

    2016-09-01

    The main objective of this study was to determine differences in postural control between obese and non-obese children. The study design was cross-sectional, prospective, between-subjects. Postural control variables were obtained from a group of obese children and a normal-weight control group under two different postural conditions: bipedal standing position with eyes open and bipedal standing with eyes closed. Variables were obtained for each balance condition using time domain and sway-density plot analysis of the center of pressure signals acquired by means of a force plate. Pairwise comparisons revealed significant differences between obese and normal-weight children in mean velocity in antero-posterior and medio-lateral directions, ellipse area and mean distance with both eyes open and eyes closed. Normal-weight subjects obtained lower values in all these variables than obese subjects. Furthermore, there were differences between both groups in mean peaks with eyes open and in mean time with eyes closed. Alterations were detected in the intermittent postural control in obese children. According to the results obtained, active anticipatory control produces higher center of pressure displacement responses in obese children and the periods during which balance is maintained by passive control and reflex mechanisms are of shorter duration. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Muscle networks: Connectivity analysis of EMG activity during postural control

    Science.gov (United States)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  9. Hand posture classification using electrocorticography signals in the gamma band over human sensorimotor brain areas

    Science.gov (United States)

    Chestek, Cynthia A.; Gilja, Vikash; Blabe, Christine H.; Foster, Brett L.; Shenoy, Krishna V.; Parvizi, Josef; Henderson, Jaimie M.

    2013-04-01

    Objective. Brain-machine interface systems translate recorded neural signals into command signals for assistive technology. In individuals with upper limb amputation or cervical spinal cord injury, the restoration of a useful hand grasp could significantly improve daily function. We sought to determine if electrocorticographic (ECoG) signals contain sufficient information to select among multiple hand postures for a prosthetic hand, orthotic, or functional electrical stimulation system.Approach. We recorded ECoG signals from subdural macro- and microelectrodes implanted in motor areas of three participants who were undergoing inpatient monitoring for diagnosis and treatment of intractable epilepsy. Participants performed five distinct isometric hand postures, as well as four distinct finger movements. Several control experiments were attempted in order to remove sensory information from the classification results. Online experiments were performed with two participants. Main results. Classification rates were 68%, 84% and 81% for correct identification of 5 isometric hand postures offline. Using 3 potential controls for removing sensory signals, error rates were approximately doubled on average (2.1×). A similar increase in errors (2.6×) was noted when the participant was asked to make simultaneous wrist movements along with the hand postures. In online experiments, fist versus rest was successfully classified on 97% of trials; the classification output drove a prosthetic hand. Online classification performance for a larger number of hand postures remained above chance, but substantially below offline performance. In addition, the long integration windows used would preclude the use of decoded signals for control of a BCI system. Significance. These results suggest that ECoG is a plausible source of command signals for prosthetic grasp selection. Overall, avenues remain for improvement through better electrode designs and placement, better participant training

  10. Postural control analysis of diabetic individuals through baropodometry

    Directory of Open Access Journals (Sweden)

    Andréa Jeanne Lourenço Nozabieli

    2012-10-01

    Full Text Available Objective of this study was to analyze the postural balance of neuropathic diabetic individuals through baropodometry, related to losses in the sensorimotor system. Twenty-eight healthy and 25 diagnosed with diabetic neuropathy were subjected to static evaluation (measurement of displacement of body center of pressure and dynamic (temporal analysis of the stance phase of gait cycle. The tactile sensitivity of the feet was assessed by Semmes Weinstein monofilaments and isometric muscle strength of ankle dynamometry. Analyses of multivariânvia (MANOVAs and variance (ANOVAs indicated lower performance in tactile sensitivity, muscle strength and dynamic balance, but showed no difference for static equilibrium of diabetic neuropathy. With this study by regression analysis, one can infer that the equilibrium differences in gait of neuropathic insensitivity may result from tactile and muscle strength.

  11. Postural control analysis of diabetic individuals through baropodometry

    OpenAIRE

    Andréa Jeanne Lourenço Nozabieli; Alessandra Rezende Martinelli; Alessandra Madia Mantovani; Claudia Regina Sgobbi de Faria; Dalva Minonroze Albuquerque Ferreira; Cristina Elena Prado Teles Fregonesi

    2012-01-01

    Objetivo deste estudo foi analisar o equilíbrio postural de indivíduos neuropatas diabéticos, por meio de baropodometria, relacionando com prejuízos no sistema sensoriomotor. Vinte e oito pessoas saudáveis e 25 com diagnóstico de neuropatia diabética foram submetidas à avaliação estática (mensuração do deslocamento do centro de pressão corporal) e dinâmica (análise temporal da fase de apoio do ciclo da marcha). A sensibilidade tátil dos pés foi avaliada por meio de monofilamentos Semmes Weins...

  12. Differences in the use of vision and proprioception for postural control in autism spectrum disorder.

    Science.gov (United States)

    Morris, S L; Foster, C J; Parsons, R; Falkmer, M; Falkmer, T; Rosalie, S M

    2015-10-29

    People with autism spectrum disorders (ASDs) also have poorer fundamental motor skills. The development of postural control underlies both social and motor skills. All three elements are facilitated by the active use of visual information. This study compares how adults with ASD and typically developed adults (TDAs) respond to a postural illusion induced using neck vibration. Adults with ASD unlike the TDA, were not expected to correct the illusion using vision. The study used intermittent (15off, 5on) posterior neck vibration during 200 s of quiet stance to induce a postural illusion. In TDAs and only in the absence of vision this protocol induces a forward body lean. Participants (12 ASD, 20 TDA) undertook four conditions combining vibration and visual occlusion. As predicted, TDA were only affected by the postural illusion when vision was occluded (vibration condition: vision occluded (n=1) p=0.0001; vision available (n=3) p>0.2466). Adults with ASD were affected by the postural illusion regardless of the availability of vision (all conditions pposture. In light of existing evidence that vision-for-perception is processed typically in ASD, our findings support a specific deficit in vision-for-action. These findings may explain why individuals with ASD experience difficulties with both social and motor skills since both require vision-for-action. Further research needs to investigate the division of these visual learning pathways in order to provide more specific intervention opportunities in ASD. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Age-related effects of a memorizing spatial task in the adults and elderly postural control.

    Science.gov (United States)

    Berger, Laetitia; Bernard-Demanze, Laurence

    2011-02-01

    The aim of this study was to evaluate the age-related changes in postural control during a simple quiet standing task and a dual-task paradigm (applying a memory-spatial task and quiet standing). Thirty-five subjects were divided in two age-related groups: both younger (Y: 20-26 years) and older (O: 60-77 years) groups performed a simple postural task (quiet standing) and a dual-task (a visual memory task combined with quiet standing). Measures of the center of pressure (CoP) were recorded and its two components, the center of gravity (CG) and the differential CoP-CG, were evaluated. An age-related effect was observed in static postural performance during dual-tasking. Postural stability led to improved performance in younger subjects during the dual-task and but not in the elderly. Of the results suggest there is a "cognition first" principle for the younger adults, that is, the mirror image of the "posture first" principle observed in older adults under dual-tasking situations. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Postural stability is altered by the stimulation of pain but not warm receptors in humans

    Directory of Open Access Journals (Sweden)

    Corbeil Philippe

    2003-10-01

    Full Text Available Abstract Background It is now recognized that large diameter myelinated afferents provide the primary source of lower limb proprioceptive information for maintaining an upright standing position. Small diameter afferents transmitting noxious stimuli, however, can also influence motor behaviors. Despite the possible influence of pain on motor behaviors, the effects of pain on the postural control system have not been well documented. Methods Two cutaneous heat stimulations (experiment 1: non-noxious 40 degrees C; experiment 2: noxious 45 degrees C were applied bilaterally on the calves of the subject with two thermal grills to stimulate A delta and C warm receptors and nociceptors in order to examine their effects on postural stability. The non-noxious stimulation induced a gentle sensation of warmth and the noxious stimulation induced a perception of heat pain (visual analogue scores of 0 and 46 mm, respectively. For both experiments, ten healthy young adults were tested with and without heat stimulations of the lower limbs while standing upright on a force platform with eyes open, eyes closed and eyes closed with tendon co-vibration of tibialis anterior and triceps surae muscles. The center of pressure displacements were analyzed to examine how both stimulations affected the regulation of quiet standing and if the effects were exacerbated when vision was removed or ankle proprioception perturbed. Results The stimulation of the warm receptors (40 degrees C did not induce any postural deterioration. With pain (45 degrees C, subjects showed a significant increase in standard deviation, range and mean velocity of postural oscillations as well as standard deviation of the center of pressure velocity. The effects of heat pain were exacerbated when subjects had both their eyes closed and ankle tendons vibrated (increased standard deviation of the center of pressure velocity and mean velocity of the center of pressure. Conclusions A non

  15. Postural control in benign paroxysmal positional vertigo before and after recovery.

    Science.gov (United States)

    Di Girolamo, S; Paludetti, G; Briglia, G; Cosenza, A; Santarelli, R; Di Nardo, W

    1998-06-01

    Thirty-two patients affected by idiopathic benign paroxysmal positional vertigo (BPPV) of the posterior semicircular canal were studied before, 3 days and I month after a resolutive Semont manoeuvre by means of dynamic posturography. The overall postural control in BPPV patients was shown to be impaired, as demonstrated by the pathological equilibrium scores. Data obtained before treatment showed a specific pattern of vestibular involvement and a pathological composite score. After the liberatory manoeuvre the Sensory Organization Test indicated a significant improvement in the pathological composite and vestibular scores. However, significant differences from controls were still detected 3 days and 1 month after clinical recovery from BPPV. The results clearly show that, in BPPV patients, there is an impairment of the vestibular system, which seems unable to maintain a normal postural balance. This deficit can be particularly detected when dynamic posturography evaluates the vestibular cues. After the liberatory manoeuvre a consistent improvement in the overall postural control has been observed but the residual differences from controls seem to suggest that damage to the otoconial maculae influences postural control, even when there is significant improvement in the clinical signs.

  16. Posture and body image in individuals with major depressive disorder: a controlled study.

    Science.gov (United States)

    Canales, Janette Zamudio; Cordás, Táki Athanássios; Fiquer, Juliana Teixeira; Cavalcante, André Furtado; Moreno, Ricardo Alberto

    2010-12-01

    In this study, we aimed to quantify posture and body image in patients with major depressive disorder during episodes and after drug treatment, comparing the results with those obtained for healthy volunteers. Over a 10-week period, we evaluated 34 individuals with depression and 37 healthy volunteers. Posture was assessed based on digital photos of the subjects; CorelDRAW software guidelines and body landmarks were employed. Body image was evaluated using the Body Shape Questionnaire. During depressive episodes (in comparison with the post-treatment period), patients showed increased head flexion (pBody Shape Questionnaire was 90.03 during the depressive episode, compared with 75.82 during remission (p=0.012) and 62.57 for the controls. During episodes of depression, individuals with major depressive disorder experience changes in posture and mild dissatisfaction with body image. The findings demonstrate that the negative impact of depression includes emotional and physical factors.

  17. Contribution of Head Position, Standing Surface, and Vision to Postural Control in Community-Dwelling Older Adults.

    Science.gov (United States)

    Pociask, Fredrick D; DiZazzo-Miller, Rosanne; Goldberg, Allon; Adamo, Diane E

    2016-01-01

    Postural control requires the integration of sensorimotor information to maintain balance and to properly position and orient the body in response to external stimuli. Age-related declines in peripheral and central sensory and motor function contribute to postural instability and falls. This study investigated the contribution of head position, standing surface, and vision on postural sway in 26 community-dwelling older adults. Participants were asked to maintain a stable posture under conditions that varied standing surface, head position, and the availability of visual information. Significant main and interaction effects were found for all three factors. Findings from this study suggest that postural sway responses require the integration of available sources of sensory information. These results have important implications for fall risks in older adults and suggest that when standing with the head extended and eyes closed, older adults may place themselves at risk for postural disequilibrium and loss of balance. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  18. Benefit of bi-ocular visual stimulation for postural control in children with strabismus.

    Science.gov (United States)

    Gaertner, Chrystal; Creux, Charlotte; Espinasse-Berrod, Marie-Andrée; Orssaud, Christophe; Dufier, Jean-Louis; Kapoula, Zoï

    2013-01-01

    Vision is important for postural control as is shown by the Romberg quotient (RQ): with eyes closed, postural instability increases relative to eyes open (RQ = 2). Yet while fixating at far distance, postural stability is similar with eyes open and eyes closed (RQ = 1). Postural stability can be better with both eyes viewing than one eye, but such effect is not consistent among healthy subjects. The first goal of the study is to test the RQ as a function of distance for children with convergent versus divergent strabismus. The second goal is to test whether vision from two eyes relative to vision from one eye provides better postural stability. Thirteen children with divergent strabismus and eleven with convergent strabismus participated in this study. Posturtography was done with the Techno concept device. Experiment 1, four conditions: fixation at 40 cm and at 200 cm both with eyes open and eyes covered (evaluation of RQ). Experiment 2, six conditions: fixation at 40 cm and at 200 cm, with both eyes viewing or under monocular vision (dominant and non-dominant eye). For convergent strabismus, the groups mean value of RQ was 1.3 at near and 0.94 at far distance; for divergent, it was 1.06 at near and 1.68 at far. For all children, the surface of body sway was significantly smaller under both eyes viewing than monocular viewing (either eye). Increased RQ value at near for convergent and at far for divergent strabismus is attributed to the influence of the default strabismus angle and to better use of ocular motor signals. Vision with the two eyes improves postural control for both viewing distances and for both types of strabismus. Such benefit can be due to complementary mechanisms: larger visual field, better quality of fixation and vergence angle due to the use of visual inputs from both eyes.

  19. Benefit of bi-ocular visual stimulation for postural control in children with strabismus.

    Directory of Open Access Journals (Sweden)

    Chrystal Gaertner

    Full Text Available Vision is important for postural control as is shown by the Romberg quotient (RQ: with eyes closed, postural instability increases relative to eyes open (RQ = 2. Yet while fixating at far distance, postural stability is similar with eyes open and eyes closed (RQ = 1. Postural stability can be better with both eyes viewing than one eye, but such effect is not consistent among healthy subjects. The first goal of the study is to test the RQ as a function of distance for children with convergent versus divergent strabismus. The second goal is to test whether vision from two eyes relative to vision from one eye provides better postural stability. Thirteen children with divergent strabismus and eleven with convergent strabismus participated in this study. Posturtography was done with the Techno concept device. Experiment 1, four conditions: fixation at 40 cm and at 200 cm both with eyes open and eyes covered (evaluation of RQ. Experiment 2, six conditions: fixation at 40 cm and at 200 cm, with both eyes viewing or under monocular vision (dominant and non-dominant eye. For convergent strabismus, the groups mean value of RQ was 1.3 at near and 0.94 at far distance; for divergent, it was 1.06 at near and 1.68 at far. For all children, the surface of body sway was significantly smaller under both eyes viewing than monocular viewing (either eye. Increased RQ value at near for convergent and at far for divergent strabismus is attributed to the influence of the default strabismus angle and to better use of ocular motor signals. Vision with the two eyes improves postural control for both viewing distances and for both types of strabismus. Such benefit can be due to complementary mechanisms: larger visual field, better quality of fixation and vergence angle due to the use of visual inputs from both eyes.

  20. Relationship between body composition and postural control in prepubertal overweight/obese children: A cross-sectional study.

    Science.gov (United States)

    Villarrasa-Sapiña, Israel; Álvarez-Pitti, Julio; Cabeza-Ruiz, Ruth; Redón, Pau; Lurbe, Empar; García-Massó, Xavier

    2018-02-01

    Excess body weight during childhood causes reduced motor functionality and problems in postural control, a negative influence which has been reported in the literature. Nevertheless, no information regarding the effect of body composition on the postural control of overweight and obese children is available. The objective of this study was therefore to establish these relationships. A cross-sectional design was used to establish relationships between body composition and postural control variables obtained in bipedal eyes-open and eyes-closed conditions in twenty-two children. Centre of pressure signals were analysed in the temporal and frequency domains. Pearson correlations were applied to establish relationships between variables. Principal component analysis was applied to the body composition variables to avoid potential multicollinearity in the regression models. These principal components were used to perform a multiple linear regression analysis, from which regression models were obtained to predict postural control. Height and leg mass were the body composition variables that showed the highest correlation with postural control. Multiple regression models were also obtained and several of these models showed a higher correlation coefficient in predicting postural control than simple correlations. These models revealed that leg and trunk mass were good predictors of postural control. More equations were found in the eyes-open than eyes-closed condition. Body weight and height are negatively correlated with postural control. However, leg and trunk mass are better postural control predictors than arm or body mass. Finally, body composition variables are more useful in predicting postural control when the eyes are open. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of seat surface inclination on postural control during reaching in preterm children with cerebral palsy

    NARCIS (Netherlands)

    Hadders-Algra, Mijna; van der Heide, Jolanda C.; Fock, Johanna M.; Stremmelaar, Elisabeth; van Eykern, Leo A.; Otten, Bert

    Background and Purpose Because it is debatable whether seat surface inclination improves motor function in children with cerebral palsy (CP), the effect of seat surface tilting on postural control and quality of reaching was studied. Subjects The subjects were 58 children with CP aged 2 to 11 years

  2. The Nature and Control of Postural Adaptations of Boys with and without Developmental Coordination Disorder

    Science.gov (United States)

    Przysucha, Eryk P.; Taylor, M. Jane; Weber, Douglas

    2008-01-01

    This study compared the nature of postural adaptations and control tendencies, between 7 (n = 9) and 11-year-old boys (n = 10) with Developmental Coordination Disorder (DCD) and age-matched, younger (n = 10) and older (n = 9) peers in a leaning task. Examination of anterior-posterior, medio-lateral, maximum and mean area of sway, and path length…

  3. Postural Control and Automaticity in Dyslexic Children: The Relationship between Visual Information and Body Sway

    Science.gov (United States)

    Barela, Jose A.; Dias, Josenaldo L.; Godoi, Daniela; Viana, Andre R.; de Freitas, Paulo B.

    2011-01-01

    Difficulty with literacy acquisition is only one of the symptoms of developmental dyslexia. Dyslexic children also show poor motor coordination and postural control. Those problems could be associated with automaticity, i.e., difficulty in performing a task without dispending a fair amount of conscious efforts. If this is the case, dyslexic…

  4. Effects of Attentional Focus and Age on Suprapostural Task Performance and Postural Control

    Science.gov (United States)

    McNevin, Nancy; Weir, Patricia; Quinn, Tiffany

    2013-01-01

    Purpose: Suprapostural task performance (manual tracking) and postural control (sway and frequency) were examined as a function of attentional focus, age, and tracking difficulty. Given the performance benefits often found under external focus conditions, it was hypothesized that external focus instructions would promote superior tracking and…

  5. Postural control in children with spastic diplegia : Muscle activity during perturbations in sitting

    NARCIS (Netherlands)

    Brogren, E; HaddersAlgra, M; Forssberg, H

    To clarify the neural mechanisms controlling equilibrium during sitting, and the implications for the optimal sitting position for children with CP, automatic postural adjustments after perturbations of the support surface during sitting were investigated in seven children with spastic diplegia and

  6. Analysis of postural control and muscular performance in young and elderly women in different age groups.

    Science.gov (United States)

    Gomes, Matheus M; Reis, Júlia G; Carvalho, Regiane L; Tanaka, Erika H; Hyppolito, Miguel A; Abreu, Daniela C C

    2015-01-01

    muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. eighty women were divided into four groups: the young 18-30 age group (n=20); the 60-64 age group (n=20); the 65-69 age group (n=20); and the 70-74 age group (n=20). The participants underwent maximum strength (one repetition maximum or 1-RM) and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05); however, these values were lower than those of the young group (page difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women.

  7. Is visuospatial hemineglect really a determinant of postural control following stroke? An acute-phase study.

    NARCIS (Netherlands)

    Nes, I.J.W. van; Linden, S. van der; Hendricks, H.T.; Kuijk, A.A. van; Rulkens, M.; Verhagen, W.I.; Geurts, A.C.H.

    2009-01-01

    OBJECTIVE: The purpose of this study was to determine the independent contribution of visuospatial hemineglect to impaired postural control in the acute phase (<2 weeks) of stroke compared with other possible clinical and biological determinants. METHODS: This study was conducted in 4 hospitals

  8. Postural Control in Young People with Visual Impairments and Various Risks of Falls

    Science.gov (United States)

    Sadowska, Dorota; Stemplewski, Rafal; Szeklicki, Robert

    2017-01-01

    Introduction: Early diagnosis of postural control deficiencies facilitates implementation of an individual rehabilitation plan to prevent falls. The aim of the study was to assess the risk of falling in individuals with visual impairments, and to compare performance-based and theoretical limits of stability in subjects with various risks of…

  9. Process Control/SCADA system vendor security awareness and security posture.

    NARCIS (Netherlands)

    Luiijf, H.A.M.; Lüders, S.

    2009-01-01

    A starting point for the adequate security of process control/SCADA systems is the security awareness and security posture by the manufacturers, vendors, system integrators, and service organisations. The results of a short set of questions indicate that major security improvements are required in

  10. Characterising postural sway fluctuations in humans using linear and nonlinear methods

    OpenAIRE

    Kirchner, Marietta

    2013-01-01

    Introduction: Postural control is a prerequisite to many everyday and sporting activities which requires the interaction of multiple sensorimotor processes. As long as we have no balance disorders, the maintenance of an erect standing position is taken for granted with automatic running control processes. It is well known that with increasing age or disease balance problems occur which often cause fall-related injuries. To assess balance performance, posturography is widely applied in which b...

  11. Postural control and functional balance in individuals with diabetic peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Ana Claudia de Souza Fortaleza

    2013-04-01

    Full Text Available Diabetic Peripheral Neuropathy (DPN brings on reduced somatosensation, which can lead to changes in postural control. The objective of this study was to evaluate postural control in a standing position and in different conditions, as well as functional balance in individuals with DPN, make the correlation between the results obtained from the postural control assessment with the values from the functional balance test and compare the results obtained in the neuropathy group with those of the control group, checking for possible differences between the evaluation conditions of both groups. The study included 13 women with DPN (NG and 17 non-diabetic women (CG. Postural control assessment was performed by kinemetry in the following conditions: eyes opened (EO, eyes closed (EC, and semi-tandem (ST. The data was processed in MATLAB and the following variables were generated: mean amplitude of oscillation (MAO in the anterior-posterior (AP and medial-lateral (ML direction; and average speed of oscillation (ASO in AP and ML direction. Functional balance was assessed by the Timed Up and Go Test. There was significant difference between the groups (p≤0.005 in MAO-AP EO and EC, MAO-ML EC and ST, and ASO-ML ST. There were differences between the conditions EO and ST (p≤0.005 and EC and ST (p≤0.005 for the variables MAO-ML and ASO-ML with greater damage to the NG, which also had a lower functional balance (p=0.001. ML instability was positively correlated with functional imbalance. The results show a change in the postural control system in the DPN, which could lead these individuals to a higher risk for falls and functional impairment.

  12. Biview learning for human posture segmentation from 3D points cloud.

    Directory of Open Access Journals (Sweden)

    Maoying Qiao

    Full Text Available Posture segmentation plays an essential role in human motion analysis. The state-of-the-art method extracts sufficiently high-dimensional features from 3D depth images for each 3D point and learns an efficient body part classifier. However, high-dimensional features are memory-consuming and difficult to handle on large-scale training dataset. In this paper, we propose an efficient two-stage dimension reduction scheme, termed biview learning, to encode two independent views which are depth-difference features (DDF and relative position features (RPF. Biview learning explores the complementary property of DDF and RPF, and uses two stages to learn a compact yet comprehensive low-dimensional feature space for posture segmentation. In the first stage, discriminative locality alignment (DLA is applied to the high-dimensional DDF to learn a discriminative low-dimensional representation. In the second stage, canonical correlation analysis (CCA is used to explore the complementary property of RPF and the dimensionality reduced DDF. Finally, we train a support vector machine (SVM over the output of CCA. We carefully validate the effectiveness of DLA and CCA utilized in the two-stage scheme on our 3D human points cloud dataset. Experimental results show that the proposed biview learning scheme significantly outperforms the state-of-the-art method for human posture segmentation.

  13. Low-cost human motion capture system for postural analysis onboard ships

    Science.gov (United States)

    Nocerino, Erica; Ackermann, Sebastiano; Del Pizzo, Silvio; Menna, Fabio; Troisi, Salvatore

    2011-07-01

    The study of human equilibrium, also known as postural stability, concerns different research sectors (medicine, kinesiology, biomechanics, robotics, sport) and is usually performed employing motion analysis techniques for recording human movements and posture. A wide range of techniques and methodologies has been developed, but the choice of instrumentations and sensors depends on the requirement of the specific application. Postural stability is a topic of great interest for the maritime community, since ship motions can make demanding and difficult the maintenance of the upright stance with hazardous consequences for the safety of people onboard. The need of capturing the motion of an individual standing on a ship during its daily service does not permit to employ optical systems commonly used for human motion analysis. These sensors are not designed for operating in disadvantageous environmental conditions (water, wetness, saltiness) and with not optimal lighting. The solution proposed in this study consists in a motion acquisition system that could be easily usable onboard ships. It makes use of two different methodologies: (I) motion capture with videogrammetry and (II) motion measurement with Inertial Measurement Unit (IMU). The developed image-based motion capture system, made up of three low-cost, light and compact video cameras, was validated against a commercial optical system and then used for testing the reliability of the inertial sensors. In this paper, the whole process of planning, designing, calibrating, and assessing the accuracy of the motion capture system is reported and discussed. Results from the laboratory tests and preliminary campaigns in the field are presented.

  14. The Importance of Postural Control in Relation to Technical Abilities in Small-Sided Soccer Games

    Directory of Open Access Journals (Sweden)

    Edis Çağlar

    2016-12-01

    Full Text Available Making assessments regarding postural control and balance is very important for injury prevention in soccer. However, there has been no study that has associated postural control variables with branch-specific technical properties in a game. The aim of the present study was to determine the relationships between variables designating postural control levels and technical performance variables in different (1:1, 2:2 and 3:3 small-sided games (SSGs. Sixteen trained male amateur soccer players volunteered to take part in the study (age 17.2 ± 1.02 years, body height 176.25 ± 0.07 m, body mass 67.67 ± 13.27 kg. Following familiarization sessions, postural control was evaluated using one-leg and both-leg quiet-stance positions by measuring postural sway with a Tekscan HR Mat™ in anterior–posterior and medial–lateral directions. Later, 1:1, 2:2 and 3:3 SSGs were performed at two-day intervals and the technical variables specified for each game were analyzed. A Spearman’s rank-order correlation analysis demonstrated the relationship between postural control and soccer-specific technical variables in 1:1 (r-values ranging from 0.582 to 0.776, 2:2 (rvalues ranging from 0.511 to 0.740 and 3:3 (r-values ranging from 0.502 to 0.834 SSGs. In addition, a Wilcoxon signed rank test revealed differences between SSGs in terms of several variables. The results of the study showed that higher postural control levels are among the important variables that affect success in the performance of technical skills under rival pressure and suddenly changing conditions. Therefore, it is recommended that in addition to its use for injury prevention purposes, balance training should be conducted to improve branch-specific technical skills and to increase the levels of their successful performance in a game.

  15. The effectiveness of a lumbopelvic monitor and feedback device to change postural behavior: a feasibility randomized controlled trial.

    Science.gov (United States)

    Ribeiro, Daniel Cury; Sole, Gisela; Abbott, J Haxby; Milosavljevic, Stephan

    2014-09-01

    Feasibility randomized controlled trial. To assess the feasibility of a trial to investigate the effectiveness of a lumbopelvic monitor as a feedback device for modifying postural behavior during daily work-related activities. Frequent or sustained flexed postures play a role in the development or maintenance of nonspecific low back pain. The provision of postural feedback could help individuals with or at risk of nonspecific low back pain improve their postural awareness and avoid hazardous or pain-provoking postures. Sixty-two participants employed in a health care organization were randomly allocated into 1 of 3 groups: a control group, an intermittent feedback group, and a constant feedback group. Adherence and follow-up rates were assessed. Differences in postural pattern between baseline and follow-up measurements were used to assess the effectiveness of the lumbopelvic monitor as a postural feedback device. Adherence was approximately 75%. With the exception of 1 center, the follow-up overall rates exceeded the a priori desired threshold of 80%. Within-group comparisons revealed no significant differences in postural pattern for the control group and intermittent feedback group. The constant feedback group showed a significant reduction in flexed posture at the follow-up period compared with the baseline period. Differences between groups did not reach statistical significance; however, the constant feedback group, compared with the control group, demonstrated an effect size (d) of 0.60. The provision of constant postural feedback seems promising for promoting changes in postural behavior. This feasibility trial identified adherence and follow-up rates and sample-size estimates important to the conduct of a fully powered efficacy trial. Level of Evidence Therapy, level 2b-.

  16. STATIC AND DYNAMIC POSTURE CONTROL IN POSTLINGUAL COCHLEAR IMPLANTED PATIENTS: Effects of dual-tasking, visual and auditory inputs suppression

    Directory of Open Access Journals (Sweden)

    BERNARD DEMANZE eLaurence

    2014-01-01

    Full Text Available Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body’s position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of post-lingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static and dynamic conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO and eyes closed (EC conditions, with the cochlear implant activated (ON or not (OFF. Results showed that the CI patients significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk while the controls showed a whole body rigidification strategy. Hearing (prosthesis on as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions.

  17. POSTURAL CONTROL AFTER A PROLONGED TREADMILL RUN AT INDIVIDUAL VENTILATORY AND ANAEROBIC THRESHOLD

    Directory of Open Access Journals (Sweden)

    Laura Guidetti

    2011-09-01

    Full Text Available The objective of the study was to verify whether young males' balance was affected by 30min prolonged treadmill running (TR at individual ventilatory (IVT and anaerobic (IAT thresholds in recovery time. The VO2max, IAT and IVT during an incremental TR were determined. Mean displacement amplitude (Acp and velocity (Vcp of center of pressure were recorded before (pre and after (0min post; 5min post; and 10min post prolonged TR at IAT and IVT, through posturographic trials performed with eyes open (EO and closed (EC. Significant differences between IVT and IAT for Vcp, between EO and EC for Acp and Vcp, were observed. The IAT induced higher destabilizing effect when postural trials were performed with EC. The IVT intensity produced also a destabilizing effect on postural control immediately after exercise. An impairment of postural control after prolonged treadmill running exercise at IVT and IAT intensity was showed. However, destabilizing effect on postural control disappeared within 10min after IAT intensity and within 5min after IVT intensity

  18. Influence of prolonged wearing of unstable shoes on upright standing postural control.

    Science.gov (United States)

    Sousa, Andreia S P; Macedo, Rui; Santos, Rubim; Sousa, Filipa; Silva, Andreia; Tavares, João Manuel R S

    2016-02-01

    To study the influence of prolonged wearing of unstable shoes on standing postural control in prolonged standing workers. The participants were divided into two groups: one wore unstable shoes while the other wore conventional shoes for 8weeks. Stabilometry parameters related to centre of pressure (CoP), rambling (RM) and trembling (TR) as well as the total agonist/antagonist muscle activity, antagonist co-activation and reciprocal activation were evaluated during upright standing, before and after the 8weeks period. In both moments, the subjects were evaluated wearing the unstable shoes and in barefoot. The unstable shoe condition presented increased CoP displacement related variables and decreased co-activation command compared to barefoot before and after the intervention. The prolonged wearing of unstable shoes led to: (1) reduction of medial-lateral CoP root mean square and area; (2) decreased anteroposterior RM displacement; (3) increased anteroposterior RM mean velocity and mediolateral RM displacement; (4) decreased anteroposterior TR RMS; and (5) increased thigh antagonist co-activation in the unstable shoe condition. The unstable shoe condition is associated to a higher destabilising effect that leads to a selection of more efficient and accurate postural commands compared to barefoot. Prolonged wearing of unstable shoes provides increased effectiveness and performance of the postural control system, while wearing of unstable shoes in upright standing, that are reflected by changes in CoP related variables and by a reorganisation of postural control commands. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Regular physical activity reduces the effects of Achilles tendon vibration on postural control for older women.

    Science.gov (United States)

    Maitre, J; Serres, I; Lhuisset, L; Bois, J; Gasnier, Y; Paillard, T

    2015-02-01

    The aim was to determine in what extent physical activity influences postural control when visual, vestibular, and/or proprioceptive systems are disrupted. Two groups of healthy older women: an active group (74.0 ± 3.8 years) who practiced physical activities and a sedentary group (74.7 ± 6.3 years) who did not, underwent 12 postural conditions consisted in altering information emanating from sensory systems by means of sensory manipulations (i.e., eyes closed, cervical collar, tendon vibration, electromyostimulation, galvanic vestibular stimulation, foam surface). The center of foot pressure velocity was recorded on a force platform. Results indicate that the sensory manipulations altered postural control. The sedentary group was more disturbed than the active group by the use of tendon vibration. There was no clear difference between the two groups in the other conditions. This study suggests that the practice of physical activities is beneficial as a means of limiting the effects of tendon vibration on postural control through a better use of the not manipulated sensory systems and/or a more efficient reweighting to proprioceptive information from regions unaffected by the tendon vibration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Controlling Posture and Vergence Eye Movements in Quiet Stance: Effects of Thin Plantar Inserts.

    Science.gov (United States)

    Foisy, A; Gaertner, C; Matheron, E; Kapoula, Z

    2015-01-01

    The purpose of this study was to assess properties of vergence and saccade eye movements as well as posture in quiet stance, and the effects of thin plantar inserts upon postural and oculomotor control. The performances of 36 young healthy subjects were recorded by a force platform and an eye tracker in three testing conditions: without plantar stimulation, with a 3 millimetre-thick plantar insert, either a Medial or a Lateral Arch Support (MAS/LAS). The results showed a decrease of the Surface and Variance of Speed and a more posterior position of the CoP with either stimulation compared with the control condition. The fractal analysis showed a decrease with MAS. Wavelet analysis in the time-frequency domain revealed an increase in the Cancelling Time of the low frequency band with MAS. These results suggest a better stability for a lower energy cost. Concerning eye movements, the inserts influenced only vergence (not saccades): MAS caused an increase of the phasic amplitude of divergence, and conversely a decrease of the tonic amplitude. In contrast, LAS caused an increase of the tonic amplitude of convergence. Thus, MAS renders divergence less visually driven, while LAS renders convergence more visually driven. We conclude that the CNS uses the podal signal for both postural and vergence control via specific mechanisms. Plantar inserts have an influence upon posture and vergence movements in a different way according to the part of the foot sole being stimulated. These results can be useful to clinicians interested in foot or eye.

  1. Feasibility of closed-loop controller for righting seated posture after spinal cord injury.

    Science.gov (United States)

    Murphy, Julie O; Audu, Musa L; Lombardo, Lisa M; Foglyano, Kevin M; Triolo, Ronald J

    2014-01-01

    Spinal cord injury (SCI) can compromise the ability to maintain an erect seated posture. This study examined the feasibility of a sensor-based threshold controller to automatically modulate stimulation to paralyzed hip and trunk extensor muscles to restore upright sitting from forward leaning postures. Forward trunk tilt was estimated from the anterior-posterior component of gravitational acceleration sensed by a sternum-mounted wireless accelerometer. Stimulation increased if trunk tilt exceeded a specified flexion threshold and ceased once upright sitting was resumed. The controller was verified experimentally in five volunteers with SCI and successfully returned all subjects to upright postures from forward leaning positions. Upper-limb effort exerted while returning to erect posture was significantly reduced (to 7.4% +/- 3.7% of body mass) pooled across all volunteers while using the controller compared with using continuous and no stimulation (p stimulation. Clinical utility of the system for facilitating reach or preventing falls remains to be determined in future studies.

  2. Effects of increased homeostatic sleep pressure on postural control and their modulation by attentional resources.

    Science.gov (United States)

    Robillard, Rébecca; Prince, François; Boissonneault, Michèle; Filipini, Daniel; Carrier, Julie

    2011-09-01

    This study aimed to determine how increased sleep pressure interferes with postural control according to the availability of attentional resources and visual input. Thirteen healthy young adults performed a psychomotor vigilance task and postural tasks after a night of sleep and after 25 h of sleep deprivation. Primary outcome variables were calculated from the center of pressure (CoP) displacement measured by two force plates in various cognitive load and visual state conditions. Sleep deprivation increased CoP anterior-posterior range in the no cognitive load condition and decreased CoP mediolateral range and velocity in the high cognitive load conditions. Sleep deprivation effects on the mediolateral range in the eyes open high cognitive load condition were significantly correlated with its effects on the psychomotor vigilance task. Sleep deprivation destabilizes postural control when attentional and sensory resources are not challenged. In high cognitive load condition, sleep loss induces a general freezing effect that seems to be modulated by the degree of impairment in psychomotor speed. This study demonstrates that sleep pressure has a destabilizing effect on postural control independently of circadian factors, therefore suggesting that sleep debt may be a significant risk factor for falls. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Effect of Dominant Versus Non-dominant Vision in Postural Control.

    Science.gov (United States)

    Park, Rae-Young; Kee, Hoi-Sung; Kang, Jung-Ho; Lee, Su-Jin; Yoon, Soe-Ra; Jung, Kwang-Ik

    2011-06-01

    To assess the effect of dominant and non-dominant vision in controlling posture in quiet stance. Twenty-five healthy elderly subjects aged over 60 years old and twenty-five young subjects aged under 30 years old were assessed by computerized dynamic posturography. Postural stability was measured in two conditions; dominant eye open and non-dominant eye open. We used the sensory organization test (SOT) for evaluating sensory impairment. A SOT assessed the subject's ability to use and integrate somatosensory input, vision, and vestibular cues effectively to maintain balance. The SOT was conducted 3 times, and the average value of the 3 trials was used for data analysis. Equilibrium scores reflected the subject's anteroposterior sway. The highest possible score was 100, which indicated that the subject did not sway at all, and a score of 0 indicated a fall from the footplate. Determination of ocular dominance was performed by a hole-in-the card test. For the twenty-five young subjects in this study, equilibrium score in two conditions did not differ. However, for elderly subjects over 60 years, the equilibrium score in dominant vision was higher than in nondominant vision (p<0.05). In young subjects, there were no significant differences in postural control between dominant vision and non-dominant vision. However, in elderly subjects, postural control in non-dominant vision was significantly impaired. Therefore, the evaluation of a dominant eye should be considered in rehabilitation programs for elderly people.

  4. The Effects of Sex, Limb Dominance, and Soccer Participation on Knee Proprioception and Dynamic Postural Control.

    Science.gov (United States)

    Cug, Mutlu; Wikstrom, Erik A; Golshaei, Bahman; Kirazci, Sadettin

    2016-02-01

    Both female athletes' participation in soccer and associated injuries have greatly increased in recent years. One issue is the 2-9 times greater incidence of noncontact anterior cruciate ligament (ACL) injuries in female athletes relative to male athletes in comparable sports. Several factors such as limb dominance and sporting history have been proposed to play a role in ACL incidence rates between male and female athletes. However, evidence about the effects of these factors and how they interact with sex is mixed, and thus no consensus exists. To quantify the effects of sports participation, limb dominance, and sex on dynamic postural control and knee-joint proprioception. Cross-sectional study. University research laboratory. 19 male soccer players, 17 female soccer players, 19 sedentary men, and 18 sedentary women. Joint-position sense was tested using reproduction of passive positioning on a Biodex isokinetic dynamometer (30°, 45°, and 60° from 90° of knee flexion). Three Star Excursion Balance Test directions were used to assess dynamic postural control. Normalized reach distance (% of leg length) in the anterior, posteromedial, and posterolateral directions on each leg quantified dynamic postural control. Average absolute error and constant error for both limbs quantified joint-position sense. Posteromedial reach distance was significantly better in soccer players than sedentary individuals (P = .006). Anterior reach distance was significantly better (P = .04) in sedentary individuals than soccer players. No limb-dominance or sex differences were identified for dynamic postural control, and no differences in absolute- or constant-error scores were identified. Sporting history has a direction-specific impact on dynamic postural control. Sporting history, sex, and limb dominance do not influence knee-joint proprioception when tested in an open kinetic chain using passive repositioning.

  5. Analysis of postural control and muscular performance in young and elderly women in different age groups

    Directory of Open Access Journals (Sweden)

    Matheus M. Gomes

    2015-02-01

    Full Text Available BACKGROUND: muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. OBJECTIVES: the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. METHOD: eighty women were divided into four groups: the young 18-30 age group (n=20; the 60-64 age group (n=20; the 65-69 age group (n=20; and the 70-74 age group (n=20. The participants underwent maximum strength (one repetition maximum or 1-RM and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. RESULTS: the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05; however, these values were lower than those of the young group (p<0.05 as expected. There was a correlation between muscle strength and power and the postural control performance (p<0.05. CONCLUSION: despite the age difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women.

  6. Relationship between static postural control and the level of functional abilities in children with cerebral palsy

    Science.gov (United States)

    Pavão, Sílvia L.; Nunes, Gabriela S.; Santos, Adriana N.; Rocha, Nelci A. C. F.

    2014-01-01

    Background: Postural control deficits can impair functional performance in children with cerebral palsy (CP) in daily living activities. Objective: To verify the relationship between standing static postural control and the functional ability level in children with CP. Method: The postural control of 10 children with CP (gross motor function levels I and II) was evaluated during static standing on a force platform for 30 seconds. The analyzed variables were the anteroposterior (AP) and mediolateral (ML) displacement of the center of pressure (CoP) and the area and velocity of the CoP oscillation. The functional abilities were evaluated using the mean Pediatric Evaluation of Disability Inventory (PEDI) scores, which evaluated self-care, mobility and social function in the domains of functional abilities and caregiver assistance. Results: Spearman's correlation test found a relationship between postural control and functional abilities. The results showed a strong negative correlation between the variables of ML displacement of CoP, the area and velocity of the CoP oscillation and the PEDI scores in the self-care and caregiver assistance domains. Additionally, a moderate negative correlation was found between the area of the CoP oscillation and the mobility scores in the caregiver assistance domain. We used a significance level of 5% (p <0.05). Conclusions: We observed that children with cerebral palsy with high CoP oscillation values had lower caregiver assistance scores for activities of daily living (ADL) and consequently higher levels of caregiver dependence. These results demonstrate the repercussions of impairments to the body structure and function in terms of the activity levels of children with CP such that postural control impairments in these children lead to higher requirements for caregiver assistance. PMID:25054383

  7. The influence of diabetic peripheral neuropathy on local postural muscle and central sensory feedback balance control.

    Science.gov (United States)

    Toosizadeh, Nima; Mohler, Jane; Armstrong, David G; Talal, Talal K; Najafi, Bijan

    2015-01-01

    Poor balance control and increased fall risk have been reported in people with diabetic peripheral neuropathy (DPN). Traditional body sway measures are unable to describe underlying postural control mechanism. In the current study, we used stabilogram diffusion analysis to examine the mechanism under which balance is altered in DPN patients under local-control (postural muscle control) and central-control (postural control using sensory cueing). DPN patients and healthy age-matched adults over 55 years performed two 15-second Romberg balance trials. Center of gravity sway was measured using a motion tracker system based on wearable inertial sensors, and used to derive body sway and local/central control balance parameters. Eighteen DPN patients (age = 65.4±7.6 years; BMI = 29.3±5.3 kg/m2) and 18 age-matched healthy controls (age = 69.8±2.9; BMI = 27.0±4.1 kg/m2) with no major mobility disorder were recruited. The rate of sway within local-control was significantly higher in the DPN group by 49% (healthy local-controlslope = 1.23±1.06×10-2 cm2/sec, Pcontrol balance behavior in DPN patients. Unlike local-control, the rate of sway within central-control was 60% smaller in the DPN group (healthy central-controlslope-Log = 0.39±0.23, Pcontrol rate of sway with neuropathy severity (rPearson = 0.65-085, Pdiabetes (rPearson = 0.58-071, Pcontrols. However, as soon as they perceived the magnitude of sway using sensory feedback, they chose a high rigid postural control strategy, probably due to high concerns for fall, which may increase the energy cost during extended period of standing; the adaptation mechanism using sensory feedback depends on the level of neuropathy and the history of diabetes.

  8. A Review on Level of Specific Absorption Rate Due to High Power Transmission Lines: Analysis toward Human Position Posture

    Directory of Open Access Journals (Sweden)

    Ghazali Z.

    2016-01-01

    Full Text Available The main contribution of this project is the development of a homogeneous model of a man to presents the specific absorption rate (SAR due to high power transmission line. As a low frequency application under high power transmission line of 50 Hz in electrical engineering, to studies the influence of human’s posture on specific absorption rate. This project designs two types of human body which one design uses most cylinder block and another design use brick block where both blocks have a different value of mesh cells. For each design has four types of posture are standing, sitting, arms up and arms out by using Computer Simulation Technology (CST Studio Software. This analysis does toward for four types of the human position postures because each posture has different value of specific absorption rate (SAR based on the size of the mesh cells of the design. Based on two designs of the human body, the lowest of the mesh cells value will reduce time to simulate SAR. For each posture has different value of SAR for each part of the human body because the whole human body has different types of tissues. Therefore, the CST studio software uses extremely to simulate the SAR value toward human position posture due to high power transmission line.

  9. Assisting People with Multiple Disabilities Actively Correct Abnormal Standing Posture with a Nintendo Wii Balance Board through Controlling Environmental Stimulation

    Science.gov (United States)

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chu, Chiung-Ling

    2010-01-01

    The latest researches adopted software technology turning the Nintendo Wii Balance Board into a high performance change of standing posture (CSP) detector, and assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture). This study extends Wii Balance Board…

  10. Ehlers-Danlos Syndrome, Hypermobility Type: Impact of Somatosensory Orthoses on Postural Control (A Pilot Study

    Directory of Open Access Journals (Sweden)

    Emma G. Dupuy

    2017-06-01

    Full Text Available Elhers-Danlos syndrome (EDS is the clinical manifestation of connective tissue disorders, and comprises several clinical forms with no specific symptoms and selective medical examinations which result in a delay in diagnosis of about 10 years. The EDS hypermobility type (hEDS is characterized by generalized joint hypermobility, variable skin hyperextensibility and impaired proprioception. Since somatosensory processing and multisensory integration are crucial for both perception and action, we put forth the hypothesis that somatosensory deficits in hEDS patients may lead, among other clinical symptoms, to misperception of verticality and postural instability. Therefore, the purpose of this study was twofold: (i to assess the impact of somatosensory deficit on subjective visual vertical (SVV and postural stability; and (ii to quantify the effect of wearing somatosensory orthoses (i.e., compressive garments and insoles on postural stability. Six hEDS patients and six age- and gender-matched controls underwent a SVV (sitting, standing, lying on the right side evaluation and a postural control evaluation on a force platform (Synapsys, with or without visual information (eyes open (EO/eyes closed (EC. These two latter conditions performed either without orthoses, or with compression garments (CG, or insoles, or both. Results showed that patients did not exhibit a substantial perceived tilt of the visual vertical in the direction of the body tilt (Aubert effect as did the control subjects. Interestingly, such differential effects were only apparent when the rod was initially positioned to the left of the vertical axis (opposite the longitudinal body axis. In addition, patients showed greater postural instability (sway area than the controls. The removal of vision exacerbated this instability, especially in the mediolateral (ML direction. The wearing of orthoses improved postural stability, especially in the eyes-closed condition, with a particularly

  11. Ehlers-Danlos Syndrome, Hypermobility Type: Impact of Somatosensory Orthoses on Postural Control (A Pilot Study)

    Science.gov (United States)

    Dupuy, Emma G.; Leconte, Pascale; Vlamynck, Elodie; Sultan, Audrey; Chesneau, Christophe; Denise, Pierre; Besnard, Stéphane; Bienvenu, Boris; Decker, Leslie M.

    2017-01-01

    Elhers-Danlos syndrome (EDS) is the clinical manifestation of connective tissue disorders, and comprises several clinical forms with no specific symptoms and selective medical examinations which result in a delay in diagnosis of about 10 years. The EDS hypermobility type (hEDS) is characterized by generalized joint hypermobility, variable skin hyperextensibility and impaired proprioception. Since somatosensory processing and multisensory integration are crucial for both perception and action, we put forth the hypothesis that somatosensory deficits in hEDS patients may lead, among other clinical symptoms, to misperception of verticality and postural instability. Therefore, the purpose of this study was twofold: (i) to assess the impact of somatosensory deficit on subjective visual vertical (SVV) and postural stability; and (ii) to quantify the effect of wearing somatosensory orthoses (i.e., compressive garments and insoles) on postural stability. Six hEDS patients and six age- and gender-matched controls underwent a SVV (sitting, standing, lying on the right side) evaluation and a postural control evaluation on a force platform (Synapsys), with or without visual information (eyes open (EO)/eyes closed (EC)). These two latter conditions performed either without orthoses, or with compression garments (CG), or insoles, or both. Results showed that patients did not exhibit a substantial perceived tilt of the visual vertical in the direction of the body tilt (Aubert effect) as did the control subjects. Interestingly, such differential effects were only apparent when the rod was initially positioned to the left of the vertical axis (opposite the longitudinal body axis). In addition, patients showed greater postural instability (sway area) than the controls. The removal of vision exacerbated this instability, especially in the mediolateral (ML) direction. The wearing of orthoses improved postural stability, especially in the eyes-closed condition, with a particularly

  12. Influence of Transcranial Direct Current Stimulation to the Cerebellum on Standing Posture Control

    Directory of Open Access Journals (Sweden)

    Yasuto Inukai

    2016-07-01

    Full Text Available Damage to the vestibular cerebellum results in dysfunctional standing posture control. Patients with cerebellum dysfunction have a larger sway in the center of gravity while standing compared with healthy subjects. Transcranial direct current stimulation (tDCS is a noninvasive technique for selectively exciting or inhibiting specific neural structures with potential applications in functional assessment and treatment of neural disorders. However, the specific stimulation parameters for influencing postural control have not been assessed. In this study, we investigated the influence of tDCS when applied over the cerebellum on standing posture control. Sixteen healthy subjects received tDCS (20 min, 2 mA over the scalp 2 cm below the inion. In experiment 1, all 16 subjects received tDCS under three stimulus conditions, Sham, Cathodal, and Anodal, in a random order with the second electrode placed on the forehead. In experiment 2, five subjects received cathodal stimulation only with the second electrode placed over the right buccinator muscle. Center of gravity sway was measured twice for 60 s before and after tDCS in a standing posture with eyes open and legs closed, and average total locus length, locus length per second, rectangular area, and enveloped area were calculated. In experiment 1, total locus length and locus length per second decreased significantly after cathodal stimulation but not after anodal or sham stimulation, while no tDCS condition influenced rectangular or enveloped areas. In experiment 2, cathodal tDCS again significantly reduced total locus length and locus length per second but not rectangular and enveloped areas. The effects of tDCS on postural control are polarity-dependent, likely reflecting the selective excitation or inhibition of cerebellar Purkinje cells. Cathodal tDCS to the cerebellum of healthy subjects can alter body sway (velocity.

  13. The contribution of head position, standing surface and vision to postural control in young adults.

    Science.gov (United States)

    Adamo, Diane E; Pociask, Fredrick D; Goldberg, Allon

    2013-01-01

    Postural control requires the integration of sensory information and is essential for performing every day movements and activities. Integrating sensory information from multiple sources may be challenging when competing sources of sensory information are affected. To further understand this complex relationship, this study investigated the contribution of varying sources of sensory information to postural control in healthy, young participants. Sixty young healthy adults (n=22 males; mean age, 24.6 ± 2.1 SD years and (n=38 females, mean age 24.0 ± 1.4 SD years) were asked to maintain a stable posture under conditions that varied standing surface, head position and the availability of visual information. Sway velocity was largest when standing on foam with eyes closed and head extended (2.07°/s) however, under the same visual-surface conditions with the head in a neutral position, sway velocity (1.59°/s) was smaller yet remained significant. Findings from this study suggest that postural sway responses are dependent on the combined integration of available sources of sensory information. It is anticipated that such baseline information will allow us to apply our findings to the clinical management of individuals suffering from balance and vestibular impairments.

  14. Postural changes in women with chronic pelvic pain: a case control study

    Directory of Open Access Journals (Sweden)

    Nogueira Antonio A

    2009-07-01

    Full Text Available Abstract Background Chronic pelvic pain (CPP is a lower abdominal pain lasting at least 6 months, occurring continuously or intermittently and not associated exclusively with menstruation or intercourse. Although the musculoskeletal system has been found to be involved in CPP, few studies have assessed the contribution of posture in women with CPP. We aimed to determine if the frequency of postural changes was higher in women with CPP than healthy subjects. Methods A case-control study included 108 women with CPP of more than 6 months' duration (CPP group who consecutively attended at the Hospital of the University of São Paulo and 48 healthy female volunteers (control group. Postural assessment was noninvasive and performed in the standing position, with the reference points of Kendall used as normal parameters. Factors associated with CPP were assessed by logistic regression analysis. Results Logistic regression showed that the independent factors associated with CPP were postural changes in the cervical spine (OR 4.1; 95% CI 1.6–10.7; p Conclusion Musculoskeletal changes were associated with CPP in 34% of women. These findings suggest that a more detailed assessment of women with CPP is necessary for better diagnosis and for more effective treatment.

  15. Interaction between the development of postural control and the executive function of attention.

    Science.gov (United States)

    Reilly, Dinah S; van Donkelaar, Paul; Saavedra, Sandy; Woollacott, Marjorie H

    2008-03-01

    The authors examined the interaction between the development of postural control and the development of the executive function of attention in 13 children and 6 adults in dual-task conditions. Participants performed an attentionally demanding cognitive task and a postural task simultaneously. The authors equalized the attentional load of the cognitive task across age groups. Comparative changes in the center of pressure in dual- and single-task conditions indicated that dual tasks interfered with postural performance in the wide stance (WS) and the modified Romberg stance (RS). Children at 4-6 years of age (but not children at ages 7-12 years of age or adults) experienced postural control interference in both stance positions, but interference was greater in the RS (p = .018). For all participants, cognitive task performance in RS was unchanged from that in WS. The knowledge gained from the results of this study will contribute to the design and implementation of academic and preacademic programming for young children. Their performance of an intentionally demanding cognitive task would be enhanced by the provision of appropriately sized desks and chairs or their use of an alternate, less demanding position.

  16. Coordination and control of posture and ball release in basketball free-throw shooting.

    Science.gov (United States)

    Verhoeven, F Martijn; Newell, Karl M

    2016-10-01

    The objective of this study was to investigate the coordination of a whole-body task (basketball free-throw) in which success in performance outcome can be achieved through a manifold of combinations of postural and movement trajectory configurations. Participants were healthy men (19-24years) with a range of skill levels that were tested for the accuracy of 50 basketball free-throws with both their dominant and non-dominant hand. The trial-to-trial variance in release parameters as well as postural stability of the shooter and synchronization of postural movement and ball release were strong predictors of performance, with non-elite shooters having a higher mean and variability of center-of-mass (COM) speed at the time of ball release. The synchronization between the time of peak COM and the time of ball release increased as a function of skill level and hand dominance, with the better performers releasing the ball more closely to the time of COM peak height. These findings reveal how, in addition to successfully controlling the trial-to-trial variability along the solution manifold of release parameters, the relative importance of the coordination of postural control and ball release properties on shooting success changes as a function of skill level. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Fatigue-induced alterations of static and dynamic postural control in athletes with a history of ankle sprain

    National Research Council Canada - National Science Library

    Steib, Simon; Zech, Astrid; Hentschke, Christian; Pfeifer, Klaus

    2013-01-01

    Sensorimotor control is impaired after ankle injury and in fatigued conditions. However, little is known about fatigue-induced alterations of postural control in athletes who have experienced an ankle sprain in the past...

  18. Delayed postural control during self-generated perturbations in the frail older adults

    Directory of Open Access Journals (Sweden)

    Kubicki A

    2012-02-01

    Full Text Available Alexandre Kubicki1–3, François Bonnetblanc1,2, Geoffroy Petrement3, Yves Ballay1,2, France Mourey2,4¹UFR STAPS, Université de Bourgogne, Dijon, France; ²Motricité et Plasticité, Institut National de la Santé et de la Recherche Médicale (INSERM, Dijon, France; ³SARL Fovea Interactive, Campus Industriel – Espace Entreprises, Chalon sur Saône, France; 4UFR Médecine, Université de Bourgogne, Dijon, FrancePurpose: The aim of this study was to investigate the coordination between posture and movement in pathological aging (frailty in comparison with normal aging, with the hypothesis that in pathological aging, postural control evolves towards a more reactive mode for which the perturbation induced by the movement is not anticipated and leads to delayed and late postural adjustments.Methods: Elderly subjects performed rapid focal arm-raising movements towards a target, from an upright standing position in two stimuli conditions: simple reaction time and choice reaction time (CRT. Hand and center of pressure (CoP kinematics were compared between a control group and a frail group of the same age.Results: In frail individuals, the entire movement was impaired and slowed down. In addition, postural adjustments that classically precede and accompany the focal arm movement were delayed and reduced, especially in the CRT condition in which the motor prediction is more limited. Finally, a correlation between the time to CoP maximal velocity and the timed up-and-go score was observed.Conclusion: In these patients, it was concluded that the control of the CoP displacement evolved from a proactive mode in which the perturbation associated with the arm movement is anticipated toward a more reactive mode in which the perturbation is compensated by late and delayed adjustments.Keywords: frailty, anticipatory postural adjustments, backward disequilibrium

  19. Dominant foot could affect the postural control in vestibular neuritis perceived by dynamic body balance.

    Science.gov (United States)

    Yoshida, Tomoe; Tanaka, Toshitake; Tamura, Yuya; Yamamoto, Masahiko; Suzuki, Mitsuya

    2018-01-01

    During attacks of vestibular neuritis (VN), patients typically lose postural balance, with resultant postural inclination, gait deviation toward the lesion side, and tendency to fall. In this study, we examined and analyzed static and dynamic postural control during attacks of VN to characterize differences in postural control between right and left VN. Subjects were patients diagnosed with VN at the Department of Otolaryngology, Toho University Sakura Medical Center, and underwent in-patient treatment. Twenty-five patients who had spontaneous nystagmus were assessed within 3days after the onset; all were right-foot dominant. Right VN was detected in nine patients (men: 4, women: 5; mean age: 57.6±17.08years [range: 23-82]) and left VN in 16 patients (men: 10, women: 6; mean age: 58.4±14.08years [range: 23-85 years]); the percentages of canal paresis of right and left VN were 86.88±18.1% and 86.02±15.0%, respectively. Statistical comparisons were conducted using the independent t-test. In stabilometry, with eyes opened, no significant differences were found between patients with right and left VN. However, with eyes closed, the center of horizontal movement significantly shifted ipsilateral (p<0.01). The differences in the lateral and anteroposterior body tracking test (BTT) were statistically significant (p=0.0039 and p=0.0376, respectively), with greater changes in cases with right VN. Thus, the dominant foot might contribute to the postural control mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effect of IQoro® training on impaired postural control and oropharyngeal motor function in patients with dysphagia after stroke.

    Science.gov (United States)

    Hägg, Mary; Tibbling, Lita

    2016-07-01

    Conclusion All patients with dysphagia after stroke have impaired postural control. IQoro® screen (IQS) training gives a significant and lasting improvement of postural control running parallel with significant improvement of oropharyngeal motor dysfunction (OPMD). Objectives The present investigation aimed at studying the frequency of impaired postural control in patients with stroke-related dysphagia and if IQS training has any effect on impaired postural control in parallel with effect on OPMD. Method A prospective clinical study was carried out with 26 adult patients with stroke-related dysphagia. The training effect was compared between patients consecutively investigated at two different time periods, the first period with 15 patients included in the study more than half a year after stroke, the second period with 11 patients included within 1 month after stroke. Postural control tests and different oropharyngeal motor tests were performed before and after 3 months of oropharyngeal sensorimotor training with an IQS, and at a late follow-up (median 59 weeks after end of training). Result All patients had impaired postural control at baseline. Significant improvement in postural control and OPMD was observed after the completion of IQS training in both intervention groups. The improvements were still present at the late follow-up.

  1. The effects of trunk extensor and abdominal muscle fatigue on postural control and trunk proprioception in young, healthy individuals.

    Science.gov (United States)

    Larson, Dennis J; Brown, Stephen H M

    2018-02-01

    The purpose of this study was to induce both trunk extensor and abdominal muscle fatigue, on separate occasions, and compare their effects on standing postural control and trunk proprioception, as well as look at the effects of a recovery period on these outcome measures. A total of 20 individuals participated, with 10 (5 males and 5 females) completing either a standing postural control or lumbar axial repositioning protocol. Participants completed their randomly assigned protocol on two occasions, separated by at least 4  days, with either their trunk extensor or abdominal muscles being fatigued on either day. Postural control centre of pressure variables and trunk proprioception errors were compared pre- and post-fatigue. Results showed that both trunk extensor and abdominal muscle fatigue significantly degraded standing postural control immediately post-fatigue, with recovery occurring within 2 min post-fatigue. In general, these degradative effects on postural control appeared to be greater when the trunk extensor muscles were fatigued compared to the abdominal muscles. No statistically significant changes in trunk proprioception were found after either fatigue protocol. The present findings demonstrate our body's ability to quickly adapt and reweight somatosensory information to maintain postural control and trunk proprioception, as well as illustrate the importance of considering the abdominal muscles, along with the trunk extensor muscles, when considering the impact of fatigue on trunk movement and postural control. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Postural control according to the age in patients with benign paroxysmal positional vertigo.

    Science.gov (United States)

    Oliva Domínguez, M; Bartual Magro, J; Dañino González, J L; Dañino González, G; Roquette Gaona, J; Bartual Pastor, J

    2005-01-01

    To study the relationship between age and postural control in patients with benign paroxysmal positional vertigo. Prospective study performed in 65 diagnosed patients with benign paroxysmal positional vertigo (BPPV) in any of its variants. The results of the Sensory Organization Test are compared with their equivalent in a control group by means of scatterplot and regression lines. For the statistical study the Mann-Whitney's U test was used. In the NORMAL group, the regression line for composite has a 0.0934 slope; in the BPPV group, 0.4284. This difference is due to conditions 5 and 6 fundamentally, the results being statistically significant. The patients with BPPV have a worse postural control than the group control. This difference is much more pronounced the older the patient, and is of vestibular origin.

  3. Persons with multiple disabilities engage in stimulus choice and postural control with the support of a technology-aided program.

    Science.gov (United States)

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; Perilli, Viviana; Campodonico, Francesca; Marchiani, Paola; Lang, Russell

    2015-05-01

    Technology-aided programs have been reported to help persons with disabilities develop adaptive responding and control problem behavior/posture. This study assessed one such program in which choice of stimulus events was used as adaptive responding for three adults with multiple disabilities. A computer system presented the participants stimulus samples. For each sample, they could perform a choice response (gaining access to the related stimulus whose length they could extend) or abstain from responding (making the system proceed to the next sample). Once choice responding had strengthened, the program also targeted the participants' problem posture (i.e., head and trunk forward bending). The stimulus exposure gained with a choice response was interrupted if the problem posture occurred. All three participants successfully (a) managed choice responses and access to preferred stimuli and (b) gained postural control (i.e., reducing the problem posture to very low levels). The practical implications of those results are discussed. © The Author(s) 2015.

  4. Decorticate posture

    Science.gov (United States)

    ... which can lead to: Coma Inability to communicate Paralysis Seizures Alternative Names Abnormal posturing - decorticate posture; Traumatic brain injury - decorticate posture References Ball JW, Dains JE, ...

  5. Global Postural Reeducation for patients with musculoskeletal conditions: a systematic review of randomized controlled trials

    OpenAIRE

    Ferreira,Giovanni E.; Barreto,Rodrigo G. P.; Caroline C. Robinson; Rodrigo D. M. Plentz; Silva, Marcelo F.

    2016-01-01

    ABSTRACT Objectives To systematically review randomized controlled trials that assessed the effects of Global Postural Reeducation (GPR) on patient-reported outcomes in conditions of the musculoskeletal system. Method An electronic search of MEDLINE (via PubMed), EMBASE, Cochrane CENTRAL, and SciELO was performed from their inception to June 2015. Randomized controlled trials that analyzed pain and patient-reported outcomes were included in this review. The Cochrane Collaboration’s Ri...

  6. [Effects of Surgically Treated Pelvic Ring and Acetabular Fractures on Postural Control].

    Science.gov (United States)

    Lang, P; Schnegelberger, A; Riesner, H-J; Stuby, F; Friemert, B; Palm, H-G

    2016-04-01

    The aim of surgical treatment of pelvic ring and acetabular fractures is to allow rapid mobilisation of patients in order to restore stance and gait stability (postural control), as this significantly correlates with a positive outcome. The regulation of postural stability is mainly controlled by transmission of proprioceptive stimuli. In addition, the pelvis serves as a connection between the legs and the spine and thus is also of great importance for mechanical stabilisation. It remains unclear whether surgical treatment of pelvic ring and acetabular fractures affects the regulation of postural control. Therefore, the aim of this study was to examine the impact of surgically treated pelvic ring and acetabular fractures on postural stability by means of computerised dynamic posturography (CDP) after a mean of 35 months and to compare the results with a healthy control group. A retrospective case control study of 38 patients with surgically treated pelvic ring and acetabular fractures and 38 healthy volunteers was carried out using CDP. The average time of follow-up was 35 (12-78) months. The most important outcome parameter in this investigation was the overall stability index (OSI). Hip joint mobility, the health-related quality of life (SF-12) and pain were supplementary outcome parameters. It was found that surgically treated pelvic ring and acetabular fractures had no influence on postural stability. The OSI was 2.1 ° in the patient group and 1.9 ° in the control group. There was no significant difference between the groups in hip joint mobility. A total of 52 % of patients showed no or only mild pain. Mean health-related quality of life was the same as in the total population. Surgically treated pelvic ring and acetabular fractures do not lead to deterioration in postural control in the mid term. This is of high prognostic importance for rapid mobilisation of the patients. Therefore no increase in the risk of falling is expected after successfully

  7. Early motor outpatient service intervention for postural control in preterm neonates Intervenção motora precoce ambulatorial para neonatos prematuros no controle postural

    Directory of Open Access Journals (Sweden)

    Clarissa Balbão Almeida

    2008-12-01

    Full Text Available Objective: To insure the motor acquisitions related to the Axial Spontaneous Not Communicative Development, which means postural control and displacement. This was done through an early motor intervention physiotherapy program in preterm neonates born at HSL-PUCRS. Materials and Methods: the interventional program included tasks of visual harassment, toys manipulation and postural control, based on Bobath concept. All five preterms who have participated in the program were evaluated by the physiotherapy service, using The Brazilian Scale of Child behavior Development in the First Year of Life, in the beginning of the study and repeated every two months. Results: The study shows no statistical significant results in relation to postural tasks, dynamic balance and displacement. However, a progression in the preterm’s classification evaluations was demonstrated. In the first month of evaluation the median was 3 (regular classification and in the third and fifth month of evaluation the median maintained in 4 (good classification. Conclusion: The early motor intervention provided a progression in the evaluation`s classification of motor acquisitions of the preterms development, however, no statistical significant results related to postural tasks, dinamic balance and displacemen was shown.Objetivo: Verificar as aquisições motoras relacionadas ao desenvolvimento axial espontâneo não comunicativo, ou seja, controle postural e deslocamento. Isto foi feito através de um programa de intervenção motora fisioterapêutica precoce em neonatos prematuros nascidos no Hospital São Lucas - PUCRS. Materiais e Métodos: Tarefas de perseguição visual, manipulação de brinquedos e de controle postural, baseados no conceito Bobath, foram implementadas no programa interventivo. Todos os 5 prematuros que participaram deste estudo foram avaliados pelo serviço de fisioterapia por meio da Escala de Desenvolvimento do Comportamento da Criança no Primeiro Ano

  8. Infant born preterm have delayed development of adaptive postural control in the first 5 months of life.

    Science.gov (United States)

    Dusing, Stacey C; Thacker, Leroy R; Galloway, James C

    2016-08-01

    Infants born preterm are at increased risk of developmental disabilities, that may be attributed to their early experiences and ability to learn. The purpose of this paper was to evaluate the ability of infants born preterm to adapt their postural control to changing task demands. This study included 18 infants born at 32 weeks of gestation or less whose posture was compared in supine under 2 conditions, with and without a visual stimulus presented. The postural variability, measured with root mean squared displacement of the center of pressure, and postural complexity, measured with the approximate entropy of the center of pressure displacement were measured longitudinally from 2.5 to 5 months of age. The infants looked at the toys in midline for several months prior to adapting their postural variability in a manner similar to full term infants. Only after postural variability was reduced in both the caudal cephalic and medial lateral direction in the toy condition did the infants learn to reach for the toy. Postural complexity did not vary between conditions. These findings suggest that infants used a variety of strategies to control their posture. In contrast to research with infants born full term, the infants born preterm in this study did not identify the successful strategy of reducing movement of the center of pressure until months after showing interest in the toy. This delayed adaptation may impact the infants ability to learn over time. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Control of vertical posture while elevating one foot to avoid a real or virtual obstacle.

    Science.gov (United States)

    Ida, Hirofumi; Mohapatra, Sambit; Aruin, Alexander

    2017-06-01

    The purpose of this study is to investigate the control of vertical posture during obstacle avoidance in a real versus a virtual reality (VR) environment. Ten healthy participants stood upright and lifted one leg to avoid colliding with a real obstacle sliding on the floor toward a participant and with its virtual image. Virtual obstacles were delivered by a head mounted display (HMD) or a 3D projector. The acceleration of the foot, center of pressure, and electrical activity of the leg and trunk muscles were measured and analyzed during the time intervals typical for early postural adjustments (EPAs), anticipatory postural adjustments (APAs), and compensatory postural adjustments (CPAs). The results showed that the peak acceleration of foot elevation in the HMD condition decreased significantly when compared with that of the real and 3D projector conditions. Reduced activity of the leg and trunk muscles was seen when dealing with virtual obstacles (HMD and 3D projector) as compared with that seen when dealing with real obstacles. These effects were more pronounced during APAs and CPAs. The onsets of muscle activities in the supporting limb were seen during EPAs and APAs. The observed modulation of muscle activity and altered patterns of movement seen while avoiding a virtual obstacle should be considered when designing virtual rehabilitation protocols.

  10. [Attentional control of postural stability in institutionalised elderly people: effects of a physical exercise program].

    Science.gov (United States)

    Albinet, C; Bernard, P-L; Palut, Y

    2006-12-01

    We aimed to examine the effect of a physical activity program on postural sway and on the attentional control of postural abilities in elderly frail adults. Twelve older adults (age 81.4+/-9 years) institutionalised in a geriatric care institution participated in the physical activity program posture-balance-mobility (PBM) twice a week (1 hour per session) for 12 weeks. We analysed stabilometric data for surface and length of the center of pressure (COP) sway, with eyes open and eyes closed, under single-task and dual-task conditions on a firm floor before and after the training program. During the static postural evaluation and under the dual-task condition, subjects performed an attention-demanding cognitive task, the random number generation task. Only the length of COP sway was more important under the dual-task condition than under the single-task condition (p=0.05). At baseline, cognitive performance was significantly weaker under the dual-task condition (standing) than under the single-task condition (seated), with eyes closed but not eyes open (ptask did not significantly differ between the dual-task condition with eyes closed and the single-task condition with eyes closed. The training program allowed elderly subjects to improve their ability to perform an attention-demanding cognitive task while standing still, in particular with their eyes closed. Although balance seemed to be less stable under the dual-task condition than under the single-task condition, these results could be interpreted as an improvement of the attentional control of postural stability.

  11. ATLETAS DE TAEKWONDO TÊM MELHOR CONTROLE POSTURAL DO QUE ATLETAS DE HANDEBOL E FUTEBOL AMERICANO

    OpenAIRE

    Shirabe, Nelson Akio; Silva, Rubens Alexandre da; Oliveira, Márcio Rogério; Nowotny, Alexandre Henrique; Sturion, Leandro Amaral; Gil, André Wilson de Oliveira; Rodrigo Antonio Carvalho ANDRAUS; Carvalho, Adriana Paula Fontana

    2017-01-01

    RESUMO Introdução: O controle postural é um pré-requisito importante para o desempenho do atleta no esporte. Além disso, o sistema de controle postural contribui para a prevenção de lesões. Déficits nesse sistema podem levar a instabilidade corporal e sobrecarga das estruturas musculoesqueléticas, gerando disfunção e dor. Objetivos: A proposta deste estudo foi avaliar o controle postural em três diferentes modalidades esportivas: taekwondo, handebol e futebol americano. Métodos: Todos os atle...

  12. Effects of neuromuscular electrical stimulation and Kinesio Taping applications in children with cerebral palsy on postural control and sitting balance.

    Science.gov (United States)

    Elbasan, Bulent; Akaya, Kamile Uzun; Akyuz, Mufit; Oskay, Deran

    2018-02-06

    Neurodevelopmental treatment (NDT), neuromuscular electrical stimulation (NMES), and Kinesio Taping (KT) applications are separately used to improve postural control and sitting balance in children with cerebral palsy (CP). The aim of this study is to examine the combined effect of NDT, NMES and KT applications on postural control and sitting balance in children with CP. Forty five children, in 3 groups, between the ages 5-12 years were included in the study. Group 1 received NDT; group 2 received NDT + NMES; and the group 3 received NDT + NMES + KT for 6 weeks. Sitting function evaluated by the sitting section of the gross motor function measure (GMFM), and postural control assessed with the seated postural control measurement (SPCM). Seating section of GMFM was improved significantly in all the groups; however, increases in the group 3 were higher than groups 1 and 2 (p= 0.001). While significant differences were observed in all groups in the SPCM posture (pNDT improve the sitting posture, postural control, seating function, and gross motor function in children with CP.

  13. Adaptation of sensorimotor coupling in postural control is impaired by sleep deprivation.

    Directory of Open Access Journals (Sweden)

    Stefane A Aguiar

    Full Text Available The purpose of the study was to investigate the effects of sleep deprivation (SD in adaptation of the coupling between visual information and body sway in young adults' postural control due to changes in optic flow characteristics. Fifteen young adults were kept awake for approximately 25 hours and formed the SD group, while fifteen adults who slept normally the night before the experiment participated as part of the control group. All participants stood as still as possible in a moving room before and after being exposed to one trial with higher amplitude and velocity of room movement. Postural performance and the coupling between visual information, provided by a moving room, and body sway were examined. Results showed that after an abrupt change in visual cues, larger amplitude, and higher velocity of the room, the influence of room motion on body sway was decreased in both groups. However, such a decrease was less pronounced in sleep deprived as compared to control subjects. Sleep deprived adults were able to adapt motor responses to the environmental change provided by the increase in room motion amplitude. Nevertheless, they were not as efficient as control subjects in doing so, which demonstrates that SD impairs the ability to adapt sensorimotor coupling while controlling posture when a perturbation occurs.

  14. Sequential Analysis of Postural Control Resource Allocation During a Dual Task Test

    Science.gov (United States)

    Hwang, Ji Hye; Chang, Hyun Jung; Park, Dae-Sung

    2013-01-01

    Objective To investigate the postural control factors influencing the automatic (reflex-controlled) and attentional (high cortical) factors on dual task. Methods We used a dual task model to examine the attentional factors affecting the control of posture, subjecting test subjects to vibration stimulation, one-leg standing and verbal or nonverbal task trials. Twenty-three young, healthy participants were asked to stand on force plates and their centers of pressure were measured during dual task trials. We acquired 15 seconds of data for each volunteer during six dual task trials involving varying task combinations. Results We observed significantly different sway patterns between the early and late phases of dual task trials, which probably reflect the attentional demands. Vibration stimulation perturbed sway more during the early than the late phases; with or without vibration stimulation, the addition of secondary tasks decreased sway in all phases, and greater decreases in sway were observed in the late phases, when subjects were assigned nonverbal tasks. Less sway was observed during the nonverbal task in a sequential study. Conclusion The attentional and automatic factors were analyzed during a sequential study. By controlling the postural control factors, optimal parameters and training methods might be used in clinical applications. PMID:23869332

  15. Real-Time Hand Posture Recognition for Human-Robot Interaction Tasks

    Science.gov (United States)

    Hernandez-Belmonte, Uriel Haile; Ayala-Ramirez, Victor

    2016-01-01

    In this work, we present a multiclass hand posture classifier useful for human-robot interaction tasks. The proposed system is based exclusively on visual sensors, and it achieves a real-time performance, whilst detecting and recognizing an alphabet of four hand postures. The proposed approach is based on the real-time deformable detector, a boosting trained classifier. We describe a methodology to design the ensemble of real-time deformable detectors (one for each hand posture that can be classified). Given the lack of standard procedures for performance evaluation, we also propose the use of full image evaluation for this purpose. Such an evaluation methodology provides us with a more realistic estimation of the performance of the method. We have measured the performance of the proposed system and compared it to the one obtained by using only the sampled window approach. We present detailed results of such tests using a benchmark dataset. Our results show that the system can operate in real time at about a 10-fps frame rate. PMID:26742041

  16. Real-Time Hand Posture Recognition for Human-Robot Interaction Tasks

    Directory of Open Access Journals (Sweden)

    Uriel Haile Hernandez-Belmonte

    2016-01-01

    Full Text Available In this work, we present a multiclass hand posture classifier useful for human-robot interaction tasks. The proposed system is based exclusively on visual sensors, and it achieves a real-time performance, whilst detecting and recognizing an alphabet of four hand postures. The proposed approach is based on the real-time deformable detector, a boosting trained classifier. We describe a methodology to design the ensemble of real-time deformable detectors (one for each hand posture that can be classified. Given the lack of standard procedures for performance evaluation, we also propose the use of full image evaluation for this purpose. Such an evaluation methodology provides us with a more realistic estimation of the performance of the method. We have measured the performance of the proposed system and compared it to the one obtained by using only the sampled window approach. We present detailed results of such tests using a benchmark dataset. Our results show that the system can operate in real time at about a 10-fps frame rate.

  17. Real-Time Hand Posture Recognition for Human-Robot Interaction Tasks.

    Science.gov (United States)

    Hernandez-Belmonte, Uriel Haile; Ayala-Ramirez, Victor

    2016-01-04

    In this work, we present a multiclass hand posture classifier useful for human-robot interaction tasks. The proposed system is based exclusively on visual sensors, and it achieves a real-time performance, whilst detecting and recognizing an alphabet of four hand postures. The proposed approach is based on the real-time deformable detector, a boosting trained classifier. We describe a methodology to design the ensemble of real-time deformable detectors (one for each hand posture that can be classified). Given the lack of standard procedures for performance evaluation, we also propose the use of full image evaluation for this purpose. Such an evaluation methodology provides us with a more realistic estimation of the performance of the method. We have measured the performance of the proposed system and compared it to the one obtained by using only the sampled window approach. We present detailed results of such tests using a benchmark dataset. Our results show that the system can operate in real time at about a 10-fps frame rate.

  18. Physics-based Simulation of Human Posture Using 3D Whole Body Scanning Technology for Astronaut Space Suit Evaluation

    Science.gov (United States)

    Kim, Kyu-Jung

    2005-01-01

    Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.

  19. Effectiveness of Neuro-Developmental Treatment (bobath concept) on postural control and balance in Cerebral Palsied Children.

    Science.gov (United States)

    Tekin, Fatih; Kavlak, Erdogan; Cavlak, Ugur; Altug, Filiz

    2017-11-17

    The aim of this study was to show the effects of an 8-week Neurodevelopmental Treatment based posture and balance training on postural control and balance in diparetic and hemiparetic Cerebral Palsied children (CPC). Fifteen CPC (aged 5-15 yrs) were recruited from Denizli Yağmur Çocukları Rehabilitation Centre. Gross Motor Function Classification System, Gross Motor Function Measure, 1-Min Walking Test, Modified Timed Up and Go Test, Paediatric Balance Scale, Functional Independence Measure for Children and Seated Postural Control Measure were used for assessment before and after treatment. An 8-week NDT based posture and balance training was applied to the CPC in one session (60-min) 2 days in a week. After the treatment program, all participants showed statistically significant improvements in terms of gross motor function (p< 0.05). They also showed statistically significant improvements about balance abilities and independence in terms of daily living activities (p< 0.05). Seated Postural Control Measure scores increased after the treatment program (p< 0.05). The results of this study indicate that an 8-week Neurodevelopmental Treatment based posture and balance training is an effective approach in order to improve functional motor level and functional independency by improving postural control and balance in diparetic and hemiparetic CPC.

  20. How plantar exteroceptive efficiency modulates postural and oculomotor control: inter-individual variability

    Directory of Open Access Journals (Sweden)

    Arnaud eFoisy

    2016-05-01

    Full Text Available In a previous experiment, we showed that among young and healthy subjects, thin plantar inserts improve postural control and modify vergence amplitudes. In this experiment, however, significant inter-individual variability was observed. We hypothesize that its origin could be attributed to a different reliance upon feet cutaneous afferents. In order to test this hypothesis, we re-analyzed the data relative to 31 young (age 25,7±3,8 and healthy subjects who participated in the first experiment after having classified them into two groups depending on their Plantar Quotient (PQ = Surface area of CoP foam / Surface area of CoP firm ground x100. Foam decreases the information arising from the feet, normally resulting in a PQ>100. Hence, the PQ provides information on the weight of plantar cutaneous afferents used in postural control. Twelve people were Plantar-Independent Subjects, as indicated by a PQ<100. These individuals did not behave like the Normal Plantar Quotient Subjects: they were almost insensitive to the plantar stimulations in terms of postural control and totally insensitive in terms of oculomotor control. We conclude that the inter-individual variability observed in our first experiment is explained by the subjects’ degree of plantar reliance. We propose that plantar independence is a dysfunctional situation revealing an inefficiency in plantar cutaneous afferents. The latter could be due to a latent somatosensory dysfunction generating a noise which prevents the CNS from correctly processing and using feet somatosensory afferents both for balance and vergence control: Plantar Irritating Stimulus. Considering the non-noxious nature and prevalence of this phenomenon, these results can be of great interest to researchers and clinicians who attempt to trigger postural or oculomotor responses through mechanical stimulation of the foot sole.

  1. A Telerehabilitation Program Improves Postural Control in Multiple Sclerosis Patients: A Spanish Preliminary Study

    Directory of Open Access Journals (Sweden)

    Rosa Ortiz-Gutiérrez

    2013-10-01

    Full Text Available Postural control disorders are among the most frequent motor disorder symptoms associated with multiple sclerosis. This study aims to demonstrate the potential improvements in postural control among patients with multiple sclerosis who complete a telerehabilitation program that represents a feasible alternative to physical therapy for situations in which conventional treatment is not available. Fifty patients were recruited. Control group (n = 25 received physiotherapy treatment twice a week (40 min per session. Experimental group (n = 25 received monitored telerehabilitation treatment via videoconference using the Xbox 360® and Kinect console. Experimental group attended 40 sessions, four sessions per week (20 min per session.The treatment schedule lasted 10 weeks for both groups. A computerized dynamic posturography (Sensory Organization Test was used to evaluate all patients at baseline and at the end of the treatment protocol. Results showed an improvement over general balance in both groups. Visual preference and the contribution of vestibular information yielded significant differences in the experimental group. Our results demonstrated that a telerehabilitation program based on a virtual reality system allows one to optimize the sensory information processing and integration systems necessary to maintain the balance and postural control of people with multiple sclerosis. We suggest that our virtual reality program enables anticipatory PC and response mechanisms and might serve as a successful therapeutic alternative in situations in which conventional therapy is not readily available.

  2. Effects of kettlebell training on postural coordination and jump performance: a randomized controlled trial.

    Science.gov (United States)

    Jay, Kenneth; Jakobsen, Markus D; Sundstrup, Emil; Skotte, Jørgen H; Jørgensen, Marie B; Andersen, Christoffer H; Pedersen, Mogens T; Andersen, Lars L

    2013-05-01

    The aim of this study was to investigate the effectiveness of a worksite intervention using kettlebell training to improve postural reactions to perturbation and jump performance. This single-blind randomized controlled trial involved 40 adults (n = 40) from occupations with a high prevalence of musculoskeletal pain and discomfort (mean age 44 years, body mass index 23 kg·m, 85% women). A blinded examiner took measures at baseline and follow-up. Participants were randomly assigned to a training group-doing kettlebell swings 3 times a week for 8 weeks-or to a control group. The outcome measures were postural reactions to sudden perturbation and maximal countermovement jump height. Compared with the control group, the training group had a significant decreased stopping time after perturbation (-109 ms, 95% confidence interval [-196 to -21]). Jump height increased significantly in the training group (1.5 cm, 95% confidence interval [0.5 to 2.5]), but this was nonsignificantly different from control. Kettlebell training improves postural reactions to sudden perturbation. Future studies should investigate whether kettlebell training can reduce the risk of low back injury in occupations with manual material handling or patient handling where sudden perturbations often occur.

  3. Dynamic plantar pressure distribution, strength capacity and postural control after Lisfranc fracture-dislocation

    DEFF Research Database (Denmark)

    Mehlhorn, Alexander T; Walther, Markus; Yilmaz, Tayfun

    2017-01-01

    Substantial progress has been made in the operative treatment of Lisfranc fractures, however, the prognosis remains poor. We hypothesized that Lisfranc injuries change the postural control and muscle strength of the lower limb. Both are suggested to correlate with the clinical outcome and quality...... of life. 17 consecutive patients suffering from a Lisfranc fracture dislocation were registered, underwent open reduction and internal fixation and were followed-up for 50.5±25.7months (Mean±SDM). Biomechanical analysis of muscle strength capacities, postural control and plantar pressure distribution...... was assessed >6 month postoperatively. Results were correlated to clinical outcome (AOFAS, FFI, Pain, SF-36). The isokinetic assessment revealed a significant reduction in plantar flexor and dorsal extensor peak torque of the injured limb compared to the uninjured limb. The dorsal extensor peak torque thereby...

  4. Effect of a Dynamic Seating Surface on Postural Control and Function in Children with Cerebral Palsy

    DEFF Research Database (Denmark)

    Meyer, Erna Rosenlund; Trew, Lisa

    Purpose: The purpose was to investigate if a seating system involving a dynamic material covering the seat back and base improves postural control, alignment and function in children with cerebral palsy and to investigate consequences of adapting The Seated Postural Control Measure to a target...... point in a seatback and seat bottom made of a dynamic material and designed to give ergonomic support and is part of research collaboration in the Northern Region of Denmark, supported financial by the named partners and the European Regional Development Fund. Participants: A total of 10 children, age...... 10-16 from a school for children with special needs in the Northern Region of Denmark. Methods: In this clinical study two seating systems were compared; the new developed dynamic seating system (DSS) versus a traditional seating system of various types (TSS). The study was approved by the Danish...

  5. The effects of vestibular stimulation and fatigue on postural control in classical ballet dancers.

    Science.gov (United States)

    Hopper, Diana M; Grisbrook, Tiffany L; Newnham, Prudence J; Edwards, Dylan J

    2014-01-01

    This study aimed to investigate the effects of ballet-specific vestibular stimulation and fatigue on static postural control in ballet dancers and to establish whether these effects differ across varying levels of ballet training. Dancers were divided into three groups: professional, pre-professional, and recreational. Static postural control of 23 dancers was measured on a force platform at baseline and then immediately, 30 seconds, and 60 seconds after vestibular stimulation (pirouettes) and induction of fatigue (repetitive jumps). The professional dancers' balance was unaffected by both the vestibular stimulation and the fatigue task. The pre-professional and recreational dancers' static sway increased following both perturbations. It is concluded that professional dancers are able to compensate for vestibular and fatiguing perturbations due to a higher level of skill-specific motor training.

  6. Effect of Feldenkrais exercises on dual task postural control in older adults

    Directory of Open Access Journals (Sweden)

    Ullmann G

    2014-07-01

    Full Text Available Gerhild Ullmann,1 Harriet G Williams2 1Social and Behavioral Sciences, University of Memphis, School of Public Health, Memphis, TN, USA; 2Exercise Science, University of South Carolina, Columbia, SC, USAAgmon et al1 recently published an interesting systematic review of interventions to improve dual-task postural control in older adults. Given that many everyday activities (eg, walking and carrying groceries require dual-task postural control, this is an important topic. This type of research is integral to expanding scientific knowledge in the field of interventions. The authors describe the methods of the review process clearly. However, in our opinion, adherence to the stated methods is not always evident. Read the original paper

  7. Static and dynamic postural control in low-vision and normal-vision adults

    OpenAIRE

    Tomomitsu, Mônica S.V.; Angelica Castilho Alonso; Eurica Morimoto; Bobbio, Tatiana G.; Greve,Julia M.D.

    2013-01-01

    OBJECTIVE: This study aimed to evaluate the influence of reduced visual information on postural control by comparing low-vision and normal-vision adults in static and dynamic conditions. METHODS: Twenty-five low-vision subjects and twenty-five normal sighted adults were evaluated for static and dynamic balance using four protocols: 1) the Modified Clinical Test of Sensory Interaction on Balance on firm and foam surfaces with eyes opened and closed; 2) Unilateral Stance with eyes opened and ...

  8. The Effect of Visual Stimuli on Stability and Complexity of Postural Control

    Directory of Open Access Journals (Sweden)

    Haizhen Luo

    2018-02-01

    Full Text Available Visual input could benefit balance control or increase postural sway, and it is far from fully understanding the effect of visual stimuli on postural stability and its underlying mechanism. In this study, the effect of different visual inputs on stability and complexity of postural control was examined by analyzing the mean velocity (MV, SD, and fuzzy approximate entropy (fApEn of the center of pressure (COP signal during quiet upright standing. We designed five visual exposure conditions: eyes-closed, eyes-open (EO, and three virtual reality (VR scenes (VR1–VR3. The VR scenes were a limited field view of an optokinetic drum rotating around yaw (VR1, pitch (VR2, and roll (VR3 axes, respectively. Sixteen healthy subjects were involved in the experiment, and their COP trajectories were assessed from the force plate data. MV, SD, and fApEn of the COP in anterior–posterior (AP, medial–lateral (ML directions were calculated. Two-way analysis of variance with repeated measures was conducted to test the statistical significance. We found that all the three parameters obtained the lowest values in the EO condition, and highest in the VR3 condition. We also found that the active neuromuscular intervention, indicated by fApEn, in response to changing the visual exposure conditions were more adaptive in AP direction, and the stability, indicated by SD, in ML direction reflected the changes of visual scenes. MV was found to capture both instability and active neuromuscular control dynamics. It seemed that the three parameters provided compensatory information about the postural control in the immersive virtual environment.

  9. Falls and Postural Control in Older Adults With Eye Refractive Errors

    Directory of Open Access Journals (Sweden)

    Afsun Nodehi-Moghadam

    2016-04-01

    Conclusion: Vision impairment of older adults due to refractive error is not associated with an increase in falls. Furthermore, TUG test results did not show balance disorders in these groups. Further research, such as assessment of postural control with advanced devices and considering other falling risk factors is also needed to identify the predictors of falls in older adults with eye refractive errors.

  10. Gaze stabilization exercises derive sensory reweighting of vestibular for postural control

    OpenAIRE

    Ueta, Yusuke; Matsugi, Akiyoshi; Oku, Kosuke; Okuno, Kojiro; Tamaru, Yoshiki; Nomura, Shohei; Tanaka, Hiroaki; Douchi, Shinya; Mori, Nobuhiko

    2017-01-01

    [Purpose] The aim of this study was to investigate whether gaze stabilization exercise derives sensory reweighting of vestibular for upright postural control. [Subjects and Methods] Twenty-three healthy volunteers participated in this study. The center of pressure of the total trajectory length was measured before (pre), immediately after (post), and 10?min after (post10) gaze stabilization exercise, in the static standing position, with the eyes open or closed, on the floor or on foam rubber...

  11. Effects of vision and cognitive load on static postural control in subjects with and without patellofemoral pain syndrome.

    Science.gov (United States)

    Zeinalzadeh, Afsaneh; Talebian, Saeed; Naghdi, Soofia; Salavati, Mahyar; Nazary-Moghadam, Salman; Zeynalzadeh Ghoochani, Bahareh

    2018-04-01

    To compare the effects of vision and cognitive load on static postural control in subjects with and without patellofemoral pain syndrome (PFPS). Twenty-eight PFPS patients and 28 controls participated in the study. Postural control was assessed in isolation as well as with visual manipulation and cognitive loading on symptomatic limb. The outcome measures of postural control were quantified in terms of area, anterior-posterior (AP), medial-lateral (ML), and mean velocity (MV) of the displacements of center of pressure (COP). In addition, cognitive performance (auditory Stroop task) was measured in the forms of average reaction time and error ratio in baseline (sitting) and different postural conditions. PFPS subjects showed greater increases in area (p = 0.01), AP (p = 0.01), and ML (p = 0.05) displacements of COP in the blindfolded tasks as compared to control group. However, cognitive load did not differently affect postural control in the two groups. Although PFPS and control group had similar reaction times in the sitting position (p = 0.29), PFPS subjects had longer reaction times than healthy subjects in dual task conditions (p = 0.04). Visual inputs seem to be essential for discriminating postural control between PFPS and healthy individuals. PFPS patients biased toward decreasing cognitive performance more than healthy subjects when they perform the single leg stance and cognitive task concurrently.

  12. Energy expenditure of stroke patients during postural control tasks

    NARCIS (Netherlands)

    Houdijk, J.H.P.; ter Hoeve, N.; Nooijen, Carla; Reintjes, D.; Tolsma, M.; Lamoth, C.J.C.

    Two common impairments in patients after stroke are loss of balance control and fatigue. We propose that both could be inter-related. The purpose of this study was to investigate the metabolic energy demand for balance control in patients after stroke during upright standing. Ten stroke patients and

  13. Cognitive-motor interference during postural control indicates at-risk cerebellar profiles in females with the FMR1 premutation.

    Science.gov (United States)

    Kraan, Claudine M; Hocking, Darren R; Georgiou-Karistianis, Nellie; Metcalfe, Sylvia A; Archibald, Alison D; Fielding, Joanne; Trollor, Julian; Bradshaw, John L; Cohen, Jonathan; Cornish, Kim M

    2013-09-15

    Recent investigations report a higher risk of motor symptoms in females with the FMR1 premutation (PM-carriers) than has hitherto been appreciated. Here we examined basic sensorimotor and postural control under different sensory and attentional dual-task demands. Physiological performance and postural sway measures from the Physiological Profile Assessment (Lord et al., 2003 [39]) were conducted in 28 female PM-carriers (mean age: 41.32±8.03) and 31 female controls with normal FMR1 alleles (mean age: 41.61±8.3). Multiple regression analyses were conducted to examine the moderating role of CGG-repeat length on the relation between age and postural sway under dual-task interference. In female PM-carriers, our results showed significantly poorer proprioceptive awareness, slower reaction time, and greater postural displacement when performing a concurrent verbal fluency task. Significantly, these findings showed age- and genetically-modulated changes in dual-task postural displacement in the medio-lateral direction in female PM-carriers. These findings highlight the sensitivity of postural control paradigms in identifying early cerebellar postural changes that may act as surrogate markers of future decline in female PM-carriers. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. How does practise of internal Chinese martial arts influence postural reaction control?

    Science.gov (United States)

    Gorgy, Olivier; Vercher, Jean-Louis; Coyle, Thelma

    2008-04-01

    The aim of this study was to determine the effects of Chinese martial arts practice on postural reaction control after perturbation. Participants standing in Romberg tandem posture were subjected to an unexpected lateral platform translation with the eyes open or closed at two translation amplitudes. The peak displacement of the centre of pressure and of the centre of mass, and the onset latency of muscular activity (tibialis anterior, gastrocnemius, lumbodorsal muscular group, and rectus abdominis), were evaluated for martial arts practitioners and for sport and non-sport participants. Compared with the sport and non-sport participants, the martial arts group showed lower maximal centre of pressure and centre of mass peak displacements in both the lateral and anterior - posterior directions, but no difference was found in the onset of muscular responses. We conclude that martial arts practice influences postural reaction control during a fixed-support strategy in a tandem task. The martial arts group used the ankle joint more frequently than the sport and non-sport participants, especially in the eyes-closed conditions. Our results suggest that the better balance recovery in the martial arts group is a consequence of better control of biomechanical properties of the lower limbs (e.g. through muscular response by co-contraction), not a change in the neuromuscular temporal pattern.

  15. EFFECT OF INDOOR AIR POLLUTION ON POSTURAL BALANCE CONTROL AMONG SCHOOL STUDENTS

    Directory of Open Access Journals (Sweden)

    Heba M Youssr El-Basatiny

    2014-12-01

    Full Text Available Background: To study the effect of indoor air pollution levels on postural balance control among Saudi school students. Methods: Ninety healthy students (age from 12-16 years were selected randomly from several preparatory schools representing two areas of different air pollution load and sources in the Eastern Province of Saudi Arabia (group A and B. Levels of carbon monoxide gas (CO, volatile organic compounds (VOCs and particulate matter less than 10 microns (PM10 were measured at different sites inside the selected schools. The postural control was measured for each participant using Biodex Balance System in bipedal stance with eyes open at the most and least stable levels for 20s. Results: There was no statistical significant difference for the mean values of overall stability index between both groups A and B at the most stable level (p=0.17, while there was a statistical significant difference at the least stable level with mean ± SD of group A and B 2.01±0.48 and 2.61±0.68 respectively. In addition, there were statistical significant differences between the mean levels of all measured air pollutants and overall stability index at the two stability levels in both groups (p<0.01. Conclusion: Indoor air pollution, particularly exposure of students to VOCs, PM10 and CO, has an adverse effect on postural balance control among school students even at low exposure levels.

  16. Effect of ankle-foot orthosis on postural control after stroke: a systematic review.

    Science.gov (United States)

    Guerra Padilla, M; Molina Rueda, F; Alguacil Diego, I M

    2014-09-01

    Stroke is currently the main cause of permanent disability in adults. The impairments are a combination of sensory, motor, cognitive and emotional changes that result in restrictions on the ability to perform basic activities of daily living (BADL). Postural control is affected and causes problems with static and dynamic balance, thus increasing the risk of falls and secondary injuries. The purpose of this review was to compile the literature to date, and assess the impact of ankle-foot orthosis (AFO) on postural control and gait in individuals who have suffered a stroke. The review included randomised and controlled trials that examined the effects of AFO in stroke patients between 18 and 80 years old, with acute or chronic evolution. No search limits on the date of the studies were included, and the search lasted until April 2011. The following databases were used: Pubmed, Trip Database, Cochrane library, Embase, ISI Web Knowledge, CINHAL and PEDro. Intervention succeeded in improving some gait parameters, such as speed and cadence. However it is not clear if there was improvement in the symmetry, postural sway or balance. Because of the limitations of this systematic review, due to the clinical diversity of the studies and the methodological limitations, 0these results should be considered with caution. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  17. Biopsychosocial Measures Related to Chronic Low Back Pain Postural Control in Older Adults

    Directory of Open Access Journals (Sweden)

    Ryan Hulla

    2017-10-01

    Full Text Available This study examined the biopsychosocial measures related to postural control in the growing population of older adults (i.e., 60 years and older. The sample of the study consisted of 129 older adults (M = 74.45, SD = 6.95, with 34 males and 95 females; 36 were classified with chronic low-back pain (CLBP, and 93 without chronic low-back pain (NCLBP. Physical and psychosocial constructs were analyzed as predictors for postural control measures. Additionally, gender and classification of low-back pain were examined as moderators for all physical and psychosocial measures. Results demonstrated that physical and psychosocial measures were able to significantly predict composite, visual, and vestibular balance measures, but not somatosensory or preference balance measures. The chair-stand test, modified sit-and-reach test, sleep disturbance, and balance efficacy were all identified as individually significant predictors. Gender and CLBP did not moderate the utility of any predictor variables. Results of the current study re-confirm the importance of utilizing the biopsychosocial approach for future research examining postural control in older adults.

  18. Dynamic plantar pressure distribution, strength capacity and postural control after Lisfranc fracture-dislocation.

    Science.gov (United States)

    Mehlhorn, Alexander T; Walther, Markus; Yilmaz, Tayfun; Gunst, Lennart; Hirschmüller, Anja; Südkamp, Norbert P; Schmal, Hagen

    2017-02-01

    Substantial progress has been made in the operative treatment of Lisfranc fractures, however, the prognosis remains poor. We hypothesized that Lisfranc injuries change the postural control and muscle strength of the lower limb. Both are suggested to correlate with the clinical outcome and quality of life. 17 consecutive patients suffering from a Lisfranc fracture dislocation were registered, underwent open reduction and internal fixation and were followed-up for 50.5±25.7months (Mean±SDM). Biomechanical analysis of muscle strength capacities, postural control and plantar pressure distribution was assessed >6 month postoperatively. Results were correlated to clinical outcome (AOFAS, FFI, Pain, SF-36). The isokinetic assessment revealed a significant reduction in plantar flexor and dorsal extensor peak torque of the injured limb compared to the uninjured limb. The dorsal extensor peak torque thereby correlated well with clinical outcome. Altered postural control was evident by a significant reduction in unilateral stance time, from which we calculated a strong correlation between stance time and the isokinetic strength measurement. Plantar pressure measurements revealed a significant reduction in peak pressure under the midfoot and of Force-Time Integral beneath the second metatarsal. Sufficient rehabilitation is crucial to the clinical outcome following anatomical open reduction of Lisfranc fracture-dislocation. The present study supports a rehabilitation approach focussing on restoring proprioception and calf muscular strength including isometric exercises of the dorsal extensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Dose postural control improve following application of transcutaneous electrical nerve stimulation in diabetic peripheral neuropathic patients? A randomized placebo control trial.

    Science.gov (United States)

    Saadat, Z; Rojhani-Shirazi, Z; Abbasi, L

    2017-06-09

    peripheral neuropathy is the most common problem of diabetes. Neuropathy leads to lower extremity somatosensory deficits and postural instability in these patients. However, there are not sufficient evidences for improving postural control in these patients. To investigate the effects of transcutaneous electrical nerve stimulation (TENS) on postural control in patients with diabetic neuropathy. Twenty eighth patients with diabetic neuropathy (40-55 Y/O) participated in this RCT study. Fourteen patients in case group received TENS and sham TENS was used for control group. Force plate platform was used to extract sway velocity and COP displacement parameters for postural control evaluation. The mean sway velocity and center of pressure displacement along the mediolateral and anteroposterior axes were not significantly different between two groups after TENS application (p>0.05). Application of 5min high frequency TENS on the knee joint could not improve postural control in patients with diabetic neuropathy. Copyright © 2017. Published by Elsevier Ltd.

  20. An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability.

    Science.gov (United States)

    Cruise, Denise R; Chagdes, James R; Liddy, Joshua J; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Raman, Arvind

    2017-07-26

    Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The effectiveness of foot orthotics in improving postural control in individuals with chronic ankle instability: a critically appraised topic.

    Science.gov (United States)

    Gabriner, Michael L; Braun, Brittany A; Houston, Megan N; Hoch, Matthew C

    2015-02-01

    Chronic ankle instability (CAI) is a condition commonly experienced by physically active individuals. It has been suggested that foot orthotics may increase a CAI patient's postural control. For patients with CAI, is there evidence to suggest that an orthotic intervention will help improve postural control? The literature was searched for studies of level 2 evidence or higher that investigated the effects of foot orthotics on postural control in patients with CAI. The search of the literature produced 5 possible studies for inclusion; 2 studies met the inclusion criteria and were included. One randomized controlled trial and 1 outcomes study were included. Foot orthotics appear to be effective at improving postural control in patients with CAI. There is moderate evidence to support the use of foot orthotics in the treatment of CAI to help improve postural control. There is grade B evidence that foot orthotics help improve postural control in people with CAI. The Centre of Evidence Based Medicine recommends a grade of B for level 2 evidence with consistent findings.

  2. Controlling Posture and Vergence Eye Movements in Quiet Stance: Effects of Thin Plantar Inserts

    Science.gov (United States)

    Foisy, A.; Gaertner, C.; Matheron, E.; Kapoula, Z.

    2015-01-01

    The purpose of this study was to assess properties of vergence and saccade eye movements as well as posture in quiet stance, and the effects of thin plantar inserts upon postural and oculomotor control. The performances of 36 young healthy subjects were recorded by a force platform and an eye tracker in three testing conditions: without plantar stimulation, with a 3 millimetre-thick plantar insert, either a Medial or a Lateral Arch Support (MAS / LAS). The results showed a decrease of the Surface and Variance of Speed and a more posterior position of the CoP with either stimulation compared with the control condition. The fractal analysis showed a decrease with MAS. Wavelet analysis in the time-frequency domain revealed an increase in the Cancelling Time of the low frequency band with MAS. These results suggest a better stability for a lower energy cost. Concerning eye movements, the inserts influenced only vergence (not saccades): MAS caused an increase of the phasic amplitude of divergence, and conversely a decrease of the tonic amplitude. In contrast, LAS caused an increase of the tonic amplitude of convergence. Thus, MAS renders divergence less visually driven, while LAS renders convergence more visually driven. We conclude that the CNS uses the podal signal for both postural and vergence control via specific mechanisms. Plantar inserts have an influence upon posture and vergence movements in a different way according to the part of the foot sole being stimulated. These results can be useful to clinicians interested in foot or eye. PMID:26637132

  3. Controlling Posture and Vergence Eye Movements in Quiet Stance: Effects of Thin Plantar Inserts.

    Directory of Open Access Journals (Sweden)

    A Foisy

    Full Text Available The purpose of this study was to assess properties of vergence and saccade eye movements as well as posture in quiet stance, and the effects of thin plantar inserts upon postural and oculomotor control. The performances of 36 young healthy subjects were recorded by a force platform and an eye tracker in three testing conditions: without plantar stimulation, with a 3 millimetre-thick plantar insert, either a Medial or a Lateral Arch Support (MAS/LAS. The results showed a decrease of the Surface and Variance of Speed and a more posterior position of the CoP with either stimulation compared with the control condition. The fractal analysis showed a decrease with MAS. Wavelet analysis in the time-frequency domain revealed an increase in the Cancelling Time of the low frequency band with MAS. These results suggest a better stability for a lower energy cost. Concerning eye movements, the inserts influenced only vergence (not saccades: MAS caused an increase of the phasic amplitude of divergence, and conversely a decrease of the tonic amplitude. In contrast, LAS caused an increase of the tonic amplitude of convergence. Thus, MAS renders divergence less visually driven, while LAS renders convergence more visually driven. We conclude that the CNS uses the podal signal for both postural and vergence control via specific mechanisms. Plantar inserts have an influence upon posture and vergence movements in a different way according to the part of the foot sole being stimulated. These results can be useful to clinicians interested in foot or eye.

  4. [An attempt to evaluate postural control with a magnetic motion capture system].

    Science.gov (United States)

    Kudo, Koji; Mitobe, Kazutaka; Honda, Kohei; Ishikawa, Kazuo

    2013-10-01

    Measurement of the body sway can be useful in the assessment of the ability to maintain posture. It is, however, difficult to quantitatively evaluate the chronological changes in the equilibrium function in the elderly. Although it is considered that not only sway movement of body center of gravity but also head movement should be measured for essential assessment of postural control, few methods are suitable for a clinical test. In this study, we investigated the head and trunk movement in elderly subjects standing upright, using a magnetic motion capture system to substantiate its usefulness. Seven subjects aged 66 to 83 years old were instructed to stand with their feet close together on the stabilometer with eyes open and then eyes closed for periods of 30 seconds each, while the movement of the head, cervix and lumbar region (MH, MC and ML) were monitored three-dimensionally with the magnetic motion capture system. The obtained data were compared with the movement of the body's center of gravity (MCG). The results were as follows: The MH was the largest, followed by MC and ML, and the ML trace was similar to that of the MCG. MH, MC, ML and the ratio of the MH to ML increased with age, and they were considered to be a valid index for assessment of postural control. A magnetic motion capture system, which can record the movements of the head, cervix and lumbar region accurately and conveniently, is seen as potentially and clinically useful apparatus for evaluation of postural control in dizzy patients, especially the elderly.

  5. The effect of a Stroop-like task on postural control in dyslexic children.

    Directory of Open Access Journals (Sweden)

    Maria Pia Bucci

    Full Text Available The influence of a secondary task on concurrent postural control was explored in twenty-one dyslexic children (mean age: 10.4 ± 0.3 years. Data were compared with twenty age-matched non-dyslexic children. As a secondary task, a modified Stroop test was used, in which words were replaced with pictures of fruits. The postural control of children was recorded in standard Romberg condition as the children were asked to name the colour of fruits appearing consecutively on a computer screen. Two conditions were tested: a congruent condition, in which the fruit was drawn in its natural ripe colour, and a non-congruent colour condition (NC, in which the fruit was drawn in three abnormal colours. A fixating condition was used as baseline. We analyzed the surface, length and mean speed of the center of pressure and measured the number of correct responses in the Stroop-like tasks. Dyslexic children were seen to be significantly more unstable than non-dyslexic ones. For both groups of children, the secondary task significantly increased postural instability in comparison with the fixating condition. The number of correct responses in the modified Stroop task was significantly higher in the non-dyslexic than in the dyslexic group. The postural instability observed in dyslexic children is in line with the cerebellar hypothesis and supports the idea of a deficit in automatic performance in such children. Furthermore, in accordance with cross domain competition model, our findings show that attentional resources are used to a greater extent by the secondary task than in controlling body stability.

  6. Postural control and cognitive decline in older adults: position versus velocity implicit motor strategy.

    Science.gov (United States)

    Deschamps, Thibault; Beauchet, Olivier; Annweiler, Cédric; Cornu, Christophe; Mignardot, Jean-Baptiste

    2014-01-01

    The present study explored the impact of cognitive decline on postural control strategies in older adults with and without cognitive decline from mild cognitive impairment (MCI) to mild-to-moderate Alzheimer disease (MMAD). We hypothesized that the cognitive decline affected the postural control leading to higher bounding limits of COP velocity dynamics. Based on a cross-sectional design, 175 non-faller older adults were recruited in Angers University Hospital, France, including 50 cognitively healthy individuals [CHI] (mean age 76.42 ± 4.84 years; 30% women), 64 age- and body mass index-matched participants with MCI (mean age 77.51 ± 6.32 years; 39% women), and 61 age- and body mass index-matched participants with MMAD (mean age 78.44 ± 3.97 years; 62% women). For all data collection of postural sway, the participants were asked to maintain quiet stance on force platform. The postural test consisted of two trials of quiet stance, with eyes open and with eyes closed. The COP parameters were mean and standard deviation (SD) of position, velocity and average absolute maximal velocity (AAMV) in antero-posterior and medio-lateral directions. Overall, the analysis concerning all COP parameters revealed a significant main effect of cognitive status on velocity-based variables, with post hoc comparisons evidencing that SD velocity and AAMV increased with cognitive impairment. The current findings suggest an active control (or corrective process) of COP velocity dynamics for CHI, whereas MCI and MMAD are affected by COP movements. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Static and dynamic posture control in postlingual cochlear implanted patients: effects of dual-tasking, visual and auditory inputs suppression

    OpenAIRE

    BERNARD-DEMANZE, Laurence; Léonard, Jacques; Dumitrescu, Michel; MELLER, Renaud; Magnan, Jacques; Lacour, Michel

    2014-01-01

    Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impair...

  8. Stochastic resonance whole-body vibration improves postural control in health care professionals: a worksite randomized controlled trial.

    Science.gov (United States)

    Elfering, Achim; Schade, Volker; Stoecklin, Lukas; Baur, Simone; Burger, Christian; Radlinger, Lorenz

    2014-05-01

    Slip, trip, and fall injuries are frequent among health care workers. Stochastic resonance whole-body vibration training was tested to improve postural control. Participants included 124 employees of a Swiss university hospital. The randomized controlled trial included an experimental group given 8 weeks of training and a control group with no intervention. In both groups, postural control was assessed as mediolateral sway on a force plate before and after the 8-week trial. Mediolateral sway was significantly decreased by stochastic resonance whole-body vibration training in the experimental group but not in the control group that received no training (p resonance whole-body vibration training is an option in the primary prevention of balance-related injury at work. Copyright 2014, SLACK Incorporated.

  9. Static and dynamic posture control in postlingual cochlear implanted patients: effects of dual-tasking, visual and auditory inputs suppression.

    Science.gov (United States)

    Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel

    2013-01-01

    Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well

  10. The postural control can be optimized by the first movement initiation condition encountered when submitted to muscle fatigue.

    Science.gov (United States)

    Monjo, Florian; Forestier, Nicolas

    2017-08-01

    We investigated whether and how the movement initiation condition (IC) encountered during the early movements performed following focal muscle fatigue affects the postural control of discrete ballistic movements. For this purpose, subjects performed shoulder flexions in a standing posture at maximal velocity under two movement IC, i.e., in self-paced conditions and submitted to a Stroop-like task in which participants had to trigger fast shoulder flexions at the presentation of incongruent colors. Shoulder flexion kinematics, surface muscle activity of focal and postural muscles as well as center-of-pressure kinematics were recorded. The initial IC and the order in which subjects were submitted to these two conditions were varied within two separate experimental sessions. IC schedule was repeated before and after fatigue protocols involving shoulder flexors. The aim of this fatigue procedure was to affect acceleration-generating capacities of focal muscles. In such conditions, the postural muscle activity preceding and accompanying movement execution is expected to decrease. Following fatigue, when subjects initially moved in self-paced conditions, postural muscle activity decreased and scaled to the lower focal peak acceleration. This postural strategy then transferred to the Stroop-like task. In contrast, when subjects initially moved submitted to the Stroop-like task, postural muscle activity did not decrease and this transferred to self-paced movements. Regarding the center-of-pressure peak velocity, which is indicative of the efficiency of the postural actions generated in stabilizing posture, no difference appeared between the two sessions post-fatigue. This highlights an optimization of the postural actions when subjects first moved in self-paced conditions, smaller postural muscle activation levels resulting in similar postural consequences. In conclusion, the level of neuromuscular activity associated with the postural control is affected and can be

  11. Age-related changes in dynamic postural control and attentional demands are minimally affected by local muscle fatigue.

    Directory of Open Access Journals (Sweden)

    Anthony eRemaud

    2016-01-01

    Full Text Available Normal aging results in alterations in the visual, vestibular and somtaosensory systems, which in turn modify the control of balance. Muscle fatigue may exacerbate these age-related changes in sensory and motor functions, and also increase the attentional demands associated with dynamic postural control. The purpose of this study was to investigate the effect of aging on dynamic postural control and posture-related attentional demands before and after a plantar flexor fatigue protocol. Participants (young adults: n=15; healthy seniors: n=13 performed a dynamic postural task along the antero-posterior and the medio-lateral axes, with and without the addition of a simple reaction time task. The dynamic postural task consisted in following a moving circle on a computer screen with the representation of the center of pressure (COP. This protocol was repeated before and after a fatigue task where ankle plantarflexor muscles were targeted. The mean COP-target distance and the mean COP velocity were calculated for each trial. Cross-correlation analyses between the COP and target displacements were also performed. Reaction times were recorded during dual-task trials. Results showed that while young adults adopted an anticipatory control mode to move their COP as close as possible to the target center, seniors adopted a reactive control mode, lagging behind the target center. This resulted in longer COP-target distance and higher COP velocity in the latter group. Concurrently, reaction time increased more in seniors when switching from static stance to dynamic postural conditions, suggesting potential alterations in the central nervous system functions. Finally, plantar flexor muscle fatigue and dual-tasking had only minor effects on dynamic postural control of both young adults and seniors. Future studies should investigate why the fatigue-induced changes in quiet standing postural control do not seem to transfer to dynamic balance tasks.

  12. Age-Related Changes in Dynamic Postural Control and Attentional Demands are Minimally Affected by Local Muscle Fatigue.

    Science.gov (United States)

    Remaud, Anthony; Thuong-Cong, Cécile; Bilodeau, Martin

    2015-01-01

    Normal aging results in alterations in the visual, vestibular and somtaosensory systems, which in turn modify the control of balance. Muscle fatigue may exacerbate these age-related changes in sensory and motor functions, and also increase the attentional demands associated with dynamic postural control. The purpose of this study was to investigate the effect of aging on dynamic postural control and posture-related attentional demands before and after a plantar flexor fatigue protocol. Participants (young adults: n = 15; healthy seniors: n = 13) performed a dynamic postural task along the antero-posterior (AP) and the medio-lateral (ML) axes, with and without the addition of a simple reaction time (RT) task. The dynamic postural task consisted in following a moving circle on a computer screen with the representation of the center of pressure (COP). This protocol was repeated before and after a fatigue task where ankle plantar flexor muscles were targeted. The mean COP-target distance and the mean COP velocity were calculated for each trial. Cross-correlation analyses between the COP and target displacements were also performed. RTs were recorded during dual-task trials. Results showed that while young adults adopted an anticipatory control mode to move their COP as close as possible to the target center, seniors adopted a reactive control mode, lagging behind the target center. This resulted in longer COP-target distance and higher COP velocity in the latter group. Concurrently, RT increased more in seniors when switching from static stance to dynamic postural conditions, suggesting potential alterations in the central nervous system (CNS) functions. Finally, plantar flexor muscle fatigue and dual-tasking had only minor effects on dynamic postural control of both young adults and seniors. Future studies should investigate why the fatigue-induced changes in quiet standing postural control do not seem to transfer to dynamic balance tasks.

  13. Age-Related Changes in Dynamic Postural Control and Attentional Demands are Minimally Affected by Local Muscle Fatigue

    Science.gov (United States)

    Remaud, Anthony; Thuong-Cong, Cécile; Bilodeau, Martin

    2016-01-01

    Normal aging results in alterations in the visual, vestibular and somtaosensory systems, which in turn modify the control of balance. Muscle fatigue may exacerbate these age-related changes in sensory and motor functions, and also increase the attentional demands associated with dynamic postural control. The purpose of this study was to investigate the effect of aging on dynamic postural control and posture-related attentional demands before and after a plantar flexor fatigue protocol. Participants (young adults: n = 15; healthy seniors: n = 13) performed a dynamic postural task along the antero-posterior (AP) and the medio-lateral (ML) axes, with and without the addition of a simple reaction time (RT) task. The dynamic postural task consisted in following a moving circle on a computer screen with the representation of the center of pressure (COP). This protocol was repeated before and after a fatigue task where ankle plantar flexor muscles were targeted. The mean COP-target distance and the mean COP velocity were calculated for each trial. Cross-correlation analyses between the COP and target displacements were also performed. RTs were recorded during dual-task trials. Results showed that while young adults adopted an anticipatory control mode to move their COP as close as possible to the target center, seniors adopted a reactive control mode, lagging behind the target center. This resulted in longer COP-target distance and higher COP velocity in the latter group. Concurrently, RT increased more in seniors when switching from static stance to dynamic postural conditions, suggesting potential alterations in the central nervous system (CNS) functions. Finally, plantar flexor muscle fatigue and dual-tasking had only minor effects on dynamic postural control of both young adults and seniors. Future studies should investigate why the fatigue-induced changes in quiet standing postural control do not seem to transfer to dynamic balance tasks. PMID:26834626

  14. Postural Control in Children with Dyslexia: Effects of Emotional Stimuli in a Dual-Task Environment.

    Science.gov (United States)

    Goulème, Nathalie; Gerard, Christophe-Loïc; Bucci, Maria Pia

    2017-08-01

    The aim of this study was to compare the visual exploration strategies used during a postural control task across participants with and without dyslexia. We simultaneously recorded eye movements and postural control while children were viewing different types of emotional faces. Twenty-two children with dyslexia and twenty-two aged-matched children without dyslexia participated in the study. We analysed the surface area, the length and the mean velocity of the centre of pressure for balance in parallel with visual saccadic latency, the number of saccades and the time spent in regions of interest. Our results showed that postural stability in children with dyslexia was weaker and the surface area of their centre of pressure increased significantly when they viewed an unpleasant face. Moreover, children with dyslexia had different strategies to those used by children without dyslexia during visual exploration, and in particular when they viewed unpleasant emotional faces. We suggest that lower performance in emotional face processing in children with dyslexia could be due to a difference in their visual strategies, linked to their identification of unpleasant emotional faces. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Influence of wearing an unstable shoe construction on compensatory control of posture.

    Science.gov (United States)

    Sousa, Andreia S P; Macedo, Rui; Santos, Rubim; Tavares, João Manuel R S

    2013-12-01

    This study investigated the influence of wearing unstable shoe construction (WUS) on compensatory postural adjustments (CPA) associated with external perturbations. Thirty-two subjects stood on a force platform resisting an anterior-posterior horizontal force applied to a pelvic belt via a cable, which was suddenly released. They stood under two conditions: barefoot and WUS. The electromyographic (EMG) activity of gastrocnemius medialis, tibialis anterior, rectus femoris, biceps femoris, rectus abdominis, and erector spinae muscles and the center of pressure (CoP) displacement were acquired to study CPA. The EMG signal was used to assess individual muscle activity and latency, antagonist co-activation and reciprocal activation at joint and muscle group levels. Compared to barefoot, WUS led to: (1) increased gastrocnemius medialis activity, (2) increased total agonist activity, (3) decreased antagonist co-activation at the ankle joint and muscle group levels, (4) increased reciprocal activation at the ankle joint and muscle group levels, and (5) decrease in all muscle latencies. No differences were observed in CoP displacement between conditions. These findings demonstrate that WUS led to a reorganization of the postural control system associated to improved performance of some components of postural control responses. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Proprioceptive control of posture : a review of new concepts

    NARCIS (Netherlands)

    Allum, JHJ; Carpenter, MG; Hulliger, M; Hadders-Algra, M; Bloem, Bastiaan R.

    1998-01-01

    The assumption that proprioceptive inputs from the lower legs are used to trigger balance and gait movements is questioned in this review (an outgrowth of discussions initiated during the Neural Control of Movement Satellite meeting held in Cozumel, Mexico, April 1997). Recent findings presented

  17. Does structural leg-length discrepancy affect postural control? Preliminary study.

    Science.gov (United States)

    Eliks, Małgorzata; Ostiak-Tomaszewska, Wioleta; Lisiński, Przemysław; Koczewski, Paweł

    2017-08-09

    Leg-length inequality results in an altered position of the spine and pelvis. Previous studies on the influence of leg asymmetry on postural control have been inconclusive. The purpose of this paper was to investigate the effect of structural leg-length discrepancy (LLD) on the control of posture. We studied 38 individuals (19 patients with structural LLD, 19 healthy subjects). The examination included measurement of the length of the lower limbs and weight distribution as well as a static posturography. All statistical analyses were performed with Statistica software version 10.0. Non-parametrical Kruskal-Wallis with Dunn's post test and Spearman test were used. Differences between the groups and correlation between mean COP sway velocity and the value of LLD as well as the value of LLD and weight distribution were assumed as statistically significant at p  0.05). Meaningful differences in mean COP velocity in mediolateral direction between tandem stance with eyes open and closed were detected in both groups (in controls p = 0.000134, in patients both with the shorter leg in a front and rear position, p = 0.029, p = 0.026 respectively). There was a positive moderate correlation between the value of LLD and the value of mean COP velocity in normal standing in mediolateral direction with eyes open (r = 0.47) and closed (r = 0.54) and in anterioposterior plane with eyes closed (r = 0.05). The fact that there were no significant differences in posturography between the groups might indicate compensations to the altered posture and neuromuscular adaptations in patients with structural leg-length inequality. LLD causes an increased asymmetry of weight distribution. This study confirmed a fundamental role of the sight in postural control, especially in unstable conditions. The analysis of mean COP sway velocity may suggest a proportional deterioration of postural control with the increase of the value of leg-length asymmetry. Trial registry: Clinical

  18. Changes in postural control in patients with Parkinson's disease: a posturographic study.

    Science.gov (United States)

    Doná, F; Aquino, C C; Gazzola, J M; Borges, V; Silva, S M C A; Ganança, F F; Caovilla, H H; Ferraz, H B

    2016-09-01

    Postural instability is one of the most disabling features in Parkinson's disease (PD), and often leads to falls that reduce mobility and functional capacity. The objectives of this study were to analyse the limit of stability (LOS) and influence of the manipulation of visual, somatosensorial and visual-vestibular information on postural control in patients with PD and healthy subjects. Cross-sectional. Movement Disorders Unit, university setting. Eighty-two subjects aged between 37 and 83 years: 41 with Parkinson's disease in the 'on' state and 41 healthy subjects with no neurological disorders. Both groups were matched in terms of sex and age. Unified Parkinson's Disease Rating Scale (UPDRS)-motor score, modified Hoehn and Yahr staging, Dynamic Gait Index (DGI) and posturography with integrated virtual reality. The parameters analysed by posturography were LOS area, area of body centre of pressure excursion and balance functional reserve in the standing position in 10 conditions (open and closed eyes, unstable surface with eyes closed, saccadic and optokinetic stimuli, and visual-vestibular interaction). The mean UPDRS motor score and DGI score were 27 [standard deviation (SD) 14] and 21 (SD 3), respectively. Thirteen participants scored between 0 and 19 points, indicating major risk of falls. Posturographic assessment showed that patients with PD had significantly lower LOS area and balance functional reserve values, and greater body sway area in all posturographic conditions compared with healthy subjects. Patients with PD have reduced LOS area and greater postural sway compared with healthy subjects. The deterioration in postural control was significantly associated with major risk of falls. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  19. The functional role of central and peripheral vision in the control of posture.

    Science.gov (United States)

    Berencsi, Andrea; Ishihara, Masami; Imanaka, Kuniyasu

    2005-01-01

    Three experiments were conducted to investigate the role of central and peripheral vision (CV and PV) in postural control. In Experiment 1, either the central or peripheral visual field were selectively stimulated using a circular random dot pattern that was either static or alternated at 5 Hz. Center of foot pressure (CoP) was used to examine postural sway during quiet standing under both CV and PV conditions. The results showed that, when the visual stimulus was presented in the periphery, the CoP area decreased and more so in the anterior-posterior (AP) than in the medio-lateral (ML) direction, indicating a characteristic directional specificity. There was no significant difference between the static and dynamic (alternating) conditions. Experiment 2 investigated the directional specificity of body sway found in Experiment 1 by having the trunk either be faced toward the stimulus display or perpendicularly to it, with the head always facing the display. The results showed that the stabilizing effect of peripheral vision was present in the direction of stimulus observation (i.e., the head/gaze direction), irrespective of trunk orientation. This suggested that head/gaze direction toward the stimulus presentation, rather than a biomechanical factor like greater mobility of the ankle joint in AP direction than in ML direction, was essential to postural stability. Experiment 3 further examined whether the stabilizing effect of peripheral vision found in Experiments 1 and 2 was caused because more dots (500) were presented as visual cues to the peripheral visual field than to the central visual field (20 dots) by presenting the same number of dots (20) in both conditions. It was found that, in spite of the equal number of dots, the postural sway amplitudes were larger for the central vision conditions than for the peripheral vision conditions. In conclusion, the present study showed that peripheral rather than central vision contributes to maintaining a stable

  20. Postural adjustments in young ballet dancers compared to age matched controls.

    Science.gov (United States)

    Iunes, Denise H; Elias, Iara F; Carvalho, Leonardo C; Dionísio, Valdeci C

    2016-01-01

    The purpose of the study was to use photogrammetry to evaluate the posture of ballet practitioners compared to an age-matched control group. One hundred and eleven 7- to 24-year-old female volunteers were evaluated and were divided into two groups: the ballet practising group (n = 52) and the control group (n = 59), divided into three subgroups according to age and years of ballet experience. Dancers with 1-3 years experience compared to controls of the same age shows alterations in External Rotation Angle (P ballet experience, the Navicular Angle Left is smaller. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The role of prefrontal cortex during postural control in Parkinsonian syndromes a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Mahoney, Jeannette R; Holtzer, Roee; Izzetoglu, Meltem; Zemon, Vance; Verghese, Joe; Allali, Gilles

    2016-02-15

    Postural instability represents a main source of disability in Parkinsonian syndromes and its pathophysiology is poorly understood. Indirect probes (i.e., mental imagery) of brain involvement support the role of prefrontal cortex as a key cortical region for postural control in older adults with and without Parkinsonian syndromes. Using functional near infrared spectroscopy (fNIRs) as a direct online cortical probe, this study aimed to compare neural activation patterns in prefrontal cortex, postural stability, and their respective interactions, in (1) patients with Parkinsonian syndromes; (2) those with mild parkinsonian signs; (3) and healthy older adults. Among 269 non-demented older adults (76.41 ± 6.70 years, 56% women), 26 individuals presented with Parkinsonian syndromes (Unified Parkinson's disease rating scale (UPDRS): 11.08 ± 3.60), 117 had mild parkinsonian signs (UPDRS: 3.21 ± 2.49), and 126 individuals were included as a healthy control group. Participants were asked to stand upright and count silently for ten seconds while changes in oxygenated hemoglobin levels over prefrontal cortex were measured using fNIRs. We simultaneously evaluated postural stability with center of pressure velocity data recorded on an instrumented walkway. Compared to healthy controls and patients with mild parkinsonian signs, patients with Parkinsonian syndromes demonstrated significantly higher prefrontal oxygenation levels to maintain postural stability. The pattern of brain activation and postural control of participants with mild parkinsonian signs were similar to that of normal controls. These findings highlight the online role of the prefrontal cortex in postural control in patients with Parkinsonian syndromes and afford the opportunity to improve therapeutic options for postural instability. Copyright © 2016. Published by Elsevier B.V.

  2. Impaired postural control in children with developmental coordination disorder is related to less efficient central as well as peripheral control

    DEFF Research Database (Denmark)

    Speedtsberg, Merete Brink; Christensen, Sofie Bouschinger; Andersen, Ken Kjøller

    2017-01-01

    BACKGROUND: Developmental coordination disorder (DCD) is a neurodevelopmental impairment that affects approximately 6% of children in primary school age. Children with DCD are characterized by impaired postural control. It has yet to be determined what effect peripheral and central neuromuscular...... control has on their balance control. OBJECTIVE: The aim of this study was to investigate the underlying mechanisms to impaired postural control in children with DCD using the rambling-trembling decomposition of the center of pressure (CoP). METHOD: Nine children with DCD (9.0±0.5years, 7 boys, 2 girls......) and 10 age- and gender-matched typically developing children (TD) with normal motor proficiency (9.1±0.4years, 7 boys and 3 girls) performed 3×30s bipedal standing on a force plate in six sensory conditions following the sensory organization procedure. Sway length was measured and rambling...

  3. The effect of a haptic biofeedback system on postural control in patients with stroke: An experimental pilot study.

    Science.gov (United States)

    Yasuda, Kazuhiro; Kaibuki, Naomi; Harashima, Hiroaki; Iwata, Hiroyasu

    2017-06-01

    Impaired balance in patients with hemiparesis caused by stroke is frequently related to deficits in the central integration of afferent inputs, and traditional rehabilitation reinforces excessive visual reliance by focusing on visual compensation. The present study investigated whether a balance task involving a haptic biofeedback (BF) system, which provided supplementary vibrotactile sensory cues associated with center-of-foot-pressure displacement, improved postural control in patients with stroke. Seventeen stroke patients were assigned to two groups: the Vibrotactile BF and Control groups. During the balance task (i.e., standing on a foam mat), participants in the Vibrotactile BF group tried to stabilize their postural sway while wearing the BF system around the pelvic girdle. In the Control group, participants performed an identical postural task without the BF system. Pre- and post-test measurements of postural control using a force plate revealed that the stability of bipedal posture in the Vibrotactile BF group was markedly improved compared with that in the Control group. A balance task involving a vibrotactile BF system improved postural stability in patients with stroke immediately. This confirms the potential of a haptic-based BF system for balance training, both in routine clinical practice and in everyday life.

  4. Postural control and functional ankle stability in professional and amateur dancers.

    Science.gov (United States)

    Rein, Susanne; Fabian, Tobias; Zwipp, Hans; Rammelt, Stefan; Weindel, Stefan

    2011-08-01

    The aim of this study was to compare the postural control and functional ankle stability between professional and amateur dancers as well as controls. Thirty professional dancers were compared to thirty amateur dancers and thirty controls. All participants (n=90) completed a questionnaire. Range of motion (ROM), ankle position sense and peroneal reaction time (PRT) were measured. Postural control was investigated with the Biodex Stability System (BSS) for the stable level 8 and the unstable level 2. Professional dancers showed a significantly increased plantarflexion of both feet in comparison to all other groups (P ≤ 0.017). Even amateur dancers had a significantly increased plantarflexion of both feet in comparison to controls (P ≤ 0.017). The position sense test only showed significant differences between professionals, amateurs and controls at the position of 130° for the right leg (P ≤ 0.017). The PRT showed no significant differences among all groups except for the left peroneus brevis of amateur dancers in comparison to controls (P ≤ 0.017). Professional dancers had a significant better postural control in comparison to amateurs and controls for levels 8 and 2 at all tested positions (P ≤ 0.017). In addition, professional dancers had a specific balance distribution, whereas they balanced significantly more in the antero-lateral and less in the postero-medial part of their feet in comparison with amateur dancers and controls (P ≤ 0.017). Despite a greater ROM, professional dancers have a better control of postural stability due to a specific balance distribution. However, the position sense test and the PRT were not influenced by the profession. The specific work-related demands of ankle joints did not improve all components of functional ankle stability in professional dancers. Therefore, the inclusion of proprioceptive exercises in the daily training program is highly recommended, aiming to improve functional ankle stability and thus to

  5. Vestibular and Somatosensory Covergence in Postural Equilibrium Control: Insights from Spaceflight and Bed Rest Studies

    Science.gov (United States)

    Mulavara, A. P.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Peters, B. T.; Phillips, T.; Platts, S. H.; hide

    2014-01-01

    The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. We are currently conducting studies on both International Space Station (ISS) astronauts experiencing up to 6 months of microgravity and subjects experiencing 70 days of 6??head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading somatosensory component on functional performance. Both ISS crewmembers and bed-rest subjects were tested using a protocol that evaluated functional performance along with tests of postural and locomotor control before and after space flight and bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Astronauts were tested three times before flight, and on 1, 6, and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6, and 12 days after re-ambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability showed less reduction in performance. Results indicate that body unloading

  6. The Effect of Fatigue and Instability on Postural Control Parameters in Standing Posture in Healthy Adults and Patients with Chronic Low Back Pain

    Directory of Open Access Journals (Sweden)

    Amir Hosein Kahlaee

    2012-06-01

    Full Text Available Background: This study aims at analyzing the effect of fatigue and instability on postural control parameters in both healthy people and patients with the chronic nonspecific low-back pain.Materials and Methods: In this non-experimental case-control study, oscillations of center of pressure were statistically analyzed in 16 healthy people and 15 patients with the chronic nonspecific low back pain. The analysis was conducted through two stages: before and after fatigue and under both stable and unstable surfaces. Results: Under the pre-fatigue, stable condition, there was not any difference between the two groups. Both fatigue and unstable surface changed our variables (sway area, range, velocity, frequency and total power of the signal. All the changes in variables were significant in the low-back pain group; while changes in the healthy group only covered the time-domain variables. The effect of instability was higher than that of fatigue. Conclusion: The postural control system for patients with low-back pain before fatigue and under stable condition, revealed sufficient competence to provide postural stability and its function cannot be differentiated from that in healthy people. Meanwhile, different mechanisms were used by these patients to confront stability challenging factors and further neural activity was required to counteract such factors.

  7. Comparison of the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy young women.

    Science.gov (United States)

    Shirazi, Zahra Rojhani; Jahromi, Fatemeh Nikhalat

    2013-09-01

    The maintenance of balance is an essential requirement for the performance of daily tasks and sporting activities and muscular fatigue is a factor to impair postural control, so this study was done to compare the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy subjects. Fifteen healthy female students (24.3 ± 2.6 years) completed three testing session with a break period of at least 2 days. During each session, postural control was assessed during two 30-s trials of bipedal stance with eyes close before and after the fatigue protocol. Fatigue protocols were performed by 60% of their unfatigued Maximum Voluntary Contraction of unilateral ankle plantar flexors, bilateral lumbar extensors and bilateral neck extensors. One of the three fatigue protocols was performed on each session. The result showed that fatigue had a significant effect on COP velocity and it increase COP velocity but there was not found any difference in postural sway between muscle groups. Localized muscle fatigue caused deficits in postural control regardless of the location of fatigue. Authors suggest the possibility of the contributions of central mechanisms to postural deficits due to fatigue and it seems that difference was not between muscle groups due to central fatigue.

  8. Velocity dependence of vestibular information for postural control on tilting surfaces

    Science.gov (United States)

    Kluzik, JoAnn; Hlavacka, Frantisek

    2016-01-01

    Vestibular information is known to be important for postural stability on tilting surfaces, but the relative importance of vestibular information across a wide range of surface tilt velocities is less clear. We compared how tilt velocity influences postural orientation and stability in nine subjects with bilateral vestibular loss and nine age-matched, control subjects. Subjects stood on a force platform that tilted 6 deg, toes-up at eight velocities (0.25 to 32 deg/s), with and without vision. Results showed that visual information effectively compensated for lack of vestibular information at all tilt velocities. However, with eyes closed, subjects with vestibular loss were most unstable within a critical tilt velocity range of 2 to 8 deg/s. Subjects with vestibular deficiency lost their balance in more than 90% of trials during the 4 deg/s condition, but never fell during slower tilts (0.25–1 deg/s) and fell only very rarely during faster tilts (16–32 deg/s). At the critical velocity range in which falls occurred, the body center of mass stayed aligned with respect to the surface, onset of ankle dorsiflexion was delayed, and there was delayed or absent gastrocnemius inhibition, suggesting that subjects were attempting to actively align their upper bodies with respect to the moving surface instead of to gravity. Vestibular information may be critical for stability at velocities of 2 to 8 deg/s because postural sway above 2 deg/s may be too fast to elicit stabilizing responses through the graviceptive somatosensory system, and postural sway below 8 deg/s may be too slow for somatosensory-triggered responses or passive stabilization from trunk inertia. PMID:27486101

  9. Active vision task and postural control in healthy, young adults: Synergy and probably not duality.

    Science.gov (United States)

    Bonnet, Cédrick T; Baudry, Stéphane

    2016-07-01

    In upright stance, individuals sway continuously and the sway pattern in dual tasks (e.g., a cognitive task performed in upright stance) differs significantly from that observed during the control quiet stance task. The cognitive approach has generated models (limited attentional resources, U-shaped nonlinear interaction) to explain such patterns based on competitive sharing of attentional resources. The objective of the current manuscript was to review these cognitive models in the specific context of visual tasks involving gaze shifts toward precise targets (here called active vision tasks). The selection excluded the effects of early and late stages of life or disease, external perturbations, active vision tasks requiring head and body motions and the combination of two tasks performed together (e.g., a visual task in addition to a computation in one's head). The selection included studies performed by healthy, young adults with control and active - difficult - vision tasks. Over 174 studies found in Pubmed and Mendeley databases, nine were selected. In these studies, young adults exhibited significantly lower amplitude of body displacement (center of pressure and/or body marker) under active vision tasks than under the control task. Furthermore, the more difficult the active vision tasks were, the better the postural control was. This underscores that postural control during active vision tasks may rely on synergistic relations between the postural and visual systems rather than on competitive or dual relations. In contrast, in the control task, there would not be any synergistic or competitive relations. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Analysis of isokinetic muscle function and postural control in individuals with intermittent claudication

    Directory of Open Access Journals (Sweden)

    Morgan Lanzarin

    2016-02-01

    Full Text Available BACKGROUND: Intermittent claudication (IC is a debilitating condition that mostly affects elderly people. IC is manifested by a decrease in ambulatory function. Individuals with IC present with motor and sensory nerve dysfunction in the lower extremities, which may lead to deficits in balance. OBJECTIVE: This study aimed to measure postural control and isokinetic muscle function in individuals with intermittent claudication. METHOD: The study included 32 participants of both genders, 16 IC participants (mean age: 64 years, SD=6 and 16 healthy controls (mean age: 67 years, SD=5, which were allocated into two groups: intermittent claudication group (ICG and control group (CG. Postural control was assessed using the displacement and velocity of the center of pressure (COP during the sensory organization test (SOT and the motor control test (MCT. Muscle function of the flexor and extensor muscles of the knee and ankle was measured by an isokinetic dynamometer. Independent t tests were used to calculate the between-group differences. RESULTS: The ICG presented greater displacement (p =0.027 and speed (p =0.033 of the COP in the anteroposterior direction (COPap during the MCT, as well as longer latency (p =0.004. There were no between-group differences during the SOT. The ICG showed decreased muscle strength and power in the plantar flexors compared to the CG. CONCLUSION: Subjects with IC have lower values of strength and muscle power of plantiflexores, as well as changes in postural control in dynamic conditions. These individuals may be more vulnerable to falls than healthy subjects.

  11. Intervenção motora precoce ambulatorial para neonatos prematuros no controle postural = Early motor outpatient service intervention for postural control in preterm neonates

    Directory of Open Access Journals (Sweden)

    Almeida, Carla Skilhan de

    2008-01-01

    Full Text Available Objetivo: Verificar as aquisições motoras relacionadas ao desenvolvimento axial espontâneo não comunicativo, ou seja, controle postural e deslocamento. Isto foi feito através de um programa de intervenção motora fisioterapêutica precoce em neonatos prematuros nascidos no Hospital São Lucas - PUCRS. Materiais e Métodos: Tarefas de perseguição visual, manipulação de brinquedos e de controle postural, baseados no conceito Bobath, foram implementadas no programa interventivo. Todos os 5 prematuros que participaram deste estudo foram avaliados pelo serviço de fisioterapia por meio da Escala de Desenvolvimento do Comportamento da Criança no Primeiro Ano de Vida no ingresso do estudo e repetida a cada dois meses. Resultados: O estudo evidencia que não houve resultados estatisticamente significativos referentes às atividades posturais, de equilíbrio dinâmico e de deslocamento, mas os prematuros obtiveram progressão na classificação das avaliações. No primeiro mês da avaliação a mediana foi de 3 (classificação regular, já no terceiro e quinto mês de avaliação a mediana se manteve em 4 (classificação bom. Conclusão: A intervenção motora precoce proporcionou uma progressão na classificação da avaliação das aquisições motoras do desenvolvimento de cada prematuro, porém, não houve resultados estatisticamente significativos, referentes a atividades posturais, de equilíbrio dinâmico e de deslocamento

  12. Vehicle height and posture control of the electronic air suspension system using the hybrid system approach

    Science.gov (United States)

    Sun, Xiaoqiang; Cai, Yingfeng; Chen, Long; Liu, Yanling; Wang, Shaohua

    2016-03-01

    The electronic air suspension (EAS) system can improve ride comfort, fuel economy and handling safety of vehicles by adjusting vehicle height. This paper describes the development of a novel controller using the hybrid system approach to adjust the vehicle height (height control) and to regulate the roll and pitch angles of the vehicle body during the height adjustment process (posture control). The vehicle height adjustment system of EAS poses challenging hybrid control problems, since it features different discrete modes of operation, where each mode has an associated linear continuous-time dynamic. In this paper, we propose a novel approach to the modelling and controller design problem for the vehicle height adjustment system of EAS. The system model is described firstly in the hybrid system description language (HYSDEL) to obtain a mixed logical dynamical (MLD) hybrid model. For the resulting model, a hybrid model predictive controller is tuned to improve the vehicle height and posture tracking accuracy and to achieve the on-off statuses direct control of solenoid valves. The effectiveness and performance of the proposed approach are demonstrated by simulations and actual vehicle tests.

  13. Letter to the Editor: On "Advantages and disadvantages of stiffness instructions when studying postural control" by C.T. Bonnet: You just can't win: Advantages and disadvantages of the postural stability requirement.

    Science.gov (United States)

    Lajoie, Y; Richer, N; Jehu, D A; Polskaia, N; Saunders, D

    2016-05-01

    In the examination of postural control, instructions to stand as still as possible are common and promote a relatively unnatural sway pattern. The validity of the stability requirement is discussed in the present commentary in response to the discussion initiated by Cedrick T. Bonnet. The advantages of using the stability requirement include: evaluating unbiased postural control, reducing variability in postural sway, manipulating focus of attention, examining the ability to maintain an upright stance, and ecological validity of testing. The disadvantages include: constraining natural postural sway, increasing the complexity of the control condition, promoting an internal focus of attention, and reducing the ability to detect exploratory behaviour. After evaluating the aforementioned advantages and disadvantages, the present commentary suggests that researchers should strive to provide specific instructions to maintain feet, arm and eye position without specifically requiring participants to reduce their postural sway. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Postural Motor Learning Deficits in People With MS in Spatial but Not Temporal Control of Center of Mass.

    Science.gov (United States)

    Gera, Geetanjali; Fling, Brett W; Van Ooteghem, Karen; Cameron, Michelle; Frank, James S; Horak, Fay B

    2016-09-01

    Multiple sclerosis (MS) is associated with balance deficits resulting in falls and impaired mobility. Although rehabilitation has been recommended to address these balance deficits, the extent to which people with MS can learn and retain improvements in postural responses is unknown. To determine the ability of people with MS to improve postural control with surface perturbation training. A total of 24 patients with mild MS and 14 age-matched controls underwent postural control training with a set pattern of continuous, forward-backward, sinusoidal, and surface translations provided by a force platform. Postural control was then tested the following day for retention. The primary outcome measures were the relative phase and center-of-mass (CoM) gain between the body CoM and the platform motion. People with MS demonstrated similar improvements in acquiring and retaining changes in the temporal control of the CoM despite significant deficits in postural motor performance at the baseline. Both MS and control groups learned to anticipate the pattern of forward-backward perturbations, so body CoM shifted from a phase-lag (age-matched controls [CS] = -7.1 ± 1.3; MS = -12.9 ± 1.0) toward a phase-lead (CS = -0.7 ± 1.8; MS = -6.1 ± 1.4) relationship with the surface oscillations. However, MS patients were not able to retain the changes in the spatial control of the CoM acquired during training. People with MS have the capacity to improve use of a feed-forward postural strategy with practice and retain the learned behavior for temporal not spatial control of CoM, despite their significant postural response impairments. © The Author(s) 2015.

  15. Mechanisms of inhibition of vasopressin release during moderate antiorthostatic posture change in humans

    DEFF Research Database (Denmark)

    Pump, B.; Gabrielsen, A.; Christensen, N.J.

    1999-01-01

    The hypothesis was tested that the carotid baroreceptor stimulation caused by a posture change from upright seated with legs horizontal (Seat) to supine (Sup) participates in the suppression of arginine vasopressin (AVP) release. Ten healthy males underwent this posture change for 30 min without...... decreased from 0.9 +/- 0.2 to 0.5 +/- 0.1 pg/ml (P posture...

  16. Human postural responses to motion of real and virtual visual environments under different support base conditions.

    Science.gov (United States)

    Mergner, T; Schweigart, G; Maurer, C; Blümle, A

    2005-12-01

    The role of visual orientation cues for human control of upright stance is still not well understood. We, therefore, investigated stance control during motion of a visual scene as stimulus, varying the stimulus parameters and the contribution from other senses (vestibular and leg proprioceptive cues present or absent). Eight normal subjects and three patients with chronic bilateral loss of vestibular function participated. They stood on a motion platform inside a cabin with an optokinetic pattern on its interior walls. The cabin was sinusoidally rotated in anterior-posterior (a-p) direction with the horizontal rotation axis through the ankle joints (f=0.05-0.4 Hz; A (max)=0.25 degrees -4 degrees ; v (max)=0.08-10 degrees /s). The subjects' centre of mass (COM) angular position was calculated from opto-electronically measured body sway parameters. The platform was either kept stationary or moved by coupling its position 1:1 to a-p hip position ('body sway referenced', BSR, platform condition), by which proprioceptive feedback of ankle joint angle became inactivated. The visual stimulus evoked in-phase COM excursions (visual responses) in all subjects. (1) In normal subjects on a stationary platform, the visual responses showed saturation with both increasing velocity and displacement of the visual stimulus. The saturation showed up abruptly when visually evoked COM velocity and displacement reached approximately 0.1 degrees /s and 0.1 degrees , respectively. (2) In normal subjects on a BSR platform (proprioceptive feedback disabled), the visual responses showed similar saturation characteristics, but at clearly higher COM velocity and displacement values ( approximately 1 degrees /s and 1 degrees , respectively). (3) In patients on a stationary platform (no vestibular cues), the visual responses were basically similar to those of the normal subjects, apart from somewhat higher gain values and less-pronounced saturation effects. (4) In patients on a BSR platform (no

  17. Effect of posture-control insoles on function in children with cerebral palsy: Randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Pasini Neto Hugo

    2012-10-01

    Full Text Available Abstract Introduction Cerebral palsy (CP is a posture and movement disorder and different therapeutic modalities, such as the use of braces, have sought to favor selective motor control and muscle coordination in such patients. The aim of the proposed study is to determine the effect of the combination of posture-control insoles and ankle-foot orthoses (AFOs improving functional limitation in children with CP. Methods/Design The sample will be composed of 24 children with CP between four and 12 years of age. After the signing of the statement of informed consent, the children will be randomly allocated to two groups: a control group using AFOs alone and an experimental group using both posture-control insoles and AFOs. Evaluations will be performed on five occasions: without any accessory (insoles or AFOs, immediately after, one month after, six months after and one year after AFOs or insole and AFOs use. The evaluation will involve the analysis of gait, static and functional balance, mobility and hypertonia. The three-dimensional assessment of gait will involve the eight-camera SMART-D SMART-D 140® system (BTS Engineering, two Kistler force plates (model 9286BA and an eight-channel, wireless FREEEMG® electromyography (BTS Engineering. Static balance will be assessed using a Kistler force plate (model 9286BA. Clinical functional balance and mobility will be assessed using the Berg Balance Scale, Timed Up-and-Go Test and Six-Minute Walk Test. The posture-control insoles will be made of ethylene vinyl acetate, with thermal molding for fixation. The fixed orthoses will be made of polypropylene and attached to the ankle region (AFO. The results will be analyzed statistically, with the level significance set to 5% (p Trial Registration Trial Registration Number: RBR6d342s (http://www.ensaiosclinicos.gov.br/news/

  18. Comparative Effects of Different Balance-Training-Progression Styles on Postural Control and Ankle Force Production: A Randomized Controlled Trial.

    Science.gov (United States)

    Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik

    2016-02-01

    Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training-progression styles. To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Randomized controlled trial. Research laboratory. A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P .05) for any of the outcome measures. A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults.

  19. The effect of kinesio® tape on vertical jump and dynamic postural control.

    Science.gov (United States)

    Nakajima, Mikiko A; Baldridge, Carolann

    2013-08-01

    Ankle injuries are one of the most common injuries among physically active individuals. The role of prophylactic ankle taping and bracing has been studied extensively. Kinesio(®) Tape (KT) is a somewhat new type of taping technique gaining popularity as both treatment and performance enhancement tool. However, there is limited research on the effect of KT on functional performance. The purpose of this study was to determine whether the application of Kinesio Tex(®) Tape had an effect on vertical jump and dynamic postural control in healthy young individuals. 52 healthy subjects free of ankle or lower extremity problems (28 males and 24 females; age: 22.12±2.08 years; height: 170.77±8.69 cm; weight: 69.90±12.03 kg) participated in the study. Subjects were randomly assigned to either the experimental group (KT with tension) or the control group (KT without tension). Vertical jump was measured using the VertiMetric device and dynamic postural control was assessed using the Star Excursion Balance Test (SEBT) under three conditions: (1) without taping; (2) immediately after taping; (3) 24 hours after taping with the taping remaining in situ. Three-way repeated measure ANOVA was conducted in order to identify differences between the experimental and the control group during the three conditions. Overall, there were no differences between groups in vertical jump maximum height, vertical jump average height, or the SEBT scores for the three time periods (pre-test, post-test, 24hrs-post-test). However, the main effect of KT was moderated by a significant gender interaction, resulting in a statistically significant effect of KT for the SEBT scores in the posterior-medial direction, F(1.72, 82.57) = 4.50, p = 0.018 and the medial direction, F(1.75, 83.81) = 4.27, p = 0.021. Follow-up analyses indicated that female subjects in the KT group had increased SEBT scores between three time periods when compared to the placebo group. KT application on the ankle neither decreased

  20. THE EFFECT OF KINESIO® TAPE ON VERTICAL JUMP AND DYNAMIC POSTURAL CONTROL

    Science.gov (United States)

    Baldridge, Carolann

    2013-01-01

    Introduction and Background: Ankle injuries are one of the most common injuries among physically active individuals. The role of prophylactic ankle taping and bracing has been studied extensively. Kinesio® Tape (KT) is a somewhat new type of taping technique gaining popularity as both treatment and performance enhancement tool. However, there is limited research on the effect of KT on functional performance. Purpose: The purpose of this study was to determine whether the application of Kinesio Tex® Tape had an effect on vertical jump and dynamic postural control in healthy young individuals. Methods: 52 healthy subjects free of ankle or lower extremity problems (28 males and 24 females; age: 22.12±2.08 years; height: 170.77±8.69 cm; weight: 69.90±12.03 kg) participated in the study. Subjects were randomly assigned to either the experimental group (KT with tension) or the control group (KT without tension). Vertical jump was measured using the VertiMetric device and dynamic postural control was assessed using the Star Excursion Balance Test (SEBT) under three conditions: (1) without taping; (2) immediately after taping; (3) 24 hours after taping with the taping remaining in situ. Results: Three-way repeated measure ANOVA was conducted in order to identify differences between the experimental and the control group during the three conditions. Overall, there were no differences between groups in vertical jump maximum height, vertical jump average height, or the SEBT scores for the three time periods (pre-test, post-test, 24hrs-post-test). However, the main effect of KT was moderated by a significant gender interaction, resulting in a statistically significant effect of KT for the SEBT scores in the posterior-medial direction, F(1.72, 82.57) = 4.50, p = 0.018 and the medial direction, F(1.75, 83.81) = 4.27, p = 0.021. Follow-up analyses indicated that female subjects in the KT group had increased SEBT scores between three time periods when compared to the placebo

  1. Postural control in children with typical development and children with profound hearing loss

    Directory of Open Access Journals (Sweden)

    Monteiro de Sousa AM

    2012-05-01

    Full Text Available Aneliza Maria Monteiro de Sousa,1 Jônatas de França Barros,2 Brígido Martins de Sousa Neto31Faculty of Health Sciences, University of Brasilia, Brasilia, Federal District, Brazil; 2Department of Physical Education at the Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; 3University Center UNIEURO, Brasilia, Federal District, BrazilPurpose: To describe the behavior of the postural control in children with profound sensorineural hearing loss and compare the results of experimental tests with hearing children aged 7 to 10 years.Patients and methods: This is a cross-sectional study where 100 children were divided into experimental and control groups. We used a force platform, AccuSway Plus, where the tests were conducted under the experimental conditions: open base, eyes open (OBEO; open base, eyes closed (OBEC; closed base, eyes open (CBEO; closed base, eyes closed (CBEC. The body sway velocity (V of the center of pressure, the displacement in the anteroposterior direction (COPap and mediolateral (COPml of the center of pressure were the parameters to evaluate the postural control. For statistical analysis we used the nonparametric Mann–Whitney U test, with a significance level of 5%.Results: In comparisons of variables between the groups, the experimental group outperformed by at least 75% of the control group values. In terms of global trends, the experimental group shows higher values of body oscillations in all experimental conditions and variables evaluated. Children with hearing loss had poorer balance performance compared to the group of hearing. The inferential analysis revealed a statistically significant difference in the balance between deaf and hearing children in the OBEC experimental condition in relation to the COPml parameter (P = 0.04. There were no statistically significant differences in comparisons between the sexes when the groups were analyzed separately. The prevalence of unknown etiology

  2. Vision, visuo-cognition and postural control in Parkinson's disease: An associative pilot study.

    Science.gov (United States)

    Hill, E; Stuart, S; Lord, S; Del Din, S; Rochester, L

    2016-07-01

    Impaired postural control (PC) is common in patients with Parkinson's disease (PD) and is a major contributor to falls, with significant consequences. Mechanisms underpinning PC are complex and include motor and non-motor features. Research has focused predominantly on motor and sensory inputs. Vision and visuo-cognitive function are also integral to PC but have largely been ignored to date. The aim of this observational cross-sectional pilot study was to explore the relationship of vision and visuo-cognition with PC in PD. Twelve people with PD and ten age-matched healthy controls (HC) underwent detailed assessments for vision, visuo-cognition and postural control. Vision assessments included visual acuity and contrast sensitivity. Visuo-cognition was measured by visuo-perception (object identification), visuo-construction (ability to copy a figure) and visuo-spatial ability (judge distances and location of object within environment). PC was measured by an accelerometer for a range of outcomes during a 2-min static stance. Spearman's correlations identified significant associations. Contrast sensitivity, visuo-spatial ability and postural control (ellipsis) were significantly impaired in PD (p=0.017; p=0.001; and p=0.017, respectively). For PD only, significant correlations were found for higher visuo-spatial function and larger ellipsis (r=0.64; p=0.024) and impaired attention and reduced visuo-spatial function (r=-0.62; p=0.028). Visuo-spatial ability is associated with PC deficit in PD, but in an unexpected direction. This suggests a non-linear pattern of response. Further research is required to examine this novel and important finding. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The influence of peripheral vision induced by moving people on postural control in healthy adults.

    Science.gov (United States)

    Kim, Soo-Han; Park, Du-Jin

    2016-10-01

    This study was conducted to examine the influence of the peripheral vision (PV) induced by moving people on postural control in healthy adults. The subjects consisted of 12 healthy adult volunteers (5 males, 7 females) who had been informed of the study purpose and procedure. The visual interventions were composed of three types. PV1 and PV2 were stimulated using a one-way vertical striped pattern and a two-way vertical striped pattern, respectively. To embody the features of moving people reflected in the mirrors, researchers recorded movements of people or objects provided by mirrors on video image. In this study, this was named PV3. The subjects were exposed to each of the visual stimuli for 3 min in a random order, and their postural control was then evaluated. All the subjects were allowed to practice once prior to performing the one leg stand test, functional reaching test and body sway test. All the evaluations were made before and after the visual intervention, and the subjects rested for 30 min between each intervention. PV3 ranked second in before and after differences of trace length and velocity and had no significant difference from PV2, demonstrating that the PV3, as well as PV2, affected the amount and velocity of body sway. In addition, the standard deviation velocity, trace length and velocity values of PV3 were higher than the PV1 values. Therefore, the treatment of those who have difficulty with postural control and balance maintenance should take place in a controlled therapeutic environment.

  4. Augmented reality-based postural control training improves gait function in patients with stroke: Randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Chi-Ho Lee, PT, MSc

    2014-12-01

    Full Text Available The purpose of this study was to determine the effects of augmented reality (AR-based postural control training on balance and gait function in stroke patients. Twenty-one stroke patients were assigned to either an experimental group (n = 10 or a control group (n = 11. Patients in both groups received a general physical therapy program for a duration of 30 minutes per session, 5 days per week, for a period of 4 weeks. Participants in the experimental group received additional AR-based postural control training for 30 minutes per day, 3 days per week, for a period of 4 weeks. Patients were assessed with the timed up-and-go test, Berg Balance Scale test, and spatiotemporal parameters using the GAITRite system. Results of repeated-measures analysis of covariance showed a significant main effect of time on timed up-and-go test, Berg Balance Scale, velocity, cadence, step length and stride length of paretic and nonparetic sides. In addition, walking velocity, step length, and stride length on both the paretic and nonparetic sides showed a significant group × time interaction effect. The results of this study provide evidence in support of incorporating an AR environment into postural control training for improving gait of stroke patients.

  5. Altered postural control strategies in quiet standing more than 20 years after rupture of the anterior cruciate ligament.

    Science.gov (United States)

    Stensdotter, Ann-Katrin; Tengman, Eva; Häger, Charlotte

    2016-05-01

    To explore long-term consequence