WorldWideScience

Sample records for human phenome-micrornaome network

  1. Human Environmental Disease Network

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Audouze, Karine

    2017-01-01

    During the past decades, many epidemiological, toxicological and biological studies have been performed to assess the role of environmental chemicals as potential toxicants for diverse human disorders. However, the relationships between diseases based on chemical exposure have been rarely studied...... by computational biology. We developed a human environmental disease network (EDN) to explore and suggest novel disease-disease and chemical-disease relationships. The presented scored EDN model is built upon the integration on systems biology and chemical toxicology using chemical contaminants information...

  2. Human factors in network security

    OpenAIRE

    Jones, Francis B.

    1991-01-01

    Human factors, such as ethics and education, are important factors in network information security. This thesis determines which human factors have significant influence on network security. Those factors are examined in relation to current security devices and procedures. Methods are introduced to evaluate security effectiveness by incorporating the appropriate human factors into network security controls

  3. NATO Human View Architecture and Human Networks

    Science.gov (United States)

    Handley, Holly A. H.; Houston, Nancy P.

    2010-01-01

    The NATO Human View is a system architectural viewpoint that focuses on the human as part of a system. Its purpose is to capture the human requirements and to inform on how the human impacts the system design. The viewpoint contains seven static models that include different aspects of the human element, such as roles, tasks, constraints, training and metrics. It also includes a Human Dynamics component to perform simulations of the human system under design. One of the static models, termed Human Networks, focuses on the human-to-human communication patterns that occur as a result of ad hoc or deliberate team formation, especially teams distributed across space and time. Parameters of human teams that effect system performance can be captured in this model. Human centered aspects of networks, such as differences in operational tempo (sense of urgency), priorities (common goal), and team history (knowledge of the other team members), can be incorporated. The information captured in the Human Network static model can then be included in the Human Dynamics component so that the impact of distributed teams is represented in the simulation. As the NATO militaries transform to a more networked force, the Human View architecture is an important tool that can be used to make recommendations on the proper mix of technological innovations and human interactions.

  4. The Human Disease Network

    National Research Council Canada - National Science Library

    Kwang-Il Goh; Michael E. Cusick; David Valle; Barton Childs; Marc Vidal; Albert-László Barabási

    2007-01-01

    A network of disorders and disease genes linked by known disordergene associations offers a platform to explore in a single graphtheoretic framework all known phenotype and disease gene associations...

  5. Approaching human language with complex networks.

    Science.gov (United States)

    Cong, Jin; Liu, Haitao

    2014-12-01

    The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics). Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Human tracking over camera networks: a review

    Science.gov (United States)

    Hou, Li; Wan, Wanggen; Hwang, Jenq-Neng; Muhammad, Rizwan; Yang, Mingyang; Han, Kang

    2017-12-01

    In recent years, automated human tracking over camera networks is getting essential for video surveillance. The tasks of tracking human over camera networks are not only inherently challenging due to changing human appearance, but also have enormous potentials for a wide range of practical applications, ranging from security surveillance to retail and health care. This review paper surveys the most widely used techniques and recent advances for human tracking over camera networks. Two important functional modules for the human tracking over camera networks are addressed, including human tracking within a camera and human tracking across non-overlapping cameras. The core techniques of human tracking within a camera are discussed based on two aspects, i.e., generative trackers and discriminative trackers. The core techniques of human tracking across non-overlapping cameras are then discussed based on the aspects of human re-identification, camera-link model-based tracking and graph model-based tracking. Our survey aims to address existing problems, challenges, and future research directions based on the analyses of the current progress made toward human tracking techniques over camera networks.

  7. A regulatory network for human adenocarcinoma

    African Journals Online (AJOL)

    AJL

    2012-03-13

    Mar 13, 2012 ... Human adenocarcinoma (AC) is the most frequently diagnosed human lung cancer and its absolute incidence is increasing dramatically. Our study aimed to interpret the mechanisms of human adenocarcinoma through the regulation network based on differentially expressed genes (DEGs). We used the ...

  8. Hierarchical modularity in human brain functional networks

    CERN Document Server

    Meunier, D; Fornito, A; Ersche, K D; Bullmore, E T; 10.3389/neuro.11.037.2009

    2010-01-01

    The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or "modules-within-modules") decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI) in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at ...

  9. Network centrality in the human functional connectome

    NARCIS (Netherlands)

    Zuo, X.N.; Ehmke, R.; Mennes, M.J.J.; Imperati, D.; Castellanos, F.X.; Sporns, O.; Milham, M.P.

    2012-01-01

    The network architecture of functional connectivity within the human brain connectome is poorly understood at the voxel level. Here, using resting state functional magnetic resonance imaging data from 1003 healthy adults, we investigate a broad array of network centrality measures to provide novel

  10. NCI’s Cooperative Human Tissue Network

    Science.gov (United States)

    Quality biospecimens are a foundational resource for cancer research. One of NCI’s longest running biospecimen programs is the Cooperative Human Tissue Network, a resource mainly for basic discovery and early translational research.

  11. Cooperative behavior cascades in human social networks

    National Research Council Canada - National Science Library

    James H. Fowler; Nicholas A. Christakis; Daniel Kahneman

    2010-01-01

    .... Observational data suggest that a wide variety of behaviors may spread in human social networks, but subjects in such studies can choose to befriend people with similar behaviors, posing difficulty for causal inference...

  12. Centralized Networks to Generate Human Body Motions.

    Science.gov (United States)

    Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan; Weber, Andres

    2017-12-14

    We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons' states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers' trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings.

  13. HOLA: Human-like Orthogonal Network Layout.

    Science.gov (United States)

    Kieffer, Steve; Dwyer, Tim; Marriott, Kim; Wybrow, Michael

    2016-01-01

    Over the last 50 years a wide variety of automatic network layout algorithms have been developed. Some are fast heuristic techniques suitable for networks with hundreds of thousands of nodes while others are multi-stage frameworks for higher-quality layout of smaller networks. However, despite decades of research currently no algorithm produces layout of comparable quality to that of a human. We give a new "human-centred" methodology for automatic network layout algorithm design that is intended to overcome this deficiency. User studies are first used to identify the aesthetic criteria algorithms should encode, then an algorithm is developed that is informed by these criteria and finally, a follow-up study evaluates the algorithm output. We have used this new methodology to develop an automatic orthogonal network layout method, HOLA, that achieves measurably better (by user study) layout than the best available orthogonal layout algorithm and which produces layouts of comparable quality to those produced by hand.

  14. EDUCATIONAL NETWORKING: HUMAN VIEW TO CYBER DEFENSE

    Directory of Open Access Journals (Sweden)

    Oleksandr Yu. Burov

    2016-05-01

    Full Text Available Networks play more and more important role for human life and activity, both in critical occupations (aviation, power industry, military missions etc., and in everyday life (home computers, education, leisure. Interaction between human and other elements of human-machine system have changed, because they coincide in the information habitat. Human-system integration has reached new level of defense needs. The paper will introduce features of information society in respect of a human and corresponding changes in HF/E: (1 information becomes a tool, goal, mean and environment of a human activity, (2 it becomes a part of the human nature and this makes him/her unprotected, (3 human psycho-physiological status becomes not only a basis of effective performance, but an object of control and support, and means of a human security and safety should be a part of information habitat, (4 networking environment becomes an independent actor in a human activity. Accompanying cyber-security challenges and tasks are discussed, as well as types of networking threats and Human View regarding the cyber security challenges.

  15. The Human Dimension of Networks

    Science.gov (United States)

    2008-06-01

    become part of a ‘mob’ or a social group in a number of ways: choice, peer pressure and subliminal seduction; but always through a sequence of decisions...information flow and network traffic, involving exponential distributions of messages and consequently Poisson statistics of traffic volume, is

  16. The core regulatory network in human cells.

    Science.gov (United States)

    Kim, Man-Sun; Kim, Dongsan; Kang, Nam Sook; Kim, Jeong-Rae

    2017-03-04

    In order to discover the common characteristics of various cell types in the human body, many researches have been conducted to find the set of genes commonly expressed in various cell types and tissues. However, the functional characteristics of a cell is determined by the complex regulatory relationships among the genes rather than by expressed genes themselves. Therefore, it is more important to identify and analyze a core regulatory network where all regulatory relationship between genes are active across all cell types to uncover the common features of various cell types. Here, based on hundreds of tissue-specific gene regulatory networks constructed by recent genome-wide experimental data, we constructed the core regulatory network. Interestingly, we found that the core regulatory network is organized by simple cascade and has few complex regulations such as feedback or feed-forward loops. Moreover, we discovered that the regulatory links from genes in the core regulatory network to genes in the peripheral regulatory network are much more abundant than the reverse direction links. These results suggest that the core regulatory network locates at the top of regulatory network and plays a role as a 'hub' in terms of information flow, and the information that is common to all cells can be modified to achieve the tissue-specific characteristics through various types of feedback and feed-forward loops in the peripheral regulatory networks. We also found that the genes in the core regulatory network are evolutionary conserved, essential and non-disease, non-druggable genes compared to the peripheral genes. Overall, our study provides an insight into how all human cells share a common function and generate tissue-specific functional traits by transmitting and processing information through regulatory network. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Network Medicine: A Network-based Approach to Human Diseases

    Science.gov (United States)

    Ghiassian, Susan Dina

    With the availability of large-scale data, it is now possible to systematically study the underlying interaction maps of many complex systems in multiple disciplines. Statistical physics has a long and successful history in modeling and characterizing systems with a large number of interacting individuals. Indeed, numerous approaches that were first developed in the context of statistical physics, such as the notion of random walks and diffusion processes, have been applied successfully to study and characterize complex systems in the context of network science. Based on these tools, network science has made important contributions to our understanding of many real-world, self-organizing systems, for example in computer science, sociology and economics. Biological systems are no exception. Indeed, recent studies reflect the necessity of applying statistical and network-based approaches in order to understand complex biological systems, such as cells. In these approaches, a cell is viewed as a complex network consisting of interactions among cellular components, such as genes and proteins. Given the cellular network as a platform, machinery, functionality and failure of a cell can be studied with network-based approaches, a field known as systems biology. Here, we apply network-based approaches to explore human diseases and their associated genes within the cellular network. This dissertation is divided in three parts: (i) A systematic analysis of the connectivity patterns among disease proteins within the cellular network. The quantification of these patterns inspires the design of an algorithm which predicts a disease-specific subnetwork containing yet unknown disease associated proteins. (ii) We apply the introduced algorithm to explore the common underlying mechanism of many complex diseases. We detect a subnetwork from which inflammatory processes initiate and result in many autoimmune diseases. (iii) The last chapter of this dissertation describes the

  18. Network Neuroscience Theory of Human Intelligence.

    Science.gov (United States)

    Barbey, Aron K

    2018-01-01

    An enduring aim of research in the psychological and brain sciences is to understand the nature of individual differences in human intelligence, examining the stunning breadth and diversity of intellectual abilities and the remarkable neurobiological mechanisms from which they arise. This Opinion article surveys recent neuroscience evidence to elucidate how general intelligence, g, emerges from individual differences in the network architecture of the human brain. The reviewed findings motivate new insights about how network topology and dynamics account for individual differences in g, represented by the Network Neuroscience Theory. According to this framework, g emerges from the small-world topology of brain networks and the dynamic reorganization of its community structure in the service of system-wide flexibility and adaptation. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  19. Neural networks of human nature and nurture

    Directory of Open Access Journals (Sweden)

    Daniel S. Levine

    2009-11-01

    Full Text Available Neural network methods have facilitated the unification of several unfortunate splits in psychology, including nature versus nurture. We review the contributions of this methodology and then discuss tentative network theories of caring behavior, of uncaring behavior, and of how the frontal lobes are involved in the choices between them. The implications of our theory are optimistic about the prospects of society to encourage the human potential for caring.

  20. Integrating Data and Networks: Human Factors

    Science.gov (United States)

    Chen, R. S.

    2012-12-01

    The development of technical linkages and interoperability between scientific networks is a necessary but not sufficient step towards integrated use and application of networked data and information for scientific and societal benefit. A range of "human factors" must also be addressed to ensure the long-term integration, sustainability, and utility of both the interoperable networks themselves and the scientific data and information to which they provide access. These human factors encompass the behavior of both individual humans and human institutions, and include system governance, a common framework for intellectual property rights and data sharing, consensus on terminology, metadata, and quality control processes, agreement on key system metrics and milestones, the compatibility of "business models" in the short and long term, harmonization of incentives for cooperation, and minimization of disincentives. Experience with several national and international initiatives and research programs such as the International Polar Year, the Group on Earth Observations, the NASA Earth Observing Data and Information System, the U.S. National Spatial Data Infrastructure, the Global Earthquake Model, and the United Nations Spatial Data Infrastructure provide a range of lessons regarding these human factors. Ongoing changes in science, technology, institutions, relationships, and even culture are creating both opportunities and challenges for expanded interoperability of scientific networks and significant improvement in data integration to advance science and the use of scientific data and information to achieve benefits for society as a whole.

  1. An architecture for human-network interfaces

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    1990-01-01

    Some of the issues (and their consequences) that arise when human-network interfaces (HNIs) are viewed from the perspective of people who use and develop them are examined. Target attributes of HNI architecture are presented. A high-level architecture model that supports the attributes is discussed...

  2. Network Medicine: A Network-based Approach to Human Disease

    Science.gov (United States)

    Barabási, Albert-László; Gulbahce, Natali; Loscalzo, Joseph

    2011-01-01

    Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular network. The emerging tools of network medicine offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships between apparently distinct (patho)phenotypes. Advances in this direction are essential to identify new diseases genes, to uncover the biological significance of disease-associated mutations identified by genome-wide association studies and full genome sequencing, and to identify drug targets and biomarkers for complex diseases. PMID:21164525

  3. Temporal stability in human interaction networks

    Science.gov (United States)

    Fabbri, Renato; Fabbri, Ricardo; Antunes, Deborah Christina; Pisani, Marilia Mello; de Oliveira, Osvaldo Novais

    2017-11-01

    This paper reports on stable (or invariant) properties of human interaction networks, with benchmarks derived from public email lists. Activity, recognized through messages sent, along time and topology were observed in snapshots in a timeline, and at different scales. Our analysis shows that activity is practically the same for all networks across timescales ranging from seconds to months. The principal components of the participants in the topological metrics space remain practically unchanged as different sets of messages are considered. The activity of participants follows the expected scale-free trace, thus yielding the hub, intermediary and peripheral classes of vertices by comparison against the Erdös-Rényi model. The relative sizes of these three sectors are essentially the same for all email lists and the same along time. Typically, 45% are peripheral vertices. Similar results for the distribution of participants in the three sectors and for the relative importance of the topological metrics were obtained for 12 additional networks from Facebook, Twitter and ParticipaBR. These properties are consistent with the literature and may be general for human interaction networks, which has important implications for establishing a typology of participants based on quantitative criteria.

  4. Structure of the human chromosome interaction network.

    Directory of Open Access Journals (Sweden)

    Sergio Sarnataro

    Full Text Available New Hi-C technologies have revealed that chromosomes have a complex network of spatial contacts in the cell nucleus of higher organisms, whose organisation is only partially understood. Here, we investigate the structure of such a network in human GM12878 cells, to derive a large scale picture of nuclear architecture. We find that the intensity of intra-chromosomal interactions is power-law distributed. Inter-chromosomal interactions are two orders of magnitude weaker and exponentially distributed, yet they are not randomly arranged along the genomic sequence. Intra-chromosomal contacts broadly occur between epigenomically homologous regions, whereas inter-chromosomal contacts are especially associated with regions rich in highly expressed genes. Overall, genomic contacts in the nucleus appear to be structured as a network of networks where a set of strongly individual chromosomal units, as envisaged in the 'chromosomal territory' scenario derived from microscopy, interact with each other via on average weaker, yet far from random and functionally important interactions.

  5. Network centrality in the human functional connectome.

    Science.gov (United States)

    Zuo, Xi-Nian; Ehmke, Ross; Mennes, Maarten; Imperati, Davide; Castellanos, F Xavier; Sporns, Olaf; Milham, Michael P

    2012-08-01

    The network architecture of functional connectivity within the human brain connectome is poorly understood at the voxel level. Here, using resting state functional magnetic resonance imaging data from 1003 healthy adults, we investigate a broad array of network centrality measures to provide novel insights into connectivity within the whole-brain functional network (i.e., the functional connectome). We first assemble and visualize the voxel-wise (4 mm) functional connectome as a functional network. We then demonstrate that each centrality measure captures different aspects of connectivity, highlighting the importance of considering both global and local connectivity properties of the functional connectome. Beyond "detecting functional hubs," we treat centrality as measures of functional connectivity within the brain connectome and demonstrate their reliability and phenotypic correlates (i.e., age and sex). Specifically, our analyses reveal age-related decreases in degree centrality, but not eigenvector centrality, within precuneus and posterior cingulate regions. This implies that while local or (direct) connectivity decreases with age, connections with hub-like regions within the brain remain stable with age at a global level. In sum, these findings demonstrate the nonredundancy of various centrality measures and raise questions regarding their underlying physiological mechanisms that may be relevant to the study of neurodegenerative and psychiatric disorders.

  6. Simulation of developing human neuronal cell networks.

    Science.gov (United States)

    Lenk, Kerstin; Priwitzer, Barbara; Ylä-Outinen, Laura; Tietz, Lukas H B; Narkilahti, Susanna; Hyttinen, Jari A K

    2016-08-30

    Microelectrode array (MEA) is a widely used technique to study for example the functional properties of neuronal networks derived from human embryonic stem cells (hESC-NN). With hESC-NN, we can investigate the earliest developmental stages of neuronal network formation in the human brain. In this paper, we propose an in silico model of maturating hESC-NNs based on a phenomenological model called INEX. We focus on simulations of the development of bursts in hESC-NNs, which are the main feature of neuronal activation patterns. The model was developed with data from developing hESC-NN recordings on MEAs which showed increase in the neuronal activity during the investigated six measurement time points in the experimental and simulated data. Our simulations suggest that the maturation process of hESC-NN, resulting in the formation of bursts, can be explained by the development of synapses. Moreover, spike and burst rate both decreased at the last measurement time point suggesting a pruning of synapses as the weak ones are removed. To conclude, our model reflects the assumption that the interaction between excitatory and inhibitory neurons during the maturation of a neuronal network and the spontaneous emergence of bursts are due to increased connectivity caused by the forming of new synapses.

  7. Pain tolerance predicts human social network size.

    Science.gov (United States)

    Johnson, Katerina V-A; Dunbar, Robin I M

    2016-04-28

    Personal social network size exhibits considerable variation in the human population and is associated with both physical and mental health status. Much of this inter-individual variation in human sociality remains unexplained from a biological perspective. According to the brain opioid theory of social attachment, binding of the neuropeptide β-endorphin to μ-opioid receptors in the central nervous system (CNS) is a key neurochemical mechanism involved in social bonding, particularly amongst primates. We hypothesise that a positive association exists between activity of the μ-opioid system and the number of social relationships that an individual maintains. Given the powerful analgesic properties of β-endorphin, we tested this hypothesis using pain tolerance as an assay for activation of the endogenous μ-opioid system. We show that a simple measure of pain tolerance correlates with social network size in humans. Our results are in line with previous studies suggesting that μ-opioid receptor signalling has been elaborated beyond its basic function of pain modulation to play an important role in managing our social encounters. The neuroplasticity of the μ-opioid system is of future research interest, especially with respect to psychiatric disorders associated with symptoms of social withdrawal and anhedonia, both of which are strongly modulated by endogenous opioids.

  8. Identifying familiar strangers in human encounter networks

    Science.gov (United States)

    Liang, Di; Li, Xiang; Zhang, Yi-Qing

    2016-10-01

    Familiar strangers, pairs of individuals who encounter repeatedly but never know each other, have been discovered for four decades yet lack an effective method to identify. Here we propose a novel method called familiar stranger classifier (FSC) to identify familiar strangers from three empirical datasets, and classify human relationships into four types, i.e., familiar stranger (FS), in-role (IR), friend (F) and stranger (S). The analyses of the human encounter networks show that the average number of FS one may encounter is finite but larger than the Dunbar Number, and their encounters are structurally more stable and denser than those of S, indicating the encounters of FS are not limited by the social capacity, and more robust than the random scenario. Moreover, the temporal statistics of encounters between FS over the whole time span show strong periodicity, which are diverse from the bursts of encounters within one day, suggesting the significance of longitudinal patterns of human encounters. The proposed method to identify FS in this paper provides a valid framework to understand human encounter patterns and analyse complex human social behaviors.

  9. The reconstruction and analysis of tissue specific human metabolic networks.

    Science.gov (United States)

    Hao, Tong; Ma, Hong-Wu; Zhao, Xue-Ming; Goryanin, Igor

    2012-02-01

    Human tissues have distinct biological functions. Many proteins/enzymes are known to be expressed only in specific tissues and therefore the metabolic networks in various tissues are different. Though high quality global human metabolic networks and metabolic networks for certain tissues such as liver have already been studied, a systematic study of tissue specific metabolic networks for all main tissues is still missing. In this work, we reconstruct the tissue specific metabolic networks for 15 main tissues in human based on the previously reconstructed Edinburgh Human Metabolic Network (EHMN). The tissue information is firstly obtained for enzymes from Human Protein Reference Database (HPRD) and UniprotKB databases and transfers to reactions through the enzyme-reaction relationships in EHMN. As our knowledge of tissue distribution of proteins is still very limited, we replenish the tissue information of the metabolic network based on network connectivity analysis and thorough examination of the literature. Finally, about 80% of proteins and reactions in EHMN are determined to be in at least one of the 15 tissues. To validate the quality of the tissue specific network, the brain specific metabolic network is taken as an example for functional module analysis and the results reveal that the function of the brain metabolic network is closely related with its function as the centre of the human nervous system. The tissue specific human metabolic networks are available at .

  10. A Model of Genetic Variation in Human Social Networks

    CERN Document Server

    Fowler, James H; Christakis, Nicholas A

    2008-01-01

    Social networks influence the evolution of cooperation and they exhibit strikingly systematic patterns across a wide range of human contexts. Both of these facts suggest that variation in the topological attributes of human social networks might have a genetic basis. While genetic variation accounts for a significant portion of the variation in many complex social behaviors, the heritability of egocentric social network attributes is unknown. Here we show that three of these attributes (in-degree, transitivity, and centrality) are heritable. We then develop a "mirror network" method to test extant network models and show that none accounts for observed genetic variation in human social networks. We propose an alternative "attract and introduce" model that generates significant heritability as well as other important network features, and we show that this model with two simple forms of heterogeneity is well suited to the modeling of real social networks in humans. These results suggest that natural selection ...

  11. Human Parsing with Contextualized Convolutional Neural Network.

    Science.gov (United States)

    Liang, Xiaodan; Xu, Chunyan; Shen, Xiaohui; Yang, Jianchao; Tang, Jinhui; Lin, Liang; Yan, Shuicheng

    2016-03-02

    In this work, we address the human parsing task with a novel Contextualized Convolutional Neural Network (Co-CNN) architecture, which well integrates the cross-layer context, global image-level context, semantic edge context, within-super-pixel context and cross-super-pixel neighborhood context into a unified network. Given an input human image, Co-CNN produces the pixel-wise categorization in an end-to-end way. First, the cross-layer context is captured by our basic local-to-global-to-local structure, which hierarchically combines the global semantic information and the local fine details across different convolutional layers. Second, the global image-level label prediction is used as an auxiliary objective in the intermediate layer of the Co-CNN, and its outputs are further used for guiding the feature learning in subsequent convolutional layers to leverage the global imagelevel context. Third, semantic edge context is further incorporated into Co-CNN, where the high-level semantic boundaries are leveraged to guide pixel-wise labeling. Finally, to further utilize the local super-pixel contexts, the within-super-pixel smoothing and cross-super-pixel neighbourhood voting are formulated as natural sub-components of the Co-CNN to achieve the local label consistency in both training and testing process. Comprehensive evaluations on two public datasets well demonstrate the significant superiority of our Co-CNN over other state-of-the-arts for human parsing. In particular, the F-1 score on the large dataset [1] reaches 81:72% by Co-CNN, significantly higher than 62:81% and 64:38% by the state-of-the-art algorithms, MCNN [2] and ATR [1], respectively. By utilizing our newly collected large dataset for training, our Co-CNN can achieve 85:36% in F-1 score.

  12. Human Navigational Performance in a Complex Network with Progressive Disruptions

    CERN Document Server

    Ramesh, Amitash; Iyengar, Sudarshan; Sekhar, Vinod

    2012-01-01

    The current paper is an investigation towards understanding the navigational performance of humans on a network when the "landmark" nodes are blocked. We observe that humans learn to cope up, despite the continued introduction of blockages in the network. The experiment proposed involves the task of navigating on a word network based on a puzzle called the wordmorph. We introduce blockages in the network and report an incremental improvement in performance with respect to time. We explain this phenomenon by analyzing the evolution of the knowledge in the human participants of the underlying network as more and more landmarks are removed. We hypothesize that humans learn the bare essentials to navigate unless we introduce blockages in the network which would whence enforce upon them the need to explore newer ways of navigating. We draw a parallel to human problem solving and postulate that obstacles are catalysts for humans to innovate techniques to solve a restricted variant of a familiar problem.

  13. Neural networks for perception human and machine perception

    CERN Document Server

    Wechsler, Harry

    1991-01-01

    Neural Networks for Perception, Volume 1: Human and Machine Perception focuses on models for understanding human perception in terms of distributed computation and examples of PDP models for machine perception. This book addresses both theoretical and practical issues related to the feasibility of both explaining human perception and implementing machine perception in terms of neural network models. The book is organized into two parts. The first part focuses on human perception. Topics on network model ofobject recognition in human vision, the self-organization of functional architecture in t

  14. Changes in cognitive state alter human functional brain networks

    Directory of Open Access Journals (Sweden)

    Malaak Nasser Moussa

    2011-08-01

    Full Text Available The study of the brain as a whole system can be accomplished using network theory principles. Research has shown that human functional brain networks during a resting state exhibit small-world properties and high degree nodes, or hubs, localized to brain areas consistent with the default mode network (DMN. However, the study of brain networks across different tasks and or cognitive states has been inconclusive. Research in this field is important because the underpinnings of behavioral output are inherently dependent on whether or not brain networks are dynamic. This is the first comprehensive study to evaluate multiple network metrics at a voxel-wise resolution in the human brain at both the whole brain and regional level under various conditions: resting state, visual stimulation, and multisensory (auditory and visual stimulation. Our results show that despite global network stability, functional brain networks exhibit considerable task-induced changes in connectivity, efficiency, and community structure at the regional level.

  15. Security and Privacy Preservation in Human-Involved Networks

    Science.gov (United States)

    Asher, Craig; Aumasson, Jean-Philippe; Phan, Raphael C.-W.

    This paper discusses security within human-involved networks, with a focus on social networking services (SNS). We argue that more secure networks could be designed using semi-formal security models inspired from cryptography, as well as notions like that of ceremony, which exploits human-specific abilities and psychology to assist creating more secure protocols. We illustrate some of our ideas with the example of the SNS Facebook.

  16. Human brain networks function in connectome-specific harmonic waves.

    Science.gov (United States)

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  17. Human metabolic network: reconstruction, simulation, and applications in systems biology.

    Science.gov (United States)

    Wu, Ming; Chan, Christina

    2012-03-02

    Metabolism is crucial to cell growth and proliferation. Deficiency or alterations in metabolic functions are known to be involved in many human diseases. Therefore, understanding the human metabolic system is important for the study and treatment of complex diseases. Current reconstructions of the global human metabolic network provide a computational platform to integrate genome-scale information on metabolism. The platform enables a systematic study of the regulation and is applicable to a wide variety of cases, wherein one could rely on in silico perturbations to predict novel targets, interpret systemic effects, and identify alterations in the metabolic states to better understand the genotype-phenotype relationships. In this review, we describe the reconstruction of the human metabolic network, introduce the constraint based modeling approach to analyze metabolic networks, and discuss systems biology applications to study human physiology and pathology. We highlight the challenges and opportunities in network reconstruction and systems modeling of the human metabolic system.

  18. Professional development and human resources management in networks

    Directory of Open Access Journals (Sweden)

    Evgeniy Rudnev

    2016-05-01

    Full Text Available Social networks occupy more places in development of people and organizations. Confidence in institutions and social networking are different and based on referentiality in Internet. For communication in network persons choose a different strategies and behavior in LinkedIn, resources of whom may be in different degree are interesting in Human Resources Management for organizations. Members of different social groups and cultures demonstrate some differences in interaction with Russian identity native. There are gender differences behavior in networks. Participating in groups need ethical behavior and norms in social networking for professional development and communication in future.

  19. Improving human resource capacity for road network preservation

    CSIR Research Space (South Africa)

    Nxumalo, M

    2010-10-01

    Full Text Available There is compelling evidence that a significant factor contributing to the poor condition of much of Africa's rural road network is inadequate human resource capacity. This shortage of professional skills in road engineering inhibits proper...

  20. Mapping human brain networks with cortico-cortical evoked potentials

    National Research Council Canada - National Science Library

    Keller, Corey J; Honey, Christopher J; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D

    2014-01-01

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities...

  1. Functional evolution of new and expanded attention networks in humans

    Science.gov (United States)

    Patel, Gaurav H.; Yang, Danica; Jamerson, Emery C.; Snyder, Lawrence H.; Corbetta, Maurizio; Ferrera, Vincent P.

    2015-01-01

    Macaques are often used as a model system for invasive investigations of the neural substrates of cognition. However, 25 million years of evolution separate humans and macaques from their last common ancestor, and this has likely substantially impacted the function of the cortical networks underlying cognitive processes, such as attention. We examined the homology of frontoparietal networks underlying attention by comparing functional MRI data from macaques and humans performing the same visual search task. Although there are broad similarities, we found fundamental differences between the species. First, humans have more dorsal attention network areas than macaques, indicating that in the course of evolution the human attention system has expanded compared with macaques. Second, potentially homologous areas in the dorsal attention network have markedly different biases toward representing the contralateral hemifield, indicating that the underlying neural architecture of these areas may differ in the most basic of properties, such as receptive field distribution. Third, despite clear evidence of the temporoparietal junction node of the ventral attention network in humans as elicited by this visual search task, we did not find functional evidence of a temporoparietal junction in macaques. None of these differences were the result of differences in training, experimental power, or anatomical variability between the two species. The results of this study indicate that macaque data should be applied to human models of cognition cautiously, and demonstrate how evolution may shape cortical networks. PMID:26170314

  2. Mapping human whole-brain structural networks with diffusion MRI.

    Directory of Open Access Journals (Sweden)

    Patric Hagmann

    Full Text Available Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.

  3. NETWORK ACTIVATION DURING BIMANUAL MOVEMENTS IN HUMANS

    Science.gov (United States)

    Walsh, RR; Small, SL; Chen, EE; Solodkin, A.

    2008-01-01

    The coordination of movement between the upper limbs is a function highly distributed across the animal kingdom. How the central nervous system generates such bilateral, synchronous movements, and how this differs from the generation of unilateral movements, remains uncertain. Electrophysiologic and functional imaging studies support that the activity of many brain regions during bimanual and unimanual movement are quite similar. Thus, the same brain regions (and indeed the same neurons) respond similarly during unimanual and bimanual movements as measured by electrophysiological responses. How then are different motor behaviors generated? To address this question, we studied unimanual and bimanual movements using fMRI and constructed networks of activation using Structural Equation Modeling (SEM). Our results suggest that (1) the dominant hemisphere appears to initiate activity responsible for bimanual movement; (2) activation during bimanual movement does not reflect the sum of right and left unimanual activation; (3) production of unimanual movement involves a network that is distinct from, and not a mirror of, the network for contralateral unimanual movement; and (4) using SEM, it is possible to obtain robust group networks representative of a population and to identify individual networks which can be used to detect subtle differences both between subjects as well as within a single subject over time. In summary, these results highlight a differential role for the dominant and non-dominant hemispheres during bimanual movements, further elaborating the concept of handedness and dominance. This knowledge increases our understanding of cortical motor physiology in health and after neurological damage. PMID:18718872

  4. Dopamine in the medial amygdala network mediates human bonding.

    Science.gov (United States)

    Atzil, Shir; Touroutoglou, Alexandra; Rudy, Tali; Salcedo, Stephanie; Feldman, Ruth; Hooker, Jacob M; Dickerson, Bradford C; Catana, Ciprian; Barrett, Lisa Feldman

    2017-02-28

    Research in humans and nonhuman animals indicates that social affiliation, and particularly maternal bonding, depends on reward circuitry. Although numerous mechanistic studies in rodents demonstrated that maternal bonding depends on striatal dopamine transmission, the neurochemistry supporting maternal behavior in humans has not been described so far. In this study, we tested the role of central dopamine in human bonding. We applied a combined functional MRI-PET scanner to simultaneously probe mothers' dopamine responses to their infants and the connectivity between the nucleus accumbens (NAcc), the amygdala, and the medial prefrontal cortex (mPFC), which form an intrinsic network (referred to as the "medial amygdala network") that supports social functioning. We also measured the mothers' behavioral synchrony with their infants and plasma oxytocin. The results of this study suggest that synchronous maternal behavior is associated with increased dopamine responses to the mother's infant and stronger intrinsic connectivity within the medial amygdala network. Moreover, stronger network connectivity is associated with increased dopamine responses within the network and decreased plasma oxytocin. Together, these data indicate that dopamine is involved in human bonding. Compared with other mammals, humans have an unusually complex social life. The complexity of human bonding cannot be fully captured in nonhuman animal models, particularly in pathological bonding, such as that in autistic spectrum disorder or postpartum depression. Thus, investigations of the neurochemistry of social bonding in humans, for which this study provides initial evidence, are warranted.

  5. Brain and Social Networks: Fundamental Building Blocks of Human Experience.

    Science.gov (United States)

    Falk, Emily B; Bassett, Danielle S

    2017-09-01

    How do brains shape social networks, and how do social ties shape the brain? Social networks are complex webs by which ideas spread among people. Brains comprise webs by which information is processed and transmitted among neural units. While brain activity and structure offer biological mechanisms for human behaviors, social networks offer external inducers or modulators of those behaviors. Together, these two axes represent fundamental contributors to human experience. Integrating foundational knowledge from social and developmental psychology and sociology on how individuals function within dyads, groups, and societies with recent advances in network neuroscience can offer new insights into both domains. Here, we use the example of how ideas and behaviors spread to illustrate the potential of multilayer network models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Human Face Recognition Using Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Răzvan-Daniel Albu

    2009-10-01

    Full Text Available In this paper, I present a novel hybrid face recognition approach based on a convolutional neural architecture, designed to robustly detect highly variable face patterns. The convolutional network extracts successively larger features in a hierarchical set of layers. With the weights of the trained neural networks there are created kernel windows used for feature extraction in a 3-stage algorithm. I present experimental results illustrating the efficiency of the proposed approach. I use a database of 796 images of 159 individuals from Reims University which contains quite a high degree of variability in expression, pose, and facial details.

  7. Novel transcriptional networks regulated by CLOCK in human neurons.

    Science.gov (United States)

    Fontenot, Miles R; Berto, Stefano; Liu, Yuxiang; Werthmann, Gordon; Douglas, Connor; Usui, Noriyoshi; Gleason, Kelly; Tamminga, Carol A; Takahashi, Joseph S; Konopka, Genevieve

    2017-11-01

    The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function. © 2017 Fontenot et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Organizing smart networks and humans into augmented teams

    NARCIS (Netherlands)

    Neef, R.M.; Rijn, M. van; Keus, D.; Marck, J.W.

    2009-01-01

    This paper discusses the challenge of turning networks of sensors, computers, agents and humans into hybrid teams that are capable, effective and adaptive. We propose a functional model and illustrate how such a model can be put into practice, and augment the capabilities of the human organization.

  9. Dopamine in the medial amygdala network mediates human bonding

    Science.gov (United States)

    Touroutoglou, Alexandra; Rudy, Tali; Salcedo, Stephanie; Feldman, Ruth; Hooker, Jacob M.; Dickerson, Bradford C.; Catana, Ciprian; Barrett, Lisa Feldman

    2017-01-01

    Research in humans and nonhuman animals indicates that social affiliation, and particularly maternal bonding, depends on reward circuitry. Although numerous mechanistic studies in rodents demonstrated that maternal bonding depends on striatal dopamine transmission, the neurochemistry supporting maternal behavior in humans has not been described so far. In this study, we tested the role of central dopamine in human bonding. We applied a combined functional MRI-PET scanner to simultaneously probe mothers’ dopamine responses to their infants and the connectivity between the nucleus accumbens (NAcc), the amygdala, and the medial prefrontal cortex (mPFC), which form an intrinsic network (referred to as the “medial amygdala network”) that supports social functioning. We also measured the mothers’ behavioral synchrony with their infants and plasma oxytocin. The results of this study suggest that synchronous maternal behavior is associated with increased dopamine responses to the mother’s infant and stronger intrinsic connectivity within the medial amygdala network. Moreover, stronger network connectivity is associated with increased dopamine responses within the network and decreased plasma oxytocin. Together, these data indicate that dopamine is involved in human bonding. Compared with other mammals, humans have an unusually complex social life. The complexity of human bonding cannot be fully captured in nonhuman animal models, particularly in pathological bonding, such as that in autistic spectrum disorder or postpartum depression. Thus, investigations of the neurochemistry of social bonding in humans, for which this study provides initial evidence, are warranted. PMID:28193868

  10. Dopamine in the medial amygdala network mediates human bonding

    OpenAIRE

    Atzil, Shir; Touroutoglou, Alexandra; Rudy, Tali; Salcedo, Stephanie; Feldman, Ruth; Hooker, Jacob M.; Dickerson, Bradford C.; Catana, Ciprian; Barrett, Lisa Feldman

    2017-01-01

    Early life bonding in humans has critical long-term implications for health, productivity, and well-being in society. Nonetheless, neural mechanisms of bonding are typically studied in rodents, and no studies to date had examined the neurochemistry of human social affiliation. This study utilizes a state-of-the-art technology to demonstrate that human maternal bonding is associated with striatal dopamine function and the recruitment of a cortico?striatal?amygdala brain network that supports a...

  11. Digital Humanities and networked digital media

    Directory of Open Access Journals (Sweden)

    Niels Ole Finnemann

    2014-10-01

    Full Text Available This article discusses digital humanities and the growing diversity of digital media, digital materials and digital methods. The first section describes the humanities computing tradition formed around the interpretation of computation as a rule-based process connected to a concept of digital materials centred on the digitisation of non-digital, finite works, corpora and oeuvres. The second section discusses “the big tent” of contemporary digital humanities. It is argued that there can be no unifying interpretation of digital humanities above the level of studying digital materials with the help of software-supported methods. This is so, in part, because of the complexity of the world and, in part, because digital media remain open to the projection of new epistemologies onto the functional architecture of these media. The third section discusses the heterogeneous character of digital materials and proposes that the study of digital materials should be established as a field in its own right.

  12. Digital Humanities and networked digital media

    Directory of Open Access Journals (Sweden)

    Niels Ole Finnemann

    2014-12-01

    Full Text Available This article discusses digital humanities and the growing diversity of digital media, digital materials and digital methods. The first section describes the humanities computing tradition formed around the interpretation of computation as a rule-based process connected to a concept of digital materials centred on the digitisation of non-digital, finite works, corpora and oeuvres. The second section discusses “the big tent” of contemporary digital humanities. It is argued that there can be no unifying interpretation of digital humanities above the level of studying digital materials with the help of software-supported methods. This is so, in part, because of the complexity of the world and, in part, because digital media remain open to the projection of new epistemologies onto the functional architecture of these media. The third section discusses the heterogeneous character of digital materials and proposes that the study of digital materials should be established as a field in its own right.

  13. Integrated Network Architecture for Sustained Human and Robotic Exploration

    Science.gov (United States)

    Noreen, Gary; Cesarone, Robert; Deutsch, Leslie; Edwards, Charles; Soloff, Jason; Ely, Todd; Cook, Brian; Morabito, David; Hemmati, Hamid; Piazolla, Sabino; hide

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Enterprise is planning a series of human and robotic missions to the Earth's moon and to Mars. These missions will require communication and navigation services. This paper1 sets forth presumed requirements for such services and concepts for lunar and Mars telecommunications network architectures to satisfy the presumed requirements. The paper suggests that an inexpensive ground network would suffice for missions to the near-side of the moon. A constellation of three Lunar Telecommunications Orbiters connected to an inexpensive ground network could provide continuous redundant links to a polar lunar base and its vicinity. For human and robotic missions to Mars, a pair of areostationary satellites could provide continuous redundant links between Earth and a mid-latitude Mars base in conjunction with the Deep Space Network augmented by large arrays of 12-m antennas on Earth.

  14. Human Genome Variation and the Concept of Genotype Networks

    Science.gov (United States)

    Dall'Olio, Giovanni Marco; Bertranpetit, Jaume; Wagner, Andreas; Laayouni, Hafid

    2014-01-01

    Genotype networks are a concept used in systems biology to study sets of genotypes having the same phenotype, and the ability of these to bring forth novel phenotypes. In the past they have been applied to determine the genetic heterogeneity, and stability to mutations, of systems such as metabolic networks and RNA folds. Recently, they have been the base for reconciling the neutralist and selectionist views on evolution. Here, we adapted this concept to the study of population genetics data. Specifically, we applied genotype networks to the human 1000 genomes dataset, and analyzed networks composed of short haplotypes of Single Nucleotide Variants (SNV). The result is a scan of how properties related to genetic heterogeneity and stability to mutations are distributed along the human genome. We found that genes involved in acquired immunity, such as some HLA and MHC genes, tend to have the most heterogeneous and connected networks, and that coding regions tend to be more heterogeneous and stable to mutations than non-coding regions. We also found, using coalescent simulations, that regions under selection have more extended and connected networks. The application of the concept of genotype networks can provide a new opportunity to understand the evolutionary processes that shaped our genome. Learning how the genotype space of each region of our genome has been explored during the evolutionary history of the human species can lead to a better understanding on how selective pressures and neutral factors have shaped genetic diversity within populations and among individuals. Combined with the availability of larger datasets of sequencing data, genotype networks represent a new approach to the study of human genetic diversity that looks to the whole genome, and goes beyond the classical division between selection and neutrality methods. PMID:24911413

  15. Dynamic Network Centrality Summarizes Learning in the Human Brain

    OpenAIRE

    Mantzaris, Alexander V.; Bassett, Danielle S.; Wymbs, Nicholas F.; Estrada, Ernesto; Porter, Mason A.; Mucha, Peter J; Grafton, Scott T.; Higham, Desmond J.

    2012-01-01

    We study functional activity in the human brain using functional Magnetic Resonance Imaging and recently developed tools from network science. The data arise from the performance of a simple behavioural motor learning task. Unsupervised clustering of subjects with respect to similarity of network activity measured over three days of practice produces significant evidence of `learning', in the sense that subjects typically move between clusters (of subjects whose dynamics are similar) as time ...

  16. Large-Scale Analysis of Network Bistability for Human Cancers

    OpenAIRE

    Tetsuya Shiraishi; Shinako Matsuyama; Hiroaki Kitano

    2010-01-01

    Author Summary Since most disease states exhibit a certain level of resilience against therapeutic interventions, each disease state can be considered to be homeostatic to some extent. There must be one or more mechanisms that cause the gene-regulatory network to maintain a certain state, and one such mechanism is a bistable switch. In this work, bistable switch networks were constructed and their ON(upregulated)/OFF(downregulated) states were compared between human cancers and healthy contro...

  17. Human genome variation and the concept of genotype networks.

    Science.gov (United States)

    Dall'Olio, Giovanni Marco; Bertranpetit, Jaume; Wagner, Andreas; Laayouni, Hafid

    2014-01-01

    Genotype networks are a concept used in systems biology to study sets of genotypes having the same phenotype, and the ability of these to bring forth novel phenotypes. In the past they have been applied to determine the genetic heterogeneity, and stability to mutations, of systems such as metabolic networks and RNA folds. Recently, they have been the base for reconciling the neutralist and selectionist views on evolution. Here, we adapted this concept to the study of population genetics data. Specifically, we applied genotype networks to the human 1000 genomes dataset, and analyzed networks composed of short haplotypes of Single Nucleotide Variants (SNV). The result is a scan of how properties related to genetic heterogeneity and stability to mutations are distributed along the human genome. We found that genes involved in acquired immunity, such as some HLA and MHC genes, tend to have the most heterogeneous and connected networks, and that coding regions tend to be more heterogeneous and stable to mutations than non-coding regions. We also found, using coalescent simulations, that regions under selection have more extended and connected networks. The application of the concept of genotype networks can provide a new opportunity to understand the evolutionary processes that shaped our genome. Learning how the genotype space of each region of our genome has been explored during the evolutionary history of the human species can lead to a better understanding on how selective pressures and neutral factors have shaped genetic diversity within populations and among individuals. Combined with the availability of larger datasets of sequencing data, genotype networks represent a new approach to the study of human genetic diversity that looks to the whole genome, and goes beyond the classical division between selection and neutrality methods.

  18. Human matching behavior in social networks: an algorithmic perspective.

    Science.gov (United States)

    Coviello, Lorenzo; Franceschetti, Massimo; McCubbins, Mathew D; Paturi, Ramamohan; Vattani, Andrea

    2012-01-01

    We argue that algorithmic modeling is a powerful approach to understanding the collective dynamics of human behavior. We consider the task of pairing up individuals connected over a network, according to the following model: each individual is able to propose to match with and accept a proposal from a neighbor in the network; if a matched individual proposes to another neighbor or accepts another proposal, the current match will be broken; individuals can only observe whether their neighbors are currently matched but have no knowledge of the network topology or the status of other individuals; and all individuals have the common goal of maximizing the total number of matches. By examining the experimental data, we identify a behavioral principle called prudence, develop an algorithmic model, analyze its properties mathematically and by simulations, and validate the model with human subject experiments for various network sizes and topologies. Our results include i) a 1/2-approximate maximum matching is obtained in logarithmic time in the network size for bounded degree networks; ii) for any constant ε > 0, a (1 - ε)-approximate maximum matching is obtained in polynomial time, while obtaining a maximum matching can require an exponential time; and iii) convergence to a maximum matching is slower on preferential attachment networks than on small-world networks. These results allow us to predict that while humans can find a "good quality" matching quickly, they may be unable to find a maximum matching in feasible time. We show that the human subjects largely abide by prudence, and their collective behavior is closely tracked by the above predictions.

  19. High Accuracy Human Activity Monitoring using Neural network

    OpenAIRE

    Sharma, Annapurna; Lee, Young-Dong; Chung, Wan-Young

    2011-01-01

    This paper presents the designing of a neural network for the classification of Human activity. A Triaxial accelerometer sensor, housed in a chest worn sensor unit, has been used for capturing the acceleration of the movements associated. All the three axis acceleration data were collected at a base station PC via a CC2420 2.4GHz ISM band radio (zigbee wireless compliant), processed and classified using MATLAB. A neural network approach for classification was used with an eye on theoretical a...

  20. Modeling human dynamics of face-to-face interaction networks

    CERN Document Server

    Starnini, Michele; Pastor-Satorras, Romualdo

    2013-01-01

    Face-to-face interaction networks describe social interactions in human gatherings, and are the substrate for processes such as epidemic spreading and gossip propagation. The bursty nature of human behavior characterizes many aspects of empirical data, such as the distribution of conversation lengths, of conversations per person, or of inter-conversation times. Despite several recent attempts, a general theoretical understanding of the global picture emerging from data is still lacking. Here we present a simple model that reproduces quantitatively most of the relevant features of empirical face-to-face interaction networks. The model describes agents which perform a random walk in a two dimensional space and are characterized by an attractiveness whose effect is to slow down the motion of people around them. The proposed framework sheds light on the dynamics of human interactions and can improve the modeling of dynamical processes taking place on the ensuing dynamical social networks.

  1. Social Rewards and Social Networks in the Human Brain.

    Science.gov (United States)

    Fareri, Dominic S; Delgado, Mauricio R

    2014-08-01

    The rapid development of social media and social networking sites in human society within the past decade has brought about an increased focus on the value of social relationships and being connected with others. Research suggests that we pursue socially valued or rewarding outcomes-approval, acceptance, reciprocity-as a means toward learning about others and fulfilling social needs of forming meaningful relationships. Focusing largely on recent advances in the human neuroimaging literature, we review findings highlighting the neural circuitry and processes that underlie pursuit of valued rewarding outcomes across non-social and social domains. We additionally discuss emerging human neuroimaging evidence supporting the idea that social rewards provide a gateway to establishing relationships and forming social networks. Characterizing the link between social network, brain, and behavior can potentially identify contributing factors to maladaptive influences on decision making within social situations. © The Author(s) 2014.

  2. Temporal networks of face-to-face human interactions

    CERN Document Server

    Barrat, Alain

    2013-01-01

    The ever increasing adoption of mobile technologies and ubiquitous services allows to sense human behavior at unprecedented levels of details and scale. Wearable sensors are opening up a new window on human mobility and proximity at the finest resolution of face-to-face proximity. As a consequence, empirical data describing social and behavioral networks are acquiring a longitudinal dimension that brings forth new challenges for analysis and modeling. Here we review recent work on the representation and analysis of temporal networks of face-to-face human proximity, based on large-scale datasets collected in the context of the SocioPatterns collaboration. We show that the raw behavioral data can be studied at various levels of coarse-graining, which turn out to be complementary to one another, with each level exposing different features of the underlying system. We briefly review a generative model of temporal contact networks that reproduces some statistical observables. Then, we shift our focus from surface ...

  3. Human Face Identification using KL Transform and Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Joo [LG Electronics Inc. Multimedia Research Lab. (Korea, Republic of); Ji, Seung Hwan [Mi Re Industry Inc. (Korea, Republic of); Yoo, Jae Hyung; Kim, Jung Hwan; Park, Min Yong [Yonsei University (Korea, Republic of)

    1999-01-01

    Machine recognition of faces from still and video images is emerging as an active research area spanning several disciplines such as image processing, pattern recognition, computer vision and neural networks. In addition, human face identification has numerous applications such as human interface based systems and real-time video systems of surveillance and security. In this paper, we propose an algorithm that can identify a particular individual face. We consider human face identification system in color space, which hasn`t often considered in conventional methods. In order to make the algorithm insensitive to luminance, we convert the conventional RGB coordinates into normalized CIE coordinates. The normalized-CIE-based facial images are KL-transformed. The transformed data are used as used as the input of multi-layered neural network and the network are trained using error-backpropagation methods. Finally, we verify the system performance of the proposed algorithm by experiments. (author). 12 refs., 7 figs., 3 tabs.

  4. Flow distributions and spatial correlations in human brain capillary networks

    Science.gov (United States)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy

    2015-11-01

    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  5. Evidence for Functional Networks within the Human Brain's White Matter.

    Science.gov (United States)

    Peer, Michael; Nitzan, Mor; Bick, Atira S; Levin, Netta; Arzy, Shahar

    2017-07-05

    Investigation of the functional macro-scale organization of the human cortex is fundamental in modern neuroscience. Although numerous studies have identified networks of interacting functional modules in the gray-matter, limited research was directed to the functional organization of the white-matter. Recent studies have demonstrated that the white-matter exhibits blood oxygen level-dependent signal fluctuations similar to those of the gray-matter. Here we used these signal fluctuations to investigate whether the white-matter is organized as functional networks by applying a clustering analysis on resting-state functional MRI (RSfMRI) data from white-matter voxels, in 176 subjects (of both sexes). This analysis indicated the existence of 12 symmetrical white-matter functional networks, corresponding to combinations of white-matter tracts identified by diffusion tensor imaging. Six of the networks included interhemispheric commissural bridges traversing the corpus callosum. Signals in white-matter networks correlated with signals from functional gray-matter networks, providing missing knowledge on how these distributed networks communicate across large distances. These findings were replicated in an independent subject group and were corroborated by seed-based analysis in small groups and individual subjects. The identified white-matter functional atlases and analysis codes are available at http://mind.huji.ac.il/white-matter.aspx Our results demonstrate that the white-matter manifests an intrinsic functional organization as interacting networks of functional modules, similarly to the gray-matter, which can be investigated using RSfMRI. The discovery of functional networks within the white-matter may open new avenues of research in cognitive neuroscience and clinical neuropsychiatry.SIGNIFICANCE STATEMENT In recent years, functional MRI (fMRI) has revolutionized all fields of neuroscience, enabling identifications of functional modules and networks in the human

  6. Networked Sensor - Aided Tracking of Walking Human in Robotic Space

    Directory of Open Access Journals (Sweden)

    Taeseok Jin

    2013-01-01

    Full Text Available The robots that will be needed in the near future are human-friendly robots that are able to coexist with humans and support humans effectively. To realize this, it is necessary for a robot to carry out human tracking as one of its human-affinitive movements. In this research, a predictable robotic space is introduced in order for a robot to follow a walking human by the shortest time trajectory. The mobile robot is controlled to follow the walking human using distributed networked sensors. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the robotic space. The computer simulation and experimental results on the mobile robot's success in estimating information and following a walking human are presented.

  7. Digital Humanities and networked digital media

    DEFF Research Database (Denmark)

    Finnemann, Niels Ole

    2014-01-01

    This article discusses digital humanities and the growing diversity of digital media, digital materials and digital methods. The first section describes the humanities computing tradition formed around the interpretation of computation as a rule-based process connected to a concept of digital...... of software-supported methods. This is so, in part, because of the complexity of the world and, in part, because digital media remain open to the projection of new epistemologies onto the functional architecture of these media. The third section discusses the heterogeneous character of digital materials...

  8. Security Implications of Human-Trafficking Networks

    Science.gov (United States)

    2007-06-15

    to those security concerns. Background How is Human Trafficking Carried Out? While trafficking victims are often found in sweatshops , domestic...labor. This type of trafficking is often found in agricultural labor, the production of goods (typically called sweatshops ) and construction labor

  9. Analyzing, Modeling, and Simulation for Human Dynamics in Social Network

    Directory of Open Access Journals (Sweden)

    Yunpeng Xiao

    2012-01-01

    Full Text Available This paper studies the human behavior in the top-one social network system in China (Sina Microblog system. By analyzing real-life data at a large scale, we find that the message releasing interval (intermessage time obeys power law distribution both at individual level and at group level. Statistical analysis also reveals that human behavior in social network is mainly driven by four basic elements: social pressure, social identity, social participation, and social relation between individuals. Empirical results present the four elements' impact on the human behavior and the relation between these elements. To further understand the mechanism of such dynamic phenomena, a hybrid human dynamic model which combines “interest” of individual and “interaction” among people is introduced, incorporating the four elements simultaneously. To provide a solid evaluation, we simulate both two-agent and multiagent interactions with real-life social network topology. We achieve the consistent results between empirical studies and the simulations. The model can provide a good understanding of human dynamics in social network.

  10. Small-world human brain networks: Perspectives and challenges.

    Science.gov (United States)

    Liao, Xuhong; Vasilakos, Athanasios V; He, Yong

    2017-06-01

    Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Human behavior understanding in networked sensing theory and applications of networks of sensors

    CERN Document Server

    Spagnolo, Paolo; Distante, Cosimo

    2014-01-01

    This unique text/reference provides a broad overview of both the technical challenges in sensor network development, and the real-world applications of distributed sensing. Important aspects of distributed computing in large-scale networked sensor systems are analyzed in the context of human behavior understanding, including such topics as systems design tools and techniques, in-network signals, and information processing. Additionally, the book examines a varied range of application scenarios, covering surveillance, indexing and retrieval, patient care, industrial safety, social and ambient

  12. ARTIFICIAL NEURAL NETWORK FOR MODELS OF HUMAN OPERATOR

    Directory of Open Access Journals (Sweden)

    Martin Ruzek

    2017-12-01

    Full Text Available This paper presents a new approach to mental functions modeling with the use of artificial neural networks. The artificial neural networks seems to be a promising method for the modeling of a human operator because the architecture of the ANN is directly inspired by the biological neuron. On the other hand, the classical paradigms of artificial neural networks are not suitable because they simplify too much the real processes in biological neural network. The search for a compromise between the complexity of biological neural network and the practical feasibility of the artificial network led to a new learning algorithm. This algorithm is based on the classical multilayered neural network; however, the learning rule is different. The neurons are updating their parameters in a way that is similar to real biological processes. The basic idea is that the neurons are competing for resources and the criterion to decide which neuron will survive is the usefulness of the neuron to the whole neural network. The neuron is not using "teacher" or any kind of superior system, the neuron receives only the information that is present in the biological system. The learning process can be seen as searching of some equilibrium point that is equal to a state with maximal importance of the neuron for the neural network. This position can change if the environment changes. The name of this type of learning, the homeostatic artificial neural network, originates from this idea, as it is similar to the process of homeostasis known in any living cell. The simulation results suggest that this type of learning can be useful also in other tasks of artificial learning and recognition.

  13. Interpersonal interactions and human dynamics in a large social network

    Science.gov (United States)

    Grabowski, Andrzej

    2007-11-01

    We study a large social network consisting of over 106 individuals, who form an Internet community and organize themselves in groups of different sizes. On the basis of the users’ list of friends and other data registered in the database we investigate the structure and time development of the network. The structure of this friendship network is very similar to the structure of different social networks. However, here a degree distribution exhibiting two scaling regimes, power-law for low connectivity and exponential for large connectivity, was found. The groups size distribution and distribution of number of groups of an individual have power-law form. We found very interesting scaling laws concerning human dynamics. Our research has shown how long people are interested in a single task.

  14. Modules of human micro-RNA co-target network

    Science.gov (United States)

    Basu, Mahashweta; Bhattacharyya, Nitai P.; Mohanty, P. K.

    2011-05-01

    Human micro RNAs (miRNAs) target about 90% of the coding genes and form a complex regulatory network. We study the community structure of the miRNA co-target network considering miRNAs as the nodes which are connected by weighted links. The weight of link that connects a pair of miRNAs denote the total number of common transcripts targeted by that pair. We argue that the network consists of about 74 modules, quite similar to the components (or clusters) obtained earlier [Online J Bioinformatics, 10,280], indicating that the components of the miRNA co-target network are self organized in a way to maximize the modularity.

  15. Online social network size is reflected in human brain structure.

    Science.gov (United States)

    Kanai, R; Bahrami, B; Roylance, R; Rees, G

    2012-04-07

    The increasing ubiquity of web-based social networking services is a striking feature of modern human society. The degree to which individuals participate in these networks varies substantially for reasons that are unclear. Here, we show a biological basis for such variability by demonstrating that quantitative variation in the number of friends an individual declares on a web-based social networking service reliably predicted grey matter density in the right superior temporal sulcus, left middle temporal gyrus and entorhinal cortex. Such regions have been previously implicated in social perception and associative memory, respectively. We further show that variability in the size of such online friendship networks was significantly correlated with the size of more intimate real-world social groups. However, the brain regions we identified were specifically associated with online social network size, whereas the grey matter density of the amygdala was correlated both with online and real-world social network sizes. Taken together, our findings demonstrate that the size of an individual's online social network is closely linked to focal brain structure implicated in social cognition.

  16. Space Networking Demonstrated for Distributed Human-Robotic Planetary Exploration

    Science.gov (United States)

    Bizon, Thomas P.; Seibert, Marc A.

    2003-01-01

    Communications and networking experts from the NASA Glenn Research Center designed and implemented an innovative communications infrastructure for a simulated human-robotic planetary mission. The mission, which was executed in the Arizona desert during the first 2 weeks of September 2002, involved a diverse team of researchers from several NASA centers and academic institutions.

  17. A cultured human neural network operates a robotic actuator.

    Science.gov (United States)

    Pizzi, R M R; Rossetti, D; Cino, G; Marino, D; A L Vescovi; Baer, W

    2009-02-01

    The development of bio-electronic prostheses, hybrid human-electronics devices and bionic robots has been the aim of many researchers. Although neurophysiologic processes have been widely investigated and bio-electronics has developed rapidly, the dynamics of a biological neuronal network that receive sensory inputs, store and control information is not yet understood. Toward this end, we have taken an interdisciplinary approach to study the learning and response of biological neural networks to complex stimulation patterns. This paper describes the design, execution, and results of several experiments performed in order to investigate the behavior of complex interconnected structures found in biological neural networks. The experimental design consisted of biological human neurons stimulated by parallel signal patterns intended to simulate complex perceptions. The response patterns were analyzed with an innovative artificial neural network (ANN), called ITSOM (Inductive Tracing Self Organizing Map). This system allowed us to decode the complex neural responses from a mixture of different stimulations and learned memory patterns inherent in the cell colonies. In the experiment described in this work, neurons derived from human neural stem cells were connected to a robotic actuator through the ANN analyzer to demonstrate our ability to produce useful control from simulated perceptions stimulating the cells. Preliminary results showed that in vitro human neuron colonies can learn to reply selectively to different stimulation patterns and that response signals can effectively be decoded to operate a minirobot. Lastly the fascinating performance of the hybrid system is evaluated quantitatively and potential future work is discussed.

  18. The evolution of distributed association networks in the human brain.

    Science.gov (United States)

    Buckner, Randy L; Krienen, Fenna M

    2013-12-01

    The human cerebral cortex is vastly expanded relative to other primates and disproportionately occupied by distributed association regions. Here we offer a hypothesis about how association networks evolved their prominence and came to possess circuit properties vital to human cognition. The rapid expansion of the cortical mantle may have untethered large portions of the cortex from strong constraints of molecular gradients and early activity cascades that lead to sensory hierarchies. What fill the gaps between these hierarchies are densely interconnected networks that widely span the cortex and mature late into development. Limitations of the tethering hypothesis are discussed as well as its broad implications for understanding critical features of the human brain as a byproduct of size scaling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Emergence of encounter networks due to human mobility.

    Directory of Open Access Journals (Sweden)

    A P Riascos

    Full Text Available There is a burst of work on human mobility and encounter networks. However, the connection between these two important fields just begun recently. It is clear that both are closely related: Mobility generates encounters, and these encounters might give rise to contagion phenomena or even friendship. We model a set of random walkers that visit locations in space following a strategy akin to Lévy flights. We measure the encounters in space and time and establish a link between walkers after they coincide several times. This generates a temporal network that is characterized by global quantities. We compare this dynamics with real data for two cities: New York City and Tokyo. We use data from the location-based social network Foursquare and obtain the emergent temporal encounter network, for these two cities, that we compare with our model. We found long-range (Lévy-like distributions for traveled distances and time intervals that characterize the emergent social network due to human mobility. Studying this connection is important for several fields like epidemics, social influence, voting, contagion models, behavioral adoption and diffusion of ideas.

  20. Identifying topological motif patterns of human brain functional networks.

    Science.gov (United States)

    Wei, Yongbin; Liao, Xuhong; Yan, Chaogan; He, Yong; Xia, Mingrui

    2017-05-01

    Recent imaging connectome studies demonstrated that the human functional brain network follows an efficient small-world topology with cohesive functional modules and highly connected hubs. However, the functional motif patterns that represent the underlying information flow remain largely unknown. Here, we investigated motif patterns within directed human functional brain networks, which were derived from resting-state functional magnetic resonance imaging data with controlled confounding hemodynamic latencies. We found several significantly recurring motifs within the network, including the two-node reciprocal motif and five classes of three-node motifs. These recurring motifs were distributed in distinct patterns to support intra- and inter-module functional connectivity, which also promoted integration and segregation in network organization. Moreover, the significant participation of several functional hubs in the recurring motifs exhibited their critical role in global integration. Collectively, our findings highlight the basic architecture governing brain network organization and provide insight into the information flow mechanism underlying intrinsic brain activities. Hum Brain Mapp 38:2734-2750, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Integrative analysis of human omics data using biomolecular networks.

    Science.gov (United States)

    Robinson, Jonathan L; Nielsen, Jens

    2016-10-20

    High-throughput '-omics' technologies have given rise to an increasing abundance of genome-scale data detailing human biology at the molecular level. Although these datasets have already made substantial contributions to a more comprehensive understanding of human physiology and diseases, their interpretation becomes increasingly cryptic and nontrivial as they continue to expand in size and complexity. Systems biology networks offer a scaffold upon which omics data can be integrated, facilitating the extraction of new and physiologically relevant information from the data. Two of the most prevalent networks that have been used for such integrative analyses of omics data are genome-scale metabolic models (GEMs) and protein-protein interaction (PPI) networks, both of which have demonstrated success among many different omics and sample types. This integrative approach seeks to unite 'top-down' omics data with 'bottom-up' biological networks in a synergistic fashion that draws on the strengths of both strategies. As the volume and resolution of high-throughput omics data continue to grow, integrative network-based analyses are expected to play an increasingly important role in their interpretation.

  2. Emergence of encounter networks due to human mobility.

    Science.gov (United States)

    Riascos, A P; Mateos, José L

    2017-01-01

    There is a burst of work on human mobility and encounter networks. However, the connection between these two important fields just begun recently. It is clear that both are closely related: Mobility generates encounters, and these encounters might give rise to contagion phenomena or even friendship. We model a set of random walkers that visit locations in space following a strategy akin to Lévy flights. We measure the encounters in space and time and establish a link between walkers after they coincide several times. This generates a temporal network that is characterized by global quantities. We compare this dynamics with real data for two cities: New York City and Tokyo. We use data from the location-based social network Foursquare and obtain the emergent temporal encounter network, for these two cities, that we compare with our model. We found long-range (Lévy-like) distributions for traveled distances and time intervals that characterize the emergent social network due to human mobility. Studying this connection is important for several fields like epidemics, social influence, voting, contagion models, behavioral adoption and diffusion of ideas.

  3. Speculations on the Impact of Global Electronic Networks on Human Cognition and Human Organization.

    Science.gov (United States)

    Nilan, Michael S.

    1993-01-01

    Examines the relationship between a society's communication technology and Marshall McLuhan's concerns for human cognition, and between the technology and the ways that humans organize their societies. It is suggested that appropriate development of global electronic networks could have a positive effect on individual and organizational abilities…

  4. Reputation drives cooperative behaviour and network formation in human groups.

    Science.gov (United States)

    Cuesta, Jose A; Gracia-Lázaro, Carlos; Ferrer, Alfredo; Moreno, Yamir; Sánchez, Angel

    2015-01-19

    Cooperativeness is a defining feature of human nature. Theoreticians have suggested several mechanisms to explain this ubiquitous phenomenon, including reciprocity, reputation, and punishment, but the problem is still unsolved. Here we show, through experiments conducted with groups of people playing an iterated Prisoner's Dilemma on a dynamic network, that it is reputation what really fosters cooperation. While this mechanism has already been observed in unstructured populations, we find that it acts equally when interactions are given by a network that players can reconfigure dynamically. Furthermore, our observations reveal that memory also drives the network formation process, and cooperators assort more, with longer link lifetimes, the longer the past actions record. Our analysis demonstrates, for the first time, that reputation can be very well quantified as a weighted mean of the fractions of past cooperative acts and the last action performed. This finding has potential applications in collaborative systems and e-commerce.

  5. Reputation drives cooperative behaviour and network formation in human groups

    Science.gov (United States)

    Cuesta, Jose A.; Gracia-Lázaro, Carlos; Ferrer, Alfredo; Moreno, Yamir; Sánchez, Angel

    2015-01-01

    Cooperativeness is a defining feature of human nature. Theoreticians have suggested several mechanisms to explain this ubiquitous phenomenon, including reciprocity, reputation, and punishment, but the problem is still unsolved. Here we show, through experiments conducted with groups of people playing an iterated Prisoner's Dilemma on a dynamic network, that it is reputation what really fosters cooperation. While this mechanism has already been observed in unstructured populations, we find that it acts equally when interactions are given by a network that players can reconfigure dynamically. Furthermore, our observations reveal that memory also drives the network formation process, and cooperators assort more, with longer link lifetimes, the longer the past actions record. Our analysis demonstrates, for the first time, that reputation can be very well quantified as a weighted mean of the fractions of past cooperative acts and the last action performed. This finding has potential applications in collaborative systems and e-commerce. PMID:25598347

  6. Skill networks and measures of complex human capital

    Science.gov (United States)

    2017-01-01

    We propose a network-based method for measuring worker skills. We illustrate the method using data from an online freelance website. Using the tools of network analysis, we divide skills into endogenous categories based on their relationship with other skills in the market. Workers who specialize in these different areas earn dramatically different wages. We then show that, in this market, network-based measures of human capital provide additional insight into wages beyond traditional measures. In particular, we show that workers with diverse skills earn higher wages than those with more specialized skills. Moreover, we can distinguish between two different types of workers benefiting from skill diversity: jacks-of-all-trades, whose skills can be applied independently on a wide range of jobs, and synergistic workers, whose skills are useful in combination and fill a hole in the labor market. On average, workers whose skills are synergistic earn more than jacks-of-all-trades. PMID:29133397

  7. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections.

    Directory of Open Access Journals (Sweden)

    Ettie M Lipner

    Full Text Available Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects.

  8. Social Contagion Theory: Examining Dynamic Social Networks and Human Behavior

    OpenAIRE

    Nicholas A Christakis; Fowler, James H.

    2011-01-01

    Here, we review the research we have done on social contagion. We describe the methods we have employed (and the assumptions they have entailed) in order to examine several datasets with complementary strengths and weaknesses, including the Framingham Heart Study, the National Longitudinal Study of Adolescent Health, and other observational and experimental datasets that we and others have collected. We describe the regularities that led us to propose that human social networks may exhibit a ...

  9. Emergence of encounter networks due to human mobility

    OpenAIRE

    Riascos, A. P.; Mateos, José L.

    2017-01-01

    There is a burst of work on human mobility and encounter networks. However, the connection between these two important fields just begun recently. It is clear that both are closely related: Mobility generates encounters, and these encounters might give rise to contagion phenomena or even friendship. We model a set of random walkers that visit locations in space following a strategy akin to Lévy flights. We measure the encounters in space and time and establish a link between walkers after the...

  10. Human-specific transcriptional networks in the brain

    Science.gov (United States)

    Konopka, Genevieve; Friedrich, Tara; Davis-Turak, Jeremy; Winden, Kellen; Oldham, Michael C.; Gao, Fuying; Chen, Leslie; Wang, Guang-Zhong; Luo, Rui; Preuss, Todd M.; Geschwind, Daniel H.

    2013-01-01

    Summary Understanding human-specific patterns of brain gene expression and regulation can provide key insights into human brain evolution and speciation. Here, we use next generation sequencing, and Illumina and Affymetrix microarray platforms, to compare the transcriptome of human, chimpanzee, and macaque telencephalon. Our analysis reveals a predominance of genes differentially expressed within human frontal lobe and a striking increase in transcriptional complexity specific to the human lineage in the frontal lobe. In contrast, caudate nucleus gene expression is highly conserved. We also identify gene co-expression signatures related to either neuronal processes or neuropsychiatric diseases, including a human-specific module with CLOCK as its hub gene and another module enriched for neuronal morphological processes and genes co-expressed with FOXP2, a gene important for language evolution. These data demonstrate that transcriptional networks have undergone evolutionary remodeling even within a given brain region, providing a new window through which to view the foundation of uniquely human cognitive capacities. PMID:22920253

  11. Scaling up: human genetics as a Cold War network.

    Science.gov (United States)

    Lindee, Susan

    2014-09-01

    In this commentary I explore how the papers here illuminate the processes of collection that have been so central to the history of human genetics since 1945. The development of human population genetics in the Cold War period produced databases and biobanks that have endured into the present, and that continue to be used and debated. In the decades after the bomb, scientists collected and transferred human biological materials and information from populations of interest, and as they moved these biological resources or biosocial resources acquired new meanings and uses. The papers here collate these practices and map their desires and ironies. They explore how a large international network of geneticists, biological anthropologists, virologists and other physicians and scientists interacted with local informants, research subjects and public officials. They also track the networks and standards that mobilized the transfer of information, genealogies, tissue and blood samples. As Joanna Radin suggests here, the massive collections of human biological materials and data were often understood to be resources for an "as-yet-unknown" future. The stories told here contain elements of surveillance, extraction, salvage and eschatology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Modeling and Visualization of Human Activities for Multicamera Networks

    Directory of Open Access Journals (Sweden)

    Aswin C. Sankaranarayanan

    2009-01-01

    Full Text Available Multicamera networks are becoming complex involving larger sensing areas in order to capture activities and behavior that evolve over long spatial and temporal windows. This necessitates novel methods to process the information sensed by the network and visualize it for an end user. In this paper, we describe a system for modeling and on-demand visualization of activities of groups of humans. Using the prior knowledge of the 3D structure of the scene as well as camera calibration, the system localizes humans as they navigate the scene. Activities of interest are detected by matching models of these activities learnt a priori against the multiview observations. The trajectories and the activity index for each individual summarize the dynamic content of the scene. These are used to render the scene with virtual 3D human models that mimic the observed activities of real humans. In particular, the rendering framework is designed to handle large displays with a cluster of GPUs as well as reduce the cognitive dissonance by rendering realistic weather effects and illumination. We envision use of this system for immersive visualization as well as summarization of videos that capture group behavior.

  13. Generative models of rich clubs in Hebbian neuronal networks and large-scale human brain networks.

    Science.gov (United States)

    Vértes, Petra E; Alexander-Bloch, Aaron; Bullmore, Edward T

    2014-10-05

    Rich clubs arise when nodes that are 'rich' in connections also form an elite, densely connected 'club'. In brain networks, rich clubs incur high physical connection costs but also appear to be especially valuable to brain function. However, little is known about the selection pressures that drive their formation. Here, we take two complementary approaches to this question: firstly we show, using generative modelling, that the emergence of rich clubs in large-scale human brain networks can be driven by an economic trade-off between connection costs and a second, competing topological term. Secondly we show, using simulated neural networks, that Hebbian learning rules also drive the emergence of rich clubs at the microscopic level, and that the prominence of these features increases with learning time. These results suggest that Hebbian learning may provide a neuronal mechanism for the selection of complex features such as rich clubs. The neural networks that we investigate are explicitly Hebbian, and we argue that the topological term in our model of large-scale brain connectivity may represent an analogous connection rule. This putative link between learning and rich clubs is also consistent with predictions that integrative aspects of brain network organization are especially important for adaptive behaviour. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Signaling pathway networks mined from human pituitary adenoma proteomics data

    Directory of Open Access Journals (Sweden)

    Zhan Xianquan

    2010-04-01

    Full Text Available Abstract Background We obtained a series of pituitary adenoma proteomic expression data, including protein-mapping data (111 proteins, comparative proteomic data (56 differentially expressed proteins, and nitroproteomic data (17 nitroproteins. There is a pressing need to clarify the significant signaling pathway networks that derive from those proteins in order to clarify and to better understand the molecular basis of pituitary adenoma pathogenesis and to discover biomarkers. Here, we describe the significant signaling pathway networks that were mined from human pituitary adenoma proteomic data with the Ingenuity pathway analysis system. Methods The Ingenuity pathway analysis system was used to analyze signal pathway networks and canonical pathways from protein-mapping data, comparative proteomic data, adenoma nitroproteomic data, and control nitroproteomic data. A Fisher's exact test was used to test the statistical significance with a significance level of 0.05. Statistical significant results were rationalized within the pituitary adenoma biological system with literature-based bioinformatics analyses. Results For the protein-mapping data, the top pathway networks were related to cancer, cell death, and lipid metabolism; the top canonical toxicity pathways included acute-phase response, oxidative-stress response, oxidative stress, and cell-cycle G2/M transition regulation. For the comparative proteomic data, top pathway networks were related to cancer, endocrine system development and function, and lipid metabolism; the top canonical toxicity pathways included mitochondrial dysfunction, oxidative phosphorylation, oxidative-stress response, and ERK/MAPK signaling. The nitroproteomic data from a pituitary adenoma were related to cancer, cell death, lipid metabolism, and reproductive system disease, and the top canonical toxicity pathways mainly related to p38 MAPK signaling and cell-cycle G2/M transition regulation. Nitroproteins from a

  15. Human cancer protein-protein interaction network: a structural perspective.

    Directory of Open Access Journals (Sweden)

    Gozde Kar

    2009-12-01

    Full Text Available Protein-protein interaction networks provide a global picture of cellular function and biological processes. Some proteins act as hub proteins, highly connected to others, whereas some others have few interactions. The dysfunction of some interactions causes many diseases, including cancer. Proteins interact through their interfaces. Therefore, studying the interface properties of cancer-related proteins will help explain their role in the interaction networks. Similar or overlapping binding sites should be used repeatedly in single interface hub proteins, making them promiscuous. Alternatively, multi-interface hub proteins make use of several distinct binding sites to bind to different partners. We propose a methodology to integrate protein interfaces into cancer interaction networks (ciSPIN, cancer structural protein interface network. The interactions in the human protein interaction network are replaced by interfaces, coming from either known or predicted complexes. We provide a detailed analysis of cancer related human protein-protein interfaces and the topological properties of the cancer network. The results reveal that cancer-related proteins have smaller, more planar, more charged and less hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and high specificity of the cancer-related interactions. We also classified the genes in ciSPIN according to phenotypes. Within phenotypes, for breast cancer, colorectal cancer and leukemia, interface properties were found to be discriminating from non-cancer interfaces with an accuracy of 71%, 67%, 61%, respectively. In addition, cancer-related proteins tend to interact with their partners through distinct interfaces, corresponding mostly to multi-interface hubs, which comprise 56% of cancer-related proteins, and constituting the nodes with higher essentiality in the network (76%. We illustrate the interface related affinity properties of two cancer-related hub

  16. Cell diversity and network dynamics in photosensitive human brain organoids

    Science.gov (United States)

    Quadrato, Giorgia; Nguyen, Tuan; Macosko, Evan Z.; Sherwood, John L.; Yang, Sung Min; Berger, Daniel; Maria, Natalie; Scholvin, Jorg; Goldman, Melissa; Kinney, Justin; Boyden, Edward S.; Lichtman, Jeff; Williams, Ziv M.; McCarroll, Steven A.; Arlotta, Paola

    2017-01-01

    In vitro models of the developing brain such as 3D brain organoids offer an unprecedented opportunity to study aspects of human brain development and disease. However, it remains undefined what cells are generated within organoids and to what extent they recapitulate the regional complexity, cellular diversity, and circuit functionality of the brain. Here, we analyzed gene expression in over 80,000 individual cells isolated from 31 human brain organoids. We find that organoids can generate a broad diversity of cells, which are related to endogenous classes, including cells from the cerebral cortex and the retina. Organoids could be developed over extended periods (over 9 months) enabling unprecedented levels of maturity including the formation of dendritic spines and of spontaneously-active neuronal networks. Finally, neuronal activity within organoids could be controlled using light stimulation of photoreceptor-like cells, which may offer ways to probe the functionality of human neuronal circuits using physiological sensory stimuli. PMID:28445462

  17. An environment-dependent transcriptional network specifies human microglia identity.

    Science.gov (United States)

    Gosselin, David; Skola, Dylan; Coufal, Nicole G; Holtman, Inge R; Schlachetzki, Johannes C M; Sajti, Eniko; Jaeger, Baptiste N; O'Connor, Carolyn; Fitzpatrick, Conor; Pasillas, Martina P; Pena, Monique; Adair, Amy; Gonda, David D; Levy, Michael L; Ransohoff, Richard M; Gage, Fred H; Glass, Christopher K

    2017-06-23

    Microglia play essential roles in central nervous system (CNS) homeostasis and influence diverse aspects of neuronal function. However, the transcriptional mechanisms that specify human microglia phenotypes are largely unknown. We examined the transcriptomes and epigenetic landscapes of human microglia isolated from surgically resected brain tissue ex vivo and after transition to an in vitro environment. Transfer to a tissue culture environment resulted in rapid and extensive down-regulation of microglia-specific genes that were induced in primitive mouse macrophages after migration into the fetal brain. Substantial subsets of these genes exhibited altered expression in neurodegenerative and behavioral diseases and were associated with noncoding risk variants. These findings reveal an environment-dependent transcriptional network specifying microglia-specific programs of gene expression and facilitate efforts to understand the roles of microglia in human brain diseases. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Realistic animation of human figures using artificial neural networks.

    Science.gov (United States)

    Taha, Z; Brown, R; Wright, D

    1996-12-01

    We describe a new approach to the animation of human figures which can produce realistic animation and based on artificial neural networks (ANN). A fully connected ANN is trained with inputs and outputs of key frames obtained from image analysis and key postures and parameters of standing, walking and running. A behaviour index is introduced as an input to the ANN. Each index is unique to each behaviour. Other inputs include speed, cycle history and subsystem index. The subsystem index refers to the different subsystem of the human figure e.g. the right leg is a subsystem referred to by an index. The outputs are the joints displacements. The ANN is trained using the back propagation method. The ANN was able to generate realistic animations of walking and running and could merge three different behaviours, standing, walking and running. The proposed method should enable design evaluations, human factors analysis, task simulation and motion understanding easier for non-animation experts.

  19. Vitamin D and gene networks in human osteoblasts

    Directory of Open Access Journals (Sweden)

    Jeroen evan de Peppel

    2014-04-01

    Full Text Available Bone formation is indirectly influenced by 1,25-dihydroxyvitamin D3 (1,25D3 through the stimulation of calcium uptake in the intestine and re-absorption in the kidneys. Direct effects on osteoblasts and bone formation have also been established. The vitamin D receptor (VDR is expressed in osteoblasts and 1,25D3 modifies gene expression of various osteoblast differentiation and mineralization-related genes, such as alkaline phosphatase (ALPL, osteocalcin (BGLAP and osteopontin (SPP1. 1,25D3 is known to stimulate mineralization of human osteoblasts in vitro, and recently it was shown that 1,25D3 induces mineralization via effects in the period preceding mineralization during the pre-mineralization period. For a full understanding of the action of 1,25D3 in osteoblasts it is important to get an integrated network view of the 1,25D3-regulated genes during osteoblast differentiation and mineralization. The current data will be presented and discussed alluding to future studies to fully delineate the 1,25D3 action in osteoblast. Describing and understanding the vitamin D regulatory networks and identifying the dominant players in these networks may help develop novel (personalized vitamin D-based treatments. The following topics will be discussed in this overview: 1 Bone metabolism and osteoblasts, 2 Vitamin D, bone metabolism and osteoblast function, 3 Vitamin D induced transcriptional networks in the context of osteoblast differentiation and bone formation.

  20. Global multi-layer network of human mobility.

    Science.gov (United States)

    Belyi, Alexander; Bojic, Iva; Sobolevsky, Stanislav; Sitko, Izabela; Hawelka, Bartosz; Rudikova, Lada; Kurbatski, Alexander; Ratti, Carlo

    2017-07-03

    Recent availability of geo-localized data capturing individual human activity together with the statistical data on international migration opened up unprecedented opportunities for a study on global mobility. In this paper, we consider it from the perspective of a multi-layer complex network, built using a combination of three datasets: Twitter, Flickr and official migration data. Those datasets provide different, but equally important insights on the global mobility - while the first two highlight short-term visits of people from one country to another, the last one - migration - shows the long-term mobility perspective, when people relocate for good. The main purpose of the paper is to emphasize importance of this multi-layer approach capturing both aspects of human mobility at the same time. On the one hand, we show that although the general properties of different layers of the global mobility network are similar, there are important quantitative differences among them. On the other hand, we demonstrate that consideration of mobility from a multi-layer perspective can reveal important global spatial patterns in a way more consistent with those observed in other available relevant sources of international connections, in comparison to the spatial structure inferred from each network layer taken separately.

  1. Human Dopamine Receptors Interaction Network (DRIN): a systems biology perspective on topology, stability and functionality of the network.

    Science.gov (United States)

    Podder, Avijit; Jatana, Nidhi; Latha, N

    2014-09-21

    Dopamine receptors (DR) are one of the major neurotransmitter receptors present in human brain. Malfunctioning of these receptors is well established to trigger many neurological and psychiatric disorders. Taking into consideration that proteins function collectively in a network for most of the biological processes, the present study is aimed to depict the interactions between all dopamine receptors following a systems biology approach. To capture comprehensive interactions of candidate proteins associated with human dopamine receptors, we performed a protein-protein interaction network (PPIN) analysis of all five receptors and their protein partners by mapping them into human interactome and constructed a human Dopamine Receptors Interaction Network (DRIN). We explored the topology of dopamine receptors as molecular network, revealing their characteristics and the role of central network elements. More to the point, a sub-network analysis was done to determine major functional clusters in human DRIN that govern key neurological pathways. Besides, interacting proteins in a pathway were characterized and prioritized based on their affinity for utmost drug molecules. The vulnerability of different networks to the dysfunction of diverse combination of components was estimated under random and direct attack scenarios. To the best of our knowledge, the current study is unique to put all five dopamine receptors together in a common interaction network and to understand the functionality of interacting proteins collectively. Our study pinpointed distinctive topological and functional properties of human dopamine receptors that have helped in identifying potential therapeutic drug targets in the dopamine interaction network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Transcriptional network of p63 in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Silvia Pozzi

    Full Text Available p63 is a transcription factor required for the development and maintenance of ectodermal tissues in general, and skin keratinocytes in particular. The identification of its target genes is fundamental for understanding the complex network of gene regulation governing the development of epithelia. We report a list of almost 1000 targets derived from ChIP on chip analysis on two platforms; all genes analyzed changed in expression during differentiation of human keratinocytes. Functional annotation highlighted unexpected GO terms enrichments and confirmed that genes involved in transcriptional regulation are the most significant. A detailed analysis of these transcriptional regulators in condition of perturbed p63 levels confirmed the role of p63 in the regulatory network. Rather than a rigid master-slave hierarchical model, our data indicate that p63 connects different hubs involved in the multiple specific functions of the skin.

  3. Topological isomorphisms of human brain and financial market networks.

    Science.gov (United States)

    Vértes, Petra E; Nicol, Ruth M; Chapman, Sandra C; Watkins, Nicholas W; Robertson, Duncan A; Bullmore, Edward T

    2011-01-01

    Although metaphorical and conceptual connections between the human brain and the financial markets have often been drawn, rigorous physical or mathematical underpinnings of this analogy remain largely unexplored. Here, we apply a statistical and graph theoretic approach to the study of two datasets - the time series of 90 stocks from the New York stock exchange over a 3-year period, and the fMRI-derived time series acquired from 90 brain regions over the course of a 10-min-long functional MRI scan of resting brain function in healthy volunteers. Despite the many obvious substantive differences between these two datasets, graphical analysis demonstrated striking commonalities in terms of global network topological properties. Both the human brain and the market networks were non-random, small-world, modular, hierarchical systems with fat-tailed degree distributions indicating the presence of highly connected hubs. These properties could not be trivially explained by the univariate time series statistics of stock price returns. This degree of topological isomorphism suggests that brains and markets can be regarded broadly as members of the same family of networks. The two systems, however, were not topologically identical. The financial market was more efficient and more modular - more highly optimized for information processing - than the brain networks; but also less robust to systemic disintegration as a result of hub deletion. We conclude that the conceptual connections between brains and markets are not merely metaphorical; rather these two information processing systems can be rigorously compared in the same mathematical language and turn out often to share important topological properties in common to some degree. There will be interesting scientific arbitrage opportunities in further work at the graph-theoretically mediated interface between systems neuroscience and the statistical physics of financial markets.

  4. Evidence for grid cells in a human memory network.

    Science.gov (United States)

    Doeller, Christian F; Barry, Caswell; Burgess, Neil

    2010-02-04

    Grid cells in the entorhinal cortex of freely moving rats provide a strikingly periodic representation of self-location which is indicative of very specific computational mechanisms. However, the existence of grid cells in humans and their distribution throughout the brain are unknown. Here we show that the preferred firing directions of directionally modulated grid cells in rat entorhinal cortex are aligned with the grids, and that the spatial organization of grid-cell firing is more strongly apparent at faster than slower running speeds. Because the grids are also aligned with each other, we predicted a macroscopic signal visible to functional magnetic resonance imaging (fMRI) in humans. We then looked for this signal as participants explored a virtual reality environment, mimicking the rats' foraging task: fMRI activation and adaptation showing a speed-modulated six-fold rotational symmetry in running direction. The signal was found in a network of entorhinal/subicular, posterior and medial parietal, lateral temporal and medial prefrontal areas. The effect was strongest in right entorhinal cortex, and the coherence of the directional signal across entorhinal cortex correlated with spatial memory performance. Our study illustrates the potential power of combining single-unit electrophysiology with fMRI in systems neuroscience. Our results provide evidence for grid-cell-like representations in humans, and implicate a specific type of neural representation in a network of regions which supports spatial cognition and also autobiographical memory.

  5. Challenges for coexistence of machine to machine and human to human applications in mobile network

    DEFF Research Database (Denmark)

    Sanyal, R.; Cianca, E.; Prasad, Ramjee

    2012-01-01

    A key factor for the evolution of the mobile networks towards 4G is to bring to fruition high bandwidth per mobile node. Eventually, due to the advent of a new class of applications, namely, Machine-to-Machine, we foresee new challenges where bandwidth per user is no more the primal driver...... be evolved to address various nuances of the mobile devices used by man and machines. The bigger question is as follows. Is the state-of-the-art mobile network designed optimally to cater both the Human-to-Human and Machine-to-Machine applications? This paper presents the primary challenges....... As an immediate impact of the high penetration of M2M devices, we envisage a surge in the signaling messages for mobility and location management. The cell size will shrivel due to high tele-density resulting in even more signaling messages related to handoff and location updates. The mobile network should...

  6. A Novel Human Body Area Network for Brain Diseases Analysis.

    Science.gov (United States)

    Lin, Kai; Xu, Tianlang

    2016-10-01

    Development of wireless sensor and mobile communication technology provide an unprecedented opportunity for realizing smart and interactive healthcare systems. Designing such systems aims to remotely monitor the health and diagnose the diseases for users. In this paper, we design a novel human body area network for brain diseases analysis, which is named BABDA. Considering the brain is one of the most complex organs in the human body, the BABDA system provides four function modules to ensure the high quality of the analysis result, which includes initial data collection, data correction, data transmission and comprehensive data analysis. The performance evaluation conducted in a realistic environment with several criteria shows the availability and practicability of the BABDA system.

  7. Social contagion theory: examining dynamic social networks and human behavior.

    Science.gov (United States)

    Christakis, Nicholas A; Fowler, James H

    2013-02-20

    Here, we review the research we have conducted on social contagion. We describe the methods we have employed (and the assumptions they have entailed) to examine several datasets with complementary strengths and weaknesses, including the Framingham Heart Study, the National Longitudinal Study of Adolescent Health, and other observational and experimental datasets that we and others have collected. We describe the regularities that led us to propose that human social networks may exhibit a 'three degrees of influence' property, and we review statistical approaches we have used to characterize interpersonal influence with respect to phenomena as diverse as obesity, smoking, cooperation, and happiness. We do not claim that this work is the final word, but we do believe that it provides some novel, informative, and stimulating evidence regarding social contagion in longitudinally followed networks. Along with other scholars, we are working to develop new methods for identifying causal effects using social network data, and we believe that this area is ripe for statistical development as current methods have known and often unavoidable limitations. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Skill networks and measures of complex human capital.

    Science.gov (United States)

    Anderson, Katharine A

    2017-11-28

    We propose a network-based method for measuring worker skills. We illustrate the method using data from an online freelance website. Using the tools of network analysis, we divide skills into endogenous categories based on their relationship with other skills in the market. Workers who specialize in these different areas earn dramatically different wages. We then show that, in this market, network-based measures of human capital provide additional insight into wages beyond traditional measures. In particular, we show that workers with diverse skills earn higher wages than those with more specialized skills. Moreover, we can distinguish between two different types of workers benefiting from skill diversity: jacks-of-all-trades, whose skills can be applied independently on a wide range of jobs, and synergistic workers, whose skills are useful in combination and fill a hole in the labor market. On average, workers whose skills are synergistic earn more than jacks-of-all-trades. Copyright © 2017 the Author(s). Published by PNAS.

  9. An Ecological Network of Polysaccharide Utilization Among Human Intestinal Symbionts

    Science.gov (United States)

    Rakoff-Nahoum, Seth; Coyne, Michael J.; Comstock, Laurie E.

    2013-01-01

    Summary Background: The human intestine is colonized with trillions of microorganisms important to health and disease. There has been an intensive effort to catalog the species and genetic content of this microbial ecosystem. However, little is known of the ecological interactions between these microbes, a prerequisite to understanding the dynamics and stability of this host-associated microbial community. Here we perform a systematic investigation of public goods-based syntrophic interactions among the abundant human gut bacteria, the Bacteroidales. Results: We find evidence for a rich interaction network based on the breakdown and use of polysaccharides. Species that utilize a particular polysaccharide (producers) liberate polysaccharide breakdown products (PBP) that are consumed by other species unable to grow on the polysaccharide alone (recipients). Cross-species gene addition experiments demonstrate that recipients can grow on a polysaccharide if the producer-derived glycoside hydrolase, responsible for PBP generation, is provided. These producer-derived glycoside hydrolases are public goods transported extracellularly in outer membrane vesicles allowing for the creation of PBP and concomitant recipient growth spatially distant from the producer. Recipients can exploit these ecological interactions and conditionally outgrow producers. Finally, we show that these public good-based interactions occur among Bacteroidales species co-resident within a natural human intestinal community. Conclusions: This study examines public-goods based syntrophic interactions between bacterial members of the critically important gut microbial ecosystem. This polysaccharide-based network likely represents foundational relationships creating organized ecological units within the intestinal microbiota, knowledge of which can be applied to impact human health. PMID:24332541

  10. Dopamine and the Brainstem Locomotor Networks: From Lamprey to Human

    Directory of Open Access Journals (Sweden)

    Dimitri Ryczko

    2017-05-01

    Full Text Available In vertebrates, dopamine neurons are classically known to modulate locomotion via their ascending projections to the basal ganglia that project to brainstem locomotor networks. An increased dopaminergic tone is associated with increase in locomotor activity. In pathological conditions where dopamine cells are lost, such as in Parkinson's disease, locomotor deficits are traditionally associated with the reduced ascending dopaminergic input to the basal ganglia. However, a descending dopaminergic pathway originating from the substantia nigra pars compacta was recently discovered. It innervates the mesencephalic locomotor region (MLR from basal vertebrates to mammals. This pathway was shown to increase locomotor output in lampreys, and could very well play an important role in mammals. Here, we provide a detailed account on the newly found dopaminergic pathway in lamprey, salamander, rat, monkey, and human. In lampreys and salamanders, dopamine release in the MLR is associated with the activation of reticulospinal neurons that carry the locomotor command to the spinal cord. Dopamine release in the MLR potentiates locomotor movements through a D1-receptor mechanism in lampreys. In rats, stimulation of the substantia nigra pars compacta elicited dopamine release in the pedunculopontine nucleus, a known part of the MLR. In a monkey model of Parkinson's disease, a reduced dopaminergic innervation of the brainstem locomotor networks was reported. Dopaminergic fibers are also present in human pedunculopontine nucleus. We discuss the conserved locomotor role of this pathway from lamprey to mammals, and the hypothesis that this pathway could play a role in the locomotor deficits reported in Parkinson's disease.

  11. Deep Space Network (DSN), Network Operations Control Center (NOCC) computer-human interfaces

    Science.gov (United States)

    Ellman, Alvin; Carlton, Magdi

    1993-01-01

    The Network Operations Control Center (NOCC) of the DSN is responsible for scheduling the resources of DSN, and monitoring all multi-mission spacecraft tracking activities in real-time. Operations performs this job with computer systems at JPL connected to over 100 computers at Goldstone, Australia and Spain. The old computer system became obsolete, and the first version of the new system was installed in 1991. Significant improvements for the computer-human interfaces became the dominant theme for the replacement project. Major issues required innovating problem solving. Among these issues were: How to present several thousand data elements on displays without overloading the operator? What is the best graphical representation of DSN end-to-end data flow? How to operate the system without memorizing mnemonics of hundreds of operator directives? Which computing environment will meet the competing performance requirements? This paper presents the technical challenges, engineering solutions, and results of the NOCC computer-human interface design.

  12. The Network Structure of Human Personality According to the NEO-PI-R: Matching Network Community Structure to Factor Structure

    NARCIS (Netherlands)

    Goekoop, R.; Goekoop, J.G.; Scholte, H.S.

    2012-01-01

    Introduction: Human personality is described preferentially in terms of factors (dimensions) found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. Aim: To directly compare the ability of network

  13. Molecular networks of human muscle adaptation to exercise and age.

    Directory of Open Access Journals (Sweden)

    Bethan E Phillips

    2013-03-01

    Full Text Available Physical activity and molecular ageing presumably interact to precipitate musculoskeletal decline in humans with age. Herein, we have delineated molecular networks for these two major components of sarcopenic risk using multiple independent clinical cohorts. We generated genome-wide transcript profiles from individuals (n = 44 who then undertook 20 weeks of supervised resistance-exercise training (RET. Expectedly, our subjects exhibited a marked range of hypertrophic responses (3% to +28%, and when applying Ingenuity Pathway Analysis (IPA up-stream analysis to ~580 genes that co-varied with gain in lean mass, we identified rapamycin (mTOR signaling associating with growth (P = 1.4 × 10(-30. Paradoxically, those displaying most hypertrophy exhibited an inhibited mTOR activation signature, including the striking down-regulation of 70 rRNAs. Differential analysis found networks mimicking developmental processes (activated all-trans-retinoic acid (ATRA, Z-score = 4.5; P = 6 × 10(-13 and inhibited aryl-hydrocarbon receptor signaling (AhR, Z-score = -2.3; P = 3 × 10(-7 with RET. Intriguingly, as ATRA and AhR gene-sets were also a feature of endurance exercise training (EET, they appear to represent "generic" physical activity responsive gene-networks. For age, we found that differential gene-expression methods do not produce consistent molecular differences between young versus old individuals. Instead, utilizing two independent cohorts (n = 45 and n = 52, with a continuum of subject ages (18-78 y, the first reproducible set of age-related transcripts in human muscle was identified. This analysis identified ~500 genes highly enriched in post-transcriptional processes (P = 1 × 10(-6 and with negligible links to the aforementioned generic exercise regulated gene-sets and some overlap with ribosomal genes. The RNA signatures from multiple compounds all targeting serotonin, DNA topoisomerase antagonism, and RXR activation were significantly related to

  14. Brain network dynamics in the human articulatory loop.

    Science.gov (United States)

    Nishida, Masaaki; Korzeniewska, Anna; Crone, Nathan E; Toyoda, Goichiro; Nakai, Yasuo; Ofen, Noa; Brown, Erik C; Asano, Eishi

    2017-08-01

    The articulatory loop is a fundamental component of language function, involved in the short-term buffer of auditory information followed by its vocal reproduction. We characterized the network dynamics of the human articulatory loop, using invasive recording and stimulation. We measured high-gamma activity70-110 Hz recorded intracranially when patients with epilepsy either only listened to, or listened to and then reproduced two successive tones by humming. We also conducted network analyses, and analyzed behavioral responses to cortical stimulation. Presentation of the initial tone elicited high-gamma augmentation bilaterally in the superior-temporal gyrus (STG) within 40ms, and in the precentral and inferior-frontal gyri (PCG and IFG) within 160ms after sound onset. During presentation of the second tone, high-gamma augmentation was reduced in STG but enhanced in IFG. The task requiring tone reproduction further enhanced high-gamma augmentation in PCG during and after sound presentation. Event-related causality (ERC) analysis revealed dominant flows within STG immediately after sound onset, followed by reciprocal interactions involving PCG and IFG. Measurement of cortico-cortical evoked-potentials (CCEPs) confirmed connectivity between distant high-gamma sites in the articulatory loop. High-frequency stimulation of precentral high-gamma sites in either hemisphere induced speech arrest, inability to control vocalization, or forced vocalization. Vocalization of tones was accompanied by high-gamma augmentation over larger extents of PCG. Bilateral PCG rapidly and directly receives feed-forward signals from STG, and may promptly initiate motor planning including sub-vocal rehearsal for short-term buffering of auditory stimuli. Enhanced high-gamma augmentation in IFG during presentation of the second tone may reflect high-order processing of the tone sequence. The articulatory loop employs sustained reciprocal propagation of neural activity across a network of

  15. Linguistic complex networks: Rationale, application, interpretation, and directions. Reply to comments on "Approaching human language with complex networks"

    Science.gov (United States)

    Cong, Jin; Liu, Haitao

    2014-12-01

    Amid the enthusiasm for real-world networks of the new millennium, the enquiry into linguistic networks is flourishing not only as a productive branch of the new networks science but also as a promising approach to linguistic research. Although the complex network approach constitutes a potential opportunity to make linguistics a science, the world of linguistics seems unprepared to embrace it. For one thing, linguistics has been largely unaffected by quantitative methods. Those who are accustomed to qualitative linguistic methods may find it hard to appreciate the application of quantitative properties of language such as frequency and length, not to mention quantitative properties of language modeled as networks. With this in mind, in our review [1] we restrict ourselves to the basics of complex networks and the new insights into human language with the application of complex networks. For another, while breaking new grounds and posing new challenges for linguistics, the complex network approach to human language as a new tradition of linguistic research is faced with challenges and unsolved issues of its own. It is no surprise that the comments on our review, especially their skepticism and suggestions, focus on various different aspects of the complex network approach to human language. We are grateful to all the insightful and penetrating comments, which, together with our review, mark a significant impetus to linguistic research from the complex network approach. In this reply, we would like to address four major issues of the complex network approach to human language, namely, a) its theoretical rationale, b) its application in linguistic research, c) interpretation of the results, and d) directions of future research.

  16. The brain's functional network architecture reveals human motives.

    Science.gov (United States)

    Hein, Grit; Morishima, Yosuke; Leiberg, Susanne; Sul, Sunhae; Fehr, Ernst

    2016-03-04

    Goal-directed human behaviors are driven by motives. Motives are, however, purely mental constructs that are not directly observable. Here, we show that the brain's functional network architecture captures information that predicts different motives behind the same altruistic act with high accuracy. In contrast, mere activity in these regions contains no information about motives. Empathy-based altruism is primarily characterized by a positive connectivity from the anterior cingulate cortex (ACC) to the anterior insula (AI), whereas reciprocity-based altruism additionally invokes strong positive connectivity from the AI to the ACC and even stronger positive connectivity from the AI to the ventral striatum. Moreover, predominantly selfish individuals show distinct functional architectures compared to altruists, and they only increase altruistic behavior in response to empathy inductions, but not reciprocity inductions. Copyright © 2016, American Association for the Advancement of Science.

  17. Human disease-drug network based on genomic expression profiles.

    Directory of Open Access Journals (Sweden)

    Guanghui Hu

    Full Text Available BACKGROUND: Drug repositioning offers the possibility of faster development times and reduced risks in drug discovery. With the rapid development of high-throughput technologies and ever-increasing accumulation of whole genome-level datasets, an increasing number of diseases and drugs can be comprehensively characterized by the changes they induce in gene expression, protein, metabolites and phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: We performed a systematic, large-scale analysis of genomic expression profiles of human diseases and drugs to create a disease-drug network. A network of 170,027 significant interactions was extracted from the approximately 24.5 million comparisons between approximately 7,000 publicly available transcriptomic profiles. The network includes 645 disease-disease, 5,008 disease-drug, and 164,374 drug-drug relationships. At least 60% of the disease-disease pairs were in the same disease area as determined by the Medical Subject Headings (MeSH disease classification tree. The remaining can drive a molecular level nosology by discovering relationships between seemingly unrelated diseases, such as a connection between bipolar disorder and hereditary spastic paraplegia, and a connection between actinic keratosis and cancer. Among the 5,008 disease-drug links, connections with negative scores suggest new indications for existing drugs, such as the use of some antimalaria drugs for Crohn's disease, and a variety of existing drugs for Huntington's disease; while the positive scoring connections can aid in drug side effect identification, such as tamoxifen's undesired carcinogenic property. From the approximately 37K drug-drug relationships, we discover relationships that aid in target and pathway deconvolution, such as 1 KCNMA1 as a potential molecular target of lobeline, and 2 both apoptotic DNA fragmentation and G2/M DNA damage checkpoint regulation as potential pathway targets of daunorubicin. CONCLUSIONS/SIGNIFICANCE: We

  18. Stable functional networks exhibit consistent timing in the human brain.

    Science.gov (United States)

    Chapeton, Julio I; Inati, Sara K; Zaghloul, Kareem A

    2017-03-01

    Despite many advances in the study of large-scale human functional networks, the question of timing, stability, and direction of communication between cortical regions has not been fully addressed. At the cellular level, neuronal communication occurs through axons and dendrites, and the time required for such communication is well defined and preserved. At larger spatial scales, however, the relationship between timing, direction, and communication between brain regions is less clear. Here, we use a measure of effective connectivity to identify connections between brain regions that exhibit communication with consistent timing. We hypothesized that if two brain regions are communicating, then knowledge of the activity in one region should allow an external observer to better predict activity in the other region, and that such communication involves a consistent time delay. We examine this question using intracranial electroencephalography captured from nine human participants with medically refractory epilepsy. We use a coupling measure based on time-lagged mutual information to identify effective connections between brain regions that exhibit a statistically significant increase in average mutual information at a consistent time delay. These identified connections result in sparse, directed functional networks that are stable over minutes, hours, and days. Notably, the time delays associated with these connections are also highly preserved over multiple time scales. We characterize the anatomic locations of these connections, and find that the propagation of activity exhibits a preferred posterior to anterior temporal lobe direction, consistent across participants. Moreover, networks constructed from connections that reliably exhibit consistent timing between anatomic regions demonstrate features of a small-world architecture, with many reliable connections between anatomically neighbouring regions and few long range connections. Together, our results demonstrate

  19. Phage-bacteria interaction network in human oral microbiome.

    Science.gov (United States)

    Wang, Jinfeng; Gao, Yuan; Zhao, Fangqing

    2016-07-01

    Although increasing knowledge suggests that bacteriophages play important roles in regulating microbial ecosystems, phage-bacteria interaction in human oral cavities remains less understood. Here we performed a metagenomic analysis to explore the composition and variation of oral dsDNA phage populations and potential phage-bacteria interaction. A total of 1,711 contigs assembled with more than 100 Gb shotgun sequencing data were annotated to 104 phages based on their best BLAST matches against the NR database. Bray-Curtis dissimilarities demonstrated that both phage and bacterial composition are highly diverse between periodontally healthy samples but show a trend towards homogenization in diseased gingivae samples. Significantly, according to the CRISPR arrays that record infection relationship between bacteria and phage, we found certain oral phages were able to invade other bacteria besides their putative bacterial hosts. These cross-infective phages were positively correlated with commensal bacteria while were negatively correlated with major periodontal pathogens, suggesting possible connection between these phages and microbial community structure in oral cavities. By characterizing phage-bacteria interaction as networks rather than exclusively pairwise predator-prey relationships, our study provides the first insight into the participation of cross-infective phages in forming human oral microbiota. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Distinct Patterns of Temporal and Directional Connectivity among Intrinsic Networks in the Human Brain.

    Science.gov (United States)

    Shine, James M; Kucyi, Aaron; Foster, Brett L; Bickel, Stephan; Wang, Danhong; Liu, Hesheng; Poldrack, Russell A; Hsieh, Liang-Tien; Hsiang, Jen Chun; Parvizi, Josef

    2017-10-04

    To determine the spatiotemporal relationships among intrinsic networks of the human brain, we recruited seven neurosurgical patients (four males and three females) who were implanted with intracranial depth electrodes. We first identified canonical resting-state networks at the individual subject level using an iterative matching procedure on each subject's resting-state fMRI data. We then introduced single electrical pulses to fMRI pre-identified nodes of the default network (DN), frontoparietal network (FPN), and salience network (SN) while recording evoked responses in other recording sites within the same networks. We found bidirectional signal flow across the three networks, albeit with distinct patterns of evoked responses within different time windows. We used a data-driven clustering approach to show that stimulation of the FPN and SN evoked a rapid (130 ms) in other nodes of the DN, as well as FPN and SN. Our results provide temporal information about the patterns of signal flow between intrinsic networks that provide insights into the spatiotemporal dynamics that are likely to constrain the architecture of the brain networks supporting human cognition and behavior. SIGNIFICANCE STATEMENT Despite great progress in the functional neuroimaging of the human brain, we still do not know the precise set of rules that define the patterns of temporal organization between large-scale networks of the brain. In this study, we stimulated and then recorded electrical evoked potentials within and between three large-scale networks of the brain, the default network (DN), frontoparietal network (FPN), and salience network (SN), in seven subjects undergoing invasive neurosurgery. Using a data-driven clustering approach, we observed distinct temporal and directional patterns between the three networks, with FPN and SN activity predominant in early windows and DN stimulation affecting the network in later windows. These results provide important temporal information about

  1. Macroscopic networks in the human brain: mapping connectivity in healthy and damaged brains

    NARCIS (Netherlands)

    Nijhuis, E.H.J.

    2013-01-01

    The human brain contains a network of interconnected neurons. Recent advances in functional and structural in-vivo magnetic resonance neuroimaging (MRI) techniques have provided opportunities to model the networks of the human brain on a macroscopic scale. This dissertation investigates the

  2. Extending network approach to language dynamics and human cognition. Comment on "Approaching human language with complex networks" by Cong and Liu

    Science.gov (United States)

    Gong, Tao; Shuai, Lan; Wu, Yicheng

    2014-12-01

    By analyzing complex networks constructed from authentic language data, Cong and Liu [1] advance linguistics research into the big data era. The network approach has revealed many intrinsic generalities and crucial differences at both the macro and micro scales between human languages. The axiom behind this research is that language is a complex adaptive system [2]. Although many lexical, semantic, or syntactic features have been discovered by means of analyzing the static and dynamic linguistic networks of world languages, available network-based language studies have not explicitly addressed the evolutionary dynamics of language systems and the correlations between language and human cognition. This commentary aims to provide some insights on how to use the network approach to study these issues.

  3. The network structure of human personality according to the NEO-PI-R: matching network community structure to factor structure.

    Directory of Open Access Journals (Sweden)

    Rutger Goekoop

    Full Text Available INTRODUCTION: Human personality is described preferentially in terms of factors (dimensions found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. AIM: To directly compare the ability of network community detection (NCD and principal component factor analysis (PCA to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R. METHODS: 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. RESULTS: At facet level, NCS showed a best match (96.2% with a 'confirmatory' 5-FS. At item level, NCS showed a best match (80% with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with 'confirmatory' 5-FS and 'exploratory' 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. CONCLUSION: We present the first optimized network graph of personality traits according to the NEO-PI-R: a 'Personality Web'. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network.

  4. The Network Structure of Human Personality According to the NEO-PI-R: Matching Network Community Structure to Factor Structure

    Science.gov (United States)

    Goekoop, Rutger; Goekoop, Jaap G.; Scholte, H. Steven

    2012-01-01

    Introduction Human personality is described preferentially in terms of factors (dimensions) found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. Aim To directly compare the ability of network community detection (NCD) and principal component factor analysis (PCA) to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R). Methods 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS) of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS) of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. Results At facet level, NCS showed a best match (96.2%) with a ‘confirmatory’ 5-FS. At item level, NCS showed a best match (80%) with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with ‘confirmatory’ 5-FS and ‘exploratory’ 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. Conclusion We present the first optimized network graph of personality traits according to the NEO-PI-R: a ‘Personality Web’. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network. PMID:23284713

  5. The network structure of human personality according to the NEO-PI-R: matching network community structure to factor structure.

    Science.gov (United States)

    Goekoop, Rutger; Goekoop, Jaap G; Scholte, H Steven

    2012-01-01

    Human personality is described preferentially in terms of factors (dimensions) found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. To directly compare the ability of network community detection (NCD) and principal component factor analysis (PCA) to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R). 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS) of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS) of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. At facet level, NCS showed a best match (96.2%) with a 'confirmatory' 5-FS. At item level, NCS showed a best match (80%) with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with 'confirmatory' 5-FS and 'exploratory' 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. We present the first optimized network graph of personality traits according to the NEO-PI-R: a 'Personality Web'. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network.

  6. Comparative analysis of weighted gene co-expression networks in human and mouse.

    Science.gov (United States)

    Eidsaa, Marius; Stubbs, Lisa; Almaas, Eivind

    2017-01-01

    The application of complex network modeling to analyze large co-expression data sets has gained traction during the last decade. In particular, the use of the weighted gene co-expression network analysis framework has allowed an unbiased and systems-level investigation of genotype-phenotype relationships in a wide range of systems. Since mouse is an important model organism for biomedical research on human disease, it is of great interest to identify similarities and differences in the functional roles of human and mouse orthologous genes. Here, we develop a novel network comparison approach which we demonstrate by comparing two gene-expression data sets from a large number of human and mouse tissues. The method uses weighted topological overlap alongside the recently developed network-decomposition method of s-core analysis, which is suitable for making gene-centrality rankings for weighted networks. The aim is to identify globally central genes separately in the human and mouse networks. By comparing the ranked gene lists, we identify genes that display conserved or diverged centrality-characteristics across the networks. This framework only assumes a single threshold value that is chosen from a statistical analysis, and it may be applied to arbitrary network structures and edge-weight distributions, also outside the context of biology. When conducting the comparative network analysis, both within and across the two species, we find a clear pattern of enrichment of transcription factors, for the homeobox domain in particular, among the globally central genes. We also perform gene-ontology term enrichment analysis and look at disease-related genes for the separate networks as well as the network comparisons. We find that gene ontology terms related to regulation and development are generally enriched across the networks. In particular, the genes FOXE3, RHO, RUNX2, ALX3 and RARA, which are disease genes in either human or mouse, are on the top-10 list of globally

  7. Changes in spinal inhibitory networks induced by furosemide in humans

    Science.gov (United States)

    Klomjai, Wanalee; Lackmy-Vallée, Alexandra; Katz, Rose; Bussel, Bernard; Bensmail, Djamel; Lamy, Jean-Charles; Roche, Nicolas

    2014-01-01

    During neural development in animals, GABAergic and glycinergic neurons are first excitatory, and then become inhibitory in the mature state. This developmental shift is due mainly to strong expression of the cation-chloride K–Cl cotransporter 2 (KCC2) and down-regulation of Na–K–Cl cotransporter 1 (NKCC1) during maturation. The down-regulation of co-transporter KCC2 after spinal cord transection in animals leads to the depolarising (excitatory) action of GABA and glycine and thus results in a reduction of inhibitory synaptic efficiency. Furosemide, a loop diuretic, has been shown to selectively and reversibly block inhibitory postsynaptic potentials without affecting excitatory postsynaptic potentials in animal spinal neurons. Moreover, this diuretic has been also demonstrated to block the cation-chloride co-transporters. Here, we used furosemide to demonstrate changes in spinal inhibitory networks in healthy human subjects. Non-invasive electrophysiological techniques were used to assess presynaptic inhibition, postsynaptic inhibition and the efficacy of synaptic transmission between muscle afferent terminals and soleus motoneurons in the spinal cord. Orally administered furosemide, at doses commonly used in the clinic (40 mg), significantly reduced spinal inhibitory interneuronal activity for at least 70 min from intake compared to control experiments in the same subjects while no changes were observed in the efficacy of synaptic transmission between muscle afferent terminals and soleus motoneurons. The reduction of inhibition was dose-dependent. Our results provide indirect evidence that reversible changes in the cation-chloride transport system induce modulations of inhibitory neuronal activity at spinal cord level in humans. PMID:24835171

  8. The human functional brain network demonstrates structural and dynamical resilience to targeted attack.

    Science.gov (United States)

    Joyce, Karen E; Hayasaka, Satoru; Laurienti, Paul J

    2013-01-01

    In recent years, the field of network science has enabled researchers to represent the highly complex interactions in the brain in an approachable yet quantitative manner. One exciting finding since the advent of brain network research was that the brain network can withstand extensive damage, even to highly connected regions. However, these highly connected nodes may not be the most critical regions of the brain network, and it is unclear how the network dynamics are impacted by removal of these key nodes. This work seeks to further investigate the resilience of the human functional brain network. Network attack experiments were conducted on voxel-wise functional brain networks and region-of-interest (ROI) networks of 5 healthy volunteers. Networks were attacked at key nodes using several criteria for assessing node importance, and the impact on network structure and dynamics was evaluated. The findings presented here echo previous findings that the functional human brain network is highly resilient to targeted attacks, both in terms of network structure and dynamics.

  9. The human functional brain network demonstrates structural and dynamical resilience to targeted attack.

    Directory of Open Access Journals (Sweden)

    Karen E Joyce

    Full Text Available In recent years, the field of network science has enabled researchers to represent the highly complex interactions in the brain in an approachable yet quantitative manner. One exciting finding since the advent of brain network research was that the brain network can withstand extensive damage, even to highly connected regions. However, these highly connected nodes may not be the most critical regions of the brain network, and it is unclear how the network dynamics are impacted by removal of these key nodes. This work seeks to further investigate the resilience of the human functional brain network. Network attack experiments were conducted on voxel-wise functional brain networks and region-of-interest (ROI networks of 5 healthy volunteers. Networks were attacked at key nodes using several criteria for assessing node importance, and the impact on network structure and dynamics was evaluated. The findings presented here echo previous findings that the functional human brain network is highly resilient to targeted attacks, both in terms of network structure and dynamics.

  10. Does Human Migration Affect International Trade? A Complex-Network Perspective

    Science.gov (United States)

    Fagiolo, Giorgio; Mastrorillo, Marina

    2014-01-01

    This paper explores the relationships between international human migration and merchandise trade using a complex-network approach. We firstly compare the topological structure of worldwide networks of human migration and bilateral trade over the period 1960–2000. Next, we ask whether pairs of countries that are more central in the migration network trade more. We show that: (i) the networks of international migration and trade are strongly correlated, and such correlation can be mostly explained by country economic/demographic size and geographical distance; (ii) centrality in the international-migration network boosts bilateral trade; (iii) intensive forms of country centrality are more trade enhancing than their extensive counterparts. Our findings suggest that bilateral trade between any two countries is not only affected by the presence of migrants from either countries, but also by their relative embeddedness in the complex web of corridors making up the network of international human migration. PMID:24828376

  11. Using the reconstructed genome-scale human metabolic network to study physiology and pathology

    OpenAIRE

    Bordbar, Aarash; Palsson, Bernhard O.

    2012-01-01

    Metabolism plays a key role in many major human diseases. Generation of high-throughput omics data has ushered in a new era of systems biology. Genome-scale metabolic network reconstructions provide a platform to interpret omics data in a biochemically meaningful manner. The release of the global human metabolic network, Recon 1, in 2007 has enabled new systems biology approaches to study human physiology, pathology, and pharmacology. There are currently over 20 publications that utilize Reco...

  12. HumanViCe: Host ceRNA network in virus infected cells in human

    Directory of Open Access Journals (Sweden)

    Suman eGhosal

    2014-07-01

    Full Text Available Host-virus interaction via host cellular components has been an important field of research in recent times. RNA interference mediated by short interfering RNAs and microRNAs (miRNA, is a widespread anti-viral defence strategy. Importantly, viruses also encode their own miRNAs. In recent times miRNAs were identified as key players in host-virus interaction. Furthermore, viruses were shown to exploit the host miRNA networks to suite their own need. The complex cross-talk between host and viral miRNAs and their cellular and viral targets forms the environment for viral pathogenesis. Apart from protein-coding mRNAs, non-coding RNAs may also be targeted by host or viral miRNAs in virus infected cells, and viruses can exploit the host miRNA mediated gene regulatory network via the competing endogenous RNA effect. A recent report showed that viral U-rich non-coding RNAs called HSUR, expressed in primate virus herpesvirus saimiri (HVS infected T cells, were able to bind to three host miRNAs, causing significant alteration in cellular level for one of the miRNAs. We have predicted protein coding and non protein-coding targets for viral and human miRNAs in virus infected cells. We identified viral miRNA targets within host non-coding RNA loci from AGO interacting regions in three different virus infected cells. Gene ontology (GO and pathway enrichment analysis of the genes comprising the ceRNA networks in the virus infected cells revealed enrichment of key cellular signalling pathways related to cell fate decisions and gene transcription, like Notch and Wnt signalling pathways, as well as pathways related to viral entry, replication and virulence. We identified a vast number of non-coding transcripts playing as potential ceRNAs to the immune response associated genes; e.g. APOBEC family genes, in some virus infected cells. All these information are compiled in HumanViCe, a comprehensive database that provides the potential ceRNA networks in virus

  13. MORPHIN: a web tool for human disease research by projecting model organism biology onto a human integrated gene network.

    Science.gov (United States)

    Hwang, Sohyun; Kim, Eiru; Yang, Sunmo; Marcotte, Edward M; Lee, Insuk

    2014-07-01

    Despite recent advances in human genetics, model organisms are indispensable for human disease research. Most human disease pathways are evolutionally conserved among other species, where they may phenocopy the human condition or be associated with seemingly unrelated phenotypes. Much of the known gene-to-phenotype association information is distributed across diverse databases, growing rapidly due to new experimental techniques. Accessible bioinformatics tools will therefore facilitate translation of discoveries from model organisms into human disease biology. Here, we present a web-based discovery tool for human disease studies, MORPHIN (model organisms projected on a human integrated gene network), which prioritizes the most relevant human diseases for a given set of model organism genes, potentially highlighting new model systems for human diseases and providing context to model organism studies. Conceptually, MORPHIN investigates human diseases by an orthology-based projection of a set of model organism genes onto a genome-scale human gene network. MORPHIN then prioritizes human diseases by relevance to the projected model organism genes using two distinct methods: a conventional overlap-based gene set enrichment analysis and a network-based measure of closeness between the query and disease gene sets capable of detecting associations undetectable by the conventional overlap-based methods. MORPHIN is freely accessible at http://www.inetbio.org/morphin. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Mining human mobility in location-based social networks

    CERN Document Server

    Gao, Huiji

    2015-01-01

    In recent years, there has been a rapid growth of location-based social networking services, such as Foursquare and Facebook Places, which have attracted an increasing number of users and greatly enriched their urban experience. Typical location-based social networking sites allow a user to ""check in"" at a real-world POI (point of interest, e.g., a hotel, restaurant, theater, etc.), leave tips toward the POI, and share the check-in with their online friends. The check-in action bridges the gap between real world and online social networks, resulting in a new type of social networks, namely l

  15. Putting Gino's lesson to work: Actor-network theory, enacted humanity, and rehabilitation.

    Science.gov (United States)

    Abrams, Thomas; Gibson, Barbara E

    2016-02-01

    This article argues that rehabilitation enacts a particular understanding of "the human" throughout therapeutic assessment and treatment. Following Michel Callon and Vololona Rabeharisoa's "Gino's Lesson on Humanity," we suggest that this is not simply a top-down process, but is cultivated in the application and response to biomedical frameworks of human ability, competence, and responsibility. The emergence of the human is at once a materially contingent, moral, and interpersonal process. We begin the article by outlining the basics of the actor-network theory that underpins "Gino's Lesson on Humanity." Next, we elucidate its central thesis regarding how disabled personhood emerges through actor-network interactions. Section "Learning Gino's lesson" draws on two autobiographical examples, examining the emergence of humanity through rehabilitation, particularly assessment measures and the responses to them. We conclude by thinking about how rehabilitation and actor-network theory might take this lesson on humanity seriously. © The Author(s) 2016.

  16. Learning to decode human emotions with Echo State Networks.

    Science.gov (United States)

    Bozhkov, Lachezar; Koprinkova-Hristova, Petia; Georgieva, Petia

    2016-06-01

    The aim of this paper is to identify the common neural signatures based on which the positive and negative valence of human emotions across multiple subjects can be reliably discriminated. The brain activity is observed via Event Related Potentials (ERPs). ERPs are transient components in the Electroencephalography (EEG) generated in response to a stimulus. ERPs were collected while subjects were viewing images with positive or negative emotional content. Building inter-subject discrimination models is a challenging problem due to the high ERPs variability between individuals. We propose to solve this problem with the aid of the Echo State Networks (ESN) as a general framework for extracting the most relevant discriminative features between multiple subjects. The original feature vector is mapped into the reservoir feature space defined by the number of the reservoir equilibrium states. The dominant features are extracted iteratively from low dimensional combinations of reservoir states. The relevance of the new feature space was validated by experiments with standard supervised and unsupervised machine learning techniques. From one side this proof of concept application enhances the usability context of the reservoir computing for high dimensional static data representations by low-dimensional feature transformation as functions of the reservoir states. From other side, the proposed solution for emotion valence detection across subjects is suitable for brain studies as a complement to statistical methods. This problem is important because such decision making systems constitute "virtual sensors" of hidden emotional states, which are useful in psychology science research and clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe

    Science.gov (United States)

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338

  18. A consensus network of gene regulatory factors in the human frontal lobe

    Directory of Open Access Journals (Sweden)

    Stefano eBerto

    2016-03-01

    Full Text Available Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID or autism spectrum disorders (ASD. Because many of these genes are gene regulatory factors (GRFs we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies.

  19. Identifying Driver Nodes in the Human Signaling Network Using Structural Controllability Analysis.

    Science.gov (United States)

    Liu, Xueming; Pan, Linqiang

    2015-01-01

    Cell signaling governs the basic cellular activities and coordinates the actions in cell. Abnormal regulations in cell signaling processing are responsible for many human diseases, such as diabetes and cancers. With the accumulation of massive data related to human cell signaling, it is feasible to obtain a human signaling network. Some studies have shown that interesting biological phenomenon and drug-targets could be discovered by applying structural controllability analysis to biological networks. In this work, we apply structural controllability to a human signaling network and detect driver nodes, providing a systematic analysis of the role of different proteins in controlling the human signaling network. We find that the proteins in the upstream of the signaling information flow and the low in-degree proteins play a crucial role in controlling the human signaling network. Interestingly, inputting different control signals on the regulators of the cancer-associated genes could cost less than controlling the cancer-associated genes directly in order to control the whole human signaling network in the sense that less drive nodes are needed. This research provides a fresh perspective for controlling the human cell signaling system.

  20. The Role of Human Parietal Cortex in Attention Networks

    Science.gov (United States)

    Han, Shihui; Jiang, Yi; Gu, Hua; Rao, Hengyi; Mao, Lihua; Cui, Yong; Zhai, Renyou

    2004-01-01

    The parietal cortex has been proposed as part of the neural network for guiding spatial attention. However, it is unclear to what degree the parietal cortex contributes to the attentional modulations of activities of the visual cortex and the engagement of the frontal cortex in the attention network. We recorded behavioural performance and…

  1. A human phenome-interactome network of protein complexes implicated in genetic disorders

    DEFF Research Database (Denmark)

    Hansen, Kasper Lage; Karlberg, Erik, Olof, Linnart; Størling, Zenia, Marian

    2007-01-01

    We performed a systematic, large-scale analysis of human protein complexes comprising gene products implicated in many different categories of human disease to create a phenome-interactome network. This was done by integrating quality-controlled interactions of human proteins with a validated, co...

  2. The Connectome Visualization Utility: Software for Visualization of Human Brain Networks

    NARCIS (Netherlands)

    LaPlante, R.A.; Douw, L.; Tang, W.; Stufflebeam, S.M.

    2014-01-01

    In analysis of the human connectome, the connectivity of the human brain is collected from multiple imaging modalities and analyzed using graph theoretical techniques. The dimensionality of human connectivity data is high, and making sense of the complex networks in connectomics requires

  3. Driving and driven architectures of directed small-world human brain functional networks.

    Directory of Open Access Journals (Sweden)

    Chaogan Yan

    Full Text Available Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86 to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule. Further split-half analyses indicated that our results were highly reproducible between two

  4. Fractional diffusion emulates a human mobility network during a simulated disease outbreak

    OpenAIRE

    Gustafson, Kyle B; Bayati, Basil S.; Eckhoff, Philip A.

    2016-01-01

    Mobility networks facilitate the growth of populations, the success of invasive species, and the spread of communicable diseases among social animals, including humans. Disease control and elimination efforts, especially during an outbreak, can be optimized by numerical modeling of disease dynamics on transport networks. This is especially true when incidence data from an emerging epidemic is sparse and unreliable. However, mobility networks can be complex, challenging to characterize, and ex...

  5. Intrinsic and Task-Evoked Network Architectures of the Human Brain

    OpenAIRE

    Cole, Michael W.; Bassett, Danielle S.; Power, Jonathan D.; Braver, Todd S.; Petersen, Steven E.

    2014-01-01

    Many functional network properties of the human brain have been identified during rest and task states, yet it remains unclear how the two relate. We identified a whole-brain network architecture present across dozens of task states that was highly similar to the resting-state network architecture. The most frequent functional connectivity strengths across tasks closely matched the strengths observed at rest, suggesting this is an “intrinsic”, standard architecture of functional brain organiz...

  6. Forward kinematics using IMU on-body sensor network for mobile analysis of human kinematics.

    Science.gov (United States)

    Taylor, Thomas; Ko, Seungoh; Mastrangelo, Carlos; Bamberg, Stacy J Morris

    2013-01-01

    The feasibility of large network inertial measurement units (IMUs) are evaluated for purposes requiring feedback. A series of wireless IMUs were attached to a human lower-limb laboratory model outfitted with joint angle encoders. The goal was to discover if large networks of wireless IMUs can give realtime joint orientation data while still maintaining an acceptable degree of accuracy.

  7. Computer-assisted curation of a human regulatory core network from the biological literature

    NARCIS (Netherlands)

    Thomas, P.; Durek, P.; Solt, I.; Klinger, B.; Witzel, F.; Schulthess, P.; Mayer, Y.; Tikk, D.; Blüthgen, N.; Leser, U.

    2015-01-01

    Motivation: A highly interlinked network of transcription factors (TFs) orchestrates the context-dependent expression of human genes. ChIP-chip experiments that interrogate the binding of particular TFs to genomic regions are used to reconstruct gene regulatory networks at genome-scale, but are

  8. A scored human protein-protein interaction network to catalyze genomic interpretation

    DEFF Research Database (Denmark)

    Li, Taibo; Wernersson, Rasmus; Hansen, Rasmus B

    2017-01-01

    Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (InWeb_InBioMap,......Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (In......Web_InBioMap, or InWeb_IM) with severalfold more interactions (>500,000) and better functional biological relevance than comparable resources. We illustrate that InWeb_InBioMap enables functional interpretation of >4,700 cancer genomes and genes involved in autism....

  9. Representing humans in system security models: An actor-network approach

    NARCIS (Netherlands)

    Pieters, Wolter

    2011-01-01

    System models to assess the vulnerability of information systems to security threats typically represent a physical infrastructure (buildings) and a digital infrastructure (computers and networks), in combination with an attacker traversing the system while acquiring credentials. Other humans are

  10. Human Impacts and Climate Change Influence Nestedness and Modularity in Food-Web and Mutualistic Networks.

    Science.gov (United States)

    Takemoto, Kazuhiro; Kajihara, Kosuke

    2016-01-01

    Theoretical studies have indicated that nestedness and modularity-non-random structural patterns of ecological networks-influence the stability of ecosystems against perturbations; as such, climate change and human activity, as well as other sources of environmental perturbations, affect the nestedness and modularity of ecological networks. However, the effects of climate change and human activities on ecological networks are poorly understood. Here, we used a spatial analysis approach to examine the effects of climate change and human activities on the structural patterns of food webs and mutualistic networks, and found that ecological network structure is globally affected by climate change and human impacts, in addition to current climate. In pollination networks, for instance, nestedness increased and modularity decreased in response to increased human impacts. Modularity in seed-dispersal networks decreased with temperature change (i.e., warming), whereas food web nestedness increased and modularity declined in response to global warming. Although our findings are preliminary owing to data-analysis limitations, they enhance our understanding of the effects of environmental change on ecological communities.

  11. Human Impacts and Climate Change Influence Nestedness and Modularity in Food-Web and Mutualistic Networks.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Takemoto

    Full Text Available Theoretical studies have indicated that nestedness and modularity-non-random structural patterns of ecological networks-influence the stability of ecosystems against perturbations; as such, climate change and human activity, as well as other sources of environmental perturbations, affect the nestedness and modularity of ecological networks. However, the effects of climate change and human activities on ecological networks are poorly understood. Here, we used a spatial analysis approach to examine the effects of climate change and human activities on the structural patterns of food webs and mutualistic networks, and found that ecological network structure is globally affected by climate change and human impacts, in addition to current climate. In pollination networks, for instance, nestedness increased and modularity decreased in response to increased human impacts. Modularity in seed-dispersal networks decreased with temperature change (i.e., warming, whereas food web nestedness increased and modularity declined in response to global warming. Although our findings are preliminary owing to data-analysis limitations, they enhance our understanding of the effects of environmental change on ecological communities.

  12. Dynamic reconfiguration of human brain functional networks through neurofeedback.

    Science.gov (United States)

    Haller, Sven; Kopel, Rotem; Jhooti, Permi; Haas, Tanja; Scharnowski, Frank; Lovblad, Karl-Olof; Scheffler, Klaus; Van De Ville, Dimitri

    2013-11-01

    Recent fMRI studies demonstrated that functional connectivity is altered following cognitive tasks (e.g., learning) or due to various neurological disorders. We tested whether real-time fMRI-based neurofeedback can be a tool to voluntarily reconfigure brain network interactions. To disentangle learning-related from regulation-related effects, we first trained participants to voluntarily regulate activity in the auditory cortex (training phase) and subsequently asked participants to exert learned voluntary self-regulation in the absence of feedback (transfer phase without learning). Using independent component analysis (ICA), we found network reconfigurations (increases in functional network connectivity) during the neurofeedback training phase between the auditory target region and (1) the auditory pathway; (2) visual regions related to visual feedback processing; (3) insula related to introspection and self-regulation and (4) working memory and high-level visual attention areas related to cognitive effort. Interestingly, the auditory target region was identified as the hub of the reconfigured functional networks without a-priori assumptions. During the transfer phase, we again found specific functional connectivity reconfiguration between auditory and attention network confirming the specific effect of self-regulation on functional connectivity. Functional connectivity to working memory related networks was no longer altered consistent with the absent demand on working memory. We demonstrate that neurofeedback learning is mediated by widespread changes in functional connectivity. In contrast, applying learned self-regulation involves more limited and specific network changes in an auditory setup intended as a model for tinnitus. Hence, neurofeedback training might be used to promote recovery from neurological disorders that are linked to abnormal patterns of brain connectivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. An environment-dependent transcriptional network specifies human microglia identity

    NARCIS (Netherlands)

    Gosselin, David; Skola, Dylan; Coufal, Nicole G.; Holtman, Inge R.; Schlachetzki, Johannes C. M.; Sajti, Eniko; Jaeger, Baptiste N.; O'Connor, Carolyn; Fitzpatrick, Conor; Pasillas, Martina P.; Pena, Monique; Adair, Amy; Gonda, David D.; Levy, Michael L.; Ransohoff, Richard M.; Gage, Fred H.; Glass, Christopher K.

    2017-01-01

    Microglia play essential roles in central nervous system (CNS) homeostasis and influence diverse aspects of neuronal function. However, the transcriptional mechanisms that specify human microglia phenotypes are largely unknown. We examined the transcriptomes and epigenetic landscapes of human

  14. Distinguishing humans from computers in the game of go: A complex network approach

    Science.gov (United States)

    Coquidé, C.; Georgeot, B.; Giraud, O.

    2017-08-01

    We compare complex networks built from the game of go and obtained from databases of human-played games with those obtained from computer-played games. Our investigations show that statistical features of the human-based networks and the computer-based networks differ, and that these differences can be statistically significant on a relatively small number of games using specific estimators. We show that the deterministic or stochastic nature of the computer algorithm playing the game can also be distinguished from these quantities. This can be seen as a tool to implement a Turing-like test for go simulators.

  15. Experimental Study of the Structure of a Social Network and Human Dynamics in a Virtual Society

    Science.gov (United States)

    Grabowski, Andrzej; Kruszewska, Natalia

    We study a large social network consisting of 3 × 104 individuals, who interact in a large virtual world of Massive Multiplayer Online Role Playing Games (MMORPGs). On the basis of the players' list of friends and the playing time received from the on-line game server, we investigate the structure of the network and human dynamics. We try to show that the structure of this friendship network is very similar to the structure of different social networks. In order to investigate the relation between networks of acquaintances in virtual and real worlds, we carried out a survey among the players. We found very interesting scaling laws concerning human dynamics. Our research has shown how long people are interested in a single task, and how much time they devote to it. It is surprising that exponent values in both cases are close to minus one.

  16. Detecting and evaluating communities in complex human and biological networks

    Science.gov (United States)

    Morrison, Greg; Mahadevan, L.

    2012-02-01

    We develop a simple method for detecting the community structure in a network can by utilizing a measure of closeness between nodes. This approach readily leads to a method of coarse graining the network, which allows the detection of the natural hierarchy (or hierarchies) of community structure without appealing to an unknown resolution parameter. The closeness measure can also be used to evaluate the robustness of an individual node's assignment to its community (rather than evaluating only the quality of the global structure). Each of these methods in community detection and evaluation are illustrated using a variety of real world networks of either biological or sociological importance and illustrate the power and flexibility of the approach.

  17. Characterizing dynamic changes in the human blood transcriptional network.

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    2010-02-01

    Full Text Available Gene expression data generated systematically in a given system over multiple time points provides a source of perturbation that can be leveraged to infer causal relationships among genes explaining network changes. Previously, we showed that food intake has a large impact on blood gene expression patterns and that these responses, either in terms of gene expression level or gene-gene connectivity, are strongly associated with metabolic diseases. In this study, we explored which genes drive the changes of gene expression patterns in response to time and food intake. We applied the Granger causality test and the dynamic Bayesian network to gene expression data generated from blood samples collected at multiple time points during the course of a day. The simulation result shows that combining many short time series together is as powerful to infer Granger causality as using a single long time series. Using the Granger causality test, we identified genes that were supported as the most likely causal candidates for the coordinated temporal changes in the network. These results show that PER1 is a key regulator of the blood transcriptional network, in which multiple biological processes are under circadian rhythm regulation. The fasted and fed dynamic Bayesian networks showed that over 72% of dynamic connections are self links. Finally, we show that different processes such as inflammation and lipid metabolism, which are disconnected in the static network, become dynamically linked in response to food intake, which would suggest that increasing nutritional load leads to coordinate regulation of these biological processes. In conclusion, our results suggest that food intake has a profound impact on the dynamic co-regulation of multiple biological processes, such as metabolism, immune response, apoptosis and circadian rhythm. The results could have broader implications for the design of studies of disease association and drug response in clinical

  18. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    Science.gov (United States)

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J

    2015-09-15

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.

  19. LENS: web-based lens for enrichment and network studies of human proteins.

    Science.gov (United States)

    Handen, Adam; Ganapathiraju, Madhavi K

    2015-01-01

    Network analysis is a common approach for the study of genetic view of diseases and biological pathways. Typically, when a set of genes are identified to be of interest in relation to a disease, say through a genome wide association study (GWAS) or a different gene expression study, these genes are typically analyzed in the context of their protein-protein interaction (PPI) networks. Further analysis is carried out to compute the enrichment of known pathways and disease-associations in the network. Having tools for such analysis at the fingertips of biologists without the requirement for computer programming or curation of data would accelerate the characterization of genes of interest. Currently available tools do not integrate network and enrichment analysis and their visualizations, and most of them present results in formats not most conducive to human cognition. We developed the tool Lens for Enrichment and Network Studies of human proteins (LENS) that performs network and pathway and diseases enrichment analyses on genes of interest to users. The tool creates a visualization of the network, provides easy to read statistics on network connectivity, and displays Venn diagrams with statistical significance values of the network's association with drugs, diseases, pathways, and GWASs. We used the tool to analyze gene sets related to craniofacial development, autism, and schizophrenia. LENS is a web-based tool that does not require and download or plugins to use. The tool is free and does not require login for use, and is available at http://severus.dbmi.pitt.edu/LENS.

  20. The role of protein interaction domains in the human cancer network

    Directory of Open Access Journals (Sweden)

    Shady S. Ibrahim

    2011-06-01

    Full Text Available Protein-protein interaction networks provide a global picture of cellular function and biological processes. Proteins interact largely through specific domains which constitute the main building blocks of an interaction network. Perturbed or dysfunctional protein interactions are linked to many diseases, including cancer. In this study we describe the major pathways and connections within the human cancer network by a novel approach in which we overlay the human cancer network with all protein interaction domain (PID superfamilies. Based on 38,777 experimentally derived interactions, we constructed a cancer network with 8 different levels and identified all major protein hubs within this cancer interactome. Only one percent of the cancer genes constitute over 50 percent of all interactions within the network. In addition, we mapped 56 PID superfamilies onto the cancer network, and discovered that over 10% of protein interaction domains are overrepresented within the cancer interactome when compared to the normal protein network. We present here a comprehensive list of all PIDs in the cancer network, identify the most important hubs within it and discover several individual genes which had previously not been linked to cancer. These proteins constitute excellent targets for the development of novel cancer therapeutics. Our results further hint to a partial molecular commonality between cancer and neurodegenerative diseases such as Alzheimer's and Huntington's.

  1. Preferential Attachment in an Internet-mediated Human Network

    OpenAIRE

    Arevalo, Chezka Camille P.; Pabico, Jaderick P.

    2015-01-01

    In the advent of the Internet, web-mediated social networking has become of great influence to Filipinos. Networking sites such as Friendster, YouTube, FaceBook and MySpace are among the most well known sites on the Internet. These sites provide a wide range of services to users from different parts of the world, such as connecting and finding people, as well as, sharing and organizing contents. The popularity and accessibility of these sites enable information to be available. These allow pe...

  2. Spontaneous functional network dynamics and associated structural substrates in the human brain

    Science.gov (United States)

    Liao, Xuhong; Yuan, Lin; Zhao, Tengda; Dai, Zhengjia; Shu, Ni; Xia, Mingrui; Yang, Yihong; Evans, Alan; He, Yong

    2015-01-01

    Recent imaging connectomics studies have demonstrated that the spontaneous human brain functional networks derived from resting-state functional MRI (R-fMRI) include many non-trivial topological properties, such as highly efficient small-world architecture and densely connected hub regions. However, very little is known about dynamic functional connectivity (D-FC) patterns of spontaneous human brain networks during rest and about how these spontaneous brain dynamics are constrained by the underlying structural connectivity. Here, we combined sub-second multiband R-fMRI data with graph-theoretical approaches to comprehensively investigate the dynamic characteristics of the topological organization of human whole-brain functional networks, and then employed diffusion imaging data in the same participants to further explore the associated structural substrates. At the connection level, we found that human whole-brain D-FC patterns spontaneously fluctuated over time, while homotopic D-FC exhibited high connectivity strength and low temporal variability. At the network level, dynamic functional networks exhibited time-varying but evident small-world and assortativity architecture, with several regions (e.g., insula, sensorimotor cortex and medial prefrontal cortex) emerging as functionally persistent hubs (i.e., highly connected regions) while possessing large temporal variability in their degree centrality. Finally, the temporal characteristics (i.e., strength and variability) of the connectional and nodal properties of the dynamic brain networks were significantly associated with their structural counterparts. Collectively, we demonstrate the economical, efficient, and flexible characteristics of dynamic functional coordination in large-scale human brain networks during rest, and highlight their relationship with underlying structural connectivity, which deepens our understandings of spontaneous brain network dynamics in humans. PMID:26388757

  3. Spontaneous Functional Network Dynamics and Associated Structural Substrates in the Human Brain

    Directory of Open Access Journals (Sweden)

    Xuhong eLiao

    2015-09-01

    Full Text Available Recent imaging connectomics studies have demonstrated that the spontaneous human brain functional networks derived from resting-state functional MRI (R-fMRI include many non-trivial topological properties, such as highly efficient small-world architecture and densely connected hub regions. However, very little is known about dynamic functional connectivity (D-FC patterns of spontaneous human brain networks during rest and about how these spontaneous brain dynamics are constrained by the underlying structural connectivity. Here, we combined sub-second multiband R-fMRI data with graph-theoretical approaches to comprehensively investigate the dynamic characteristics of the topological organization of human whole-brain functional networks, and then employed diffusion imaging data in the same participants to further explore the associated structural substrates. At the connection level, we found that human whole-brain D-FC patterns spontaneously fluctuated over time, while homotopic D-FC exhibited high connectivity strength and low temporal variability. At the network level, dynamic functional networks exhibited time-varying but evident small-world and assortativity architecture, with several regions (e.g., insula, sensorimotor cortex and medial prefrontal cortex emerging as functionally persistent hubs (i.e., highly connected regions while possessing large temporal variability in their degree centrality. Finally, the temporal characteristics (i.e., strength and variability of the connectional and nodal properties of the dynamic brain networks were significantly associated with their structural counterparts. Collectively, we demonstrate the economical, efficient and flexible characteristics of dynamic functional coordination in large-scale human brain networks during rest, and highlight their relationship with underlying structural connectivity, which deepens our understandings of spontaneous brain network dynamics in humans.

  4. Frequency-specific network topologies in the resting human brain

    Directory of Open Access Journals (Sweden)

    Shuntaro eSasai

    2014-12-01

    Full Text Available A community is a set of nodes with dense inter-connections, while there are sparse connections between different communities. A hub is a highly connected node with high centrality. It has been shown that both communities and hubs exist simultaneously in the brain’s functional connectivity network, as estimated by correlations among low-frequency spontaneous fluctuations in functional magnetic resonance imaging (fMRI signal changes (0.01–0.10 Hz. This indicates that the brain has a spatial organization that promotes both segregation and integration of information. Here, we demonstrate that frequency-specific network topologies that characterize segregation and integration also exist within this frequency range. In investigating the coherence spectrum among 87 brain regions, we found that two frequency bands, 0.01–0.03 Hz (very low frequency [VLF] band and 0.07–0.09 Hz (low frequency [LF] band, mainly contributed to functional connectivity. Comparing graph theoretical indices for the VLF and LF bands revealed that the network in the former had a higher capacity for information segregation between identified communities than the latter. Hubs in the VLF band were mainly located within the anterior cingulate cortices, whereas those in the LF band were located in the posterior cingulate cortices and thalamus. Thus, depending on the timescale of brain activity, at least two distinct network topologies contributed to information segregation and integration. This suggests that the brain intrinsically has timescale-dependent functional organizations.

  5. Effects of network resolution on topological properties of human neocortex

    DEFF Research Database (Denmark)

    Romero-Garcia, Rafael; Atienza, Mercedes; Clemmensen, Line Katrine Harder

    2012-01-01

    networks and the number of cortical regions included in the scale. Results revealed that schemes comprising 540–599 regions (surface areas spanning between 250 and 275mm2) at sparsities below 10% showed a superior balance between small-world organization and the size of the cortical scale employed...

  6. When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases

    Directory of Open Access Journals (Sweden)

    de Chassey Benoit

    2011-01-01

    Full Text Available Abstract Background Comprehensive understanding of molecular mechanisms underlying viral infection is a major challenge towards the discovery of new antiviral drugs and susceptibility factors of human diseases. New advances in the field are expected from systems-level modelling and integration of the incessant torrent of high-throughput "-omics" data. Results Here, we describe the Human Infectome protein interaction Network, a novel systems virology model of a virtual virus-infected human cell concerning 110 viruses. This in silico model was applied to comprehensively explore the molecular relationships between viruses and their associated diseases. This was done by merging virus-host and host-host physical protein-protein interactomes with the set of genes essential for viral replication and involved in human genetic diseases. This systems-level approach provides strong evidence that viral proteomes target a wide range of functional and inter-connected modules of proteins as well as highly central and bridging proteins within the human interactome. The high centrality of targeted proteins was correlated to their essentiality for viruses' lifecycle, using functional genomic RNAi data. A stealth-attack of viruses on proteins bridging cellular functions was demonstrated by simulation of cellular network perturbations, a property that could be essential in the molecular aetiology of some human diseases. Networking the Human Infectome and Diseasome unravels the connectivity of viruses to a wide range of diseases and profiled molecular basis of Hepatitis C Virus-induced diseases as well as 38 new candidate genetic predisposition factors involved in type 1 diabetes mellitus. Conclusions The Human Infectome and Diseasome Networks described here provide a unique gateway towards the comprehensive modelling and analysis of the systems level properties associated to viral infection as well as candidate genes potentially involved in the molecular aetiology

  7. When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases.

    Science.gov (United States)

    Navratil, Vincent; de Chassey, Benoit; Combe, Chantal Rabourdin; Lotteau, Vincent

    2011-01-21

    Comprehensive understanding of molecular mechanisms underlying viral infection is a major challenge towards the discovery of new antiviral drugs and susceptibility factors of human diseases. New advances in the field are expected from systems-level modelling and integration of the incessant torrent of high-throughput "-omics" data. Here, we describe the Human Infectome protein interaction Network, a novel systems virology model of a virtual virus-infected human cell concerning 110 viruses. This in silico model was applied to comprehensively explore the molecular relationships between viruses and their associated diseases. This was done by merging virus-host and host-host physical protein-protein interactomes with the set of genes essential for viral replication and involved in human genetic diseases. This systems-level approach provides strong evidence that viral proteomes target a wide range of functional and inter-connected modules of proteins as well as highly central and bridging proteins within the human interactome. The high centrality of targeted proteins was correlated to their essentiality for viruses' lifecycle, using functional genomic RNAi data. A stealth-attack of viruses on proteins bridging cellular functions was demonstrated by simulation of cellular network perturbations, a property that could be essential in the molecular aetiology of some human diseases. Networking the Human Infectome and Diseasome unravels the connectivity of viruses to a wide range of diseases and profiled molecular basis of Hepatitis C Virus-induced diseases as well as 38 new candidate genetic predisposition factors involved in type 1 diabetes mellitus. The Human Infectome and Diseasome Networks described here provide a unique gateway towards the comprehensive modelling and analysis of the systems level properties associated to viral infection as well as candidate genes potentially involved in the molecular aetiology of human diseases.

  8. Dopamine in the medial amygdala network mediates human bonding

    National Research Council Canada - National Science Library

    Atzil, Shir; Touroutoglou, Alexandra; Rudy, Tali; Salcedo, Stephanie; Feldman, Ruth; Hooker, Jacob M; Dickerson, Bradford C; Catana, Ciprian; Barrett, Lisa Feldman

    2017-01-01

    .... Although numerous mechanistic studies in rodents demonstrated that maternal bonding depends on striatal dopamine transmission, the neurochemistry supporting maternal behavior in humans has not been described so far...

  9. Associating Human-Centered Concepts with Social Networks Using Fuzzy Sets

    Science.gov (United States)

    Yager, Ronald R.

    The rapidly growing global interconnectivity, brought about to a large extent by the Internet, has dramatically increased the importance and diversity of social networks. Modern social networks cut across a spectrum from benign recreational focused websites such as Facebook to occupationally oriented websites such as LinkedIn to criminally focused groups such as drug cartels to devastation and terror focused groups such as Al-Qaeda. Many organizations are interested in analyzing and extracting information related to these social networks. Among these are governmental police and security agencies as well marketing and sales organizations. To aid these organizations there is a need for technologies to model social networks and intelligently extract information from these models. While established technologies exist for the modeling of relational networks [1-7] few technologies exist to extract information from these, compatible with human perception and understanding. Data bases is an example of a technology in which we have tools for representing our information as well as tools for querying and extracting the information contained. Our goal is in some sense analogous. We want to use the relational network model to represent information, in this case about relationships and interconnections, and then be able to query the social network using intelligent human-centered concepts. To extend our capabilities to interact with social relational networks we need to associate with these network human concepts and ideas. Since human beings predominantly use linguistic terms in which to reason and understand we need to build bridges between human conceptualization and the formal mathematical representation of the social network. Consider for example a concept such as "leader". An analyst may be able to express, in linguistic terms, using a network relevant vocabulary, properties of a leader. Our task is to translate this linguistic description into a mathematical formalism

  10. Three Degrees of Inclusion: the Gossip-Effect in Human Networks

    Science.gov (United States)

    Szekfu˝, Balázs; Szvetelszky, Zsuzsanna

    2005-06-01

    Using the scientific definition of gossip, an ancient and ubiquitous phenomenon of the social networks, we present our preliminary study and its results on how to measure the networks based on dissemination of connections and information. We try to accurately calculate the gossip-effects in networks with our hypothesis of "three degrees of inclusion". Our preliminary study on the subject of "three degrees of inclusion" gives latency to a very important property of social networks. Observing the human communication of closely knit social groups we came to the conclusion that the human networks are based on not more than three degrees of links. Taking the strong human ties into account our research indicates that whoever is on the fourth degree rarely counts as an in-group member. Our close friend's close friend's close friend — that is about the farthest — three steps — our network can reach out when it comes to telling a story or asking for a favor. Up to now no investigations have been performed to see whether the effects of gossip lead to the phase transition of the content of network's self-organizing communication. Our conclusion is that the gossip-effect must be considered as the prefactor of the news and opinions diffusion and dynamics at the social level.

  11. Heterogeneous Community-based mobility model for human opportunistic network

    DEFF Research Database (Denmark)

    Hu, Liang; Dittmann, Lars

    2009-01-01

    a heterogeneous community-based random way-point (HC-RWP) mobility model that captures the four important properties of real human mobility. These properties are based on both intuitive observations of daily human mobility and analysis of empirical mobility traces. By discrete event simulation, we show HC...

  12. Locus heterogeneity disease genes encode proteins with high interconnectivity in the human protein interaction network

    Directory of Open Access Journals (Sweden)

    Benjamin eKeith

    2014-12-01

    Full Text Available Mutations in genes potentially lead to a number of genetic diseases with differing severity. These disease genes have been the focus of research in recent years showing that the disease gene population as a whole is not homogeneous, and can be categorised according to their interactions. Locus heterogeneity describes a single disorder caused by mutations in different genes each acting individually to cause the same disease. Using datasets of experimentally derived human disease genes and protein interactions, we created a protein interaction network to investigate the relationships between the products of genes associated with a disease displaying locus heterogeneity, and use network parameters to suggest properties that distinguish these disease genes from the overall disease gene population. Through the manual curation of known causative genes of 100 diseases displaying locus heterogeneity and 397 single-gene Mendelian disorders, we use network parameters to show that our locus heterogeneity network displays distinct properties from the global disease network and a Mendelian network. Using the global human proteome, through random simulation of the network we show that heterogeneous genes display significant interconnectivity. Further topological analysis of this network revealed clustering of locus heterogeneity genes that cause identical disorders, indicating that these disease genes are involved in similar biological processes. We then use this information to suggest novel genes that may also contribute to diseases with locus heterogeneity.

  13. Default, Cognitive, and Affective Brain Networks in Human Tinnitus

    Science.gov (United States)

    2015-10-01

    words, therapies targeting networks that transform the tinnitus percept from benign to problematic.   8   5. Changes/ Problems There...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Tinnitus is a major health problem among those currently and formerly in military...control subjects with clinically-normal hearing thresholds and no tinnitus, (2) tinnitus subjects matched in hearing to the controls, (3) tinnitus

  14. Differential synchronization in default and task-specific networks of the human brain

    Directory of Open Access Journals (Sweden)

    Aaron eKirschner

    2012-05-01

    Full Text Available On a regional scale the brain is organized into dynamic functional networks. The activity within one of these, the default network, can be dissociated from that in other task-specific networks. All brain networks are connected structurally, but evidently are only transiently connected functionally. One hypothesis as to how such transient functional coupling occurs is that network formation and dissolution is mediated, or at least accompanied, by increases and decreases in oscillatory synchronization between constituent brain regions. If so, then we should be able to find transient differences in intra-network synchronization between the default network and a task-specific network. In order to investigate this hypothesis we conducted two experiments in which subjects engaged in a Sustained Attention to Response Task (SART while having brain activity recorded via high-density electroencephalography (EEG. We found that during periods when attention was focused internally (mind-wandering there was significantly more neural phase synchronization between brain regions associated with the default network, whereas during periods when subjects were focused on performing the visual task there was significantly more neural phase synchrony within a task-specific brain network that shared some of the same brain regions. These differences in network synchrony occurred in each of theta, alpha, and gamma frequency bands. A similar pattern of differential oscillatory power changes, indicating modulation of local synchronization by attention state, was also found. These results provide further evidence that the human brain is intrinsically organized into default and task-specific brain networks, and confirm that oscillatory synchronization is a potential mechanism for functional coupling within these networks.

  15. Bayesian statistical modelling of human protein interaction network incorporating protein disorder information

    Directory of Open Access Journals (Sweden)

    Eils Roland

    2010-01-01

    Full Text Available Abstract Background We present a statistical method of analysis of biological networks based on the exponential random graph model, namely p2-model, as opposed to previous descriptive approaches. The model is capable to capture generic and structural properties of a network as emergent from local interdependencies and uses a limited number of parameters. Here, we consider one global parameter capturing the density of edges in the network, and local parameters representing each node's contribution to the formation of edges in the network. The modelling suggests a novel definition of important nodes in the network, namely social, as revealed based on the local sociality parameters of the model. Moreover, the sociality parameters help to reveal organizational principles of the network. An inherent advantage of our approach is the possibility of hypotheses testing: a priori knowledge about biological properties of the nodes can be incorporated into the statistical model to investigate its influence on the structure of the network. Results We applied the statistical modelling to the human protein interaction network obtained with Y2H experiments. Bayesian approach for the estimation of the parameters was employed. We deduced social proteins, essential for the formation of the network, while incorporating into the model information on protein disorder. Intrinsically disordered are proteins which lack a well-defined three-dimensional structure under physiological conditions. We predicted the fold group (ordered or disordered of proteins in the network from their primary sequences. The network analysis indicated that protein disorder has a positive effect on the connectivity of proteins in the network, but do not fully explains the interactivity. Conclusions The approach opens a perspective to study effects of biological properties of individual entities on the structure of biological networks.

  16. Eye tracking using artificial neural networks for human computer interaction.

    Science.gov (United States)

    Demjén, E; Aboši, V; Tomori, Z

    2011-01-01

    This paper describes an ongoing project that has the aim to develop a low cost application to replace a computer mouse for people with physical impairment. The application is based on an eye tracking algorithm and assumes that the camera and the head position are fixed. Color tracking and template matching methods are used for pupil detection. Calibration is provided by neural networks as well as by parametric interpolation methods. Neural networks use back-propagation for learning and bipolar sigmoid function is chosen as the activation function. The user's eye is scanned with a simple web camera with backlight compensation which is attached to a head fixation device. Neural networks significantly outperform parametric interpolation techniques: 1) the calibration procedure is faster as they require less calibration marks and 2) cursor control is more precise. The system in its current stage of development is able to distinguish regions at least on the level of desktop icons. The main limitation of the proposed method is the lack of head-pose invariance and its relative sensitivity to illumination (especially to incidental pupil reflections).

  17. Road networks predict human influence on Amazonian bird communities

    Science.gov (United States)

    Ahmed, Sadia E.; Lees, Alexander C.; Moura, Nárgila G.; Gardner, Toby A.; Barlow, Jos; Ferreira, Joice; Ewers, Robert M.

    2014-01-01

    Road building can lead to significant deleterious impacts on biodiversity, varying from direct road-kill mortality and direct habitat loss associated with road construction, to more subtle indirect impacts from edge effects and fragmentation. However, little work has been done to evaluate the specific effects of road networks and biodiversity loss beyond the more generalized effects of habitat loss. Here, we compared forest bird species richness and composition in the municipalities of Santarém and Belterra in Pará state, eastern Brazilian Amazon, with a road network metric called ‘roadless volume (RV)’ at the scale of small hydrological catchments (averaging 3721 ha). We found a significant positive relationship between RV and both forest bird richness and the average number of unique species (species represented by a single record) recorded at each site. Forest bird community composition was also significantly affected by RV. Moreover, there was no significant correlation between RV and forest cover, suggesting that road networks may impact biodiversity independently of changes in forest cover. However, variance partitioning analysis indicated that RV has partially independent and therefore additive effects, suggesting that RV and forest cover are best used in a complementary manner to investigate changes in biodiversity. Road impacts on avian species richness and composition independent of habitat loss may result from road-dependent habitat disturbance and fragmentation effects that are not captured by total percentage habitat cover, such as selective logging, fire, hunting, traffic disturbance, edge effects and road-induced fragmentation. PMID:25274363

  18. Improving the Understanding of Pathogenesis of Human Papillomavirus 16 via Mapping Protein-Protein Interaction Network

    OpenAIRE

    Yongcheng Dong; Qifan Kuang; Xu Dai; Rong Li; Yiming Wu; Weijia Leng; Yizhou Li; Menglong Li

    2015-01-01

    The human papillomavirus 16 (HPV16) has high risk to lead various cancers and afflictions, especially, the cervical cancer. Therefore, investigating the pathogenesis of HPV16 is very important for public health. Protein-protein interaction (PPI) network between HPV16 and human was used as a measure to improve our understanding of its pathogenesis. By adopting sequence and topological features, a support vector machine (SVM) model was built to predict new interactions between HPV16 and human p...

  19. Classification of Human Emotions from EEG Signals using Statistical Features and Neural Network

    OpenAIRE

    Chai Tong Yuen; Woo San San; Tan Ching Seong; Mohamed Rizon

    2009-01-01

    A statistical based system for human emotions classification by using electroencephalogram (EEG) is proposed in this paper. The data used in this study is acquired using EEG and the emotions are elicited from six human subjects under the effect of emotion stimuli. This paper also proposed an emotion stimulation experiment using visual stimuli. From the EEG data, a total of six statistical features are computed and back-propagation neural network is applied for the classification of human emot...

  20. A Mechanistic Model of Human Recall of Social Network Structure and Relationship Affect.

    Science.gov (United States)

    Omodei, Elisa; Brashears, Matthew E; Arenas, Alex

    2017-12-07

    The social brain hypothesis argues that the need to deal with social challenges was key to our evolution of high intelligence. Research with non-human primates as well as experimental and fMRI studies in humans produce results consistent with this claim, leading to an estimate that human primary groups should consist of roughly 150 individuals. Gaps between this prediction and empirical observations can be partially accounted for using "compression heuristics", or schemata that simplify the encoding and recall of social information. However, little is known about the specific algorithmic processes used by humans to store and recall social information. We describe a mechanistic model of human network recall and demonstrate its sufficiency for capturing human recall behavior observed in experimental contexts. We find that human recall is predicated on accurate recall of a small number of high degree network nodes and the application of heuristics for both structural and affective information. This provides new insight into human memory, social network evolution, and demonstrates a novel approach to uncovering human cognitive operations.

  1. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Matthew D Dyer

    2010-08-01

    Full Text Available Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion.In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity.These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.

  2. Asymmetric development of dorsal and ventral attention networks in the human brain.

    Science.gov (United States)

    Farrant, Kristafor; Uddin, Lucina Q

    2015-04-01

    Two neural systems for goal-directed and stimulus-driven attention have been described in the adult human brain; the dorsal attention network (DAN) centered in the frontal eye fields (FEF) and intraparietal sulcus (IPS), and the ventral attention network (VAN) anchored in the temporoparietal junction (TPJ) and ventral frontal cortex (VFC). Little is known regarding the processes governing typical development of these attention networks in the brain. Here we use resting state functional MRI data collected from thirty 7 to 12 year-old children and thirty 18 to 31 year-old adults to examine two key regions of interest from the dorsal and ventral attention networks. We found that for the DAN nodes (IPS and FEF), children showed greater functional connectivity with regions within the network compared with adults, whereas adults showed greater functional connectivity between the FEF and extra-network regions including the posterior cingulate cortex. For the VAN nodes (TPJ and VFC), adults showed greater functional connectivity with regions within the network compared with children. Children showed greater functional connectivity between VFC and nodes of the salience network. This asymmetric pattern of development of attention networks may be a neural signature of the shift from over-representation of bottom-up attention mechanisms to greater top-down attentional capacities with development. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Asymmetric development of dorsal and ventral attention networks in the human brain

    Directory of Open Access Journals (Sweden)

    Kristafor Farrant

    2015-04-01

    Full Text Available Two neural systems for goal-directed and stimulus-driven attention have been described in the adult human brain; the dorsal attention network (DAN centered in the frontal eye fields (FEF and intraparietal sulcus (IPS, and the ventral attention network (VAN anchored in the temporoparietal junction (TPJ and ventral frontal cortex (VFC. Little is known regarding the processes governing typical development of these attention networks in the brain. Here we use resting state functional MRI data collected from thirty 7 to 12 year-old children and thirty 18 to 31 year-old adults to examine two key regions of interest from the dorsal and ventral attention networks. We found that for the DAN nodes (IPS and FEF, children showed greater functional connectivity with regions within the network compared with adults, whereas adults showed greater functional connectivity between the FEF and extra-network regions including the posterior cingulate cortex. For the VAN nodes (TPJ and VFC, adults showed greater functional connectivity with regions within the network compared with children. Children showed greater functional connectivity between VFC and nodes of the salience network. This asymmetric pattern of development of attention networks may be a neural signature of the shift from over-representation of bottom-up attention mechanisms to greater top-down attentional capacities with development.

  4. Time Allocation in Social Networks: Correlation Between Social Structure and Human Communication Dynamics

    Science.gov (United States)

    Miritello, Giovanna; Lara, Rubén; Moro, Esteban

    Recent research has shown the deep impact of the dynamics of human interactions (or temporal social networks) on the spreading of information, opinion formation, etc. In general, the bursty nature of human interactions lowers the interaction between people to the extent that both the speed and reach of information diffusion are diminished. Using a large database of 20 million users of mobile phone calls we show evidence this effect is not homogeneous in the social network but in fact, there is a large correlation between this effect and the social topological structure around a given individual. In particular, we show that social relations of hubs in a network are relatively weaker from the dynamical point than those that are poorer connected in the information diffusion process. Our results show the importance of the temporal patterns of communication when analyzing and modeling dynamical process on social networks.

  5. Human-Centered Development of an Online Social Network for Metabolic Syndrome Management.

    Science.gov (United States)

    Núñez-Nava, Jefersson; Orozco-Sánchez, Paola A; López, Diego M; Ceron, Jesus D; Alvarez-Rosero, Rosa E

    2016-01-01

    According to the International Diabetes Federation (IDF), a quarter of the world's population has Metabolic Syndrome (MS). To develop (and assess the users' degree of satisfaction of) an online social network for patients who suffer from Metabolic Syndrome, based on the recommendations and requirements of the Human-Centered Design. Following the recommendations of the ISO 9241-210 for Human-Centered Design (HCD), an online social network was designed to promote physical activity and healthy nutrition. In order to guarantee the active participation of the users during the development of the social network, a survey, an in-depth interview, a focal group, and usability tests were carried out with people suffering from MS. The study demonstrated how the different activities, recommendations, and requirements of the ISO 9241-210 are integrated into a traditional software development process. Early usability tests demonstrated that the user's acceptance and the effectiveness and efficiency of the social network are satisfactory.

  6. Time allocation in social networks: correlation between social structure and human communication dynamics

    CERN Document Server

    Miritello, Giovanna; Moro, Esteban

    2013-01-01

    Recent research has shown the deep impact of the dynamics of human interactions (or temporal social networks) on the spreading of information, opinion formation, etc. In general, the bursty nature of human interactions lowers the interaction between people to the extent that both the speed and reach of information diffusion are diminished. Using a large database of 20 million users of mobile phone calls we show evidence this effect is not homogeneous in the social network but in fact, there is a large correlation between this effect and the social topological structure around a given individual. In particular, we show that social relations of hubs in a network are relatively weaker from the dynamical point than those that are poorer connected in the information diffusion process. Our results show the importance of the temporal patterns of communication when analyzing and modeling dynamical process on social networks.

  7. Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles.

    Directory of Open Access Journals (Sweden)

    Carlos Prieto

    Full Text Available BACKGROUND: Analysis of gene expression data using genome-wide microarrays is a technique often used in genomic studies to find coexpression patterns and locate groups of co-transcribed genes. However, most studies done at global "omic" scale are not focused on human samples and when they correspond to human very often include heterogeneous datasets, mixing normal with disease-altered samples. Moreover, the technical noise present in genome-wide expression microarrays is another well reported problem that many times is not addressed with robust statistical methods, and the estimation of errors in the data is not provided. METHODOLOGY/PRINCIPAL FINDINGS: Human genome-wide expression data from a controlled set of normal-healthy tissues is used to build a confident human gene coexpression network avoiding both pathological and technical noise. To achieve this we describe a new method that combines several statistical and computational strategies: robust normalization and expression signal calculation; correlation coefficients obtained by parametric and non-parametric methods; random cross-validations; and estimation of the statistical accuracy and coverage of the data. All these methods provide a series of coexpression datasets where the level of error is measured and can be tuned. To define the errors, the rates of true positives are calculated by assignment to biological pathways. The results provide a confident human gene coexpression network that includes 3327 gene-nodes and 15841 coexpression-links and a comparative analysis shows good improvement over previously published datasets. Further functional analysis of a subset core network, validated by two independent methods, shows coherent biological modules that share common transcription factors. The network reveals a map of coexpression clusters organized in well defined functional constellations. Two major regions in this network correspond to genes involved in nuclear and mitochondrial

  8. Fast-scale network dynamics in human cortex have specific spectral covariance patterns

    OpenAIRE

    Freudenburg, Zachary V.; Gaona, Charles M.; Sharma, Mohit; Bundy, David T.; Breshears, Jonathan D.; Robert B Pless; Leuthardt, Eric C.

    2014-01-01

    How different cortical regions are coordinated during a cognitive task is fundamentally important to understanding brain function. At rest, the brain is subdivided into different functional networks that are bound together at very slow oscillating time scales. Less is understood about how this networked behavior operates during the brief moments of a cognitive operation. By recording brain signals directly from the surface of the human brain, we find that, when performing a simple speech task...

  9. Global analysis of the human pathophenotypic similarity gene network merges disease module components.

    Science.gov (United States)

    Reyes-Palomares, Armando; Rodríguez-López, Rocío; Ranea, Juan A G; Sánchez-Jiménez, Francisca; Sánchez Jiménez, Francisca; Medina, Miguel Angel

    2013-01-01

    The molecular complexity of genetic diseases requires novel approaches to break it down into coherent biological modules. For this purpose, many disease network models have been created and analyzed. We highlight two of them, "the human diseases networks" (HDN) and "the orphan disease networks" (ODN). However, in these models, each single node represents one disease or an ambiguous group of diseases. In these cases, the notion of diseases as unique entities reduces the usefulness of network-based methods. We hypothesize that using the clinical features (pathophenotypes) to define pathophenotypic connections between disease-causing genes improve our understanding of the molecular events originated by genetic disturbances. For this, we have built a pathophenotypic similarity gene network (PSGN) and compared it with the unipartite projections (based on gene-to-gene edges) similar to those used in previous network models (HDN and ODN). Unlike these disease network models, the PSGN uses semantic similarities. This pathophenotypic similarity has been calculated by comparing pathophenotypic annotations of genes (human abnormalities of HPO terms) in the "Human Phenotype Ontology". The resulting network contains 1075 genes (nodes) and 26197 significant pathophenotypic similarities (edges). A global analysis of this network reveals: unnoticed pairs of genes showing significant pathophenotypic similarity, a biological meaningful re-arrangement of the pathological relationships between genes, correlations of biochemical interactions with higher similarity scores and functional biases in metabolic and essential genes toward the pathophenotypic specificity and the pleiotropy, respectively. Additionally, pathophenotypic similarities and metabolic interactions of genes associated with maple syrup urine disease (MSUD) have been used to merge into a coherent pathological module.Our results indicate that pathophenotypes contribute to identify underlying co-dependencies among disease

  10. Global analysis of the human pathophenotypic similarity gene network merges disease module components.

    Directory of Open Access Journals (Sweden)

    Armando Reyes-Palomares

    Full Text Available The molecular complexity of genetic diseases requires novel approaches to break it down into coherent biological modules. For this purpose, many disease network models have been created and analyzed. We highlight two of them, "the human diseases networks" (HDN and "the orphan disease networks" (ODN. However, in these models, each single node represents one disease or an ambiguous group of diseases. In these cases, the notion of diseases as unique entities reduces the usefulness of network-based methods. We hypothesize that using the clinical features (pathophenotypes to define pathophenotypic connections between disease-causing genes improve our understanding of the molecular events originated by genetic disturbances. For this, we have built a pathophenotypic similarity gene network (PSGN and compared it with the unipartite projections (based on gene-to-gene edges similar to those used in previous network models (HDN and ODN. Unlike these disease network models, the PSGN uses semantic similarities. This pathophenotypic similarity has been calculated by comparing pathophenotypic annotations of genes (human abnormalities of HPO terms in the "Human Phenotype Ontology". The resulting network contains 1075 genes (nodes and 26197 significant pathophenotypic similarities (edges. A global analysis of this network reveals: unnoticed pairs of genes showing significant pathophenotypic similarity, a biological meaningful re-arrangement of the pathological relationships between genes, correlations of biochemical interactions with higher similarity scores and functional biases in metabolic and essential genes toward the pathophenotypic specificity and the pleiotropy, respectively. Additionally, pathophenotypic similarities and metabolic interactions of genes associated with maple syrup urine disease (MSUD have been used to merge into a coherent pathological module.Our results indicate that pathophenotypes contribute to identify underlying co

  11. Road networks predict human influence on Amazonian bird communities.

    Science.gov (United States)

    Ahmed, Sadia E; Lees, Alexander C; Moura, Nárgila G; Gardner, Toby A; Barlow, Jos; Ferreira, Joice; Ewers, Robert M

    2014-11-22

    Road building can lead to significant deleterious impacts on biodiversity, varying from direct road-kill mortality and direct habitat loss associated with road construction, to more subtle indirect impacts from edge effects and fragmentation. However, little work has been done to evaluate the specific effects of road networks and biodiversity loss beyond the more generalized effects of habitat loss. Here, we compared forest bird species richness and composition in the municipalities of Santarém and Belterra in Pará state, eastern Brazilian Amazon, with a road network metric called 'roadless volume (RV)' at the scale of small hydrological catchments (averaging 3721 ha). We found a significant positive relationship between RV and both forest bird richness and the average number of unique species (species represented by a single record) recorded at each site. Forest bird community composition was also significantly affected by RV. Moreover, there was no significant correlation between RV and forest cover, suggesting that road networks may impact biodiversity independently of changes in forest cover. However, variance partitioning analysis indicated that RV has partially independent and therefore additive effects, suggesting that RV and forest cover are best used in a complementary manner to investigate changes in biodiversity. Road impacts on avian species richness and composition independent of habitat loss may result from road-dependent habitat disturbance and fragmentation effects that are not captured by total percentage habitat cover, such as selective logging, fire, hunting, traffic disturbance, edge effects and road-induced fragmentation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Network complexity as a measure of information processing across resting-state networks: Evidence from the Human Connectome Project

    Directory of Open Access Journals (Sweden)

    Ian M Mcdonough

    2014-06-01

    Full Text Available An emerging field of research focused on fluctuations in brain signals has provided evidence that the complexity of those signals, as measured by entropy, conveys important information about network dynamics (e.g., local and distributed processing. While much research has focused on how neural complexity differs in populations with different age groups or clinical disorders, substantially less research has focused on the basic understanding of neural complexity in populations with young and healthy brain states. The present study used resting-state fMRI data from the Human Connectome Project (Van Essen et al., 2013 to test the extent that neural complexity in the BOLD signal, as measured by multiscale entropy 1 would differ from random noise, 2 would differ between four major resting-state networks previously associated with higher-order cognition, and 3 would be associated with the strength and extent of functional connectivity—a complementary method of estimating information processing. We found that complexity in the BOLD signal exhibited different patterns of complexity from white, pink, and red noise and that neural complexity was differentially expressed between resting-state networks, including the default mode, cingulo-opercular, left and right frontoparietal networks. Lastly, neural complexity across all networks was negatively associated with functional connectivity at fine scales, but was positively associated with functional connectivity at coarse scales. The present study is the first to characterize neural complexity in BOLD signals at a high temporal resolution and across different networks and might help clarify the inconsistencies between neural complexity and functional connectivity, thus informing the mechanisms underlying neural complexity.

  13. Parametric uncertainty analysis of pulse wave propagation in a model of a human arterial network

    Science.gov (United States)

    Xiu, Dongbin; Sherwin, Spencer J.

    2007-10-01

    Reduced models of human arterial networks are an efficient approach to analyze quantitative macroscopic features of human arterial flows. The justification for such models typically arise due to the significantly long wavelength associated with the system in comparison to the lengths of arteries in the networks. Although these types of models have been employed extensively and many issues associated with their implementations have been widely researched, the issue of data uncertainty has received comparatively little attention. Similar to many biological systems, a large amount of uncertainty exists in the value of the parameters associated with the models. Clearly reliable assessment of the system behaviour cannot be made unless the effect of such data uncertainty is quantified. In this paper we present a study of parametric data uncertainty in reduced modelling of human arterial networks which is governed by a hyperbolic system. The uncertain parameters are modelled as random variables and the governing equations for the arterial network therefore become stochastic. This type stochastic hyperbolic systems have not been previously systematically studied due to the difficulties introduced by the uncertainty such as a potential change in the mathematical character of the system and imposing boundary conditions. We demonstrate how the application of a high-order stochastic collocation method based on the generalized polynomial chaos expansion, combined with a discontinuous Galerkin spectral/hp element discretization in physical space, can successfully simulate this type of hyperbolic system subject to uncertain inputs with bounds. Building upon a numerical study of propagation of uncertainty and sensitivity in a simplified model with a single bifurcation, a systematical parameter sensitivity analysis is conducted on the wave dynamics in a multiple bifurcating human arterial network. Using the physical understanding of the dynamics of pulse waves in these types of

  14. Overview 2010 of ARL Program on Network Science for Human Decision Making.

    Science.gov (United States)

    West, Bruce J

    2011-01-01

    The Army Research Laboratory program on the Network Science of Human Decision Making brings together researchers from a variety of disciplines to work on a complex research problem that defies confinement within any single discipline. Consequently, new and rewarding solutions have been obtained for a problem of importance to society and the Army, that being, the human dimension of complex networks. This program investigates the basic research foundation of a science of networks supporting the linkage between the cognitive and social domains as they relate to human decision making. The research strategy extends recent methods of non-equilibrium statistical physics to non-stationary, renewal stochastic processes characteristic of the interactions among nodes in complex networks. The theoretical analyses of complex networks, although mathematically rigorous, often elude analytic solutions and require simulation and computation to analyze the underlying dynamic process. The information transfer between two complex networks is calculated using the principle of complexity management as well as direct numerical calculation of the decision making model developed within the project.

  15. OVERVIEW 2010 OF ARL PROGRAM ON NETWORK SCIENCE FOR HUMAN DECISION MAKING

    Directory of Open Access Journals (Sweden)

    Bruce J West

    2011-11-01

    Full Text Available The Army Research Laboratory program on the Network Science of Human Decision Making brings together researchers from a variety of disciplines to work on a complex research problem that defies confinement within any single discipline. Consequently, new and rewarding solutions have been obtained for a problem of importance to society and the Army, that being, the human dimension of complex networks. This program investigates the basic research foundation of a science of networks supporting the linkage between the cognitive and social domains as they relate to human decision making. The research strategy extends recent methods of non-equilibrium statistical physics to non-stationary, renewal stochastic processes characteristic of the interactions among nodes in complex networks. The theoretical analyses of complex networks, although mathematically rigorous, often elude analytic solutions and require simulation and computation to analyze the underlying dynamic process. The information transfer between two complex networks is calculated using the Principle of Complexity Management (PCM as well as direct numerical calculation of the decision making model (DMM developed within the project.

  16. BrainCrafter: An investigation into human-based neural network engineering

    DEFF Research Database (Denmark)

    Piskur, J.; Greve, P.; Togelius, J.

    2015-01-01

    This paper presents the online application Brain-Crafter, in which users can manually build artificial neural networks (ANNs) to control a robot in a maze environment. Users can either start to construct networks from scratch or elaborate on networks created by other users. In particular, Brain......Crafter was designed to study how good we as humans are at building ANNs for control problems and if collaborating with other users can facilitate this process. The results in this paper show that (1) some users were in fact able to successfully construct ANNs that solve the navigation tasks, (2) collaboration between...

  17. Redrawing the map of Great Britain from a network of human interactions.

    Directory of Open Access Journals (Sweden)

    Carlo Ratti

    Full Text Available Do regional boundaries defined by governments respect the more natural ways that people interact across space? This paper proposes a novel, fine-grained approach to regional delineation, based on analyzing networks of billions of individual human transactions. Given a geographical area and some measure of the strength of links between its inhabitants, we show how to partition the area into smaller, non-overlapping regions while minimizing the disruption to each person's links. We tested our method on the largest non-Internet human network, inferred from a large telecommunications database in Great Britain. Our partitioning algorithm yields geographically cohesive regions that correspond remarkably well with administrative regions, while unveiling unexpected spatial structures that had previously only been hypothesized in the literature. We also quantify the effects of partitioning, showing for instance that the effects of a possible secession of Wales from Great Britain would be twice as disruptive for the human network than that of Scotland.

  18. Evolution of regulatory networks in Candida glabrata: learning to live with the human host.

    Science.gov (United States)

    Roy, Sushmita; Thompson, Dawn

    2015-12-01

    The opportunistic human fungal pathogen Candida glabrata is second only to C. albicans as the cause of Candida infections and yet is more closely related to Saccharomyces cerevisiae. Recent advances in functional genomics technologies and computational approaches to decipher regulatory networks, and the comparison of these networks among these and other Ascomycete species, have revealed both unique and shared strategies in adaptation to a human commensal/opportunistic pathogen lifestyle and antifungal drug resistance in C. glabrata. Recently, several C. glabrata sister species in the Nakeseomyces clade representing both human associated (commensal) and environmental isolates have had their genomes sequenced and analyzed. This has paved the way for comparative functional genomics studies to characterize the regulatory networks in these species to identify informative patterns of conservation and divergence linked to phenotypic evolution in the Nakaseomyces lineage. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Human Inspired Self-developmental Model of Neural Network (HIM): Introducing Content/Form Computing

    Science.gov (United States)

    Krajíček, Jiří

    This paper presents cross-disciplinary research between medical/psychological evidence on human abilities and informatics needs to update current models in computer science to support alternative methods for computation and communication. In [10] we have already proposed hypothesis introducing concept of human information model (HIM) as cooperative system. Here we continue on HIM design in detail. In our design, first we introduce Content/Form computing system which is new principle of present methods in evolutionary computing (genetic algorithms, genetic programming). Then we apply this system on HIM (type of artificial neural network) model as basic network self-developmental paradigm. Main inspiration of our natural/human design comes from well known concept of artificial neural networks, medical/psychological evidence and Sheldrake theory of "Nature as Alive" [22].

  20. Decentralized tracking of humans using a camera network

    Science.gov (United States)

    Gruenwedel, Sebastian; Jelaca, Vedran; Niño-Castañeda, Jorge Oswaldo; Van Hese, Peter; Van Cauwelaert, Dimitri; Veelaert, Peter; Philips, Wilfried

    2012-01-01

    Real-time tracking of people has many applications in computer vision and typically requires multiple cameras; for instance for surveillance, domotics, elderly-care and video conferencing. However, this problem is very challenging because of the need to deal with frequent occlusions and environmental changes. Another challenge is to develop solutions which scale well with the size of the camera network. Such solutions need to carefully restrict overall communication in the network and often involve distributed processing. In this paper we present a distributed person tracker, addressing the aforementioned issues. Real-time processing is achieved by distributing tasks between the cameras and a fusion node. The latter fuses only high level data based on low-bandwidth input streams from the cameras. This is achieved by performing tracking first on the image plane of each camera followed by sending only metadata to a local fusion node. We designed the proposed system with respect to a low communication load and towards robustness of the system. We evaluate the performance of the tracker in meeting scenarios where persons are often occluded by other persons and/or furniture. We present experimental results which show that our tracking approach is accurate even in cases of severe occlusions in some of the views.

  1. Human Mobility Monitoring in Very Low Resolution Visual Sensor Network

    Directory of Open Access Journals (Sweden)

    Nyan Bo Bo

    2014-11-01

    Full Text Available This paper proposes an automated system for monitoring mobility patterns using a network of very low resolution visual sensors (30 × 30 pixels. The use of very low resolution sensors reduces privacy concern, cost, computation requirement and power consumption. The core of our proposed system is a robust people tracker that uses low resolution videos provided by the visual sensor network. The distributed processing architecture of our tracking system allows all image processing tasks to be done on the digital signal controller in each visual sensor. In this paper, we experimentally show that reliable tracking of people is possible using very low resolution imagery. We also compare the performance of our tracker against a state-of-the-art tracking method and show that our method outperforms. Moreover, the mobility statistics of tracks such as total distance traveled and average speed derived from trajectories are compared with those derived from ground truth given by Ultra-Wide Band sensors. The results of this comparison show that the trajectories from our system are accurate enough to obtain useful mobility statistics.

  2. Gene network analysis of candidate loci for human anorectal malformations.

    Directory of Open Access Journals (Sweden)

    Emily H M Wong

    Full Text Available Anorectal malformations (ARMs are birth defects that require surgery and carry significant chronic morbidity. Our earlier genome-wide copy number variation (CNV study had provided a wealth of candidate loci. To find out whether these candidate loci are related to important developmental pathways, we have performed an extensive literature search coupled with the currently available bioinformatics tools. This has allowed us to assign both genic and non-genic CNVs to interrelated pathways known to govern the development of the anorectal region. We have linked 11 candidate genes to the WNT signalling pathway and 17 genes to the cytoskeletal network. Interestingly, candidate genes with similar functions are disrupted by the same type of CNV. The gene network we discovered provides evidence that rare mutations in different interrelated genes may lead to similar phenotypes, accounting for genetic heterogeneity in ARMs. Classification of patients according to the affected pathway and lesion type should eventually improve the diagnosis and the identification of common genes/molecules as therapeutic targets.

  3. River Networks and Human Activities: Global Fractal Analysis Using Nightlight Data

    Science.gov (United States)

    McCurley, K. 4553; Fang, Y.; Ceola, S.; Paik, K.; McGrath, G. S.; Montanari, A.; Rao, P. S.; Jawitz, J. W.

    2016-12-01

    River networks hold an important historical role in affecting human population distribution. In this study, we link the geomorphological structure of river networks to the pattern of human activities at a global scale. We use nightlights as a valuable proxy for the presence of human settlements and economic activity, and we employ HydroSHEDS as the main data source on river networks. We test the hypotheses that, analogous to Horton's laws, human activities (magnitude of nightlights) also show scaling relationship with stream order, and that the intensity of human activities decrease as the distance from the basin outlet increase. Our results demonstrate that the distribution of human activities shows a fractal structure, with power-law scaling between human activities and stream order. This relationship is robust among global river basins. Human activities are more concentrated in larger order basins, but show large variation in equivalent order basins, with higher population density emergent in the basins connected with high-order rivers. For all global river basins longer than 400km, the average intensity of human activities decrease as the distance to the outlets increases, albeit with signatures of large cities at varied distances. The power spectrum of human width (area) function is found to exhibit power law scaling, with a scaling exponent that indicates enrichment of low frequency variation. The universal fractal structure of human activities may reflect an optimum arrangement for humans in river basins to better utilize the water resources, ecological assets, and geographic advantages. The generalized patterns of human activities could be applied to better understand hydrologic and biogeochemical responses in river basins, and to advance catchment management.

  4. How brain and neuronal networks explain human reality

    Directory of Open Access Journals (Sweden)

    Javier Monserrat

    2017-02-01

    Full Text Available How is human reality presented to us in phenomenological experience? It is the one we see daily in our personal and social life. We are made of matter, we are part of the evolutionary universe. In addition, a psychic life is formed in us: sensation, a system of perceptions, an integrated consciousness, a condition of psychological subject; We produce knowledge, emotions, motivations; But, above all, we have a mind that rationally moves and installs us into a world of human emotions; This emotional reason lies at the base of the search for the truth of the universe, the meaning of life and the moral responsibility, in personal and social life. Our human reality is, therefore, a personal reality. We are persons. Now, how does science, neurology, explain today the fact that our human reality possesses these properties that give us the personal condition? This should be able to be explained (this is the initial assumption from the physical-biological world. Now, in particular, how does science make it possible to explain that evolution has produced us in our condition of ratio-emotional persons? That is, what is the physical support that makes intelligible the psycho-bio-physical ontology that evolutionarily produces our personal phenomenological experience? This is, ultimately, still the fundamental question of human sciences. What science, namely neurology, must explain (that is, know the causes that have produced it is obvious: the fact of our sensibility-consciousness, our condition of psychic subjects, knowledge and emotional reason that have emerged in the universe; In such a way that, once the emotional reason emerges, it leads by itself to constitute the rational activity and the emotions of the human person aimed at building the meaning of his life. These are the issues we address in this article.

  5. Brain Organization into Resting State Networks Emerges at Criticality on a Model of the Human Connectome

    Science.gov (United States)

    Haimovici, Ariel; Tagliazucchi, Enzo; Balenzuela, Pablo; Chialvo, Dante R.

    2013-04-01

    The relation between large-scale brain structure and function is an outstanding open problem in neuroscience. We approach this problem by studying the dynamical regime under which realistic spatiotemporal patterns of brain activity emerge from the empirically derived network of human brain neuroanatomical connections. The results show that critical dynamics unfolding on the structural connectivity of the human brain allow the recovery of many key experimental findings obtained from functional magnetic resonance imaging, such as divergence of the correlation length, the anomalous scaling of correlation fluctuations, and the emergence of large-scale resting state networks.

  6. Genetic network properties of the human cortex based on regional thickness and surface area measures

    Directory of Open Access Journals (Sweden)

    Anna R. Docherty

    2015-08-01

    Full Text Available We examined network properties of genetic covariance between average cortical thickness (CT and surface area (SA within genetically-identified cortical parcellations that we previously derived from human cortical genetic maps using vertex-wise fuzzy clustering analysis with high spatial resolution. There were 24 hierarchical parcellations based on vertex-wise CT and 24 based on vertex-wise SA expansion/contraction; in both cases the 12 parcellations per hemisphere were largely symmetrical. We utilized three techniques—biometrical genetic modeling, cluster analysis, and graph theory—to examine genetic relationships and network properties within and between the 48 parcellation measures. Biometrical modeling indicated significant shared genetic covariance between size of several of the genetic parcellations. Cluster analysis suggested small distinct groupings of genetic covariance; networks highlighted several significant negative and positive genetic correlations between bilateral parcellations. Graph theoretical analysis suggested that small world, but not rich club, network properties may characterize the genetic relationships between these regional size measures. These findings suggest that cortical genetic parcellations exhibit short characteristic path lengths across a broad network of connections. This property may be protective against network failure. In contrast, previous research with structural data has observed strong rich club properties with tightly interconnected hub networks. Future studies of these genetic networks might provide powerful phenotypes for genetic studies of normal and pathological brain development, aging, and function.

  7. Multitask learning of signaling and regulatory networks with application to studying human response to flu.

    Science.gov (United States)

    Jain, Siddhartha; Gitter, Anthony; Bar-Joseph, Ziv

    2014-12-01

    Reconstructing regulatory and signaling response networks is one of the major goals of systems biology. While several successful methods have been suggested for this task, some integrating large and diverse datasets, these methods have so far been applied to reconstruct a single response network at a time, even when studying and modeling related conditions. To improve network reconstruction we developed MT-SDREM, a multi-task learning method which jointly models networks for several related conditions. In MT-SDREM, parameters are jointly constrained across the networks while still allowing for condition-specific pathways and regulation. We formulate the multi-task learning problem and discuss methods for optimizing the joint target function. We applied MT-SDREM to reconstruct dynamic human response networks for three flu strains: H1N1, H5N1 and H3N2. Our multi-task learning method was able to identify known and novel factors and genes, improving upon prior methods that model each condition independently. The MT-SDREM networks were also better at identifying proteins whose removal affects viral load indicating that joint learning can still lead to accurate, condition-specific, networks. Supporting website with MT-SDREM implementation: http://sb.cs.cmu.edu/mtsdrem.

  8. Multitask learning of signaling and regulatory networks with application to studying human response to flu.

    Directory of Open Access Journals (Sweden)

    Siddhartha Jain

    2014-12-01

    Full Text Available Reconstructing regulatory and signaling response networks is one of the major goals of systems biology. While several successful methods have been suggested for this task, some integrating large and diverse datasets, these methods have so far been applied to reconstruct a single response network at a time, even when studying and modeling related conditions. To improve network reconstruction we developed MT-SDREM, a multi-task learning method which jointly models networks for several related conditions. In MT-SDREM, parameters are jointly constrained across the networks while still allowing for condition-specific pathways and regulation. We formulate the multi-task learning problem and discuss methods for optimizing the joint target function. We applied MT-SDREM to reconstruct dynamic human response networks for three flu strains: H1N1, H5N1 and H3N2. Our multi-task learning method was able to identify known and novel factors and genes, improving upon prior methods that model each condition independently. The MT-SDREM networks were also better at identifying proteins whose removal affects viral load indicating that joint learning can still lead to accurate, condition-specific, networks. Supporting website with MT-SDREM implementation: http://sb.cs.cmu.edu/mtsdrem.

  9. Human mobility networks and persistence of rapidly mutating pathogens

    CERN Document Server

    Aleta, Alberto; Meloni, Sandro; Poletto, Chiara; Colizza, Vittoria; Moreno, Yamir

    2016-01-01

    Rapidly mutating pathogens may be able to persist in the population and reach an endemic equilibrium by escaping hosts' acquired immunity. For such diseases, multiple biological, environmental and population-level mechanisms determine the dynamics of the outbreak, including pathogen's epidemiological traits (e.g. transmissibility, infectious period and duration of immunity), seasonality, interaction with other circulating strains and hosts' mixing and spatial fragmentation. Here, we study a susceptible-infected-recovered-susceptible model on a metapopulation where individuals are distributed in subpopulations connected via a network of mobility flows. Through extensive numerical simulations, we explore the phase space of pathogen's persistence and map the dynamical regimes of the pathogen following emergence. Our results show that spatial fragmentation and mobility play a key role in the persistence of the disease whose maximum is reached at intermediate mobility values. We describe the occurrence of differen...

  10. Functional Connectivity of the Cortical Swallowing Network in Humans

    Science.gov (United States)

    Babaei, Arash; Ward, B. Douglas; Siwiec, Robert; Ahmad, Shahryar; Kern, Mark; Nencka, Andrew; Li, Shi-Jiang; Shaker, Reza

    2014-01-01

    Introduction Coherent fluctuations of blood oxygenation level dependent (BOLD) signal have been referred as “functional connectivity” (FC). Our aim was to systematically characterize FC of underlying neural network involved in swallowing, and to evaluate its reproducibility and modulation during rest or task performance. Methods Activated seed regions within known areas of the cortical swallowing network (CSN) were independently identified in 16 healthy volunteers. Subjects swallowed using a paradigm driven protocol, and the data analyzed using an event-related technique. Then, in the same 16 volunteers, resting and active state data were obtained for 540 seconds in three conditions: 1) swallowing task; 2) control visual task; and 3) resting state; all scans were performed twice. Data was preprocessed according to standard FC pipeline. We determined the correlation coefficient values of member regions of the CSN across the three aforementioned conditions and compared between two sessions using linear regression. Average FC matrices across conditions were then compared. Results Swallow activated twenty-two positive BOLD and eighteen negative BOLD regions distributed bilaterally within cingulate, insula, sensorimotor cortex, prefrontal and parietal cortices. We found that: 1) Positive BOLD regions were highly connected to each other during all test conditions while negative BOLD regions were tightly connected amongst themselves; 2) Positive and negative BOLD regions were anti-correlated at rest and during task performance; 3) Across all three test conditions, FC among the regions was reproducible (r > 0.96, p<10-5); and 4) The FC of sensorimotor region to other regions of the CSN increased during swallowing scan. Conclusions 1) Swallow activated cortical substrates maintain a consistent pattern of functional connectivity; 2) FC of sensorimotor region is significantly higher during swallow scan than that observed during a non-swallow visual task or at rest. PMID

  11. Integrated expression analysis identifies transcription networks in mouse and human gastric neoplasia.

    Science.gov (United States)

    Chen, Zheng; Soutto, Mohammed; Rahman, Bushra; Fazili, Muhammad W; Peng, DunFa; Blanca Piazuelo, Maria; Chen, Heidi; Kay Washington, M; Shyr, Yu; El-Rifai, Wael

    2017-07-01

    Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide. The Tff1 knockout (KO) mouse model develops gastric lesions that include low-grade dysplasia (LGD), high-grade dysplasia (HGD), and adenocarcinomas. In this study, we used Affymetrix microarrays gene expression platforms for analysis of molecular signatures in the mouse stomach [Tff1-KO (LGD) and Tff1 wild-type (normal)] and human gastric cancer tissues and their adjacent normal tissue samples. Combined integrated bioinformatics analysis of mouse and human datasets indicated that 172 genes were consistently deregulated in both human gastric cancer samples and Tff1-KO LGD lesions (P analysis, these genes mapped to important transcription networks that include MYC, STAT3, β-catenin, RELA, NFATC2, HIF1A, and ETS1 in both human and mouse. Further analysis demonstrated activation of FOXM1 and inhibition of TP53 transcription networks in human gastric cancers but not in Tff1-KO LGD lesions. Using real-time RT-PCR, we validated the deregulated expression of several genes (VCAM1, BGN, CLDN2, COL1A1, COL1A2, COL3A1, EpCAM, IFITM1, MMP9, MMP12, MMP14, PDGFRB, PLAU, and TIMP1) that map to altered transcription networks in both mouse and human gastric neoplasia. Our study demonstrates significant similarities in deregulated transcription networks in human gastric cancer and gastric tumorigenesis in the Tff1-KO mouse model. The data also suggest that activation of MYC, STAT3, RELA, and β-catenin transcription networks could be an early molecular step in gastric carcinogenesis. © 2017 Wiley Periodicals, Inc.

  12. Amyloid precursor protein interaction network in human testis: sentinel proteins for male reproduction.

    Science.gov (United States)

    Silva, Joana Vieira; Yoon, Sooyeon; Domingues, Sara; Guimarães, Sofia; Goltsev, Alexander V; da Cruz E Silva, Edgar Figueiredo; Mendes, José Fernando F; da Cruz E Silva, Odete Abreu Beirão; Fardilha, Margarida

    2015-01-16

    Amyloid precursor protein (APP) is widely recognized for playing a central role in Alzheimer's disease pathogenesis. Although APP is expressed in several tissues outside the human central nervous system, the functions of APP and its family members in other tissues are still poorly understood. APP is involved in several biological functions which might be potentially important for male fertility, such as cell adhesion, cell motility, signaling, and apoptosis. Furthermore, APP superfamily members are known to be associated with fertility. Knowledge on the protein networks of APP in human testis and spermatozoa will shed light on the function of APP in the male reproductive system. We performed a Yeast Two-Hybrid screen and a database search to study the interaction network of APP in human testis and sperm. To gain insights into the role of APP superfamily members in fertility, the study was extended to APP-like protein 2 (APLP2). We analyzed several topological properties of the APP interaction network and the biological and physiological properties of the proteins in the APP interaction network were also specified by gene ontologyand pathways analyses. We classified significant features related to the human male reproduction for the APP interacting proteins and identified modules of proteins with similar functional roles which may show cooperative behavior for male fertility. The present work provides the first report on the APP interactome in human testis. Our approach allowed the identification of novel interactions and recognition of key APP interacting proteins for male reproduction, particularly in sperm-oocyte interaction.

  13. Determining Associations between Human Diseases and non-coding RNAs with Critical Roles in Network Control

    Science.gov (United States)

    Kagami, Haruna; Akutsu, Tatsuya; Maegawa, Shingo; Hosokawa, Hiroshi; Nacher, Jose C.

    2015-10-01

    Deciphering the association between life molecules and human diseases is currently an important task in systems biology. Research over the past decade has unveiled that the human genome is almost entirely transcribed, producing a vast number of non-protein-coding RNAs (ncRNAs) with potential regulatory functions. More recent findings suggest that many diseases may not be exclusively linked to mutations in protein-coding genes. The combination of these arguments poses the question of whether ncRNAs that play a critical role in network control are also enriched with disease-associated ncRNAs. To address this question, we mapped the available annotated information of more than 350 human disorders to the largest collection of human ncRNA-protein interactions, which define a bipartite network of almost 93,000 interactions. Using a novel algorithmic-based controllability framework applied to the constructed bipartite network, we found that ncRNAs engaged in critical network control are also statistically linked to human disorders (P-value of P = 9.8 × 10-109). Taken together, these findings suggest that the addition of those genes that encode optimized subsets of ncRNAs engaged in critical control within the pool of candidate genes could aid disease gene prioritization studies.

  14. Integrating Temporal and Spatial Scales: Human Structural Network Motifs Across Age and Region of Interest Size

    Science.gov (United States)

    Echtermeyer, Christoph; Han, Cheol E.; Rotarska-Jagiela, Anna; Mohr, Harald; Uhlhaas, Peter J.; Kaiser, Marcus

    2011-01-01

    Human brain networks can be characterized at different temporal or spatial scales given by the age of the subject or the spatial resolution of the neuroimaging method. Integration of data across scales can only be successful if the combined networks show a similar architecture. One way to compare networks is to look at spatial features, based on fiber length, and topological features of individual nodes where outlier nodes form single node motifs whose frequency yields a fingerprint of the network. Here, we observe how characteristic single node motifs change over age (12–23 years) and network size (414, 813, and 1615 nodes) for diffusion tensor imaging structural connectivity in healthy human subjects. First, we find the number and diversity of motifs in a network to be strongly correlated. Second, comparing different scales, the number and diversity of motifs varied across the temporal (subject age) and spatial (network resolution) scale: certain motifs might only occur at one spatial scale or for a certain age range. Third, regions of interest which show one motif at a lower resolution may show a range of motifs at a higher resolution which may or may not include the original motif at the lower resolution. Therefore, both the type and localization of motifs differ for different spatial resolutions. Our results also indicate that spatial resolution has a higher effect on topological measures whereas spatial measures, based on fiber lengths, remain more comparable between resolutions. Therefore, spatial resolution is crucial when comparing characteristic node fingerprints given by topological and spatial network features. As node motifs are based on topological and spatial properties of brain connectivity networks, these conclusions are also relevant to other studies using connectome analysis. PMID:21811454

  15. Optimal Recognition Method of Human Activities Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Oniga Stefan

    2015-12-01

    Full Text Available The aim of this research is an exhaustive analysis of the various factors that may influence the recognition rate of the human activity using wearable sensors data. We made a total of 1674 simulations on a publically released human activity database by a group of researcher from the University of California at Berkeley. In a previous research, we analyzed the influence of the number of sensors and their placement. In the present research we have examined the influence of the number of sensor nodes, the type of sensor node, preprocessing algorithms, type of classifier and its parameters. The final purpose is to find the optimal setup for best recognition rates with lowest hardware and software costs.

  16. Introduction to Human Factors and Wide Area Networking

    Science.gov (United States)

    1992-03-01

    to produce commonly used groupings of characters. An early 35 attempt at increasing speed on keyboards was the Dvorak keyboard [Figure 3] which...clearest presentation of information possible. 36 4!3009000000 OOO4Q~OOO9D0 Figure 3 Comparison of Standard Keyboard (Top) and DVORAK Keyboard (Bottom) b...from and provides output to the human using the system; this could be a keyboard -display pair for a computer or the instrument panel in the driver’s

  17. Regulatory networks define phenotypic classes of human stem cell lines

    OpenAIRE

    Müller, Franz-Josef; Laurent, Louise C.; Kostka, Dennis; Ulitsky, Igor; Williams, Roy; Lu, Christina; Park, In-Hyun; Rao, Mahendra?S.; Shamir, Ron; Schwartz, Philip H.; Schmidt, Nils O.; Loring, Jeanne F.

    2008-01-01

    Stem cells are defined as self-renewing cell populations that can differentiate into multiple distinct cell types. However, hundreds of different human cell lines from embryonic, fetal, and adult sources have been called stem cells, even though they range from pluripotent cells, typified by embryonic stem cells, which are capable of virtually unlimited proliferation and differentiation, to adult stem cell lines, which can generate a far more limited repertory of differentiated cell types. The...

  18. Human body and head characteristics as a communication medium for Body Area Network.

    Science.gov (United States)

    Kifle, Yonatan; Hun-Seok Kim; Yoo, Jerald

    2015-01-01

    An in-depth investigation of the Body Channel Communication (BCC) under the environment set according to the IEEE 802.15.6 Body Area Network (BAN) standard is conducted to observe and characterize the human body as a communication medium. A thorough measurement of the human head as part of the human channel is also carried out. Human forehead, head to limb, and ear to ear channel is characterized. The channel gain of the human head follows the same bandpass profile of the human torso and limbs with the maximum channel gain occurring at 35MHz. The human body channel gain distribution histogram at given frequencies, while all the other parameters are held constant, exhibits a maximum variation of 2.2dB in the channel gain at the center frequency of the bandpass channel gain profile.

  19. Humanities data in R exploring networks, geospatial data, images, and text

    CERN Document Server

    Arnold, Taylor

    2015-01-01

    This pioneering book teaches readers to use R within four core analytical areas applicable to the Humanities: networks, text, geospatial data, and images. This book is also designed to be a bridge: between quantitative and qualitative methods, individual and collaborative work, and the humanities and social scientists. Exploring Humanities Data Types with R does not presuppose background programming experience. Early chapters take readers from R set-up to exploratory data analysis (continuous and categorical data, multivariate analysis, and advanced graphics with emphasis on aesthetics and facility). Everything is hands-on: networks are explained using U.S. Supreme Court opinions, and low-level NLP methods are applied to short stories by Sir Arthur Conan Doyle. The book’s data, code, appendix with 100 basic programming exercises and solutions, and dedicated website are valuable resources for readers. The methodology will have wide application in classrooms and self-study for the humanities, but also for use...

  20. Task-related changes in functional properties of the human brain network underlying attentional control.

    Directory of Open Access Journals (Sweden)

    Tetsuo Kida

    Full Text Available Previous studies have demonstrated task-related changes in brain activation and inter-regional connectivity but the temporal dynamics of functional properties of the brain during task execution is still unclear. In the present study, we investigated task-related changes in functional properties of the human brain network by applying graph-theoretical analysis to magnetoencephalography (MEG. Subjects performed a cue-target attention task in which a visual cue informed them of the direction of focus for incoming auditory or tactile target stimuli, but not the sensory modality. We analyzed the MEG signal in the cue-target interval to examine network properties during attentional control. Cluster-based non-parametric permutation tests with the Monte-Carlo method showed that in the cue-target interval, beta activity was desynchronized in the sensori-motor region including premotor and posterior parietal regions in the hemisphere contralateral to the attended side. Graph-theoretical analysis revealed that, in beta frequency, global hubs were found around the sensori-motor and prefrontal regions, and functional segregation over the entire network was decreased during attentional control compared to the baseline. Thus, network measures revealed task-related temporal changes in functional properties of the human brain network, leading to the understanding of how the brain dynamically responds to task execution as a network.

  1. Analysing human mobility patterns of hiking activities through complex network theory.

    Science.gov (United States)

    Lera, Isaac; Pérez, Toni; Guerrero, Carlos; Eguíluz, Víctor M; Juiz, Carlos

    2017-01-01

    The exploitation of high volume of geolocalized data from social sport tracking applications of outdoor activities can be useful for natural resource planning and to understand the human mobility patterns during leisure activities. This geolocalized data represents the selection of hike activities according to subjective and objective factors such as personal goals, personal abilities, trail conditions or weather conditions. In our approach, human mobility patterns are analysed from trajectories which are generated by hikers. We propose the generation of the trail network identifying special points in the overlap of trajectories. Trail crossings and trailheads define our network and shape topological features. We analyse the trail network of Balearic Islands, as a case of study, using complex weighted network theory. The analysis is divided into the four seasons of the year to observe the impact of weather conditions on the network topology. The number of visited places does not decrease despite the large difference in the number of samples of the two seasons with larger and lower activity. It is in summer season where it is produced the most significant variation in the frequency and localization of activities from inland regions to coastal areas. Finally, we compare our model with other related studies where the network possesses a different purpose. One finding of our approach is the detection of regions with relevant importance where landscape interventions can be applied in function of the communities.

  2. Data on overlapping brain disorders and emerging drug targets in human Dopamine Receptors Interaction Network

    Directory of Open Access Journals (Sweden)

    Avijit Podder

    2017-06-01

    Full Text Available Intercommunication of Dopamine Receptors (DRs with their associate protein partners is crucial to maintain regular brain function in human. Majority of the brain disorders arise due to malfunctioning of such communication process. Hence, contributions of genetic factors, as well as phenotypic indications for various neurological and psychiatric disorders are often attributed as sharing in nature. In our earlier research article entitled “Human Dopamine Receptors Interaction Network (DRIN: a systems biology perspective on topology, stability and functionality of the network” (Podder et al., 2014 [1], we had depicted a holistic interaction map of human Dopamine Receptors. Given emphasis on the topological parameters, we had characterized the functionality along with the vulnerable properties of the network. In support of this, we hereby provide an additional data highlighting the genetic overlapping of various brain disorders in the network. The data indicates the sharing nature of disease genes for various neurological and psychiatric disorders in dopamine receptors connecting protein-protein interactions network. The data also indicates toward an alternative approach to prioritize proteins for overlapping brain disorders as valuable drug targets in the network.

  3. Overview of Aro Program on Network Science for Human Decision Making

    Science.gov (United States)

    West, Bruce J.

    This program brings together researchers from disparate disciplines to work on a complex research problem that defies confinement within any single discipline. Consequently, not only are new and rewarding solutions sought and obtained for a problem of importance to society and the Army, that is, the human dimension of complex networks, but, in addition, collaborations are established that would not otherwise have formed given the traditional disciplinary compartmentalization of research. This program develops the basic research foundation of a science of networks supporting the linkage between the physical and human (cognitive and social) domains as they relate to human decision making. The strategy is to extend the recent methods of non-equilibrium statistical physics to non-stationary, renewal stochastic processes that appear to be characteristic of the interactions among nodes in complex networks. We also pursue understanding of the phenomenon of synchronization, whose mathematical formulation has recently provided insight into how complex networks reach accommodation and cooperation. The theoretical analyses of complex networks, although mathematically rigorous, often elude analytic solutions and require computer simulation and computation to analyze the underlying dynamic process.

  4. Patterns of human gene expression variance show strong associations with signaling network hierarchy.

    Science.gov (United States)

    Komurov, Kakajan; Ram, Prahlad T

    2010-11-12

    Understanding organizational principles of cellular networks is one of the central goals of systems biology. Although much has been learnt about gene expression programs under specific conditions, global patterns of expressional variation (EV) of genes and their relationship to cellular functions and physiological responses is poorly understood. To understand global principles of relationship between transcriptional regulation of human genes and their functions, we have leveraged large-scale datasets of human gene expression measurements across a wide spectrum of cell conditions. We report that human genes are highly diverse in terms of their EV; while some genes have highly variable expression pattern, some seem to be relatively ubiquitously expressed across a wide range of conditions. The wide spectrum of gene EV strongly correlates with the positioning of proteins within the signaling network hierarchy, such that, secreted extracellular receptor ligands and membrane receptors have the highest EV, and intracellular signaling proteins have the lowest EV in the genome. Our analysis shows that this pattern of EV reflects functional centrality: proteins with highly specific signaling functions are modulated more frequently than those with highly central functions in the network, which is also consistent with previous studies on tissue-specific gene expression. Interestingly, these patterns of EV along the signaling network hierarchy have significant correlations with promoter architectures of respective genes. Our analyses suggest a generic systems level mechanism of regulation of the cellular signaling network at the transcriptional level.

  5. Patterns of human gene expression variance show strong associations with signaling network hierarchy

    Directory of Open Access Journals (Sweden)

    Ram Prahlad T

    2010-11-01

    Full Text Available Abstract Background Understanding organizational principles of cellular networks is one of the central goals of systems biology. Although much has been learnt about gene expression programs under specific conditions, global patterns of expressional variation (EV of genes and their relationship to cellular functions and physiological responses is poorly understood. Results To understand global principles of relationship between transcriptional regulation of human genes and their functions, we have leveraged large-scale datasets of human gene expression measurements across a wide spectrum of cell conditions. We report that human genes are highly diverse in terms of their EV; while some genes have highly variable expression pattern, some seem to be relatively ubiquitously expressed across a wide range of conditions. The wide spectrum of gene EV strongly correlates with the positioning of proteins within the signaling network hierarchy, such that, secreted extracellular receptor ligands and membrane receptors have the highest EV, and intracellular signaling proteins have the lowest EV in the genome. Our analysis shows that this pattern of EV reflects functional centrality: proteins with highly specific signaling functions are modulated more frequently than those with highly central functions in the network, which is also consistent with previous studies on tissue-specific gene expression. Interestingly, these patterns of EV along the signaling network hierarchy have significant correlations with promoter architectures of respective genes. Conclusion Our analyses suggest a generic systems level mechanism of regulation of the cellular signaling network at the transcriptional level.

  6. Network dysfunction in α-synuclein transgenic mice and human Lewy body dementia.

    Science.gov (United States)

    Morris, Meaghan; Sanchez, Pascal E; Verret, Laure; Beagle, Alexander J; Guo, Weikun; Dubal, Dena; Ranasinghe, Kamalini G; Koyama, Akihiko; Ho, Kaitlyn; Yu, Gui-Qiu; Vossel, Keith A; Mucke, Lennart

    2015-11-01

    Dementia with Lewy bodies (DLB) is associated with the accumulation of wild-type human α-synuclein (SYN) in neurons and with prominent slowing of brain oscillations on electroencephalography (EEG). However, it remains uncertain whether the EEG abnormalities are actually caused by SYN. To determine whether SYN can cause neural network abnormalities, we performed EEG recordings and analyzed the expression of neuronal activity-dependent gene products in SYN transgenic mice. We also carried out comparative analyses in humans with DLB. We demonstrate that neuronal expression of SYN in transgenic mice causes a left shift in spectral power that closely resembles the EEG slowing observed in DLB patients. Surprisingly, SYN mice also had seizures and showed molecular hippocampal alterations indicative of aberrant network excitability, including calbindin depletion in the dentate gyrus. In postmortem brain tissues from DLB patients, we found reduced levels of calbindin mRNA in the dentate gyrus. Furthermore, nearly one quarter of DLB patients showed myoclonus, a clinical sign of aberrant network excitability that was associated with an earlier age of onset of cognitive impairments. In SYN mice, partial suppression of epileptiform activity did not alter their shift in spectral power. Furthermore, epileptiform activity in human amyloid precursor protein transgenic mice was not associated with a left shift in spectral power. We conclude that neuronal accumulation of SYN slows brain oscillations and, in parallel, causes aberrant network excitability that can escalate into seizure activity. The potential role of aberrant network excitability in DLB merits further investigation.

  7. Real-Time Human Motion Capture Driven by a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Peng-zhan Chen

    2015-01-01

    Full Text Available The motion of a real object model is reconstructed through measurements of the position, direction, and angle of moving objects in 3D space in a process called “motion capture.” With the development of inertial sensing technology, motion capture systems that are based on inertial sensing have become a research hot spot. However, the solution of motion attitude remains a challenge that restricts the rapid development of motion capture systems. In this study, a human motion capture system based on inertial sensors is developed, and the real-time movement of a human model controlled by real people’s movement is achieved. According to the features of the system of human motion capture and reappearance, a hierarchical modeling approach based on a 3D human body model is proposed. The method collects articular movement data on the basis of rigid body dynamics through a miniature sensor network, controls the human skeleton model, and reproduces human posture according to the features of human articular movement. Finally, the feasibility of the system is validated by testing of system properties via capture of continuous dynamic movement. Experiment results show that the scheme utilizes a real-time sensor network-driven human skeleton model to achieve the accurate reproduction of human motion state. The system also has good application value.

  8. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain

    Science.gov (United States)

    Krienen, Fenna M.; Yeo, B. T. Thomas; Ge, Tian; Buckner, Randy L.; Sherwood, Chet C.

    2016-01-01

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute’s human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections. PMID:26739559

  9. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    Science.gov (United States)

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  10. Social networking of human neutrophils within the immune system.

    Science.gov (United States)

    Scapini, Patrizia; Cassatella, Marco A

    2014-07-31

    It is now widely recognized that neutrophils are highly versatile and sophisticated cells that display de novo synthetic capacity and may greatly extend their lifespan. In addition, concepts such as "neutrophil heterogeneity" and "neutrophil plasticity" have started to emerge, implying that, under pathological conditions, neutrophils may differentiate into discrete subsets defined by distinct phenotypic and functional profiles. A number of studies have shown that neutrophils act as effectors in both innate and adaptive immunoregulatory networks. In fact, once recruited into inflamed tissues, neutrophils engage into complex bidirectional interactions with macrophages, natural killer, dendritic and mesenchymal stem cells, B and T lymphocytes, or platelets. As a result of this cross-talk, mediated either by contact-dependent mechanisms or cell-derived soluble factors, neutrophils and target cells reciprocally modulate their survival and activation status. Altogether, these novel aspects of neutrophil biology have shed new light not only on the potential complex roles that neutrophils play during inflammation and immune responses, but also in the pathogenesis of several inflammatory disorders including infection, autoimmunity, and cancer. © 2014 by The American Society of Hematology.

  11. Human mobility networks and persistence of rapidly mutating pathogens.

    Science.gov (United States)

    Aleta, Alberto; Hisi, Andreia N S; Meloni, Sandro; Poletto, Chiara; Colizza, Vittoria; Moreno, Yamir

    2017-03-01

    Rapidly mutating pathogens may be able to persist in the population and reach an endemic equilibrium by escaping hosts' acquired immunity. For such diseases, multiple biological, environmental and population-level mechanisms determine the dynamics of the outbreak, including pathogen's epidemiological traits (e.g. transmissibility, infectious period and duration of immunity), seasonality, interaction with other circulating strains and hosts' mixing and spatial fragmentation. Here, we study a susceptible-infected-recovered-susceptible model on a metapopulation where individuals are distributed in sub-populations connected via a network of mobility flows. Through extensive numerical simulations, we explore the phase space of pathogen's persistence and map the dynamical regimes of the pathogen following emergence. Our results show that spatial fragmentation and mobility play a key role in the persistence of the disease whose maximum is reached at intermediate mobility values. We describe the occurrence of different phenomena including local extinction and emergence of epidemic waves, and assess the conditions for large-scale spreading. Findings are highlighted in reference to previous studies and to real scenarios. Our work uncovers the crucial role of hosts' mobility on the ecological dynamics of rapidly mutating pathogens, opening the path for further studies on disease ecology in the presence of a complex and heterogeneous environment.

  12. PRELIMINARY MODELING OF AN INDUSTRIAL RECOMBINANT HUMAN ERYTHROPOIETIN PURIFICATION PROCESS BY ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    R. H. R. Garcel1

    2015-09-01

    Full Text Available AbstractIn the present study a preliminary neural network modelling to improve our understanding of Recombinant Human Erythropoietin purification process in a plant was explored. A three layer feed-forward back propagation neural network was constructed for predicting the efficiency of the purification section comprising four chromatographic steps as a function of eleven operational variables. The neural network model performed very well in the training and validation phases. Using the connection weight method the predictor variables were ranked based on their estimated explanatory importance in the neural network and five input variables were found to be predominant over the others. These results provided useful information showing that the first chromatographic step and the third chromatographic step are decisive to achieve high efficiencies in the purification section, thus enriching the control strategy of the plant.

  13. A Network Neuroscience of Human Learning: Potential to Inform Quantitative Theories of Brain and Behavior.

    Science.gov (United States)

    Bassett, Danielle S; Mattar, Marcelo G

    2017-04-01

    Humans adapt their behavior to their external environment in a process often facilitated by learning. Efforts to describe learning empirically can be complemented by quantitative theories that map changes in neurophysiology to changes in behavior. In this review we highlight recent advances in network science that offer a sets of tools and a general perspective that may be particularly useful in understanding types of learning that are supported by distributed neural circuits. We describe recent applications of these tools to neuroimaging data that provide unique insights into adaptive neural processes, the attainment of knowledge, and the acquisition of new skills, forming a network neuroscience of human learning. While promising, the tools have yet to be linked to the well-formulated models of behavior that are commonly utilized in cognitive psychology. We argue that continued progress will require the explicit marriage of network approaches to neuroimaging data and quantitative models of behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. 210 Human Sensorimotor Electrocorticography: Spectral Dynamics and Network Connectivity During a Simple Motor Task.

    Science.gov (United States)

    Buch, Vivek; Burke, John Frederick; Ramayya, Ashwin G; Brandon, Cameron; Hudgins, Eric; Richardson, Andrew; Lucas, Timothy H

    2016-08-01

    The "human connectome" is increasingly becoming critical in advancing our understanding of the neural mechanisms underlying human behavior. The nature and characterization of these interconnected networks remains largely unknown. Using electrocorticography (ECoG) we explore the spectral dynamics and network connectivity of sensorimotor cortical regions during a motor task. 9 refractory epilepsy patients undergoing phase III monitoring. Task: (1) A cue appears designating a delay period known as the "wait" epoch; followed by (2) an instructions cue to subsequently move their right hand, left hand, or mouth and tongue known as the "instruct" epoch; and (3) a movement cue commencing the "move" epoch. We analyzed the cue-triggered power spectral density across all frequencies from 3 different nodes in the sensorimotor network (premotor, primary motor, and primary sensory cortex). We then explored the cue-triggered changes in connectivity (phase-locking value [PLV]) between these nodes. Spectral dynamics: We find that sensorimotor cortical nodes have preferential activation in high gamma band (70-100 Hz) during a motor task, with an anatomically guided cue-triggered response. In particular, instruction cue-triggered power is increased in premotor areas, while movement cue-triggered power is increased in peri-rolandic cortex. Network connectivity: The sensorimotor cortical network displays strongest phase locking in high gamma. This connectivity is consistent throughout the task and thus not affected by cue stimulus type (wait/instruct/move). However, there is a dichotomous cue-triggered response in sensorimotor network connectivity in theta band (4-8 Hz). Theta connectivity is decreased after the "wait" cue and increased after the "move" cue. These results provide evidence of cue-triggered electrocorticographic signal modulation occurring within and between sensorimotor network nodes. By analyzing ECoG spectral dynamics and sensorimotor connectomics during a motor task

  15. Probabilistic White Matter Atlases of Human Auditory, Basal Ganglia, Language, Precuneus, Sensorimotor, Visual and Visuospatial Networks.

    Science.gov (United States)

    Figley, Teresa D; Mortazavi Moghadam, Behnoush; Bhullar, Navdeep; Kornelsen, Jennifer; Courtney, Susan M; Figley, Chase R

    2017-01-01

    Background: Despite the popularity of functional connectivity analyses and the well-known topology of several intrinsic cortical networks, relatively little is known about the white matter regions (i.e., structural connectivity) underlying these networks. In the current study, we have therefore performed fMRI-guided diffusion tensor imaging (DTI) tractography to create probabilistic white matter atlases for eight previously identified functional brain networks, including the Auditory, Basal Ganglia, Language, Precuneus, Sensorimotor, Primary Visual, Higher Visual and Visuospatial Networks. Methods: Whole-brain diffusion imaging data were acquired from a cohort of 32 healthy volunteers, and were warped to the ICBM template using a two-stage, high-dimensional, non-linear spatial normalization procedure. Deterministic tractography, with fractional anisotropy (FA) ≥0.15 and deviation angle matter atlases (i.e., for each tract and each network as a whole) were saved as NIFTI images in stereotaxic ICBM coordinates, and have been added to the UManitoba-JHU Functionally-Defined Human White Matter Atlas (http://www.nitrc.org/projects/uofm_jhu_atlas/). Conclusion: To the best of our knowledge, this work represents the first attempt to comprehensively identify and map white matter connectomes for the Auditory, Basal Ganglia, Language, Precuneus, Sensorimotor, Primary Visual, Higher Visual and Visuospatial Networks. Therefore, the resulting probabilistic atlases represent a unique tool for future neuroimaging studies wishing to ascribe voxel-wise or ROI-based changes (i.e., in DTI or other quantitative white matter imaging signals) to these functional brain networks.

  16. A human brain network derived from coma-causing brainstem lesions.

    Science.gov (United States)

    Fischer, David B; Boes, Aaron D; Demertzi, Athena; Evrard, Henry C; Laureys, Steven; Edlow, Brian L; Liu, Hesheng; Saper, Clifford B; Pascual-Leone, Alvaro; Fox, Michael D; Geerling, Joel C

    2016-12-06

    To characterize a brainstem location specific to coma-causing lesions, and its functional connectivity network. We compared 12 coma-causing brainstem lesions to 24 control brainstem lesions using voxel-based lesion-symptom mapping in a case-control design to identify a site significantly associated with coma. We next used resting-state functional connectivity from a healthy cohort to identify a network of regions functionally connected to this brainstem site. We further investigated the cortical regions of this network by comparing their spatial topography to that of known networks and by evaluating their functional connectivity in patients with disorders of consciousness. A small region in the rostral dorsolateral pontine tegmentum was significantly associated with coma-causing lesions. In healthy adults, this brainstem site was functionally connected to the ventral anterior insula (AI) and pregenual anterior cingulate cortex (pACC). These cortical areas aligned poorly with previously defined resting-state networks, better matching the distribution of von Economo neurons. Finally, connectivity between the AI and pACC was disrupted in patients with disorders of consciousness, and to a greater degree than other brain networks. Injury to a small region in the pontine tegmentum is significantly associated with coma. This brainstem site is functionally connected to 2 cortical regions, the AI and pACC, which become disconnected in disorders of consciousness. This network of brain regions may have a role in the maintenance of human consciousness. © 2016 American Academy of Neurology.

  17. Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro.

    Science.gov (United States)

    Heikkilä, Teemu J; Ylä-Outinen, Laura; Tanskanen, Jarno M A; Lappalainen, Riikka S; Skottman, Heli; Suuronen, Riitta; Mikkonen, Jarno E; Hyttinen, Jari A K; Narkilahti, Susanna

    2009-07-01

    The production of functional human embryonic stem cell (hESC)-derived neuronal cells is critical for the application of hESCs in treating neurodegenerative disorders. To study the potential functionality of hESC-derived neurons, we cultured and monitored the development of hESC-derived neuronal networks on microelectrode arrays. Immunocytochemical studies revealed that these networks were positive for the neuronal marker proteins beta-tubulin(III) and microtubule-associated protein 2 (MAP-2). The hESC-derived neuronal networks were spontaneously active and exhibited a multitude of electrical impulse firing patterns. Synchronous bursts of electrical activity similar to those reported for hippocampal neurons and rodent embryonic stem cell-derived neuronal networks were recorded from the differentiated cultures until up to 4 months. The dependence of the observed neuronal network activity on sodium ion channels was examined using tetrodotoxin (TTX). Antagonists for the glutamate receptors NMDA [D(-)-2-amino-5-phosphonopentanoic acid] and AMPA/kainate [6-cyano-7-nitroquinoxaline-2,3-dione], and for GABAA receptors [(-)-bicuculline methiodide] modulated the spontaneous electrical activity, indicating that pharmacologically susceptible neuronal networks with functional synapses had been generated. The findings indicate that hESC-derived neuronal cells can generate spontaneously active networks with synchronous communication in vitro, and are therefore suitable for use in developmental and drug screening studies, as well as for regenerative medicine.

  18. Recombination networks as genetic markers in a human variation study of the Old World.

    NARCIS (Netherlands)

    Javed, A.; Mele, M.; Pybus, M.; Zalloua, P.; Haber, M.; Comas, D.; Netea, M.G.; Balanovsky, O.; Balanovska, E.; Jin, L.; Yang, Y.; Arunkumar, G.; Pitchappan, R.; Bertranpetit, J.; Calafell, F.; Parida, L.

    2012-01-01

    We have analyzed human genetic diversity in 33 Old World populations including 23 populations obtained through Genographic Project studies. A set of 1,536 SNPs in five X chromosome regions were genotyped in 1,288 individuals (mostly males). We use a novel analysis employing subARG network

  19. Application of Bayesian networks for hazard ranking of nanomaterials to support human health risk assessment

    NARCIS (Netherlands)

    Marvin, Hans J.P.; Bouzembrak, Yamine; Janssen, Esmée M.; Zande, van der Meike; Murphy, Finbarr; Sheehan, Barry; Mullins, Martin; Bouwmeester, Hans

    2017-01-01

    In this study, a Bayesian Network (BN) was developed for the prediction of the hazard potential and biological effects with the focus on metal- and metal-oxide nanomaterials to support human health risk assessment. The developed BN captures the (inter) relationships between the exposure route, the

  20. Using ontologies to model human navigation behavior in information networks: A study based on Wikipedia.

    Science.gov (United States)

    Lamprecht, Daniel; Strohmaier, Markus; Helic, Denis; Nyulas, Csongor; Tudorache, Tania; Noy, Natalya F; Musen, Mark A

    The need to examine the behavior of different user groups is a fundamental requirement when building information systems. In this paper, we present Ontology-based Decentralized Search (OBDS), a novel method to model the navigation behavior of users equipped with different types of background knowledge. Ontology-based Decentralized Search combines decentralized search, an established method for navigation in social networks, and ontologies to model navigation behavior in information networks. The method uses ontologies as an explicit representation of background knowledge to inform the navigation process and guide it towards navigation targets. By using different ontologies, users equipped with different types of background knowledge can be represented. We demonstrate our method using four biomedical ontologies and their associated Wikipedia articles. We compare our simulation results with base line approaches and with results obtained from a user study. We find that our method produces click paths that have properties similar to those originating from human navigators. The results suggest that our method can be used to model human navigation behavior in systems that are based on information networks, such as Wikipedia. This paper makes the following contributions: (i) To the best of our knowledge, this is the first work to demonstrate the utility of ontologies in modeling human navigation and (ii) it yields new insights and understanding about the mechanisms of human navigation in information networks.

  1. Modeling Multiple Human-Automation Distributed Systems using Network-form Games

    Science.gov (United States)

    Brat, Guillaume

    2012-01-01

    The paper describes at a high-level the network-form game framework (based on Bayes net and game theory), which can be used to model and analyze safety issues in large, distributed, mixed human-automation systems such as NextGen.

  2. HPIminer: A text mining system for building and visualizing human protein interaction networks and pathways.

    Science.gov (United States)

    Subramani, Suresh; Kalpana, Raja; Monickaraj, Pankaj Moses; Natarajan, Jeyakumar

    2015-04-01

    The knowledge on protein-protein interactions (PPI) and their related pathways are equally important to understand the biological functions of the living cell. Such information on human proteins is highly desirable to understand the mechanism of several diseases such as cancer, diabetes, and Alzheimer's disease. Because much of that information is buried in biomedical literature, an automated text mining system for visualizing human PPI and pathways is highly desirable. In this paper, we present HPIminer, a text mining system for visualizing human protein interactions and pathways from biomedical literature. HPIminer extracts human PPI information and PPI pairs from biomedical literature, and visualize their associated interactions, networks and pathways using two curated databases HPRD and KEGG. To our knowledge, HPIminer is the first system to build interaction networks from literature as well as curated databases. Further, the new interactions mined only from literature and not reported earlier in databases are highlighted as new. A comparative study with other similar tools shows that the resultant network is more informative and provides additional information on interacting proteins and their associated networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Science.gov (United States)

    Xia, Mingrui; Wang, Jinhui; He, Yong

    2013-01-01

    The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).

  4. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Directory of Open Access Journals (Sweden)

    Mingrui Xia

    Full Text Available The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI, we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/.

  5. Structural principles within the human-virus protein-protein interaction network.

    Science.gov (United States)

    Franzosa, Eric A; Xia, Yu

    2011-06-28

    General properties of the antagonistic biomolecular interactions between viruses and their hosts (exogenous interactions) remain poorly understood, and may differ significantly from known principles governing the cooperative interactions within the host (endogenous interactions). Systems biology approaches have been applied to study the combined interaction networks of virus and human proteins, but such efforts have so far revealed only low-resolution patterns of host-virus interaction. Here, we layer curated and predicted 3D structural models of human-virus and human-human protein complexes on top of traditional interaction networks to reconstruct the human-virus structural interaction network. This approach reveals atomic resolution, mechanistic patterns of host-virus interaction, and facilitates systematic comparison with the host's endogenous interactions. We find that exogenous interfaces tend to overlap with and mimic endogenous interfaces, thereby competing with endogenous binding partners. The endogenous interfaces mimicked by viral proteins tend to participate in multiple endogenous interactions which are transient and regulatory in nature. While interface overlap in the endogenous network results largely from gene duplication followed by divergent evolution, viral proteins frequently achieve interface mimicry without any sequence or structural similarity to an endogenous binding partner. Finally, while endogenous interfaces tend to evolve more slowly than the rest of the protein surface, exogenous interfaces--including many sites of endogenous-exogenous overlap--tend to evolve faster, consistent with an evolutionary "arms race" between host and pathogen. These significant biophysical, functional, and evolutionary differences between host-pathogen and within-host protein-protein interactions highlight the distinct consequences of antagonism versus cooperation in biological networks.

  6. Undergraduate students' development of social, cultural, and human capital in a networked research experience

    Science.gov (United States)

    Thompson, Jennifer Jo; Conaway, Evan; Dolan, Erin L.

    2016-12-01

    Recent calls for reform in undergraduate biology education have emphasized integrating research experiences into the learning experiences of all undergraduates. Contemporary science research increasingly demands collaboration across disciplines and institutions to investigate complex research questions, providing new contexts and models for involving undergraduates in research. In this study, we examined the experiences of undergraduates participating in a multi-institution and interdisciplinary biology research network. Unlike the traditional apprenticeship model of research, in which a student participates in research under the guidance of a single faculty member, students participating in networked research have the opportunity to develop relationships with additional faculty and students working in other areas of the project, at their own and at other institutions. We examined how students in this network develop social ties and to what extent a networked research experience affords opportunities for students to develop social, cultural, and human capital. Most studies of undergraduate involvement in science research have focused on documenting student outcomes rather than elucidating how students gain access to research experiences or how elements of research participation lead to desired student outcomes. By taking a qualitative approach framed by capital theories, we have identified ways that undergraduates utilize and further develop various forms of capital important for success in science research. In our study of the first 16 months of a biology research network, we found that undergraduates drew upon a combination of human, cultural, and social capital to gain access to the network. Within their immediate research groups, students built multidimensional social ties with faculty, peers, and others, yielding social capital that can be drawn upon for information, resources, and support. They reported developing cultural capital in the form of learning to

  7. Network theory may explain the vulnerability of medieval human settlements to the Black Death pandemic.

    Science.gov (United States)

    Gómez, José M; Verdú, Miguel

    2017-03-06

    Epidemics can spread across large regions becoming pandemics by flowing along transportation and social networks. Two network attributes, transitivity (when a node is connected to two other nodes that are also directly connected between them) and centrality (the number and intensity of connections with the other nodes in the network), are widely associated with the dynamics of transmission of pathogens. Here we investigate how network centrality and transitivity influence vulnerability to diseases of human populations by examining one of the most devastating pandemic in human history, the fourteenth century plague pandemic called Black Death. We found that, after controlling for the city spatial location and the disease arrival time, cities with higher values of both centrality and transitivity were more severely affected by the plague. A simulation study indicates that this association was due to central cities with high transitivity undergo more exogenous re-infections. Our study provides an easy method to identify hotspots in epidemic networks. Focusing our effort in those vulnerable nodes may save time and resources by improving our ability of controlling deadly epidemics.

  8. c-kit positive cells and networks in tooth germs of human midterm fetuses.

    Science.gov (United States)

    Didilescu, Andreea Cristiana; Pop, Florinel; Rusu, Mugurel Constantin

    2013-12-01

    Numerous studies have attempted to characterize the dental pulp stem cells. However, studies performed on prenatal human tissues have not been performed to evaluate the in situ characterization and topography of progenitor cells. We aimed to perform such a study using of antibodies for CD117/c-kit and multiplex antibody for Ki67+ caspase 3. Antibodies were applied on samples dissected from five human midterm fetuses. Positive CD117/c-kit labeling was found in mesenchymal derived tissues, such as the dental follicle and the dental papilla. The epithelial tissues, that is, dental lamina, enamel organ and oral epithelia, also displayed isolated progenitor cells which were CD117/c-kit positive. Interestingly, CD117/c-kit positive cells of mesenchymal derived tissues extended multiple prolongations building networks; the most consistent of such networks were those of the dental follicle and the perivascular networks of the dental papilla. However, the mantle of the dental papilla was also positive for CD117/c-kit positive stromal networks. The CD117/c-kit cell populations building networks appeared mostly with a Ki67 negative phenotype. The results suggest that CD117/c-kit progenitor cells of the prenatal tooth germ tissues might be involved in intercellular signaling. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Human Emotion Recognition with Electroencephalographic Multidimensional Features by Hybrid Deep Neural Networks

    Directory of Open Access Journals (Sweden)

    Youjun Li

    2017-10-01

    Full Text Available The aim of this study is to recognize human emotions by electroencephalographic (EEG signals. The innovation of our research methods involves two aspects: First, we integrate the spatial characteristics, frequency domain, and temporal characteristics of the EEG signals, and map them to a two-dimensional image. With these images, we build a series of EEG Multidimensional Feature Image (EEG MFI sequences to represent the emotion variation with EEG signals. Second, we construct a hybrid deep neural network to deal with the EEG MFI sequences to recognize human emotional states where the hybrid deep neural network combined the Convolution Neural Networks (CNN and Long Short-Term-Memory (LSTM Recurrent Neural Networks (RNN. Empirical research is carried out with the open-source dataset DEAP (a Dataset for Emotion Analysis using EEG, Physiological, and video signals using our method, and the results demonstrate the significant improvements over current state-of-the-art approaches in this field. The average emotion classification accuracy of each subject with CLRNN (the hybrid neural networks that we proposed in this study is 75.21%.

  10. Information spreading on mobile communication networks: A new model that incorporates human behaviors

    Science.gov (United States)

    Ren, Fei; Li, Sai-Ping; Liu, Chuang

    2017-03-01

    Recently, there is a growing interest in the modeling and simulation based on real social networks among researchers in multi-disciplines. Using an empirical social network constructed from the calling records of a Chinese mobile service provider, we here propose a new model to simulate the information spreading process. This model takes into account two important ingredients that exist in real human behaviors: information prevalence and preferential spreading. The fraction of informed nodes when the system reaches an asymptotically stable state is primarily determined by information prevalence, and the heterogeneity of link weights would slow down the information diffusion. Moreover, the sizes of blind clusters which consist of connected uninformed nodes show a power-law distribution, and these uninformed nodes correspond to a particular portion of nodes which are located at special positions in the network, namely at the edges of large clusters or inside the clusters connected through weak links. Since the simulations are performed on a real world network, the results should be useful in the understanding of the influences of social network structures and human behaviors on information propagation.

  11. Demography-based adaptive network model reproduces the spatial organization of human linguistic groups.

    Science.gov (United States)

    Capitán, José A; Manrubia, Susanna

    2015-12-01

    The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The distributions of the number of speakers per language and the area each group covers follow log-normal distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial contacts between different linguistic groups has been recently characterized, showing atypical properties of the degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an adaptive network model that takes all of them into account and successfully reproduces, using only four model parameters, not only those features of linguistic groups already described in the literature, but also correlations between demographic and topological properties uncovered in this work. Besides their relevance when modeling and understanding processes related to human biogeography, our adaptive network model admits a number of generalizations that broaden its scope and make it suitable to represent interactions between agents based on population dynamics and competition for space.

  12. New patterns in human biogeography revealed by networks of contacts between linguistic groups.

    Science.gov (United States)

    Capitán, José A; Bock Axelsen, Jacob; Manrubia, Susanna

    2015-03-07

    Human languages differ broadly in abundance and are distributed highly unevenly on the Earth. In many qualitative and quantitative aspects, they strongly resemble biodiversity distributions. An intriguing and previously unexplored issue is the architecture of the neighbouring relationships between human linguistic groups. Here we construct and characterize these networks of contacts and show that they represent a new kind of spatial network with uncommon structural properties. Remarkably, language networks share a meaningful property with food webs: both are quasi-interval graphs. In food webs, intervality is linked to the existence of a niche space of low dimensionality; in language networks, we show that the unique relevant variable is the area occupied by the speakers of a language. By means of a range model analogous to niche models in ecology, we show that a geometric restriction of perimeter covering by neighbouring linguistic domains explains the structural patterns observed. Our findings may be of interest in the development of models for language dynamics or regarding the propagation of cultural innovations. In relation to species distribution, they pose the question of whether the spatial features of species ranges share architecture, and eventually generating mechanism, with the distribution of human linguistic groups. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Relationship of Topology, Multiscale Phase Synchronization, and State Transitions in Human Brain Networks

    Directory of Open Access Journals (Sweden)

    Minkyung Kim

    2017-06-01

    Full Text Available How the brain reconstitutes consciousness and cognition after a major perturbation like general anesthesia is an important question with significant neuroscientific and clinical implications. Recent empirical studies in animals and humans suggest that the recovery of consciousness after anesthesia is not random but ordered. Emergence patterns have been classified as progressive and abrupt transitions from anesthesia to consciousness, with associated differences in duration and electroencephalogram (EEG properties. We hypothesized that the progressive and abrupt emergence patterns from the unconscious state are associated with, respectively, continuous and discontinuous synchronization transitions in functional brain networks. The discontinuous transition is explainable with the concept of explosive synchronization, which has been studied almost exclusively in network science. We used the Kuramato model, a simple oscillatory network model, to simulate progressive and abrupt transitions in anatomical human brain networks acquired from diffusion tensor imaging (DTI of 82 brain regions. To facilitate explosive synchronization, distinct frequencies for hub nodes with a large frequency disassortativity (i.e., higher frequency nodes linking with lower frequency nodes, or vice versa were applied to the brain network. In this simulation study, we demonstrated that both progressive and abrupt transitions follow distinct synchronization processes at the individual node, cluster, and global network levels. The characteristic synchronization patterns of brain regions that are “progressive and earlier” or “abrupt but delayed” account for previously reported behavioral responses of gradual and abrupt emergence from the unconscious state. The characteristic network synchronization processes observed at different scales provide new insights into how regional brain functions are reconstituted during progressive and abrupt emergence from the unconscious

  14. Large-scale directional connections among multi resting-state neural networks in human brain: a functional MRI and Bayesian network modeling study.

    Science.gov (United States)

    Li, Rui; Chen, Kewei; Fleisher, Adam S; Reiman, Eric M; Yao, Li; Wu, Xia

    2011-06-01

    This study examined the large-scale connectivity among multiple resting-state networks (RSNs) in the human brain. Independent component analysis was first applied to the resting-state functional MRI (fMRI) data acquired from 12 healthy young subjects for the separation of RSNs. Four sensory (lateral and medial visual, auditory, and sensory-motor) RSNs and four cognitive (default-mode, self-referential, dorsal and ventral attention) RSNs were identified. Gaussian Bayesian network (BN) learning approach was then used for the examination of the conditional dependencies among these RSNs and the construction of the network-to-network directional connectivity patterns. The BN based results demonstrated that sensory networks and cognitive networks were hierarchically organized. Specially, we found the sensory networks were highly intra-dependent and the cognitive networks were strongly intra-influenced. In addition, the results depicted dominant bottom-up connectivity from sensory networks to cognitive networks in which the self-referential and the default-mode networks might play respectively important roles in the process of resting-state information transfer and integration. The present study characterized the global connectivity relations among RSNs and delineated more characteristics of spontaneous activity dynamics. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Application of structured support vector machine backpropagation to a convolutional neural network for human pose estimation.

    Science.gov (United States)

    Witoonchart, Peerajak; Chongstitvatana, Prabhas

    2017-08-01

    In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fractional Diffusion Emulates a Human Mobility Network during a Simulated Disease Outbreak

    Directory of Open Access Journals (Sweden)

    Kyle B. Gustafson

    2017-04-01

    Full Text Available Mobility networks facilitate the growth of populations, the success of invasive species, and the spread of communicable diseases among social animals, including humans. Disease control and elimination efforts, especially during an outbreak, can be optimized by numerical modeling of disease dynamics on transport networks. This is especially true when incidence data from an emerging epidemic is sparse and unreliable. However, mobility networks can be complex, challenging to characterize, and expensive to simulate with agent-based models. We therefore studied a parsimonious model for spatiotemporal disease dynamics based on a fractional diffusion equation. We implemented new stochastic simulations of a prototypical influenza-like infection spreading through the United States' highly-connected air travel network. We found that the national-averaged infected fraction during an outbreak is accurately reproduced by a space-fractional diffusion equation consistent with the connectivity of airports. Fractional diffusion therefore seems to be a better model of network outbreak dynamics than a diffusive model. Our fractional reaction-diffusion method and the result could be extended to other mobility networks in a variety of applications for population dynamics.

  17. Age-related changes in modular organization of human brain functional networks.

    Science.gov (United States)

    Meunier, David; Achard, Sophie; Morcom, Alexa; Bullmore, Ed

    2009-02-01

    Graph theory allows us to quantify any complex system, e.g., in social sciences, biology or technology, that can be abstractly described as a set of nodes and links. Here we derived human brain functional networks from fMRI measurements of endogenous, low frequency, correlated oscillations in 90 cortical and subcortical regions for two groups of healthy (young and older) participants. We investigated the modular structure of these networks and tested the hypothesis that normal brain aging might be associated with changes in modularity of sparse networks. Newman's modularity metric was maximised and topological roles were assigned to brain regions depending on their specific contributions to intra- and inter-modular connectivity. Both young and older brain networks demonstrated significantly non-random modularity. The young brain network was decomposed into 3 major modules: central and posterior modules, which comprised mainly nodes with few inter-modular connections, and a dorsal fronto-cingulo-parietal module, which comprised mainly nodes with extensive inter-modular connections. The mean network in the older group also included posterior, superior central and dorsal fronto-striato-thalamic modules but the number of intermodular connections to frontal modular regions was significantly reduced, whereas the number of connector nodes in posterior and central modules was increased.

  18. Network analysis of microRNAs and their regulation in human ovarian cancer

    KAUST Repository

    Schmeier, Sebastian

    2011-11-03

    Background: MicroRNAs (miRNAs) are small non-coding RNA molecules that repress the translation of messenger RNAs (mRNAs) or degrade mRNAs. These functions of miRNAs allow them to control key cellular processes such as development, differentiation and apoptosis, and they have also been implicated in several cancers such as leukaemia, lung, pancreatic and ovarian cancer (OC). Unfortunately, the specific machinery of miRNA regulation, involving transcription factors (TFs) and transcription co-factors (TcoFs), is not well understood. In the present study we focus on computationally deciphering the underlying network of miRNAs, their targets, and their control mechanisms that have an influence on OC development.Results: We analysed experimentally verified data from multiple sources that describe miRNA influence on diseases, miRNA targeting of mRNAs, and on protein-protein interactions, and combined this data with ab initio transcription factor binding site predictions within miRNA promoter regions. From these analyses, we derived a network that describes the influence of miRNAs and their regulation in human OC. We developed a methodology to analyse the network in order to find the nodes that have the largest potential of influencing the network\\'s behaviour (network hubs). We further show the potentially most influential miRNAs, TFs and TcoFs, showing subnetworks illustrating the involved mechanisms as well as regulatory miRNA network motifs in OC. We find an enrichment of miRNA targeted OC genes in the highly relevant pathways cell cycle regulation and apoptosis.Conclusions: We combined several sources of interaction and association data to analyse and place miRNAs within regulatory pathways that influence human OC. These results represent the first comprehensive miRNA regulatory network analysis for human OC. This suggests that miRNAs and their regulation may play a major role in OC and that further directed research in this area is of utmost importance to enhance

  19. Ethnographies of Human-Animal Relationships. II Seminar of the Environmental Anthropology Network

    Directory of Open Access Journals (Sweden)

    Santiago M. Cruzada

    2017-12-01

    Full Text Available In order to accommodate contemporary reflections and debates in the discipline, the Environmental Anthropology Network has organised a series of thematic seminars aimed at the epistemological, methodological and practical discussion of issues that cross the socio-environmental sphere. On April 6-7, 2017, the II Seminar of the Environmental Anthropology Network was held at Pablo de Olavide University in Seville. It was entitled «Alter-human ethnographies: encounters in the animal phase». The seminar was attended by more than thirty participants from various Spanish and international universities, with ten ethnographies focusing on research into humananimal relationships.

  20. Convolutional neural networks for segmentation and object detection of human semen

    DEFF Research Database (Denmark)

    Nissen, Malte Stær; Krause, Oswin; Almstrup, Kristian

    2017-01-01

    We compare a set of convolutional neural network (CNN) architectures for the task of segmenting and detecting human sperm cells in an image taken from a semen sample. In contrast to previous work, samples are not stained or washed to allow for full sperm quality analysis, making analysis harder due...... are found by using connected components on the CNN predictions. We investigate optimization of a threshold parameter on the size of detected components. Our best network achieves 93.87% precision and 91.89% recall on our test dataset after thresholding outperforming a classical image analysis approach....

  1. Human Activities in Natura 2000 Sites: A Highly Diversified Conservation Network

    Science.gov (United States)

    Tsiafouli, Maria A.; Apostolopoulou, Evangelia; Mazaris, Antonios D.; Kallimanis, Athanasios S.; Drakou, Evangelia G.; Pantis, John D.

    2013-05-01

    The Natura 2000 network was established across the European Union's (EU) Member States with the aim to conserve biodiversity, while ensuring the sustainability of human activities. However, to what kind and to what extent Natura 2000 sites are subject to human activities and how this varies across Member States remains unspecified. Here, we analyzed 111,269 human activity records from 14,727 protected sites in 20 Member States. The frequency of occurrence of activities differs among countries, with more than 86 % of all sites being subjected to agriculture or forestry. Activities like hunting, fishing, urbanization, transportation, and tourism are more frequently recorded in south European sites than in northern or eastern ones. The observed variations indicate that Natura 2000 networks are highly heterogeneous among EU Member States. Our analysis highlights the importance of agriculture in European landscapes and indicates possible targets for policy interventions at national, European, or "sub-European" level. The strong human presence in the Natura 2000 network throughout Member States, shows that conservation initiatives could succeed only by combining social and ecological sustainability and by ensuring the integration of policies affecting biodiversity.

  2. Conceptual Network Model From Sensory Neurons to Astrocytes of the Human Nervous System.

    Science.gov (United States)

    Yang, Yiqun; Yeo, Chai Kiat

    2015-07-01

    From a single-cell animal like paramecium to vertebrates like ape, the nervous system plays an important role in responding to the variations of the environment. Compared to animals, the nervous system in the human body possesses more intricate organization and utility. The nervous system anatomy has been understood progressively, yet the explanation at the cell level regarding complete information transmission is still lacking. Along the signal pathway toward the brain, an external stimulus first activates action potentials in the sensing neuron and these electric pulses transmit along the spinal nerve or cranial nerve to the neurons in the brain. Second, calcium elevation is triggered in the branch of astrocyte at the tripartite synapse. Third, the local calcium wave expands to the entire territory of the astrocyte. Finally, the calcium wave propagates to the neighboring astrocyte via gap junction channel. In our study, we integrate the existing mathematical model and biological experiments in each step of the signal transduction to establish a conceptual network model for the human nervous system. The network is composed of four layers and the communication protocols of each layer could be adapted to entities with different characterizations. We verify our simulation results against the available biological experiments and mathematical models and provide a test case of the integrated network. As the production of conscious episode in the human nervous system is still under intense research, our model serves as a useful tool to facilitate, complement and verify current and future study in human cognition.

  3. The default mode network in chimpanzees (Pan troglodytes) is similar to that of humans.

    Science.gov (United States)

    Barks, Sarah K; Parr, Lisa A; Rilling, James K

    2015-02-01

    The human default mode network (DMN), comprising medial prefrontal cortex, precuneus, posterior cingulate cortex, lateral parietal cortex, and medial temporal cortex, is highly metabolically active at rest but deactivates during most focused cognitive tasks. The DMN and social cognitive networks overlap significantly in humans. We previously demonstrated that chimpanzees (Pan troglodytes) show highest resting metabolic brain activity in the cortical midline areas of the human DMN. Human DMN is defined by task-induced deactivations, not absolute resting metabolic levels; ergo, resting activity is insufficient to define a DMN in chimpanzees. Here, we assessed the chimpanzee DMN's deactivations relative to rest during cognitive tasks and the effect of social content on these areas' activity. Chimpanzees performed a match-to-sample task with conspecific behavioral stimuli of varying sociality. Using [(18)F]-FDG PET, brain activity during these tasks was compared with activity during a nonsocial task and at rest. Cortical midline areas in chimpanzees deactivated in these tasks relative to rest, suggesting a chimpanzee DMN anatomically and functionally similar to humans. Furthermore, when chimpanzees make social discriminations, these same areas (particularly precuneus) are highly active relative to nonsocial tasks, suggesting that, as in humans, the chimpanzee DMN may play a role in social cognition. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Ontology-based Deep Learning for Human Behavior Prediction with Explanations in Health Social Networks.

    Science.gov (United States)

    Phan, Nhathai; Dou, Dejing; Wang, Hao; Kil, David; Piniewski, Brigitte

    2017-04-01

    Human behavior modeling is a key component in application domains such as healthcare and social behavior research. In addition to accurate prediction, having the capacity to understand the roles of human behavior determinants and to provide explanations for the predicted behaviors is also important. Having this capacity increases trust in the systems and the likelihood that the systems actually will be adopted, thus driving engagement and loyalty. However, most prediction models do not provide explanations for the behaviors they predict. In this paper, we study the research problem, human behavior prediction with explanations, for healthcare intervention systems in health social networks. We propose an ontology-based deep learning model (ORBM+) for human behavior prediction over undirected and nodes-attributed graphs. We first propose a bottom-up algorithm to learn the user representation from health ontologies. Then the user representation is utilized to incorporate self-motivation, social influences, and environmental events together in a human behavior prediction model, which extends a well-known deep learning method, the Restricted Boltzmann Machine. ORBM+ not only predicts human behaviors accurately, but also, it generates explanations for each predicted behavior. Experiments conducted on both real and synthetic health social networks have shown the tremendous effectiveness of our approach compared with conventional methods.

  5. Characterization of the Usage of the Serine Metabolic Network in Human Cancer

    Directory of Open Access Journals (Sweden)

    Mahya Mehrmohamadi

    2014-11-01

    Full Text Available The serine, glycine, one-carbon (SGOC metabolic network is implicated in cancer pathogenesis, but its general functions are unknown. We carried out a computational reconstruction of the SGOC network and then characterized its expression across thousands of cancer tissues. Pathways including methylation and redox metabolism exhibited heterogeneous expression indicating a strong context dependency of their usage in tumors. From an analysis of coexpression, simultaneous up- or downregulation of nucleotide synthesis, NADPH, and glutathione synthesis was found to be a common occurrence in all cancers. Finally, we developed a method to trace the metabolic fate of serine using stable isotopes, high-resolution mass spectrometry, and a mathematical model. Although the expression of single genes didn’t appear indicative of flux, the collective expression of several genes in a given pathway allowed for successful flux prediction. Altogether, these findings identify expansive and heterogeneous functions for the SGOC metabolic network in human cancer.

  6. A High-Resolution Human Contact Network for Infectious Disease Transmission

    CERN Document Server

    Salathé, Marcel; Lee, Jung Woo; Levis, Philip; Feldman, Marcus W; Jones, James H

    2010-01-01

    The most frequent infectious diseases in humans - and those with the highest potential for rapid pandemic spread - are usually transmitted via droplets during close proximity interactions (CPIs). Despite the importance of this transmission route, very little is known about the dynamic patterns of CPIs. Using wireless sensor network technology, we obtained high-resolution data of CPIs during a typical day at an American high school, permitting the reconstruction of the social network relevant for infectious disease transmission. At a 94% coverage, we collected 762,868 CPIs at a maximal distance of 3 meters among 788 individuals. The data revealed a high density network with typical small world properties and a relatively homogenous distribution of both interaction time and interaction partners among subjects. Computer simulations of the spread of an influenza-like disease on the weighted contact graph are in good agreement with absentee data during the most recent influenza season. Analysis of targeted immuniz...

  7. Cantorian Fractal Spacetime and Quantum-like Chaos in Neural Networks of the Human Brain

    CERN Document Server

    Selvam, A M

    1998-01-01

    The neural networks of the human brain act as very efficient parallel processing computers co-ordinating memory related responses to a multitude of input signals from sensory organs. Information storage, update and appropriate retrieval are controlled at the molecular level by the neuronal cytoskeleton which serves as the internal communication network within neurons. Information flow in the highly ordered parallel networks of the filamentous protein polymers which make up the cytoskeleton may be compared to atmospheric flows which exhibit long-range spatiotemporal correlations, i.e. long-term memory. Such long-range spatiotemporal correlations are ubiquitous to real world dynamical systems and is recently identified as signature of self-organized criticality or chaos. The signatures of self-organized criticality i.e. long-range temporal correlations have recently been identified in the electrical activity of the brain. A recently developed non-deterministic cell dynamical system model for atmospheric flows p...

  8. Transduction motif analysis of gastric cancer based on a human signaling network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Li, D.Z.; Jiang, C.S.; Wang, W. [Fuzhou General Hospital of Nanjing Command, Department of Gastroenterology, Fuzhou, China, Department of Gastroenterology, Fuzhou General Hospital of Nanjing Command, Fuzhou (China)

    2014-04-04

    To investigate signal regulation models of gastric cancer, databases and literature were used to construct the signaling network in humans. Topological characteristics of the network were analyzed by CytoScape. After marking gastric cancer-related genes extracted from the CancerResource, GeneRIF, and COSMIC databases, the FANMOD software was used for the mining of gastric cancer-related motifs in a network with three vertices. The significant motif difference method was adopted to identify significantly different motifs in the normal and cancer states. Finally, we conducted a series of analyses of the significantly different motifs, including gene ontology, function annotation of genes, and model classification. A human signaling network was constructed, with 1643 nodes and 5089 regulating interactions. The network was configured to have the characteristics of other biological networks. There were 57,942 motifs marked with gastric cancer-related genes out of a total of 69,492 motifs, and 264 motifs were selected as significantly different motifs by calculating the significant motif difference (SMD) scores. Genes in significantly different motifs were mainly enriched in functions associated with cancer genesis, such as regulation of cell death, amino acid phosphorylation of proteins, and intracellular signaling cascades. The top five significantly different motifs were mainly cascade and positive feedback types. Almost all genes in the five motifs were cancer related, including EPOR, MAPK14, BCL2L1, KRT18, PTPN6, CASP3, TGFBR2, AR, and CASP7. The development of cancer might be curbed by inhibiting signal transductions upstream and downstream of the selected motifs.

  9. Internal epithelia in Drosophila display rudimentary competence to form cytoplasmic networks of transgenic human vimentin.

    Science.gov (United States)

    Gullmets, Josef; Torvaldson, Elin; Lindqvist, Julia; Imanishi, Susumu Y; Taimen, Pekka; Meinander, Annika; Eriksson, John E

    2017-12-01

    Cytoplasmic intermediate filaments (cIFs) are found in all eumetazoans, except arthropods. To investigate the compatibility of cIFs in arthropods, we expressed human vimentin (hVim), a cIF with filament-forming capacity in vertebrate cells and tissues, transgenically in Drosophila Transgenic hVim could be recovered from whole-fly lysates by using a standard procedure for intermediate filament (IF) extraction. When this procedure was used to test for the possible presence of IF-like proteins in flies, only lamins and tropomyosin were observed in IF-enriched extracts, thereby providing biochemical reinforcement to the paradigm that arthropods lack cIFs. In Drosophila, transgenic hVim was unable to form filament networks in S2 cells and mesenchymal tissues; however, cage-like vimentin structures could be observed around the nuclei in internal epithelia, which suggests that Drosophila retains selective competence for filament formation. Taken together, our results imply that although the filament network formation competence is partially lost in Drosophila, a rudimentary filament network formation ability remains in epithelial cells. As a result of the observed selective competence for cIF assembly in Drosophila, we hypothesize that internal epithelial cIFs were the last cIFs to disappear from arthropods.-Gullmets, J., Torvaldson, E., Lindqvist, J., Imanishi, S. Y., Taimen, P., Meinander, A., Eriksson, J. E. Internal epithelia in Drosophila display rudimentary competence to form cytoplasmic networks of transgenic human vimentin. © FASEB.

  10. A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition

    Directory of Open Access Journals (Sweden)

    Daniela Sánchez

    2017-01-01

    Full Text Available A grey wolf optimizer for modular neural network (MNN with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition.

  11. Connectomic Insights into Topologically Centralized Network Edges and Relevant Motifs in the Human Brain

    Directory of Open Access Journals (Sweden)

    Mingrui eXia

    2016-04-01

    Full Text Available White matter (WM tracts serve as important material substrates for information transfer across brain regions. However, the topological roles of WM tracts in global brain communications and their underlying microstructural basis remain poorly understood. Here, we employed diffusion magnetic resonance imaging and graph-theoretical approaches to identify the pivotal WM connections in human whole-brain networks and further investigated their wiring substrates (including WM microstructural organization and physical consumption and topological contributions to the brain’s network backbone. We found that the pivotal WM connections with highly topological-edge centrality were primarily distributed in several long-range cortico-cortical connections (including the corpus callosum, cingulum and inferior fronto-occipital fasciculus and some projection tracts linking subcortical regions. These pivotal WM connections exhibited high levels of microstructural organization indicated by diffusion measures (the fractional anisotropy, the mean diffusivity and the axial diffusivity and greater physical consumption indicated by streamline lengths, and contributed significantly to the brain’s hubs and the rich-club structure. Network motif analysis further revealed their heavy participations in the organization of communication blocks, especially in routes involving inter-hemispheric heterotopic and extremely remote intra-hemispheric systems. Computational simulation models indicated the sharp decrease of global network integrity when attacking these highly centralized edges. Together, our results demonstrated high building-cost consumption and substantial communication capacity contributions for pivotal WM connections, which deepens our understanding of the topological mechanisms that govern the organization of human connectomes.

  12. Prebiotics, faecal transplants and microbial network units to stimulate biodiversity of the human gut microbiome

    Science.gov (United States)

    Van den Abbeele, Pieter; Verstraete, Willy; El Aidy, Sahar; Geirnaert, Annelies; Van de Wiele, Tom

    2013-01-01

    Summary Accumulating evidence demonstrates the intimate association between human hosts and the gut microbiome. Starting at birth, the sterile gut of the newborn acquires a diverse spectrum of microbes, needed for immunological priming. However, current practices (caesarean sections, use of formula milk) deprive newborns from being exposed to this broad spectrum of microbes. Unnecessary use of antibiotics and excessive hygienic precautions (e.g. natural versus chlorinated drinking water) together with the Western diet further contribute to a decreased microbial diversity in the adult gut. This has been correlated with recurrent Clostridium difficile infection, inflammatory bowel diseases and obesity, among others. A healthy gut microbiome is thus characterized by a diverse network of metabolically interacting microbial members. In this context, we review several existing and novel approaches to manage the gut microbiome. First, prebiotic compounds should be re-defined in the sense that they should enhance the ecological biodiversity rather than stimulating single species. Recent studies highlight that structurally different polysaccharides require specific primary degraders but also enhance a similar network of secondary degraders that benefit from cross-feeding. A faecal transplantation is a second approach to restore biodiversity when the microbiota is severely dysbiosed, with promising results regarding C. difficile-associated disease and obesity-related metabolic syndromes. A final strategy is the introduction of key microbial network units, i.e. pre-organized microbial associations, which strengthen the overall microbial network of the gut microbiome that supports human health. PMID:23594389

  13. A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition

    Science.gov (United States)

    Sánchez, Daniela; Melin, Patricia

    2017-01-01

    A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition. PMID:28894461

  14. Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery.

    Science.gov (United States)

    Kell, Douglas B; Goodacre, Royston

    2014-02-01

    Metabolism represents the 'sharp end' of systems biology, because changes in metabolite concentrations are necessarily amplified relative to changes in the transcriptome, proteome and enzyme activities, which can be modulated by drugs. To understand such behaviour, we therefore need (and increasingly have) reliable consensus (community) models of the human metabolic network that include the important transporters. Small molecule 'drug' transporters are in fact metabolite transporters, because drugs bear structural similarities to metabolites known from the network reconstructions and from measurements of the metabolome. Recon2 represents the present state-of-the-art human metabolic network reconstruction; it can predict inter alia: (i) the effects of inborn errors of metabolism; (ii) which metabolites are exometabolites, and (iii) how metabolism varies between tissues and cellular compartments. However, even these qualitative network models are not yet complete. As our understanding improves so do we recognise more clearly the need for a systems (poly)pharmacology. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. A geometric network model of intrinsic grey-matter connectivity of the human brain.

    Science.gov (United States)

    Lo, Yi-Ping; O'Dea, Reuben; Crofts, Jonathan J; Han, Cheol E; Kaiser, Marcus

    2015-10-27

    Network science provides a general framework for analysing the large-scale brain networks that naturally arise from modern neuroimaging studies, and a key goal in theoretical neuroscience is to understand the extent to which these neural architectures influence the dynamical processes they sustain. To date, brain network modelling has largely been conducted at the macroscale level (i.e. white-matter tracts), despite growing evidence of the role that local grey matter architecture plays in a variety of brain disorders. Here, we present a new model of intrinsic grey matter connectivity of the human connectome. Importantly, the new model incorporates detailed information on cortical geometry to construct 'shortcuts' through the thickness of the cortex, thus enabling spatially distant brain regions, as measured along the cortical surface, to communicate. Our study indicates that structures based on human brain surface information differ significantly, both in terms of their topological network characteristics and activity propagation properties, when compared against a variety of alternative geometries and generative algorithms. In particular, this might help explain histological patterns of grey matter connectivity, highlighting that observed connection distances may have arisen to maximise information processing ability, and that such gains are consistent with (and enhanced by) the presence of short-cut connections.

  16. The topology of large Open Connectome networks for the human brain

    Science.gov (United States)

    Gastner, Michael T.; Ódor, Géza

    2016-06-01

    The structural human connectome (i.e. the network of fiber connections in the brain) can be analyzed at ever finer spatial resolution thanks to advances in neuroimaging. Here we analyze several large data sets for the human brain network made available by the Open Connectome Project. We apply statistical model selection to characterize the degree distributions of graphs containing up to nodes and edges. A three-parameter generalized Weibull (also known as a stretched exponential) distribution is a good fit to most of the observed degree distributions. For almost all networks, simple power laws cannot fit the data, but in some cases there is statistical support for power laws with an exponential cutoff. We also calculate the topological (graph) dimension D and the small-world coefficient σ of these networks. While σ suggests a small-world topology, we found that D < 4 showing that long-distance connections provide only a small correction to the topology of the embedding three-dimensional space.

  17. A geometric network model of intrinsic grey-matter connectivity of the human brain

    Science.gov (United States)

    Lo, Yi-Ping; O'Dea, Reuben; Crofts, Jonathan J.; Han, Cheol E.; Kaiser, Marcus

    2015-10-01

    Network science provides a general framework for analysing the large-scale brain networks that naturally arise from modern neuroimaging studies, and a key goal in theoretical neuroscience is to understand the extent to which these neural architectures influence the dynamical processes they sustain. To date, brain network modelling has largely been conducted at the macroscale level (i.e. white-matter tracts), despite growing evidence of the role that local grey matter architecture plays in a variety of brain disorders. Here, we present a new model of intrinsic grey matter connectivity of the human connectome. Importantly, the new model incorporates detailed information on cortical geometry to construct ‘shortcuts’ through the thickness of the cortex, thus enabling spatially distant brain regions, as measured along the cortical surface, to communicate. Our study indicates that structures based on human brain surface information differ significantly, both in terms of their topological network characteristics and activity propagation properties, when compared against a variety of alternative geometries and generative algorithms. In particular, this might help explain histological patterns of grey matter connectivity, highlighting that observed connection distances may have arisen to maximise information processing ability, and that such gains are consistent with (and enhanced by) the presence of short-cut connections.

  18. The relationship between human behavior and the process of epidemic spreading in a real social network

    Science.gov (United States)

    Grabowski, A.; Rosińska, M.

    2012-07-01

    On the basis of experimental data on interactions between humans we have investigated the process of epidemic spreading in a social network. We found that the distribution of the number of contacts maintained in one day is exponential. Data on frequency and duration of interpersonal interactions are presented. They allow us to simulate the spread of droplet-/-air-borne infections and to investigate the influence of human dynamics on the epidemic spread. Specifically, we investigated the influence of the distribution of frequency and duration of those contacts on magnitude, epidemic threshold and peak timing of epidemics propagating in respective networks. It turns out that a large increase in the magnitude of an epidemic and a decrease in epidemic threshold are visible if and only if both are taken into account. We have found that correlation between contact frequency and duration strongly influences the effectiveness of control measures like mass immunization campaigns.

  19. Opinion formation in a social network: The role of human activity

    Science.gov (United States)

    Grabowski, Andrzej

    2009-03-01

    The model of opinion formation in human population based on social impact theory is investigated numerically. On the basis of a database received from the on-line game server, we examine the structure of social network and human dynamics. We calculate the activity of individuals, i.e. the relative time devoted daily to interactions with others in the artificial society. We study the influence of correlation between the activity of an individual and its connectivity on the process of opinion formation. We find that such correlations have a significant influence on the temperature of the phase transition and the effect of the mass media, modeled as an external stimulation acting on the social network.

  20. Quantitative time-course metabolomics in human red blood cells reveal the temperature dependence of human metabolic networks.

    Science.gov (United States)

    Yurkovich, James T; Zielinski, Daniel C; Yang, Laurence; Paglia, Giuseppe; Rolfsson, Ottar; Sigurjónsson, Ólafur E; Broddrick, Jared T; Bordbar, Aarash; Wichuk, Kristine; Brynjólfsson, Sigurður; Palsson, Sirus; Gudmundsson, Sveinn; Palsson, Bernhard O

    2017-12-01

    The temperature dependence of biological processes has been studied at the levels of individual biochemical reactions and organism physiology (e.g. basal metabolic rates) but has not been examined at the metabolic network level. Here, we used a systems biology approach to characterize the temperature dependence of the human red blood cell (RBC) metabolic network between 4 and 37 °C through absolutely quantified exo- and endometabolomics data. We used an Arrhenius-type model (Q10) to describe how the rate of a biochemical process changes with every 10 °C change in temperature. Multivariate statistical analysis of the metabolomics data revealed that the same metabolic network-level trends previously reported for RBCs at 4 °C were conserved but accelerated with increasing temperature. We calculated a median Q10 coefficient of 2.89 ± 1.03, within the expected range of 2-3 for biological processes, for 48 individual metabolite concentrations. We then integrated these metabolomics measurements into a cell-scale metabolic model to study pathway usage, calculating a median Q10 coefficient of 2.73 ± 0.75 for 35 reaction fluxes. The relative fluxes through glycolysis and nucleotide metabolism pathways were consistent across the studied temperature range despite the non-uniform distributions of Q10 coefficients of individual metabolites and reaction fluxes. Together, these results indicate that the rate of change of network-level responses to temperature differences in RBC metabolism is consistent between 4 and 37 °C. More broadly, we provide a baseline characterization of a biochemical network given no transcriptional or translational regulation that can be used to explore the temperature dependence of metabolism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Exploring mechanisms of human disease through structurally resolved protein interactome networks.

    Science.gov (United States)

    Das, Jishnu; Fragoza, Robert; Lee, Hao Ran; Cordero, Nicolas A; Guo, Yu; Meyer, Michael J; Vo, Tommy V; Wang, Xiujuan; Yu, Haiyuan

    2014-01-01

    The study of the molecular basis of human disease has gained increasing attention over the past decade. With significant improvements in sequencing efficiency and throughput, a wealth of genotypic data has become available. However the translation of this information into concrete advances in diagnostic and clinical setups has proved far more challenging. Two major reasons for this are the lack of functional annotation for genomic variants and the complex nature of genotype-to-phenotype relationships. One fundamental approach to bypass these issues is to examine the effects of genetic variation at the level of proteins as they are directly involved in carrying out biological functions. Within the cell, proteins function by interacting with other proteins as a part of an underlying interactome network. This network can be determined using interactome mapping - a combination of high-throughput experimental toolkits and curation from small-scale studies. Integrating structural information from co-crystals with the network allows generation of a structurally resolved network. Within the context of this network, the structural principles of disease mutations can be examined and used to generate reliable mechanistic hypotheses regarding disease pathogenesis.

  2. Identification of Human Disease Genes from Interactome Network Using Graphlet Interaction

    Science.gov (United States)

    Yang, Lun; Wei, Dong-Qing; Qi, Ying-Xin; Jiang, Zong-Lai

    2014-01-01

    Identifying genes related to human diseases, such as cancer and cardiovascular disease, etc., is an important task in biomedical research because of its applications in disease diagnosis and treatment. Interactome networks, especially protein-protein interaction networks, had been used to disease genes identification based on the hypothesis that strong candidate genes tend to closely relate to each other in some kinds of measure on the network. We proposed a new measure to analyze the relationship between network nodes which was called graphlet interaction. The graphlet interaction contained 28 different isomers. The results showed that the numbers of the graphlet interaction isomers between disease genes in interactome networks were significantly larger than random picked genes, while graphlet signatures were not. Then, we designed a new type of score, based on the network properties, to identify disease genes using graphlet interaction. The genes with higher scores were more likely to be disease genes, and all candidate genes were ranked according to their scores. Then the approach was evaluated by leave-one-out cross-validation. The precision of the current approach achieved 90% at about 10% recall, which was apparently higher than the previous three predominant algorithms, random walk, Endeavour and neighborhood based method. Finally, the approach was applied to predict new disease genes related to 4 common diseases, most of which were identified by other independent experimental researches. In conclusion, we demonstrate that the graphlet interaction is an effective tool to analyze the network properties of disease genes, and the scores calculated by graphlet interaction is more precise in identifying disease genes. PMID:24465923

  3. Regulatory feedback loops bridge the human gene regulatory network and regulate carcinogenesis.

    Science.gov (United States)

    Chen, Yun-Ru; Huang, Hsuan-Cheng; Lin, Chen-Ching

    2017-11-29

    The development of disease involves a systematic disturbance inside cells and is associated with changes in the interactions or regulations among genes forming biological networks. The bridges inside a network are critical in shortening the distances between nodes. We observed that, inside the human gene regulatory network, one strongly connected core bridged the whole network. Other regulations outside the core formed a weakly connected component surrounding the core like a peripheral structure. Furthermore, the regulatory feedback loops (FBLs) inside the core compose an interface-like structure between the core and periphery. We then denoted the regulatory FBLs as the interface core. Notably, both the cancer-associated and essential biomolecules and regulations were significantly overrepresented in the interface core. These results implied that the interface core is not only critical for the network structure but central in cellular systems. Furthermore, the enrichment of the cancer-associated and essential regulations in the interface core might be attributed to its bridgeness in the network. More importantly, we identified one regulatory FBL between HNF4A and NR2F2 that possesses the highest bridgeness in the interface core. Further investigation suggested that the disturbance of the HNF4A-NR2F2 FBL might protect tumor cells from apoptotic processes. Our results emphasize the relevance of the regulatory network properties to cellular systems and might reveal a critical role of the interface core in cancer. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Wearable Networked Sensing for Human Mobility and Activity Analytics: A Systems Study

    OpenAIRE

    Dong, Bo; Biswas, Subir

    2012-01-01

    This paper presents implementation details, system characterization, and the performance of a wearable sensor network that was designed for human activity analysis. Specific machine learning mechanisms are implemented for recognizing a target set of activities with both out-of-body and on-body processing arrangements. Impacts of energy consumption by the on-body sensors are analyzed in terms of activity detection accuracy for out-of-body processing. Impacts of limited processing abilities in ...

  5. Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans

    DEFF Research Database (Denmark)

    Herz, Damian M.; Haagensen, Brian N.; Christensen, Mark S.

    2015-01-01

    Dopaminergic signalling in the striatum contributes to reinforcement of actions and motivational enhancement of motor vigour. Parkinson's disease leads to progressive dopaminergic denervation of the striatum, impairing the function of cortico-basal ganglia networks. While levodopa therapy......-cortical connectivity as a neural signature of levodopa-induced dyskinesias in humans. We argue that excessive striato-cortical connectivity in response to levodopa produces an aberrant reinforcement signal producing an abnormal motor drive that ultimately triggers involuntary movements....

  6. Networks of digital humanities scholars: The informational and social uses and gratifications of Twitter

    OpenAIRE

    Anabel Quan-Haase; Kim Martin; Lori McCay-Peet

    2015-01-01

    Big Data research is currently split on whether and to what extent Twitter can be characterized as an informational or social network. We contribute to this line of inquiry through an investigation of digital humanities (DH) scholars’ uses and gratifications of Twitter. We conducted a thematic analysis of 25 semi-structured interview transcripts to learn about these scholars’ professional use of Twitter. Our findings show that Twitter is considered a critical tool for informal communication w...

  7. A Quantitative Analysis of Cell Tower Trace Data for Understanding Human Mobility and Mobile Networks

    OpenAIRE

    Walfield, Neal,; Griffin, John Linwood; Grothoff, Christian

    2016-01-01

    International audience; This paper provides insights into human mobility by analyzing cell tower traces. Cell tower trace data is an attractive method for studying mobility as the data can be collected in an energy-efficient and privacy-preserving way. Our new data set is useful for confirming or determining fundamental mobility parameters and for understanding mobile networks. In particular, we identify patterns in the data that would seem characteristic for particular behaviors, such as tra...

  8. Deep Recurrent Neural Network for Mobile Human Activity Recognition with High Throughput

    OpenAIRE

    Inoue, Masaya; Inoue, Sozo; Nishida, Takeshi

    2016-01-01

    In this paper, we propose a method of human activity recognition with high throughput from raw accelerometer data applying a deep recurrent neural network (DRNN), and investigate various architectures and its combination to find the best parameter values. The "high throughput" refers to short time at a time of recognition. We investigated various parameters and architectures of the DRNN by using the training dataset of 432 trials with 6 activity classes from 7 people. The maximum recognition ...

  9. Diffusion on Networks and Diffusion Weighted NMR of the Human Lung

    DEFF Research Database (Denmark)

    Buhl, Niels

    2011-01-01

    been studied by many authors within the mathematical and physical communities. Here we use ideas from both of those fields to develop three simple and easy to use expressions for the diffusion propagator, i.e., the fundamental solution of the diffusion equation, on general metric graphs with equal...... application of the above mentioned theory, given that the human lung consists of a large network of bifurcating tube like airways. 90-95% of the gas in a human lung resides in the ~30000 pulmonary acini, each of these consists of ~500 airways, which are connected as the edges in a binary tree. We model...

  10. Impact of Ethnic Group on Human Emotion Recognition Using Backpropagation Neural Network

    Directory of Open Access Journals (Sweden)

    Nabil M. Hewahi

    2011-12-01

    Full Text Available We claim that knowing the ethnic group of human would increase the accuracy of the emotion recognition. This is due to the difference between the face appearances and expressions of
    various ethnic groups. To test our claim, we developed an approach based on Artificial Neural Networks (ANN using backpropgation algorithm to recognize the human emotion through facial expressions. Our approach has been tested by using MSDEF dataset, and we found that, there is a positive effect on the accuracy of the recognition of emotion if we consider the ethnic group as input factor while building the recognition model. We achieved 8% improvement rate.

  11. Exploring the human mesenchymal stem cell tubule communication network through electron microscopy.

    Science.gov (United States)

    Valente, Sabrina; Rossi, Roberta; Resta, Leonardo; Pasquinelli, Gianandrea

    2015-04-01

    Cells use several mechanisms to transfer information to other cells. In this study, we describe micro/nanotubular connections and exosome-like tubule fragments in multipotent mesenchymal stem cells (MSCs) from human arteries. Scanning and transmission electron microscopy allowed characterization of sinusoidal microtubular projections (700 nm average size, 200 µm average length, with bulging mitochondria and actin microfilaments); short, uniform, variously shaped nanotubular projections (100 nm, bidirectional communication); and tubule fragments (50 nm). This is the first study demonstrating that MSCs from human arteries constitutively interact through an articulate and dynamic tubule network allowing long-range cell to cell communication.

  12. Tracking and Recognition of Multiple Human Targets Moving in a Wireless Pyroelectric Infrared Sensor Network

    Directory of Open Access Journals (Sweden)

    Ji Xiong

    2014-04-01

    Full Text Available With characteristics of low-cost and easy deployment, the distributed wireless pyroelectric infrared sensor network has attracted extensive interest, which aims to make it an alternate infrared video sensor in thermal biometric applications for tracking and identifying human targets. In these applications, effectively processing signals collected from sensors and extracting the features of different human targets has become crucial. This paper proposes the application of empirical mode decomposition and the Hilbert-Huang transform to extract features of moving human targets both in the time domain and the frequency domain. Moreover, the support vector machine is selected as the classifier. The experimental results demonstrate that by using this method the identification rates of multiple moving human targets are around 90%.

  13. A Novel Wearable Sensor-Based Human Activity Recognition Approach Using Artificial Hydrocarbon Networks

    Science.gov (United States)

    Ponce, Hiram; Martínez-Villaseñor, María de Lourdes; Miralles-Pechuán, Luis

    2016-01-01

    Human activity recognition has gained more interest in several research communities given that understanding user activities and behavior helps to deliver proactive and personalized services. There are many examples of health systems improved by human activity recognition. Nevertheless, the human activity recognition classification process is not an easy task. Different types of noise in wearable sensors data frequently hamper the human activity recognition classification process. In order to develop a successful activity recognition system, it is necessary to use stable and robust machine learning techniques capable of dealing with noisy data. In this paper, we presented the artificial hydrocarbon networks (AHN) technique to the human activity recognition community. Our artificial hydrocarbon networks novel approach is suitable for physical activity recognition, noise tolerance of corrupted data sensors and robust in terms of different issues on data sensors. We proved that the AHN classifier is very competitive for physical activity recognition and is very robust in comparison with other well-known machine learning methods. PMID:27399696

  14. Human Environmental Disease Network: A computational model to assess toxicology of contaminants.

    Science.gov (United States)

    Taboureau, Olivier; Audouze, Karine

    2017-01-01

    During the past decades, many epidemiological, toxicological and biological studies have been performed to assess the role of environmental chemicals as potential toxicants associated with diverse human disorders. However, the relationships between diseases based on chemical exposure rarely have been studied by computational biology. We developed a human environmental disease network (EDN) to explore and suggest novel disease-disease and chemical-disease relationships. The presented scored EDN model is built upon the integration of systems biology and chemical toxicology using information on chemical contaminants and their disease relationships reported in the TDDB database. The resulting human EDN takes into consideration the level of evidence of the toxicant-disease relationships, allowing inclusion of some degrees of significance in the disease-disease associations. Such a network can be used to identify uncharacterized connections between diseases. Examples are discussed for type 2 diabetes (T2D). Additionally, this computational model allows confirmation of already known links between chemicals and diseases (e.g., between bisphenol A and behavioral disorders) and also reveals unexpected associations between chemicals and diseases (e.g., between chlordane and olfactory alteration), thus predicting which chemicals may be risk factors to human health. The proposed human EDN model allows exploration of common biological mechanisms of diseases associated with chemical exposure, helping us to gain insight into disease etiology and comorbidity. This computational approach is an alternative to animal testing supporting the 3R concept.

  15. Human Fetal Brain Connectome: Structural Network Development from Middle Fetal Stage to Birth.

    Science.gov (United States)

    Song, Limei; Mishra, Virendra; Ouyang, Minhui; Peng, Qinmu; Slinger, Michelle; Liu, Shuwei; Huang, Hao

    2017-01-01

    Complicated molecular and cellular processes take place in a spatiotemporally heterogeneous and precisely regulated pattern in the human fetal brain, yielding not only dramatic morphological and microstructural changes, but also macroscale connectomic transitions. As the underlying substrate of the fetal brain structural network, both dynamic neuronal migration pathways and rapid developing fetal white matter (WM) fibers could fundamentally reshape early fetal brain connectome. Quantifying structural connectome development can not only shed light on the brain reconfiguration in this critical yet rarely studied developmental period, but also reveal alterations of the connectome under neuropathological conditions. However, transition of the structural connectome from the mid-fetal stage to birth is not yet known. The contribution of different types of neural fibers to the structural network in the mid-fetal brain is not known, either. In this study, diffusion tensor magnetic resonance imaging (DT-MRI or DTI) of 10 fetal brain specimens at the age of 20 postmenstrual weeks (PMW), 12 in vivo brains at 35 PMW, and 12 in vivo brains at term (40 PMW) were acquired. The structural connectome of each brain was established with evenly parcellated cortical regions as network nodes and traced fiber pathways based on DTI tractography as network edges. Two groups of fibers were categorized based on the fiber terminal locations in the cerebral wall in the 20 PMW fetal brains. We found that fetal brain networks become stronger and more efficient during 20-40 PMW. Furthermore, network strength and global efficiency increase more rapidly during 20-35 PMW than during 35-40 PMW. Visualization of the whole brain fiber distribution by the lengths suggested that the network reconfiguration in this developmental period could be associated with a significant increase of major long association WM fibers. In addition, non-WM neural fibers could be a major contributor to the structural

  16. A Flexible Approach for Human Activity Recognition Using Artificial Hydrocarbon Networks

    Science.gov (United States)

    Ponce, Hiram; Miralles-Pechuán, Luis; Martínez-Villaseñor, María de Lourdes

    2016-01-01

    Physical activity recognition based on sensors is a growing area of interest given the great advances in wearable sensors. Applications in various domains are taking advantage of the ease of obtaining data to monitor personal activities and behavior in order to deliver proactive and personalized services. Although many activity recognition systems have been developed for more than two decades, there are still open issues to be tackled with new techniques. We address in this paper one of the main challenges of human activity recognition: Flexibility. Our goal in this work is to present artificial hydrocarbon networks as a novel flexible approach in a human activity recognition system. In order to evaluate the performance of artificial hydrocarbon networks based classifier, experimentation was designed for user-independent, and also for user-dependent case scenarios. Our results demonstrate that artificial hydrocarbon networks classifier is flexible enough to be used when building a human activity recognition system with either user-dependent or user-independent approaches. PMID:27792136

  17. Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Vipin Narang

    Full Text Available Human gene regulatory networks (GRN can be difficult to interpret due to a tangle of edges interconnecting thousands of genes. We constructed a general human GRN from extensive transcription factor and microRNA target data obtained from public databases. In a subnetwork of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells, we benchmarked automated algorithms for identifying core regulatory genes (transcription factors and microRNAs. Among these algorithms, we identified K-core decomposition, pagerank and betweenness centrality algorithms as the most effective for discovering core regulatory genes in the network evaluated based on previously known roles of these genes in MCF-7 biology as well as in their ability to explain the up or down expression status of up to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organizing the GRN in an easier to interpret layered hierarchy where more influential regulatory genes percolate towards the inner layers. The integrated human gene and miRNA network and software used in this study are provided as supplementary materials (S1 Data accompanying this manuscript.

  18. Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks.

    Science.gov (United States)

    Narang, Vipin; Ramli, Muhamad Azfar; Singhal, Amit; Kumar, Pavanish; de Libero, Gennaro; Poidinger, Michael; Monterola, Christopher

    2015-01-01

    Human gene regulatory networks (GRN) can be difficult to interpret due to a tangle of edges interconnecting thousands of genes. We constructed a general human GRN from extensive transcription factor and microRNA target data obtained from public databases. In a subnetwork of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells, we benchmarked automated algorithms for identifying core regulatory genes (transcription factors and microRNAs). Among these algorithms, we identified K-core decomposition, pagerank and betweenness centrality algorithms as the most effective for discovering core regulatory genes in the network evaluated based on previously known roles of these genes in MCF-7 biology as well as in their ability to explain the up or down expression status of up to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organizing the GRN in an easier to interpret layered hierarchy where more influential regulatory genes percolate towards the inner layers. The integrated human gene and miRNA network and software used in this study are provided as supplementary materials (S1 Data) accompanying this manuscript.

  19. Identification of putative drug targets for human sperm-egg interaction defect using protein network approach.

    Science.gov (United States)

    Sabetian, Soudabeh; Shamsir, Mohd Shahir

    2015-07-18

    Sperm-egg interaction defect is a significant cause of in-vitro fertilization failure for infertile cases. Numerous molecular interactions in the form of protein-protein interactions mediate the sperm-egg membrane interaction process. Recent studies have demonstrated that in addition to experimental techniques, computational methods, namely protein interaction network approach, can address protein-protein interactions between human sperm and egg. Up to now, no drugs have been detected to treat sperm-egg interaction disorder, and the initial step in drug discovery research is finding out essential proteins or drug targets for a biological process. The main purpose of this study is to identify putative drug targets for human sperm-egg interaction deficiency and consider if the detected essential proteins are targets for any known drugs using protein-protein interaction network and ingenuity pathway analysis. We have created human sperm-egg protein interaction networks with high confidence, including 106 nodes and 415 interactions. Through topological analysis of the network with calculation of some metrics, such as connectivity and betweenness centrality, we have identified 13 essential proteins as putative drug targets. The potential drug targets are from integrins, fibronectins, epidermal growth factor receptors, collagens and tetraspanins protein families. We evaluated these targets by ingenuity pathway analysis, and the known drugs for the targets have been detected, and the possible effective role of the drugs on sperm-egg interaction defect has been considered. These results showed that the drugs ocriplasmin (Jetrea©), gefitinib (Iressa©), erlotinib hydrochloride (Tarceva©), clingitide, cetuximab (Erbitux©) and panitumumab (Vectibix©) are possible candidates for efficacy testing for the treatment of sperm-egg interaction deficiency. Further experimental validation can be carried out to confirm these results. We have identified the first potential list of

  20. Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain.

    Science.gov (United States)

    Spiegler, Andreas; Hansen, Enrique C A; Bernard, Christophe; McIntosh, Anthony R; Jirsa, Viktor K

    2016-01-01

    When the brain is stimulated, for example, by sensory inputs or goal-oriented tasks, the brain initially responds with activities in specific areas. The subsequent pattern formation of functional networks is constrained by the structural connectivity (SC) of the brain. The extent to which information is processed over short- or long-range SC is unclear. Whole-brain models based on long-range axonal connections, for example, can partly describe measured functional connectivity dynamics at rest. Here, we study the effect of SC on the network response to stimulation. We use a human whole-brain network model comprising long- and short-range connections. We systematically activate each cortical or thalamic area, and investigate the network response as a function of its short- and long-range SC. We show that when the brain is operating at the edge of criticality, stimulation causes a cascade of network recruitments, collapsing onto a smaller space that is partly constrained by SC. We found both short- and long-range SC essential to reproduce experimental results. In particular, the stimulation of specific areas results in the activation of one or more resting-state networks. We suggest that the stimulus-induced brain activity, which may indicate information and cognitive processing, follows specific routes imposed by structural networks explaining the emergence of functional networks. We provide a lookup table linking stimulation targets and functional network activations, which potentially can be useful in diagnostics and treatments with brain stimulation.

  1. A network biology approach to understanding the importance of chameleon proteins in human physiology and pathology.

    Science.gov (United States)

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Marashi, Sayed-Amir

    2017-02-01

    Chameleon proteins are proteins which include sequences that can adopt α-helix-β-strand (HE-chameleon) or α-helix-coil (HC-chameleon) or β-strand-coil (CE-chameleon) structures to operate their crucial biological functions. In this study, using a network-based approach, we examined the chameleon proteins to give a better knowledge on these proteins. We focused on proteins with identical chameleon sequences with more than or equal to seven residues long in different PDB entries, which adopt HE-chameleon, HC-chameleon, and CE-chameleon structures in the same protein. One hundred and ninety-one human chameleon proteins were identified via our in-house program. Then, protein-protein interaction (PPI) networks, Gene ontology (GO) enrichment, disease network, and pathway enrichment analyses were performed for our derived data set. We discovered that there are chameleon sequences which reside in protein-protein interaction regions between two proteins critical for their dual function. Analysis of the PPI networks for chameleon proteins introduced five hub proteins, namely TP53, EGFR, HSP90AA1, PPARA, and HIF1A, which were presented in four PPI clusters. The outcomes demonstrate that the chameleon regions are in critical domains of these proteins and are important in the development and treatment of human cancers. The present report is the first network-based functional study of chameleon proteins using computational approaches and might provide a new perspective for understanding the mechanisms of diseases helping us in developing new medical therapies along with discovering new proteins with chameleon properties which are highly important in cancer.

  2. Architecture of the human interactome defines protein communities and disease networks.

    Science.gov (United States)

    Huttlin, Edward L; Bruckner, Raphael J; Paulo, Joao A; Cannon, Joe R; Ting, Lily; Baltier, Kurt; Colby, Greg; Gebreab, Fana; Gygi, Melanie P; Parzen, Hannah; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Pontano-Vaites, Laura; Swarup, Sharan; White, Anne E; Schweppe, Devin K; Rad, Ramin; Erickson, Brian K; Obar, Robert A; Guruharsha, K G; Li, Kejie; Artavanis-Tsakonas, Spyros; Gygi, Steven P; Harper, J Wade

    2017-05-25

    The physiology of a cell can be viewed as the product of thousands of proteins acting in concert to shape the cellular response. Coordination is achieved in part through networks of protein-protein interactions that assemble functionally related proteins into complexes, organelles, and signal transduction pathways. Understanding the architecture of the human proteome has the potential to inform cellular, structural, and evolutionary mechanisms and is critical to elucidating how genome variation contributes to disease. Here we present BioPlex 2.0 (Biophysical Interactions of ORFeome-derived complexes), which uses robust affinity purification-mass spectrometry methodology to elucidate protein interaction networks and co-complexes nucleated by more than 25% of protein-coding genes from the human genome, and constitutes, to our knowledge, the largest such network so far. With more than 56,000 candidate interactions, BioPlex 2.0 contains more than 29,000 previously unknown co-associations and provides functional insights into hundreds of poorly characterized proteins while enhancing network-based analyses of domain associations, subcellular localization, and co-complex formation. Unsupervised Markov clustering of interacting proteins identified more than 1,300 protein communities representing diverse cellular activities. Genes essential for cell fitness are enriched within 53 communities representing central cellular functions. Moreover, we identified 442 communities associated with more than 2,000 disease annotations, placing numerous candidate disease genes into a cellular framework. BioPlex 2.0 exceeds previous experimentally derived interaction networks in depth and breadth, and will be a valuable resource for exploring the biology of incompletely characterized proteins and for elucidating larger-scale patterns of proteome organization.

  3. Lifespan Development of the Human Brain Revealed by Large-Scale Network Eigen-Entropy

    Directory of Open Access Journals (Sweden)

    Yiming Fan

    2017-09-01

    Full Text Available Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying functional connectivity patterns of the developing and aging brain. Normal brain development is characterized by continuous and significant network evolution through infancy, childhood, and adolescence, following specific maturational patterns. Normal aging is related to some resting state brain networks disruption, which are associated with certain cognitive decline. It is a big challenge to design an integral metric to track connectome evolution patterns across the lifespan, which is to understand the principles of network organization in the human brain. In this study, we first defined a brain network eigen-entropy (NEE based on the energy probability (EP of each brain node. Next, we used the NEE to characterize the lifespan orderness trajectory of the whole-brain functional connectivity of 173 healthy individuals ranging in age from 7 to 85 years. The results revealed that during the lifespan, the whole-brain NEE exhibited a significant non-linear decrease and that the EP distribution shifted from concentration to wide dispersion, implying orderness enhancement of functional connectome over age. Furthermore, brain regions with significant EP changes from the flourishing (7–20 years to the youth period (23–38 years were mainly located in the right prefrontal cortex and basal ganglia, and were involved in emotion regulation and executive function in coordination with the action of the sensory system, implying that self-awareness and voluntary control performance significantly changed during neurodevelopment. However, the changes from the youth period to middle age (40–59 years were located in the mesial temporal lobe and caudate, which are associated with long-term memory, implying that the memory of the human brain begins to decline with age during this period. Overall, the findings suggested that the human connectome

  4. Targeting the human cancer pathway protein interaction network by structural genomics.

    Science.gov (United States)

    Huang, Yuanpeng Janet; Hang, Dehua; Lu, Long Jason; Tong, Liang; Gerstein, Mark B; Montelione, Gaetano T

    2008-10-01

    Structural genomics provides an important approach for characterizing and understanding systems biology. As a step toward better integrating protein three-dimensional (3D) structural information in cancer systems biology, we have constructed a Human Cancer Pathway Protein Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling pathways and their physical protein-protein interactions. Many well known cancer-associated proteins play central roles as "hubs" or "bottlenecks" in the HCPIN. At least half of HCPIN proteins are either directly associated with or interact with multiple signaling pathways. Although some 45% of residues in these proteins are in sequence segments that meet criteria sufficient for approximate homology modeling (Basic Local Alignment Search Tool (BLAST) E-value structurally covered using high accuracy homology modeling criteria (i.e. BLAST E-value structures. The HCPIN Website provides a comprehensive description of this biomedically important multipathway network together with experimental and homology models of HCPIN proteins useful for cancer biology research. To complement and enrich cancer systems biology, the Northeast Structural Genomics Consortium is targeting >1000 human proteins and protein domains from the HCPIN for sample production and 3D structure determination. The long range goal of this effort is to provide a comprehensive 3D structure-function database for human cancer-associated proteins and protein complexes in the context of their interaction networks. The network-based target selection (BioNet) approach described here is an example of a general strategy for targeting co-functioning proteins by structural genomics projects.

  5. Targeting the Human Cancer Pathway Protein Interaction Network by Structural Genomics*

    Science.gov (United States)

    Huang, Yuanpeng Janet; Hang, Dehua; Lu, Long Jason; Tong, Liang; Gerstein, Mark B.; Montelione, Gaetano T.

    2008-01-01

    Structural genomics provides an important approach for characterizing and understanding systems biology. As a step toward better integrating protein three-dimensional (3D) structural information in cancer systems biology, we have constructed a Human Cancer Pathway Protein Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling pathways and their physical protein-protein interactions. Many well known cancer-associated proteins play central roles as “hubs” or “bottlenecks” in the HCPIN. At least half of HCPIN proteins are either directly associated with or interact with multiple signaling pathways. Although some 45% of residues in these proteins are in sequence segments that meet criteria sufficient for approximate homology modeling (Basic Local Alignment Search Tool (BLAST) E-value structurally covered using high accuracy homology modeling criteria (i.e. BLAST E-value structures. The HCPIN Website provides a comprehensive description of this biomedically important multipathway network together with experimental and homology models of HCPIN proteins useful for cancer biology research. To complement and enrich cancer systems biology, the Northeast Structural Genomics Consortium is targeting >1000 human proteins and protein domains from the HCPIN for sample production and 3D structure determination. The long range goal of this effort is to provide a comprehensive 3D structure-function database for human cancer-associated proteins and protein complexes in the context of their interaction networks. The network-based target selection (BioNet) approach described here is an example of a general strategy for targeting co-functioning proteins by structural genomics projects. PMID:18487680

  6. Classification of human activity on water through micro-Dopplers using deep convolutional neural networks

    Science.gov (United States)

    Kim, Youngwook; Moon, Taesup

    2016-05-01

    Detecting humans and classifying their activities on the water has significant applications for surveillance, border patrols, and rescue operations. When humans are illuminated by radar signal, they produce micro-Doppler signatures due to moving limbs. There has been a number of research into recognizing humans on land by their unique micro-Doppler signatures, but there is scant research into detecting humans on water. In this study, we investigate the micro-Doppler signatures of humans on water, including a swimming person, a swimming person pulling a floating object, and a rowing person in a small boat. The measured swimming styles were free stroke, backstroke, and breaststroke. Each activity was observed to have a unique micro-Doppler signature. Human activities were classified based on their micro-Doppler signatures. For the classification, we propose to apply deep convolutional neural networks (DCNN), a powerful deep learning technique. Rather than using conventional supervised learning that relies on handcrafted features, we present an alternative deep learning approach. We apply the DCNN, one of the most successful deep learning algorithms for image recognition, directly to a raw micro-Doppler spectrogram of humans on the water. Without extracting any explicit features from the micro-Dopplers, the DCNN can learn the necessary features and build classification boundaries using the training data. We show that the DCNN can achieve accuracy of more than 87.8% for activity classification using 5- fold cross validation.

  7. Continuous Timescale Long-Short Term Memory Neural Network for Human Intent Understanding

    Directory of Open Access Journals (Sweden)

    Zhibin Yu

    2017-08-01

    Full Text Available Understanding of human intention by observing a series of human actions has been a challenging task. In order to do so, we need to analyze longer sequences of human actions related with intentions and extract the context from the dynamic features. The multiple timescales recurrent neural network (MTRNN model, which is believed to be a kind of solution, is a useful tool for recording and regenerating a continuous signal for dynamic tasks. However, the conventional MTRNN suffers from the vanishing gradient problem which renders it impossible to be used for longer sequence understanding. To address this problem, we propose a new model named Continuous Timescale Long-Short Term Memory (CTLSTM in which we inherit the multiple timescales concept into the Long-Short Term Memory (LSTM recurrent neural network (RNN that addresses the vanishing gradient problem. We design an additional recurrent connection in the LSTM cell outputs to produce a time-delay in order to capture the slow context. Our experiments show that the proposed model exhibits better context modeling ability and captures the dynamic features on multiple large dataset classification tasks. The results illustrate that the multiple timescales concept enhances the ability of our model to handle longer sequences related with human intentions and hence proving to be more suitable for complex tasks, such as intention recognition.

  8. Meta-analysis reveals conserved cell cycle transcriptional network across multiple human cell types.

    Science.gov (United States)

    Giotti, Bruno; Joshi, Anagha; Freeman, Tom C

    2017-01-05

    Cell division is central to the physiology and pathology of all eukaryotic organisms. The molecular machinery underpinning the cell cycle has been studied extensively in a number of species and core aspects of it have been found to be highly conserved. Similarly, the transcriptional changes associated with this pathway have been studied in different organisms and different cell types. In each case hundreds of genes have been reported to be regulated, however there seems to be little consensus in the genes identified across different studies. In a recent comparison of transcriptomic studies of the cell cycle in different human cell types, only 96 cell cycle genes were reported to be the same across all studies examined. Here we perform a systematic re-examination of published human cell cycle expression data by using a network-based approach to identify groups of genes with a similar expression profile and therefore function. Two clusters in particular, containing 298 transcripts, showed patterns of expression consistent with cell cycle occurrence across the four human cell types assessed. Our analysis shows that there is a far greater conservation of cell cycle-associated gene expression across human cell types than reported previously, which can be separated into two distinct transcriptional networks associated with the G 1 /S-S and G 2 -M phases of the cell cycle. This work also highlights the benefits of performing a re-analysis on combined datasets.

  9. Multiple human location in a distributed binary pyroelectric infrared sensor network

    Science.gov (United States)

    Yang, Bo; Wei, Qifan; Zhang, Meng

    2017-09-01

    This paper proposes a multi-human locating method for distributed wireless sensor network with binary pyroelectric infrared sensors. The uniformly deployed infrared sensor network consists of one sink node and nine sensor nodes, which can detect infrared information of moving human targets. An anti-logic bearing-crossing location and clustering algorithm is proposed to locate different targets. Firstly, dynamic virtual detection lines are generated based on the angular bisector of sensor's FOV(field of view) and all intersection points of these detection lines are primary measurement points. The location of multi-human targets can be achieved by first clustering the primary measurement points and then assigning these clusters to each target, which can simplify the assignment problem from multiple points to several clusters. Finally an anti-logic primary measurement points filtering method is used to get the location result of each target. Simulation and experimental results have shown that the measurement points can be obtained and assigned to different targets effectively, and our proposed location method can locate and track two human targets well.

  10. Energy-Efficient Crowdsensing of Human Mobility and Signal Levels in Cellular Networks.

    Science.gov (United States)

    Foremski, Paweł; Gorawski, Michał; Grochla, Krzysztof; Polys, Konrad

    2015-09-02

    The paper presents a practical application of the crowdsensing idea to measure human mobility and signal coverage in cellular networks. Currently, virtually everyone is carrying a mobile phone, which may be used as a sensor to gather research data by measuring, e.g., human mobility and radio signal levels. However, many users are unwilling to participate in crowdsensing experiments. This work begins with the analysis of the barriers for engaging people in crowdsensing. A survey showed that people who agree to participate in crowdsensing expect a minimum impact on their battery lifetime and phone usage habits. To address these requirements, this paper proposes an application for measuring the location and signal strength data based on energy-efficient GPS tracking, which allows one to perform the measurements of human mobility and radio signal levels with minimum energy utilization and without any engagement of the user. The method described combines measurements from the accelerometer with effective management of the GPS to monitor the user mobility with the decrease in battery lifetime by approximately 20%. To show the applicability of the proposed platform, the sample results of signal level distribution and coverage maps gathered for an LTE network and representing human mobility are shown.

  11. The Current State of Human Performance Technology: A Citation Network Analysis of "Performance Improvement Quarterly," 1988-2010

    Science.gov (United States)

    Cho, Yonjoo; Jo, Sung Jun; Park, Sunyoung; Kang, Ingu; Chen, Zengguan

    2011-01-01

    This study conducted a citation network analysis (CNA) of human performance technology (HPT) to examine its current state of the field. Previous reviews of the field have used traditional research methods, such as content analysis, survey, Delphi, and citation analysis. The distinctive features of CNA come from using a social network analysis…

  12. Importance of Thickness in Human Cardiomyocyte Network for Effective Electrophysiological Stimulation Using On-Chip Extracellular Microelectrodes

    Science.gov (United States)

    Hamada, Tomoyo; Nomura, Fumimasa; Kaneko, Tomoyuki; Yasuda, Kenji

    2012-06-01

    We have developed a three-dimensionally controlled in vitro human cardiomyocyte network assay for the measurements of drug-induced conductivity changes and the appearance of fatal arrhythmia such as ventricular tachycardia/fibrillation for more precise in vitro predictive cardiotoxicity. To construct an artificial conductance propagation model of a human cardiomyocyte network, first, we examined the cell concentration dependence of the cell network heights and found the existence of a height limit of cell networks, which was double-layer height, whereas the cardiomyocytes were effectively and homogeneously cultivated within the microchamber maintaining their spatial distribution constant and their electrophysiological conductance and propagation were successfully recorded using a microelectrode array set on the bottom of the microchamber. The pacing ability of a cardiomyocyte's electrophysiological response has been evaluated using microelectrode extracellular stimulation, and the stimulation for pacing also successfully regulated the beating frequencies of two-layered cardiomyocyte networks, whereas monolayered cardiomyocyte networks were hardly stimulated by the external electrodes using the two-layered cardiomyocyte stimulation condition. The stability of the lined-up shape of human cardiomyocytes within the rectangularly arranged agarose microchambers was limited for a two-layered cardiomyocyte network because their stronger force generation shrunk those cells after peeling off the substrate. The results indicate the importance of fabrication technology of thickness control of cellular networks for effective extracellular stimulation and the potential concerning thick cardiomyocyte networks for long-term cultivation.

  13. Meta-analysis of inter-species liver co-expression networks elucidates traits associated with common human diseases.

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2009-12-01

    Full Text Available Co-expression networks are routinely used to study human diseases like obesity and diabetes. Systematic comparison of these networks between species has the potential to elucidate common mechanisms that are conserved between human and rodent species, as well as those that are species-specific characterizing evolutionary plasticity. We developed a semi-parametric meta-analysis approach for combining gene-gene co-expression relationships across expression profile datasets from multiple species. The simulation results showed that the semi-parametric method is robust against noise. When applied to human, mouse, and rat liver co-expression networks, our method out-performed existing methods in identifying gene pairs with coherent biological functions. We identified a network conserved across species that highlighted cell-cell signaling, cell-adhesion and sterol biosynthesis as main biological processes represented in genome-wide association study candidate gene sets for blood lipid levels. We further developed a heterogeneity statistic to test for network differences among multiple datasets, and demonstrated that genes with species-specific interactions tend to be under positive selection throughout evolution. Finally, we identified a human-specific sub-network regulated by RXRG, which has been validated to play a different role in hyperlipidemia and Type 2 diabetes between human and mouse. Taken together, our approach represents a novel step forward in integrating gene co-expression networks from multiple large scale datasets to leverage not only common information but also differences that are dataset-specific.

  14. Drug combinatorics and side effect estimation on the signed human drug-target network.

    Science.gov (United States)

    Torres, Núria Ballber; Altafini, Claudio

    2016-08-15

    The mode of action of a drug on its targets can often be classified as being positive (activator, potentiator, agonist, etc.) or negative (inhibitor, blocker, antagonist, etc.). The signed edges of a drug-target network can be used to investigate the combined mechanisms of action of multiple drugs on the ensemble of common targets. In this paper it is shown that for the signed human drug-target network the majority of drug pairs tend to have synergistic effects on the common targets, i.e., drug pairs tend to have modes of action with the same sign on most of the shared targets, especially for the principal pharmacological targets of a drug. Methods are proposed to compute this synergism, as well as to estimate the influence of the drugs on the side effect of another drug. Enriching a drug-target network with information of functional nature like the sign of the interactions allows to explore in a systematic way a series of network properties of key importance in the context of computational drug combinatorics.

  15. Large-scale identification of human protein function using topological features of interaction network

    Science.gov (United States)

    Li, Zhanchao; Liu, Zhiqing; Zhong, Wenqian; Huang, Menghua; Wu, Na; Xie, Yun; Dai, Zong; Zou, Xiaoyong

    2016-11-01

    The annotation of protein function is a vital step to elucidate the essence of life at a molecular level, and it is also meritorious in biomedical and pharmaceutical industry. Developments of sequencing technology result in constant expansion of the gap between the number of the known sequences and their functions. Therefore, it is indispensable to develop a computational method for the annotation of protein function. Herein, a novel method is proposed to identify protein function based on the weighted human protein-protein interaction network and graph theory. The network topology features with local and global information are presented to characterise proteins. The minimum redundancy maximum relevance algorithm is used to select 227 optimized feature subsets and support vector machine technique is utilized to build the prediction models. The performance of current method is assessed through 10-fold cross-validation test, and the range of accuracies is from 67.63% to 100%. Comparing with other annotation methods, the proposed way possesses a 50% improvement in the predictive accuracy. Generally, such network topology features provide insights into the relationship between protein functions and network architectures. The source code of Matlab is freely available on request from the authors.

  16. Evolutionary and Topological Properties of Genes and Community Structures in Human Gene Regulatory Networks.

    Science.gov (United States)

    Szedlak, Anthony; Smith, Nicholas; Liu, Li; Paternostro, Giovanni; Piermarocchi, Carlo

    2016-06-01

    The diverse, specialized genes present in today's lifeforms evolved from a common core of ancient, elementary genes. However, these genes did not evolve individually: gene expression is controlled by a complex network of interactions, and alterations in one gene may drive reciprocal changes in its proteins' binding partners. Like many complex networks, these gene regulatory networks (GRNs) are composed of communities, or clusters of genes with relatively high connectivity. A deep understanding of the relationship between the evolutionary history of single genes and the topological properties of the underlying GRN is integral to evolutionary genetics. Here, we show that the topological properties of an acute myeloid leukemia GRN and a general human GRN are strongly coupled with its genes' evolutionary properties. Slowly evolving ("cold"), old genes tend to interact with each other, as do rapidly evolving ("hot"), young genes. This naturally causes genes to segregate into community structures with relatively homogeneous evolutionary histories. We argue that gene duplication placed old, cold genes and communities at the center of the networks, and young, hot genes and communities at the periphery. We demonstrate this with single-node centrality measures and two new measures of efficiency, the set efficiency and the interset efficiency. We conclude that these methods for studying the relationships between a GRN's community structures and its genes' evolutionary properties provide new perspectives for understanding evolutionary genetics.

  17. Three-dimensional functional human neuronal networks in uncompressed low-density electrospun fiber scaffolds.

    Science.gov (United States)

    Jakobsson, Albin; Ottosson, Maximilian; Zalis, Marina Castro; O'Carroll, David; Johansson, Ulrica Englund; Johansson, Fredrik

    2017-05-01

    We demonstrate an artificial three-dimensional (3D) electrical active human neuronal network system, by the growth of brain neural progenitors in highly porous low density electrospun poly-ε-caprolactone (PCL) fiber scaffolds. In neuroscience research cell-based assays are important experimental instruments for studying neuronal function in health and disease. Traditional cell culture at 2D-surfaces induces abnormal cell-cell contacts and network formation. Hence, there is a tremendous need to explore in vivo-resembling 3D neural cell culture approaches. We present an improved electrospinning method for fabrication of scaffolds that promote neuronal differentiation into highly 3D integrated networks, formation of inhibitory and excitatory synapses and extensive neurite growth. Notably, in 3D scaffolds in vivo-resembling intermixed neuronal and glial cell network were formed, whereas in parallel 2D cultures a neuronal cell layer grew separated from an underlying glial cell layer. Hence, the use of the 3D cell assay presented will most likely provide more physiological relevant results. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Gene promoter evolution targets the center of the human protein interaction network.

    Directory of Open Access Journals (Sweden)

    Jordi Planas

    Full Text Available Assessing the contribution of promoters and coding sequences to gene evolution is an important step toward discovering the major genetic determinants of human evolution. Many specific examples have revealed the evolutionary importance of cis-regulatory regions. However, the relative contribution of regulatory and coding regions to the evolutionary process and whether systemic factors differentially influence their evolution remains unclear. To address these questions, we carried out an analysis at the genome scale to identify signatures of positive selection in human proximal promoters. Next, we examined whether genes with positively selected promoters (Prom+ genes show systemic differences with respect to a set of genes with positively selected protein-coding regions (Cod+ genes. We found that the number of genes in each set was not significantly different (8.1% and 8.5%, respectively. Furthermore, a functional analysis showed that, in both cases, positive selection affects almost all biological processes and only a few genes of each group are located in enriched categories, indicating that promoters and coding regions are not evolutionarily specialized with respect to gene function. On the other hand, we show that the topology of the human protein network has a different influence on the molecular evolution of proximal promoters and coding regions. Notably, Prom+ genes have an unexpectedly high centrality when compared with a reference distribution (P=0.008, for Eigenvalue centrality. Moreover, the frequency of Prom+ genes increases from the periphery to the center of the protein network (P=0.02, for the logistic regression coefficient. This means that gene centrality does not constrain the evolution of proximal promoters, unlike the case with coding regions, and further indicates that the evolution of proximal promoters is more efficient in the center of the protein network than in the periphery. These results show that proximal promoters

  19. Gene Promoter Evolution Targets the Center of the Human Protein Interaction Network

    Science.gov (United States)

    Planas, Jordi; Serrat, Josep M.

    2010-01-01

    Assessing the contribution of promoters and coding sequences to gene evolution is an important step toward discovering the major genetic determinants of human evolution. Many specific examples have revealed the evolutionary importance of cis-regulatory regions. However, the relative contribution of regulatory and coding regions to the evolutionary process and whether systemic factors differentially influence their evolution remains unclear. To address these questions, we carried out an analysis at the genome scale to identify signatures of positive selection in human proximal promoters. Next, we examined whether genes with positively selected promoters (Prom+ genes) show systemic differences with respect to a set of genes with positively selected protein-coding regions (Cod+ genes). We found that the number of genes in each set was not significantly different (8.1% and 8.5%, respectively). Furthermore, a functional analysis showed that, in both cases, positive selection affects almost all biological processes and only a few genes of each group are located in enriched categories, indicating that promoters and coding regions are not evolutionarily specialized with respect to gene function. On the other hand, we show that the topology of the human protein network has a different influence on the molecular evolution of proximal promoters and coding regions. Notably, Prom+ genes have an unexpectedly high centrality when compared with a reference distribution (P = 0.008, for Eigenvalue centrality). Moreover, the frequency of Prom+ genes increases from the periphery to the center of the protein network (P = 0.02, for the logistic regression coefficient). This means that gene centrality does not constrain the evolution of proximal promoters, unlike the case with coding regions, and further indicates that the evolution of proximal promoters is more efficient in the center of the protein network than in the periphery. These results show that proximal promoters have

  20. Neuronal Network Pharmacodynamics of GABAergic Modulation in the Human Cortex Determined Using Pharmaco-Magnetoencephalography

    Science.gov (United States)

    Hall, Stephen D; Barnes, Gareth R; Furlong, Paul L; Seri, Stefano; Hillebrand, Arjan

    2010-01-01

    Neuronal network oscillations are a unifying phenomenon in neuroscience research, with comparable measurements across scales and species. Cortical oscillations are of central importance in the characterization of neuronal network function in health and disease and are influential in effective drug development. Whilst animal in vitro and in vivo electrophysiology is able to characterize pharmacologically induced modulations in neuronal activity, present human counterparts have spatial and temporal limitations. Consequently, the potential applications for a human equivalent are extensive. Here, we demonstrate a novel implementation of contemporary neuroimaging methods called pharmaco-magnetoencephalography. This approach determines the spatial profile of neuronal network oscillatory power change across the cortex following drug administration and reconstructs the time course of these modulations at focal regions of interest. As a proof of concept, we characterize the nonspecific GABAergic modulator diazepam, which has a broad range of therapeutic applications. We demonstrate that diazepam variously modulates θ (4–7 Hz), α (7–14 Hz), β (15–25 Hz), and γ (30–80 Hz) frequency oscillations in specific regions of the cortex, with a pharmacodynamic profile consistent with that of drug uptake. We examine the relevance of these results with regard to the spatial and temporal observations from other modalities and the various therapeutic consequences of diazepam and discuss the potential applications of such an approach in terms of drug development and translational neuroscience. Hum Brain Mapp, 2010. © 2009 Wiley-Liss, Inc. PMID:19937723

  1. Network Thermodynamic Curation of Human and Yeast Genome-Scale Metabolic Models

    Science.gov (United States)

    Martínez, Verónica S.; Quek, Lake-Ee; Nielsen, Lars K.

    2014-01-01

    Genome-scale models are used for an ever-widening range of applications. Although there has been much focus on specifying the stoichiometric matrix, the predictive power of genome-scale models equally depends on reaction directions. Two-thirds of reactions in the two eukaryotic reconstructions Homo sapiens Recon 1 and Yeast 5 are specified as irreversible. However, these specifications are mainly based on biochemical textbooks or on their similarity to other organisms and are rarely underpinned by detailed thermodynamic analysis. In this study, a to our knowledge new workflow combining network-embedded thermodynamic and flux variability analysis was used to evaluate existing irreversibility constraints in Recon 1 and Yeast 5 and to identify new ones. A total of 27 and 16 new irreversible reactions were identified in Recon 1 and Yeast 5, respectively, whereas only four reactions were found with directions incorrectly specified against thermodynamics (three in Yeast 5 and one in Recon 1). The workflow further identified for both models several isolated internal loops that require further curation. The framework also highlighted the need for substrate channeling (in human) and ATP hydrolysis (in yeast) for the essential reaction catalyzed by phosphoribosylaminoimidazole carboxylase in purine metabolism. Finally, the framework highlighted differences in proline metabolism between yeast (cytosolic anabolism and mitochondrial catabolism) and humans (exclusively mitochondrial metabolism). We conclude that network-embedded thermodynamics facilitates the specification and validation of irreversibility constraints in compartmentalized metabolic models, at the same time providing further insight into network properties. PMID:25028891

  2. Integrating social networks and human social motives to achieve social influence at scale.

    Science.gov (United States)

    Contractor, Noshir S; DeChurch, Leslie A

    2014-09-16

    The innovations of science often point to ideas and behaviors that must spread and take root in communities to have impact. Ideas, practices, and behaviors need to go from accepted truths on the part of a few scientists to commonplace beliefs and norms in the minds of the many. Moving from scientific discoveries to public good requires social influence. We introduce a structured influence process (SIP) framework to explain how social networks (i.e., the structure of social influence) and human social motives (i.e., the process of social influence wherein one person's attitudes and behaviors affect another's) are used collectively to enact social influence within a community. The SIP framework advances the science of scientific communication by positing social influence events that consider both the "who" and the "how" of social influence. This framework synthesizes core ideas from two bodies of research on social influence. The first is network research on social influence structures, which identifies who are the opinion leaders and who among their network of peers shapes their attitudes and behaviors. The second is research on social influence processes in psychology, which explores how human social motives such as the need for accuracy or the need for affiliation stimulate behavior change. We illustrate the practical implications of the SIP framework by applying it to the case of reducing neonatal mortality in India.

  3. Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain.

    Science.gov (United States)

    Spreng, R Nathan; Sepulcre, Jorge; Turner, Gary R; Stevens, W Dale; Schacter, Daniel L

    2013-01-01

    Human cognition is increasingly characterized as an emergent property of interactions among distributed, functionally specialized brain networks. We recently demonstrated that the antagonistic "default" and "dorsal attention" networks--subserving internally and externally directed cognition, respectively--are modulated by a third "frontoparietal control" network that flexibly couples with either network depending on task domain. However, little is known about the intrinsic functional architecture underlying this relationship. We used graph theory to analyze network properties of intrinsic functional connectivity within and between these three large-scale networks. Task-based activation from three independent studies were used to identify reliable brain regions ("nodes") of each network. We then examined pairwise connections ("edges") between nodes, as defined by resting-state functional connectivity MRI. Importantly, we used a novel bootstrap resampling procedure to determine the reliability of graph edges. Furthermore, we examined both full and partial correlations. As predicted, there was a higher degree of integration within each network than between networks. Critically, whereas the default and dorsal attention networks shared little positive connectivity with one another, the frontoparietal control network showed a high degree of between-network interconnectivity with each of these networks. Furthermore, we identified nodes within the frontoparietal control network of three different types--default-aligned, dorsal attention-aligned, and dual-aligned--that we propose play dissociable roles in mediating internetwork communication. The results provide evidence consistent with the idea that the frontoparietal control network plays a pivotal gate-keeping role in goal-directed cognition, mediating the dynamic balance between default and dorsal attention networks.

  4. Ecology drives a global network of gene exchange connecting the human microbiome.

    Science.gov (United States)

    Smillie, Chris S; Smith, Mark B; Friedman, Jonathan; Cordero, Otto X; David, Lawrence A; Alm, Eric J

    2011-10-30

    Horizontal gene transfer (HGT), the acquisition of genetic material from non-parental lineages, is known to be important in bacterial evolution. In particular, HGT provides rapid access to genetic innovations, allowing traits such as virulence, antibiotic resistance and xenobiotic metabolism to spread through the human microbiome. Recent anecdotal studies providing snapshots of active gene flow on the human body have highlighted the need to determine the frequency of such recent transfers and the forces that govern these events. Here we report the discovery and characterization of a vast, human-associated network of gene exchange, large enough to directly compare the principal forces shaping HGT. We show that this network of 10,770 unique, recently transferred (more than 99% nucleotide identity) genes found in 2,235 full bacterial genomes, is shaped principally by ecology rather than geography or phylogeny, with most gene exchange occurring between isolates from ecologically similar, but geographically separated, environments. For example, we observe 25-fold more HGT between human-associated bacteria than among ecologically diverse non-human isolates (P = 3.0 × 10(-270)). We show that within the human microbiome this ecological architecture continues across multiple spatial scales, functional classes and ecological niches with transfer further enriched among bacteria that inhabit the same body site, have the same oxygen tolerance or have the same ability to cause disease. This structure offers a window into the molecular traits that define ecological niches, insight that we use to uncover sources of antibiotic resistance and identify genes associated with the pathology of meningitis and other diseases.

  5. Human signatures derived from nighttime lights along the Eastern Alpine river network in Austria and Italy

    Directory of Open Access Journals (Sweden)

    S. Ceola

    2016-05-01

    Full Text Available Understanding how human settlements and economic activities are distributed with reference to the geographical location of streams and rivers is of fundamental relevance for several issues, such as flood risk management, drought management related to increased water demands by human population, fluvial ecosystem services, water pollution and water exploitation. Besides the spatial distribution, the evolution in time of the human presence constitutes an additional key question. This work aims at understanding and analysing the spatial and temporal evolution of human settlements and associated economic activity, derived from nighttime lights, in the Eastern Alpine region. Nightlights, available at a fine spatial resolution and for a 22-year period, constitute an excellent data base, which allows one to explore in details human signatures. In this experiment, nightlights are associated to five distinct distance-from-river classes. Our results clearly point out an overall enhancement of human presence across the considered distance classes during the last 22 years, though presenting some differences among the study regions. In particular, the river network delineation, by considering different groups of river pixels based on the Strahler order, is found to play a central role in the identification of nightlight spatio-temporal trends.

  6. Mathematical Modeling and Evaluation of Human Motions in Physical Therapy Using Mixture Density Neural Networks

    Science.gov (United States)

    Vakanski, A; Ferguson, JM; Lee, S

    2016-01-01

    Objective The objective of the proposed research is to develop a methodology for modeling and evaluation of human motions, which will potentially benefit patients undertaking a physical rehabilitation therapy (e.g., following a stroke or due to other medical conditions). The ultimate aim is to allow patients to perform home-based rehabilitation exercises using a sensory system for capturing the motions, where an algorithm will retrieve the trajectories of a patient’s exercises, will perform data analysis by comparing the performed motions to a reference model of prescribed motions, and will send the analysis results to the patient’s physician with recommendations for improvement. Methods The modeling approach employs an artificial neural network, consisting of layers of recurrent neuron units and layers of neuron units for estimating a mixture density function over the spatio-temporal dependencies within the human motion sequences. Input data are sequences of motions related to a prescribed exercise by a physiotherapist to a patient, and recorded with a motion capture system. An autoencoder subnet is employed for reducing the dimensionality of captured sequences of human motions, complemented with a mixture density subnet for probabilistic modeling of the motion data using a mixture of Gaussian distributions. Results The proposed neural network architecture produced a model for sets of human motions represented with a mixture of Gaussian density functions. The mean log-likelihood of observed sequences was employed as a performance metric in evaluating the consistency of a subject’s performance relative to the reference dataset of motions. A publically available dataset of human motions captured with Microsoft Kinect was used for validation of the proposed method. Conclusion The article presents a novel approach for modeling and evaluation of human motions with a potential application in home-based physical therapy and rehabilitation. The described approach

  7. Mathematical Modeling and Evaluation of Human Motions in Physical Therapy Using Mixture Density Neural Networks.

    Science.gov (United States)

    Vakanski, A; Ferguson, J M; Lee, S

    2016-12-01

    The objective of the proposed research is to develop a methodology for modeling and evaluation of human motions, which will potentially benefit patients undertaking a physical rehabilitation therapy (e.g., following a stroke or due to other medical conditions). The ultimate aim is to allow patients to perform home-based rehabilitation exercises using a sensory system for capturing the motions, where an algorithm will retrieve the trajectories of a patient's exercises, will perform data analysis by comparing the performed motions to a reference model of prescribed motions, and will send the analysis results to the patient's physician with recommendations for improvement. The modeling approach employs an artificial neural network, consisting of layers of recurrent neuron units and layers of neuron units for estimating a mixture density function over the spatio-temporal dependencies within the human motion sequences. Input data are sequences of motions related to a prescribed exercise by a physiotherapist to a patient, and recorded with a motion capture system. An autoencoder subnet is employed for reducing the dimensionality of captured sequences of human motions, complemented with a mixture density subnet for probabilistic modeling of the motion data using a mixture of Gaussian distributions. The proposed neural network architecture produced a model for sets of human motions represented with a mixture of Gaussian density functions. The mean log-likelihood of observed sequences was employed as a performance metric in evaluating the consistency of a subject's performance relative to the reference dataset of motions. A publically available dataset of human motions captured with Microsoft Kinect was used for validation of the proposed method. The article presents a novel approach for modeling and evaluation of human motions with a potential application in home-based physical therapy and rehabilitation. The described approach employs the recent progress in the field of

  8. Convolutional neural networks for segmentation and object detection of human semen

    DEFF Research Database (Denmark)

    Nissen, Malte Stær; Krause, Oswin; Almstrup, Kristian

    2017-01-01

    We compare a set of convolutional neural network (CNN) architectures for the task of segmenting and detecting human sperm cells in an image taken from a semen sample. In contrast to previous work, samples are not stained or washed to allow for full sperm quality analysis, making analysis harder due...... are found by using connected components on the CNN predictions. We investigate optimization of a threshold parameter on the size of detected components. Our best network achieves 93.87% precision and 91.89% recall on our test dataset after thresholding outperforming a classical image analysis approach....... to clutter. Our results indicate that training on full images is superior to training on patches when class-skew is properly handled. Full image training including up-sampling during training proves to be beneficial in deep CNNs for pixel wise accuracy and detection performance. Predicted sperm cells...

  9. A Dynamic Network Model to Explain the Development of Excellent Human Performance.

    Science.gov (United States)

    Den Hartigh, Ruud J R; Van Dijk, Marijn W G; Steenbeek, Henderien W; Van Geert, Paul L C

    2016-01-01

    Across different domains, from sports to science, some individuals accomplish excellent levels of performance. For over 150 years, researchers have debated the roles of specific nature and nurture components to develop excellence. In this article, we argue that the key to excellence does not reside in specific underlying components, but rather in the ongoing interactions among the components. We propose that excellence emerges out of dynamic networks consisting of idiosyncratic mixtures of interacting components such as genetic endowment, motivation, practice, and coaching. Using computer simulations we demonstrate that the dynamic network model accurately predicts typical properties of excellence reported in the literature, such as the idiosyncratic developmental trajectories leading to excellence and the highly skewed distributions of productivity present in virtually any achievement domain. Based on this novel theoretical perspective on excellent human performance, this article concludes by suggesting policy implications and directions for future research.

  10. A dynamic network model to explain the development of excellent human performance

    Directory of Open Access Journals (Sweden)

    Ruud J.R. Den Hartigh

    2016-04-01

    Full Text Available Across different domains, from sports to science, some individuals accomplish excellent levels of performance. For over 150 years, researchers have debated the roles of specific nature and nurture components to develop excellence. In this article, we argue that the key to excellence does not reside in specific underlying components, but rather in the ongoing interactions among the components. We propose that excellence emerges out of dynamic networks consisting of idiosyncratic mixtures of interacting components such as genetic endowment, motivation, practice, and coaching. Using computer simulations we demonstrate that the dynamic network model accurately predicts typical properties of excellence reported in the literature, such as the idiosyncratic developmental trajectories leading to excellence and the highly skewed distributions of productivity present in virtually any achievement domain. Based on this novel theoretical perspective on excellent human performance, this article concludes by suggesting policy implications and directions for future research.

  11. A social network analysis of Twitter: Mapping the digital humanities community

    Directory of Open Access Journals (Sweden)

    Martin Grandjean

    2016-12-01

    Full Text Available Defining digital humanities might be an endless debate if we stick to the discussion about the boundaries of this concept as an academic “discipline”. In an attempt to concretely identify this field and its actors, this paper shows that it is possible to analyse them through Twitter, a social media widely used by this “community of practice”. Based on a network analysis of 2,500 users identified as members of this movement, the visualisation of the “who’s following who?” graph allows us to highlight the structure of the network’s relationships, and identify users whose position is particular. Specifically, we show that linguistic groups are key factors to explain clustering within a network whose characteristics look similar to a small world.

  12. Statistical control chart and neural network classification for improving human fall detection

    KAUST Repository

    Harrou, Fouzi

    2017-01-05

    This paper proposes a statistical approach to detect and classify human falls based on both visual data from camera and accelerometric data captured by accelerometer. Specifically, we first use a Shewhart control chart to detect the presence of potential falls by using accelerometric data. Unfortunately, this chart cannot distinguish real falls from fall-like actions, such as lying down. To bypass this difficulty, a neural network classifier is then applied only on the detected cases through visual data. To assess the performance of the proposed method, experiments are conducted on the publicly available fall detection databases: the University of Rzeszow\\'s fall detection (URFD) dataset. Results demonstrate that the detection phase play a key role in reducing the number of sequences used as input into the neural network classifier for classification, significantly reducing computational burden and achieving better accuracy.

  13. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line

    DEFF Research Database (Denmark)

    Suzuki, Harukazu; Forrest, Alistair R R; van Nimwegen, Erik

    2009-01-01

    Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression dynamics in terms of predicted cis-regulatory sites......, we identified the key transcription regulators, their time-dependent activities and target genes. Systematic siRNA knockdown of 52 transcription factors confirmed the roles of individual factors in the regulatory network. Our results indicate that cellular states are constrained by complex networks...... involving both positive and negative regulatory interactions among substantial numbers of transcription factors and that no single transcription factor is both necessary and sufficient to drive the differentiation process....

  14. Prebiotics, faecal transplants and microbial network units to stimulate biodiversity of the human gut microbiome.

    Science.gov (United States)

    Van den Abbeele, Pieter; Verstraete, Willy; El Aidy, Sahar; Geirnaert, Annelies; Van de Wiele, Tom

    2013-07-01

    Accumulating evidence demonstrates the intimate association between human hosts and the gut microbiome. Starting at birth, the sterile gut of the newborn acquires a diverse spectrum of microbes, needed for immunological priming. However, current practices (caesarean sections, use of formula milk) deprive newborns from being exposed to this broad spectrum of microbes. Unnecessary use of antibiotics and excessive hygienic precautions (e.g. natural versus chlorinated drinking water) together with the Western diet further contribute to a decreased microbial diversity in the adult gut. This has been correlated with recurrent Clostridium difficile infection, inflammatory bowel diseases and obesity, among others. A healthy gut microbiome is thus characterized by a diverse network of metabolically interacting microbial members. In this context, we review several existing and novel approaches to manage the gut microbiome. First, prebiotic compounds should be re-defined in the sense that they should enhance the ecological biodiversity rather than stimulating single species. Recent studies highlight that structurally different polysaccharides require specific primary degraders but also enhance a similar network of secondary degraders that benefit from cross-feeding. A faecal transplantation is a second approach to restore biodiversity when the microbiota is severely dysbiosed, with promising results regarding C. difficile-associated disease and obesity-related metabolic syndromes. A final strategy is the introduction of key microbial network units, i.e. pre-organized microbial associations, which strengthen the overall microbial network of the gut microbiome that supports human health. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. An Analysis of Some Highly-Structured Networks of Human Smuggling and Trafficking from Albania and Bulgaria to Belgium

    Directory of Open Access Journals (Sweden)

    Johan Leman

    2006-09-01

    Full Text Available The authors examine the logistic ecology of 30 large-scale networks that were active in human smuggling and trafficking from Albania and Bulgaria to Belgium (1995–2003. Ten networks were studied in greater detail in order to determine three final profiles of networks, based on their use of structural and operational intermediary structures. They are called the “individual infiltration” and the “structural infiltration” human smuggling patterns, and the “violent-control prostitution” trafficking pattern. It should be noted that the business is organized in such a way that the organizers of the logistical support are never inculpated.

  16. A compendium of inborn errors of metabolism mapped onto the human metabolic network.

    Science.gov (United States)

    Sahoo, Swagatika; Franzson, Leifur; Jonsson, Jon J; Thiele, Ines

    2012-10-01

    Inborn errors of metabolism (IEMs) are hereditary metabolic defects, which are encountered in almost all major metabolic pathways occurring in man. Many IEMs are screened for in neonates through metabolomic analysis of dried blood spot samples. To enable the mapping of these metabolomic data onto the published human metabolic reconstruction, we added missing reactions and pathways involved in acylcarnitine (AC) and fatty acid oxidation (FAO) metabolism. Using literary data, we reconstructed an AC/FAO module consisting of 352 reactions and 139 metabolites. When this module was combined with the human metabolic reconstruction, the synthesis of 39 acylcarnitines and 22 amino acids, which are routinely measured, was captured and 235 distinct IEMs could be mapped. We collected phenotypic and clinical features for each IEM enabling comprehensive classification. We found that carbohydrate, amino acid, and lipid metabolism were most affected by the IEMs, while the brain was the most commonly affected organ. Furthermore, we analyzed the IEMs in the context of metabolic network topology to gain insight into common features between metabolically connected IEMs. While many known examples were identified, we discovered some surprising IEM pairs that shared reactions as well as clinical features but not necessarily causal genes. Moreover, we could also re-confirm that acetyl-CoA acts as a central metabolite. This network based analysis leads to further insight of hot spots in human metabolism with respect to IEMs. The presented comprehensive knowledge base of IEMs will provide a valuable tool in studying metabolic changes involved in inherited metabolic diseases.

  17. Wireless Relay Selection in Pocket Switched Networks Based on Spatial Regularity of Human Mobility.

    Science.gov (United States)

    Huang, Jianhui; Cheng, Xiuzhen; Bi, Jingping; Chen, Biao

    2016-01-18

    Pocket switched networks (PSNs) take advantage of human mobility to deliver data. Investigations on real-world trace data indicate that human mobility shows an obvious spatial regularity: a human being usually visits a few places at high frequencies. These most frequently visited places form the home of a node, which is exploited in this paper to design two HomE based Relay selectiOn (HERO) algorithms. Both algorithms input single data copy into the network at any time. In the basic HERO, only the first node encountered by the source and whose home overlaps a destination's home is selected as a relay while the enhanced HERO keeps finding more optimal relay that visits the destination's home with higher probability. The two proposed algorithms only require the relays to exchange the information of their home and/or the visiting frequencies to their home when two nodes meet. As a result, the information update is reduced and there is no global status information that needs to be maintained. This causes light loads on relays because of the low communication cost and storage requirements. Additionally, only simple operations are needed in the two proposed algorithms, resulting in little computation overhead at relays. At last, a theoretical analysis is performed on some key metrics and then the real-world based simulations indicate that the two HERO algorithms are efficient and effective through employing only one or a few relays.

  18. Identification and Analysis of P53-Mediated Competing Endogenous RNA Network in Human Hepatocellular Carcinoma.

    Science.gov (United States)

    Zhang, Yiming; Kang, Ran; Liu, Wenrong; Yang, Yalan; Ding, Ruofan; Huang, Qingqing; Meng, Junhua; Xiong, Lili; Guo, Zhiyun

    2017-01-01

    Recent studies have indicated that long non-coding RNAs (lncRNAs) and mRNA function as competing endogenous RNAs (ceRNAs) that compete to bind to shared microRNA (miRNA) recognition elements (MREs) to perform specific biological functions during tumorigenesis. The tumor suppressor p53 is a master regulator of cancer-related biological processes by acting as a transcription factor to regulate target genes including miRNA and lncRNA. However, the mechanism in human hepatocellular carcinoma and whether p53-mediated RNA targets could form ceRNA network remain unclear. Here, we identified a series of differential expressed miRNAs, lncRNA and mRNA which were potentially regulated by p53 using RNA sequencing in HepG2. Genomic characteristics comparative analysis showed significant differences between mRNAs and lncRNAs. By integrating experimentally confirmed Ago2 and p53 binding sites, we constructed a highly reliable p53-mediated ceRNA network using hypergeometric test. The KEGG pathway enrichment analysis showed that the ceRNA network highly enriched in the cancer or p53-associated signaling pathways. Finally, using betweenness centrality analysis, we identified five master miRNAs (hsa-miR-3620-5p, hsa-miR-3613-3p, hsa-miR-6881-3p, hsa-miR-6087 and hsa-miR-18a-3p) that regulated most of the target RNAs, suggesting these miRNAs play central roles in the whole p53-mediated ceRNAs network. Taken together, our results provide a new regulatory mechanism of p53 networks for future studies in cancer therapeutics.

  19. A functional and structural investigation of the human fronto-basal volitional saccade network.

    Directory of Open Access Journals (Sweden)

    Sebastiaan F W Neggers

    Full Text Available Almost all cortical areas are connected to the subcortical basal ganglia (BG through parallel recurrent inhibitory and excitatory loops, exerting volitional control over automatic behavior. As this model is largely based on non-human primate research, we used high resolution functional MRI and diffusion tensor imaging (DTI to investigate the functional and structural organization of the human (prefrontal cortico-basal network controlling eye movements. Participants performed saccades in darkness, pro- and antisaccades and observed stimuli during fixation. We observed several bilateral functional subdivisions along the precentral sulcus around the human frontal eye fields (FEF: a medial and lateral zone activating for saccades in darkness, a more fronto-medial zone preferentially active for ipsilateral antisaccades, and a large anterior strip along the precentral sulcus activating for visual stimulus presentation during fixation. The supplementary eye fields (SEF were identified along the medial wall containing all aforementioned functions. In the striatum, the BG area receiving almost all cortical input, all saccade related activation was observed in the putamen, previously considered a skeletomotor striatal subdivision. Activation elicited by the cue instructing pro or antisaccade trials was clearest in the medial FEF and right putamen. DTI fiber tracking revealed that the subdivisions of the human FEF complex are mainly connected to the putamen, in agreement with the fMRI findings. The present findings demonstrate that the human FEF has functional subdivisions somewhat comparable to non-human primates. However, the connections to and activation in the human striatum preferentially involve the putamen, not the caudate nucleus as is reported for monkeys. This could imply that fronto-striatal projections for the oculomotor system are fundamentally different between humans and monkeys. Alternatively, there could be a bias in published reports of

  20. [The establishment and application of network human sperm bank management information system].

    Science.gov (United States)

    Ke, Wenhong; Hu, Ronggui; Jiang, Hong

    2004-01-01

    To build network human sperm bank management information system. The system was developed with SQL Server 2000 and Power Builders 8.0. The system consisted of 4 modules: file management, physical check-up and laboratory examination management, sperm examination and freezing management, supply and follows-up management. The system worked by long-distance transmission and real time supervision. The system possesses the advantages of huge information content, great safety and high confidentiality, as well as the functions of long-distance transmission and real time supervision.

  1. Using convolutional neural networks for human activity classification on micro-Doppler radar spectrograms

    Science.gov (United States)

    Jordan, Tyler S.

    2016-05-01

    This paper presents the findings of using convolutional neural networks (CNNs) to classify human activity from micro-Doppler features. An emphasis on activities involving potential security threats such as holding a gun are explored. An automotive 24 GHz radar on chip was used to collect the data and a CNN (normally applied to image classification) was trained on the resulting spectrograms. The CNN achieves an error rate of 1.65 % on classifying running vs. walking, 17.3 % error on armed walking vs. unarmed walking, and 22 % on classifying six different actions.

  2. Trafficking of human ADAM 12-L: retention in the trans-Golgi network

    DEFF Research Database (Denmark)

    Hougaard, S; Loechel, F; Xu, X

    2000-01-01

    We have investigated the trafficking of the membrane-anchored form of human ADAM 12 (ADAM 12-L) fused to a green fluorescence protein tag. Subcellular localization of the protein in transiently transfected cells was determined by fluorescence microscopy and trypsin sensitivity. Full-length ADAM 12...... the cytoplasmic and transmembrane domains, but not the Src homology 3 domain (SH3) binding sites. These results raise the possibility that a trafficking checkpoint in the trans-Golgi network is one of the cellular mechanisms for regulation of ADAM 12-L function, by allowing a rapid release of ADAM 12-L...

  3. Human and mouse mononuclear phagocyte networks: a tale of two species?

    Directory of Open Access Journals (Sweden)

    Gary eReynolds

    2015-06-01

    Full Text Available Dendritic cells (DCs, monocytes and macrophages are a heterogeneous population of mononuclear phagocytes that are involved in antigen processing and presentation to initiate and regulate immune responses to pathogens, vaccines, tumour and tolerance to self. In addition to their afferent sentinel function, DCs and macrophages are also critical as effectors and coordinators of inflammation and homeostasis in peripheral tissues. Harnessing DCs and macrophages for therapeutic purposes has major implications for infectious disease, vaccination, transplantation, tolerance induction, inflammation and cancer immunotherapy. There has been a paradigm shift in our understanding of the developmental origin and function of the cellular constituents of the mononuclear phagocyte system. Significant progress has been made in tandem in both human and mouse mononuclear phagocyte biology. This progress has been accelerated by comparative biology analysis between mouse and human, which has proved to be an exceptionally fruitful strategy to harmonise findings across species. Such analyses have provided unexpected insights and facilitated productive reciprocal and iterative processes to inform our understanding of human and mouse mononuclear phagocytes. In this review, we discuss the strategies, power and utility of comparative biology approaches to integrate recent advances in human and mouse mononuclear phagocyte biology and its potential to drive forward clinical translation of this knowledge. We also present a functional framework on the parallel organisation of human and mouse mononuclear phagocyte networks.

  4. Network Dynamics with BrainX3: A Large-Scale Simulation of the Human Brain Network with Real-Time Interaction

    Directory of Open Access Journals (Sweden)

    Xerxes D. Arsiwalla

    2015-02-01

    Full Text Available BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimulations to observe reverberating network activity, simulate lesion dynamics or implement network analysis functions from a library of graph theoretic measures. BrainX3 can thus be used as a novel immersive platform for real-time exploration and analysis of dynamical activity patterns in brain networks, both at rest or in a task-related state, for discovery of signaling pathways associated to brain function and/or dysfunction and as a tool for virtual neurosurgery. Our results demonstrate these functionalities and shed insight on the dynamics of the resting-state attractor. Specifically, we found that a noisy network seems to favor a low firing attractor state. We also found that the dynamics of a noisy network is less resilient to lesions. Our simulations on TMS perturbations show that even though TMS inhibits most of the network, it also sparsely excites a few regions. This is presumably, due to anti-correlations in the dynamics and suggests that even a lesioned network can show sparsely distributed increased activity compared to healthy resting-state, over specific brain areas.

  5. Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction

    Science.gov (United States)

    Arsiwalla, Xerxes D.; Zucca, Riccardo; Betella, Alberto; Martinez, Enrique; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F. M. J.

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimulations to observe reverberating network activity, simulate lesion dynamics or implement network analysis functions from a library of graph theoretic measures. BrainX3 can thus be used as a novel immersive platform for exploration and analysis of dynamical activity patterns in brain networks, both at rest or in a task-related state, for discovery of signaling pathways associated to brain function and/or dysfunction and as a tool for virtual neurosurgery. Our results demonstrate these functionalities and shed insight on the dynamics of the resting-state attractor. Specifically, we found that a noisy network seems to favor a low firing attractor state. We also found that the dynamics of a noisy network is less resilient to lesions. Our simulations on TMS perturbations show that even though TMS inhibits most of the network, it also sparsely excites a few regions. This is presumably due to anti-correlations in the dynamics and suggests that even a lesioned network can show sparsely distributed increased activity compared to healthy resting-state, over specific brain areas. PMID:25759649

  6. Spatio-Temporal Constrained Human Trajectory Generation from the PIR Motion Detector Sensor Network Data: A Geometric Algebra Approach

    Directory of Open Access Journals (Sweden)

    Zhaoyuan Yu

    2015-12-01

    Full Text Available Passive infrared (PIR motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.

  7. Spatio-Temporal Constrained Human Trajectory Generation from the PIR Motion Detector Sensor Network Data: A Geometric Algebra Approach.

    Science.gov (United States)

    Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian

    2015-12-30

    Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.

  8. A hybrid neural network system for prediction and recognition of promoter regions in human genome.

    Science.gov (United States)

    Chen, Chuan-Bo; Li, Tao

    2005-05-01

    This paper proposes a high specificity and sensitivity algorithm called PromPredictor for recognizing promoter regions in the human genome. PromPredictor extracts compositional features and CpG islands information from genomic sequence, feeding these features as input for a hybrid neural network system (HNN) and then applies the HNN for prediction. It combines a novel promoter recognition model, coding theory, feature selection and dimensionality reduction with machine learning algorithm. Evaluation on Human chromosome 22 was approximately 66% in sensitivity and approximately 48% in specificity. Comparison with two other systems revealed that our method had superior sensitivity and specificity in predicting promoter regions. PromPredictor is written in MATLAB and requires Matlab to run. PromPredictor is freely available at http://www.whtelecom.com/Prompredictor.htm.

  9. Making sense of information in noisy networks: human communication, gossip, and distortion.

    Science.gov (United States)

    Laidre, Mark E; Lamb, Alex; Shultz, Susanne; Olsen, Megan

    2013-01-21

    Information from others can be unreliable. Humans nevertheless act on such information, including gossip, to make various social calculations, thus raising the question of whether individuals can sort through social information to identify what is, in fact, true. Inspired by empirical literature on people's decision-making when considering gossip, we built an agent-based simulation model to examine how well simple decision rules could make sense of information as it propagated through a network. Our simulations revealed that a minimalistic decision-rule 'Bit-wise mode' - which compared information from multiple sources and then sought a consensus majority for each component bit within the message - was consistently the most successful at converging upon the truth. This decision rule attained high relative fitness even in maximally noisy networks, composed entirely of nodes that distorted the message. The rule was also superior to other decision rules regardless of its frequency in the population. Simulations carried out with variable agent memory constraints, different numbers of observers who initiated information propagation, and a variety of network types suggested that the single most important factor in making sense of information was the number of independent sources that agents could consult. Broadly, our model suggests that despite the distortion information is subject to in the real world, it is nevertheless possible to make sense of it based on simple Darwinian computations that integrate multiple sources. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Lifelong learning of human actions with deep neural network self-organization.

    Science.gov (United States)

    Parisi, German I; Tani, Jun; Weber, Cornelius; Wermter, Stefan

    2017-12-01

    Lifelong learning is fundamental in autonomous robotics for the acquisition and fine-tuning of knowledge through experience. However, conventional deep neural models for action recognition from videos do not account for lifelong learning but rather learn a batch of training data with a predefined number of action classes and samples. Thus, there is the need to develop learning systems with the ability to incrementally process available perceptual cues and to adapt their responses over time. We propose a self-organizing neural architecture for incrementally learning to classify human actions from video sequences. The architecture comprises growing self-organizing networks equipped with recurrent neurons for processing time-varying patterns. We use a set of hierarchically arranged recurrent networks for the unsupervised learning of action representations with increasingly large spatiotemporal receptive fields. Lifelong learning is achieved in terms of prediction-driven neural dynamics in which the growth and the adaptation of the recurrent networks are driven by their capability to reconstruct temporally ordered input sequences. Experimental results on a classification task using two action benchmark datasets show that our model is competitive with state-of-the-art methods for batch learning also when a significant number of sample labels are missing or corrupted during training sessions. Additional experiments show the ability of our model to adapt to non-stationary input avoiding catastrophic interference. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Dynamic Network Communication in the Human Functional Connectome Predicts Perceptual Variability in Visual Illusion.

    Science.gov (United States)

    Wang, Zhiwei; Zeljic, Kristina; Jiang, Qinying; Gu, Yong; Wang, Wei; Wang, Zheng

    2018-01-01

    Ubiquitous variability between individuals in visual perception is difficult to standardize and has thus essentially been ignored. Here we construct a quantitative psychophysical measure of illusory rotary motion based on the Pinna-Brelstaff figure (PBF) in 73 healthy volunteers and investigate the neural circuit mechanisms underlying perceptual variation using functional magnetic resonance imaging (fMRI). We acquired fMRI data from a subset of 42 subjects during spontaneous and 3 stimulus conditions: expanding PBF, expanding modified-PBF (illusion-free) and expanding modified-PBF with physical rotation. Brain-wide graph analysis of stimulus-evoked functional connectivity patterns yielded a functionally segregated architecture containing 3 discrete hierarchical networks, commonly shared between rest and stimulation conditions. Strikingly, communication efficiency and strength between 2 networks predominantly located in visual areas robustly predicted individual perceptual differences solely in the illusory stimulus condition. These unprecedented findings demonstrate that stimulus-dependent, not spontaneous, dynamic functional integration between distributed brain networks contributes to perceptual variability in humans. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Modular reorganization of the global network of gene regulatory interactions during perinatal human brain development.

    Science.gov (United States)

    Monzón-Sandoval, Jimena; Castillo-Morales, Atahualpa; Urrutia, Araxi O; Gutierrez, Humberto

    2016-05-12

    During early development of the nervous system, gene expression patterns are known to vary widely depending on the specific developmental trajectories of different structures. Observable changes in gene expression profiles throughout development are determined by an underlying network of precise regulatory interactions between individual genes. Elucidating the organizing principles that shape this gene regulatory network is one of the central goals of developmental biology. Whether the developmental programme is the result of a dynamic driven by a fixed architecture of regulatory interactions, or alternatively, the result of waves of regulatory reorganization is not known. Here we contrast these two alternative models by examining existing expression data derived from the developing human brain in prenatal and postnatal stages. We reveal a sharp change in gene expression profiles at birth across brain areas. This sharp division between foetal and postnatal profiles is not the result of pronounced changes in level of expression of existing gene networks. Instead we demonstrate that the perinatal transition is marked by the widespread regulatory rearrangement within and across existing gene clusters, leading to the emergence of new functional groups. This rearrangement is itself organized into discrete blocks of genes, each targeted by a distinct set of transcriptional regulators and associated to specific biological functions. Our results provide evidence of an acute modular reorganization of the regulatory architecture of the brain transcriptome occurring at birth, reflecting the reassembly of new functional associations required for the normal transition from prenatal to postnatal brain development.

  13. Co-expression Network Approach Reveals Functional Similarities among Diseases Affecting Human Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Kavitha Mukund

    2017-12-01

    Full Text Available Diseases affecting skeletal muscle exhibit considerable heterogeneity in intensity, etiology, phenotypic manifestation and gene expression. Systems biology approaches using network theory, allows for a holistic understanding of functional similarities amongst diseases. Here we propose a co-expression based, network theoretic approach to extract functional similarities from 20 heterogeneous diseases comprising of dystrophinopathies, inflammatory myopathies, neuromuscular, and muscle metabolic diseases. Utilizing this framework we identified seven closely associated disease clusters with 20 disease pairs exhibiting significant correlation (p < 0.05. Mapping the diseases onto a human protein-protein interaction network enabled the inference of a common program of regulation underlying more than half the muscle diseases considered here and referred to as the “protein signature.” Enrichment analysis of 17 protein modules identified as part of this signature revealed a statistically non-random dysregulation of muscle bioenergetic pathways and calcium homeostasis. Further, analysis of mechanistic similarities of less explored significant disease associations [such as between amyotrophic lateral sclerosis (ALS and cerebral palsy (CP] using a proposed “functional module” framework revealed adaptation of the calcium signaling machinery. Integrating drug-gene information into the quantitative framework highlighted the presence of therapeutic opportunities through drug repurposing for diseases affecting the skeletal muscle.

  14. Decoding of Human Movements Based on Deep Brain Local Field Potentials Using Ensemble Neural Networks

    Directory of Open Access Journals (Sweden)

    Mohammad S. Islam

    2017-01-01

    Full Text Available Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs for robust movement decoding of Parkinson’s disease (PD and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value at about 0.729±0.16 for decoding movement from the resting state and about 0.671±0.14 for decoding left and right visually cued movements.

  15. Networks of digital humanities scholars: The informational and social uses and gratifications of Twitter

    Directory of Open Access Journals (Sweden)

    Anabel Quan-Haase

    2015-06-01

    Full Text Available Big Data research is currently split on whether and to what extent Twitter can be characterized as an informational or social network. We contribute to this line of inquiry through an investigation of digital humanities (DH scholars’ uses and gratifications of Twitter. We conducted a thematic analysis of 25 semi-structured interview transcripts to learn about these scholars’ professional use of Twitter. Our findings show that Twitter is considered a critical tool for informal communication within DH invisible colleges, functioning at varying levels as both an information network (learning to ‘Twitter’ and maintaining awareness and a social network (imagining audiences and engaging other digital humanists. We find that Twitter follow relationships reflect common academic interests and are closely tied to scholars’ pre-existing social ties and conference or event co-attendance. The concept of the invisible college continues to be relevant but requires revisiting. The invisible college formed on Twitter is messy, consisting of overlapping social contexts (professional, personal and public, scholars with different habits of engagement, and both formal and informal ties. Our research illustrates the value of using multiple methods to explore the complex questions arising from Big Data studies and points toward future research that could implement Big Data techniques on a small scale, focusing on sub-topics or emerging fields, to expose the nature of scholars’ invisible colleges made visible on Twitter.

  16. Self-Healing Sensors Based on Dual Noncovalent Network Elastomer for Human Motion Monitoring.

    Science.gov (United States)

    Cao, Jie; Zhang, Xu; Lu, Canhui; Luo, Yongyue; Zhang, Xinxing

    2017-12-01

    Nowadays, it is still a challenge to prepare flexible sensors with great mechanical strength, stretchability, high sensitivities, and excellent self-healing (SH) abilities. Herein, a nanostructured supramolecular elastomer is reported with a dual noncovalent network of hydrogen bonding interactions and metal-ligand coordination. The resultant flexible sensor presents ultrafast (30 s), autonomous, and repeatable SH ability with high healing efficiency (80% after the 3rd healing process), as well as enhanced mechanical properties. Benefitting from the 3D conductive network, the sensor exhibits high electrical sensitivity and very low detection limit (0.2% strain). As a result, the flexible sensor is capable of precisely monitoring small strains of human motions (such as vocal-cord vibration), and exhibits reproducible and recognizable current signals after cutting-healing process. The dual noncovalent network design proposed here opens up a new opportunity for scalable fabrication of high performance SH sensors and other electronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Human Age Recognition by Electrocardiogram Signal Based on Artificial Neural Network

    Science.gov (United States)

    Dasgupta, Hirak

    2016-12-01

    The objective of this work is to make a neural network function approximation model to detect human age from the electrocardiogram (ECG) signal. The input vectors of the neural network are the Katz fractal dimension of the ECG signal, frequencies in the QRS complex, male or female (represented by numeric constant) and the average of successive R-R peak distance of a particular ECG signal. The QRS complex has been detected by short time Fourier transform algorithm. The successive R peak has been detected by, first cutting the signal into periods by auto-correlation method and then finding the absolute of the highest point in each period. The neural network used in this problem consists of two layers, with Sigmoid neuron in the input and linear neuron in the output layer. The result shows the mean of errors as -0.49, 1.03, 0.79 years and the standard deviation of errors as 1.81, 1.77, 2.70 years during training, cross validation and testing with unknown data sets, respectively.

  18. Trabecular network arrangement within the human patella: how osteoarthritis remodels the 3D trabecular structure

    Science.gov (United States)

    Hoechel, Sebastian; Deyhle, Hans; Toranelli, Mireille; Müller-Gerbl, Magdalena

    2016-10-01

    Following the principles of "morphology reveals biomechanics", the anatomical structure of the cartilage-osseous interface and the supporting trabecular network show defined adaptation in their architectural properties to physiological loading. In case of a faulty relationship, the ability to support the load diminishes and the onset of osteoarthritis (OA) may arise and disturb the balanced formation and resorption processes. To describe and quantify the changes occurring, 10 human OA patellae were analysed concerning the architectural parameters of the trabecular network within the first five mms by the evaluation of 3Dmicro-CT datasets. The analysed OA-samples showed a strong irregularity for all trabecular parameters across the trabecular network, no regularity in parameter distribution was found. In general, we saw a decrease of material in the OA population as BV/TV, BS/TV, Tb.N and Tb.Th were decreased and the spacing increased. The development into depth showed a logarithmic dependency, which revealed the greatest difference for all parameters within the first mm in comparison to the physiologic samples. The differences decreased towards the 5th mm. The interpretation of the mathematic dependency leads to the conclusion that the main impact of OA is beneath the subchondral bone plate (SBP) and lessens with depth. Next to the clear difference in material, the architectural arrangement is more rod-like and isotropic just beneath the SBP in comparison to the plate-like and more anisotropic physiological arrangement.

  19. A network of paralogous stress response transcription factors in the human pathogen Candida glabrata.

    Directory of Open Access Journals (Sweden)

    Jawad eMerhej

    2016-05-01

    Full Text Available The yeast Candida glabrata has become the second cause of systemic candidemia in humans. However, relatively few genome-wide studies have been conducted in this organism and our knowledge of its transcriptional regulatory network is quite limited. In the present work, we combined genome-wide chromatin immunoprecipitation (ChIP-seq, transcriptome analyses and DNA binding motif predictions to describe the regulatory interactions of the seven Yap (Yeast AP1 transcription factors of C. glabrata. We described a transcriptional network containing 255 regulatory interactions and 309 potential target genes. We predicted with high confidence the preferred DNA binding sites for 5 of the 7 CgYaps and showed a strong conservation of the Yap DNA binding properties between S. cerevisiae and C. glabrata. We provided reliable functional annotation for 3 of the 7 Yaps and identified for Yap1 and Yap5 a core regulon which is conserved in S. cerevisiae, C. glabrata and C. albicans. We uncovered new roles for CgYap7 in the regulation of iron-sulfur cluster biogenesis, for CgYap1 in the regulation of heme biosynthesis and for CgYap5 in the repression of GRX4 in response to iron starvation. These transcription factors define an interconnected transcriptional network at the cross-roads between redox homeostasis, oxygen consumption and iron metabolism.

  20. Convolutional Neural Network-Based Human Detection in Nighttime Images Using Visible Light Camera Sensors

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    2017-05-01

    Full Text Available Because intelligent surveillance systems have recently undergone rapid growth, research on accurately detecting humans in videos captured at a long distance is growing in importance. The existing research using visible light cameras has mainly focused on methods of human detection for daytime hours when there is outside light, but human detection during nighttime hours when there is no outside light is difficult. Thus, methods that employ additional near-infrared (NIR illuminators and NIR cameras or thermal cameras have been used. However, in the case of NIR illuminators, there are limitations in terms of the illumination angle and distance. There are also difficulties because the illuminator power must be adaptively adjusted depending on whether the object is close or far away. In the case of thermal cameras, their cost is still high, which makes it difficult to install and use them in a variety of places. Because of this, research has been conducted on nighttime human detection using visible light cameras, but this has focused on objects at a short distance in an indoor environment or the use of video-based methods to capture multiple images and process them, which causes problems related to the increase in the processing time. To resolve these problems, this paper presents a method that uses a single image captured at night on a visible light camera to detect humans in a variety of environments based on a convolutional neural network. Experimental results using a self-constructed Dongguk night-time human detection database (DNHD-DB1 and two open databases (Korea advanced institute of science and technology (KAIST and computer vision center (CVC databases, as well as high-accuracy human detection in a variety of environments, show that the method has excellent performance compared to existing methods.

  1. Convolutional Neural Network-Based Human Detection in Nighttime Images Using Visible Light Camera Sensors.

    Science.gov (United States)

    Kim, Jong Hyun; Hong, Hyung Gil; Park, Kang Ryoung

    2017-05-08

    Because intelligent surveillance systems have recently undergone rapid growth, research on accurately detecting humans in videos captured at a long distance is growing in importance. The existing research using visible light cameras has mainly focused on methods of human detection for daytime hours when there is outside light, but human detection during nighttime hours when there is no outside light is difficult. Thus, methods that employ additional near-infrared (NIR) illuminators and NIR cameras or thermal cameras have been used. However, in the case of NIR illuminators, there are limitations in terms of the illumination angle and distance. There are also difficulties because the illuminator power must be adaptively adjusted depending on whether the object is close or far away. In the case of thermal cameras, their cost is still high, which makes it difficult to install and use them in a variety of places. Because of this, research has been conducted on nighttime human detection using visible light cameras, but this has focused on objects at a short distance in an indoor environment or the use of video-based methods to capture multiple images and process them, which causes problems related to the increase in the processing time. To resolve these problems, this paper presents a method that uses a single image captured at night on a visible light camera to detect humans in a variety of environments based on a convolutional neural network. Experimental results using a self-constructed Dongguk night-time human detection database (DNHD-DB1) and two open databases (Korea advanced institute of science and technology (KAIST) and computer vision center (CVC) databases), as well as high-accuracy human detection in a variety of environments, show that the method has excellent performance compared to existing methods.

  2. Patterning human neuronal networks on photolithographically engineered silicon dioxide substrates functionalized with glial analogues.

    Science.gov (United States)

    Hughes, Mark A; Brennan, Paul M; Bunting, Andrew S; Cameron, Katherine; Murray, Alan F; Shipston, Mike J

    2014-05-01

    Interfacing neurons with silicon semiconductors is a challenge being tackled through various bioengineering approaches. Such constructs inform our understanding of neuronal coding and learning and ultimately guide us toward creating intelligent neuroprostheses. A fundamental prerequisite is to dictate the spatial organization of neuronal cells. We sought to pattern neurons using photolithographically defined arrays of polymer parylene-C, activated with fetal calf serum. We used a purified human neuronal cell line [Lund human mesencephalic (LUHMES)] to establish whether neurons remain viable when isolated on-chip or whether they require a supporting cell substrate. When cultured in isolation, LUHMES neurons failed to pattern and did not show any morphological signs of differentiation. We therefore sought a cell type with which to prepattern parylene regions, hypothesizing that this cellular template would enable secondary neuronal adhesion and network formation. From a range of cell lines tested, human embryonal kidney (HEK) 293 cells patterned with highest accuracy. LUHMES neurons adhered to pre-established HEK 293 cell clusters and this coculture environment promoted morphological differentiation of neurons. Neurites extended between islands of adherent cell somata, creating an orthogonally arranged neuronal network. HEK 293 cells appear to fulfill a role analogous to glia, dictating cell adhesion, and generating an environment conducive to neuronal survival. We next replaced HEK 293 cells with slower growing glioma-derived precursors. These primary human cells patterned accurately on parylene and provided a similarly effective scaffold for neuronal adhesion. These findings advance the use of this microfabrication-compatible platform for neuronal patterning. Copyright © 2013 Wiley Periodicals, Inc.

  3. Creating Communications, Computing, and Networking Technology Development Road Maps for Future NASA Human and Robotic Missions

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2005-01-01

    For human and robotic exploration missions in the Vision for Exploration, roadmaps are needed for capability development and investments based on advanced technology developments. A roadmap development process was undertaken for the needed communications, and networking capabilities and technologies for the future human and robotics missions. The underlying processes are derived from work carried out during development of the future space communications architecture, an d NASA's Space Architect Office (SAO) defined formats and structures for accumulating data. Interrelationships were established among emerging requirements, the capability analysis and technology status, and performance data. After developing an architectural communications and networking framework structured around the assumed needs for human and robotic exploration, in the vicinity of Earth, Moon, along the path to Mars, and in the vicinity of Mars, information was gathered from expert participants. This information was used to identify the capabilities expected from the new infrastructure and the technological gaps in the way of obtaining them. We define realistic, long-term space communication architectures based on emerging needs and translate the needs into interfaces, functions, and computer processing that will be required. In developing our roadmapping process, we defined requirements for achieving end-to-end activities that will be carried out by future NASA human and robotic missions. This paper describes: 10 the architectural framework developed for analysis; 2) our approach to gathering and analyzing data from NASA, industry, and academia; 3) an outline of the technology research to be done, including milestones for technology research and demonstrations with timelines; and 4) the technology roadmaps themselves.

  4. Caries induced cytokine network in the odontoblast layer of human teeth

    Directory of Open Access Journals (Sweden)

    Horst Jeremy A

    2011-01-01

    Full Text Available Abstract Background Immunologic responses of the tooth to caries begin with odontoblasts recognizing carious bacteria. Inflammatory propagation eventually leads to tooth pulp necrosis and danger to health. The present study aims to determine cytokine gene expression profiles generated within human teeth in response to dental caries in vivo and to build a mechanistic model of these responses and the downstream signaling network. Results We demonstrate profound differential up-regulation of inflammatory genes in the odontoblast layer (ODL in human teeth with caries in vivo, while the pulp remains largely unchanged. Interleukins, chemokines, and all tested receptors thereof were differentially up-regulated in ODL of carious teeth, well over one hundred-fold for 35 of 84 genes. By interrogating reconstructed protein interaction networks corresponding to the differentially up-regulated genes, we develop the hypothesis that pro-inflammatory cytokines highly expressed in ODL of carious teeth, IL-1β, IL-1α, and TNF-α, carry the converged inflammatory signal. We show that IL1β amplifies antimicrobial peptide production in odontoblasts in vitro 100-fold more than lipopolysaccharide, in a manner matching subsequent in vivo measurements. Conclusions Our data suggest that ODL amplifies bacterial signals dramatically by self-feedback cytokine-chemokine signal-receptor cycling, and signal convergence through IL1R1 and possibly others, to increase defensive capacity including antimicrobial peptide production to protect the tooth and contain the battle against carious bacteria within the dentin.

  5. Classification of Human Emotion from Deap EEG Signal Using Hybrid Improved Neural Networks with Cuckoo Search

    Directory of Open Access Journals (Sweden)

    M. Sreeshakthy

    2016-01-01

    Full Text Available Department of Computer Science and Engineering,Anna University Regional Centre, Coimbatore, Indiam.sribtechit@gmail.comJ. PreethiDepartment of Computer Science and EngineeringAnna University Regional Centre, Coimbatore, Indiapreethi17j@yahoo.comEmotions are very important in human decision handling, interaction and cognitive process. In this paper describes that recognize the human emotions from DEAP EEG dataset with different kind of methods. Audio – video based stimuli is used to extract the emotions. EEG signal is divided into different bands using discrete wavelet transformation with db8 wavelet function for further process. Statistical and energy based features are extracted from the bands, based on the features emotions are classified with feed forward neural network with weight optimized algorithm like PSO. Before that the particular band has to be selected based on the training performance of neural networks and then the emotions are classified. In this experimental result describes that the gamma and alpha bands are provides the accurate classification result with average classification rate of 90.3% of using NNRBF, 90.325% of using PNN, 96.3% of using PSO trained NN, 98.1 of using Cuckoo trained NN. At last the emotions are classified into two different groups like valence and arousal. Based on that identifies the person normal and abnormal behavioral using classified emotion.

  6. A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology.

    Science.gov (United States)

    Tunakova, Yulia; Novikova, Svetlana; Ragimov, Aligejdar; Faizullin, Rashat; Valiev, Vsevolod

    2017-01-01

    Models that describe the trace element status formation in the human organism are essential for a correction of micromineral (trace elements) deficiency. A direct trace element retention assessment in the body is difficult due to the many internal mechanisms. The trace element retention is determined by the amount and the ratio of incoming and excreted substance. So, the concentration of trace elements in drinking water characterizes the intake, whereas the element concentration in urine characterizes the excretion. This system can be interpreted as three interrelated elements that are in equilibrium. Since many relationships in the system are not known, the use of standard mathematical models is difficult. The artificial neural network use is suitable for constructing a model in the best way because it can take into account all dependencies in the system implicitly and process inaccurate and incomplete data. We created several neural network models to describe the retentions of trace elements in the human body. On the model basis, we can calculate the microelement levels in the body, knowing the trace element levels in drinking water and urine. These results can be used in health care to provide the population with safe drinking water.

  7. Comprehensive reconstruction and visualization of non-coding regulatory networks in human.

    Science.gov (United States)

    Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba

    2014-01-01

    Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape.

  8. Using the electrocorticographic speech network to control a brain-computer interface in humans

    Science.gov (United States)

    Leuthardt, Eric C.; Gaona, Charles; Sharma, Mohit; Szrama, Nicholas; Roland, Jarod; Freudenberg, Zac; Solis, Jamie; Breshears, Jonathan; Schalk, Gerwin

    2011-06-01

    Electrocorticography (ECoG) has emerged as a new signal platform for brain-computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from the sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further improve on or complement existing motor-based control paradigms. We demonstrate here for the first time that ECoG signals associated with different overt and imagined phoneme articulation can enable invasively monitored human patients to control a one-dimensional computer cursor rapidly and accurately. This phonetic content was distinguishable within higher gamma frequency oscillations and enabled users to achieve final target accuracies between 68% and 91% within 15 min. Additionally, one of the patients achieved robust control using recordings from a microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical network associated with speech could provide an additional cognitive and physiologic substrate for BCI operation and that these signals can be acquired from a cortical array that is small and minimally invasive.

  9. Using the Electrocorticographic Speech Network to Control a Brain-Computer Interface in Humans

    Science.gov (United States)

    Leuthardt, Eric C.; Gaona, Charles; Sharma, Mohit; Szrama, Nicholas; Roland, Jarod; Freudenberg, Zac; Solis, Jamie; Breshears, Jonathan; Schalk, Gerwin

    2013-01-01

    Electrocorticography (ECoG) has emerged as a new signal platform for brain-computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further improve on or complement existing motor-based control paradigms. We demonstrate here for the first time that ECoG signals associated with different overt and imagined phoneme articulation can enable invasively monitored human patients to control a one-dimensional computer cursor rapidly and accurately. This phonetic content was distinguishable within higher gamma frequency oscillations and enabled users to achieve final target accuracies between 68 and 91% within 15 minutes. Additionally, one of the patients achieved robust control using recordings from a microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical network associated with speech could provide an additional cognitive and physiologic substrate for BCI operation and that these signals can be acquired from a cortical array that is small and minimally invasive. PMID:21471638

  10. Reconstruction and Analysis of Human Kidney-Specific Metabolic Network Based on Omics Data

    Directory of Open Access Journals (Sweden)

    Ai-Di Zhang

    2013-01-01

    Full Text Available With the advent of the high-throughput data production, recent studies of tissue-specific metabolic networks have largely advanced our understanding of the metabolic basis of various physiological and pathological processes. However, for kidney, which plays an essential role in the body, the available kidney-specific model remains incomplete. This paper reports the reconstruction and characterization of the human kidney metabolic network based on transcriptome and proteome data. In silico simulations revealed that house-keeping genes were more essential than kidney-specific genes in maintaining kidney metabolism. Importantly, a total of 267 potential metabolic biomarkers for kidney-related diseases were successfully explored using this model. Furthermore, we found that the discrepancies in metabolic processes of different tissues are directly corresponding to tissue's functions. Finally, the phenotypes of the differentially expressed genes in diabetic kidney disease were characterized, suggesting that these genes may affect disease development through altering kidney metabolism. Thus, the human kidney-specific model constructed in this study may provide valuable information for the metabolism of kidney and offer excellent insights into complex kidney diseases.

  11. Comprehensive Reconstruction and Visualization of Non-Coding Regulatory Networks in Human

    Science.gov (United States)

    Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba

    2014-01-01

    Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape. PMID:25540777

  12. Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks.

    Science.gov (United States)

    Ravcheev, Dmitry A; Godzik, Adam; Osterman, Andrei L; Rodionov, Dmitry A

    2013-12-12

    Bacteroides thetaiotaomicron, a predominant member of the human gut microbiota, is characterized by its ability to utilize a wide variety of polysaccharides using the extensive saccharolytic machinery that is controlled by an expanded repertoire of transcription factors (TFs). The availability of genomic sequences for multiple Bacteroides species opens an opportunity for their comparative analysis to enable characterization of their metabolic and regulatory networks. A comparative genomics approach was applied for the reconstruction and functional annotation of the carbohydrate utilization regulatory networks in 11 Bacteroides genomes. Bioinformatics analysis of promoter regions revealed putative DNA-binding motifs and regulons for 31 orthologous TFs in the Bacteroides. Among the analyzed TFs there are 4 SusR-like regulators, 16 AraC-like hybrid two-component systems (HTCSs), and 11 regulators from other families. Novel DNA motifs of HTCSs and SusR-like regulators in the Bacteroides have the common structure of direct repeats with a long spacer between two conserved sites. The inferred regulatory network in B. thetaiotaomicron contains 308 genes encoding polysaccharide and sugar catabolic enzymes, carbohydrate-binding and transport systems, and TFs. The analyzed TFs control pathways for utilization of host and dietary glycans to monosaccharides and their further interconversions to intermediates of the central metabolism. The reconstructed regulatory network allowed us to suggest and refine specific functional assignments for sugar catabolic enzymes and transporters, providing a substantial improvement to the existing metabolic models for B. thetaiotaomicron. The obtained collection of reconstructed TF regulons is available in the RegPrecise database (http://regprecise.lbl.gov).

  13. Network thermodynamic curation of human and yeast genome-scale metabolic models.

    Science.gov (United States)

    Martínez, Verónica S; Quek, Lake-Ee; Nielsen, Lars K

    2014-07-15

    Genome-scale models are used for an ever-widening range of applications. Although there has been much focus on specifying the stoichiometric matrix, the predictive power of genome-scale models equally depends on reaction directions. Two-thirds of reactions in the two eukaryotic reconstructions Homo sapiens Recon 1 and Yeast 5 are specified as irreversible. However, these specifications are mainly based on biochemical textbooks or on their similarity to other organisms and are rarely underpinned by detailed thermodynamic analysis. In this study, a to our knowledge new workflow combining network-embedded thermodynamic and flux variability analysis was used to evaluate existing irreversibility constraints in Recon 1 and Yeast 5 and to identify new ones. A total of 27 and 16 new irreversible reactions were identified in Recon 1 and Yeast 5, respectively, whereas only four reactions were found with directions incorrectly specified against thermodynamics (three in Yeast 5 and one in Recon 1). The workflow further identified for both models several isolated internal loops that require further curation. The framework also highlighted the need for substrate channeling (in human) and ATP hydrolysis (in yeast) for the essential reaction catalyzed by phosphoribosylaminoimidazole carboxylase in purine metabolism. Finally, the framework highlighted differences in proline metabolism between yeast (cytosolic anabolism and mitochondrial catabolism) and humans (exclusively mitochondrial metabolism). We conclude that network-embedded thermodynamics facilitates the specification and validation of irreversibility constraints in compartmentalized metabolic models, at the same time providing further insight into network properties. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Improving the Understanding of Pathogenesis of Human Papillomavirus 16 via Mapping Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Yongcheng Dong

    2015-01-01

    Full Text Available The human papillomavirus 16 (HPV16 has high risk to lead various cancers and afflictions, especially, the cervical cancer. Therefore, investigating the pathogenesis of HPV16 is very important for public health. Protein-protein interaction (PPI network between HPV16 and human was used as a measure to improve our understanding of its pathogenesis. By adopting sequence and topological features, a support vector machine (SVM model was built to predict new interactions between HPV16 and human proteins. All interactions were comprehensively investigated and analyzed. The analysis indicated that HPV16 enlarged its scope of influence by interacting with human proteins as much as possible. These interactions alter a broad array of cell cycle progression. Furthermore, not only was HPV16 highly prone to interact with hub proteins and bottleneck proteins, but also it could effectively affect a breadth of signaling pathways. In addition, we found that the HPV16 evolved into high carcinogenicity on the condition that its own reproduction had been ensured. Meanwhile, this work will contribute to providing potential new targets for antiviral therapeutics and help experimental research in the future.

  15. The Scaling of Human Contacts and Epidemic Processes in Metapopulation Networks

    Science.gov (United States)

    Tizzoni, Michele; Sun, Kaiyuan; Benusiglio, Diego; Karsai, Márton; Perra, Nicola

    2015-10-01

    We study the dynamics of reaction-diffusion processes on heterogeneous metapopulation networks where interaction rates scale with subpopulation sizes. We first present new empirical evidence, based on the analysis of the interactions of 13 million users on Twitter, that supports the scaling of human interactions with population size with an exponent γ ranging between 1.11 and 1.21, as observed in recent studies based on mobile phone data. We then integrate such observations into a reaction- diffusion metapopulation framework. We provide an explicit analytical expression for the global invasion threshold which sets a critical value of the diffusion rate below which a contagion process is not able to spread to a macroscopic fraction of the system. In particular, we consider the Susceptible-Infectious-Recovered epidemic model. Interestingly, the scaling of human contacts is found to facilitate the spreading dynamics. This behavior is enhanced by increasing heterogeneities in the mobility flows coupling the subpopulations. Our results show that the scaling properties of human interactions can significantly affect dynamical processes mediated by human contacts such as the spread of diseases, ideas and behaviors.

  16. Deep biomarkers of human aging: Application of deep neural networks to biomarker development.

    Science.gov (United States)

    Putin, Evgeny; Mamoshina, Polina; Aliper, Alexander; Korzinkin, Mikhail; Moskalev, Alexey; Kolosov, Alexey; Ostrovskiy, Alexander; Cantor, Charles; Vijg, Jan; Zhavoronkov, Alex

    2016-05-01

    One of the major impediments in human aging research is the absence of a comprehensive and actionable set of biomarkers that may be targeted and measured to track the effectiveness of therapeutic interventions. In this study, we designed a modular ensemble of 21 deep neural networks (DNNs) of varying depth, structure and optimization to predict human chronological age using a basic blood test. To train the DNNs, we used over 60,000 samples from common blood biochemistry and cell count tests from routine health exams performed by a single laboratory and linked to chronological age and sex. The best performing DNN in the ensemble demonstrated 81.5 % epsilon-accuracy r = 0.90 with R(2) = 0.80 and MAE = 6.07 years in predicting chronological age within a 10 year frame, while the entire ensemble achieved 83.5% epsilon-accuracy r = 0.91 with R(2) = 0.82 and MAE = 5.55 years. The ensemble also identified the 5 most important markers for predicting human chronological age: albumin, glucose, alkaline phosphatase, urea and erythrocytes. To allow for public testing and evaluate real-life performance of the predictor, we developed an online system available at http://www.aging.ai. The ensemble approach may facilitate integration of multi-modal data linked to chronological age and sex that may lead to simple, minimally invasive, and affordable methods of tracking integrated biomarkers of aging in humans and performing cross-species feature importance analysis.

  17. Near-Field Coupling Communication Technology For Human-Area Networking

    Directory of Open Access Journals (Sweden)

    Ryoji Nagai

    2012-12-01

    Full Text Available We propose a human-area networking technology that uses the surface of the human body as a data transmission path and uses near-field coupling TRXs. This technology aims to achieve a "touch and connect" form of communication and a new concept of "touch the world" by using a quasi-electrostatic field signal that propagates along the surface of the human body. This paper explains the principles underlying near-field coupling communication. Special attention has been paid to common-mode noise since our communication system is strongly susceptible to this. We designed and made a common-mode choke coil and a transformer to act as common-mode noise filters to suppress common-mode noise. Moreover, we describe how we evaluated the quality of communication using a phantom model with the same electrical properties as the human body and present the experimental results for the packet error rate (PER as a function of the signal to noise ratio (SNR both with the common-mode choke coil or the transformer and without them. Finally, we found that our system achieved a PER of less than 10-2 in general office rooms using raised floors, which corresponded to the quality of communication demanded by communication services in ordinary office spaces.

  18. Human Communication Dynamics in Digital Footsteps: A Study of the Agreement between Self-Reported Ties and Email Networks

    OpenAIRE

    Stefan Wuchty; Brian Uzzi

    2011-01-01

    Digital communication data has created opportunities to advance the knowledge of human dynamics in many areas, including national security, behavioral health, and consumerism. While digital data uniquely captures the totality of a person's communication, past research consistently shows that a subset of contacts makes up a person's "social network" of unique resource providers. To address this gap, we analyzed the correspondence between self-reported social network data and email communicatio...

  19. A new method to measure complexity in binary or weighted networks and applications to functional connectivity in the human brain.

    Science.gov (United States)

    Hahn, Klaus; Massopust, Peter R; Prigarin, Sergei

    2016-02-13

    Networks or graphs play an important role in the biological sciences. Protein interaction networks and metabolic networks support the understanding of basic cellular mechanisms. In the human brain, networks of functional or structural connectivity model the information-flow between cortex regions. In this context, measures of network properties are needed. We propose a new measure, Ndim, estimating the complexity of arbitrary networks. This measure is based on a fractal dimension, which is similar to recently introduced box-covering dimensions. However, box-covering dimensions are only applicable to fractal networks. The construction of these network-dimensions relies on concepts proposed to measure fractality or complexity of irregular sets in [Formula: see text]. The network measure Ndim grows with the proliferation of increasing network connectivity and is essentially determined by the cardinality of a maximum k-clique, where k is the characteristic path length of the network. Numerical applications to lattice-graphs and to fractal and non-fractal graph models, together with formal proofs show, that Ndim estimates a dimension of complexity for arbitrary graphs. Box-covering dimensions for fractal graphs rely on a linear log-log plot of minimum numbers of covering subgraph boxes versus the box sizes. We demonstrate the affinity between Ndim and the fractal box-covering dimensions but also that Ndim extends the concept of a fractal dimension to networks with non-linear log-log plots. Comparisons of Ndim with topological measures of complexity (cost and efficiency) show that Ndim has larger informative power. Three different methods to apply Ndim to weighted networks are finally presented and exemplified by comparisons of functional brain connectivity of healthy and depressed subjects. We introduce a new measure of complexity for networks. We show that Ndim has the properties of a dimension and overcomes several limitations of presently used topological and fractal

  20. Geographically Modified PageRank Algorithms: Identifying the Spatial Concentration of Human Movement in a Geospatial Network.

    Science.gov (United States)

    Chin, Wei-Chien-Benny; Wen, Tzai-Hung

    2015-01-01

    A network approach, which simplifies geographic settings as a form of nodes and links, emphasizes the connectivity and relationships of spatial features. Topological networks of spatial features are used to explore geographical connectivity and structures. The PageRank algorithm, a network metric, is often used to help identify important locations where people or automobiles concentrate in the geographical literature. However, geographic considerations, including proximity and location attractiveness, are ignored in most network metrics. The objective of the present study is to propose two geographically modified PageRank algorithms-Distance-Decay PageRank (DDPR) and Geographical PageRank (GPR)-that incorporate geographic considerations into PageRank algorithms to identify the spatial concentration of human movement in a geospatial network. Our findings indicate that in both intercity and within-city settings the proposed algorithms more effectively capture the spatial locations where people reside than traditional commonly-used network metrics. In comparing location attractiveness and distance decay, we conclude that the concentration of human movement is largely determined by the distance decay. This implies that geographic proximity remains a key factor in human mobility.

  1. Geographically Modified PageRank Algorithms: Identifying the Spatial Concentration of Human Movement in a Geospatial Network.

    Directory of Open Access Journals (Sweden)

    Wei-Chien-Benny Chin

    Full Text Available A network approach, which simplifies geographic settings as a form of nodes and links, emphasizes the connectivity and relationships of spatial features. Topological networks of spatial features are used to explore geographical connectivity and structures. The PageRank algorithm, a network metric, is often used to help identify important locations where people or automobiles concentrate in the geographical literature. However, geographic considerations, including proximity and location attractiveness, are ignored in most network metrics. The objective of the present study is to propose two geographically modified PageRank algorithms-Distance-Decay PageRank (DDPR and Geographical PageRank (GPR-that incorporate geographic considerations into PageRank algorithms to identify the spatial concentration of human movement in a geospatial network. Our findings indicate that in both intercity and within-city settings the proposed algorithms more effectively capture the spatial locations where people reside than traditional commonly-used network metrics. In comparing location attractiveness and distance decay, we conclude that the concentration of human movement is largely determined by the distance decay. This implies that geographic proximity remains a key factor in human mobility.

  2. A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells.

    Science.gov (United States)

    Gunhanlar, N; Shpak, G; van der Kroeg, M; Gouty-Colomer, L A; Munshi, S T; Lendemeijer, B; Ghazvini, M; Dupont, C; Hoogendijk, W J G; Gribnau, J; de Vrij, F M S; Kushner, S A

    2017-04-18

    Progress in elucidating the molecular and cellular pathophysiology of neuropsychiatric disorders has been hindered by the limited availability of living human brain tissue. The emergence of induced pluripotent stem cells (iPSCs) has offered a unique alternative strategy using patient-derived functional neuronal networks. However, methods for reliably generating iPSC-derived neurons with mature electrophysiological characteristics have been difficult to develop. Here, we report a simplified differentiation protocol that yields electrophysiologically mature iPSC-derived cortical lineage neuronal networks without the need for astrocyte co-culture or specialized media. This protocol generates a consistent 60:40 ratio of neurons and astrocytes that arise from a common forebrain neural progenitor. Whole-cell patch-clamp recordings of 114 neurons derived from three independent iPSC lines confirmed their electrophysiological maturity, including resting membrane potential (-58.2±1.0 mV), capacitance (49.1±2.9 pF), action potential (AP) threshold (-50.9±0.5 mV) and AP amplitude (66.5±1.3 mV). Nearly 100% of neurons were capable of firing APs, of which 79% had sustained trains of mature APs with minimal accommodation (peak AP frequency: 11.9±0.5 Hz) and 74% exhibited spontaneous synaptic activity (amplitude, 16.03±0.82 pA; frequency, 1.09±0.17 Hz). We expect this protocol to be of broad applicability for implementing iPSC-based neuronal network models of neuropsychiatric disorders.Molecular Psychiatry advance online publication, 18 April 2017; doi:10.1038/mp.2017.56.

  3. Resolving Anatomical and Functional Structure in Human Brain Organization: Identifying Mesoscale Organization in Weighted Network Representations

    Science.gov (United States)

    Lohse, Christian; Bassett, Danielle S.; Lim, Kelvin O.; Carlson, Jean M.

    2014-01-01

    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease. PMID:25275860

  4. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations.

    Directory of Open Access Journals (Sweden)

    Christian Lohse

    2014-10-01

    Full Text Available Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.

  5. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations.

    Science.gov (United States)

    Lohse, Christian; Bassett, Danielle S; Lim, Kelvin O; Carlson, Jean M

    2014-10-01

    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.

  6. Weighted brain networks in disease: centrality and entropy in human immunodeficiency virus and aging.

    Science.gov (United States)

    Thomas, Jewell B; Brier, Matthew R; Ortega, Mario; Benzinger, Tammie L; Ances, Beau M

    2015-01-01

    Graph theory models can produce simple, biologically informative metrics of the topology of resting-state functional connectivity (FC) networks. However, typical graph theory approaches model FC relationships between regions (nodes) as unweighted edges, complicating their interpretability in studies of disease or aging. We extended existing techniques and constructed fully connected weighted graphs for groups of age-matched human immunodeficiency virus (HIV) positive (n = 67) and HIV negative (n = 77) individuals. We compared test-retest reliability of weighted versus unweighted metrics in an independent study of healthy individuals (n = 22) and found weighted measures to be more stable. We quantified 2 measures of node centrality (closeness centrality and eigenvector centrality) to capture the relative importance of individual nodes. We also quantified 1 measure of graph entropy (diversity) to measure the variability in connection strength (edge weights) at each node. HIV was primarily associated with differences in measures of centrality, and age was primarily associated with differences in diversity. HIV and age were associated with divergent measures when evaluated at the whole graph level, within individual functional networks, and at the level of individual nodes. Graph models may allow us to distinguish previously indistinguishable effects related to HIV and age on FC. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Energy-Aware Topology Control Strategy for Human-Centric Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Roc Meseguer

    2014-02-01

    Full Text Available The adoption of mobile and ubiquitous solutions that involve participatory or opportunistic sensing increases every day. This situation has highlighted the relevance of optimizing the energy consumption of these solutions, because their operation depends on the devices’ battery lifetimes. This article presents a study that intends to understand how the prediction of topology control messages in human-centric wireless sensor networks can be used to help reduce the energy consumption of the participating devices. In order to do that, five research questions have been defined and a study based on simulations was conducted to answer these questions. The obtained results help identify suitable mobile computing scenarios where the prediction of topology control messages can be used to save energy of the network nodes. These results also allow estimating the percentage of energy saving that can be expected, according to the features of the work scenario and the participants behavior. Designers of mobile collaborative applications that involve participatory or opportunistic sensing, can take advantage of these findings to increase the autonomy of their solutions.

  8. [Effect of forest therapy on the human psycho-neuro-endocrino-immune network].

    Science.gov (United States)

    Li, Qing; Kawada, Tomoyuki

    2011-09-01

    Traditional thinking considered the nervous system, endocrine system and immune system to be independent of each other. However, it is now widely accepted that these systems interact through the psycho-neuro-endocrino-immune network. The nervous system affects the endocrine and immune systems by releasing neurotransmitters through the hypothalamus in the hypothalamic-pituitary portal circulation. The endocrine system affects the nervous and immune systems by secreting hormones and the immune system feeds back to the nervous and endocrine systems via cytokines. Forest therapy reduces sympathetic nervous activity, increases parasympathetic nervous activity, and regulates the balance of autonomic nerves. As a result, forest therapy decreases blood pressure and heart rate and has a relaxing effect. Forest therapy affects psychological responses via the brain and nervous system thereby decreasing the scores for anxiety, depression, anger, fatigue, and confusion, and increasing the score for vigor in the POMS test. Forest therapy acts on the endocrine system to reduce stress hormone levels such as urinary adrenaline, urinary noradrenaline, salivary cortisol, and blood cortisol levels and shows a relaxing effect. Forest therapy also acts directly and indirectly on the immune system to promote NK activity by increasing the number of NK cells and intracellular levels of anticancer proteins such as perforin, granulysin and granzymes. Taken together, forest therapy brings various effects on human health via the psycho-neuro-endocrino-immune network.

  9. RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells.

    Science.gov (United States)

    Chia, Joanne; Goh, Germaine; Racine, Victor; Ng, Susanne; Kumar, Pankaj; Bard, Frederic

    2012-01-01

    The Golgi apparatus has many important physiological functions, including sorting of secretory cargo and biosynthesis of complex glycans. These functions depend on the intricate and compartmentalized organization of the Golgi apparatus. To investigate the mechanisms that regulate Golgi architecture, we developed a quantitative morphological assay using three different Golgi compartment markers and quantitative image analysis, and performed a kinome- and phosphatome-wide RNAi screen in HeLa cells. Depletion of 159 signaling genes, nearly 20% of genes assayed, induced strong and varied perturbations in Golgi morphology. Using bioinformatics data, a large regulatory network could be constructed. Specific subnetworks are involved in phosphoinositides regulation, acto-myosin dynamics and mitogen activated protein kinase signaling. Most gene depletion also affected Golgi functions, in particular glycan biosynthesis, suggesting that signaling cascades can control glycosylation directly at the Golgi level. Our results provide a genetic overview of the signaling pathways that control the Golgi apparatus in human cells.

  10. A wearable wireless ultrasonic sensor network for human arm motion tracking.

    Science.gov (United States)

    Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon

    2014-01-01

    This paper introduces a novel method for arm flexion/extension angles measurement using wireless ultrasonic sensor network. The approach uses unscented Kalman filter and D-H kinematical chain model to retrieve the joint angles. This method was experimentally validated by calculating the 2-dimensional wrist displacements from one mobile, placed on the point of subject's wrist, and four anchors. The performance of the proposed ultrasonic motion analysis system was bench-marked by commercial camera motion capture system. The experimental results demonstrate that a favorable performance of the proposed system in the estimation of upper limb motion. The proposed system is wireless, easy to wear, to use and much cheaper than current camera system. Thus, it has the potential to become a new and useful tool for routine clinical assessment of human motion.

  11. Hyperthermia-induced disruption of functional connectivity in the human brain network.

    Directory of Open Access Journals (Sweden)

    Gang Sun

    Full Text Available BACKGROUND: Passive hyperthermia is a potential risk factor to human cognitive performance and work behavior in many extreme work environments. Previous studies have demonstrated significant effects of passive hyperthermia on human cognitive performance and work behavior. However, there is a lack of a clear understanding of the exact affected brain regions and inter-regional connectivities. METHODOLOGY AND PRINCIPAL FINDINGS: We simulated 1 hour environmental heat exposure to thirty-six participants under two environmental temperature conditions (25 °C and 50 °C, and collected resting-state functional brain activity. The functional connectivities with a preselected region of interest (ROI in the posterior cingulate cortex and precuneus (PCC/PCu, furthermore, inter-regional connectivities throughout the entire brain using a prior Anatomical Automatic Labeling (AAL atlas were calculated. We identified decreased correlations of a set of regions with the PCC/PCu, including the medial orbitofrontal cortex (mOFC and bilateral medial temporal cortex, as well as increased correlations with the partial orbitofrontal cortex particularly in the bilateral orbital superior frontal gyrus. Compared with the normal control (NC group, the hyperthermia (HT group showed 65 disturbed functional connectivities with 50 of them being decreased and 15 of them being increased. While the decreased correlations mainly involved with the mOFC, temporal lobe and occipital lobe, increased correlations were mainly located within the limbic system. In consideration of physiological system changes, we explored the correlations of the number of significantly altered inter-regional connectivities with differential rectal temperatures and weight loss, but failed to obtain significant correlations. More importantly, during the attention network test (ANT we found that the number of significantly altered functional connectivities was positively correlated with an increase in

  12. Engineered Microvasculature in PDMS Networks Using Endothelial Cells Derived from Human Induced Pluripotent Stem Cells

    Science.gov (United States)

    Sivarapatna, Amogh; Ghaedi, Mahboobe; Xiao, Yang; Han, Edward; Aryal, Binod; Zhou, Jing; Fernandez-Hernando, Carlos; Qyang, Yibing; Hirschi, Karen K.

    2017-01-01

    In this study, we used a polydimethylsiloxane (PDMS)-based platform for the generation of intact, perfusion-competent microvascular networks in vitro. COMSOL Multiphysics, a finite-element analysis and simulation software package, was used to obtain simulated velocity, pressure, and shear stress profiles. Transgene-free human induced pluripotent stem cells (hiPSCs) were differentiated into partially arterialized endothelial cells (hiPSC-ECs) in 5 d under completely chemically defined conditions, using the small molecule glycogen synthase kinase 3β inhibitor CHIR99021 and were thoroughly characterized for functionality and arterial-like marker expression. These cells, along with primary human umbilical vein endothelial cells (HUVECs), were seeded in the PDMS system to generate microvascular networks that were subjected to shear stress. Engineered microvessels had patent lumens and expressed VE-cadherin along their periphery. Shear stress caused by flowing medium increased the secretion of nitric oxide and caused endothelial cells s to align and to redistribute actin filaments parallel to the direction of the laminar flow. Shear stress also caused significant increases in gene expression for arterial markers Notch1 and EphrinB2 as well as antithrombotic markers Kruppel-like factor 2 (KLF-2)/4. These changes in response to shear stress in the microvascular platform were observed in hiPSC-EC microvessels but not in microvessels that were derived from HUVECs, which indicated that hiPSC-ECs may be more plastic in modulating their phenotype under flow than are HUVECs. Taken together, we demonstrate the feasibly of generating intact, engineered microvessels in vitro, which replicate some of the key biological features of native microvessels. PMID:28901188

  13. Simultaneous trimodal MR-PET-EEG imaging for the investigation of resting state networks in humans

    Energy Technology Data Exchange (ETDEWEB)

    Neuner, Irene [RWTH Aachen (Germany); Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich GmbH (Germany); Mauler, Joerg; Arrubla, Jorge; Kops, Elena Rota; Tellmann, Lutz; Scheins, Jurgen; Herzog, Hans [Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich GmbH (Germany); Langen, Karl Josef; Shah, Jon [RWTH Aachen (Germany)

    2015-05-18

    Glucose is the principal source of energy for the brain and its relationship to neuronal activity are poorly understood. The human brain uses 80% of its energy for ongoing neural activity that occurs in isolation from any particular stimulus. A promising tool for the investigation of glucose metabolism and its relationship to neuronal activity is simultaneous trimodal MR-PET-EEG data imaging. We here demonstrate the first in vivo human trimodal data at 3T. In one session MR, FDG-PET and EEG data were recorded simultaneously at a 3T hybrid MR-BrainPET scanner (Siemens, Germany) equipped with a 32 channel MR-compatible EEG system (Brain Products, Germany) in 11 healthy volunteers (11 males, mean age: 25.2 years SD: 1.2). MR and EEG data acquisition MP-RAGE (TR = 2250 ms, TE= 3.03 ms, 176 sagittal slices. 1 mm, GRAPPA factor 2. MR-based attenuation correction of PET data via UTE: flip angle=15. Two different echo times TE1=0.07 and TE2=2.46 ms, TR=200 ms. EPI sequence (TR: 2.2 s, TE: 30 ms, FOV: 200 mm, 165 volumes, The subjects were requested to close their eyes and relax EEG data were recorded using a 32-channel MR compatible EEG system. App. 200 MBq/μmol FDG were injected, data were acquired in list mode and iteratively reconstructed with all necessary corrections into 153 slices with 256 x 256 voxels sized 1.25 mm{sup 3}. The trimodal approach, recording PET data, MR data and EEG data simultaneously was successful. The high neuronal activity of the structures within the default mode network occurs on the basis of a high glucose consumption rate within the default node network. The activity of the default mode is not tied to a special EEG frequency band.

  14. Network Location and Risk of Human Immunodeficiency Virus Transmission among Injecting Drug Users: Results of Multiple Membership Multilevel Modeling of Social Networks.

    Science.gov (United States)

    Shahesmaeili, Armita; Haghdoost, Ali Akbar; Soori, Hamid

    2015-01-01

    Despite the implementation of harm reduction program, some injecting drug users (IDU) continue to engage in high-risk behaviors. It seems that there are some social factors that contribute to risk of human immunodeficiency virus (HIV) transmission in IDUs. The aim of this study was to analysis the social network of IDUs and examines the effect of network location on HIV transmission risk using the multiple membership multilevel models. From October 2013 to March 2014 we conducted face-to-face interviews on 147 IDUs. We asked participants to nominate up to 20 people whom they had more than causal contact with them during the last month and specify if each nominee is drug injector or not. We defined four Network locations as Core and Peripheries of main components. The risk of HIV transmission for each individual was measured based on 7 items scale. We applied Multiple Membership Multilevel Linear Regression analysis to examine the relationship between network location and HIV transmission risk. We used Stata and UCINET software's for the analysis of data. The mean age of participants was 37 ± 9.32. Most of the individuals were male, single and educated up to guidance school. Being a core member of the main component as like as being a member of other small components in comparison with Isolates/unlinked significantly increased the HIV Transmission risk. Engagement in methadone maintenance therapies (MMT) was associated with a decrease in HIV transmission score. Network analysis is a useful guide to find the most influential members of IDUs network and may have a complementary role for harm reduction program. The efficacy of interventions programs can be reinforced by addressing them to core individuals within the network. Furthermore, it provides the harm reduction staff to find the broader number of IDUs who are usually hard to reach by routine outreach case-finding tasks.

  15. A comprehensive analysis of the Streptococcus pyogenes and human plasma protein interaction network.

    Science.gov (United States)

    Sjöholm, Kristoffer; Karlsson, Christofer; Linder, Adam; Malmström, Johan

    2014-07-01

    Streptococcus pyogenes is a major human bacterial pathogen responsible for severe and invasive disease associated with high mortality rates. The bacterium interacts with several human blood plasma proteins and clarifying these interactions and their biological consequences will help to explain the progression from mild to severe infections. In this study, we used a combination of mass spectrometry (MS) based techniques to comprehensively quantify the components of the S. pyogenes-plasma protein interaction network. From an initial list of 181 interacting human plasma proteins defined using liquid chromatography (LC)-MS/MS analysis we further subdivided the interacting protein list using selected reaction monitoring (SRM) depending on the level of enrichment and protein concentration on the bacterial surface. The combination of MS methods revealed several previously characterized interactions between the S. pyogenes surface and human plasma along with many more, so far uncharacterised, possible plasma protein interactions with S. pyogenes. In follow-up experiments, the combination of MS techniques was applied to study differences in protein binding to a S. pyogenes wild type strain and an isogenic mutant lacking several important virulence factors, and a unique pair of invasive and non-invasive S. pyogenes isolates from the same patient. Comparing the plasma protein-binding properties of the wild type and the mutant and the invasive and non-invasive S. pyogenes bacteria revealed considerable differences, underlining the significance of these protein interactions. The results also demonstrate the power of the developed mass spectrometry method to investigate host-microbial relationships with a large proteomics depth and high quantitative accuracy.

  16. Negatively-charged air conditions and responses of the human psycho-neuro-endocrino-immune network.

    Science.gov (United States)

    Takahashi, Kazuaki; Otsuki, Takemi; Mase, Akinori; Kawado, Takashi; Kotani, Muneo; Ami, Kazuhisa; Matsushima, Hiroki; Nishimura, Yasumitsu; Miura, Yoshie; Murakami, Shuko; Maeda, Megumi; Hayashi, Hiroaki; Kumagai, Naoko; Shirahama, Takashi; Yoshimatsu, Michiharu; Morimoto, Kanehisa

    2008-08-01

    Against increasing environmental adverse effects on human health such as those associated with water and ground pollution, as well as out- and indoor air conditions, trials were conducted to support and promote human health by improving the indoor air atmosphere. This study was performed to estimate the effect of negatively-charged air conditions on human biological markers related to the psycho-neuro-endocrino-immune (PNEI) network. After construction of negatively-charged experimental rooms (NCRs), healthy volunteers were admitted to these rooms and control rooms (CTRs) and various biological responses were analyzed. NCRs were constructed using a fine charcoal coating and applying an electric voltage (72 V) between the backside of walls and the ground. Various biological markers were monitored that related to general conditions, autonomic nervous systems, stress markers, immunological parameters and blood flow. Regarding the indoor environment, only negatively-charged air resulted in the difference between the CTR and NCR groups. The well-controlled experimental model-room to examine the biological effects of negatively-charged air was therefore established. Among the various parameters, IL-2, IL-4, the mean RR interval of the heart rate, and blood viscosity differed significantly between the CTR and NCR groups. In addition, the following formula was used to detect NCR-biological responses: Biological Response Value (BRV)=0.498+0.0005 [salivary cortisol]+0.072 [IL-2]+0.003 [HRM-SD]-0.013 [blood viscosity]-0.009 [blood sugar]+0.017 [pulse rate]. Negatively-charged air conditions activated the immune system slightly, smoothened blood flow and stabilized the autonomic nervous system. Although this is the first report to analyze negatively-charged air conditions on human biological responses, the long-term effects should be analyzed for the general use of these artificial atmospheres.

  17. An optofluidic channel model for in vivo nanosensor networks in human blood

    Science.gov (United States)

    Johari, Pedram; Jornet, Josep M.

    2017-05-01

    In vivo Wireless Nanosensor Networks (iWNSNs) consist of nano-sized communicating devices with unprece- dented sensing and actuation capabilities, which are able to operate inside the human body. iWNSNs are a disruptive technology that enables the monitoring and control of biological processes at the cellular and sub- cellular levels. Compared to ex vivo measurements, which are conducted on samples extracted from the human body, iWNSNs can track (sub) cellular processes when and where they occur. Major progress in the field of na- noelectronics, nanophotonics and wireless communication is enabling the interconnection of nanosensors. Among others, plasmonic nanolasers with sub-micrometric footprint, plasmonic nano-antennas able to confine light in nanometric structures, and single-photon detectors with unrivaled sensitivity, enable the communication among implanted nanosensors in the near infrared and optical transmission windows. Motivated by these results, in this paper, an optofluidic channel model is developed to investigate the communication properties and temporal dynamics between a pair of in vivo nanosensors in the human blood. The developed model builds upon the authors' recent work on light propagation modeling through multi-layered single cells and cell assemblies and takes into account the geometric, electromagnetic and microfluidic properties of red blood cells in the human circulatory system. The proposed model guides the development of practical communication strategies among nanosensors, and paves the way through new nano-biosensing strategies able to identify diseases by detecting the slight changes in the channel impulse response, caused by either the change in shape of the blood cells or the presence of pathogens.

  18. Evidence for transcript networks composed of chimeric RNAs in human cells.

    Directory of Open Access Journals (Sweden)

    Sarah Djebali

    Full Text Available The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5' and 3' transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1 the non-random interconnections of genes involved, (2 the greater phylogenetic depth of the genes involved in many chimeric interactions, (3 the coordination of the expression of connected genes and (4 the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network.

  19. Human papillomavirus deregulates the response of a cellular network comprising of chemotactic and proinflammatory genes.

    Directory of Open Access Journals (Sweden)

    Rezaul Karim

    Full Text Available Despite the presence of intracellular pathogen recognition receptors that allow infected cells to attract the immune system, undifferentiated keratinocytes (KCs are the main targets for latent infection with high-risk human papilloma viruses (hrHPVs. HPV infections are transient but on average last for more than one year suggesting that HPV has developed means to evade host immunity. To understand how HPV persists, we studied the innate immune response of undifferentiated human KCs harboring episomal copies of HPV16 and 18 by genome-wide expression profiling. Our data showed that the expression of the different virus-sensing receptors was not affected by the presence of HPV. Poly(I:C stimulation of the viral RNA receptors TLR3, PKR, MDA5 and RIG-I, the latter of which indirectly senses viral DNA through non-self RNA polymerase III transcripts, showed dampening in downstream signalling of these receptors by HPVs. Many of the genes downregulated in HPV-positive KCs involved components of the antigen presenting pathway, the inflammasome, the production of antivirals, pro-inflammatory and chemotactic cytokines, and components downstream of activated pathogen receptors. Notably, gene and/or protein interaction analysis revealed the downregulation of a network of genes that was strongly interconnected by IL-1β, a crucial cytokine to activate adaptive immunity. In summary, our comprehensive expression profiling approach revealed that HPV16 and 18 coordinate a broad deregulation of the keratinocyte's inflammatory response, and contributes to the understanding of virus persistence.

  20. Insights into TREM2 biology by network analysis of human brain gene expression data.

    Science.gov (United States)

    Forabosco, Paola; Ramasamy, Adaikalavan; Trabzuni, Daniah; Walker, Robert; Smith, Colin; Bras, Jose; Levine, Adam P; Hardy, John; Pocock, Jennifer M; Guerreiro, Rita; Weale, Michael E; Ryten, Mina

    2013-12-01

    Rare variants in TREM2 cause susceptibility to late-onset Alzheimer's disease. Here we use microarray-based expression data generated from 101 neuropathologically normal individuals and covering 10 brain regions, including the hippocampus, to understand TREM2 biology in human brain. Using network analysis, we detect a highly preserved TREM2-containing module in human brain, show that it relates to microglia, and demonstrate that TREM2 is a hub gene in 5 brain regions, including the hippocampus, suggesting that it can drive module function. Using enrichment analysis we show significant overrepresentation of genes implicated in the adaptive and innate immune system. Inspection of genes with the highest connectivity to TREM2 suggests that it plays a key role in mediating changes in the microglial cytoskeleton necessary not only for phagocytosis, but also migration. Most importantly, we show that the TREM2-containing module is significantly enriched for genes genetically implicated in Alzheimer's disease, multiple sclerosis, and motor neuron disease, implying that these diseases share common pathways centered on microglia and that among the genes identified are possible new disease-relevant genes. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Application of 1D blood flow models of the human arterial network to differential pressure predictions.

    Science.gov (United States)

    Johnson, David A; Rose, William C; Edwards, Jonathan W; Naik, Ulhas P; Beris, Antony N

    2011-03-15

    A new application of 1D models of the human arterial network is proposed. We take advantage of the sensitivity of the models predictions for the pressure profiles within the main aorta to key model parameter values. We propose to use the patterns in the predicted differences from a base case as a way to infer to the most probable changes in the parameter values. We demonstrate this application using an impedance model that we have recently developed (Johnson, 2010). The input model parameters are all physiologically related, such as the geometric dimensions of large arteries, various blood properties, vessel elasticity, etc. and can therefore be patient specific. As a base case, nominal values from the literature are used. The necessary information to characterize the smaller arteries, arterioles, and capillaries is taken from a physical scaling model (West, 1999). Model predictions for the effective impedance of the human arterial system closely agree with experimental data available in the literature. The predictions for the pressure wave development along the main arteries are also found in qualitative agreement with previous published results. The model has been further validated against our own measured pressure data in the carotid and radial arteries, obtained from healthy individuals. Upon changes in the value of key model parameters, we show that the differences seen in the pressure profiles correspond to qualitatively different patterns for different parameters. This suggests the possibility of using the model in interpreting multiple pressure data of healthy/diseased individuals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Analysis of normal human retinal vascular network architecture using multifractal geometry.

    Science.gov (United States)

    Ţălu, Ştefan; Stach, Sebastian; Călugăru, Dan Mihai; Lupaşcu, Carmen Alina; Nicoară, Simona Delia

    2017-01-01

    To apply the multifractal analysis method as a quantitative approach to a comprehensive description of the microvascular network architecture of the normal human retina. Fifty volunteers were enrolled in this study in the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and January 2014. A set of 100 segmented and skeletonised human retinal images, corresponding to normal states of the retina were studied. An automatic unsupervised method for retinal vessel segmentation was applied before multifractal analysis. The multifractal analysis of digital retinal images was made with computer algorithms, applying the standard box-counting method. Statistical analyses were performed using the GraphPad InStat software. The architecture of normal human retinal microvascular network was able to be described using the multifractal geometry. The average of generalized dimensions (Dq ) for q=0, 1, 2, the width of the multifractal spectrum (Δα=αmax - αmin ) and the spectrum arms' heights difference (|Δf|) of the normal images were expressed as mean±standard deviation (SD): for segmented versions, D0 =1.7014±0.0057; D1 =1.6507±0.0058; D2 =1.5772±0.0059; Δα=0.92441±0.0085; |Δf|= 0.1453±0.0051; for skeletonised versions, D0 =1.6303±0.0051; D1 =1.6012±0.0059; D2 =1.5531±0.0058; Δα=0.65032±0.0162; |Δf|= 0.0238±0.0161. The average of generalized dimensions (Dq ) for q=0, 1, 2, the width of the multifractal spectrum (Δα) and the spectrum arms' heights difference (|Δf|) of the segmented versions was slightly greater than the skeletonised versions. The multifractal analysis of fundus photographs may be used as a quantitative parameter for the evaluation of the complex three-dimensional structure of the retinal microvasculature as a potential marker for early detection of topological changes associated with retinal diseases.

  3. Analysis of normal human retinal vascular network architecture using multifractal geometry

    Directory of Open Access Journals (Sweden)

    Ştefan Ţălu

    2017-03-01

    Full Text Available AIM: To apply the multifractal analysis method as a quantitative approach to a comprehensive description of the microvascular network architecture of the normal human retina. METHODS: Fifty volunteers were enrolled in this study in the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and January 2014. A set of 100 segmented and skeletonised human retinal images, corresponding to normal states of the retina were studied. An automatic unsupervised method for retinal vessel segmentation was applied before multifractal analysis. The multifractal analysis of digital retinal images was made with computer algorithms, applying the standard box-counting method. Statistical analyses were performed using the GraphPad InStat software. RESULTS: The architecture of normal human retinal microvascular network was able to be described using the multifractal geometry. The average of generalized dimensions (Dq for q=0, 1, 2, the width of the multifractal spectrum (Δα=αmax - αmin and the spectrum arms’ heights difference (│Δf│ of the normal images were expressed as mean±standard deviation (SD: for segmented versions, D0=1.7014±0.0057; D1=1.6507±0.0058; D2=1.5772±0.0059; Δα=0.92441±0.0085; │Δf│= 0.1453±0.0051; for skeletonised versions, D0=1.6303±0.0051; D1=1.6012±0.0059; D2=1.5531±0.0058; Δα=0.65032±0.0162; │Δf│= 0.0238±0.0161. The average of generalized dimensions (Dq for q=0, 1, 2, the width of the multifractal spectrum (Δα and the spectrum arms’ heights difference (│Δf│ of the segmented versions was slightly greater than the skeletonised versions. CONCLUSION: The multifractal analysis of fundus photographs may be used as a quantitative parameter for the evaluation of the complex three-dimensional structure of the retinal microvasculature as a potential marker for early detection of topological changes associated with retinal diseases.

  4. Programme of the Community Network of Reference Laboratories for Human Influenza to improve Influenza Surveillance in Europe.

    NARCIS (Netherlands)

    Meijer, Adam; Brown, Caroline; Hungnes, Olav; Schweiger, Brunhilde; Valette, Martine; Werf, Sylvie van der; Zambon, Maria

    2006-01-01

    All laboratories participating in the Community Network of Reference Laboratories for Human Influenza in Europe (CNRL) co-ordinated by the European Influenza Surveillance Scheme (EISS) should be able to perform a range of influenza diagnostics. This includes direct detection, culture, typing,

  5. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates

    DEFF Research Database (Denmark)

    Hoffman, Nolan J; Parker, Benjamin L; Chaudhuri, Rima

    2015-01-01

    Exercise is essential in regulating energy metabolism and whole-body insulin sensitivity. To explore the exercise signaling network, we undertook a global analysis of protein phosphorylation in human skeletal muscle biopsies from untrained healthy males before and after a single high...

  6. Programme of the community network of reference laboratories for human influenza to improve influenza surveillance in Europe.

    NARCIS (Netherlands)

    Meijer, A.; Brown, C.; Hungnes, O.; Schweiger, B.; Valette, M.; Werf, S. van der; Zambon, M.

    2006-01-01

    All laboratories participating in the Community Network of Reference Laboratories for Human Influenza in Europe (CNRL) co-ordinated by the European Influenza Surveillance Scheme (EISS) should be able to perform a range of influenza diagnostics. This includes direct detection, culture, typing,

  7. Grist for Riedl's mill: a network model perspective on the integration and modularity of the human skull.

    Science.gov (United States)

    Esteve-Altava, Borja; Marugán-Lobón, Jesús; Botella, Héctor; Bastir, Markus; Rasskin-Gutman, Diego

    2013-12-01

    Riedl's concept of burden neatly links development and evolution by ascertaining that structures that show a high degree of developmental co-dependencies with other structures are more constrained in evolution. The human skull can be precisely modeled as an articulated complex system of bones connected by sutures, forming a network of structural co-dependencies. We present a quantitative analysis of the morphological integration, modularity, and hierarchical organization of this human skull network model. Our overall results show that the human skull is a small-world network, with two well-delimited connectivity modules: one facial organized around the ethmoid bone, and one cranial organized around the sphenoid bone. Geometric morphometrics further support this two-module division, stressing the direct relationship between the developmental information enclosed in connectivity patterns and skull shape. Whereas the facial module shows a hierarchy of clustered blocks of bones, the bones of the cranial modules show a regular pattern of connections. We analyze the significance of these arrangements by hypothesizing specific structural roles for the most important bones involved in the formation of both modules, in the context of Riedl's burden. We conclude that it is the morphological integration of each group of bones that defines the semi-hierarchical organization of the human skull, reflecting fundamental differences in the ontogenetic patterns of growth and the structural constraints that generate each module. Our study also demonstrates the adequacy of network analysis as an innovative tool to understand the morphological complexity of anatomical systems. © 2013 Wiley Periodicals, Inc.

  8. Role of plant MicroRNA in cross-species regulatory networks of humans.

    Science.gov (United States)

    Zhang, Hao; Li, Yanpu; Liu, Yuanning; Liu, Haiming; Wang, Hongyu; Jin, Wen; Zhang, Yanmei; Zhang, Chao; Xu, Dong

    2016-08-08

    It has been found that microRNAs (miRNAs) can function as a regulatory factor across species. For example, food-derived plant miRNAs may pass through the gastrointestinal (GI) tract, enter into the plasma and serum of mammals, and interact with endogenous RNAs to regulate their expression. Although this new type of regulatory mechanism is not well understood, it provides a fresh look at the relationship between food consumption and physiology. To investigate this new type of mechanism, we conducted a systematic computational study to analyze the potential functions of these dietary miRNAs in the human body. In this paper, we predicted human and plant target genes using RNAhybrid and set some criteria to further filter them. Then we built the cross-species regulatory network according to the filtered targets, extracted central nodes by PageRank algorithm and built core modules. We summarized the functions of these modules to three major categories: ion transport, metabolic process and stress response, and especially some target genes are highly related to ion transport, polysaccharides and the lipid metabolic process. Through functional analysis, we found that human and plants have similar functions such as ion transport and stress response, so our study also indicates the existence of a close link between exogenous plant miRNA targets and digestive/urinary organs. According to our analysis results, we suggest that the ingestion of these plant miRNAs may have a functional impact on consuming organisms in a cross-kingdom way, and the dietary habit may affect the physiological condition at a genetic level. Our findings may be useful for discovering cross-species regulatory mechanism in further study.

  9. Retrieving quantifiable social media data from human sensor networks for disaster modeling and crisis mapping

    Science.gov (United States)

    Aulov, Oleg

    This dissertation presents a novel approach that utilizes quantifiable social media data as a human aware, near real-time observing system, coupled with geophysical predictive models for improved response to disasters and extreme events. It shows that social media data has the potential to significantly improve disaster management beyond informing the public, and emphasizes the importance of different roles that social media can play in management, monitoring, modeling and mitigation of natural and human-caused extreme disasters. In the proposed approach Social Media users are viewed as "human sensors" that are "deployed" in the field, and their posts are considered to be "sensor observations", thus different social media outlets all together form a Human Sensor Network. We utilized the "human sensor" observations, as boundary value forcings, to show improved geophysical model forecasts of extreme disaster events when combined with other scientific data such as satellite observations and sensor measurements. Several recent extreme disasters are presented as use case scenarios. In the case of the Deepwater Horizon oil spill disaster of 2010 that devastated the Gulf of Mexico, the research demonstrates how social media data from Flickr can be used as a boundary forcing condition of GNOME oil spill plume forecast model, and results in an order of magnitude forecast improvement. In the case of Hurricane Sandy NY/NJ landfall impact of 2012, we demonstrate how the model forecasts, when combined with social media data in a single framework, can be used for near real-time forecast validation, damage assessment and disaster management. Owing to inherent uncertainties in the weather forecasts, the NOAA operational surge model only forecasts the worst-case scenario for flooding from any given hurricane. Geolocated and time-stamped Instagram photos and tweets allow near real-time assessment of the surge levels at different locations, which can validate model forecasts, give

  10. A Human Sensor Network Framework in Support of Near Real Time Situational Geophysical Modeling

    Science.gov (United States)

    Aulov, O.; Price, A.; Smith, J. A.; Halem, M.

    2013-12-01

    The area of Disaster Management is well established among Federal Agencies such as FEMA, EPA, NOAA and NASA. These agencies have well formulated frameworks for response and mitigation based on near real time satellite and conventional observing networks for assimilation into geophysical models. Forecasts from these models are used to communicate with emergency responders and the general public. More recently, agencies have started using social media to broadcast warnings and alerts to potentially affected communities. In this presentation, we demonstrate the added benefits of mining and assimilating the vast amounts of social media data available from heterogeneous hand held devices and social networks into established operational geophysical modeling frameworks as they apply to the five cornerstones of disaster management - Prevention, Mitigation, Preparedness, Response and Recovery. Often, in situations of extreme events, social media provide the earliest notification of adverse extreme events. However, various forms of social media data also can provide useful geolocated and time stamped in situ observations, complementary to directly sensed conventional observations. We use the concept of a Human Sensor Network where one views social media users as carrying field deployed "sensors" whose posts are the remotely "sensed instrument measurements.' These measurements can act as 'station data' providing the resolution and coverage needed for extreme event specific modeling and validation. Here, we explore the use of social media through the use of a Human Sensor Network (HSN) approach as another data input source for assimilation into geophysical models. Employing the HSN paradigm can provide useful feedback in near real-time, but presents software challenges for rapid access, quality filtering and transforming massive social media data into formats consistent with the operational models. As a use case scenario, we demonstrate the value of HSN for disaster management

  11. Phenotypic robustness and the assortativity signature of human transcription factor networks.

    Directory of Open Access Journals (Sweden)

    Dov A Pechenick

    2014-08-01

    Full Text Available Many developmental, physiological, and behavioral processes depend on the precise expression of genes in space and time. Such spatiotemporal gene expression phenotypes arise from the binding of sequence-specific transcription factors (TFs to DNA, and from the regulation of nearby genes that such binding causes. These nearby genes may themselves encode TFs, giving rise to a transcription factor network (TFN, wherein nodes represent TFs and directed edges denote regulatory interactions between TFs. Computational studies have linked several topological properties of TFNs - such as their degree distribution - with the robustness of a TFN's gene expression phenotype to genetic and environmental perturbation. Another important topological property is assortativity, which measures the tendency of nodes with similar numbers of edges to connect. In directed networks, assortativity comprises four distinct components that collectively form an assortativity signature. We know very little about how a TFN's assortativity signature affects the robustness of its gene expression phenotype to perturbation. While recent theoretical results suggest that increasing one specific component of a TFN's assortativity signature leads to increased phenotypic robustness, the biological context of this finding is currently limited because the assortativity signatures of real-world TFNs have not been characterized. It is therefore unclear whether these earlier theoretical findings are biologically relevant. Moreover, it is not known how the other three components of the assortativity signature contribute to the phenotypic robustness of TFNs. Here, we use publicly available DNaseI-seq data to measure the assortativity signatures of genome-wide TFNs in 41 distinct human cell and tissue types. We find that all TFNs share a common assortativity signature and that this signature confers phenotypic robustness to model TFNs. Lastly, we determine the extent to which each of the four

  12. A transportation network for human ovarian tissue is indispensable to success for fertility preservation.

    Science.gov (United States)

    Kyono, K; Hashimoto, T; Toya, M; Koizumi, M; Sasaki, C; Shibasaki, S; Aono, N; Nakamura, Y; Obata, R; Okuyama, N; Ogura, Y; Igarashi, H

    2017-09-02

    The purpose of this study was to examine the efficacy of an ovarian tissue transportation network for fertility preservation (FP) for cancer patients in Japan. PubMed was searched for papers on transportation of human ovarian tissue for FP. We analyzed population, area, number of cancer patients for ovarian tissue cryopreservation (OTC), quality control/assessment and safety, cost of a cryopreservation center for the building for 30 years, and medical fees of cancer patients (operation, cryopreservation, and storage of ovarian tissue). More than twenty babies have been born in Denmark and Germany through a transportation system. Up to 400 new patients a year need OTC. The fees for removal, cryopreservation, and storage for 5 years, and transplantation of ovarian tissue are around €5,000, €4,000, and €5,000, respectively. It costs more than €5 million to establish and maintain one cryopreservation center for 30 years. If we have a few cryopreservation centers in Japan, we can cryopreserve 400 patients' ovarian tissue per year by safer slow freezing and maintain quality control/assessment. We need to lighten the patients' burden for easy to use FP by a government subsidy and medical insurance coverage. This model has been termed the Danish model ("the woman stays - the tissue moves"). This is truly patient-centered medicine. We can have maximum effects with the minimum burden. A transportation network like those of Denmark and Germany is the best strategy for FP in Japan. It may be the best system for cancer patients, medical staff, and the Ministry of Health, Labor, and Welfare.

  13. Gene expression correlations in human cancer cell lines define molecular interaction networks for epithelial phenotype.

    Science.gov (United States)

    Kohn, Kurt W; Zeeberg, Barry M; Reinhold, William C; Pommier, Yves

    2014-01-01

    Using gene expression data to enhance our knowledge of control networks relevant to cancer biology and therapy is a challenging but urgent task. Based on the premise that genes that are expressed together in a variety of cell types are likely to functions together, we derived mutually correlated genes that function together in various processes in epithelial-like tumor cells. Expression-correlated genes were derived from data for the NCI-60 human tumor cell lines, as well as data from the Broad Institute's CCLE cell lines. NCI-60 cell lines that selectively expressed a mutually correlated subset of tight junction genes served as a signature for epithelial-like cancer cells. Those signature cell lines served as a seed to derive other correlated genes, many of which had various other epithelial-related functions. Literature survey yielded molecular interaction and function information about those genes, from which molecular interaction maps were assembled. Many of the genes had epithelial functions unrelated to tight junctions, demonstrating that new function categories were elicited. The most highly correlated genes were implicated in the following epithelial functions: interactions at tight junctions (CLDN7, CLDN4, CLDN3, MARVELD3, MARVELD2, TJP3, CGN, CRB3, LLGL2, EPCAM, LNX1); interactions at adherens junctions (CDH1, ADAP1, CAMSAP3); interactions at desmosomes (PPL, PKP3, JUP); transcription regulation of cell-cell junction complexes (GRHL1 and 2); epithelial RNA splicing regulators (ESRP1 and 2); epithelial vesicle traffic (RAB25, EPN3, GRHL2, EHF, ADAP1, MYO5B); epithelial Ca(+2) signaling (ATP2C2, S100A14, BSPRY); terminal differentiation of epithelial cells (OVOL1 and 2, ST14, PRSS8, SPINT1 and 2); maintenance of apico-basal polarity (RAB25, LLGL2, EPN3). The findings provide a foundation for future studies to elucidate the functions of regulatory networks specific to epithelial-like cancer cells and to probe for anti-cancer drug targets.

  14. Neuronal Network Pharmacodynamics of GABAergic Modulation in the Human Cortex Determined Using Pharmaco-Magnetoencephalography

    NARCIS (Netherlands)

    Hall, S.D.; Barnes, G.R.; Furlong, P.L.; Seri, S.; Hillebrand, A.

    2010-01-01

    Neuronal network oscillations are a unifying phenomenon in neuroscience research, with comparable measurements across scales and species. Cortical oscillations are of central importance in the characterization of neuronal network function in health and disease and are influential in effective drug

  15. Social networks and mental health among people living with human immunodeficiency virus (HIV) in Johannesburg, South Africa.

    Science.gov (United States)

    Odek, Willis Omondi

    2014-01-01

    People living with human immunodeficiency virus (PLHIV) in developing countries can live longer due to improved treatment access, and a deeper understanding of determinants of their quality of life is critical. This study assessed the link between social capital, operationally defined in terms of social networks (group-based and personal social networks) and access to network resources (access to material and non-material resources and social support) and health-related quality of life (HRQoL) among 554 (55% female) adults on HIV treatment through South Africa's public health system. Female study participants were involved with more group-based social networks but had fewer personal social networks in comparison to males. Access to network resources was higher among females and those from larger households but lower among older study participants. Experience of social support significantly increased with household economic status and duration at current residence. Social capital indicators were unrelated to HIV disease status indicators, including duration since diagnosis, CD4 count and viral load. Only a minority (13%) of study participants took part in groups formed by and for predominantly PLHIV (HIV support groups), and participation in such groups was unrelated to their mental or physical health. Personal rather than group-linked social networks and access to network resources were significantly associated with mental but not physical health, after controlling for sociodemographic characteristics. The findings of limited participation in HIV support groups and that the participation in such groups was not significantly associated with physical or mental health may suggest efforts among PLHIV in South Africa to normalise HIV as a chronic illness through broad-based rather than HIV-status bounded social participation, as a strategy for deflecting stigma. Further research is required to examine the effects of HIV treatment on social networking and participation

  16. Highly stretchable strain sensor based on SWCNTs/CB synergistic conductive network for wearable human-activity monitoring and recognition

    Science.gov (United States)

    Guo, Xiaohui; Huang, Ying; Zhao, Yunong; Mao, Leidong; Gao, Le; Pan, Weidong; Zhang, Yugang; Liu, Ping

    2017-09-01

    Flexible, stretchable, and wearable strain sensors have attracted significant attention for their potential applications in human movement detection and recognition. Here, we report a highly stretchable and flexible strain sensor based on a single-walled carbon nanotube (SWCNTs)/carbon black (CB) synergistic conductive network. The fabrication, synergistic conductive mechanism, and characterization of the sandwich-structured strain sensor were investigated. The experimental results show that the device exhibits high stretchability (120%), excellent flexibility, fast response (∼60 ms), temperature independence, and superior stability and reproducibility during ∼1100 stretching/releasing cycles. Furthermore, human activities such as the bending of a finger or elbow and gestures were monitored and recognized based on the strain sensor, indicating that the stretchable strain sensor based on the SWCNTs/CB synergistic conductive network could have promising applications in flexible and wearable devices for human motion monitoring.

  17. Human Detection System by Fusing Depth Map-Based Method and Convolutional Neural Network-Based Method

    Directory of Open Access Journals (Sweden)

    Anh Vu Le

    2017-01-01

    Full Text Available In this paper, the depth images and the colour images provided by Kinect sensors are used to enhance the accuracy of human detection. The depth-based human detection method is fast but less accurate. On the other hand, the faster region convolutional neural network-based human detection method is accurate but requires a rather complex hardware configuration. To simultaneously leverage the advantages and relieve the drawbacks of each method, one master and one client system is proposed. The final goal is to make a novel Robot Operation System (ROS-based Perception Sensor Network (PSN system, which is more accurate and ready for the real time application. The experimental results demonstrate the outperforming of the proposed method compared with other conventional methods in the challenging scenarios.

  18. Discrimination of human bodies from bones and teeth remains by Laser Induced Breakdown Spectroscopy and Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Moncayo, S.; Manzoor, S.; Ugidos, T.; Navarro-Villoslada, F.; Caceres, J.O., E-mail: jcaceres@ucm.es

    2014-11-01

    A fast and minimally destructive method based on Laser Induced Breakdown Spectroscopy (LIBS) and Neural Networks (NN) has been developed and applied to the classification and discrimination of human bones and teeth fragments. The methodology can be useful in Disaster Victim Identification (DVI) tasks. The elemental compositions of bone and teeth samples provided enough information to achieve a correct discrimination and reassembling of different human remains. Individuals were classified with spectral correlation higher than 95%, regardless of the type of bone or tooth sample analyzed. No false positive or false negative was observed, demonstrating the high robustness and accuracy of the proposed methodology. - Highlights: • Classification and discrimination of human remains have been studied. • Remains were analyzed by Laser Induced Breakdown Spectroscopy (LIBS). • Neural Networks models (NN) were used. • Individuals were classified with spectral correlation higher than 95 %. • LIBS-NN showed the potential for rapid and cost-effective analysis.

  19. Properties of language networks and language systems. Comment on "Approaching human language with complex networks" by Cong and Liu

    Science.gov (United States)

    Yu, Shuiyuan; Xu, Chunshan

    2014-12-01

    Language is generally considered a defining feature of human beings, a key medium for interpersonal communication, a fundamental tool for human thinking and an important vehicle for culture transmission. For the anthropoids to evolve into human being, the emergence of linguistic system is a vital step. Then, how can language serve functions so complicated and so important? To answer this question, it is necessary to probe into a central topic in linguistics: the structure of language, which has been inevitably involved in various fields of linguistic research-the functions of languages, the evolution of languages, the typology of languages, etc.

  20. Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties.

    Directory of Open Access Journals (Sweden)

    Vera Levina

    Full Text Available BACKGROUND: Cancer stem cells (CSCs are thought to be responsible for tumor regeneration after chemotherapy, although direct confirmation of this remains forthcoming. We therefore investigated whether drug treatment could enrich and maintain CSCs and whether the high tumorogenic and metastatic abilities of CSCs were based on their marked ability to produce growth and angiogenic factors and express their cognate receptors to stimulate tumor cell proliferation and stroma formation. METHODOLOGY/FINDINGS: Treatment of lung tumor cells with doxorubicin, cisplatin, or etoposide resulted in the selection of drug surviving cells (DSCs. These cells expressed CD133, CD117, SSEA-3, TRA1-81, Oct-4, and nuclear beta-catenin and lost expression of the differentiation markers cytokeratins 8/18 (CK 8/18. DSCs were able to grow as tumor spheres, maintain self-renewal capacity, and differentiate. Differentiated progenitors lost expression of CD133, gained CK 8/18 and acquired drug sensitivity. In the presence of drugs, differentiation of DSCs was abrogated allowing propagation of cells with CSC-like characteristics. Lung DSCs demonstrated high tumorogenic and metastatic potential following inoculation into SCID mice, which supported their classification as CSCs. Luminex analysis of human and murine cytokines in sonicated lysates of parental- and CSC-derived tumors revealed that CSC-derived tumors contained two- to three-fold higher levels of human angiogenic and growth factors (VEGF, bFGF, IL-6, IL-8, HGF, PDGF-BB, G-CSF, and SCGF-beta. CSCs also showed elevated levels of expression of human VEGFR2, FGFR2, CXCR1, 2 and 4 receptors. Moreover, human CSCs growing in SCID mice stimulated murine stroma to produce elevated levels of angiogenic and growth factors. CONCLUSIONS/SIGNIFICANCE: These findings suggest that chemotherapy can lead to propagation of CSCs and prevention of their differentiation. The high tumorigenic and metastatic potentials of CSCs are associated

  1. Novel insights into embryonic stem cell self-renewal revealed through comparative human and mouse systems biology networks.

    Science.gov (United States)

    Dowell, Karen G; Simons, Allen K; Bai, Hao; Kell, Braden; Wang, Zack Z; Yun, Kyuson; Hibbs, Matthew A

    2014-05-01

    Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation

  2. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT.

    Directory of Open Access Journals (Sweden)

    Rasmus Agren

    Full Text Available Development of high throughput analytical methods has given physicians the potential access to extensive and patient-specific data sets, such as gene sequences, gene expression profiles or metabolite footprints. This opens for a new approach in health care, which is both personalized and based on system-level analysis. Genome-scale metabolic networks provide a mechanistic description of the relationships between different genes, which is valuable for the analysis and interpretation of large experimental data-sets. Here we describe the generation of genome-scale active metabolic networks for 69 different cell types and 16 cancer types using the INIT (Integrative Network Inference for Tissues algorithm. The INIT algorithm uses cell type specific information about protein abundances contained in the Human Proteome Atlas as the main source of evidence. The generated models constitute the first step towards establishing a Human Metabolic Atlas, which will be a comprehensive description (accessible online of the metabolism of different human cell types, and will allow for tissue-level and organism-level simulations in order to achieve a better understanding of complex diseases. A comparative analysis between the active metabolic networks of cancer types and healthy cell types allowed for identification of cancer-specific metabolic features that constitute generic potential drug targets for cancer treatment.

  3. Rewiring of Signaling Networks Modulating Thermotolerance in the Human Pathogen Cryptococcus neoformans.

    Science.gov (United States)

    Yang, Dong-Hoon; Jung, Kwang-Woo; Bang, Soohyun; Lee, Jang-Won; Song, Min-Hee; Floyd-Averette, Anna; Festa, Richard A; Ianiri, Giuseppe; Idnurm, Alexander; Thiele, Dennis J; Heitman, Joseph; Bahn, Yong-Sun

    2017-01-01

    Thermotolerance is a crucial virulence attribute for human pathogens, including the fungus Cryptococcus neoformans that causes fatal meningitis in humans. Loss of the protein kinase Sch9 increases C. neoformans thermotolerance, but its regulatory mechanism has remained unknown. Here, we studied the Sch9-dependent and Sch9-independent signaling networks modulating C. neoformans thermotolerance by using genome-wide transcriptome analysis and reverse genetic approaches. During temperature upshift, genes encoding for molecular chaperones and heat shock proteins were upregulated, whereas those for translation, transcription, and sterol biosynthesis were highly suppressed. In this process, Sch9 regulated basal expression levels or induced/repressed expression levels of some temperature-responsive genes, including heat shock transcription factor (HSF1) and heat shock proteins (HSP104 and SSA1). Notably, we found that the HSF1 transcript abundance decreased but the Hsf1 protein became transiently phosphorylated during temperature upshift. Nevertheless, Hsf1 is essential for growth and its overexpression promoted C. neoformans thermotolerance. Transcriptome analysis using an HSF1 overexpressing strain revealed a dual role of Hsf1 in the oxidative stress response and thermotolerance. Chromatin immunoprecipitation demonstrated that Hsf1 binds to the step-type like heat shock element (HSE) of its target genes more efficiently than to the perfect- or gap-type HSE. This study provides insight into the thermotolerance of C. neoformans by elucidating the regulatory mechanisms of Sch9 and Hsf1 through the genome-scale identification of temperature-dependent genes. Copyright © 2017 by the Genetics Society of America.

  4. Microgeographic Proteomic Networks of the Human Colonic Mucosa and Their Association With Inflammatory Bowel Disease.

    Science.gov (United States)

    Li, Xiaoxiao; LeBlanc, James; Elashoff, David; McHardy, Ian; Tong, Maomeng; Roth, Bennett; Ippoliti, Andrew; Barron, Gildardo; McGovern, Dermot; McDonald, Keely; Newberry, Rodney; Graeber, Thomas; Horvath, Steve; Goodglick, Lee; Braun, Jonathan

    2016-09-01

    Interactions between mucosal cell types, environmental stressors, and intestinal microbiota contribute to pathogenesis in inflammatory bowel disease (IBD). Here, we applied metaproteomics of the mucosal-luminal interface to study the disease-related biology of the human colonic mucosa. We recruited a discovery cohort of 51 IBD and non-IBD subjects endoscopically sampled by mucosal lavage at 6 colonic regions, and a validation cohort of 38 no-IBD subjects. Metaproteome data sets were produced for each sample and analyzed for association with colonic site and disease state using a suite of bioinformatic approaches. Localization of select proteins was determined by immunoblot analysis and immunohistochemistry of human endoscopic biopsy samples. Co-occurrence analysis of the discovery cohort metaproteome showed that proteins at the mucosal surface clustered into modules with evidence of differential functional specialization (eg, iron regulation, microbial defense) and cellular origin (eg, epithelial or hemopoietic). These modules, validated in an independent cohort, were differentially associated spatially along the gastrointestinal tract, and 7 modules were associated selectively with non-IBD, ulcerative colitis, and/or Crohn's disease states. In addition, the detailed composition of certain modules was altered in disease vs healthy states. We confirmed the predicted spatial and disease-associated localization of 28 proteins representing 4 different disease-related modules by immunoblot and immunohistochemistry visualization, with evidence for their distribution as millimeter-scale microgeographic mosaic. These findings suggest that the mucosal surface is a microgeographic mosaic of functional networks reflecting the local mucosal ecology, whose compositional differences in disease and healthy samples may provide a unique readout of physiologic and pathologic mucosal states.

  5. Identification of direct and indirect social network effects in the pathophysiology of insulin resistance in obese human subjects.

    Science.gov (United States)

    Henning, Christian H C A; Zarnekow, Nana; Hedtrich, Johannes; Stark, Sascha; Türk, Kathrin; Laudes, Matthias

    2014-01-01

    The aim of the present study was to examine to what extent different social network mechanisms are involved in the pathogenesis of obesity and insulin-resistance. We used nonparametric and parametric regression models to analyse whether individual BMI and HOMA-IR are determined by social network characteristics. A total of 677 probands (EGO) and 3033 social network partners (ALTER) were included in the study. Data gathered from the probands include anthropometric measures, HOMA-IR index, health attitudes, behavioural and socio-economic variables and social network data. We found significant treatment effects for ALTERs frequent dieting (pnetwork effect also on EGO's insulin resistance. Most importantly, we also found significant direct social network effects on EGO's insulin resistance, evidenced by an effect of ALTERs frequent dieting (p = 0.033) and ALTERs sport activities (p = 0.041) to decrease EGO's HOMA-IR index independently of EGO's BMI. Social network phenomena appear not only to be relevant for the spread of obesity, but also for the spread of insulin resistance as the basis for type 2 diabetes. Attitudes and behaviour of peer groups influence EGO's health status not only via social mechanisms, but also via socio-biological mechanisms, i.e. higher brain areas might be influenced not only by biological signals from the own organism, but also by behaviour and knowledge from different human individuals. Our approach allows the identification of peer group influence controlling for potential homophily even when using cross-sectional observational data.

  6. Application of Bayesian networks for hazard ranking of nanomaterials to support human health risk assessment.

    Science.gov (United States)

    Marvin, Hans J P; Bouzembrak, Yamine; Janssen, Esmée M; van der Zande, Meike; Murphy, Finbarr; Sheehan, Barry; Mullins, Martin; Bouwmeester, Hans

    2017-02-01

    In this study, a Bayesian Network (BN) was developed for the prediction of the hazard potential and biological effects with the focus on metal- and metal-oxide nanomaterials to support human health risk assessment. The developed BN captures the (inter) relationships between the exposure route, the nanomaterials physicochemical properties and the ultimate biological effects in a holistic manner and was based on international expert consultation and the scientific literature (e.g., in vitro/in vivo data). The BN was validated with independent data extracted from published studies and the accuracy of the prediction of the nanomaterials hazard potential was 72% and for the biological effect 71%, respectively. The application of the BN is shown with scenario studies for TiO2, SiO2, Ag, CeO2, ZnO nanomaterials. It is demonstrated that the BN may be used by different stakeholders at several stages in the risk assessment to predict certain properties of a nanomaterials of which little information is available or to prioritize nanomaterials for further screening.

  7. Modeling IoT-Based Solutions Using Human-Centric Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Álvaro Monares

    2014-08-01

    Full Text Available The Internet of Things (IoT has inspired solutions that are already available for addressing problems in various application scenarios, such as healthcare, security, emergency support and tourism. However, there is no clear approach to modeling these systems and envisioning their capabilities at the design time. Therefore, the process of designing these systems is ad hoc and its real impact is evaluated once the solution is already implemented, which is risky and expensive. This paper proposes a modeling approach that uses human-centric wireless sensor networks to specify and evaluate models of IoT-based systems at the time of design, avoiding the need to spend time and effort on early implementations of immature designs. It allows designers to focus on the system design, leaving the implementation decisions for a next phase. The article illustrates the usefulness of this proposal through a running example, showing the design of an IoT-based solution to support the first responses during medium-sized or large urban incidents. The case study used in the proposal evaluation is based on a real train crash. The proposed modeling approach can be used to design IoT-based systems for other application scenarios, e.g., to support security operatives or monitor chronic patients in their homes.

  8. A cortical network model of cognitive and emotional influences in human decision making.

    Science.gov (United States)

    Nazir, Azadeh Hassannejad; Liljenström, Hans

    2015-10-01

    Decision making (DM)(2) is a complex process that appears to involve several brain structures. In particular, amygdala, orbitofrontal cortex (OFC) and lateral prefrontal cortex (LPFC) seem to be essential in human decision making, where both emotional and cognitive aspects are taken into account. In this paper, we present a computational network model representing the neural information processing of DM, from perception to behavior. We model the population dynamics of the three neural structures (amygdala, OFC and LPFC), as well as their interaction. In our model, the neurodynamic activity of amygdala and OFC represents the neural correlates of secondary emotion, while the activity of certain neural populations in OFC alone represents the outcome expectancy of different options. The cognitive/rational aspect of DM is associated with LPFC. Our model is intended to give insights on the emotional and cognitive processes involved in DM under various internal and external contexts. Different options for actions are represented by the oscillatory activity of cell assemblies, which may change due to experience and learning. Knowledge and experience of the outcome of our decisions and actions can eventually result in changes in our neural structures, attitudes and behaviors. Simulation results may have implications for how we make decisions for our individual actions, as well as for societal choices, where we take examples from transport and its impact on CO2 emissions and climate change. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. BrainSegNet: a convolutional neural network architecture for automated segmentation of human brain structures.

    Science.gov (United States)

    Mehta, Raghav; Majumdar, Aabhas; Sivaswamy, Jayanthi

    2017-04-01

    Automated segmentation of cortical and noncortical human brain structures has been hitherto approached using nonrigid registration followed by label fusion. We propose an alternative approach for this using a convolutional neural network (CNN) which classifies a voxel into one of many structures. Four different kinds of two-dimensional and three-dimensional intensity patches are extracted for each voxel, providing local and global (context) information to the CNN. The proposed approach is evaluated on five different publicly available datasets which differ in the number of labels per volume. The obtained mean Dice coefficient varied according to the number of labels, for example, it is [Formula: see text] and [Formula: see text] for datasets with the least (32) and the most (134) number of labels, respectively. These figures are marginally better or on par with those obtained with the current state-of-the-art methods on nearly all datasets, at a reduced computational time. The consistently good performance of the proposed method across datasets and no requirement for registration make it attractive for many applications where reduced computational time is necessary.

  10. Modeling IoT-Based Solutions Using Human-Centric Wireless Sensor Networks

    Science.gov (United States)

    Monares, Álvaro; Ochoa, Sergio F.; Santos, Rodrigo; Orozco, Javier; Meseguer, Roc

    2014-01-01

    The Internet of Things (IoT) has inspired solutions that are already available for addressing problems in various application scenarios, such as healthcare, security, emergency support and tourism. However, there is no clear approach to modeling these systems and envisioning their capabilities at the design time. Therefore, the process of designing these systems is ad hoc and its real impact is evaluated once the solution is already implemented, which is risky and expensive. This paper proposes a modeling approach that uses human-centric wireless sensor networks to specify and evaluate models of IoT-based systems at the time of design, avoiding the need to spend time and effort on early implementations of immature designs. It allows designers to focus on the system design, leaving the implementation decisions for a next phase. The article illustrates the usefulness of this proposal through a running example, showing the design of an IoT-based solution to support the first responses during medium-sized or large urban incidents. The case study used in the proposal evaluation is based on a real train crash. The proposed modeling approach can be used to design IoT-based systems for other application scenarios, e.g., to support security operatives or monitor chronic patients in their homes. PMID:25157549

  11. Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring.

    Science.gov (United States)

    Lin, Zhiming; Chen, Jun; Li, Xiaoshi; Zhou, Zhihao; Meng, Keyu; Wei, Wei; Yang, Jin; Wang, Zhong Lin

    2017-09-26

    Heart-rate monitoring plays a critical role in personal healthcare management. A low-cost, noninvasive, and user-friendly heart-rate monitoring system is highly desirable. Here, a self-powered wireless body sensor network (BSN) system is developed for heart-rate monitoring via integration of a downy-structure-based triboelectric nanogenerator (D-TENG), a power management circuit, a heart-rate sensor, a signal processing unit, and Bluetooth module for wireless data transmission. By converting the inertia energy of human walking into electric power, a maximum power of 2.28 mW with total conversion efficiency of 57.9% was delivered at low operation frequency, which is capable of immediately and sustainably driving the highly integrated BSN system. The acquired heart-rate signal by the sensor would be processed in the signal process circuit, sent to an external device via the Bluetooth module, and displayed on a personal cell phone in a real-time manner. Moreover, by combining a TENG-based generator and a TENG-based sensor, an all-TENG-based wireless BSN system was developed, realizing continuous and self-powered heart-rate monitoring. This work presents a potential method for personal heart-rate monitoring, featured as being self-powered, cost-effective, noninvasive, and user-friendly.

  12. High-frequency oscillations in distributed neural networks reveal the dynamics of human decision making

    Directory of Open Access Journals (Sweden)

    Adrian G Guggisberg

    2008-03-01

    Full Text Available We examine the relative timing of numerous brain regions involved in human decisions that are based on external criteria, learned information, personal preferences, or unconstrained internal considerations. Using magnetoencephalography (MEG and advanced signal analysis techniques, we were able to non-invasively reconstruct oscillations of distributed neural networks in the high-gamma frequency band (60–150 Hz. The time course of the observed neural activity suggested that two-alternative forced choice tasks are processed in four overlapping stages: processing of sensory input, option evaluation, intention formation, and action execution. Visual areas are activated fi rst, and show recurring activations throughout the entire decision process. The temporo-occipital junction and the intraparietal sulcus are active during evaluation of external values of the options, 250–500 ms after stimulus presentation. Simultaneously, personal preference is mediated by cortical midline structures. Subsequently, the posterior parietal and superior occipital cortices appear to encode intention, with different subregions being responsible for different types of choice. The cerebellum and inferior parietal cortex are recruited for internal generation of decisions and actions, when all options have the same value. Action execution was accompanied by activation peaks in the contralateral motor cortex. These results suggest that high-gamma oscillations as recorded by MEG allow a reliable reconstruction of decision processes with excellent spatiotemporal resolution.

  13. Ganoderma lucidum polysaccharides in human monocytic leukemia cells: from gene expression to network construction

    Directory of Open Access Journals (Sweden)

    Ou Chern-Han

    2007-11-01

    Full Text Available Abstract Background Ganoderma lucidum has been widely used as a herbal medicine for promoting health and longevity in China and other Asian countries. Polysaccharide extracts from Ganoderma lucidum have been reported to exhibit immuno-modulating and anti-tumor activities. In previous studies, F3, the active component of the polysaccharide extract, was found to activate various cytokines such as IL-1, IL-6, IL-12, and TNF-α. This gave rise to our investigation on how F3 stimulates immuno-modulating or anti-tumor effects in human leukemia THP-1 cells. Results Here, we integrated time-course DNA microarray analysis, quantitative PCR assays, and bioinformatics methods to study the F3-induced effects in THP-1 cells. Significantly disturbed pathways induced by F3 were identified with statistical analysis on microarray data. The apoptosis induction through the DR3 and DR4/5 death receptors was found to be one of the most significant pathways and play a key role in THP-1 cells after F3 treatment. Based on time-course gene expression measurements of the identified pathway, we reconstructed a plausible regulatory network of the involved genes using reverse-engineering computational approach. Conclusion Our results showed that F3 may induce death receptor ligands to initiate signaling via receptor oligomerization, recruitment of specialized adaptor proteins and activation of caspase cascades.

  14. Modeling IoT-based solutions using human-centric wireless sensor networks.

    Science.gov (United States)

    Monares, Álvaro; Ochoa, Sergio F; Santos, Rodrigo; Orozco, Javier; Meseguer, Roc

    2014-08-25

    The Internet of Things (IoT) has inspired solutions that are already available for addressing problems in various application scenarios, such as healthcare, security, emergency support and tourism. However, there is no clear approach to modeling these systems and envisioning their capabilities at the design time. Therefore, the process of designing these systems is ad hoc and its real impact is evaluated once the solution is already implemented, which is risky and expensive. This paper proposes a modeling approach that uses human-centric wireless sensor networks to specify and evaluate models of IoT-based systems at the time of design, avoiding the need to spend time and effort on early implementations of immature designs. It allows designers to focus on the system design, leaving the implementation decisions for a next phase. The article illustrates the usefulness of this proposal through a running example, showing the design of an IoT-based solution to support the first responses during medium-sized or large urban incidents. The case study used in the proposal evaluation is based on a real train crash. The proposed modeling approach can be used to design IoT-based systems for other application scenarios, e.g., to support security operatives or monitor chronic patients in their homes.

  15. Social networks dynamics revealed by temporal analysis: An example in a non-human primate (Macaca sylvanus) in "La Forêt des Singes".

    Science.gov (United States)

    Sosa, Sebastian; Zhang, Peng; Cabanes, Guénaël

    2017-06-01

    This study applied a temporal social network analysis model to describe three affiliative social networks (allogrooming, sleep in contact, and triadic interaction) in a non-human primate species, Macaca sylvanus. Three main social mechanisms were examined to determine interactional patterns among group members, namely preferential attachment (i.e., highly connected individuals are more likely to form new connections), triadic closure (new connections occur via previous close connections), and homophily (individuals interact preferably with others with similar attributes). Preferential attachment was only observed for triadic interaction network. Triadic closure was significant in allogrooming and triadic interaction networks. Finally, gender homophily was seasonal for allogrooming and sleep in contact networks, and observed in each period for triadic interaction network. These individual-based behaviors are based on individual reactions, and their analysis can shed light on the formation of the affiliative networks determining ultimate coalition networks, and how these networks may evolve over time. A focus on individual behaviors is necessary for a global interactional approach to understanding social behavior rules and strategies. When combined, these social processes could make animal social networks more resilient, thus enabling them to face drastic environmental changes. This is the first study to pinpoint some of the processes underlying the formation of a social structure in a non-human primate species, and identify common mechanisms with humans. The approach used in this study provides an ideal tool for further research seeking to answer long-standing questions about social network dynamics. © 2017 Wiley Periodicals, Inc.

  16. Cortical and subcortical networks in human secondarily generalized tonic–clonic seizures

    Science.gov (United States)

    Varghese, G. I.; Purcaro, M.J.; Motelow, J.E.; Enev, M.; McNally, K. A.; Levin, A.R.; Hirsch, L. J.; Tikofsky, R.; Zubal, I. G.; Paige, A. L.; Spencer, S. S.

    2009-01-01

    Generalized tonic–clonic seizures are among the most dramatic physiological events in the nervous system. The brain regions involved during partial seizures with secondary generalization have not been thoroughly investigated in humans. We used single photon emission computed tomography (SPECT) to image cerebral blood flow (CBF) changes in 59 secondarily generalized seizures from 53 patients. Images were analysed using statistical parametric mapping to detect cortical and subcortical regions most commonly affected in three different time periods: (i) during the partial seizure phase prior to generalization; (ii) during the generalization period; and (iii) post-ictally. We found that in the pre-generalization period, there were focal CBF increases in the temporal lobe on group analysis, reflecting the most common region of partial seizure onset. During generalization, individual patients had focal CBF increases in variable regions of the cerebral cortex. Group analysis during generalization revealed that the most consistent increase occurred in the superior medial cerebellum, thalamus and basal ganglia. Post-ictally, there was a marked progressive CBF increase in the cerebellum which spread to involve the bilateral lateral cerebellar hemispheres, as well as CBF increases in the midbrain and basal ganglia. CBF decreases were seen in the fronto-parietal association cortex, precuneus and cingulate gyrus during and following seizures, similar to the ‘default mode’ regions reported previously to show decreased activity in seizures and in normal behavioural tasks. Analysis of patient behaviour during and following seizures showed impaired consciousness at the time of SPECT tracer injections. Correlation analysis across patients demonstrated that cerebellar CBF increases were related to increases in the upper brainstem and thalamus, and to decreases in the fronto-parietal association cortex. These results reveal a network of cortical and subcortical structures that

  17. Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures.

    Science.gov (United States)

    Blumenfeld, H; Varghese, G I; Purcaro, M J; Motelow, J E; Enev, M; McNally, K A; Levin, A R; Hirsch, L J; Tikofsky, R; Zubal, I G; Paige, A L; Spencer, S S

    2009-04-01

    Generalized tonic-clonic seizures are among the most dramatic physiological events in the nervous system. The brain regions involved during partial seizures with secondary generalization have not been thoroughly investigated in humans. We used single photon emission computed tomography (SPECT) to image cerebral blood flow (CBF) changes in 59 secondarily generalized seizures from 53 patients. Images were analysed using statistical parametric mapping to detect cortical and subcortical regions most commonly affected in three different time periods: (i) during the partial seizure phase prior to generalization; (ii) during the generalization period; and (iii) post-ictally. We found that in the pre-generalization period, there were focal CBF increases in the temporal lobe on group analysis, reflecting the most common region of partial seizure onset. During generalization, individual patients had focal CBF increases in variable regions of the cerebral cortex. Group analysis during generalization revealed that the most consistent increase occurred in the superior medial cerebellum, thalamus and basal ganglia. Post-ictally, there was a marked progressive CBF increase in the cerebellum which spread to involve the bilateral lateral cerebellar hemispheres, as well as CBF increases in the midbrain and basal ganglia. CBF decreases were seen in the fronto-parietal association cortex, precuneus and cingulate gyrus during and following seizures, similar to the 'default mode' regions reported previously to show decreased activity in seizures and in normal behavioural tasks. Analysis of patient behaviour during and following seizures showed impaired consciousness at the time of SPECT tracer injections. Correlation analysis across patients demonstrated that cerebellar CBF increases were related to increases in the upper brainstem and thalamus, and to decreases in the fronto-parietal association cortex. These results reveal a network of cortical and subcortical structures that are most

  18. On the motion of substance in a channel of a network and human migration

    Science.gov (United States)

    Vitanov, Nikolay K.; Vitanov, Kaloyan N.

    2018-01-01

    We model the motion of a substance in a channel of a network that consists of chain of (i) nodes of the network and (ii) edges that connect the nodes and form the way for motion of the substance. The nodes of the channel can have different ;leakage;, i.e., some amount of the substance can leave the channel at a node and the rate of leaving can be different for the different nodes of the channel. The nodes close to the end of the channel for some (design or other) reason may be more ;attractive; for the substance in comparison to the nodes around the incoming node of the channel. We discuss channels containing infinite or finite number of nodes. The main outcome of the model is the distribution of the substance along the nodes. Two regimes of functioning of the channels are studied: stationary regime and non-stationary regime. The distribution of the substance along the nodes of the channel for the case of stationary regime is a distribution with a very long tail that contains as particular case the Waring distribution (for channel with infinite number of nodes) or the truncated Waring distribution (for channel with finite number of nodes). In the non-stationary regime of functioning of the channel one observes an exponential increase or exponential decrease of the amount of substance in the nodes. However the asymptotic distribution of the substance among the nodes of the channel in this regime remains stationary. The studied model is applied to the case of migration of humans through a migration channel consisting of chain of countries. In this case the model accounts for the number of migrants entering the channel through the first country of the channel; permeability of the borders between the countries; possible large attractiveness of some countries of the channel; possibility for migrants to obtain permission to reside in a country of the channel. The main outcome of the model is the distribution of migrants along the countries of the channel. We discuss the

  19. Modelling Inter-relationships among water, governance, human development variables in developing countries with Bayesian networks.

    Science.gov (United States)

    Dondeynaz, C.; Lopez-Puga, J.; Carmona-Moreno, C.

    2012-04-01

    Improving Water and Sanitation Services (WSS), being a complex and interdisciplinary issue, passes through collaboration and coordination of different sectors (environment, health, economic activities, governance, and international cooperation). This inter-dependency has been recognised with the adoption of the "Integrated Water Resources Management" principles that push for the integration of these various dimensions involved in WSS delivery to ensure an efficient and sustainable management. The understanding of these interrelations appears as crucial for decision makers in the water sector in particular in developing countries where WSS still represent an important leverage for livelihood improvement. In this framework, the Joint Research Centre of the European Commission has developed a coherent database (WatSan4Dev database) containing 29 indicators from environmental, socio-economic, governance and financial aid flows data focusing on developing countries (Celine et al, 2011 under publication). The aim of this work is to model the WatSan4Dev dataset using probabilistic models to identify the key variables influencing or being influenced by the water supply and sanitation access levels. Bayesian Network Models are suitable to map the conditional dependencies between variables and also allows ordering variables by level of influence on the dependent variable. Separated models have been built for water supply and for sanitation because of different behaviour. The models are validated if complying with statistical criteria but either with scientific knowledge and literature. A two steps approach has been adopted to build the structure of the model; Bayesian network is first built for each thematic cluster of variables (e.g governance, agricultural pressure, or human development) keeping a detailed level for interpretation later one. A global model is then built based on significant indicators of each cluster being previously modelled. The structure of the

  20. Interbacterial Adhesion Networks within Early Oral Biofilms of Single Human Hosts.

    Science.gov (United States)

    Palmer, Robert J; Shah, Nehal; Valm, Alex; Paster, Bruce; Dewhirst, Floyd; Inui, Taichi; Cisar, John O

    2017-06-01

    Specific interbacterial adhesion, termed coaggregation, is well established for three early colonizers of the plaque biofilm: streptococci, actinomyces, and veillonellae. However, little is known about interactions of other early colonizers and about the extent of interactions within the bacterial community from a single host. To address these gaps, subject-specific culture collections from two individuals were established using an intraoral biofilm retrieval device. Molecular taxonomy (Human Oral Microbe Identification Microarray [HOMIM]) analysis of biofilm samples confirmed the integrity and completeness of the collections. HOMIM analysis verified the isolation of Streptococcus gordonii and S. anginosus from only one subject, as well as isolation of a previously uncultivated streptococcal phylotype from the other subject. Strains representative of clonal diversity within each collection were further characterized. Greater than 70% of these streptococcal strains from each subject coaggregated with at least one other coisolate. One-third of the strains carry a known coaggregation mediator: receptor polysaccharide (RPS). Almost all nonstreptococcal isolates coaggregated with other coisolates. Importantly, certain Rothia strains demonstrated more coaggregations with their coisolated bacteria than did any Streptococcus or Actinomyces strain, and certain Haemophilus isolates participated in twice as many. Confocal microscopy of undisturbed biofilms showed that Rothia and Haemophilus each occur in small multispecies microcolonies. However, in confluent high-biomass regions, Rothia occurred in islands whereas Haemophilus was distributed throughout. Together, the data demonstrate that coaggregation networks within an individual's oral microflora are extensive and that Rothia and Haemophilus can be important initiators of cell-cell interactions in the early biofilm.IMPORTANCE Extensive involvement of specific interbacterial adhesion in dental plaque biofilm formation has

  1. Construction and analysis of a human testis/sperm-enriched interaction network: Unraveling the PPP1CC2 interactome.

    Science.gov (United States)

    Silva, Joana Vieira; Yoon, Sooyeon; De Bock, Pieter-Jan; Goltsev, Alexander V; Gevaert, Kris; Mendes, José Fernando F; Fardilha, Margarida

    2017-02-01

    Phosphoprotein phosphatase 1 catalytic subunit gamma 2 (PPP1CC2), a PPP1CC tissue-specific alternative splice restricted to testicular germ cells and spermatozoa, is essential for spermatogenesis and spermatozoa motility. The key to understand PPP1CC2 regulation lies on the characterization of its interacting partners. We construct a testis/sperm-enriched protein interaction network and analyzed the topological properties and biological context of the network. Further the interaction of a potential target for pharmacological intervention was validated in human spermatozoa. A total of 1778 proteins and 32,187 interactions between them were identified in the testis/sperm-enriched network. The network analysis revealed the members of functional modules that interact more tightly with each other. In the network, PPP1CC was located in the fourth maximum core part (k=41) and had 106 direct interactors. Sixteen PPP1CC interactors were involved in spermatogenesis-related categories. Also, PPP1CC had 50 direct interactors, highly interconnected and many of them part of the network maximum core (k=44), associated with motility-related annotations, including several previously uncharacterized interactors, such as, LMNA, JAK2 and RIPK3. In this study we integrated tissue-specific protein expression and protein-protein interaction data in order to identify key PPP1CC2 complexes for male reproductive functions. One of the most intriguing interactors was A-kinase anchor protein 4 (AKAP4), a testis-specific protein related to infertility phenotypes and involved in all major motility-related annotations. We demonstrated for the first time the interaction between PPP1CC2 and AKAP4 in human spermatozoa and the potential of the complex as contraceptive target. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Dynamic transcriptional signatures and network responses for clinical symptoms in influenza-infected human subjects using systems biology approaches.

    Science.gov (United States)

    Linel, Patrice; Wu, Shuang; Deng, Nan; Wu, Hulin

    2014-10-01

    Recent studies demonstrate that human blood transcriptional signatures may be used to support diagnosis and clinical decisions for acute respiratory viral infections such as influenza. In this article, we propose to use a newly developed systems biology approach for time course gene expression data to identify significant dynamically response genes and dynamic gene network responses to viral infection. We illustrate the methodological pipeline by reanalyzing the time course gene expression data from a study with healthy human subjects challenged by live influenza virus. We observed clear differences in the number of significant dynamic response genes (DRGs) between the symptomatic and asymptomatic subjects and also identified DRG signatures for symptomatic subjects with influenza infection. The 505 common DRGs shared by the symptomatic subjects have high consistency with the signature genes for predicting viral infection identified in previous works. The temporal response patterns and network response features were carefully analyzed and investigated.

  3. Simulation of one-dimensional blood flow in networks of human vessels using a novel TVD scheme.

    Science.gov (United States)

    Huang, P G; Muller, L O

    2015-05-01

    An extension of a total variation diminishing (TVD) scheme to solve one-dimensional (1D) blood flow for human circulation is proposed. This method is simple as it involves only a few modifications to existing shock-capturing TVD schemes. We have applied the method to a wide range of test cases including a complete simulation of the human vascular network. Excellent solutions have been demonstrated for problems involving varying and discontinuous mechanical properties of blood vessels. For 1D network simulations, the method has been shown to agree well with the reported computational results. Finally, the method has been demonstrated to compare favorably with in vivo experiments set up to study the impact of circle of Willis anomalies on flow patterns in the cerebral arterial system. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Identification of direct and indirect social network effects in the pathophysiology of insulin resistance in obese human subjects.

    Directory of Open Access Journals (Sweden)

    Christian H C A Henning

    Full Text Available OBJECTIVE: The aim of the present study was to examine to what extent different social network mechanisms are involved in the pathogenesis of obesity and insulin-resistance. DESIGN: We used nonparametric and parametric regression models to analyse whether individual BMI and HOMA-IR are determined by social network characteristics. SUBJECTS AND METHODS: A total of 677 probands (EGO and 3033 social network partners (ALTER were included in the study. Data gathered from the probands include anthropometric measures, HOMA-IR index, health attitudes, behavioural and socio-economic variables and social network data. RESULTS: We found significant treatment effects for ALTERs frequent dieting (p<0.001 and ALTERs health oriented nutritional attitudes (p<0.001 on EGO's BMI, establishing a significant indirect network effect also on EGO's insulin resistance. Most importantly, we also found significant direct social network effects on EGO's insulin resistance, evidenced by an effect of ALTERs frequent dieting (p = 0.033 and ALTERs sport activities (p = 0.041 to decrease EGO's HOMA-IR index independently of EGO's BMI. CONCLUSIONS: Social network phenomena appear not only to be relevant for the spread of obesity, but also for the spread of insulin resistance as the basis for type 2 diabetes. Attitudes and behaviour of peer groups influence EGO's health status not only via social mechanisms, but also via socio-biological mechanisms, i.e. higher brain areas might be influenced not only by biological signals from the own organism, but also by behaviour and knowledge from different human individuals. Our approach allows the identification of peer group influence controlling for potential homophily even when using cross-sectional observational data.

  5. Discrimination of human bodies from bones and teeth remains by Laser Induced Breakdown Spectroscopy and Neural Networks

    Science.gov (United States)

    Moncayo, S.; Manzoor, S.; Ugidos, T.; Navarro-Villoslada, F.; Caceres, J. O.

    2014-11-01

    A fast and minimally destructive method based on Laser Induced Breakdown Spectroscopy (LIBS) and Neural Networks (NN) has been developed and applied to the classification and discrimination of human bones and teeth fragments. The methodology can be useful in Disaster Victim Identification (DVI) tasks. The elemental compositions of bone and teeth samples provided enough information to achieve a correct discrimination and reassembling of different human remains. Individuals were classified with spectral correlation higher than 95%, regardless of the type of bone or tooth sample analyzed. No false positive or false negative was observed, demonstrating the high robustness and accuracy of the proposed methodology.

  6. Biocompatibility of polymer-infiltrated-ceramic-network (PICN) materials with Human Gingival Keratinocytes (HGKs).

    Science.gov (United States)

    Grenade, Charlotte; De Pauw-Gillet, Marie-Claire; Pirard, Catherine; Bertrand, Virginie; Charlier, Corinne; Vanheusden, Alain; Mainjot, Amélie

    2017-03-01

    Biocompatibility of polymer-infiltrated-ceramic-network (PICN) materials, a new class of CAD-CAM composites, is poorly explored in the literature, in particular, no data are available regarding Human Gingival Keratinocytes (HGK). The first objective of this study was to evaluate the in vitro biocompatibility of PICNs with HGKs in comparison with other materials typically used for implant prostheses. The second objective was to correlate results with PICN monomer release and indirect cytotoxicity. HGK attachment, proliferation and spreading on PICN, grade V titanium (Ti), yttrium zirconia (Zi), lithium disilicate glass-ceramic (eM) and polytetrafluoroethylene (negative control) discs were evaluated using a specific insert-based culture system. For PICN and eM samples, monomer release in the culture medium was quantified by high performance liquid chromatography and indirect cytotoxicity tests were performed. Ti and Zi exhibited the best results regarding HGK viability, number and coverage. eM showed inferior results while PICN showed statistically similar results to eM but also to Ti regarding cell number and to Ti and Zi regarding cell viability. No monomer release from PICN discs was found, nor indirect cytotoxicity, as for eM. The results confirmed the excellent behavior of Ti and Zi with gingival cells. Even if polymer based, PICN materials exhibited intermediate results between Ti-Zi and eM. These promising results could notably be explained by PICN high temperature-high pressure (HT-HP) innovative polymerization mode, as confirmed by the absence of monomer release and indirect cytotoxicity. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. THE NATIONAL CENTER FOR RADIOECOLOGY: A NETWORK OF EXCELLENCE FOR ENVIRONMENTAL AND HUMAN RADIATION RISK REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, T.

    2013-01-09

    Radioecology in the United States can be traced back to the early 1950s when small research programs were established to address the fate and effects of radionuclides released in the environment from activities at nuclear facilities. These programs focused primarily on local environmental effects, but global radioactive fallout from nuclear weapons testing and the potential for larger scale local releases of radioisotopes resulted in major concerns about the threat, not only to humans, but to other species and to ecosystems that support all life. These concerns were shared by other countries and it was quickly recognized that a multi-disciplinary approach would be required to address and understand the implications of anthropogenic radioactivity in the environment. The management, clean-up and long-term monitoring of legacy wastes at Department of Energy (DOE), Department of Defense (DOD), and Nuclear Regulatory Commission (NRC)-regulated facilities continues to be of concern as long as nuclear operations continue. Research conducted through radioecology programs provides the credible scientific data needed for decision-making purposes. The current status of radioecology programs in the United States are: fragmented with little coordination to identify national strategies and direct programs; suffering from a steadily decreasing funding base; soon to be hampered by closure of key infrastructure; hampered by aging and retiring workforce (loss of technical expertise); and in need of training of young scientists to ensure continuation of the science (no formal graduate education program in radioecology remaining in the U.S.). With these concerns in mind, the Savannah River National Laboratory (SRNL) took the lead to establish the National Center for Radioecology (NCoRE) as a network of excellence of the remaining radioecology expertise in the United States. As part of the NCoRE mission, scientists at SRNL are working with six key partner universities to re-establish a

  8. Towards a learning networked organisation: human capital, compatibility and usability in e-learning systems.

    Science.gov (United States)

    Ivergård, Toni; Hunt, Brian

    2005-03-01

    In all parts of organisations there flourish developments of different new subsystems in areas of knowledge and learning. Over recent decades, new systems for classification of jobs have emerged both at the level of organisations and at a macro-labour market level. Recent developments in job evaluation systems make it possible to cope with the new demands for equity at work (between, for example, genders, races, physical abilities). Other systems have emerged to describe job requirements in terms of skills, knowledge and competence. Systems for learning at work and web-based learning have created a demand for new ways to classify and to understand the process of learning. Often these new systems have been taken from other areas of the organisation not directly concerned with facilitating workplace learning. All these new systems are of course closely interrelated but, in most organisations, a major problem is the severe lack of cohesion and compatibility between the different subsystems. The aim of this paper is to propose a basis for how different human resource systems can be integrated into the business development of an organisation. We discuss this problem and develop proposals alternative to integrated macro-systems. A key element in our proposition is a structure for classification of knowledge and skill to be used in all parts of the process. This structure should be used as an added dimension or an overlay on all other subsystems of the total process. This will facilitate a continued use of all existing systems within different organisations. We develop Burge's (personal communication) model for learning to show that learning is not a successive linear process, but rather an iterative process. In this way we emphasise the need for greater involvement of learners in the development of learning systems towards increased usability in a networked system. This paper is divided into two parts which are closely related. The first part gives an overview of the

  9. The Reorganization of Human Brain Networks Modulated by Driving Mental Fatigue.

    Science.gov (United States)

    Chunlin Zhao; Min Zhao; Yong Yang; Junfeng Gao; Nini Rao; Pan Lin

    2017-05-01

    The organization of the brain functional network is associated with mental fatigue, but little is known about the brain network topology that is modulated by the mental fatigue. In this study, we used the graph theory approach to investigate reconfiguration changes in functional networks of different electroen-cephalography (EEG) bands from 16 subjects performing a simulated driving task. Behavior and brain functional networks were compared between the normal and driving mental fatigue states. The scores of subjective self-reports indicated that 90 min of simulated driving-induced mental fatigue. We observed that coherence was significantly increased in the frontal, central, and temporal brain regions. Furthermore, in the brain network topology metric, significant increases were observed in the clustering coefficient (Cp) for beta, alpha, and delta bands and the character path length (Lp) for all EEG bands. The normalized measures γ showed significant increases in beta, alpha, and delta bands, and λ showed similar patterns in beta and theta bands. These results indicate that functional network topology can shift the network topology structure toward a more economic but less efficient configuration, which suggests low wiring costs in functional networks and disruption of the effective interactions between and across cortical regions during mental fatigue states. Graph theory analysis might be a useful tool for further understanding the neural mechanisms of driving mental fatigue.

  10. Center for development technology and program in technology and human affairs. [emphasizing technology-based networks

    Science.gov (United States)

    Wong, M. D.

    1974-01-01

    The role of technology in nontraditional higher education with particular emphasis on technology-based networks is analyzed nontraditional programs, institutions, and consortia are briefly reviewed. Nontraditional programs which utilize technology are studied. Technology-based networks are surveyed and analyzed with regard to kinds of students, learning locations, technology utilization, interinstitutional relationships, cost aspects, problems, and future outlook.

  11. Co-expression Network Approach Reveals Functional Similarities among Diseases Affecting Human Skeletal Muscle

    OpenAIRE

    Kavitha Mukund; Shankar Subramaniam

    2017-01-01

    Diseases affecting skeletal muscle exhibit considerable heterogeneity in intensity, etiology, phenotypic manifestation and gene expression. Systems biology approaches using network theory, allows for a holistic understanding of functional similarities amongst diseases. Here we propose a co-expression based, network theoretic approach to extract functional similarities from 20 heterogeneous diseases comprising of dystrophinopathies, inflammatory myopathies, neuromuscular, and muscle metabolic ...

  12. Real-time Human Activity Recognition using a Body Sensor Network

    DEFF Research Database (Denmark)

    Wang, Liang; Gu, Tao; Chen, Hanhua

    2010-01-01

    Real-time activity recognition using body sensor networks is an important and challenging task and it has many potential applications. In this paper, we propose a realtime, hierarchical model to recognize both simple gestures and complex activities using a wireless body sensor network...

  13. A modelling framework to evaluate human-induced alterations of network sediment connectivity and quantify their unplanned adverse impact

    Science.gov (United States)

    Bizzi, S.; Schmitt, R. J. P.; Giuliani, M.; Castelletti, A.

    2016-12-01

    World-wide human-induced alterations of sediment transport, e.g. due to dams, sand and gravel mining along rivers and channel maintenance, translated into geomorphic changes, which have had major effects on ecosystem integrity, human livelihoods, ultimately negatively impacting also on the expected benefit from building water infrastructures. Despite considerable recent advances in modelling basin-scale hydrological and geomorphological processes, our ability to quantitatively simulate network sediment transport, foresee effects of alternative scenarios of human development on fluvial morpho-dynamics, and design anticipatory planning adaptation measures is still limited. In this work, we demonstrate the potential of a novel modelling framework called CASCADE (CAtchment SEdiment Connectivity And Delivery (Schmitt et al., 2016)) to characterize sediment connectivity at the whole river network scale, predict the disturbing effect of dams on the sediment transport, and quantify the associated loss with respect to the level of benefits that provided the economic justification for their development. CASCADE allows tracking the fate of a sediment from its source to its multiple sinks across the network. We present the results from two major, transboundary river systems (3S and Red River) in South-East Asia. We first discuss the ability of CASCADE to properly represent sediment connectivity at the network scale using available remote sensing data and information from monitoring networks. Secondly, we assess the impacts on sediment connectivity induced by existing and planned dams in the 3S and Red River basins and compare these alterations with revenues in terms of hydropower production. CASCADE outputs support a broader understanding of sediment connectivity tailored for water management issues not yet available, and it is suitable to enrich assessments of food-energy-water nexus. The model framework can be embedded into the design of optimal siting and sizing of water

  14. Cartilage oligomeric matrix protein (COMP)-mediated cell differentiation to proteolysis mechanism networks from human normal adjacent tissues to lung adenocarcinoma.

    Science.gov (United States)

    Wang, Lin; Huang, Juxiang; Jiang, Minghu; Diao, Haizhen; Zhou, Huilei; Li, Xiaohe; Chen, Qingchun; Jiang, Zhenfu; Feng, Haitao; Wolfl, Stefan

    2013-01-01

    To understand cartilage oligomeric matrix protein (COMP) mechanism network from human normal adjacent tissues to lung adenocarcinoma. COMP complete different activated (all no positive correlation, Pearson CC lung adenocarcinoma compared with lower human normal adjacent tissues from the corresponding COMP-stimulated (≥0.25) or inhibited (Pearson CC ≤ -0.25) overlapping molecules of Pearson correlation coefficient (CC) and GRNInfer, respectively. COMP complete different activated and inhibited (all no positive correlation, Pearson CC lung adenocarcinoma and lower human normal adjacent tissues were constructed by integration of Pearson CC, GRNInfer and GO. As visualized by integration of GO, KEGG, GenMAPP, BioCarta and Disease, we deduced COMP complete different activated and inhibited network in higher lung adenocarcinoma and lower human normal adjacent tissues. As visualized by GO, KEGG, GenMAPP, BioCarta and disease database integration, we proposed mainly that the mechanism and function of COMP complete different activated network in higher lung adenocarcinoma was involved in COMP activation with matrix-localized insulin-like factor coupling carboxypeptidase to metallopeptidase-induced proteolysis, whereas the corresponding inhibited network in lower human normal adjacent tissues participated in COMP inhibition with nucleus-localized vasculogenesis, B and T cell differentiation and neural endocrine factors coupling pyrophosphatase-mediated proteolysis. However, COMP complete different inhibited network in higher lung adenocarcinoma included COMP inhibition with nucleus-localized chromatin maintenance, licensing and assembly factors coupling phosphatase-inhibitor to cytokinesis regulators-mediated cell differentiation, whereas the corresponding activated network in lower human normal adjacent tissues contained COMP activation with cytolplasm-localized translation elongation factor coupling fucosyltransferase to ubiquitin-protein ligase-induced cell

  15. The Toll-like receptor gene family is integrated into human DNA damage and p53 networks.

    Directory of Open Access Journals (Sweden)

    Daniel Menendez

    2011-03-01

    Full Text Available In recent years the functions that the p53 tumor suppressor plays in human biology have been greatly extended beyond "guardian of the genome." Our studies of promoter response element sequences targeted by the p53 master regulatory transcription factor suggest a general role for this DNA damage and stress-responsive regulator in the control of human Toll-like receptor (TLR gene expression. The TLR gene family mediates innate immunity to a wide variety of pathogenic threats through recognition of conserved pathogen-associated molecular motifs. Using primary human immune cells, we have examined expression of the entire TLR gene family following exposure to anti-cancer agents that induce the p53 network. Expression of all TLR genes, TLR1 to TLR10, in blood lymphocytes and alveolar macrophages from healthy volunteers can be induced by DNA metabolic stressors. However, there is considerable inter-individual variability. Most of the TLR genes respond to p53 via canonical as well as noncanonical promoter binding sites. Importantly, the integration of the TLR gene family into the p53 network is unique to primates, a recurrent theme raised for other gene families in our previous studies. Furthermore, a polymorphism in a TLR8 response element provides the first human example of a p53 target sequence specifically responsible for endogenous gene induction. These findings-demonstrating that the human innate immune system, including downstream induction of cytokines, can be modulated by DNA metabolic stress-have many implications for health and disease, as well as for understanding the evolution of damage and p53 responsive networks.

  16. Assimilation of Real-Time Satellite And Human Sensor Networks for Modeling Natural Disasters

    Science.gov (United States)

    Aulov, O.; Halem, M.; Lary, D. J.

    2011-12-01

    We describe the development of underlying technologies needed to address the merging of a web of real time satellite sensor Web (SSW) and Human Sensor Web (HSW) needed to augment the US response to extreme events. As an initial prototyping step and use case scenario, we consider the development of two major system tools that can be transitioned from research to the responding operational agency for mitigating coastal oil spills. These tools consist of the capture of Situation Aware (SA) Social Media (SM) Data, and assimilation of the processed information into forecasting models to provide incident decision managers with interactive virtual spatial temporal animations superimposed with probabilistic data estimates. The system methodologies are equally applicable to the wider class of extreme events such as plume dispersions from volcanoes or massive fires, major floods, hurricane impacts, radioactive isotope dispersions from nuclear accidents, etc. A successful feasibility demonstration of this technology has been shown in the case of the Deepwater Horizon Oil Spill where Human Sensor Networks have been combined with a geophysical model to perform parameter assessments. Flickr images of beached oil were mined from the spill area, geolocated and timestamped and converted into geophysical data. This data was incorporated into General NOAA Operational Modeling Environment (GNOME), a Lagrangian forecast model that uses near real-time surface winds, ocean currents, and satellite shape profiles of oil to generate a forecast of plume movement. As a result, improved estimates of diffusive coefficients and rates of oil spill were determined. Current approaches for providing satellite derived oil distributions are collected from a satellite sensor web of operational and research sensors from many countries, and a manual analysis is performed by NESDIS. A real time SA HSW processing system based on geolocated SM data from sources such as Twitter, Flickr, YouTube etc., greatly

  17. EgoNet: identification of human disease ego-network modules

    Science.gov (United States)

    2014-01-01

    Background Mining novel biomarkers from gene expression profiles for accurate disease classification is challenging due to small sample size and high noise in gene expression measurements. Several studies have proposed integrated analyses of microarray data and protein-protein interaction (PPI) networks to find diagnostic subnetwork markers. However, the neighborhood relationship among network member genes has not been fully considered by those methods, leaving many potential gene markers unidentified. The main idea of this study is to take full advantage of the biological observation that genes associated with the same or similar diseases commonly reside in the same neighborhood of molecular networks. Results We present EgoNet, a novel method based on egocentric network-analysis techniques, to exhaustively search and prioritize disease subnetworks and gene markers from a large-scale biological network. When applied to a triple-negative breast cancer (TNBC) microarray dataset, the top selected modules contain both known gene markers in TNBC and novel candidates, such as RAD51 and DOK1, which play a central role in their respective ego-networks by connecting many differentially expressed genes. Conclusions Our results suggest that EgoNet, which is based on the ego network concept, allows the identification of novel biomarkers and provides a deeper understanding of their roles in complex diseases. PMID:24773628

  18. Dynamic Functional Segregation and Integration in Human Brain Network During Complex Tasks.

    Science.gov (United States)

    Shen Ren; Junhua Li; Taya, Fumihiko; deSouza, Joshua; Thakor, Nitish V; Bezerianos, Anastasios

    2017-06-01

    The analysis of the topology and organization of brain networks is known to greatly benefit from network measures in graph theory. However, to evaluate dynamic changes of brain functional connectivity, more sophisticated quantitative metrics characterizing temporal evolution of brain topological features are required. To simplify conversion of time-varying brain connectivity to a static graph representation is straightforward but the procedure loses temporal information that could be critical in understanding the brain functions. To extend the understandings of functional segregation and integration to a dynamic fashion, we recommend dynamic graph metrics to characterise temporal changes of topological features of brain networks. This study investigated functional segregation and integration of brain networks over time by dynamic graph metrics derived from EEG signals during an experimental protocol: performance of complex flight simulation tasks with multiple levels of difficulty. We modelled time-varying brain functional connectivity as multi-layer networks, in which each layer models brain connectivity at time window t + Δt. Dynamic graph metrics were calculated to quantify temporal and topological properties of the network. Results show that brain networks under the performance of complex tasks reveal a dynamic small-world architecture with a number of frequently connected nodes or hubs, which supports the balance of information segregation and integration in brain over time. The results also show that greater cognitive workloads caused by more difficult tasks induced a more globally efficient but less clustered dynamic small-world functional network. Our study illustrates that task-related changes of functional brain network segregation and integration can be characterized by dynamic graph metrics.

  19. Genetic-and-Epigenetic Interspecies Networks for Cross-Talk Mechanisms in Human Macrophages and Dendritic Cells during MTB Infection.

    Science.gov (United States)

    Li, Cheng-Wei; Lee, Yun-Lin; Chen, Bor-Sen

    2016-01-01

    Tuberculosis is caused by Mycobacterium tuberculosis ( Mtb ) infection. Mtb is one of the oldest human pathogens, and evolves mechanisms implied in human evolution. The lungs are the first organ exposed to aerosol-transmitted Mtb during gaseous exchange. Therefore, the guards of the immune system in the lungs, such as macrophages (Mϕs) and dendritic cells (DCs), are the most important defense against Mtb infection. There have been several studies discussing the functions of Mϕs and DCs during Mtb infection, but the genome-wide pathways and networks are still incomplete. Furthermore, the immune response induced by Mϕs and DCs varies. Therefore, we analyzed the cross-talk genome-wide genetic-and-epigenetic interspecies networks (GWGEINs) between Mϕs vs. Mtb and DCs vs. Mtb to determine the varying mechanisms of both the host and pathogen as it relates to Mϕs and DCs during early Mtb infection. First, we performed database mining to construct candidate cross-talk GWGEIN between human cells and Mtb . Then we constructed dynamic models to characterize the molecular mechanisms, including intraspecies gene/microRNA (miRNA) regulation networks (GRNs), intraspecies protein-protein interaction networks (PPINs), and the interspecies PPIN of the cross-talk GWGEIN. We applied a system identification method and a system order detection scheme to dynamic models to identify the real cross-talk GWGEINs using the microarray data of Mϕs, DCs and Mtb . After identifying the real cross-talk GWGEINs, the principal network projection (PNP) method was employed to construct host-pathogen core networks (HPCNs) between Mϕs vs. Mtb and DCs vs. Mtb during infection process. Thus, we investigated the underlying cross-talk mechanisms between the host and the pathogen to determine how the pathogen counteracts host defense mechanisms in Mϕs and DCs during Mtb H37Rv early infection. Based on our findings, we propose Rv1675c as a potential drug target because of its important defensive role

  20. Genetic-and-epigenetic Interspecies Networks for Cross-talk Mechanisms in Human Macrophages and Dendritic Cells During MTB Infection

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Li

    2016-10-01

    Full Text Available Tuberculosis is caused by Mycobacterium tuberculosis (Mtb infection. Mtb is one of the oldest human pathogens, and evolves mechanisms implied in human evolution. The lungs are the first organ exposed to aerosol-transmitted Mtb during gaseous exchange. Therefore, the guards of the immune system in the lungs, such as macrophages (Mϕs and dendritic cells (DCs, are the most important defense against Mtb infection. There have been several studies discussing the functions of Mϕs and DCs during Mtb infection, but the genome-wide pathways and networks are still incomplete. Furthermore, the immune response induced by Mϕs and DCs varies. Therefore, we analyzed the cross-talk genome-wide genetic-and-epigenetic interspecies networks (GWGEINs between Mϕs vs. Mtb and DCs vs. Mtb to determine the varying mechanisms of both the host and pathogen as it relates to Mϕs and DCs during early Mtb infection.First, we performed database mining to construct candidate cross-talk GWGEIN between human cells and Mtb. Then we constructed dynamic models to characterize the molecular mechanisms, including intraspecies gene/microRNA (miRNA regulation networks (GRNs, intraspecies protein-protein interaction networks (PPINs, and the interspecies PPIN of the cross-talk GWGEIN. We applied a system identification method and a system order detection scheme to dynamic models to identify the real cross-talk GWGEINs using the microarray data of Mϕs, DCs and Mtb.After identifying the real cross-talk GWGEINs, the principal network projection (PNP method was employed to construct host-pathogen core networks (HPCNs between Mϕs vs. Mtb and DCs vs. Mtb during infection process. Thus, we investigated the underlying cross-talk mechanisms between the host and the pathogen to determine how the pathogen counteracts host defense mechanisms in Mϕs and DCs during Mtb H37Rv early infection. Based on our findings, we propose Rv1675c as a potential drug target because of its important defensive

  1. Implementation of the community network of reference laboratories for human influenza in Europe.

    NARCIS (Netherlands)

    Meijer, A.; Valette, M.; Manuguerra, J.C.; Perez-Brena, P.; Paget, J.; Brown, C.M.; Velden, J. van der

    2005-01-01

    BACKGROUND: The increased need for accurate influenza laboratory surveillance data in the European Union required formalisation of the existing network of collaborating national influenza reference laboratories participating in the European Influenza Surveillance Scheme (EISS). OBJECTIVE: To

  2. Co-evolution of behaviour and social network structure promotes human cooperation.

    Science.gov (United States)

    Fehl, Katrin; van der Post, Daniel J; Semmann, Dirk

    2011-06-01

    The ubiquity of cooperation in nature is puzzling because cooperators can be exploited by defectors. Recent theoretical work shows that if dynamic networks define interactions between individuals, cooperation is favoured by natural selection. To address this, we compare cooperative behaviour in multiple but independent repeated games between participants in static and dynamic networks. In the latter, participants could break their links after each social interaction. As predicted, we find higher levels of cooperation in dynamic networks. Through biased link breaking (i.e. to defectors) participants affected their social environment. We show that this link-breaking behaviour leads to substantial network clustering and we find primarily cooperators within these clusters. This assortment is remarkable because it occurred on top of behavioural assortment through direct reciprocity and beyond the perception of participants, and represents a self-organized pattern. Our results highlight the importance of the interaction between ecological context and selective pressures on cooperation. © 2011 Blackwell Publishing Ltd/CNRS.

  3. Audiovisual classification of vocal outbursts in human conversation using long-short-term memory networks

    NARCIS (Netherlands)

    Eyben, Florian; Petridis, Stavros; Schuller, Björn; Tzimiropoulos, Georgios; Zafeiriou, Stefanos; Pantic, Maja

    We investigate classification of non-linguistic vocalisations with a novel audiovisual approach and Long Short-Term Memory (LSTM) Recurrent Neural Networks as highly successful dynamic sequence classifiers. As database of evaluation serves this year's Paralinguistic Challenge's Audiovisual Interest

  4. Frequency-specific directed interactions in the human brain network for language

    NARCIS (Netherlands)

    Schoffelen, J.M.; Hultén, A.H.; Lam, N.H.L.; Marquand, A.F.; Uddén, J.U.; Hagoort, P.

    2017-01-01

    The brain's remarkable capacity for language requires bidirectional interactions between functionally specialized brain regions. We used magnetoencephalography to investigate interregional interactions in the brain network for language while 102 participants were reading sentences. Using Granger

  5. Defining the protein interaction network of human malaria parasite Plasmodium falciparum

    KAUST Repository

    Ramaprasad, Abhinay

    2012-02-01

    Malaria, caused by the protozoan parasite Plasmodium falciparum, affects around 225. million people yearly and a huge international effort is directed towards combating this grave threat to world health and economic development. Considerable advances have been made in malaria research triggered by the sequencing of its genome in 2002, followed by several high-throughput studies defining the malaria transcriptome and proteome. A protein-protein interaction (PPI) network seeks to trace the dynamic interactions between proteins, thereby elucidating their local and global functional relationships. Experimentally derived PPI network from high-throughput methods such as yeast two hybrid (Y2H) screens are inherently noisy, but combining these independent datasets by computational methods tends to give a greater accuracy and coverage. This review aims to discuss the computational approaches used till date to construct a malaria protein interaction network and to catalog the functional predictions and biological inferences made from analysis of the PPI network. © 2011 Elsevier Inc.

  6. Delay/Disruption Tolerant Networks for Human Space Flight Video Project

    Science.gov (United States)

    Fink, Patrick W.; Ngo, Phong; Schlesinger, Adam

    2010-01-01

    The movie describes collaboration between NASA and Vint Cerf on the development of Disruption Tolerant Networks (DTN) for use in space exploration. Current evaluation efforts at Johnson Space Center are focused on the use of DTNs in space communications. Tests include the ability of rovers to store data for later display, tracking local and remote habitat inventory using radio-frequency identification tags, and merging networks.