WorldWideScience

Sample records for human parasite toxoplasma

  1. Survey of the parasite Toxoplasma gondii in human consumed ovine meat in Tunis City.

    Directory of Open Access Journals (Sweden)

    Sonia Boughattas

    Full Text Available Toxoplasmosis has been recognized as parasitic zoonosis with the highest human incidence. The human infection by the parasite can lead to severe clinical manifestations in congenital toxoplasmosis and immunocompromised patients. Contamination occurs mainly by foodborne ways especially consumption of raw or undercooked meat. In contrast to other foodborne infections, toxoplasmosis is a chronic infection which would make its economic and social impact much higher than even previously anticipated. Ovine meat was advanced as a major risk factor, so we investigated its parasite survey, under natural conditions. Serological MAT technique and touchdown PCR approaches were used for prevalence determination of the parasite in slaughtered sheep intended to human consumption in Tunis City. The genotyping was carried by SNPs analysis of SAG3 marker. Anti-Toxoplasma antibodies were present in 38.2% of young sheep and in 73.6% of adult sheep. Molecular detection revealed the contamination of 50% of ewes' tissue. Sequencing and SNPs analysis enabled unambiguous typing of meat isolates and revealed the presence of mixed strains as those previously identified from clinical samples in the same area. Our findings conclude that slaughtered sheep are highly infected, suggesting them as a major risk factor of Toxoplasma gondii transmission by meat consumption. Special aware should target consequently this factor when recommendations have to be established by the health care commanders.

  2. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism

    Science.gov (United States)

    The common parasite Toxoplasma gondii induces behavioral alterations in its hosts including phenotypes increasing the likelihood of its transmission in rodents and reports of psychobehavioral alterations in humans. We have found that elevated levels of dopamine are associated with the encysted stage...

  3. Comparative genomics of the Apicomplexan parasites Toxoplasma gondii and Neospora caninum 

    DEFF Research Database (Denmark)

    Reid, Adam James; Vermont, Sarah J.; Cotton, James A.

    2012-01-01

    Coccidian parasites have a major impact on human and animal health world-wide and are among the most successful and widespread parasitic protozoa. They include Neospora caninum which is a leading cause of abortion in cattle and one of its nearest relatives, Toxoplasma gondii. Despite its close...... almost exclusively on molecules which control the interaction of the parasite with the host cell. We show that some secreted invasion-related proteins and surface genes which are known to control virulence and host cell interactions in Toxoplasma are dramatically altered in their expression...... and functionality in Neospora and propose that evolution of these genes may underpin the ecological niches inhabited by coccidian parasites....

  4. Cell Death of Gamma Interferon-Stimulated Human Fibroblasts upon Toxoplasma gondii Infection Induces Early Parasite Egress and Limits Parasite Replication

    NARCIS (Netherlands)

    Niedelman, Wendy; Sprokholt, Joris K.; Clough, Barbara; Frickel, Eva-Maria; Saeij, Jeroen P. J.

    2013-01-01

    The intracellular protozoan parasite Toxoplasma gondii is a major food-borne illness and opportunistic infection for the immunosuppressed. Resistance to Toxoplasma is dependent on gamma interferon (IFN-γ) activation of both hematopoietic and nonhematopoietic cells. Although IFN-γ-induced innate

  5. Cell death of gamma interferon-stimulated human fibroblasts upon toxoplasma gondii infection induces early parasite egress and limits parasite replication

    NARCIS (Netherlands)

    Niedelman, W.; Sprokholt, J.K.; Clough, B.; Frickel, E.; Saeij, J.P.J.

    2013-01-01

    The intracellular protozoan parasite Toxoplasma gondii is a major food-borne illness and opportunistic infection for the immunosuppressed. Resistance to Toxoplasma is dependent on gamma interferon (IFN-¿) activation of both hematopoietic and nonhematopoietic cells. Although IFN-¿-induced innate

  6. Translational Control in Plasmodium and Toxoplasma Parasites

    Science.gov (United States)

    Joyce, Bradley R.; Sullivan, William J.; Nussenzweig, Victor

    2013-01-01

    The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis. PMID:23243065

  7. Translational control in Plasmodium and toxoplasma parasites.

    Science.gov (United States)

    Zhang, Min; Joyce, Bradley R; Sullivan, William J; Nussenzweig, Victor

    2013-02-01

    The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis.

  8. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Emese Prandovszky

    Full Text Available The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans.

  9. A complex small RNA repertoire is generated by a plant/fungal-like machinery and effected by a metazoan-like Argonaute in the single-cell human parasite Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Laurence Braun

    2010-05-01

    Full Text Available In RNA silencing, small RNAs produced by the RNase-III Dicer guide Argonaute-like proteins as part of RNA-induced silencing complexes (RISC to regulate gene expression transcriptionally or post-transcriptionally. Here, we have characterized the RNA silencing machinery and exhaustive small RNAome of Toxoplasma gondii, member of the Apicomplexa, a phylum of animal- and human-infecting parasites that cause extensive health and economic damages to human populations worldwide. Remarkably, the small RNA-generating machinery of Toxoplasma is phylogenetically and functionally related to that of plants and fungi, and accounts for an exceptionally diverse array of small RNAs. This array includes conspicuous populations of repeat-associated small interfering RNA (siRNA, which, as in plants, likely generate and maintain heterochromatin at DNA repeats and satellites. Toxoplasma small RNAs also include many microRNAs with clear metazoan-like features whose accumulation is sometimes extremely high and dynamic, an unexpected finding given that Toxoplasma is a unicellular protist. Both plant-like heterochromatic small RNAs and metazoan-like microRNAs bind to a single Argonaute protein, Tg-AGO. Toxoplasma miRNAs co-sediment with polyribosomes, and thus, are likely to act as translational regulators, consistent with the lack of catalytic residues in Tg-AGO. Mass spectrometric analyses of the Tg-AGO protein complex revealed a common set of virtually all known RISC components so far characterized in human and Drosophila, as well as novel proteins involved in RNA metabolism. In agreement with its loading with heterochromatic small RNAs, Tg-AGO also associates substoichiometrically with components of known chromatin-repressing complexes. Thus, a puzzling patchwork of silencing processor and effector proteins from plant, fungal and metazoan origin accounts for the production and action of an unsuspected variety of small RNAs in the single-cell parasite Toxoplasma and

  10. Incidence of adult brain cancers is higher in countries where the protozoan parasite Toxoplasma gondii is common

    OpenAIRE

    Thomas, Frédéric; Lafferty, Kevin D.; Brodeur, Jacques; Elguero, Eric; Gauthier-Clerc, Michel; Missé, Dorothée

    2011-01-01

    We explored associations between the common protozoan parasite Toxoplasma gondii and brain cancers in human populations. We predicted that T. gondii could increase the risk of brain cancer because it is a long-lived parasite that encysts in the brain, where it provokes inflammation and inhibits apoptosis. We used a medical geography approach based on the national incidence of brain cancers and seroprevalence of T. gondii. We corrected reports of incidence for national gross domestic product b...

  11. Toxoplasma gondii, source to sea: higher contribution of domestic felids to terrestrial parasite loading despite lower infection prevalence.

    Science.gov (United States)

    Vanwormer, Elizabeth; Conrad, Patricia A; Miller, Melissa A; Melli, Ann C; Carpenter, Tim E; Mazet, Jonna A K

    2013-09-01

    Environmental transmission of Toxoplasma gondii, a global zoonotic parasite, adversely impacts human and animal health. Toxoplasma is a significant cause of mortality in threatened Southern sea otters, which serve as sentinels for disease threats to people and animals in coastal environments. As wild and domestic felids are the only recognized hosts capable of shedding Toxoplasma oocysts into the environment, otter infection suggests land-to-sea pathogen transmission. To assess relative contributions to terrestrial parasite loading, we evaluated infection and shedding among managed and unmanaged feral domestic cats, mountain lions, and bobcats in coastal California, USA. Infection prevalence differed among sympatric felids, with a significantly lower prevalence for managed feral cats (17%) than mountain lions, bobcats, or unmanaged feral cats subsisting on wild prey (73-81%). A geographic hotspot of infection in felids was identified near Monterey Bay, bordering a high-risk site for otter infection. Increased odds of oocyst shedding were detected in bobcats and unmanaged feral cats. Due to their large populations, pet and feral domestic cats likely contribute more oocysts to lands bordering the sea otter range than native wild felids. Continued coastal development may influence felid numbers and distribution, increase terrestrial pathogens in freshwater runoff, and alter disease dynamics at the human-animal-environment interface.

  12. Prevalence of Toxoplasma gondii antibodies and intestinal parasites in stray cats from Nigde, Turkey

    Directory of Open Access Journals (Sweden)

    Bengi Dündar

    2010-01-01

    Full Text Available The prevalence of antibodies to Toxoplasma gondii was investigated by the Sabin-Feldman Dye test (SFDT in 72 stray cats from Nigde, Turkey. A total of 55 (76.4% of the analysed sera had antibodies to T. gondii. The seropositivity of T. gondii was 77.1% in male and 75.7% in female cats (P>0.05. Faeces of these cats were also examined by zinc sulphate flotation method for the presence of parasite oocysts and eggs of other parasites. Two protozoan parasites were identified as Isospora spp. (12.5% and Eimeria spp. (4.1% in cats. Toxoplasma gondii oocysts were not found in any faecal samples analysed. Two parasitic helminth species were observed: Toxocara cati (15.2% and Toxascaris leonina (20.8%. These common ascarids were recorded for the first time in cats from Nigde.

  13. Occurrence of anti-Toxoplasma gondii antibodies and parasite DNA in backyard chicken breeding in Northeast, Brazil

    Directory of Open Access Journals (Sweden)

    Marcela Fernanda Torres Samico Fernandes

    2016-03-01

    Full Text Available Abstract The aim of the present study was to investigate the occurrence of anti-Toxoplasma gondii antibodies and parasite DNA in backyard chickens bred in the metropolitan area of Recife, Brazil. In total, 212 serum samples were collected from 16 properties, and 12 backyard chickens were collected in the six sanitary districts of Recife. An indirect immunofluorescence assay (IFA was used to investigate the occurrence of anti-Toxoplasma gondii antibodies. Polymerase chain reaction (PCR was used to detect T. gondii DNA in brain, heart, liver and lung specimens. Of the samples analyzed by serology, 86/212 (40.56% were positive; of the samples analyzed by PCR, 2/12 (16.7% were positive, with both samples positive by both tests (serological and molecular. The presence of antibody anti-T. gondii and parasite DNA in tissues of these animals are worrying aspects for public health because there is a risk of transmission of the parasite to humans through eating undercooked or raw meat. Based on the results, the adoption of preventive measures to prevent the cats access to the chickens creations should be encouraged, since these animals were identified in most of the studied properties.

  14. Comparative genomics of the apicomplexan parasites Toxoplasma gondii and neospora caninum: Coccidia differing in host range and transmission strategy

    KAUST Repository

    Reid, Adam James

    2012-03-22

    Toxoplasma gondii is a zoonotic protozoan parasite which infects nearly one third of the human population and is found in an extraordinary range of vertebrate hosts. Its epidemiology depends heavily on horizontal transmission, especially between rodents and its definitive host, the cat. Neospora caninum is a recently discovered close relative of Toxoplasma, whose definitive host is the dog. Both species are tissue-dwelling Coccidia and members of the phylum Apicomplexa; they share many common features, but Neospora neither infects humans nor shares the same wide host range as Toxoplasma, rather it shows a striking preference for highly efficient vertical transmission in cattle. These species therefore provide a remarkable opportunity to investigate mechanisms of host restriction, transmission strategies, virulence and zoonotic potential. We sequenced the genome of N. caninum and transcriptomes of the invasive stage of both species, undertaking an extensive comparative genomics and transcriptomics analysis. We estimate that these organisms diverged from their common ancestor around 28 million years ago and find that both genomes and gene expression are remarkably conserved. However, in N. caninum we identified an unexpected expansion of surface antigen gene families and the divergence of secreted virulence factors, including rhoptry kinases. Specifically we show that the rhoptry kinase ROP18 is pseudogenised in N. caninum and that, as a possible consequence, Neospora is unable to phosphorylate host immunity-related GTPases, as Toxoplasma does. This defense strategy is thought to be key to virulence in Toxoplasma. We conclude that the ecological niches occupied by these species are influenced by a relatively small number of gene products which operate at the host-parasite interface and that the dominance of vertical transmission in N. caninum may be associated with the evolution of reduced virulence in this species.

  15. Toxoplasma and Africa: One Parasite, Two Opposite Population Structures.

    Science.gov (United States)

    Galal, Lokman; Ajzenberg, Daniel; Hamidović, Azra; Durieux, Marie-Fleur; Dardé, Marie-Laure; Mercier, Aurélien

    2018-02-01

    Exploring the genetic diversity of Toxoplasma gondii is essential for an understanding of its worldwide distribution and the determinants of its evolution. Africa remains one of the least studied areas of the world regarding T. gondii genetic diversity. This review has compiled published data on T. gondii strains from Africa to generate a comprehensive map of their continent-wide geographical distribution. The emerging picture about T. gondii strain distribution in Africa suggests a geographical separation of the parasite populations across the continent. We discuss the potential role of a number of factors in shaping this structure. We finally suggest the next steps towards a better understanding of Toxoplasma epidemiology in Africa in light of the strains circulating on this continent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Seroprevalence of Toxoplasma gondii infection in slaughtered pigs ...

    African Journals Online (AJOL)

    Toxoplasmosis is a parasitic disease/infection of medical and veterinary importance. The causative agent; Toxoplasma gondii, can infect warm blooded animals, birds as well as humans. This study was designed to determine the seroprevalence of Toxoplasma gondii infection in slaughtered pigs in Makurdi, Nigeria.

  17. Cancer in the parasitic protozoans Trypanosoma brucei and Toxoplasma gondii.

    Science.gov (United States)

    Lun, Zhao-Rong; Lai, De-Hua; Wen, Yan-Zi; Zheng, Ling-Ling; Shen, Ji-Long; Yang, Ting-Bo; Zhou, Wen-Liang; Qu, Liang-Hu; Hide, Geoff; Ayala, Francisco J

    2015-07-21

    Cancer is a general name for more than 100 malignant diseases. It is postulated that all cancers start from a single abnormal cell that grows out of control. Untreated cancers can cause serious consequences and deaths. Great progress has been made in cancer research that has significantly improved our knowledge and understanding of the nature and mechanisms of the disease, but the origins of cancer are far from being well understood due to the limitations of suitable model systems and to the complexities of the disease. In view of the fact that cancers are found in various species of vertebrates and other metazoa, here, we suggest that cancer also occurs in parasitic protozoans such as Trypanosoma brucei, a blood parasite, and Toxoplasma gondii, an obligate intracellular pathogen. Without treatment, these protozoan cancers may cause severe disease and death in mammals, including humans. The simpler genomes of these single-cell organisms, in combination with their complex life cycles and fascinating life cycle differentiation processes, may help us to better understand the origins of cancers and, in particular, leukemias.

  18. Host Mitochondrial Association Evolved in the Human Parasite Toxoplasma gondii via Neofunctionalization of a Gene Duplicate.

    Science.gov (United States)

    Adomako-Ankomah, Yaw; English, Elizabeth D; Danielson, Jeffrey J; Pernas, Lena F; Parker, Michelle L; Boulanger, Martin J; Dubey, Jitender P; Boyle, Jon P

    2016-05-01

    In Toxoplasma gondii, an intracellular parasite of humans and other animals, host mitochondrial association (HMA) is driven by a gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. However, the importance of MAF1 gene duplication in the evolution of HMA is not understood, nor is the impact of HMA on parasite biology. Here we used within- and between-species comparative analysis to determine that the MAF1 locus is duplicated in T. gondii and its nearest extant relative Hammondia hammondi, but not another close relative, Neospora caninum Using cross-species complementation, we determined that the MAF1 locus harbors multiple distinct paralogs that differ in their ability to mediate HMA, and that only T. gondii and H. hammondi harbor HMA(+) paralogs. Additionally, we found that exogenous expression of an HMA(+) paralog in T. gondii strains that do not normally exhibit HMA provides a competitive advantage over their wild-type counterparts during a mouse infection. These data indicate that HMA likely evolved by neofunctionalization of a duplicate MAF1 copy in the common ancestor of T. gondii and H. hammondi, and that the neofunctionalized gene duplicate is selectively advantageous. Copyright © 2016 by the Genetics Society of America.

  19. GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by the Protozoan Parasite Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Clément N David

    2016-06-01

    Full Text Available The immune privileged nature of the CNS can make it vulnerable to chronic and latent infections. Little is known about the effects of lifelong brain infections, and thus inflammation, on the neurological health of the host. Toxoplasma gondii is a parasite that can infect any mammalian nucleated cell with average worldwide seroprevalence rates of 30%. Infection by Toxoplasma is characterized by the lifelong presence of parasitic cysts within neurons in the brain, requiring a competent immune system to prevent parasite reactivation and encephalitis. In the immunocompetent individual, Toxoplasma infection is largely asymptomatic, however many recent studies suggest a strong correlation with certain neurodegenerative and psychiatric disorders. Here, we demonstrate a significant reduction in the primary astrocytic glutamate transporter, GLT-1, following infection with Toxoplasma. Using microdialysis of the murine frontal cortex over the course of infection, a significant increase in extracellular concentrations of glutamate is observed. Consistent with glutamate dysregulation, analysis of neurons reveal changes in morphology including a reduction in dendritic spines, VGlut1 and NeuN immunoreactivity. Furthermore, behavioral testing and EEG recordings point to significant changes in neuronal output. Finally, these changes in neuronal connectivity are dependent on infection-induced downregulation of GLT-1 as treatment with the ß-lactam antibiotic ceftriaxone, rescues extracellular glutamate concentrations, neuronal pathology and function. Altogether, these data demonstrate that following an infection with T. gondii, the delicate regulation of glutamate by astrocytes is disrupted and accounts for a range of deficits observed in chronic infection.

  20. Cryo-EM structures of the 80S ribosomes from human parasites Trichomonas vaginalis and Toxoplasma gondii

    Institute of Scientific and Technical Information of China (English)

    Zhifei Li; Qiang Guo; Lvqin Zheng; Yongsheng Ji; Yi-Ting Xie; De-Hua Lai; Zhao-Rong Lun; Xun Suo; Ning Gao

    2017-01-01

    As an indispensable molecular machine universal in all living organisms,the ribosome has been selected by evolution to be the natural target of many antibiotics and small-molecule inhibitors.High-resolution structures of pathogen ribosomes are crucial for understanding the general and unique aspects of translation control in disease-causing microbes.With cryo-electron microscopy technique,we have determined structures of the cytosolic ribosomes from two human parasites,Trichomonas vaginalis and Toxoplasma gondii,at resolution of 3.2-3.4,(A).Although the ribosomal proteins from both pathogens are typical members of eukaryotic families,with a co-evolution pattern between certain species-specific insertions/extensions and neighboring ribosomal RNA (rRNA) expansion segments,the sizes of their rRNAs are sharply different.Very interestingly,rRNAs of T.vaginalis are in size comparable to prokaryotic counterparts,with nearly all the eukaryote-specific rRNA expansion segments missing.These structures facilitate the dissection of evolution path for ribosomal proteins and RNAs,and may aid in design of novel translation inhibitors.

  1. Toxoplasma gondii infection in humans in China

    Directory of Open Access Journals (Sweden)

    He Shenyi

    2011-08-01

    Full Text Available Abstract Toxoplasmosis is a zoonotic infection of humans and animals, caused by the opportunistic protozoan Toxoplasma gondii, a parasite belonging to the phylum Apicomplexa. Infection in pregnant women may lead to abortion, stillbirth or other serious consequences in newborns. Infection in immunocompromised patients can be fatal if not treated. On average, one third of people are chronically infected worldwide. Although very limited information from China has been published in the English journals, T. gondii infection is actually a significant human health problem in China. In the present article, we reviewed the clinical features, transmission, prevalence of T. gondii infection in humans in China, and summarized genetic characterizations of reported T. gondii isolates. Educating the public about the risks associated with unhealthy food and life style habits, tracking serological examinations to special populations, and measures to strengthen food and occupational safety are discussed.

  2. Seroprevalence of Toxoplasma gondii in humans and pigs in North Sulawesi, Indonesia.

    Science.gov (United States)

    Tuda, Josef; Adiani, Sri; Ichikawa-Seki, Madoka; Umeda, Kousuke; Nishikawa, Yoshifumi

    2017-10-01

    Toxoplasma gondii, an intracellular protozoan parasite, is a major public health concern throughout the world. Importantly, toxoplasmosis has several adverse effects, including neurological and ocular diseases. There are currently no data on the prevalence of T. gondii infection in humans or animals in North Sulawesi, although Indonesia is known to have a high seroprevalence of this parasite. In this study, the prevalence of T. gondii was determined in samples of humans and pigs from North Sulawesi using the latex agglutination test. In total, 856 human were sampled and 58.5% of whom were positive for T. gondii. Although the antibody prevalence in male and female children aged 0-9years was 40% in both sexes, suggesting that the transmission rate of the parasite to humans is extremely high in this area. However, the overall prevalence of T. gondii in pigs was only 2.3%. Our study indicates a high incidence of T. gondii infection in humans. Therefore, a survey of the prevalence of T. gondii among different infection sources is required to determine the major risk factors for infection in North Sulawesi. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Risk factors for Toxoplasma gondii infection in Kohat District, Pakistan

    Directory of Open Access Journals (Sweden)

    Gul Naila

    2017-01-01

    Full Text Available Toxoplasma gondii is a widespread zoonotic parasite that is the causative agent for toxoplasmosis in human and completes its life cycle in separate hosts. Considering the significance of the infection, the current study was designed to asses to various risk factors for the parasite transmission to human in Kohat District, Pakistan. A total of 122 suspected individuals were asked to fill pre-designed questionnaire. A total of 44 (36.07% individuals were found to be infected with Toxoplasma gondii. Handling pets and birds, untreated water, unpasteurized milk and undercooked meat were found to be associated with infection. Raw vegetables and blood transfusion were not found to be associated with infection in our study. Thus, it can be concluded that Toxoplasma gondiiis is a prevalent zoonotic agent in Kohat, Pakistan and various prophylactic measures like hand washing, cooking meat properly, wearing gloves while contacting pets and birds, treating water and pasteurizing milk will be very helpful to reduce disease burden in the study area.

  4. Forward genetic screening identifies a small molecule that blocks Toxoplasma gondii growth by inhibiting both host- and parasite-encoded kinases.

    Directory of Open Access Journals (Sweden)

    Kevin M Brown

    2014-06-01

    Full Text Available The simultaneous targeting of host and pathogen processes represents an untapped approach for the treatment of intracellular infections. Hypoxia-inducible factor-1 (HIF-1 is a host cell transcription factor that is activated by and required for the growth of the intracellular protozoan parasite Toxoplasma gondii at physiological oxygen levels. Parasite activation of HIF-1 is blocked by inhibiting the family of closely related Activin-Like Kinase (ALK host cell receptors ALK4, ALK5, and ALK7, which was determined in part by use of an ALK4,5,7 inhibitor named SB505124. Besides inhibiting HIF-1 activation, SB505124 also potently blocks parasite replication under normoxic conditions. To determine whether SB505124 inhibition of parasite growth was exclusively due to inhibition of ALK4,5,7 or because the drug inhibited a second kinase, SB505124-resistant parasites were isolated by chemical mutagenesis. Whole-genome sequencing of these mutants revealed mutations in the Toxoplasma MAP kinase, TgMAPK1. Allelic replacement of mutant TgMAPK1 alleles into wild-type parasites was sufficient to confer SB505124 resistance. SB505124 independently impacts TgMAPK1 and ALK4,5,7 signaling since drug resistant parasites could not activate HIF-1 in the presence of SB505124 or grow in HIF-1 deficient cells. In addition, TgMAPK1 kinase activity is inhibited by SB505124. Finally, mice treated with SB505124 had significantly lower tissue burdens following Toxoplasma infection. These data therefore identify SB505124 as a novel small molecule inhibitor that acts by inhibiting two distinct targets, host HIF-1 and TgMAPK1.

  5. Organizational changes of the daughter basal complex during the parasite replication of Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Ke Hu

    2008-01-01

    Full Text Available The apicomplexans are a large group of parasitic protozoa, many of which are important human and animal pathogens, including Plasmodium falciparum and Toxoplasma gondii. These parasites cause disease only when they replicate, and their replication is critically dependent on the proper assembly of the parasite cytoskeletons during cell division. In addition to their importance in pathogenesis, the apicomplexan parasite cytoskeletons are spectacular structures. Therefore, understanding the cytoskeletal biogenesis of these parasites is important not only for parasitology but also of general interest to broader cell biology. Previously, we found that the basal end of T. gondii contains a novel cytoskeletal assembly, the basal complex, a cytoskeletal compartment constructed in concert with the daughter cortical cytoskeleton during cell division. This study focuses on key events during the biogenesis of the basal complex using high resolution light microscopy, and reveals that daughter basal complexes are established around the duplicated centrioles independently of the structural integrity of the daughter cortical cytoskeleton, and that they are dynamic "caps" at the growing ends of the daughters. Compartmentation and polarization of the basal complex is first revealed at a late stage of cell division upon the recruitment of an EF-hand containing calcium binding protein, TgCentrin2. This correlates with the constriction of the basal complex, a process that can be artificially induced by increasing cellular calcium concentration. The basal complex is therefore likely to be a new kind of centrin-based contractile apparatus.

  6. Anionic Sites, Fucose Residues and Class I Human Leukocyte Antigen Fate During Interaction of Toxoplasma gondii with Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Stumbo Ana Carolina

    2002-01-01

    Full Text Available Toxoplasma gondii invades and proliferates in human umbilical vein endothelial cells where it resides in a parasitophorous vacuole. In order to analyze which components of the endothelial cell plasma membrane are internalized and become part of the parasitophorous vacuole membrane, the culture of endothelial cells was labeled with cationized ferritin or UEA I lectin or anti Class I human leukocytte antigen (HLA before or after infection with T. gondii. The results showed no cationized ferritin and UEA I lectin in any parasitophorous vacuole membrane, however, the Class I HLA molecule labeling was observed in some endocytic vacuoles containing parasite until 1 h of interaction with T. gondii. After 24 h parasite-host cell interaction, the labeling was absent on the vacuolar membrane, but presents only in small vesicles near parasitophorous vacuole. These results suggest the anionic site and fucose residues are excluded at the time of parasitophorous vacuole formation while Class I HLA molecules are present only on a minority of Toxoplasma-containig vacuoles.

  7. Possible role of Toxoplasma gondii in brain cancer through modulation of host microRNAs

    Directory of Open Access Journals (Sweden)

    Thirugnanam Sivasakthivel

    2013-02-01

    Full Text Available Abstract Background The obligate intracellular protozoan parasite Toxoplasma gondii infects humans and other warm-blooded animals and establishes a chronic infection in the central nervous system after invasion. Studies showing a positive correlation between anti-Toxoplasma antibodies and incidences of brain cancer have led to the notion that Toxoplasma infections increase the risk of brain cancer. However, molecular events involved in Toxoplasma induced brain cancers are not well understood. Presentation of the hypothesis Toxoplasma gains control of host cell functions including proliferation and apoptosis by channelizing parasite proteins into the cell cytoplasm and some of the proteins are targeted to the host nucleus. Recent studies have shown that Toxoplasma is capable of manipulating host micro RNAs (miRNAs, which play a central role in post-transcriptional regulation of gene expression. Therefore, we hypothesize that Toxoplasma promotes brain carcinogenesis by altering the host miRNAome using parasitic proteins and/or miRNAs. Testing the hypothesis The miRNA expression profiles of brain cancer specimens obtained from patients infected with Toxoplasma could be analyzed and compared with that of normal tissues as well as brain cancer tissues from Toxoplasma uninfected individuals to identify dysregulated miRNAs in Toxoplasma-driven brain cancer cells. Identified miRNAs will be further confirmed by studying cancer related miRNA profiles of the different types of brain cells before and after Toxoplasma infection using cell lines and experimental animals. Expected outcome The miRNAs specifically associated with brain cancers that are caused by Toxoplasma infection will be identified. Implications of the hypothesis Toxoplasma infection may promote initiation and progression of cancer by modifying the miRNAome in brain cells. If this hypothesis is true, the outcome of this research would lead to the development of novel biomarkers and

  8. Parasites and cancers: parasite antigens as possible targets for cancer immunotherapy.

    Science.gov (United States)

    Darani, Hossein Yousofi; Yousefi, Morteza

    2012-12-01

    An adverse relationship between some parasite infections and cancer in the human population has been reported by different research groups. Anticancer activity of some parasites such as Trypanosoma cruzi, Toxoplasma gondii, Toxocara canis, Acantamoeba castellani and Plasmodium yoelii has been shown in experimental animals. Moreover, it has been shown that cancer-associated mucin-type O-glycan compositions are made by parasites, therefore cancers and parasites have common antigens. In this report anticancer activities of some parasites have been reviewed and the possible mechanisms of these actions have also been discussed.

  9. Incidence of adult brain cancers is higher in countries where the protozoan parasite Toxoplasma gondii is common

    Science.gov (United States)

    Thomas, Frédéric; Lafferty, Kevin D.; Brodeur, Jacques; Elguero, Eric; Gauthier-Clerc, Michel; Missé, Dorothée

    2012-01-01

    We explored associations between the common protozoan parasite Toxoplasma gondii and brain cancers in human populations. We predicted that T. gondii could increase the risk of brain cancer because it is a long-lived parasite that encysts in the brain, where it provokes inflammation and inhibits apoptosis. We used a medical geography approach based on the national incidence of brain cancers and seroprevalence of T. gondii. We corrected reports of incidence for national gross domestic product because wealth probably increases the ability to detect cancer. We also included gender, cell phone use and latitude as variables in our initial models. Prevalence of T. gondii explained 19 per cent of the residual variance in brain cancer incidence after controlling for the positive effects of gross domestic product and latitude among nations. Infection with T. gondii was associated with a 1.8-fold increase in the risk of brain cancers across the range of T. gondii prevalence in our dataset (4–67%). These results, though correlational, suggest that T. gondii should be investigated further as a possible oncogenic pathogen of humans.

  10. Evasion of Human Neutrophil-Mediated Host Defense during Toxoplasma gondii Infection.

    Science.gov (United States)

    Lima, Tatiane S; Gov, Lanny; Lodoen, Melissa B

    2018-02-13

    Neutrophils are a major player in host immunity to infection; however, the mechanisms by which human neutrophils respond to the intracellular protozoan parasite Toxoplasma gondii are still poorly understood. In the current study, we found that, whereas primary human monocytes produced interleukin-1beta (IL-1β) in response to T. gondii infection, human neutrophils from the same blood donors did not. Moreover, T. gondii inhibited lipopolysaccharide (LPS)-induced IL-1β synthesis in human peripheral blood neutrophils. IL-1β suppression required active parasite invasion, since heat-killed or mycalolide B-treated parasites did not inhibit IL-1β release. By investigating the mechanisms involved in this process, we found that T. gondii infection of neutrophils treated with LPS resulted in reduced transcript levels of IL-1β and NLRP3 and reduced protein levels of pro-IL-1β, mature IL-1β, and the inflammasome sensor NLRP3. In T. gondii -infected neutrophils stimulated with LPS, the levels of MyD88, TRAF6, IKKα, IKKβ, and phosphorylated IKKα/β were not affected. However, LPS-induced IκBα degradation and p65 phosphorylation were reduced in T. gondii- infected neutrophils, and degradation of IκBα was reversed by treatment with the proteasome inhibitor MG-132. Finally, we observed that T. gondii inhibited the cleavage and activity of caspase-1 in human neutrophils. These results indicate that T. gondii suppression of IL-1β involves a two-pronged strategy whereby T. gondii inhibits both NF-κB signaling and activation of the NLRP3 inflammasome. These findings represent a novel mechanism of T. gondii evasion of human neutrophil-mediated host defense by targeting the production of IL-1β. IMPORTANCE Toxoplasma gondii is an obligate intracellular parasite that infects approximately one-third of humans worldwide and can invade virtually any nucleated cell in the human body. Although it is well documented that neutrophils infiltrate the site of acute T

  11. Dogs, cats, parasites, and humans in Brazil: opening the black box

    Science.gov (United States)

    2014-01-01

    Dogs and cats in Brazil serve as primary hosts for a considerable number of parasites, which may affect their health and wellbeing. These may include endoparasites (e.g., protozoa, cestodes, trematodes, and nematodes) and ectoparasites (i.e., fleas, lice, mites, and ticks). While some dog and cat parasites are highly host-specific (e.g., Aelurostrongylus abstrusus and Felicola subrostratus for cats, and Angiostrongylus vasorum and Trichodectes canis for dogs), others may easily switch to other hosts, including humans. In fact, several dog and cat parasites (e.g., Toxoplasma gondii, Dipylidium caninum, Ancylostoma caninum, Strongyloides stercoralis, and Toxocara canis) are important not only from a veterinary perspective but also from a medical standpoint. In addition, some of them (e.g., Lynxacarus radovskyi on cats and Rangelia vitalii in dogs) are little known to most veterinary practitioners working in Brazil. This article is a compendium on dog and cat parasites in Brazil and a call for a One Health approach towards a better management of some of these parasites, which may potentially affect humans. Practical aspects related to the diagnosis, treatment, and control of parasitic diseases of dogs and cats in Brazil are discussed. PMID:24423244

  12. Toxoplasma gondii seroprevalence in breeding pigs in Estonia

    DEFF Research Database (Denmark)

    Santoro, Azzurra; Tagel, Maarja; Must, Kärt

    2017-01-01

    Background: Toxoplasma gondii is a widespread occurring parasite infecting warm-blooded animals, including pigs and humans. The aims of this study were to estimate the prevalence of anti-T. gondii antibodies and to evaluate risk factors for T. gondii seropositivity in breeding pigs raised in Esto...

  13. Risk factors for Toxoplasma gondii infection in Kohat District, Pakistan

    OpenAIRE

    Gul Naila; Zareen Shehzad; Ur Rehman Faiz; Ur Rehman Hameed; Qayyum Sumbel; Khan Sumiya; Khan Feroz; Ali Khan Munsif; Saeed Kausar; Ayub Abid; Hayat Azam; Ateeq Muhammad; Ahmad Waqar

    2017-01-01

    Toxoplasma gondii is a widespread zoonotic parasite that is the causative agent for toxoplasmosis in human and completes its life cycle in separate hosts. Considering the significance of the infection, the current study was designed to asses to various risk factors for the parasite transmission to human in Kohat District, Pakistan. A total of 122 suspected individuals were asked to fill pre-designed questionnaire. A total of 44 (36.07%) individuals were found to be infected wit...

  14. Metabolic Cooperation of Glucose and Glutamine Is Essential for the Lytic Cycle of Obligate Intracellular Parasite Toxoplasma gondii*

    OpenAIRE

    Nitzsche, Richard; Zagoriy, Vyacheslav; Lucius, Richard; Gupta, Nishith

    2015-01-01

    Toxoplasma gondii is a widespread protozoan parasite infecting nearly all warm-blooded organisms. Asexual reproduction of the parasite within its host cells is achieved by consecutive lytic cycles, which necessitates biogenesis of significant energy and biomass. Here we show that glucose and glutamine are the two major physiologically important nutrients used for the synthesis of macromolecules (ATP, nucleic acid, proteins, and lipids) in T. gondii, and either of them is sufficient to ensure ...

  15. Increased apoptosis skull of pups born to Toxoplasma gondii ...

    African Journals Online (AJOL)

    Background: Toxoplasma gondii is an intracellular obligate protozoan parasite that infects most warm-blooded animals including humans. It can cause congenital infection with clinical symptoms ranging from mild to severe including microcephaly. At the cellular level, infection T. gondii causes apoptosis in some tissues and ...

  16. Inflammasome sensor NLRP1 controls rat macrophage susceptibility to Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Kimberly M Cirelli

    2014-03-01

    Full Text Available Toxoplasma gondii is an intracellular parasite that infects a wide range of warm-blooded species. Rats vary in their susceptibility to this parasite. The Toxo1 locus conferring Toxoplasma resistance in rats was previously mapped to a region of chromosome 10 containing Nlrp1. This gene encodes an inflammasome sensor controlling macrophage sensitivity to anthrax lethal toxin (LT induced rapid cell death (pyroptosis. We show here that rat strain differences in Toxoplasma infected macrophage sensitivity to pyroptosis, IL-1β/IL-18 processing, and inhibition of parasite proliferation are perfectly correlated with NLRP1 sequence, while inversely correlated with sensitivity to anthrax LT-induced cell death. Using recombinant inbred rats, SNP analyses and whole transcriptome gene expression studies, we narrowed the candidate genes for control of Toxoplasma-mediated rat macrophage pyroptosis to four genes, one of which was Nlrp1. Knockdown of Nlrp1 in pyroptosis-sensitive macrophages resulted in higher parasite replication and protection from cell death. Reciprocally, overexpression of the NLRP1 variant from Toxoplasma-sensitive macrophages in pyroptosis-resistant cells led to sensitization of these resistant macrophages. Our findings reveal Toxoplasma as a novel activator of the NLRP1 inflammasome in rat macrophages.

  17. Probable neuroimmunological link between Toxoplasma and cytomegalovirus infections and personality changes in the human host

    Directory of Open Access Journals (Sweden)

    Roubalová Kateřina

    2005-07-01

    Full Text Available Abstract Background Recently, a negative association between Toxoplasma-infection and novelty seeking was reported. The authors suggested that changes of personality trait were caused by manipulation activity of the parasite, aimed at increasing the probability of transmission of the parasite from an intermediate to a definitive host. They also suggested that low novelty seeking indicated an increased level of the neurotransmitter dopamine in the brain of infected subjects, a phenomenon already observed in experimentally infected rodents. However, the changes in personality can also be just a byproduct of any neurotropic infection. Moreover, the association between a personality trait and the toxoplasmosis can even be caused by an independent correlation of both the probability of Toxoplasma-infection and the personality trait with the third factor, namely with the size of living place of a subject. To test these two alternative hypotheses, we studied the influence of another neurotropic pathogen, the cytomegalovirus, on the personality of infected subjects, and reanalyzed the original data after the effect of the potential confounder, the size of living place, was controlled. Methods In the case-control study, 533 conscripts were tested for toxoplasmosis and presence of anti-cytomegalovirus antibodies and their novelty seeking was examined with Cloninger's TCI questionnaire. Possible association between the two infections and TCI dimensions was analyzed. Results The decrease of novelty seeking is associated also with cytomegalovirus infection. After the size of living place was controlled, the effect of toxoplasmosis on novelty seeking increased. Significant difference in novelty seeking was observed only in the largest city, Prague. Conclusion Toxoplasma and cytomegalovirus probably induce a decrease of novelty seeking. As the cytomegalovirus spreads in population by direct contact (not by predation as with Toxoplasma, the observed changes are

  18. Toxoplasma gondii IgG antibodies in HIV/AIDS patients attending ...

    African Journals Online (AJOL)

    Background: Toxoplasmosis is caused by Toxoplasma gondii, a parasite that gradually evolved to be the most opportunistic parasite that complicates the course of HIV/AIDS in developing countries. Aim: This study was undertaken to investigate the presence of Toxoplasma gondii IgG antibodies in HIVinfected patients ...

  19. Anti-parasitic action and elimination of intracellular Toxoplasma gondii in the presence of novel thiosemicarbazone and its 4-thiazolidinone derivatives

    Directory of Open Access Journals (Sweden)

    C.S. Carvalho

    2010-02-01

    Full Text Available Toxoplasma, which infects all eukaryotic cells, is considered to be a good system for the study of drug action and of the behavior of infected host cells. In the present study, we asked if thiosemicarbazone derivatives can be effective against tachyzoites and which morphological and ultrastructural features of host cells and parasites are associated with the destruction of Toxoplasma. The compounds were tested in infected Vero cell culture using concentration screens (0.1 to 20 mM. The final concentration of 1 mM was chosen for biological assay. The following results were obtained: 1 These new derivatives decreased T. gondii infection with an in vitro parasite IC50% of 0.2-0.7 mM, without a significant effect on host cells and the more efficient compounds were 2, 3 (thiosemicarbazone derivatives and 4 (thiazolidinone derivative; 2 The main feature observed during parasite elimination was continuous morphological disorganization of the tachyzoite secretory system, progressive organelle vesiculation, and then complete disruption; 3 Ultrastructural assays also revealed that progressive vesiculation in the cytoplasm of treated parasites did not occur in the host cell; 4 Vesiculation inside the parasite resulted in death, but this feature occurred asynchronously in different intracellular tachyzoites; 5 The death and elimination of T. gondii was associated with features such as apoptosis-like stage, acidification and digestion of parasites into parasitophorous vacuoles. Our results suggest that these new chemical compounds are promising for the elimination of intracellular parasites by mainly affecting tachyzoite development at 1 mM concentration for 24 h of treatment.

  20. THE ROLE OF HORMONES ON Toxoplasma gondii INFECTION: A SYSTEMATIC REVIEW

    Directory of Open Access Journals (Sweden)

    María De La Luz Galván-Ramírez

    2014-10-01

    Full Text Available Background: Toxoplasma gondii is the causal agent of toxoplasmosis in which one third of the world’s population has been infected. In pregnant women, it may cause abortion and severe damage to the fetal central nervous system. During pregnancy, the prevalence of toxoplasmosis increases throughout the second and third quarter of gestation, simultaneously progesterone and 17β-estradiol also increase. Thus, it has been suggested that these hormones can aggravate or reduce parasite reproduction. The aim of this study was reviewing the relationship between hormones and infection caused by T. gondii in several experimental animal models and humans, focused mainly on: a congenital transmission, b parasite reproduction, c strain virulence, d levels of hormone in host induced by T. gondii infection and e participation of hormone receptors in Toxoplasma gondii infection.Are the hormones specific modulators of T. gondii infection?A systematic review methodology was used to consult several databases (Pub Med, Lilacs, Medline, Science direct, Scielo, Ebsco, Sprinker, Wiley and Google Scholar dated from September, 2013 to March, 2014. Results: 30 studies were included; eight studies in humans and 22 in animals and cell cultures. In the human studies, the most studied hormones were testosterone, progesterone, prolactin and 17-ß estradiol. Type I (RH and BK and Type II (Prugniaud, SC, ME49,T45, P78 and T38 were the most frequent experimental strains. Conclusions: Thirty-five years have passed since the first studies regarding Toxoplasma gondii infection and its relationship with hormones. This systematic review suggests that hormones modulate Toxoplasma gondii infection in different animal models. However, given that data were not comparable, further studies are required to determine the mechanism of hormone action in the Toxoplasma gondii infectious process.

  1. Comparative genomic sequence variation of Toxoplasma gondii reveals local admixture drives concerted expansion and diversification of secreted pathogenesis determinants

    Science.gov (United States)

    Toxoplasma gondii is among the most abundant parasites world-wide, infecting many wild and domestic animals and causing zoonotic infections in humans. T. gondii differs substantially in its distribution from closely related parasites that typically have narrow, specialized host ranges. We undertook...

  2. Comparative sequence analysis of Toxoplasma gondii reveals local genomic admixture drives concerted expansion and diversification of secreted pathogenesis determinants

    Science.gov (United States)

    Toxoplasma gondii is among the most prevalent parasites worldwide, infecting many wild and domestic animals and causing zoonotic infections in humans. T. gondii differs substantially in its broad distribution from closely related parasites that typically have narrow, specialized host ranges. To un...

  3. The common parasite Toxoplasma gondii induces prostatic inflammation and microglandular hyperplasia in a mouse model.

    Science.gov (United States)

    Colinot, Darrelle L; Garbuz, Tamila; Bosland, Maarten C; Wang, Liang; Rice, Susan E; Sullivan, William J; Arrizabalaga, Gustavo; Jerde, Travis J

    2017-07-01

    Inflammation is the most prevalent and widespread histological finding in the human prostate, and associates with the development and progression of benign prostatic hyperplasia and prostate cancer. Several factors have been hypothesized to cause inflammation, yet the role each may play in the etiology of prostatic inflammation remains unclear. This study examined the possibility that the common protozoan parasite Toxoplasma gondii induces prostatic inflammation and reactive hyperplasia in a mouse model. Male mice were infected systemically with T. gondii parasites and prostatic inflammation was scored based on severity and focality of infiltrating leukocytes and epithelial hyperplasia. We characterized inflammatory cells with flow cytometry and the resulting epithelial proliferation with bromodeoxyuridine (BrdU) incorporation. We found that T. gondii infects the mouse prostate within the first 14 days of infection and can establish parasite cysts that persist for at least 60 days. T. gondii infection induces a substantial and chronic inflammatory reaction in the mouse prostate characterized by monocytic and lymphocytic inflammatory infiltrate. T. gondii-induced inflammation results in reactive hyperplasia, involving basal and luminal epithelial proliferation, and the exhibition of proliferative inflammatory microglandular hyperplasia in inflamed mouse prostates. This study identifies the common parasite T. gondii as a new trigger of prostatic inflammation, which we used to develop a novel mouse model of prostatic inflammation. This is the first report that T. gondii chronically encysts and induces chronic inflammation within the prostate of any species. Furthermore, T. gondii-induced prostatic inflammation persists and progresses without genetic manipulation in mice, offering a powerful new mouse model for the study of chronic prostatic inflammation and microglandular hyperplasia. © 2017 Wiley Periodicals, Inc.

  4. Serological Evidence of Toxoplasma gondii infection in five species of bats in China

    Science.gov (United States)

    Toxoplasma gondii is an obligate intracellular protozoan parasite which can infect almost all warm-blooded animals and humans with a worldwide distribution. Bats are reservoirs for an increasing number of emerging zoonotic viruses, such as henipaviruses and severe acute respiratory syndrome (SARS) c...

  5. [Advances in researches on mechanism of anti-Toxoplasma Chinese herbal medicine].

    Science.gov (United States)

    Yu, Zhao-Yun; Zhang, Bao-de; Ning, Jun-ya; Wang, Yuan-yuan; Yuan, Wen-ying

    2015-10-01

    Toxoplasma gondii is an opportunity cellular parasite, related to the infection of various animals and human beings and severely impairing agriculture and human health. Because of the complexity of T. gondii life cycle, its different biological characteristics, and multifarious pathogenesis, there are no specific treatment and preventive medicines at present. Chinese herbal medicine can balance "yin-yang" and regulate the immunity and its side-effect is slight. Now, it has been a hot topic of the research on effective and secure medicines in anti-toxoplasmosis. This paper summarizes and analyzes the curative effect and mechanism of anti-Toxoplasma Chinese herbal medicine, such as Scutellaria baicalensis, Inontus obliquus polysaccharide, Radix glycyrrhizae, pumpkin seeds, and Semen arecae.

  6. Drug Repurposing Screening Identifies Novel Compounds That Effectively Inhibit Toxoplasma gondii Growth

    Science.gov (United States)

    Dittmar, Ashley J.; Drozda, Allison A.

    2016-01-01

    ABSTRACT The urgent need to develop new antimicrobial therapies has spawned the development of repurposing screens in which well-studied drugs and other types of compounds are tested for potential off-label uses. As a proof-of-principle screen to identify compounds effective against Toxoplasma gondii, we screened a collection of 1,120 compounds for the ability to significantly reduce Toxoplasma replication. A total of 94 compounds blocked parasite replication with 50% inhibitory concentrations of parasite invasion and replication but did so independently of inhibition of dopamine or other neurotransmitter receptor signaling. Tamoxifen, which is an established inhibitor of the estrogen receptor, also reduced parasite invasion and replication. Even though Toxoplasma can activate the estrogen receptor, tamoxifen inhibits parasite growth independently of this transcription factor. Tamoxifen is also a potent inducer of autophagy, and we find that the drug stimulates recruitment of the autophagy marker light chain 3-green fluorescent protein onto the membrane of the vacuolar compartment in which the parasite resides and replicates. In contrast to other antiparasitic drugs, including pimozide, tamoxifen treatment of infected cells leads to a time-dependent elimination of intracellular parasites. Taken together, these data suggest that tamoxifen restricts Toxoplasma growth by inducing xenophagy or autophagic destruction of this obligate intracellular parasite. IMPORTANCE There is an urgent need to develop new therapies to treat microbial infections, and the repurposing of well-characterized compounds is emerging as one approach to achieving this goal. Using the protozoan parasite Toxoplasma gondii, we screened a library of 1,120 compounds and identified several compounds with significant antiparasitic activities. Among these were pimozide and tamoxifen, which are well-characterized drugs prescribed to treat patients with psychiatric disorders and breast cancer

  7. The transcriptome of Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Roos David S

    2005-12-01

    Full Text Available Abstract Background Toxoplasma gondii gives rise to toxoplasmosis, among the most prevalent parasitic diseases of animals and man. Transformation of the tachzyoite stage into the latent bradyzoite-cyst form underlies chronic disease and leads to a lifetime risk of recrudescence in individuals whose immune system becomes compromised. Given the importance of tissue cyst formation, there has been intensive focus on the development of methods to study bradyzoite differentiation, although the molecular basis for the developmental switch is still largely unknown. Results We have used serial analysis of gene expression (SAGE to define the Toxoplasma gondii transcriptome of the intermediate-host life cycle that leads to the formation of the bradyzoite/tissue cyst. A broad view of gene expression is provided by >4-fold coverage from nine distinct libraries (~300,000 SAGE tags representing key developmental transitions in primary parasite populations and in laboratory strains representing the three canonical genotypes. SAGE tags, and their corresponding mRNAs, were analyzed with respect to abundance, uniqueness, and antisense/sense polarity and chromosome distribution and developmental specificity. Conclusion This study demonstrates that phenotypic transitions during parasite development were marked by unique stage-specific mRNAs that accounted for 18% of the total SAGE tags and varied from 1–5% of the tags in each developmental stage. We have also found that Toxoplasma mRNA pools have a unique parasite-specific composition with 1 in 5 transcripts encoding Apicomplexa-specific genes functioning in parasite invasion and transmission. Developmentally co-regulated genes were dispersed across all Toxoplasma chromosomes, as were tags representing each abundance class, and a variety of biochemical pathways indicating that trans-acting mechanisms likely control gene expression in this parasite. We observed distinct similarities in the specificity and

  8. Toxoplasmosis (Toxoplasma infection) Treatment

    Science.gov (United States)

    ... Form Controls Cancel Submit Search the CDC Parasites - Toxoplasmosis (Toxoplasma infection) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Toxoplasmosis General Information Toxoplasmosis FAQs Toxoplasmosis & Pregnancy FAQs Epidemiology & ...

  9. Mechanics of the Toxoplasma gondii oocyst wall

    Science.gov (United States)

    The ability of microorganisms to survive under extreme conditions is closely related to the physicochemical properties of their wall. In the ubiquitous protozoan parasite Toxoplasma gondii, the oocyst stage possesses a bilayered wall that protects the dormant but potentially infective parasites from...

  10. Epidemiology and pathology of Toxoplasma gondii in free-ranging California sea lions (Zalophus californianus)

    OpenAIRE

    Carlson-Bremer, D; Colegrove, KM; Gulland, FMD; Conrad, PA; Mazet, JAK; Johnson, CK

    2015-01-01

    © Wildlife Disease Association 2015. The coccidian parasite Toxoplasma gondii infects humans and warm-blooded animals worldwide. The ecology of this parasite in marine systems is poorly understood, although many marine mammals are infected and susceptible to clinical toxoplasmosis. We summarized the lesions associated with T. gondii infection in the California sea lion (Zalophus californianus) population and investigated the prevalence of and risk factors associated with T. gondii exposure, a...

  11. Toxoplasma gondii antibody prevalence and two new genotypes of the parasite in endangered Hawaiian Geese (nene: Branta sandvicensis)

    Science.gov (United States)

    Work, Thierry M.; Verma, Shiv K.; Su, Chunlei; Medeiros, John; Kaiakapu, Thomas; Kwok, Oliver C.; Dubey, Jitender P.

    2016-01-01

    Toxoplasma gondii is a protozoan parasite transmitted by domestic cats (Felis catus) that has historically caused mortality in native Hawaiian birds. To estimate how widespread exposure to the parasite is in nene (Hawaiian Geese, Branta sandvicensis), we did a serologic survey for T. gondii antibody and genetically characterized parasite DNA from the tissues of dead birds that had confirmed infections by immunohistochemistry. Of 94 geese sampled, prevalence on the island of Kauai, Maui, and Molokai was 21% (n=42), 23% (n=31), and 48% (n=21), respectively. Two new T. gondii genotypes were identified by PCR-restriction fragment length polymorphism from four geese, and these appeared segregated geographically. Exposure to T. gondii in wild nene is widespread and, while the parasite is not a major cause of death, it could have sublethal or behavioral effects. How to translate such information to implement effective ways to manage feral cats in Hawaii poses challenges.

  12. Neutrophils, dendritic cells and Toxoplasma.

    Science.gov (United States)

    Denkers, Eric Y; Butcher, Barbara A; Del Rio, Laura; Bennouna, Soumaya

    2004-03-09

    Toxoplasma gondii rapidly elicits strong Type 1 cytokine-based immunity. The necessity for this response is well illustrated by the example of IFN-gamma and IL-12 gene knockout mice that rapidly succumb to the effects of acute infection. The parasite itself is skilled at sparking complex interactions in the innate immune system that lead to protective immunity. Neutrophils are one of the first cell types to arrive at the site of infection, and the cells release several proinflammatory cytokines and chemokines in response to Toxoplasma. Dendritic cells are an important source of IL-12 during infection with T. gondii and other microbial pathogens, and they are also specialized for high-level antigen presentation to T lymphocytes. Tachyzoites express at least two types of molecules that trigger innate immune cell cytokine production. One of these involves Toll-like receptor/MyD88 pathways common to many microbial pathogens. The second pathway is less conventional and involves molecular mimicry between a parasite cyclophilin and host CC chemokine receptor 5-binding ligands. Neutrophils, dendritic cells and Toxoplasma work together to elicit the immune response required for host survival. Cytokine and chemokine cross-talk between parasite-triggered neutrophils and dendritic cells results in recruitment, maturation and activation of the latter. Neutrophil-empowered dendritic cells possess properties expected of highly potent antigen presenting cells that drive T helper 1 generation.

  13. Toxoplasmosis (Toxoplasma infection) Disease Symptoms

    Science.gov (United States)

    ... Form Controls Cancel Submit Search the CDC Parasites - Toxoplasmosis (Toxoplasma infection) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Toxoplasmosis General Information Toxoplasmosis FAQs Toxoplasmosis & Pregnancy FAQs Epidemiology & ...

  14. Prevalence of Toxoplasma gondii and Other Gastrointestinal Parasites in Domestic Cats from Households in Thika Region, Kenya.

    Science.gov (United States)

    Nyambura Njuguna, Adele; Kagira, John Maina; Muturi Karanja, Simon; Ngotho, Maina; Mutharia, Lucy; Wangari Maina, Naomi

    2017-01-01

    Gastrointestinal (GIT) parasites of domestic cats (Felis catus) not only cause morbidity but are also potential zoonotic agents. The current study aimed at establishing the prevalence of GIT parasites in cats kept by households in Thika region, Kenya. Fecal samples were collected randomly from 103 cats and analyzed for presence of parasites using standard parasitological methods. In descending order, the prevalence of the detected protozoa parasites was Isospora spp. 43.7% (95% CI: 40.4-47%), Cryptosporidium spp. 40.8% (95% CI: 37.5-44.1%), Toxoplasma gondii 7.8% (95% CI: 4.5-11.1%), and Entamoeba spp. 2.9% (95% CI: 1.6-6.2%). The prevalence of the observed helminths was Strongyloides stercoralis 43.7% (95% CI: 40.4-47%), Toxocara cati 23.3% (95% CI: 20-26.6%), Ancylostoma spp. 9.7% (95% CI: 6.4-13%), Dipylidium caninum 8.7% (95% CI: 5.4-12.0%), and Acanthocephala spp. 1.9% (95% CI: 1-4.2%). The percentage of cats excreting at least one species of parasite was 73.2% (95% CI = 69.9-76.5%). The study shows that the cats have high spectrum (9) of parasites which are known to affect the cat's health and some are of zoonotic significance.

  15. Macrophages facilitate the excystation and differentiation of Toxoplasma gondii sporozoites into tachyzoites following oocyst internalization

    Science.gov (United States)

    Toxoplasma gondii is a common parasite of humans and domestic animals, which is transmitted via oocysts in cat faeces or tissue cysts in contaminated meat. The oocyst and sporocyst walls are multilayered polymeric structures that protect the infective sporozoites from deleterious physical and chemic...

  16. Is Toxoplasma Gondii Infection Related to Brain and Behavior Impairments in Humans? Evidence from a Population-Representative Birth Cohort.

    Directory of Open Access Journals (Sweden)

    Karen Sugden

    Full Text Available Toxoplasma gondii (T. gondii is a protozoan parasite present in around a third of the human population. Infected individuals are commonly asymptomatic, though recent reports have suggested that infection might influence aspects of the host's behavior. In particular, Toxoplasma infection has been linked to schizophrenia, suicide attempt, differences in aspects of personality and poorer neurocognitive performance. However, these studies are often conducted in clinical samples or convenience samples.In a population-representative birth-cohort of individuals tested for presence of antibodies to T. gondii (N = 837 we investigated the association between infection and four facets of human behavior: neuropsychiatric disorder (schizophrenia and major depression, poor impulse control (suicidal behavior and criminality, personality, and neurocognitive performance. Suicide attempt was marginally more frequent among individuals with T. gondii seropositivity (p = .06. Seropositive individuals also performed worse on one out of 14 measures of neuropsychological function.On the whole, there was little evidence that T. gondii was related to increased risk of psychiatric disorder, poor impulse control, personality aberrations or neurocognitive impairment.

  17. Qualitative assessment for Toxoplasma gondii exposure risk associated with consumption of meat products in the United States

    Science.gov (United States)

    Toxoplasma gondii is a global protozoan parasite capable of infecting most warm-blooded animals. Although healthy adult humans generally have no symptoms after postnatally-acquired infection, severe illness does occur in immunocompromised individuals. Epidemiological studies have demonstrated that c...

  18. Toxoplasma depends on lysosomal consumption of autophagosomes for persistent infection.

    Science.gov (United States)

    Di Cristina, Manlio; Dou, Zhicheng; Lunghi, Matteo; Kannan, Geetha; Huynh, My-Hang; McGovern, Olivia L; Schultz, Tracey L; Schultz, Aric J; Miller, Alyssa J; Hayes, Beth M; van der Linden, Wouter; Emiliani, Carla; Bogyo, Matthew; Besteiro, Sébastien; Coppens, Isabelle; Carruthers, Vern B

    2017-06-19

    Globally, nearly 2 billion people are infected with the intracellular protozoan Toxoplasma gondii 1 . This persistent infection can cause severe disease in immunocompromised people and is epidemiologically linked to major mental illnesses 2 and cognitive impairment 3 . There are currently no options for curing this infection. The lack of effective therapeutics is due partly to a poor understanding of the essential pathways that maintain long-term infection. Although it is known that Toxoplasma replicates slowly within intracellular cysts demarcated with a cyst wall, precisely how it sustains itself and remodels organelles in this niche is unknown. Here, we identify a key role for proteolysis within the parasite lysosomal organelle (the vacuolar compartment or VAC) in turnover of autophagosomes and persistence during neural infection. We found that disrupting a VAC-localized cysteine protease compromised VAC digestive function and markedly reduced chronic infection. Death of parasites lacking the VAC protease was preceded by accumulation of undigested autophagosomes in the parasite cytoplasm. These findings suggest an unanticipated function for parasite lysosomal degradation in chronic infection, and identify an intrinsic role for autophagy in the T. gondii parasite and its close relatives. This work also identifies a key element of Toxoplasma persistence and suggests that VAC proteolysis is a prospective target for pharmacological development.

  19. Detection of Toxoplasma gondii oocysts in water: proposition of a strategy and evaluation in Champagne-Ardenne Region, France

    Directory of Open Access Journals (Sweden)

    D Aubert

    2009-03-01

    Full Text Available Water is a vehicle for disseminating human and veterinary toxoplasmosis due to oocyst contamination. Several outbreaks of toxoplasmosis throughout the world have been related to contaminated drinking water. We have developed a method for the detection of Toxoplasma gondii oocysts in water and we propose a strategy for the detection of multiple waterborne parasites, including Cryptosporidium spp. and Giardia. Water samples were filtered to recover Toxoplasma oocysts and, after the detection of Cryptosporidium oocysts and Giardia cysts by immunofluorescence, as recommended by French norm procedure NF T 90-455, the samples were purified on a sucrose density gradient. Detection of Toxoplasma was based on PCR amplification and mouse inoculation to determine the presence and infectivity of recovered oocysts. After experimental seeding assays, we determined that the PCR assay was more sensitive than the bioassay. This strategy was then applied to 482 environmental water samples collected since 2001. We detected Toxoplasma DNA in 37 environmental samples (7.7%, including public drinking water; however, none of them were positive by bioassay. This strategy efficiently detects Toxoplasma oocysts in water and may be suitable as a public health sentinel method. Alternative methods can be used in conjunction with this one to determine the infectivity of parasites that were detected by molecular methods.

  20. Women and Parasitic Diseases

    Science.gov (United States)

    ... Consultations, and General Public. Contact Us Parasites Home Women Recommend on Facebook Tweet Share Compartir Infection with ... of parasites can lead to unique consequences for women. Some examples are given below. Infection with Toxoplasma ...

  1. Proteomic characterization of the subpellicular cytoskeleton of Toxoplasma gondii tachyzoites.

    Science.gov (United States)

    Gómez de León, Carmen T; Díaz Martín, Rubén Darío; Mendoza Hernández, Guillermo; González Pozos, Sirenia; Ambrosio, Javier R; Mondragón Flores, Ricardo

    2014-12-05

    Toxoplasma, the causative agent of toxoplasmosis in animals and humans, has a subpellicular cytoskeleton that is involved in motility, cell shape and invasion. Knowledge of components of the cytoskeleton is necessary to understand the invasion mechanisms as well as for the identification of possible therapeutic targets. To date, most cytoskeletal components of Toxoplasma remain unidentified due mainly to the lack of reproducible methods for their isolation. Based on the successful isolation of the cytoskeleton, it was possible to report for the first time, the proteomic characterization of the subpellicular cytoskeleton of Toxoplasma formed by 95 cytoskeletal proteins through proteomic analysis by tandem mass spectrometry of one dimension SDS PAGE. By bioinformatic analysis of the data, proteins were classified as: 18 conventional cytoskeletal proteins; 10 inner membrane complex proteins, including 7 with alveolin repeats; 5 new proteins with alveolin like repeats; 37 proteins associated with other organelles and 25 novel proteins of unknown function. One of the alveolin like proteins not previously described in Toxoplasma named TgArticulin was partially characterized with a specific monoclonal antibody. Presence of TgArticulin was exclusively associated with the cytoskeleton fraction with a cortical distribution. Functions for the several molecules identified are proposed. This manuscript describes, for the first time, the proteome of the subpellicular cytoskeleton of Toxoplasma gondii. The importance of this study is related to the role of the cytoskeleton in the highly invasive capability of a parasite that causes abortion, blindness, and death by encephalitis in immunocompromised patients. Proteomic characterization of the cytoskeleton of T. gondii tachyzoites was possible by the development of a successful procedure for the isolation of the subpellicular cytoskeleton. Knowledge of the composition of the cytoskeleton of Toxoplasma is fundamental for the

  2. Prevalence of Toxoplasma gondii and Other Gastrointestinal Parasites in Domestic Cats from Households in Thika Region, Kenya

    Directory of Open Access Journals (Sweden)

    Adele Nyambura Njuguna

    2017-01-01

    Full Text Available Gastrointestinal (GIT parasites of domestic cats (Felis catus not only cause morbidity but are also potential zoonotic agents. The current study aimed at establishing the prevalence of GIT parasites in cats kept by households in Thika region, Kenya. Fecal samples were collected randomly from 103 cats and analyzed for presence of parasites using standard parasitological methods. In descending order, the prevalence of the detected protozoa parasites was Isospora spp. 43.7% (95% CI: 40.4–47%, Cryptosporidium spp. 40.8% (95% CI: 37.5–44.1%, Toxoplasma gondii 7.8% (95% CI: 4.5–11.1%, and Entamoeba spp. 2.9% (95% CI: 1.6–6.2%. The prevalence of the observed helminths was Strongyloides stercoralis 43.7% (95% CI: 40.4–47%, Toxocara cati 23.3% (95% CI: 20–26.6%, Ancylostoma spp. 9.7% (95% CI: 6.4–13%, Dipylidium caninum 8.7% (95% CI: 5.4–12.0%, and Acanthocephala spp. 1.9% (95% CI: 1–4.2%. The percentage of cats excreting at least one species of parasite was 73.2% (95% CI = 69.9–76.5%. The study shows that the cats have high spectrum (9 of parasites which are known to affect the cat’s health and some are of zoonotic significance.

  3. Comprehensive Evaluation of Toxoplasma gondii VEG and Neospora caninum LIV Genomes with Tachyzoite Stage Transcriptome and Proteome Defines Novel Transcript Features

    KAUST Repository

    Ramaprasad, Abhinay; Mourier, Tobias; Naeem, Raeece; Malas, Tareq B.; Moussa, Ehab; Panigrahi, Aswini; Vermont, Sarah J.; Otto, Thomas D.; Wastling, Jonathan; Pain, Arnab

    2015-01-01

    Toxoplasma gondii is an important protozoan parasite that infects all warm-blooded animals and causes opportunistic infections in immuno-compromised humans. Its closest relative, Neospora caninum, is an important veterinary pathogen that causes

  4. Seroprevalence of Toxoplasma gondii and Neospora caninum in red deer from Central Italy

    Directory of Open Access Journals (Sweden)

    Guido Rocchigiani

    2016-09-01

    Full Text Available Neospora caninum and Toxoplasma gondii are cosmopolite protozoan parasites impacting on human and animal health. In particular, T. gondii commonly infects human beings and all warm-blooded animals, while N. caninum is responsible for bovine abortion and neuromuscular disease in dogs. The aim of the presented survey was to evaluate the occurrence and prevalence of these parasites in the most numerous Italian red deer population. The sera of 60 red deer ( Cervus elaphus inhabiting Central Italy (43°56’N 10°55’E and killed by selective hunting were examined using an indirect fluorescent antibody test (IFAT for both N. caninum and T. gondii antibodies. White blood cells (buffy coat were also checked by PCR and T. gondii DNA was genotyped. Thirteen out of 60 sera (22% scored positive for Toxoplasma, 17 samples (28% were Neospora positive. Coinfection was recorded in 5 cases (8%. T. gondii (genotype II and N. caninum DNA was detected in one and 3 samples of buffy coat, respectively. The presented study is the first to examine the occurrence of these parasites in the most numerous red deer Italian population, confirming this animal species as carrier of the investigated pathogens. These animals spread near human settlements, co-inhabiting with final hosts of [i]T. gondii[/i] and N. caninum and could contribute to their transmission to domestic ruminants and humans. In particular, the seroprevalence value for N. caninum was the highest among European records.

  5. Metabolic Cooperation of Glucose and Glutamine Is Essential for the Lytic Cycle of Obligate Intracellular Parasite Toxoplasma gondii*

    Science.gov (United States)

    Nitzsche, Richard; Zagoriy, Vyacheslav; Lucius, Richard; Gupta, Nishith

    2016-01-01

    Toxoplasma gondii is a widespread protozoan parasite infecting nearly all warm-blooded organisms. Asexual reproduction of the parasite within its host cells is achieved by consecutive lytic cycles, which necessitates biogenesis of significant energy and biomass. Here we show that glucose and glutamine are the two major physiologically important nutrients used for the synthesis of macromolecules (ATP, nucleic acid, proteins, and lipids) in T. gondii, and either of them is sufficient to ensure the parasite survival. The parasite can counteract genetic ablation of its glucose transporter by increasing the flux of glutamine-derived carbon through the tricarboxylic acid cycle and by concurrently activating gluconeogenesis, which guarantee a continued biogenesis of ATP and biomass for host-cell invasion and parasite replication, respectively. In accord, a pharmacological inhibition of glutaminolysis or oxidative phosphorylation arrests the lytic cycle of the glycolysis-deficient mutant, which is primarily a consequence of impaired invasion due to depletion of ATP. Unexpectedly, however, intracellular parasites continue to proliferate, albeit slower, notwithstanding a simultaneous deprivation of glucose and glutamine. A growth defect in the glycolysis-impaired mutant is caused by a compromised synthesis of lipids, which cannot be counterbalanced by glutamine but can be restored by acetate. Consistently, supplementation of parasite cultures with exogenous acetate can amend the lytic cycle of the glucose transport mutant. Such plasticity in the parasite's carbon flux enables a growth-and-survival trade-off in assorted nutrient milieus, which may underlie the promiscuous survival of T. gondii tachyzoites in diverse host cells. Our results also indicate a convergence of parasite metabolism with cancer cells. PMID:26518878

  6. Presence of anti-Toxoplasma antibodies in humans and their cats in the urban zone of Guadalajara

    Directory of Open Access Journals (Sweden)

    Galván Ramírez María de la Luz

    1999-01-01

    Full Text Available Cats are the definitive hosts of Toxoplasma gondii. Infected cats excrete oocysts in their feces, infecting humans and other animals. The objective of the present study was to determine the presence of anti-Toxoplasma antibodies in cat owners and their pets, and determine if there was a relationship between Toxoplasma infection and humans who live with infected cats. IgG anti-Toxoplasma antibodies in sera of 59 cat owners were determined by enzyme-linked immunosorbent assay (ELISA, in 24 sera from their cats, IgG, IgM, and IgA antibodies were found using Burney's ELISA. Thirty-eight (64% of 59 cat owners were positive to IgG anti-Toxoplasma. Seropositivity for cats was 70.8% IgG, 8.3% IgM, and 62.5% IgA. Cohabitation with cats infected by T. gondii, feeding with leftovers or raw viscera, and lack of control over how their feces were handled are risk factors conducive for humans to become infected by T. gondii.

  7. Predator cat odors activate sexual arousal pathways in brains of Toxoplasma gondii infected rats.

    Directory of Open Access Journals (Sweden)

    Patrick K House

    Full Text Available Cat odors induce rapid, innate and stereotyped defensive behaviors in rats at first exposure, a presumed response to the evolutionary pressures of predation. Bizarrely, rats infected with the brain parasite Toxoplasma gondii approach the cat odors they typically avoid. Since the protozoan Toxoplasma requires the cat to sexually reproduce, this change in host behavior is thought to be a remarkable example of a parasite manipulating a mammalian host for its own benefit. Toxoplasma does not influence host response to non-feline predator odor nor does it alter behavior on olfactory, social, fear or anxiety tests, arguing for specific manipulation in the processing of cat odor. We report that Toxoplasma infection alters neural activity in limbic brain areas necessary for innate defensive behavior in response to cat odor. Moreover, Toxoplasma increases activity in nearby limbic regions of sexual attraction when the rat is exposed to cat urine, compelling evidence that Toxoplasma overwhelms the innate fear response by causing, in its stead, a type of sexual attraction to the normally aversive cat odor.

  8. Predator cat odors activate sexual arousal pathways in brains of Toxoplasma gondii infected rats.

    Science.gov (United States)

    House, Patrick K; Vyas, Ajai; Sapolsky, Robert

    2011-01-01

    Cat odors induce rapid, innate and stereotyped defensive behaviors in rats at first exposure, a presumed response to the evolutionary pressures of predation. Bizarrely, rats infected with the brain parasite Toxoplasma gondii approach the cat odors they typically avoid. Since the protozoan Toxoplasma requires the cat to sexually reproduce, this change in host behavior is thought to be a remarkable example of a parasite manipulating a mammalian host for its own benefit. Toxoplasma does not influence host response to non-feline predator odor nor does it alter behavior on olfactory, social, fear or anxiety tests, arguing for specific manipulation in the processing of cat odor. We report that Toxoplasma infection alters neural activity in limbic brain areas necessary for innate defensive behavior in response to cat odor. Moreover, Toxoplasma increases activity in nearby limbic regions of sexual attraction when the rat is exposed to cat urine, compelling evidence that Toxoplasma overwhelms the innate fear response by causing, in its stead, a type of sexual attraction to the normally aversive cat odor.

  9. Prevalence of Toxoplasma gondii and potentially zoonotic helminths in wild boars (Sus scrofa hunted in central Italy

    Directory of Open Access Journals (Sweden)

    Roberto Amerigo Papini

    2018-03-01

    Full Text Available Our aim was to evaluate the risk of human toxoplasmosis via meat consumption from wild boars by estimating the seroprevalence of Toxoplasma gondii in animals hunted in central Italy. Using a modified agglutination test, 213 sera from wild boars were examined for anti-Toxoplasma IgG antibodies. Diaphragm samples (n=65 from seropositive and seronegative animals were tested by nested-PCR to detect T. gondii DNA. Toxoplasma DNA from diaphragms was genotyped by PCR-RFLP using 12 genetic markers. Moreover, the aim of the study was also to identify helminth infections of wild boars in the selected area and to evaluate their hazard for humans. Examination of sera revealed a seroprevalence of 12.2%. Only one T. gondii strain could be genotyped from a seropositive animal and PCR-RFLP revealed that it belonged to type II. Analysis of 50 samples of faeces and 32 small intestines revealed that 78% and 15.6% of the samples harboured parasites, respectively, with the occurrence of parasites potentially dangerous for humans. These latter included Ascaris suum, Macracanthorhynchus hirudinaceus, Trichuris suis, and Metastrongylus spp. A significant association was found between coprological positivity and male sex. These results indicate that T. gondii infection may be present in wild boar tissues and consumption of undercooked or raw wild boar meat may expose humans to risk of toxoplasmosis in the study area. Furthermore, the study highlights that wild boars are hosts of helminths of veterinary and medical importance transmissible to pigs and humans.

  10. Epidemiology and Molecular Prevalence of Toxoplasma gondii in Cattle Slaughtered in Zahedan and Zabol Districts, South East of Iran

    Directory of Open Access Journals (Sweden)

    Davood ANVARI

    2018-03-01

    Full Text Available Background: Toxoplasma gondii is an obligate, intracellular parasite which causes the toxoplasmosis in humans and warm-blooded animals. Red meat is an important source for transmission of the infection to humans. This study aimed to determine the prevalence of Toxoplasma among imported and indigenous cattle in the Sistan region.Methods: One hundred samples from slaughtered cattle were collected from two abattoirs of Zabol and Zahedan, South East of Iran in 2015. Each sample was a mixture of three muscle, including tongue, cardiac, and triceps. Additional data of each cattle, including sex, breed, age, indigenous or imported, location of slaughter, management practices, and feeding system were obtained through observations and interviews. Infection by T. gondii was determined by PCR method.Results: The prevalence of Toxoplasma in indigenous cattle was 6% and in imported cattle was 26%, and this difference was statistically significant (P=0.006. Moreover, the prevalence of Toxoplasma was statistically associated with management practices (P=0.01 and feeding system (P=0.001. However, relationship between the prevalence of Toxoplasma with age, breed, sex, and location of slaughter was not statistically significant.Conclusion: Since the prevalence of Toxoplasma among imported cattle is higher than indigenous cattle, so strict supervision for importing livestock from neighboring countries is necessary.

  11. Metabolic Cooperation of Glucose and Glutamine Is Essential for the Lytic Cycle of Obligate Intracellular Parasite Toxoplasma gondii.

    Science.gov (United States)

    Nitzsche, Richard; Zagoriy, Vyacheslav; Lucius, Richard; Gupta, Nishith

    2016-01-01

    Toxoplasma gondii is a widespread protozoan parasite infecting nearly all warm-blooded organisms. Asexual reproduction of the parasite within its host cells is achieved by consecutive lytic cycles, which necessitates biogenesis of significant energy and biomass. Here we show that glucose and glutamine are the two major physiologically important nutrients used for the synthesis of macromolecules (ATP, nucleic acid, proteins, and lipids) in T. gondii, and either of them is sufficient to ensure the parasite survival. The parasite can counteract genetic ablation of its glucose transporter by increasing the flux of glutamine-derived carbon through the tricarboxylic acid cycle and by concurrently activating gluconeogenesis, which guarantee a continued biogenesis of ATP and biomass for host-cell invasion and parasite replication, respectively. In accord, a pharmacological inhibition of glutaminolysis or oxidative phosphorylation arrests the lytic cycle of the glycolysis-deficient mutant, which is primarily a consequence of impaired invasion due to depletion of ATP. Unexpectedly, however, intracellular parasites continue to proliferate, albeit slower, notwithstanding a simultaneous deprivation of glucose and glutamine. A growth defect in the glycolysis-impaired mutant is caused by a compromised synthesis of lipids, which cannot be counterbalanced by glutamine but can be restored by acetate. Consistently, supplementation of parasite cultures with exogenous acetate can amend the lytic cycle of the glucose transport mutant. Such plasticity in the parasite's carbon flux enables a growth-and-survival trade-off in assorted nutrient milieus, which may underlie the promiscuous survival of T. gondii tachyzoites in diverse host cells. Our results also indicate a convergence of parasite metabolism with cancer cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Toxoplasma gondii and Epilepsy.

    Science.gov (United States)

    Ayaz, Erol; Türkoğlu, Şule Aydın; Orallar, Hayriye

    2016-06-01

    Toxoplasma gondii is a zoonotic parasite can be seen in all the vital organ; in the acute phase, it can be found in the blood, cerebrospinal fluid, semen, tears, saliva, urine, and in almost all body fluids. Transplasental infection can lead to fetal damage and miscarriage. Its last hosts are felines and intermediate hosts are all mammals, including humans. People infected by the ingestion of meat containing cysts in undercooked or raw, are thrown oocysts with cat felines By taking in water and food, from mother to fetus transplacental way, the infected organ transplantation, blood transfusion, laboratory accidents and kaprofaj transmitted by mechanical vectors of the invertebrates. Suppression of the immune system is being transformed to the shape and texture of the cysts with bradyzoite. The parasite settles in the cells of the tissue cysts and causes change in the cellular mechanisms, such as cytokinin task. Depending on changes and type of neurotransmitter (GABA, glutamate, serotonin, dopamine) levels in CSF in ions (Ca, K, Cl, Mg), it is believed that there is a change in their concentration. In this review, literature about the relationship between T. gondii and epilepsy and epileptiform activity the importance of parasites, which settle in the brain, will be highlighted.

  13. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma).

    Science.gov (United States)

    Plattner, H; Sehring, I M; Mohamed, I K; Miranda, K; De Souza, W; Billington, R; Genazzani, A; Ladenburger, E-M

    2012-05-01

    The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP3Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also "Conclusions" section. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Detection and dissemination of Toxoplasma gondii in experimentally infected calves, a single test does not tell the whole story.

    NARCIS (Netherlands)

    Burrells, Alison; Taroda, Alessandra; Opsteegh, Marieke; Schares, Gereon; Benavides, Julio; Dam-Deisz, Cecile; Bartley, Paul M; Chianini, Francesca; Villena, Isabella; van der Giessen, Joke; Innes, Elisabeth A; Katzer, Frank

    2018-01-01

    Although the detection of Toxoplasma gondii in bovine tissues is rare, beef might be an important source of human infection. The use of molecular techniques, such as magnetic capture qPCR (MC-qPCR), in combination with the gold standard method for isolating the parasite (mouse bioassay), may

  15. Occurrence of Toxoplasma gondii antibodies in wild rodents and marsupials from the Atlantic forest, State of Sao Paulo, Brazil

    Science.gov (United States)

    Toxoplasma gondii is a protozoan parasite that infects a large spectrum of warm-blooded animals, including humans. Small mammals and rodents play an important role in the epidemiology of T. gondii because they are sources of infection for domestic and feral cats. Serum samples from 151 rodents and 4...

  16. Clinical Toxoplasma gondii, Hammondia heydorni, and Sarcocystis spp. infections in dogs.

    Science.gov (United States)

    Dubey, J P; Ross, A D; Fritz, D

    2003-12-01

    Concurrent infections with coccidians Toxoplasma gondii, Sarcocystis spp., and a Hammondia heydorni-like parasite were identified in tissues of three littermate pups on a Kelpie dog breeding farm in Australia. In total, 20 pups in four litters had died following vaccination with an attenuated distemper virus vaccine. Toxoplasma gondii tachyzoites were identified immunohistochemically in tissues of two dogs. Sarcocystis sp. sporocysts were seen in the intestinal lamina propria of two dogs. Asexual and sexual stages of H. heydorni-like parasite were found in enterocytes of the small intestine of two dogs. Ultrastructural development of schizonts and gamonts of this parasite is described. None of the protozoa in these dogs reacted with antibodies to Neospora caninum. Feeding of uncooked tissue of sheep was considered to be the likely source of infection for these coccidians in dogs.

  17. Mechanisms of cellular invasion by intracellular parasites.

    Science.gov (United States)

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  18. Toxoplasma gondii antibodies in the white stork Ciconia ciconia.

    Science.gov (United States)

    Andrzejewska, Izabela; Tryjanowski, Piotr; Zduniak, Piotr; Dolata, Pawel T; Ptaszyk, Jerzy; Cwiertnia, Piotr

    2004-01-01

    The prevalence of Toxoplasma gondii in chicks of wild birds and captive individuals was studied in the Poznań environs and in the Poznań Zoological Garden in the years 2002-2003. Bird blood was tested for T. gondii antibodies by an indirect fluorescent antibody test. T. gondii antibodies were detected from 5.8% of 205 analysed white stork chicks and 13.6% of 44 analysed adult storks in the zoo. Because toxoplasmosis is one of the more common parasitic zoonoses worldwide, we briefly discuss the potential epidemiological importance of stork toxoplasmosis to humans.

  19. The most important parasites in Serbia involving the foodborne route of transmission

    Science.gov (United States)

    Petrović, J. M.; Prodanov-Radulović, J. Z.; Vasilev, S. D.

    2017-09-01

    Food can be an important route for transmission of parasites to humans. Compared to other foodborne pathogens in Serbia, foodborne (or potentially foodborne) parasites do not get the attention they undoubtedly deserve. The aim of this article is to give an overview of the most important parasitic pathogens that can be transmitted by food, and that cause disease in humans: Echinococcus, Trichinella, Taenia solium and Toxoplasma gondii. For each of these pathogens, the severity of human diseases they cause, incidence, mortality and case fatality rate among humans in Serbia as well as their prevalence in animal species in Serbia are described. Some of the described foodborne parasites can induce severe disease symptoms in humans associated with high case fatality rates, while others can cause massive outbreaks. All of the aforementioned parasites occur throughout Serbia and cause both severe public health problems and substantial economic losses in livestock production. In conclusion, the control measures of foodborne parasites certainly need to include education of farmers and improvement of veterinary sanitary measures in animal farming and animal waste control.

  20. Isolation and characterization of new genetic types of toxoplasma gondii and prevalence of trichinella murrelli from black bear (Ursus americanus)

    Science.gov (United States)

    Black bears (Ursus americanus) are hosts for two important zoonotic parasites, Toxoplasma gondii and Trichinella spp. and bears are hunted for human consumption in the USA. Little is known of the genetic diversity of T. gondii circulating in wildlife. In the present study, antibodies to T. gondii we...

  1. Uptake and transmission of Toxoplasma gondii oocysts by migratory filter-feeding fish

    Science.gov (United States)

    Toxoplasma gondii is a ubiquitous parasitic protozoan known to cause disease and death in warm-blooded animals. Bottlenose dolphins, walruses, sea otters, and other marine animals worldwide have died from toxoplasmosis, but the source of this parasite in the marine environment h...

  2. Toxoplasma gondii in small neotropical wild felids

    Directory of Open Access Journals (Sweden)

    William Alberto Cañon-Franco

    2013-02-01

    Full Text Available In the last decade, studies on wildlife worldwide have discovered key epidemiological aspects of the sylvatic cycle of Toxoplasma gondii. However, despite the known role of wild felines as definitive hosts in the transmission and maintenance of this parasite, few studies have focused on the involvement of these animals. Brazil exhibits the largest number of wild felid species in the Americas, all of which have a critical conservation status. However, serological detections, epidemiological studies and some molecular characterizations of T. gondii have primarily used Neotropical felid populations that are maintained in captivity, which does not reflect the disease behavior in free-living conditions. A systematic review of the worldwide scientific literature was conducted focusing on toxoplasmosis in small Neotropical felids. This review covered a number of aspects, including the state of scientific research, parasite transmission in the wild, the genetic characteristics of isolates, the relationship between these genetic characteristics and the pathogenicity of the parasite, and the risk factors linked to conflicts with humans. The present review shows the relevance of studying these felid populations based on their frequent interactions with humans in peri-urban areas and the need for further comprehensive studies to establish the real significance of T. gondii in public and animal health in tropical and temperate regions.

  3. Molecular analysis of Toxoplasma gondii Surface Antigen 1 (SAG1) gene cloned from Toxoplasma gondii DNA isolated from Javanese acute toxoplasmosis

    Science.gov (United States)

    Haryati, Sri; Agung Prasetyo, Afiono; Sari, Yulia; Dharmawan, Ruben

    2018-05-01

    Toxoplasma gondii Surface Antigen 1 (SAG1) is often used as a diagnostic tool due to its immunodominant-specific as antigen. However, data of the Toxoplasma gondii SAG1 protein from Indonesian isolate is limited. To study the protein, genomic DNA was isolated from a Javanese acute toxoplasmosis blood samples patient. A complete coding sequence of Toxoplasma gondii SAG1 was cloned and inserted into an Escherichia coli expression plasmid and sequenced. The sequencing results were subjected to bioinformatics analysis. The Toxoplasma gondii SAG1 complete coding sequences were successfully cloned. Physicochemical analysis revealed the 336 aa of SAG1 had 34.7 kDa of weight. The isoelectric point and aliphatic index were 8.4 and 78.4, respectively. The N-terminal methionine half-life in Escherichia coli was more than 10 hours. The antigenicity, secondary structure, and identification of the HLA binding motifs also had been discussed. The results of this study would contribute information about Toxoplasma gondii SAG1 and benefits for further works willing to develop diagnostic and therapeutic strategies against the parasite.

  4. CCp5A protein from Toxoplasma gondii as a serological marker of oocyst-driven infections in humans and domestic animals.

    Directory of Open Access Journals (Sweden)

    Silas Silva Santana

    2015-11-01

    Full Text Available Considering that the current immunoassays are not able to distinguish the infective forms that cause Toxoplasma gondii infection, the present study was carried out to evaluate the reactivity of two recombinant proteins (CCp5A and OWP1 from oocyst/sporozoite, in order to differentiate infections occurring by ingestion of oocysts or tissue cysts. The reactivity of the recombinant proteins was assessed against panels of serum samples from animals (chickens, pigs and mice that were naturally or experimentally infected by different infective stages of the parasite. Also, we tested sera from humans who have been infected by oocysts during a well-characterized toxoplasmosis outbreak, as well as sera from pregnant women tested IgM+/IgG+ for T. gondii, which source of infection was unknown. Only the sporozoite-specific CCp5A protein was able to differentiate the parasite stage that infected chickens, pigs and mice, with specific reactivity for oocyst-infected animals. Furthermore, the CCp5A showed preferential reactivity for recent infection by oocyst/sporozoite in pigs and mice. In humans, CCp5A showed higher reactivity with serum samples from the outbreak, compared with serum from pregnant women. Altogether, these findings demonstrate the usefulness of the CCp5A protein as a new tool to identify the parasite state of T. gondii infection, allowing its application for diagnosis and epidemiological investigations in animals and humans. The identification of parasite infective stage can help to design effective strategies to minimize severe complications in immunocompromised people and, particularly, in pregnant women to prevent congenital infection.

  5. Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin, Germany.

    Science.gov (United States)

    Krücken, Jürgen; Blümke, Julia; Maaz, Denny; Demeler, Janina; Ramünke, Sabrina; Antolová, Daniela; Schaper, Roland; von Samson-Himmelstjerna, Georg

    2017-01-01

    Rodents are important intermediate and paratenic hosts for carnivore parasites, including the important zoonotic agents Toxoplasma, Echinococcus and Toxocara. Monitoring of such parasites in rodents can be used to detect increasing risks for human and veterinary public health. Rodents were trapped at four sites in Berlin, two near the city center, two at the periphery. PCRs were conducted to detect Coccidia (target ITS-1) and specifically Toxoplasma gondii (repetitive element) in brain and ascarids (ITS-2) in muscle or brain tissue. During necropsies, metacestodes were collected and identified using ITS-2 and 12S rRNA PCRs. An ELISA to detect antibodies against Toxocara canis ES antigens was performed. Within the 257 examined rodents, the most frequently observed parasite was Frenkelia glareoli predominantly found in Myodes glareolus. T. gondii was only detected in 12 rodents and Microtus spp. (although strongly underrepresented) had a significantly increased chance of being positive. Neither Echinococcus nor typical Taenia parasites of dogs and cats were found but Mesocestoides litteratus and Taenia martis metacestodes were identified which can cause severe peritoneal or ocular cysticercosis in dogs, primates and humans. Using PCR, the ascarids T. canis (n = 8), Toxocara cati (4) and Parascaris sp. (1) were detected predominantly in muscles. Seroprevalence of T. canis was 14.2% and ELISA was thus more sensitive than PCR to detect infection with this parasite. Non-parametric multidimensional scaling and cluster analysis revealed that parasite communities could be grouped into an urban and a peri-urban cluster with high frequency of ascarid-positive rodents in urban and high frequency of F. glareoli in peri-urban sites. Prevalence rates of parasites in rodents with potential impact for human or veterinary public health are considerable and the monitoring of transmission cycles of carnivore parasites in intermediate rodent hosts is recommended to estimate the health

  6. Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin, Germany.

    Directory of Open Access Journals (Sweden)

    Jürgen Krücken

    Full Text Available Rodents are important intermediate and paratenic hosts for carnivore parasites, including the important zoonotic agents Toxoplasma, Echinococcus and Toxocara. Monitoring of such parasites in rodents can be used to detect increasing risks for human and veterinary public health. Rodents were trapped at four sites in Berlin, two near the city center, two at the periphery. PCRs were conducted to detect Coccidia (target ITS-1 and specifically Toxoplasma gondii (repetitive element in brain and ascarids (ITS-2 in muscle or brain tissue. During necropsies, metacestodes were collected and identified using ITS-2 and 12S rRNA PCRs. An ELISA to detect antibodies against Toxocara canis ES antigens was performed. Within the 257 examined rodents, the most frequently observed parasite was Frenkelia glareoli predominantly found in Myodes glareolus. T. gondii was only detected in 12 rodents and Microtus spp. (although strongly underrepresented had a significantly increased chance of being positive. Neither Echinococcus nor typical Taenia parasites of dogs and cats were found but Mesocestoides litteratus and Taenia martis metacestodes were identified which can cause severe peritoneal or ocular cysticercosis in dogs, primates and humans. Using PCR, the ascarids T. canis (n = 8, Toxocara cati (4 and Parascaris sp. (1 were detected predominantly in muscles. Seroprevalence of T. canis was 14.2% and ELISA was thus more sensitive than PCR to detect infection with this parasite. Non-parametric multidimensional scaling and cluster analysis revealed that parasite communities could be grouped into an urban and a peri-urban cluster with high frequency of ascarid-positive rodents in urban and high frequency of F. glareoli in peri-urban sites. Prevalence rates of parasites in rodents with potential impact for human or veterinary public health are considerable and the monitoring of transmission cycles of carnivore parasites in intermediate rodent hosts is recommended to

  7. Toxoplasma gondii infection specifically increases the levels of key host microRNAs.

    Directory of Open Access Journals (Sweden)

    Gusti M Zeiner

    2010-01-01

    Full Text Available The apicomplexan parasite Toxoplasma gondii can infect and replicate in virtually any nucleated cell in many species of warm-blooded animals; thus, it has evolved the ability to exploit well-conserved biological processes common to its diverse hosts. Here we have investigated whether Toxoplasma modulates the levels of host microRNAs (miRNAs during infection.Using microarray profiling and a combination of conventional molecular approaches we report that Toxoplasma specifically modulates the expression of important host microRNAs during infection. We show that both the primary transcripts for miR-17 approximately 92 and miR-106b approximately 25 and the pivotal miRNAs that are derived from miR-17 approximately 92 display increased abundance in Toxoplasma-infected primary human cells; a Toxoplasma-dependent up-regulation of the miR-17 approximately 92 promoter is at least partly responsible for this increase. The abundance of mature miR-17 family members, which are derived from these two miRNA clusters, remains unchanged in host cells infected with the closely related apicomplexan Neospora caninum; thus, the Toxoplasma-induced increase in their abundance is a highly directed process rather than a general host response to infection.Altered levels of miR-17 approximately 92 and miR-106b approximately 25 are known to play crucial roles in mammalian cell regulation and have been implicated in numerous hyperproliferative diseases although the mechanisms driving their altered expression are unknown. Hence, in addition to the implications of these findings on the host-pathogen interaction, Toxoplasma may represent a powerful probe for understanding the normal mechanisms that regulate the levels of key host miRNAs.

  8. Loop-mediated isothermal amplification (LAMP): Early detection of Toxoplasma gondii infection in mice

    OpenAIRE

    Kong, Qing-Ming; Lu, Shao-Hong; Tong, Qun-Bo; Lou, Di; Chen, Rui; Zheng, Bin; Kumagai, Takashi; Wen, Li-Yong; Ohta, Nobuo; Zhou, Xiao-Nong

    2012-01-01

    Abstract Background Toxoplasmosis is a widespread zoonotic parasitic disease that occurs in both animals and humans. Traditional molecular assays are often difficult to perform, especially for the early diagnosis of Toxoplasma gondii infections. Here, we established a novel loop-mediated isothermal amplification targeting the 529 bp repeat element (529 bp-LAMP) to detect T. gondii DNA in blood samples of experimental mice infected with tachyzoites of the RH strain. Findings The assay was perf...

  9. Brains and Brawn: Toxoplasma Infections of the Central Nervous System and Skeletal Muscle.

    Science.gov (United States)

    Wohlfert, Elizabeth A; Blader, Ira J; Wilson, Emma H

    2017-07-01

    Toxoplasma gondii is a widespread parasitic pathogen that infects over a third of the world's population. Following an acute infection, the parasite can persist within its mammalian host as intraneuronal or intramuscular cysts. Cysts will occasionally reactivate, and - depending on the host's immune status and site of reactivation - encephalitis or myositis can develop. Because these diseases have high levels of morbidity and can be lethal, it is important to understand how Toxoplasma traffics to these tissues, how the immune response controls parasite burden and contributes to tissue damage, and what mechanisms underlie neurological and muscular pathologies that toxoplasmosis patients present with. This review aims to summarize recent important developments addressing these critical topics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Induction of partial protection against infection with Toxoplasma gondii genotype II by DNA vaccination with recombinant chimeric tachyzoite antigens

    DEFF Research Database (Denmark)

    Rosenberg, Carina Agerbo; De Craeye, S.; Jongert, E.

    2009-01-01

    Infection with the obligate intracellular parasite Toxoplasma gondii is a significant source of parasitic infections worldwide. In adults, infections may often lead to severe retinochoroiditis. Infection of the foetus causes abortion or congenital pathology that may lead to neurological complicat......Infection with the obligate intracellular parasite Toxoplasma gondii is a significant source of parasitic infections worldwide. In adults, infections may often lead to severe retinochoroiditis. Infection of the foetus causes abortion or congenital pathology that may lead to neurological...

  11. Update on pathology of ocular parasitic disease.

    Science.gov (United States)

    Das, Dipankar; Ramachandra, Varsha; Islam, Saidul; Bhattacharjee, Harsha; Biswas, Jyotirmay; Koul, Akanksha; Deka, Panna; Deka, Apurba

    2016-11-01

    Parasites are a group of eukaryotic organisms that may be free-living or form a symbiotic or parasitic relationship with the hosts. Consisting of over 800,000 recognized species, parasites may be unicellular (Protozoa) or multicellular (helminths and arthropods). The association of parasites with human population started long before the emergence of civilization. Parasitic zoonotic diseases are prevalent worldwide including India. Appropriate epidemiological data are lacking on existing zoonotic parasitic diseases, and newer diseases are emerging in our scenario. Systemic diseases such as cysticercosis, paragonimiasis, hydatidosis, and toxoplasmosis are fairly common. Acquired Toxoplasma infections are rising in immune-deficient individuals. Amongst the ocular parasitic diseases, various protozoas such as Cystoidea, trematodes, tissue flagellates, sporozoas etc. affect humans in general and eyes in particular, in different parts of the world. These zoonoses seem to be a real health related problem globally. Recent intensification of research throughout the world has led to specialization in biological fields, creating a conducive situation for researchers interested in this subject. The basics of parasitology lie in morphology, pathology, and with recent updates in molecular parasitology, the scope has extended further. The current review is to address the recent update in ophthalmic parasites with special reference to pathology and give a glimpse of further research in this field.

  12. Update on pathology of ocular parasitic disease

    Directory of Open Access Journals (Sweden)

    Dipankar Das

    2016-01-01

    Full Text Available Parasites are a group of eukaryotic organisms that may be free-living or form a symbiotic or parasitic relationship with the hosts. Consisting of over 800,000 recognized species, parasites may be unicellular (Protozoa or multicellular (helminths and arthropods. The association of parasites with human population started long before the emergence of civilization. Parasitic zoonotic diseases are prevalent worldwide including India. Appropriate epidemiological data are lacking on existing zoonotic parasitic diseases, and newer diseases are emerging in our scenario. Systemic diseases such as cysticercosis, paragonimiasis, hydatidosis, and toxoplasmosis are fairly common. Acquired Toxoplasma infections are rising in immune-deficient individuals. Amongst the ocular parasitic diseases, various protozoas such as Cystoidea, trematodes, tissue flagellates, sporozoas etc. affect humans in general and eyes in particular, in different parts of the world. These zoonoses seem to be a real health related problem globally. Recent intensification of research throughout the world has led to specialization in biological fields, creating a conducive situation for researchers interested in this subject. The basics of parasitology lie in morphology, pathology, and with recent updates in molecular parasitology, the scope has extended further. The current review is to address the recent update in ophthalmic parasites with special reference to pathology and give a glimpse of further research in this field.

  13. Antibody reaction of human anti-Toxoplasma gondii positive and negative sera with Neospora caninum antigens

    OpenAIRE

    Nam, Ho-Woo; Kang, Seung-Won; Choi, Won-Young

    1998-01-01

    Anti-Neospora caninum antibody was detected in anti-Toxoplasma gondii positive and negative human sera by ELISA, western blot and immunofluorescence assay (IFA). Twelve cases out of 172 (6.7%) Toxoplasma-positive sera cross-reacted with both T. gondii and N. caninum antigens, and one out of 110 Toxoplasma-negative sera reacted with N. caninum antigen by ELISA. By western blot, all 12 sera reacted with T. gondii antigens with various banding patterns but specifically at 30 kDa (SAG1) and 22 kD...

  14. Mice infected with low-virulence strains of Toxoplasma gondii lose their innate aversion to cat urine, even after extensive parasite clearance.

    Science.gov (United States)

    Ingram, Wendy Marie; Goodrich, Leeanne M; Robey, Ellen A; Eisen, Michael B

    2013-01-01

    Toxoplasma gondii chronic infection in rodent secondary hosts has been reported to lead to a loss of innate, hard-wired fear toward cats, its primary host. However the generality of this response across T. gondii strains and the underlying mechanism for this pathogen-mediated behavioral change remain unknown. To begin exploring these questions, we evaluated the effects of infection with two previously uninvestigated isolates from the three major North American clonal lineages of T. gondii, Type III and an attenuated strain of Type I. Using an hour-long open field activity assay optimized for this purpose, we measured mouse aversion toward predator and non-predator urines. We show that loss of innate aversion of cat urine is a general trait caused by infection with any of the three major clonal lineages of parasite. Surprisingly, we found that infection with the attenuated Type I parasite results in sustained loss of aversion at times post infection when neither parasite nor ongoing brain inflammation were detectable. This suggests that T. gondii-mediated interruption of mouse innate aversion toward cat urine may occur during early acute infection in a permanent manner, not requiring persistence of parasite cysts or continuing brain inflammation.

  15. RNG1 is a Late Marker of the Apical Polar Ring in Toxoplasma gondii

    Science.gov (United States)

    Tran, Johnson Q.; de Leon, Jessica C.; Li, Catherine; Huynh, My-Hang; Beatty, Wandy; Morrissette, Naomi S.

    2010-01-01

    The asexually proliferating stages of apicomplexan parasites cause acute symptoms of diseases such as malaria, cryptosporidiosis and toxoplasmosis. These stages are characterized by the presence of two independent microtubule organizing centers (MTOCs). Centrioles are found at the poles of the intranuclear spindle. The apical polar ring (APR), a MTOC unique to apicomplexans, organizes subpellicular microtubules which impose cell shape and apical polarity on these protozoa. Here we describe the characteristics of a novel protein that localizes to the APR of Toxoplasma gondii which we have named ring-1 (RNG1). There are related RNG1 proteins in Neospora caninum and Sarcocystis neurona but no obvious homologs in Plasmodium spp., Cryptosporidium spp. or Babesia spp. RNG1 is a small, low-complexity, detergent-insoluble protein that assembles at the APR very late in the process of daughter parasite replication. We were unable to knock-out the RNG1 gene, suggesting that its gene product is essential. Tagged RNG1 lines have also allowed us to visualize the APR during growth of Toxoplasma in the microtubule-disrupting drug oryzalin. Oryzalin inhibits nuclear division and cytokinesis although Toxoplasma growth continues, and similar to earlier observations of unchecked centriole duplication in oryzalin-treated parasites, the APR continues to duplicate during aberrant parasite growth. PMID:20658557

  16. Serology and genetics of Toxoplasma gondii in endangered Hawaiian (Nene) geese (Branta sandvicensis)

    Science.gov (United States)

    Toxoplasma gondii is parasite transmitted by feral cats that has historically caused mortality in native Hawaiian birds. A recent study revealed that this parasite accounts for ca. 4% of causes of mortality in native Hawaiian geese (nene-Branta sandvicensis). To know how widespread exposure to the...

  17. Lack of mitochondrial MutS homolog 1 in Toxoplasma gondii disrupts maintenance and fidelity of mitochondrial DNA and reveals metabolic plasticity.

    Directory of Open Access Journals (Sweden)

    Tamila Garbuz

    Full Text Available The importance of maintaining the fidelity of the mitochondrial genome is underscored by the presence of various repair pathways within this organelle. Presumably, the repair of mitochondrial DNA would be of particular importance in organisms that possess only a single mitochondrion, like the human pathogens Plasmodium falciparum and Toxoplasma gondii. Understanding the machinery that maintains mitochondrial DNA in these parasites is of particular relevance, as mitochondrial function is a validated and effective target for anti-parasitic drugs. We previously determined that the Toxoplasma MutS homolog TgMSH1 localizes to the mitochondrion. MutS homologs are key components of the nuclear mismatch repair system in mammalian cells, and both yeast and plants possess MutS homologs that localize to the mitochondria where they regulate DNA stability. Here we show that the lack of TgMSH1 results in accumulation of single nucleotide variations in mitochondrial DNA and a reduction in mitochondrial DNA content. Additionally, parasites lacking TgMSH1 function can survive treatment with the cytochrome b inhibitor atovaquone. While the Tgmsh1 knockout strain has several missense mutations in cytochrome b, none affect amino acids known to be determinants of atovaquone sensitivity and atovaquone is still able to inhibit electron transport in the Tgmsh1 mutants. Furthermore, culture of Tgmsh1 mutant in the presence atovaquone leads to parasites with enhanced atovaquone resistance and complete shutdown of respiration. Thus, parasites lacking TgMSH1 overcome the disruption of mitochondrial DNA by adapting their physiology allowing them to forgo the need for oxidative phosphorylation. Consistent with this idea, the Tgmsh1 mutant is resistant to mitochondrial inhibitors with diverse targets and exhibits reduced ability to grow in the absence of glucose. This work shows TgMSH1 as critical for the maintenance and fidelity of the mitochondrial DNA in Toxoplasma

  18. Paleoparasitology: the origin of human parasites

    Directory of Open Access Journals (Sweden)

    Adauto Araujo

    2013-09-01

    Full Text Available Parasitism is composed by three subsystems: the parasite, the host, and the environment. There are no organisms that cannot be parasitized. The relationship between a parasite and its host species most of the time do not result in damage or disease to the host. However, in a parasitic disease the presence of a given parasite is always necessary, at least in a given moment of the infection. Some parasite species that infect humans were inherited from pre-hominids, and were shared with other phylogenetically close host species, but other parasite species were acquired from the environment as humans evolved. Human migration spread inherited parasites throughout the globe. To recover and trace the origin and evolution of infectious diseases, paleoparasitology was created. Paleoparasitology is the study of parasites in ancient material, which provided new information on the evolution, paleoepidemiology, ecology and phylogenetics of infectious diseases.

  19. Toxoplasma gondii infection shifts dendritic cells into an amoeboid rapid migration mode encompassing podosome dissolution, secretion of TIMP-1, and reduced proteolysis of extracellular matrix.

    Science.gov (United States)

    Ólafsson, Einar B; Varas-Godoy, Manuel; Barragan, Antonio

    2018-03-01

    Dendritic cells (DCs) infected by Toxoplasma gondii rapidly acquire a hypermigratory phenotype that promotes systemic parasite dissemination by a "Trojan horse" mechanism in mice. Recent paradigms of leukocyte migration have identified the amoeboid migration mode of DCs as particularly suited for rapid locomotion in extracellular matrix and tissues. Here, we have developed a microscopy-based high-throughput approach to assess motility and matrix degradation by Toxoplasma-challenged murine and human DCs. DCs challenged with T. gondii exhibited dependency on metalloproteinase activity for hypermotility and transmigration but, strikingly, also dramatically reduced pericellular proteolysis. Toxoplasma-challenged DCs up-regulated expression and secretion of tissue inhibitor of metalloproteinases-1 (TIMP-1) and their supernatants impaired matrix degradation by naïve DCs and by-stander DCs dose dependently. Gene silencing of TIMP-1 by short hairpin RNA restored matrix degradation activity in Toxoplasma-infected DCs. Additionally, dissolution of podosome structures in parasitised DCs coincided with abrogated matrix degradation. Toxoplasma lysates inhibited pericellular proteolysis in a MyD88-dependent fashion whereas abrogated proteolysis persevered in Toxoplasma-infected MyD88-deficient DCs. This indicated that both TLR/MyD88-dependent and TLR/MyD88-independent signalling pathways mediated podosome dissolution and the abrogated matrix degradation. We report that increased TIMP-1 secretion and cytoskeletal rearrangements encompassing podosome dissolution are features of Toxoplasma-induced hypermigration of DCs with an impact on matrix degradation. Jointly, the data highlight how an obligate intracellular parasite orchestrates key regulatory cellular processes consistent with non-proteolytic amoeboid migration of the vehicle cells that facilitate its dissemination. © 2017 John Wiley & Sons Ltd.

  20. Toxoplasma gondii seroprevalence in dairy and beef cattle

    DEFF Research Database (Denmark)

    Jokelainen, Pikka; Tagel, Maarja; Motus, Kerli

    2017-01-01

    Toxoplasma gondii is a zoonotic protozoan parasite that thrives in Estonia. In this nationwide cross-sectional study, we tested sera from 3991 cattle, collected from 228 farms in 2012–2013, for anti-T. gondii immunoglobulin G antibodies using a commercial direct agglutination test. Titer of 100 w...

  1. Economic Holobiont: Influence of Parasites, Microbiota and Chemosignals on Economic Behavior

    Directory of Open Access Journals (Sweden)

    Petr Houdek

    2018-05-01

    Full Text Available The article is a perspective on utilization of microorganisms and chemosignals in studying human economic behavior. Research in biological roots of economic development has already confirmed that parasitic pressure influenced the creation and development of cultural norms and institutions. However, other effects of microorganisms on human groups and individual decision-making and behavior are heavily understudied. The perspective discusses how parasitic infections, sexually transmitted organisms and microbiota (i.e., “human holobiont” could causally influence risk-seeking behavior, impulsivity, social dominance, empathy, political views and gender differences. As a case study, the parasite Toxoplasma gondii and its influence on economic preferences, personal characteristics and human appearance are examined. I also briefly review how chemosignals influence decision-making, particularly in the social preferences domain. I mention some predictions that arise from the paradigm of economic holobiont for the economic science. The conclusion summarizes limitations of the discussed findings and the stated speculations.

  2. Mice infected with low-virulence strains of Toxoplasma gondii lose their innate aversion to cat urine, even after extensive parasite clearance.

    Directory of Open Access Journals (Sweden)

    Wendy Marie Ingram

    Full Text Available Toxoplasma gondii chronic infection in rodent secondary hosts has been reported to lead to a loss of innate, hard-wired fear toward cats, its primary host. However the generality of this response across T. gondii strains and the underlying mechanism for this pathogen-mediated behavioral change remain unknown. To begin exploring these questions, we evaluated the effects of infection with two previously uninvestigated isolates from the three major North American clonal lineages of T. gondii, Type III and an attenuated strain of Type I. Using an hour-long open field activity assay optimized for this purpose, we measured mouse aversion toward predator and non-predator urines. We show that loss of innate aversion of cat urine is a general trait caused by infection with any of the three major clonal lineages of parasite. Surprisingly, we found that infection with the attenuated Type I parasite results in sustained loss of aversion at times post infection when neither parasite nor ongoing brain inflammation were detectable. This suggests that T. gondii-mediated interruption of mouse innate aversion toward cat urine may occur during early acute infection in a permanent manner, not requiring persistence of parasite cysts or continuing brain inflammation.

  3. Molecular detection of Toxoplasma gondii in snakes.

    Science.gov (United States)

    Nasiri, Vahid; Teymurzadeh, Shohreh; Karimi, Gholamreza; Nasiri, Mehdi

    2016-10-01

    Toxoplasma gondii, an obligate intracellular protozoan parasite, is responsible for one of the most common zoonotic parasitic diseases in almost all warm-blooded vertebrates worldwide, and it is estimated that about one-third of the world human population is chronically infected with this parasite. Little is known about the circulation of T. gondii in snakes and this study for the first time aimed to evaluate the infection rates of snakes by this parasite by PCR methods. The brain of 68 Snakes, that were collected between May 2012 and September 2015 and died after the hold in captivity, under which they were kept for taking poisons, were examined for the presence of this parasite. DNA was extracted and Nested-PCR method was carried out with two of pairs of primers to detect the 344 bp fragment of T. gondii GRA6 gene. Five positive nested-PCR products were directly sequenced in the forward and reverse directions by Sequetech Company (Mountain View, CA). T. gondii GRA6 gene were detected from 55 (80.88%) of 68 snakes brains. Sequencing of the GRA6 gene revealed 98-100% of similarity with T. gondii sequences deposited in GenBank. To our knowledge, this is the first study of molecular detection of T. gondii in snakes and our findings show a higher frequency of this organism among them. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Optimization of dipeptidic inhibitors of cathepsin L for improved Toxoplasma gondii selectivity and CNS permeability.

    Science.gov (United States)

    Zwicker, Jeffery D; Diaz, Nicolas A; Guerra, Alfredo J; Kirchhoff, Paul D; Wen, Bo; Sun, Duxin; Carruthers, Vern B; Larsen, Scott D

    2018-06-01

    The neurotropic protozoan Toxoplasma gondii is the second leading cause of death due to foodborne illness in the US, and has been designated as one of five neglected parasitic infections by the Center for Disease Control and Prevention. Currently, no treatment options exist for the chronic dormant-phase Toxoplasma infection in the central nervous system (CNS). T. gondii cathepsin L (TgCPL) has recently been implicated as a novel viable target for the treatment of chronic toxoplasmosis. In this study, we report the first body of SAR work aimed at developing potent inhibitors of TgCPL with selectivity vs the human cathepsin L. Starting from a known inhibitor of human cathepsin L, and guided by structure-based design, we were able to modulate the selectivity for Toxoplasma vs human CPL by nearly 50-fold while modifying physiochemical properties to be more favorable for metabolic stability and CNS penetrance. The overall potency of our inhibitors towards TgCPL was improved from 2 μM to as low as 110 nM and we successfully demonstrated that an optimized analog 18b is capable of crossing the BBB (0.5 brain/plasma). This work is an important first step toward development of a CNS-penetrant probe to validate TgCPL as a feasible target for the treatment of chronic toxoplasmosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Antiretroviral activity of protease inhibitors against Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Lianet Monzote

    2013-02-01

    Full Text Available The introduction of highly active antiretroviral therapy (HAART has caused a marked reduction in the occurrence and severity of parasitic infections, including the toxoplasmic encephalitis (TE. These changes have been attributed to the restoration of cell-mediated immunity. This study was developed to examine the activity of six antiretroviral protease inhibitors (API on Toxoplasma gondii tachyzoites. The six API showed anti-Toxoplasma activity, with IC50 value between 1.4 and 6.6 µg/mL. Further studies at the molecular level should be performed to clarify if the use of API could be beneficial or not for AIDS patients with TE.

  6. A new pathogen transmission mechanism in the ocean: the case of sea otter exposure to the land-parasite Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Fernanda F M Mazzillo

    Full Text Available Toxoplasma gondii is a land-derived parasite that infects humans and marine mammals. Infections are a significant cause of mortality for endangered southern sea otters (Enhydra lutris nereis, but the transmission mechanism is poorly understood. Otter exposure to T. gondii has been linked to the consumption of marine turban snails in kelp (Macrocystis pyrifera forests. It is unknown how turban snails acquire oocysts, as snails scrape food particles attached to surfaces, whereas T. gondii oocysts enter kelp beds as suspended particles via runoff. We hypothesized that waterborne T. gondii oocysts attach to kelp surfaces when encountering exopolymer substances (EPS forming the sticky matrix of biofilms on kelp, and thus become available to snails. Results of a dietary composition analysis of field-collected snails and of kelp biofilm indicate that snails graze the dense kelp-biofilm assemblage composed of pennate diatoms and bacteria inserted within the EPS gel-like matrix. To test whether oocysts attach to kelp blades via EPS, we designed a laboratory experiment simulating the kelp forest canopy in tanks spiked with T. gondii surrogate microspheres and controlled for EPS and transparent exopolymer particles (TEP - the particulate form of EPS. On average, 19% and 31% of surrogates were detected attached to kelp surfaces covered with EPS in unfiltered and filtered seawater treatments, respectively. The presence of TEP in the seawater did not increase surrogate attachment. These findings support a novel transport mechanism of T. gondii oocysts: as oocysts enter the kelp forest canopy, a portion adheres to the sticky kelp biofilms. Snails grazing this biofilm encounter oocysts as 'bycatch' and thereby deliver the parasite to sea otters that prey upon snails. This novel mechanism can have health implications beyond T. gondii and otters, as a similar route of pathogen transmission may be implicated with other waterborne pathogens to marine wildlife and

  7. The genome of Eimeria falciformis--reduction and specialization in a single host apicomplexan parasite.

    Science.gov (United States)

    Heitlinger, Emanuel; Spork, Simone; Lucius, Richard; Dieterich, Christoph

    2014-08-20

    The phylum Apicomplexa comprises important unicellular human parasites such as Toxoplasma and Plasmodium. Eimeria is the largest and most diverse genus of apicomplexan parasites and some species of the genus are the causative agent of coccidiosis, a disease economically devastating in poultry. We report a complete genome sequence of the mouse parasite Eimeria falciformis. We assembled and annotated the genome sequence to study host-parasite interactions in this understudied genus in a model organism host. The genome of E. falciformis is 44 Mb in size and contains 5,879 predicted protein coding genes. Comparative analysis of E. falciformis with Toxoplasma gondii shows an emergence and diversification of gene families associated with motility and invasion mainly at the level of the Coccidia. Many rhoptry kinases, among them important virulence factors in T. gondii, are absent from the E. falciformis genome. Surface antigens are divergent between Eimeria species. Comparisons with T. gondii showed differences between genes involved in metabolism, N-glycan and GPI-anchor synthesis. E. falciformis possesses a reduced set of transmembrane transporters and we suggest an altered mode of iron uptake in the genus Eimeria. Reduced diversity of genes required for host-parasite interaction and transmembrane transport allow hypotheses on host adaptation and specialization of a single host parasite. The E. falciformis genome sequence sheds light on the evolution of the Coccidia and helps to identify determinants of host-parasite interaction critical for drug and vaccine development.

  8. Self-mating in the definitive host potentiates clonal outbreaks of the apicomplexan parasites Sarcocystis neurona and Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Jered M Wendte

    2010-12-01

    Full Text Available Tissue-encysting coccidia, including Toxoplasma gondii and Sarcocystis neurona, are heterogamous parasites with sexual and asexual life stages in definitive and intermediate hosts, respectively. During its sexual life stage, T. gondii reproduces either by genetic out-crossing or via clonal amplification of a single strain through self-mating. Out-crossing has been experimentally verified as a potent mechanism capable of producing offspring possessing a range of adaptive and virulence potentials. In contrast, selfing and other life history traits, such as asexual expansion of tissue-cysts by oral transmission among intermediate hosts, have been proposed to explain the genetic basis for the clonal population structure of T. gondii. In this study, we investigated the contributing roles self-mating and sexual recombination play in nature to maintain clonal population structures and produce or expand parasite clones capable of causing disease epidemics for two tissue encysting parasites. We applied high-resolution genotyping against strains isolated from a T. gondii waterborne outbreak that caused symptomatic disease in 155 immune-competent people in Brazil and a S. neurona outbreak that resulted in a mass mortality event in Southern sea otters. In both cases, a single, genetically distinct clone was found infecting outbreak-exposed individuals. Furthermore, the T. gondii outbreak clone was one of several apparently recombinant progeny recovered from the local environment. Since oocysts or sporocysts were the infectious form implicated in each outbreak, the expansion of the epidemic clone can be explained by self-mating. The results also show that out-crossing preceded selfing to produce the virulent T. gondii clone. For the tissue encysting coccidia, self-mating exists as a key adaptation potentiating the epidemic expansion and transmission of newly emerged parasite clones that can profoundly shape parasite population genetic structures or cause

  9. Self-mating in the definitive host potentiates clonal outbreaks of the apicomplexan parasites Sarcocystis neurona and Toxoplasma gondii.

    Science.gov (United States)

    Wendte, Jered M; Miller, Melissa A; Lambourn, Dyanna M; Magargal, Spencer L; Jessup, David A; Grigg, Michael E

    2010-12-23

    Tissue-encysting coccidia, including Toxoplasma gondii and Sarcocystis neurona, are heterogamous parasites with sexual and asexual life stages in definitive and intermediate hosts, respectively. During its sexual life stage, T. gondii reproduces either by genetic out-crossing or via clonal amplification of a single strain through self-mating. Out-crossing has been experimentally verified as a potent mechanism capable of producing offspring possessing a range of adaptive and virulence potentials. In contrast, selfing and other life history traits, such as asexual expansion of tissue-cysts by oral transmission among intermediate hosts, have been proposed to explain the genetic basis for the clonal population structure of T. gondii. In this study, we investigated the contributing roles self-mating and sexual recombination play in nature to maintain clonal population structures and produce or expand parasite clones capable of causing disease epidemics for two tissue encysting parasites. We applied high-resolution genotyping against strains isolated from a T. gondii waterborne outbreak that caused symptomatic disease in 155 immune-competent people in Brazil and a S. neurona outbreak that resulted in a mass mortality event in Southern sea otters. In both cases, a single, genetically distinct clone was found infecting outbreak-exposed individuals. Furthermore, the T. gondii outbreak clone was one of several apparently recombinant progeny recovered from the local environment. Since oocysts or sporocysts were the infectious form implicated in each outbreak, the expansion of the epidemic clone can be explained by self-mating. The results also show that out-crossing preceded selfing to produce the virulent T. gondii clone. For the tissue encysting coccidia, self-mating exists as a key adaptation potentiating the epidemic expansion and transmission of newly emerged parasite clones that can profoundly shape parasite population genetic structures or cause devastating disease

  10. Interaction and cystogenesis of Toxoplasma gondii within skeletal muscle cells in vitro

    Directory of Open Access Journals (Sweden)

    Erick Vaz Guimarães

    2009-03-01

    Full Text Available Infection by the protozoan parasite Toxoplasma gondii is widely prevalent in humans and animals. To prevent human infection, all meat should be well cooked before consumption, since the parasite is present in skeletal muscle. In this context, the use of skeletal muscle cells (SkMCs as a cellular model opens up new approaches to investigate T. gondii-host cell interactions. Immunofluorescent detection of proteins that are stage-specific for bradyzoites indicated that complete cystogenesis of T. gondii in in vitro cultures of SkMCs occurs after 96 h of infection. Ultrastructural analysis showed that, after 48 h of interaction, there were alterations on the parasitophorous vacuole membrane, including greater thickness and increased electron density at the inner face of the membrane. The present study demonstrates the potential use of primary cultures of SkMCs to evaluate different molecular aspects of T. gondii invasion and cystogenesis and presents a promising in vitro model for the screening of drug activities toward tissue cysts and bradyzoites.

  11. Acidification of the parasitophorous vacuole containing Toxoplasma gondii in the presence of hydroxyurea

    Directory of Open Access Journals (Sweden)

    Cristiane S. Carvalho

    2006-09-01

    Full Text Available Toxoplasma gondii multiplies within parasitophorous vacuole that is not recognized by the primary no oxidative defense of host cells, mainly represented by the fusion with acidic organelles. Recent studies have already shown that hydroxyurea arrested the intracellular parasites leading to its destruction. In the present work we investigated the cellular mechanism involved in the destruction of intracellular Toxoplasma gondii. Fluorescent vital stains were used in order to observe possible acidification of parasitophorous vacuole-containing Toxoplasma gondii in presence of hydroxyurea. Vero cells infected with tachyzoites were treated with hydroxyurea for 12, 24 or 48 hours. Fluorescence, indicative of acidification, was observed in the parasitophorous vacuole when the cultures were incubated in presence of acridine orange. LysoTracker red was used in order to determine whether lysosomes were involved in the acidification process. An intense fluorescence was observed after 12 and 24 hours of incubation with hydroxyurea, achieving it is highly intensity after 48 hours of treatment. Ultrastructural cytochemistry for localization of the acid phosphatase lysosomal enzyme was realized. Treated infected cultures showed reaction product in vesicles fusing with vacuole or associated with intravacuolar parasites. These results suggest that fusion with lysosomes and acidification of parasitophorous vacuole leads to parasites destruction in the presence pf hydroxyurea.Toxoplasma gondii se multiplica dentro do vacúolo parasitóforo que não é reconhecido pela defesa primária não oxidativa de células hospedeiras: a fusão com organelas ácidas. Estudos anteriores mostraram que hidroxiuréia interrompeu a multiplicação dos parasitos intracelulares causando sua eliminação. No presente trabalho nós investigamos o mecanismo celular envolvido na destruição do Toxoplasma gondii intracelular. Marcadores vitais fluorescentes foram usados para observar a

  12. Lankesterella alencari n. sp., a toxoplasma-like organism in the central nervous system of Amphibia (Protozoa, Sporozoa Lankesterella alencari n. sp., um toxoplasma-like no sistema nervoso central de Amphibia (Protozoa, Sporozoa

    Directory of Open Access Journals (Sweden)

    Sylvio Celso Gonçalves da Costa

    1971-01-01

    Full Text Available Lankesterella alencari n. sp. a Sporozoa that occur in the blood and CNS of the South American frog Leptodactylus acellatus is described. Since the tissue forms of this parasite have been previously reported as belonging to the genus Toxoplasma, we attempted in fection of 2 species of amphibia (Bufo marinus an dLeptodactylus ocellatus with a Toxoplasma strain of human origen; inoculation was by intraperitoneal injection of parasite-containing ascitic fluid from infected mice. Attempt of experimental inoculation of the parasite found in the CNS of L. ocellatus in a highly susceptible host (mice was unsuccessful. These results suggest that Toxoplasma does not occur naturally in the amphibia; be related to Toxoplasma is excluded. The following genera of haematozoa found in brazilian amphibia have been considered briedfly: Haemobartonella, Cytamoeba, Dactylosoma, Hepatozoon and Trypanosoma.Os autores descrevem uma espécie do gênero Lankesterella considerada nova para a ciência, que ocorre com certa freqüência parasitando a rã Leptodactylus ocellatus no Brasil. Como os cistos dêste parasito, encontrados no SNC, foram anteriormente relacionados ao gênero Toxoplasma por outro autor, realizamos uma série de inoculações experimentais para eliminar a hipótese. Tanto as inoculações com amostra de Toxoplasma gondii de origem humana em anfíbios, como as de mascerados de SNC de rã contendo cistos em camundongos, foram negativas. As inoculações de T. gondii em anfíbios foram realizadas em temperatura ambiente que no Rio de Janeiro, na época era 30º-39ºC. Não encontramos, por outro lado, cistos no SNC de anfíbios do gênero Bufo, fato assinalado por outros autores. Realizamos algumas técnicas citoquímicas para melhor caracterização do parasito. Tendo em vista o grande número de hemoparasitos encontrados nas rãs brasileiras e as infecções múltiplas ocorrerem com freqüência, apresentamos também a incidência dêstes parasitos

  13. Advantages of bioconjugated silica-coated nanoparticles as an innovative diagnosis for human toxoplasmosis.

    Science.gov (United States)

    Aly, Ibrahim; Taher, Eman E; El Nain, Gehan; El Sayed, Hoda; Mohammed, Faten A; Hamad, Rabab S; Bayoumy, Elsayed M

    2018-01-01

    Nanotechnology is a promising arena for generating new applications in Medicine. To successfully functionalised nanoparticles for a given biomedical application, a wide range of chemical, physical and biological factors have to be taken into account. Silica-coated nanoparticles, (SiO2NP) exhibit substantial diagnostic activity owing to their large surface to volume ratios and crystallographic surface structure. This work aimed to evaluate the advantage of bioconjugation of SiO2NP with PAb against Toxoplasma lyzate antigen (TLA) as an innovative diagnostic method for human toxoplasmosis. This cross-sectional study included 120 individuals, divided into Group I: 70 patients suspected for Toxoplasma gondii based on the presence of clinical manifestation. Group II: 30 patients harboring other parasites than T. gondii Group III: 20 apparently healthy individuals free from toxoplasmosis and other parasitic infections served as negative control. Detection of circulating Toxoplasma antigen was performed by Sandwich ELISA and Nano-sandwich ELISA on sera and pooled urine of human samples. Using Sandwich ELISA, 10 out of 70 suspected Toxoplasma-infected human serum samples showed false negative and 8 out of 30 of other parasites groups were false positive giving 85.7% sensitivity and 84.0% specificity, while the sensitivity and specificity were 78.6% and 70% respectively in urine samples. Using Nano-Sandwich ELISA, 7 out of 70 suspected Toxoplasma-infected human samples showed false negative results and the sensitivity of the assay was 90.0%, while 4 out of 30 of other parasites groups were false positive giving 92.0% specificity, while the sensitivity and specificity were 82.6% and 80% respectively in urine samples. In conclusion, our data demonstrated that loading SiO2 nanoparticles with pAb increased the sensitivity and specificity of Nano-sandwich ELISA for detection of T.gondii antigens in serum and urine samples, thus active (early) and light infections could be easily

  14. Toxoplasma gondii: 1908-2008, homage to Nicolle, Manceaux and Splendore

    Directory of Open Access Journals (Sweden)

    David J P Ferguson

    2009-03-01

    Full Text Available The discovery of Toxoplasma gondii independently by Nicolle and Manceaux (1908 and Splendore (1908 was to open a "Pandora's Box" that has led research on this parasite into a number of scientific disciplines. In the 100 years since its discovery, the mystery surrounding T. gondii and its inter-relationship with humans has continued to provide a stimulating source of material in many areas of research, resulting in the publication of almost 20,000 papers and a number of books. This flood of diverse information shows no sign of abating, with an average of 10 papers per week appearing in PubMed. Herein, it is impossible to do more than provide a very superficial comment on what has become a massive body of scientific information. T. gondii has many unique features and seems to be the "exception to almost every rule" thus acting as a focus for research in disciplines from epidemiology to immunology to human behaviour to cell biology to human disease. In this review a number of the historical advances will be mentioned and combined with a description of the basic biology of the parasite.

  15. Bothrops pirajai snake venom L-amino acid oxidase: in vitro effects on infection of Toxoplasma gondii in human foreskin fibroblasts

    Directory of Open Access Journals (Sweden)

    Luiz F. M. Izidoro

    2011-06-01

    Full Text Available The effect of an L-amino acid oxidase isolated from Bothrops pirajai snake venom (BpirLAAO-I was investigated on infection of Toxoplasma gondii in human foreskin fibroblasts (HFF. The cytotoxic activity of BpirLAAO-I on HFF cells showed a dose-dependent toxicity with median cytotoxic dose (TD50 of 11.8 µg/mL. BpirLAAO-I induced considerable dose-dependent decrease in the T. gondii infection index under two different conditions, treatment of tachyzoites before infection or treatment of HFF cells after infection. A maximal inhibition of infection (56% was found for treatment before infection, with a median inhibitory dose (ID50 at 1.83 µg/mL and selectivity index (SI at 6.45. For treatment after infection, it was observed a maximal inhibition of infection at 65%, ID50 of 1.20 µg/mL and SI of 9.83. The treatment before infection was also effective to reduce intracellular parasitism up to 62%, although presenting higher values of ID50 (3.14 µg/mL and lower values of SI (3.76. However, treatment after infection was not effective, suggesting that the enzyme seems to have no effect on the parasite intracellular replication for this condition. In conclusion, BpirLAAO-I was more effective to inhibit the infection of neighboring cells and consequently parasite dissemination than primary infection and parasite replication. Thus, the effect of BpirLAAO-I described herein could be taken into account for the development of new synthetic anti-parasite therapeutic agents.

  16. Behavioral changes in Rattus norvegicus coinfected by Toxocara canis and Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Maisa Leite de Queiroz

    2013-02-01

    Full Text Available Using an elevated plus maze apparatus and an activity cage, behavioral changes in Rattus norvegicus concomitantly infected by Toxocara canis and Toxoplasma gondii were studied, during a period of 120 days. Rats infected by Toxocara canis or Toxoplasma gondii showed significant behavioral changes; however, in the group coinfected by both parasites a behavioral pattern similar to that found in the group not infected was observed thirty days after infection, suggesting the occurrence of modulation in the behavioral response.

  17. Yeast three-hybrid screen identifies TgBRADIN/GRA24 as a negative regulator of Toxoplasma gondii bradyzoite differentiation.

    Directory of Open Access Journals (Sweden)

    Anahi V Odell

    Full Text Available Differentiation of the protozoan parasite Toxoplasma gondii into its latent bradyzoite stage is a key event in the parasite's life cycle. Compound 2 is an imidazopyridine that was previously shown to inhibit the parasite lytic cycle, in part through inhibition of parasite cGMP-dependent protein kinase. We show here that Compound 2 can also enhance parasite differentiation, and we use yeast three-hybrid analysis to identify TgBRADIN/GRA24 as a parasite protein that interacts directly or indirectly with the compound. Disruption of the TgBRADIN/GRA24 gene leads to enhanced differentiation of the parasite, and the TgBRADIN/GRA24 knockout parasites show decreased susceptibility to the differentiation-enhancing effects of Compound 2. This study represents the first use of yeast three-hybrid analysis to study small-molecule mechanism of action in any pathogenic microorganism, and it identifies a previously unrecognized inhibitor of differentiation in T. gondii. A better understanding of the proteins and mechanisms regulating T. gondii differentiation will enable new approaches to preventing the establishment of chronic infection in this important human pathogen.

  18. Targeting channels and transporters in protozoan parasite infections

    Science.gov (United States)

    Meier, Anna; Erler, Holger; Beitz, Eric

    2018-03-01

    Infectious diseases caused by pathogenic protozoa are among the most significant causes of death in humans. Therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains. Many of the current anti-parasite drugs target soluble enzymes, generate unspecific oxidative stress, or act by an unresolved mechanism within the parasite. In recent years, collections of drug-like compounds derived from large-scale phenotypic screenings, such as the malaria or pathogen box, have been made available to researchers free of charge boosting the identification of novel promising targets. Remarkably, several of the compound hits have been found to inhibit membrane proteins at the periphery of the parasites, i.e. channels and transporters for ions and metabolites. In this review, we will focus on the progress made on targeting channels and transporters at different levels and the potential for use against infections with apicomplexan parasites mainly Plasmodium spp. (malaria) and Toxoplasma gondii (toxoplasmosis), with kinetoplastids Trypanosoma brucei (sleeping sickness), Trypanosoma cruzi (Chagas disease) and Leishmania ssp. (leishmaniasis), and the amoeba Entamoeba histolytica (amoebiasis).

  19. Frequency of Toxoplasma gondii antibodies in bovines in the state of Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Neurisvan Ramos Guerra

    Full Text Available Toxoplasmosis is a parasitic disease caused by Toxoplasma gondii that affects homeothermic animals, including humans. Felines are considered the definitive host of this parasite, while other animals act as intermediate hosts. The purpose of this study was to assess the frequency of anti-T. gondii IgG antibodies in bovines in the state of Pernambuco, Brazil. Serum samples (n = 427 from animals in 13 municipalities of the coastal forest/plantation region of the state were analyzed using the immunofluorescent antibody test (IFAT. The overall results revealed a prevalence rate of 16.63% (27/427. High percentages of positivity were found among animals aged 25 to 36 months (28.57%; 30/42 and in males (22.22%; 2/9. The present findings suggest that bovine toxoplasmosis is endemic in the area under study.

  20. A novel multifunctional oligonucleotide microarray for Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Chen Feng

    2010-10-01

    Full Text Available Abstract Background Microarrays are invaluable tools for genome interrogation, SNP detection, and expression analysis, among other applications. Such broad capabilities would be of value to many pathogen research communities, although the development and use of genome-scale microarrays is often a costly undertaking. Therefore, effective methods for reducing unnecessary probes while maintaining or expanding functionality would be relevant to many investigators. Results Taking advantage of available genome sequences and annotation for Toxoplasma gondii (a pathogenic parasite responsible for illness in immunocompromised individuals and Plasmodium falciparum (a related parasite responsible for severe human malaria, we designed a single oligonucleotide microarray capable of supporting a wide range of applications at relatively low cost, including genome-wide expression profiling for Toxoplasma, and single-nucleotide polymorphism (SNP-based genotyping of both T. gondii and P. falciparum. Expression profiling of the three clonotypic lineages dominating T. gondii populations in North America and Europe provides a first comprehensive view of the parasite transcriptome, revealing that ~49% of all annotated genes are expressed in parasite tachyzoites (the acutely lytic stage responsible for pathogenesis and 26% of genes are differentially expressed among strains. A novel design utilizing few probes provided high confidence genotyping, used here to resolve recombination points in the clonal progeny of sexual crosses. Recent sequencing of additional T. gondii isolates identifies >620 K new SNPs, including ~11 K that intersect with expression profiling probes, yielding additional markers for genotyping studies, and further validating the utility of a combined expression profiling/genotyping array design. Additional applications facilitating SNP and transcript discovery, alternative statistical methods for quantifying gene expression, etc. are also pursued at

  1. Low titer of antibody against Toxoplasma gondii may be related to resistant to cancer

    OpenAIRE

    Maryam Sharafi Seyedeh; Salehi Nahid; Mortazavi Nahid; Danesh Pour Shima; Yousefi Morteza; Yousofi Darani Hossein

    2015-01-01

    Context: Toxoplasma gondii is a protozoan parasite with a world-wide distribution. However, the majority of infected cases remain symptomless. There are raising scientific evidences indicating that parasitic infections induce antitumor activity against certain types of cancers. The inhibitory effect of T. gondii on cancer growth has also been shown in cell culture and mouse model. Aims: Considering the anti-tumor effect of this parasite, in this study the relationship between low titer of ...

  2. Ciprofloxacin Derivatives Affect Parasite Cell Division and Increase the Survival of Mice Infected with Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Erica S Martins-Duarte

    Full Text Available Toxoplasmosis, caused by the protozoan Toxoplasma gondii, is a worldwide disease whose clinical manifestations include encephalitis and congenital malformations in newborns. Previously, we described the synthesis of new ethyl-ester derivatives of the antibiotic ciprofloxacin with ~40-fold increased activity against T. gondii in vitro, compared with the original compound. Cipro derivatives are expected to target the parasite's DNA gyrase complex in the apicoplast. The activity of these compounds in vivo, as well as their mode of action, remained thus far uncharacterized. Here, we examined the activity of the Cipro derivatives in vivo, in a model of acute murine toxoplasmosis. In addition, we investigated the cellular effects T. gondii tachyzoites in vitro, by immunofluorescence and transmission electron microscopy (TEM. When compared with Cipro treatment, 7-day treatments with Cipro derivatives increased mouse survival significantly, with 13-25% of mice surviving for up to 60 days post-infection (vs. complete lethality 10 days post-infection, with Cipro treatment. Light microscopy examination early (6 and 24h post-infection revealed that 6-h treatments with Cipro derivatives inhibited the initial event of parasite cell division inside host cells, in an irreversible manner. By TEM and immunofluorescence, the main cellular effects observed after treatment with Cipro derivatives and Cipro were cell scission inhibition--with the appearance of 'tethered' parasites--malformation of the inner membrane complex, and apicoplast enlargement and missegregation. Interestingly, tethered daughter cells resulting from Cipro derivatives, and also Cipro, treatment did not show MORN1 cap or centrocone localization. The biological activity of Cipro derivatives against C. parvum, an apicomplexan species that lacks the apicoplast, is, approximately, 50 fold lower than that in T. gondii tachyzoites, supporting that these compounds targets the apicoplast. Our results

  3. Plant hormone cytokinins control cell cycle progression and plastid replication in apicomplexan parasites.

    Science.gov (United States)

    Andrabi, Syed Bilal Ahmad; Tahara, Michiru; Matsubara, Ryuma; Toyama, Tomoko; Aonuma, Hiroka; Sakakibara, Hitoshi; Suematsu, Makoto; Tanabe, Kazuyuki; Nozaki, Tomoyoshi; Nagamune, Kisaburo

    2018-02-01

    Cytokinins are plant hormones that are involved in regulation of cell proliferation, cell cycle progression, and cell and plastid development. Here, we show that the apicomplexan parasites Toxoplasma gondii and Plasmodium berghei, an opportunistic human pathogen and a rodent malaria agent, respectively, produce cytokinins via a biosynthetic pathway similar to that in plants. Cytokinins regulate the growth and cell cycle progression of T. gondii by mediating expression of the cyclin gene TgCYC4. A natural form of cytokinin, trans-zeatin (t-zeatin), upregulated expression of this cyclin, while a synthetic cytokinin, thidiazuron, downregulated its expression. Immunofluorescence microscopy and quantitative PCR analysis showed that t-zeatin increased the genome-copy number of apicoplast, which are non-photosynthetic plastid, in the parasite, while thidiazuron led to their disappearance. Thidiazuron inhibited growth of T. gondii and Plasmodium falciparum, a human malaria parasite, suggesting that thidiazuron has therapeutic potential as an inhibitor of apicomplexan parasites. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Genotyping of Toxoplasma Gondii Isolates from Soil Samples in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    M Tavalla

    2013-06-01

    Full Text Available Background: The protozoan parasite Toxoplasma gondii can infect any warm blooded nucleated cells. One of the ways for human infection is ingestion of oocysts directly from soil or via infected fruits or vegetables. To survey the potential role of T. gondii oocyst in soil samples, the present study was conducted in Tehran City, Iran.Methods: A total of 150 soil samples were collected around rubbish dumps, children's play ground, parks and public places. Oocysts recovery was performed by sodium nitrate flotation method on soil samples. For molecular detection, PCR reaction targeting B1 gene was performed and then, the posi­tive results were confirmed using repetitive 529 bp DNA fragment in other PCR reaction. Finally, the positive samples were genotyped at the SAG2 locus.Results: Toxoplasma DNA was found in 13 soil samples. After genotyping and RFLP analysis in SAG2 locus, nine positive samples were revealed type III, one positive sample was type I whereas three samples revealed mixed infection (type, I & III.Conclusion: The predominant genotype in Tehran soil samples is type III.

  5. Screening of chemical compound libraries identified new anti-Toxoplasma gondii agents.

    Science.gov (United States)

    Adeyemi, Oluyomi Stephen; Sugi, Tatsuki; Han, Yongmei; Kato, Kentaro

    2018-02-01

    Toxoplasma gondii is the etiological agent of toxoplasmosis, a common parasitic disease that affects nearly one-third of the human population. The primary infection can be asymptomatic in healthy individuals but may prove fatal in immunocompromised individuals. Available treatment options for toxoplasmosis patients are limited, underscoring the urgent need to identify and develop new therapies. Non-biased screening of libraries of chemical compounds including the repurposing of well-characterized compounds is emerging as viable approach to achieving this goal. In the present investigation, we screened libraries of natural product and FDA-approved compounds to identify those that inhibited T. gondii growth. We identified 32 new compounds that potently inhibit T. gondii growth. Our findings are new and promising, and further strengthen the prospects of drug repurposing as well as the screening of a wide range of chemical compounds as a viable source of alternative anti-parasitic therapeutic agents.

  6. Advances in the application of genetic manipulation methods to apicomplexan parasites

    Science.gov (United States)

    Apicomplexan parasites such as Babesia, Theileria, Cryptosporidium, and Toxoplasma have a high negative impact on animal health globally, and improved, cost-effective measures to control them are urgently required. These parasites have complex multi-stage life cycles including obligate intracellular...

  7. Parasites and fungi as risk factors for human and animal health.

    Science.gov (United States)

    Góralska, Katarzyna; Błaszkowska, Joanna

    2015-01-01

    Recent literature data suggests that parasitic and fungal diseases, which pose a threat to both human and animal health, remain a clinical, diagnostic and therapeutic problem. Attention is increasingly paid to the role played by natural microbiota in maintaining homeostasis in humans. A particular emphasis is placed on the possibility of manipulating the human microbiota (permanent, transient, pathogenic) and macrobiota (e.g., Trichuris suis) to support the treatment of selected diseases such as Crohn's disease, obesity, diabetes and cancer. Emphasis is placed on important medical species whose infections not only impair health but can also be life threatening, such as Plasmodium falciparum, Echinococcus multilocularis and Baylisascaris procyonis, which expand into areas which have so far been uninhabited. This article also presents the epidemiology, diagnosis and treatment of opportunistic parasitoses imported from the tropics, which spread across large groups of people through human-to-human transmission (Enterobius vermicularis, Sarcoptes scabiei). It also discusses the problem of environmentally-conditioned parasitoses, particularly their etiological factors associated with food contaminated with invasive forms (Trichinella sp., Toxoplasma gondii). The analysis also concerns the presence of developmental forms of geohelminths (Toxocara sp.) and ectoparasites (ticks), which are vectors of serious human diseases (Lyme borreliosis, anaplasmosis, babesiosis), in the environment. Mycological topics contains rare cases of mycoses environmentally conditioned (CNS aspergillosis) and transmissions of these pathogens in a population of hospitalized individuals, as well as seeking new methods used to treat mycoses.

  8. Sequence variation in TgROP7 gene among Toxoplasma gondii ...

    African Journals Online (AJOL)

    Yomi

    2012-03-27

    Mar 27, 2012 ... Toxoplasma gondii can infect a wide range of hosts including mammals and birds, causing toxoplasmosis which is one of the most common parasitic zoonoses worldwide. The present study examined sequence variation in rhoptry 7 (ROP7) gene among different T. gondii isolates from different hosts and ...

  9. Enrofloxacin and Toltrazuril Are Able to Reduce Toxoplasma gondii Growth in Human BeWo Trophoblastic Cells and Villous Explants from Human Third Trimester Pregnancy

    Directory of Open Access Journals (Sweden)

    Rafaela J. da Silva

    2017-07-01

    Full Text Available Classical treatment for congenital toxoplasmosis is based on combination of sulfadiazine and pyrimethamine plus folinic acid. Due to teratogenic effects and bone marrow suppression caused by pyrimethamine, the establishment of new therapeutic strategies is indispensable to minimize the side effects and improve the control of infection. Previous studies demonstrated that enrofloxacin and toltrazuril reduced the incidence of Neospora caninum and Toxoplasma gondii infection. The aim of the present study was to evaluate the efficacy of enrofloxacin and toltrazuril in the control of T. gondii infection in human trophoblast cells (BeWo line and in human villous explants from the third trimester. BeWo cells and villous were treated with several concentrations of enrofloxacin, toltrazuril, sulfadiazine, pyrimethamine, or combination of sulfadiazine+pyrimethamine, and the cellular or tissue viability was verified. Next, BeWo cells were infected by T. gondii (2F1 clone or the ME49 strain, whereas villous samples were only infected by the 2F1 clone. Then, infected cells and villous were treated with all antibiotics and the T. gondii intracellular proliferation as well as the cytokine production were analyzed. Finally, we evaluated the direct effect of enrofloxacin and toltrazuril in tachyzoites to verify possible changes in parasite structure. Enrofloxacin and toltrazuril did not decrease the viability of cells and villous in lower concentrations. Both drugs were able to significantly reduce the parasite intracellular proliferation in BeWo cells and villous explants when compared to untreated conditions. Regardless of the T. gondii strain, BeWo cells infected and treated with enrofloxacin or toltrazuril induced high levels of IL-6 and MIF. In villous explants, enrofloxacin induced high MIF production. Finally, the drugs increased the number of unviable parasites and triggered damage to tachyzoite structure. Taken together, it can be concluded that

  10. Enrofloxacin and Toltrazuril Are Able to Reduce Toxoplasma gondii Growth in Human BeWo Trophoblastic Cells and Villous Explants from Human Third Trimester Pregnancy.

    Science.gov (United States)

    da Silva, Rafaela J; Gomes, Angelica O; Franco, Priscila S; Pereira, Ariane S; Milian, Iliana C B; Ribeiro, Mayara; Fiorenzani, Paolo; Dos Santos, Maria C; Mineo, José R; da Silva, Neide M; Ferro, Eloisa A V; de Freitas Barbosa, Bellisa

    2017-01-01

    Classical treatment for congenital toxoplasmosis is based on combination of sulfadiazine and pyrimethamine plus folinic acid. Due to teratogenic effects and bone marrow suppression caused by pyrimethamine, the establishment of new therapeutic strategies is indispensable to minimize the side effects and improve the control of infection. Previous studies demonstrated that enrofloxacin and toltrazuril reduced the incidence of Neospora caninum and Toxoplasma gondii infection. The aim of the present study was to evaluate the efficacy of enrofloxacin and toltrazuril in the control of T. gondii infection in human trophoblast cells (BeWo line) and in human villous explants from the third trimester. BeWo cells and villous were treated with several concentrations of enrofloxacin, toltrazuril, sulfadiazine, pyrimethamine, or combination of sulfadiazine+pyrimethamine, and the cellular or tissue viability was verified. Next, BeWo cells were infected by T. gondii (2F1 clone or the ME49 strain), whereas villous samples were only infected by the 2F1 clone. Then, infected cells and villous were treated with all antibiotics and the T. gondii intracellular proliferation as well as the cytokine production were analyzed. Finally, we evaluated the direct effect of enrofloxacin and toltrazuril in tachyzoites to verify possible changes in parasite structure. Enrofloxacin and toltrazuril did not decrease the viability of cells and villous in lower concentrations. Both drugs were able to significantly reduce the parasite intracellular proliferation in BeWo cells and villous explants when compared to untreated conditions. Regardless of the T. gondii strain, BeWo cells infected and treated with enrofloxacin or toltrazuril induced high levels of IL-6 and MIF. In villous explants, enrofloxacin induced high MIF production. Finally, the drugs increased the number of unviable parasites and triggered damage to tachyzoite structure. Taken together, it can be concluded that enrofloxacin and

  11. Comprehensive Evaluation of Toxoplasma gondii VEG and Neospora caninum LIV Genomes with Tachyzoite Stage Transcriptome and Proteome Defines Novel Transcript Features

    KAUST Repository

    Ramaprasad, Abhinay

    2015-04-13

    Toxoplasma gondii is an important protozoan parasite that infects all warm-blooded animals and causes opportunistic infections in immuno-compromised humans. Its closest relative, Neospora caninum, is an important veterinary pathogen that causes spontaneous abortion in livestock. Comparative genomics of these two closely related coccidians has been of particular interest to identify genes that contribute to varied host cell specificity and disease. Here, we describe a manual evaluation of these genomes based on strand-specific RNA sequencing and shotgun proteomics from the invasive tachyzoite stages of these two parasites. We have corrected predicted structures of over one third of the previously annotated gene models and have annotated untranslated regions (UTRs) in over half of the predicted protein-coding genes. We observe distinctly long UTRs in both the organisms, almost four times longer than other model eukaryotes. We have also identified a putative set of cis-natural antisense transcripts (cis-NATs) and long intergenic non-coding RNAs (lincRNAs). We have significantly improved the annotation quality in these genomes that would serve as a manually curated dataset for Toxoplasma and Neospora research communities.

  12. The effect of Toxoplasma gondii on animal behavior: playing cat and mouse.

    Science.gov (United States)

    Webster, Joanne P

    2007-05-01

    A convincing body of evidence now exists to indicate that the ubiquitous protozoan Toxoplasma gondii can cause permanent behavioral changes in its host, even as a consequence of adult-acquired latent infection. Such behavioral alterations appear to be the product of strong selective pressures for the parasite to enhance transmission from its intermediate host reservoir, primarily rodent, to its feline definitive host, wherein sexual reproduction can occur and the life cycle completed. This article reviews evidence of behavioral alterations in animal hosts and considers what these may elucidate about the potential mechanisms involved and what implications such alterations could have on animal and human health.

  13. The Ultrastructural Effects of Sulfachloropyrazine on Toxoplasma Gondii Tachyzoites

    Directory of Open Access Journals (Sweden)

    YB Zeng

    2013-03-01

    Full Text Available Background: Toxoplasmosis is one of the most common parasitic infections of humans and other mammals. This study was aimed to understand the mechanism of action of veterinary medicine-sulfachlo­ropyrazine (SPZ, 99.97% against Toxoplasma gondii.Methods: T. gondii tachyzoites were soaked in PBS (as a control or SPZ (250 mg/mL for 2 h at 37 °C. After being processed, any ultrastructural changes of the tachyzoites that had occurred were observed by Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM.Results: The tachyzoites from control groups with a uniform size had a smooth surface and intact cell or nuclear membranes. In addition, an oval-shaped nucleus, conoids and micronemes were also observed. By contrast, many parasites from the SPZ-treated groups were detrimentally affected by the treatment. Some appeared to be of the vacuolization in their cytoplasm, with the substantial reduc­tion in the number of dense granules and the blur of some organelles.Conclusion: The morphology and ultrastructure of tachyzoites can be affected significantly by SPZ, which might kill the parasite by inhibiting its energy metabolism, inducing apoptosis and damaging its structure. The study provides an experimental basis for further study on the mechanism of SPZ against T. gondii.

  14. AN EVALUATION STUDY OF ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) USING RECOMBINANT PROTEIN GRA1 FOR DETECTION OF IgG ANTIBODIES AGAINTS TOXOPLASMA GONDII INFECTIONS

    OpenAIRE

    Muflikhah, Nina Difla; Artama, Wayan Tunas

    2017-01-01

    Toxoplasmosis is an infectious disease caused by Toxoplasma gondii, an intracellular protozoan parasite that live inside the cells of the reticulo endothelial and parenchymal cells of human and animals (mammals and birds). Some cases of toxoplasmosis usually have no symptoms, but in any cases caused severe symptoms, such as hydrocephalus, microcephalus, intracranial calcification, retinal damage, brain abscess, mental retardation, lymphadenopathy, and others. Its severe symptoms usually showe...

  15. Different presence of Chlamydia pneumoniae, herpes simplex virus type 1, human herpes virus 6, and Toxoplasma gondii in schizophrenia: meta-analysis and analytical study

    Directory of Open Access Journals (Sweden)

    Gutiérrez-Fernández J

    2015-03-01

    Full Text Available José Gutiérrez-Fernández,1 Juan de Dios Luna del Castillo,2 Sara Mañanes-González,1 José Antonio Carrillo-Ávila,1 Blanca Gutiérrez,3 Jorge A Cervilla,3 Antonio Sorlózano-Puerto1 1Department of Microbiology, 2Department of Statistics and Operation Research, 3Department of Psychiatry, Institute of Neurosciences and CIBERSAM, School of Medicine and Biohealth Research Institute (Instituto de Investigación Biosanitaria IBS-Granada, University of Granada, Granada, Spain Abstract: In the present study we have performed both a meta-analysis and an analytical study exploring the presence of Chlamydia pneumoniae, herpes simplex virus type 1, human herpes virus 6, and Toxoplasma gondii antibodies in a sample of 143 schizophrenic patients and 143 control subjects. The meta-analysis was performed on papers published up to April 2014. The presence of serum immunoglobulin G and immunoglobulin A was performed by enzyme-linked immunosorbent assay test. The detection of microbial DNA in total peripheral blood was performed by nested polymerase chain reaction. The meta-analysis showed that: 1 C. pneumoniae DNA in blood and brain are more common in schizophrenic patients; 2 there is association with parasitism by T. gondii, despite the existence of publication bias; and 3 herpes viruses were not more common in schizophrenic patients. In our sample only anti-Toxoplasma immunoglobulin G was more prevalent and may be a risk factor related to schizophrenia, with potential value for prevention. Keywords: meta-analysis, analytical study, Chlamydia pneumoniae, herpes simplex virus type 1, human herpes virus 6, Toxoplasma gondii, schizophrenia

  16. SAG2 locus genotyping of Toxoplasma gondii in meat products of ...

    African Journals Online (AJOL)

    Toxoplasmosis is an infection caused by Toxoplasma gondii, an intracellular obligate parasite. Its transmission is usually attributed to ingestion of undercooked or raw meat. The aim of this study was the detection and genotyping of T. gondii in meat products using the molecular method in East Azerbaijan. DNA was ...

  17. Understanding mechanisms and the role of differentiation in pathogenesis of Toxoplasma gondii: a review

    Directory of Open Access Journals (Sweden)

    William J Sullivan Jr

    2009-03-01

    Full Text Available Parasite differentiation from proliferating tachyzoites into latent bradyzoites is central to pathogenesis and transmission of the intracellular protozoan pathogen Toxoplasma gondii. The presence of bradyzoite-containing cysts in human hosts and their subsequent rupture can cause life-threatening recrudescence of acute infection in the immunocompromised and cyst formation in other animals contributes to zoonotic transmission and widespread dissemination of the parasite. In this review, we discuss the evidence showing how the clinically relevant process of bradyzoite differentiation is regulated at both transcriptional and post-transcriptional levels. Specific regulatory factors implicated in modulating bradyzoite differentiation include promoter-based cis-elements, epigenetic modifications and protein translation control through eukaryotic initiation factor -2 (eIF2. In addition to a summary of the current state of knowledge in these areas we discuss the pharmacological ramifications and pose some questions for future research.

  18. The Inner Membrane Complex Sub-compartment Proteins Critical for Replication of the Apicomplexan Parasite Toxoplasma gondii Adopt a Pleckstrin Homology Fold*

    Science.gov (United States)

    Tonkin, Michelle L.; Beck, Josh R.; Bradley, Peter J.; Boulanger, Martin J.

    2014-01-01

    Toxoplasma gondii, an apicomplexan parasite prevalent in developed nations, infects up to one-third of the human population. The success of this parasite depends on several unique structures including an inner membrane complex (IMC) that lines the interior of the plasma membrane and contains proteins important for gliding motility and replication. Of these proteins, the IMC sub-compartment proteins (ISPs) have recently been shown to play a role in asexual T. gondii daughter cell formation, yet the mechanism is unknown. Complicating mechanistic characterization of the ISPs is a lack of sequence identity with proteins of known structure or function. In support of elucidating the function of ISPs, we first determined the crystal structures of representative members TgISP1 and TgISP3 to a resolution of 2.10 and 2.32 Å, respectively. Structural analysis revealed that both ISPs adopt a pleckstrin homology fold often associated with phospholipid binding or protein-protein interactions. Substitution of basic for hydrophobic residues in the region that overlays with phospholipid binding in related pleckstrin homology domains, however, suggests that ISPs do not retain phospholipid binding activity. Consistent with this observation, biochemical assays revealed no phospholipid binding activity. Interestingly, mapping of conserved surface residues combined with crystal packing analysis indicates that TgISPs have functionally repurposed the phospholipid-binding site likely to coordinate protein partners. Recruitment of larger protein complexes may also be aided through avidity-enhanced interactions resulting from multimerization of the ISPs. Overall, we propose a model where TgISPs recruit protein partners to the IMC to ensure correct progression of daughter cell formation. PMID:24675080

  19. Inactivation of Toxoplasma gondii on blueberries using low dose irradiation without affecting quality

    Science.gov (United States)

    Toxoplasma gondii is a common protozoan parasite, whose environmentally-resistant stage, the oocyst, can contaminate irrigation water and fresh edible produce. Current washing steps in produce processing may not be effective for eliminating T. gondii from at-risk varieties of produce. The objective ...

  20. Structure-Based Analysis of Toxoplasma gondii Profilin: A Parasite-Specific Motif Is Required for Recognition by Toll-Like Receptor 11

    Energy Technology Data Exchange (ETDEWEB)

    K Kucera; A Koblansky; L Saunders; K Frederick; E De La Cruz; S Ghosh; Y Modis

    2011-12-31

    Profilins promote actin polymerization by exchanging ADP for ATP on monomeric actin and delivering ATP-actin to growing filament barbed ends. Apicomplexan protozoa such as Toxoplasma gondii invade host cells using an actin-dependent gliding motility. Toll-like receptor (TLR) 11 generates an innate immune response upon sensing T. gondii profilin (TgPRF). The crystal structure of TgPRF reveals a parasite-specific surface motif consisting of an acidic loop, followed by a long {beta}-hairpin. A series of structure-based profilin mutants show that TLR11 recognition of the acidic loop is responsible for most of the interleukin (IL)-12 secretion response to TgPRF in peritoneal macrophages. Deletion of both the acidic loop and the {beta}-hairpin completely abrogates IL-12 secretion. Insertion of the T. gondii acidic loop and {beta}-hairpin into yeast profilin is sufficient to generate TLR11-dependent signaling. Substitution of the acidic loop in TgPRF with the homologous loop from the apicomplexan parasite Cryptosporidium parvum does not affect TLR11-dependent IL-12 secretion, while substitution with the acidic loop from Plasmodium falciparum results in reduced but significant IL-12 secretion. We conclude that the parasite-specific motif in TgPRF is the key molecular pattern recognized by TLR11. Unlike other profilins, TgPRF slows nucleotide exchange on monomeric rabbit actin and binds rabbit actin weakly. The putative TgPRF actin-binding surface includes the {beta}-hairpin and diverges widely from the actin-binding surfaces of vertebrate profilins.

  1. Anti-Toxoplasma Activity of 2-(Naphthalene-2-γlthiol-1H Indole.

    Directory of Open Access Journals (Sweden)

    Qasem Asgari

    2015-06-01

    Full Text Available This study was undertaken to evaluate the viability, infectivity and immunity of Toxoplasma gondii tachyzoites exposed to 2-(naphthalene-2-ylthio-1H-indole.Tachyzoites of RH strain were incubated in various concentrations of 2-(naphthalene-2-ylthio-1H-indole (25-800 μM for 1.5 hours. Then, they were stained by PI and analyzed by Fluorescence-activated cell sorting (FACS. To evaluate the infectivity, the tachyzoites exposed to the different concentrations of the compound were inoculated to 10 BALB/c mice groups. For Control, parasites exposed to DMSO (0.2% v/v were also intraperitoneally inoculated into two groups of mice. The immunity of the exposed tachyzoites was evaluated by inoculation of the naïve parasite to the survived mice.The LD50 of 2-(naphthalene-2-ylthio-1H-indole was 57 μmol. The longevity of mice was dose dependent. Five mice out of group 400μmol and 3 out of group 800μmol showed immunization to the parasite.Our findings demonstrated the toxoplasmocidal activity of the compound. The presence of a well-organized transporter mechanism for indole compounds within the parasite in conjunction with several effective mechanisms of these compounds on Toxoplasma viability would open a window for production of new drugs and vaccines.

  2. Animals are key to human toxoplasmosis.

    Science.gov (United States)

    Schlüter, Dirk; Däubener, Walter; Schares, Gereon; Groß, Uwe; Pleyer, Uwe; Lüder, Carsten

    2014-10-01

    Toxoplasma gondii is an extremely sucessfull protozoal parasite which infects almost all mamalian species including humans. Approximately 30% of the human population worldwide is chronically infected with T. gondii. In general, human infection is asymptomatic but the parasite may induce severe disease in fetuses and immunocompromised patients. In addition, T. gondii may cause sight-threatening posterior uveitis in immunocompetent patients. Apart from few exceptions, humans acquire T. gondii from animals. Both, the oral uptake of T. gondii oocysts released by specific hosts, i.e. felidae, and of cysts persisting in muscle cells of animals result in human toxoplasmosis. In the present review, we discuss recent new data on the cell biology of T. gondii and parasite diversity in animals. In addition, we focus on the impact of these various parasite strains and their different virulence on the clinical outcome of human congenital toxoplasmosis and T. gondii uveitis. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Toxoplasma gondii coinfection with diseases and parasites in wild rabbits in Scotland.

    Science.gov (United States)

    Mason, Sam; Dubey, J P; Smith, Judith E; Boag, Brian

    2015-09-01

    In wild rabbits (Oryctolagus cuniculus) on an estate in Perthshire, central Scotland, the seroprevalence of Toxoplasma gondii was 18/548 (3·3%). The wild rabbit could be a T. gondii reservoir and it has potential value as a sentinel of T. gondii in environmental substrates. Toxoplasma gondii was associated with female sex (P myxomatosis caused by the virus Myxomatosis cuniculi, the intensity of roundworm eggs, the year or season, rabbit age or distance from farm buildings. Coinfections could have been affected by gestational down regulation of type 1 T helper cells. A sudden influx or release of T. gondii oocysts might have occurred. This is the first report of T. gondii in any wild herbivore in Scotland and also the first report of lapine T. gondii as a coinfection with E. stiedae, M. cuniculi and helminths.

  4. Epidemiological review of Toxoplasmosis in humans and animals in Romania

    Science.gov (United States)

    Infections by the protozoan parasite Toxoplasma gondii are widely prevalent in humans and other animals worldwide. However, information from former East European countries, including Romania is sketchy. Unfortunately, in many Eastern European countries, including Romania it has been assumed that T. ...

  5. Antibodies to Toxoplasma gondii and Leishmania spp. in domestic cats from Luanda, Angola

    Science.gov (United States)

    Toxoplasma gondii and Leishmania spp. are zoonotic agents of importance to public health, with domestic cats as potential reservoirs for both protozoal infections. The present study aimed at assessing for the first time the seroprevalence of these zoonotic parasites in a domestic feline population l...

  6. Toxoplasma gondii 70 kDa heat shock protein: systemic detection is associated with the death of the parasites by the immune response and its increased expression in the brain is associated with parasite replication.

    Directory of Open Access Journals (Sweden)

    Paulo Victor Czarnewski Barenco

    Full Text Available The heat shock protein of Toxoplasma gondii (TgHSP70 is a parasite virulence factor that is expressed during T. gondii stage conversion. To verify the effect of dexamethasone (DXM-induced infection reactivation in the TgHSP70-specific humoral immune response and the presence of the protein in the mouse brain, we produced recombinant TgHSP70 and anti-TgHSP70 IgY antibodies to detect the protein, the specific antibody and levels of immune complexes (ICs systemically, as well as the protein in the brain of resistant (BALB/c and susceptible (C57BL/6 mice. It was observed higher TgHSP70-specific antibody titers in serum samples of BALB/c compared with C57BL/6 mice. However, the susceptible mice presented the highest levels of TgHSP70 systemically and no detection of specific ICs. The DXM treatment induced increased parasitism and lower inflammatory changes in the brain of C57BL/6, but did not interfere with the cerebral parasitism in BALB/c mice. Additionally, DXM treatment decreased the serological TgHSP70 concentration in both mouse lineages. C57BL/6 mice presented high expression of TgHSP70 in the brain with the progression of infection and under DXM treatment. Taken together, these data indicate that the TgHSP70 release into the bloodstream depends on the death of the parasites mediated by the host immune response, whereas the increased TgHSP70 expression in the brain depends on the multiplication rate of the parasite.

  7. Toxoplasma gondii Actively Inhibits Neuronal Function in Chronically Infected Mice

    Science.gov (United States)

    Haroon, Fahad; Händel, Ulrike; Angenstein, Frank; Goldschmidt, Jürgen; Kreutzmann, Peter; Lison, Holger; Fischer, Klaus-Dieter; Scheich, Henning; Wetzel, Wolfram; Schlüter, Dirk; Budinger, Eike

    2012-01-01

    Upon infection with the obligate intracellular parasite Toxoplasma gondii, fast replicating tachyzoites infect a broad spectrum of host cells including neurons. Under the pressure of the immune response, tachyzoites convert into slow-replicating bradyzoites, which persist as cysts in neurons. Currently, it is unclear whether T. gondii alters the functional activity of neurons, which may contribute to altered behaviour of T. gondii–infected mice and men. In the present study we demonstrate that upon oral infection with T. gondii cysts, chronically infected BALB/c mice lost over time their natural fear against cat urine which was paralleled by the persistence of the parasite in brain regions affecting behaviour and odor perception. Detailed immunohistochemistry showed that in infected neurons not only parasitic cysts but also the host cell cytoplasm and some axons stained positive for Toxoplasma antigen suggesting that parasitic proteins might directly interfere with neuronal function. In fact, in vitro live cell calcium (Ca2+) imaging studies revealed that tachyzoites actively manipulated Ca2+ signalling upon glutamate stimulation leading either to hyper- or hypo-responsive neurons. Experiments with the endoplasmatic reticulum Ca2+ uptake inhibitor thapsigargin indicate that tachyzoites deplete Ca2+ stores in the endoplasmatic reticulum. Furthermore in vivo studies revealed that the activity-dependent uptake of the potassium analogue thallium was reduced in cyst harbouring neurons indicating their functional impairment. The percentage of non-functional neurons increased over time In conclusion, both bradyzoites and tachyzoites functionally silence infected neurons, which may significantly contribute to the altered behaviour of the host. PMID:22530040

  8. Toxoplasma gondii actively inhibits neuronal function in chronically infected mice.

    Directory of Open Access Journals (Sweden)

    Fahad Haroon

    Full Text Available Upon infection with the obligate intracellular parasite Toxoplasma gondii, fast replicating tachyzoites infect a broad spectrum of host cells including neurons. Under the pressure of the immune response, tachyzoites convert into slow-replicating bradyzoites, which persist as cysts in neurons. Currently, it is unclear whether T. gondii alters the functional activity of neurons, which may contribute to altered behaviour of T. gondii-infected mice and men. In the present study we demonstrate that upon oral infection with T. gondii cysts, chronically infected BALB/c mice lost over time their natural fear against cat urine which was paralleled by the persistence of the parasite in brain regions affecting behaviour and odor perception. Detailed immunohistochemistry showed that in infected neurons not only parasitic cysts but also the host cell cytoplasm and some axons stained positive for Toxoplasma antigen suggesting that parasitic proteins might directly interfere with neuronal function. In fact, in vitro live cell calcium (Ca(2+ imaging studies revealed that tachyzoites actively manipulated Ca(2+ signalling upon glutamate stimulation leading either to hyper- or hypo-responsive neurons. Experiments with the endoplasmatic reticulum Ca(2+ uptake inhibitor thapsigargin indicate that tachyzoites deplete Ca(2+ stores in the endoplasmatic reticulum. Furthermore in vivo studies revealed that the activity-dependent uptake of the potassium analogue thallium was reduced in cyst harbouring neurons indicating their functional impairment. The percentage of non-functional neurons increased over time In conclusion, both bradyzoites and tachyzoites functionally silence infected neurons, which may significantly contribute to the altered behaviour of the host.

  9. Comparison of Eight Cell-Free Media for Maintenance of Toxoplasma gondii Tachyzoites

    Directory of Open Access Journals (Sweden)

    Hamed KALANI

    2016-03-01

    Full Text Available Background: Toxoplasmosis is considered as one of the most common infectious diseases caused by the protozoan parasite Toxoplasma gondii. Tachyzoite is the main form of Toxoplasma and continuously is maintained in cell culture or injected into the mice peritoneal cavity. This study was designed to evaluate the survival rate of RH strain of T. gondii tachyzoites in different cell free, nutrient and biological media at different temperatures.Methods: This experimental study was performed at the Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran, in 2010. One ml of each solution including hypotonic saline (0.3%, normal saline (0.85%, RPMI-1640 (RPMI, RPMI with 10% fetal bovine serum (FBS, RPMI with 20% FBS, ovine hydatid cyst fluid, pasteurized milk of cow, and phosphate buffered saline (PBS along with 4×104 T. gondii tachyzoites were added to plate wells and incubated in 4 °C, 22 °C, 37 °C, and 37 °C under 5% CO2. The survival rate and viability as­sessment of parasites were performed daily and the results were analyzed using Univariate tests.Result: Tachyzoites survival rate in PBS (4 °C and normal saline (4 °C were con­siderably high, compared to other solutions in different conditions (P<0.001. The best temperature for Toxoplasma maintenance was 4 °C (P<0.001.Conclusion: This study introduces two available and economical solutions, PBS (4 °C and normal saline (4 °C media, for maintenance of Toxoplasma tachyzoites as appropriate choice media for a noticeable period of time (11 days in vitro.

  10. β-1,3-Glucan, Which Can Be Targeted by Drugs, Forms a Trabecular Scaffold in the Oocyst Walls of Toxoplasma and Eimeria

    Science.gov (United States)

    Bushkin, G. Guy; Motari, Edwin; Magnelli, Paula; Gubbels, Marc-Jan; Dubey, Jitender P.; Miska, Katarzyna B.; Bullitt, Esther; Costello, Catherine E.; Robbins, Phillips W.; Samuelson, John

    2012-01-01

    ABSTRACT The walls of infectious pathogens, which are essential for transmission, pathogenesis, and diagnosis, contain sugar polymers that are defining structural features, e.g., β-1,3-glucan and chitin in fungi, chitin in Entamoeba cysts, β-1,3-GalNAc in Giardia cysts, and peptidoglycans in bacteria. The goal here was to determine in which of three walled forms of Toxoplasma gondii (oocyst, sporocyst, or tissue cyst) is β-1,3-glucan, the product of glucan synthases and glucan hydrolases predicted by whole-genome sequences of the parasite. The three most important discoveries were as follows. (i) β-1,3-glucan is present in oocyst walls of Toxoplasma and Eimeria (a chicken parasite that is a model for intestinal stages of Toxoplasma) but is absent from sporocyst and tissue cyst walls. (ii) Fibrils of β-1,3-glucan are part of a trabecular scaffold in the inner layer of the oocyst wall, which also includes a glucan hydrolase that has a novel glucan-binding domain. (iii) Echinocandins, which target the glucan synthase and kill fungi, arrest development of the Eimeria oocyst wall and prevent release of the parasites into the intestinal lumen. In summary, β-1,3-glucan, which can be targeted by drugs, is an important component of oocyst walls of Toxoplasma but is not a component of sporocyst and tissue cyst walls. PMID:23015739

  11. Veterinary vaccines against Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Elisabeth A Innes

    2009-03-01

    Full Text Available Toxoplasma gondii has a very wide intermediate host range and is thought to be able to infect all warm blooded animals. The parasite causes a spectrum of different diseases and clinical symptoms within the intermediate hosts and following infection most animals develop adaptive humoral and cell-mediated immune responses. The development of protective immunity to T. gondii following natural infection in many host species has led researchers to look at vaccination as a strategy to control disease, parasite multiplication and establishment in animal hosts. A range of different veterinary vaccines are required to help control T. gondii infection which include vaccines to prevent congenital toxoplasmosis, reduce or eliminate tissue cysts in meat producing animals and to prevent oocyst shedding in cats. In this paper we will discuss some of the history, challenges and progress in the development of veterinary vaccines against T. gondii.

  12. Prevalence of zoonotic important parasites in the red fox (Vulpes vulpes) in Great Britain.

    Science.gov (United States)

    Smith, G C; Gangadharan, B; Taylor, Z; Laurenson, M K; Bradshaw, H; Hide, G; Hughes, J M; Dinkel, A; Romig, T; Craig, P S

    2003-12-01

    A national necropsy survey of red foxes was carried out across Great Britain to record Echinococcus, Trichinella and Toxoplasma. The survey did not record directly, or indirectly using coproantigen/PCR tests, evidence for the presence of Echinococcus multilocularis in 588 animals, although E. granulosus was suspected in six animals. Parasitological evidence for Trichinella spp. could not be found in 587 fox muscle digests, and a specific PCR test also failed to detect Toxoplasma in a sub-set of 61 random fox tongue biopsies. The upper 95% confidence interval for the above parasites was 0.60% (E. multilocularis), 0.60% (Trichinella spp.) and 5.6% (Toxoplasma). The commonest gut parasites were the hookworm Uncinaria stenocephala (41.3%) and the ascarid Toxocara canis (61.6%). This study also reports the second occurrence of Trichuris vulpis in Great Britain.

  13. A plant/fungal-type phosphoenolpyruvate carboxykinase located in the parasite mitochondrion ensures glucose-independent survival of Toxoplasma gondii.

    Science.gov (United States)

    Nitzsche, Richard; Günay-Esiyok, Özlem; Tischer, Maximilian; Zagoriy, Vyacheslav; Gupta, Nishith

    2017-09-15

    Toxoplasma gondii is considered to be one of the most successful intracellular pathogens, because it can reproduce in varied nutritional milieus, encountered in diverse host cell types of essentially any warm-blooded organism. Our earlier work demonstrated that the acute (tachyzoite) stage of T. gondii depends on cooperativity of glucose and glutamine catabolism to meet biosynthetic demands. Either of these two nutrients can sustain the parasite survival; however, what determines the metabolic plasticity has not yet been resolved. Here, we reveal two discrete phosphoenolpyruvate carboxykinase (PEPCK) enzymes in the parasite, one of which resides in the m i t ochondrion ( Tg PEPCK mt ), whereas the other protein is n ot e xpressed in t achyzoites ( Tg PEPCK net ). Parasites with an intact glycolysis can tolerate genetic deletions of Tg PEPCK mt as well as of Tg PEPCK net , indicating their nonessential roles for tachyzoite survival. Tg PEPCK net can also be ablated in a glycolysis-deficient mutant, while Tg PEPCK mt is refractory to deletion. Consistent with this, the lytic cycle of a conditional mutant of Tg PEPCK mt in the glycolysis-impaired strain was aborted upon induced repression of the mitochondrial isoform, demonstrating its essential role for the glucose-independent survival of parasites. Isotope-resolved metabolomics of the conditional mutant revealed defective flux of glutamine-derived carbon into RNA-bound ribose sugar as well as metabolites associated with gluconeogenesis, entailing a critical nodal role of PEPCK mt in linking catabolism of glucose and glutamine with anabolic pathways. Our data also suggest a homeostatic function of Tg PEPCK mt in cohesive operation of glycolysis and the tricarboxylic acid cycle in a normal glucose-replete milieu. Conversely, we found that the otherwise integrative enzyme pyruvate carboxylase ( Tg PyC) is dispensable not only in glycolysis-competent but also in glycolysis-deficient tachyzoites despite a mitochondrial

  14. Lysine acetyltransferase GCN5b interacts with AP2 factors and is required for Toxoplasma gondii proliferation.

    Directory of Open Access Journals (Sweden)

    Jiachen Wang

    2014-01-01

    Full Text Available Histone acetylation has been linked to developmental changes in gene expression and is a validated drug target of apicomplexan parasites, but little is known about the roles of individual histone modifying enzymes and how they are recruited to target genes. The protozoan parasite Toxoplasma gondii (phylum Apicomplexa is unusual among invertebrates in possessing two GCN5-family lysine acetyltransferases (KATs. While GCN5a is required for gene expression in response to alkaline stress, this KAT is dispensable for parasite proliferation in normal culture conditions. In contrast, GCN5b cannot be disrupted, suggesting it is essential for Toxoplasma viability. To further explore the function of GCN5b, we generated clonal parasites expressing an inducible HA-tagged dominant-negative form of GCN5b containing a point mutation that ablates enzymatic activity (E703G. Stabilization of this dominant-negative GCN5b was mediated through ligand-binding to a destabilization domain (dd fused to the protein. Induced accumulation of the ddHAGCN5b(E703G protein led to a rapid arrest in parasite replication. Growth arrest was accompanied by a decrease in histone H3 acetylation at specific lysine residues as well as reduced expression of GCN5b target genes in GCN5b(E703G parasites, which were identified using chromatin immunoprecipitation coupled with microarray hybridization (ChIP-chip. Proteomics studies revealed that GCN5b interacts with AP2-domain proteins, apicomplexan plant-like transcription factors, as well as a "core complex" that includes the co-activator ADA2-A, TFIID subunits, LEO1 polymerase-associated factor (Paf1 subunit, and RRM proteins. The dominant-negative phenotype of ddHAGCN5b(E703G parasites, considered with the proteomics and ChIP-chip data, indicate that GCN5b plays a central role in transcriptional and chromatin remodeling complexes. We conclude that GCN5b has a non-redundant and indispensable role in regulating gene expression required

  15. Antibodies to Toxoplasma gondii and Leishmania spp. in domestic cats from Luanda, Angola

    NARCIS (Netherlands)

    Lopes, Ana Patrícia; Oliveira, Ana Cristina; Granada, Sara; Rodrigues, Filipa T.; Papadopoulos, Elias; Schallig, Henk; Dubey, Jitender P.; Cardoso, Luís

    2017-01-01

    Toxoplasma gondii and Leishmania spp. are zoonotic protozoa of importance to animal and public health. The present study aimed to assess for the first time the seroprevalence of these zoonotic parasites in a domestic feline population living in Luanda, Angola. One hundred and two cats were sampled

  16. Control of the risk of human toxoplasmosis transmitted by meat

    NARCIS (Netherlands)

    Kijlstra, A.; Jongert, E.

    2008-01-01

    One-third of the human world population is infected with the protozoan parasite Toxoplasma gondii. Recent calculations of the disease burden of toxoplasmosis rank this foodborne disease at the same level as salmonellosis or campylobacteriosis. The high disease burden in combination with

  17. Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii: a review of methods

    Directory of Open Access Journals (Sweden)

    Rousseau Angélique

    2018-01-01

    Full Text Available Giardia duodenalis, Cryptosporidium spp. and Toxoplasma gondii are protozoan parasites that have been highlighted as emerging foodborne pathogens by the Food and Agriculture Organization of the United Nations and the World Health Organization. According to the European Food Safety Authority, 4786 foodborne and waterborne outbreaks were reported in Europe in 2016, of which 0.4% were attributed to parasites including Cryptosporidium, Giardia and Trichinella. Until 2016, no standardized methods were available to detect Giardia, Cryptosporidium and Toxoplasma (oocysts in food. Therefore, no regulation exists regarding these biohazards. Nevertheless, considering their low infective dose, ingestion of foodstuffs contaminated by low quantities of these three parasites can lead to human infection. To evaluate the risk of protozoan parasites in food, efforts must be made towards exposure assessment to estimate the contamination along the food chain, from raw products to consumers. This requires determining: (i the occurrence of infective protozoan (oocysts in foods, and (ii the efficacy of control measures to eliminate this contamination. In order to conduct such assessments, methods for identification of viable (i.e. live and infective parasites are required. This review describes the methods currently available to evaluate infectivity and viability of G. duodenalis cysts, Cryptosporidium spp. and T. gondii oocysts, and their potential for application in exposure assessment to determine the presence of the infective protozoa and/or to characterize the efficacy of control measures. Advantages and limits of each method are highlighted and an analytical strategy is proposed to assess exposure to these protozoa.

  18. Endoparasites of Stray Dogs in Mashhad, Khorasan Razavi Province, Northeast Iran with Special Reference to Zoonotic Parasites

    Directory of Open Access Journals (Sweden)

    Amir Adinezadeh

    2013-09-01

    Full Text Available Background: To find out different species of helminthes and blood/tissue proto­zoan parasites of stray dogs and their potential role for transmission of zoonotic species to human in Mashhad, Khorasan Razavi Province, northeast Iran, during 2008-2009.Methods: Totally, 100 stray dogs were selected among Mashhad municipal collection from different sites of the city. Internal organs were examined for any parasites. Helminthes were identified based on morphological characteristics. Smears prepared from peripheral blood as well as liver, spleen and any skin lesion were stained by Giemsa and examined microscopically. Samples obtained from spleen were aseptically cultured in three culture media including NNN, Schneider’s Drosophila (HIMEDIA and RPMI1640 (GIBCO for isolation of Leishmania spp. The titer of anti-Leishmania and anti-Toxoplasma antibodies were measured by direct agglutination test (DAT and indirect fluorescent antibody test (IFAT, respectively.Results: 84% of dogs were infected at least with one species of intestinal helminthes. The species of parasites and rate of infection were as follows: Taenia hydatigena (61%, Dipylidium caninum (46%, Mesocestoides lineatus (19%, Echinococcus granulosus (10%, Toxascaris leonina (53% and Toxocara canis (7%. Anti-Leishmania antibodies were detected by DAT in 8 dogs (8% at 1:320 titers and higher. Forty seven dogs (47% showed anti-Toxoplasma titer at 1:10 and 17 (17% showed titer of ≥1:100. No blood parasites were found in prepared blood smears.Conclusion: The high rate of parasitic infection and presence of zoonotic species

  19. Toxoplasma gondii seroprevalence in free-ranging moose (Alces alces) hunted for human consumption in Estonia

    DEFF Research Database (Denmark)

    Remes, Noora; Kärssin, Age; Must, Kärt

    2018-01-01

    In Estonia, northeastern Europe, antibodies against Toxoplasma gondii are common in many host species, including wildlife, domestic animals, and humans. Our nationwide study aimed to estimate T. gondii seroprevalence and its geographical distribution, and to evaluate plausible risk factors for se...

  20. Genome-Wide Bimolecular Fluorescence Complementation-Based Proteomic Analysis of Toxoplasma gondii ROP18’s Human Interactome Shows Its Key Role in Regulation of Cell Immunity and Apoptosis

    Directory of Open Access Journals (Sweden)

    Jing Xia

    2018-02-01

    Full Text Available Toxoplasma gondii rhoptry protein ROP18 (TgROP18 is a key virulence factor secreted into the host cell during invasion, where it modulates the host cell response by interacting with its host targets. However, only a few TgROP18 targets have been identified. In this study, we applied a high-throughput protein–protein interaction (PPI screening in human cells using bimolecular fluorescence complementation (BiFC to identify the targets of Type I strain ROP18 (ROP18I and Type II strain ROP18 (ROP18II. From a pool of more than 18,000 human proteins, 492 and 141 proteins were identified as the targets of ROP18I and ROP18II, respectively. Gene ontology, search tool for the retrieval of interacting genes/proteins PPI network, and Ingenuity pathway analyses revealed that the majority of these proteins were associated with immune response and apoptosis. This indicates a key role of TgROP18 in manipulating host’s immunity and cell apoptosis, which might contribute to the immune escape and successful parasitism of the parasite. Among the proteins identified, the immunity-related proteins N-myc and STAT interactor, IL20RB, IL21, ubiquitin C, and vimentin and the apoptosis-related protein P2RX1 were further verified as ROP18I targets by sensitized emission-fluorescence resonance energy transfer (SE-FRET and co-immunoprecipitation. Our study substantially contributes to the current limited knowledge on human targets of TgROP18 and provides a novel tool to investigate the function of parasite effectors in human cells.

  1. Quantifying the Risk of Human Toxoplasma gondii Infection Due to Consumption of Domestically Produced Lamb in the United States.

    Science.gov (United States)

    Guo, Miao; Mishra, Abhinav; Buchanan, Robert L; Dubey, Jitender P; Hill, Dolores E; Gamble, H Ray; Pradhan, Abani K

    2016-07-01

    Toxoplasma gondii is a prevalent protozoan parasite worldwide. Human toxoplasmosis is responsible for considerable morbidity and mortality in the United States, and meat products have been identified as an important source of T. gondii infections in humans. The goal of this study was to develop a farm-to-table quantitative microbial risk assessment model to predict the public health burden in the United States associated with consumption of U.S. domestically produced lamb. T. gondii prevalence in market lambs was pooled from the 2011 National Animal Health Monitoring System survey, and the concentration of the infectious life stage (bradyzoites) was calculated in the developed model. A log-linear regression and an exponential doseresponse model were used to model the reduction of T. gondii during home cooking and to predict the probability of infection, respectively. The mean probability of infection per serving of lamb was estimated to be 1.5 cases per 100,000 servings, corresponding to ∼6,300 new infections per year in the U.S. Based on the sensitivity analysis, we identified cooking as the most effective method to influence human health risk. This study provided a quantitative microbial risk assessment framework for T. gondii infection through consumption of lamb and quantified the infection risk and public health burden associated with lamb consumption.

  2. Lipid Synthesis in Protozoan Parasites: a Comparison Between Kinetoplastids and Apicomplexans

    Science.gov (United States)

    Ramakrishnan, Srinivasan; Serricchio, Mauro; Striepen, Boris; Bütikofer, Peter

    2013-01-01

    Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment. PMID:23827884

  3. Toxoplasma gondii in stranded marine mammals from the North Sea and Eastern Atlantic Ocean

    NARCIS (Netherlands)

    Velde, van de Norbert; Devleesschauwer, Brecht; Leopold, Mardik; Begeman, Lineke; IJsseldijk, Lonneke; Hiemstra, Sjoukje; IJzer, Jooske; Brownlow, Andrew; Davison, Nicholas; Haelters, Jan

    2016-01-01

    The occurrence of the zoonotic protozoan parasite Toxoplasma gondii in marine mammals remains a poorly understood phenomenon. In this study, samples from 589 marine mammal species and 34 European otters (Lutra lutra), stranded on the coasts of Scotland, Belgium, France, The Netherlands and

  4. The origins of human parasites: Exploring the evidence for endoparasitism throughout human evolution.

    Science.gov (United States)

    Mitchell, Piers D

    2013-09-01

    It is important to determine the origins of human parasites if we are to understand the health of past populations and the effects of parasitism upon human evolution. It also helps us to understand emerging infectious diseases and the modern clinical epidemiology of parasites. This study aims to distinguish those heirloom parasites that have infected humans and their ancestors throughout their evolution in Africa from those recent souvenir species to which humans have only become exposed following contact with animals during their migration across the globe. Ten such heirloom parasites are proposed, which appear to have been spread across the globe. Six further heirlooms are noted to have limited spread due to the constraints of their life cycle. Twelve souvenir parasites of humans are described, along with their animal reservoirs. While the origins of 28 species of endoparasite have been determined, many more species require further assessment once a more systematic analysis of ancient parasites in other regions of Africa has been undertaken. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Traditional goat husbandry may substantially contribute to human toxoplasmosis exposure

    Science.gov (United States)

    Raising goats in settings that are highly contaminated with oocysts of Toxoplasma gondii may contribute significantly to human exposure to this zoonotic parasite. Increasing consumption of young goats in Romania, where goats are typically reared in backyards that are also home to cats (the definitiv...

  6. The Orphan Nuclear Receptor TLX Is an Enhancer of STAT1-Mediated Transcription and Immunity to Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Daniel P Beiting

    2015-07-01

    Full Text Available The protozoan parasite, Toxoplasma, like many intracellular pathogens, suppresses interferon gamma (IFN-γ-induced signal transducer and activator of transcription 1 (STAT1 activity. We exploited this well-defined host-pathogen interaction as the basis for a high-throughput screen, identifying nine transcription factors that enhance STAT1 function in the nucleus, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that upon IFN-γ treatment TLX enhances the output of a subset of IFN-γ target genes, which we found is dependent on TLX binding at those loci. Moreover, infection of TLX deficient mice with the intracellular parasite Toxoplasma results in impaired production of the STAT1-dependent cytokine interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized role for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense and reveal that STAT1 activity can be modulated in a context-specific manner by such "modifiers."

  7. The Orphan Nuclear Receptor TLX Is an Enhancer of STAT1-Mediated Transcription and Immunity to Toxoplasma gondii.

    Science.gov (United States)

    Beiting, Daniel P; Hidano, Shinya; Baggs, Julie E; Geskes, Jeanne M; Fang, Qun; Wherry, E John; Hunter, Christopher A; Roos, David S; Cherry, Sara

    2015-07-01

    The protozoan parasite, Toxoplasma, like many intracellular pathogens, suppresses interferon gamma (IFN-γ)-induced signal transducer and activator of transcription 1 (STAT1) activity. We exploited this well-defined host-pathogen interaction as the basis for a high-throughput screen, identifying nine transcription factors that enhance STAT1 function in the nucleus, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that upon IFN-γ treatment TLX enhances the output of a subset of IFN-γ target genes, which we found is dependent on TLX binding at those loci. Moreover, infection of TLX deficient mice with the intracellular parasite Toxoplasma results in impaired production of the STAT1-dependent cytokine interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized role for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense and reveal that STAT1 activity can be modulated in a context-specific manner by such "modifiers."

  8. Parasitic, fungal and prion zoonoses: an expanding universe of candidates for human disease.

    Science.gov (United States)

    Akritidis, N

    2011-03-01

    Zoonotic infections have emerged as a burden for millions of people in recent years, owing to re-emerging or novel pathogens often causing outbreaks in the developing world in the presence of inadequate public health infrastructure. Among zoonotic infections, those caused by parasitic pathogens are the ones that affect millions of humans worldwide, who are also at risk of developing chronic disease. The present review discusses the global effect of protozoan pathogens such as Leishmania sp., Trypanosoma sp., and Toxoplasma sp., as well as helminthic pathogens such as Echinococcus sp., Fasciola sp., and Trichinella sp. The zoonotic aspects of agents that are not essentially zoonotic are also discussed. The review further focuses on the zoonotic dynamics of fungal pathogens and prion diseases as observed in recent years, in an evolving environment in which novel patient target groups have developed for agents that were previously considered to be obscure or of minimal significance. © 2011 The Author. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  9. Seroprevalence of Toxoplasma gondii and potential risk factors in ...

    African Journals Online (AJOL)

    Toxoplasma gondii infection is important in pigs and humans may get infected through the consumption of undercooked infected pork. This study conducted in Oyo state, Nigeria for 15 months (between February, 2012 and April, 2013) investigated the seroprevalence of Toxoplasma gondii infection in pigs reared on farms ...

  10. Seroprevalence of Toxoplasma gondii in Western Romania.

    Science.gov (United States)

    Olariu, Tudor Rares; Petrescu, Cristina; Darabus, Gheorghe; Lighezan, Rodica; Mazilu, Octavian

    2015-08-01

    Toxoplasma gondii is an obligate intracellular parasite that most commonly causes asymptomatic infection in immunocompetent hosts, but can have devastating consequences in congenitally infected infants and immunocompromised patients. We evaluated the seroprevalence of T. gondii in the general population in Western Romania. Sera from 304 individuals were analysed with the Pastorex Toxo test, which allows the simultaneous detection of T. gondii IgG and/or IgM antibodies. T. gondii antibodies were demonstrated in 197 individuals (64.8%) and the prevalence increased with age: 35.0% in those Romania.

  11. Molecular Detection of Toxoplasma gondii Oocytes in the Soil from the Public Parks of the Arak City, Iran

    Directory of Open Access Journals (Sweden)

    Hadis Solymane

    2014-02-01

    Conclusion: This study showed soils of public parks in the Arak city were contaminated to oocyst of Toxoplasma. Also molecular method for the detection of parasites in the soil was more suitable than staining method.

  12. Latent Toxoplasma gondii infection leads to improved action control.

    Science.gov (United States)

    Stock, Ann-Kathrin; Heintschel von Heinegg, Evelyn; Köhling, Hedda-Luise; Beste, Christian

    2014-03-01

    The parasite Toxoplasma gondii has been found to manipulate the behavior of its secondary hosts to increase its own dissemination which is commonly believed to be to the detriment of the host (manipulation hypothesis). The manipulation correlates with an up-regulation of dopaminergic neurotransmission. In humans, different pathologies have been associated with T. gondii infections but most latently infected humans do not seem to display overt impairments. Since a dopamine plus does not necessarily bear exclusively negative consequences in humans, we investigated potential positive consequences of latent toxoplasmosis (and the presumed boosting of dopaminergic neurotransmission) on human cognition and behavior. For this purpose, we focused on action cascading which has been shown to be modulated by dopamine. Based on behavioral and neurophysiological (EEG) data obtained by means of a stop-change paradigm, we were able to demonstrate that healthy young humans can actually benefit from latent T. gondii infection as regards their performance in this task (as indicated by faster response times and a smaller P3 component). The data shows that a latent infection which is assumed to affect the dopaminergic system can lead to paradoxical improvements of cognitive control processes in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Calcium uptake and proton transport by acidocalcisomes of Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Peter Rohloff

    Full Text Available Acidocalcisomes are acidic calcium stores found in diverse organisms, being conserved from bacteria to humans. They possess an acidic matrix that contains several cations bound to phosphates, which are mainly present in the form of short and long polyphosphate chains. Their matrix is acidified through the action of proton pumps such as a vacuolar proton ATPase and a vacuolar proton pyrophosphatase. Calcium uptake occurs through a Ca(2+/H(+ countertransporting ATPase located in the membrane of the organelle. Acidocalcisomes have been identified in a variety of microorganisms, including Apicomplexan parasites such as Plasmodium and Eimeria species, and in Toxoplasma gondii. We report the purification and characterization of an acidocalcisome fraction from T. gondii tachyzoites after subcellular fractionation and further discontinuous iodixanol gradient purification. Proton and calcium transport activities in the fraction were characterized by fluorescence microscopy and spectrophotometric methods using acridine orange and arsenazo III, respectively. This work will facilitate the understanding of the function of acidocalcisomes in Apicomplexan parasites, as we can now isolate highly purified fractions that could be used for proteomic analysis to find proteins that may clarify the biogenesis of these organelles.

  14. TOXOPLASMA AND VIRAL ANTIBODIES AMONG HIV PATIENTS AND INMATES IN CENTRAL JAVA, INDONESIA.

    Science.gov (United States)

    Sari, Yulia; Haryati, Sri; Raharjo, Irvan; Prasetyo, Afiono Agung

    2015-11-01

    In Indonesia, Toxoplasma and its associations with blood-borne viruses have been poorly studied. In order to study the association between anti-Toxoplasma antibodies and blood-borne viral antibodies, blood samples from 497 participants (375 inmates from four prisons in Central Java, Indonesia and 122 HIV patients at a Voluntary Counseling and Testing Clinic in Surakarta, Indonesia) were tested for serological markers of Toxoplasma, human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV) and human T-lymphotropic virus types I and II (HTLV-1/2). Anti-Toxoplasma IgG and IgM positivity rates were 41.6% and 3.6%, respectively. One point two percent of participants was positive for both anti-Toxoplasma IgG and IgM antibodies. Sixteen point five percent, 11.3%, 2.6% and 2.8% of participants were positive for anti- Toxoplasma IgG combined with anti-HCV antibodies, anti-Toxoplasma IgG combined with anti-HIV antibodies, anti-Toxoplasma IgM combined with anti-HIV antibodes and anti-Toxoplasma IgG combined with both anti-HIV and anti-HCV antibodies, respectively. Anti-Toxoplasma IgM seropositivity was associated with anti-HIV (aOR = 4.3; 95% CI: 1.112-16.204, p = 0.034). Anti-Toxoplasma IgG antibodies were associated with anti-HCV (aOR = 2.8; 95% CI: 1.749-4.538, p < 0.001) and history of injection drug use (aOR = 3.1; 95% CI: 1.905-5.093, p < 0.001). In conclusion, we recommend patients with HIV, HCV infection and injection drug users should be screened for Toxoplasma infection in Indonesia.

  15. Seroepidemiology of Toxoplasma gondii infection in bats from São Paulo city, Brazil

    Science.gov (United States)

    Toxoplasmosis is a parasitic zoonosis caused by Toxoplasma gondii with a worldwide distribution. The aim of this study was to determine the frequency of IgG anti-T. gondii antibodies in bats from São Paulo city, Brazil. A total of 616 serum samples were collected from 22 species of bats. Anti-T. gon...

  16. Toxoplasmosis in dogs: First report of Toxoplasma gondii infection in any animal species in Angola

    Science.gov (United States)

    Despite the worldwide importance of zoonotic parasite Toxoplasma gondii nothing is known of toxoplasmosis in animals in Angola. The present study aimed at estimating the seroprevalence and also assessing correlates of T. gondii infection in pet dogs from Luanda, Angola. Dogs (n = 103) brought to a v...

  17. Hydrologic and Vegetative Removal of Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii Surrogate Microspheres in Coastal Wetlands

    Science.gov (United States)

    Hogan, Jennifer N.; Daniels, Miles E.; Watson, Fred G.; Oates, Stori C.; Miller, Melissa A.; Conrad, Patricia A.; Shapiro, Karen; Hardin, Dane; Dominik, Clare; Melli, Ann; Jessup, David A.

    2013-01-01

    Constructed wetland systems are used to reduce pollutants and pathogens in wastewater effluent, but comparatively little is known about pathogen transport through natural wetland habitats. Fecal protozoans, including Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii, are waterborne pathogens of humans and animals, which are carried by surface waters from land-based sources into coastal waters. This study evaluated key factors of coastal wetlands for the reduction of protozoal parasites in surface waters using settling column and recirculating mesocosm tank experiments. Settling column experiments evaluated the effects of salinity, temperature, and water type (“pure” versus “environmental”) on the vertical settling velocities of C. parvum, G. lamblia, and T. gondii surrogates, with salinity and water type found to significantly affect settling of the parasites. The mesocosm tank experiments evaluated the effects of salinity, flow rate, and vegetation parameters on parasite and surrogate counts, with increased salinity and the presence of vegetation found to be significant factors for removal of parasites in a unidirectional transport wetland system. Overall, this study highlights the importance of water type, salinity, and vegetation parameters for pathogen transport within wetland systems, with implications for wetland management, restoration efforts, and coastal water quality. PMID:23315738

  18. Global Analysis of Palmitoylated Proteins in Toxoplasma gondii.

    Science.gov (United States)

    Foe, Ian T; Child, Matthew A; Majmudar, Jaimeen D; Krishnamurthy, Shruthi; van der Linden, Wouter A; Ward, Gary E; Martin, Brent R; Bogyo, Matthew

    2015-10-14

    Post-translational modifications (PTMs) such as palmitoylation are critical for the lytic cycle of the protozoan parasite Toxoplasma gondii. While palmitoylation is involved in invasion, motility, and cell morphology, the proteins that utilize this PTM remain largely unknown. Using a chemical proteomic approach, we report a comprehensive analysis of palmitoylated proteins in T. gondii, identifying a total of 282 proteins, including cytosolic, membrane-associated, and transmembrane proteins. From this large set of palmitoylated targets, we validate palmitoylation of proteins involved in motility (myosin light chain 1, myosin A), cell morphology (PhIL1), and host cell invasion (apical membrane antigen 1, AMA1). Further studies reveal that blocking AMA1 palmitoylation enhances the release of AMA1 and other invasion-related proteins from apical secretory organelles, suggesting a previously unrecognized role for AMA1. These findings suggest that palmitoylation is ubiquitous throughout the T. gondii proteome and reveal insights into the biology of this important human pathogen. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Isolation of viable Toxoplasma gondii, molecular characterization, and seroprevalence in elk (Cervus canadensis) in Pennsylvania, USA

    Science.gov (United States)

    Toxoplasmosis is a worldwide zoonosis. The ingestion of uncooked/undercooked meat and consumption of water contaminated with Toxoplasma gondii oocysts excreted by felids are the main modes of transmission of this parasite. Thousands of wild cervids are hunted or killed in traffic accidents yearly bu...

  20. Evidence for a structural role for acid-fast lipids in oocyst walls of Cryptosporidium, Toxoplasma, and Eimeria.

    Science.gov (United States)

    Bushkin, G Guy; Motari, Edwin; Carpentieri, Andrea; Dubey, Jitender P; Costello, Catherine E; Robbins, Phillips W; Samuelson, John

    2013-09-03

    Coccidia are protozoan parasites that cause significant human disease and are of major agricultural importance. Cryptosporidium spp. cause diarrhea in humans and animals, while Toxoplasma causes disseminated infections in fetuses and untreated AIDS patients. Eimeria is a major pathogen of commercial chickens. Oocysts, which are the infectious form of Cryptosporidium and Eimeria and one of two infectious forms of Toxoplasma (the other is tissue cysts in undercooked meat), have a multilayered wall. Recently we showed that the inner layer of the oocyst walls of Toxoplasma and Eimeria is a porous scaffold of fibers of β-1,3-glucan, which are also present in fungal walls but are absent from Cryptosporidium oocyst walls. Here we present evidence for a structural role for lipids in the oocyst walls of Cryptosporidium, Toxoplasma, and Eimeria. Briefly, oocyst walls of each organism label with acid-fast stains that bind to lipids in the walls of mycobacteria. Polyketide synthases similar to those that make mycobacterial wall lipids are abundant in oocysts of Toxoplasma and Eimeria and are predicted in Cryptosporidium. The outer layer of oocyst wall of Eimeria and the entire oocyst wall of Cryptosporidium are dissolved by organic solvents. Oocyst wall lipids are complex mixtures of triglycerides, some of which contain polyhydroxy fatty acyl chains like those present in plant cutin or elongated fatty acyl chains like mycolic acids. We propose a two-layered model of the oocyst wall (glucan and acid-fast lipids) that resembles the two-layered walls of mycobacteria (peptidoglycan and acid-fast lipids) and plants (cellulose and cutin). Oocysts, which are essential for the fecal-oral spread of coccidia, have a wall that is thought responsible for their survival in the environment and for their transit through the stomach and small intestine. While oocyst walls of Toxoplasma and Eimeria are strengthened by a porous scaffold of fibrils of β-1,3-glucan and by proteins cross

  1. MYR1-Dependent Effectors Are the Major Drivers of a Host Cell's Early Response to Toxoplasma, Including Counteracting MYR1-Independent Effects.

    Science.gov (United States)

    Naor, Adit; Panas, Michael W; Marino, Nicole; Coffey, Michael J; Tonkin, Christopher J; Boothroyd, John C

    2018-04-03

    The obligate intracellular parasite Toxoplasma gondii controls its host cell from within the parasitophorous vacuole (PV) by using a number of diverse effector proteins, a subset of which require the aspartyl protease 5 enzyme (ASP5) and/or the recently discovered MYR1 protein to cross the PV membrane. To examine the impact these effectors have in the context of the entirety of the host response to Toxoplasma , we used RNA-Seq to analyze the transcriptome expression profiles of human foreskin fibroblasts infected with wild-type RH (RH-WT), RHΔ myr1 , and RHΔ asp5 tachyzoites. Interestingly, the majority of the differentially regulated genes responding to Toxoplasma infection are MYR1 dependent. A subset of MYR1 responses were ASP5 independent, and MYR1 function did not require ASP5 cleavage, suggesting the export of some effectors requires only MYR1. Gene set enrichment analysis of MYR1-dependent host responses suggests an upregulation of E2F transcription factors and the cell cycle and a downregulation related to interferon signaling, among numerous others. Most surprisingly, "hidden" responses arising in RHΔ myr1 - but not RH-WT-infected host cells indicate counterbalancing actions of MYR1-dependent and -independent activities. The host genes and gene sets revealed here to be MYR1 dependent provide new insight into the parasite's ability to co-opt host cell functions. IMPORTANCE Toxoplasma gondii is unique in its ability to successfully invade and replicate in a broad range of host species and cells within those hosts. The complex interplay of effector proteins exported by Toxoplasma is key to its success in co-opting the host cell to create a favorable replicative niche. Here we show that a majority of the transcriptomic effects in tachyzoite-infected cells depend on the activity of a novel translocation system involving MYR1 and that the effectors delivered by this system are part of an intricate interplay of activators and suppressors. Removal of all MYR1

  2. Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space.

    Science.gov (United States)

    Coppens, Isabelle; Dunn, Joe Dan; Romano, Julia D; Pypaert, Marc; Zhang, Hui; Boothroyd, John C; Joiner, Keith A

    2006-04-21

    The intracellular compartment harboring Toxoplasma gondii satisfies the parasite's nutritional needs for rapid growth in mammalian cells. We demonstrate that the parasitophorous vacuole (PV) of T. gondii accumulates material coming from the host mammalian cell via the exploitation of the host endo-lysosomal system. The parasite actively recruits host microtubules, resulting in selective attraction of endo-lysosomes to the PV. Microtubule-based invaginations of the PV membrane serve as conduits for the delivery of host endo-lysosomes within the PV. These tubular conduits are decorated by a parasite coat, including the tubulogenic protein GRA7, which acts like a garrote that sequesters host endocytic organelles in the vacuolar space. These data define an unanticipated process allowing the parasite intimate and concentrated access to a diverse range of low molecular weight components produced by the endo-lysosomal system. More generally, they identify a unique mechanism for unidirectional transport and sequestration of host organelles.

  3. ELISA-seroprevalence of Toxoplasma gondii in draught horses in Greater Cairo, Egypt.

    Science.gov (United States)

    Haridy, Fouad M; Shoukry, Nahla M; Hassan, Aly Awad; Morsy, Tosson A

    2009-12-01

    Toxoplasma gondii is one of the important zoonotic parasites of worldwide. In this paper the seroprevalence of T. gondii in draught horses (3-15 years) including 90 males and 10 females in the first half of the year 2009 was studied. The result showed that the overall ELISA-T. gondii antibodies were 25% of the horses in Greater Cairo, 50% (females) and 22.2% (males).

  4. Serotyping of Toxoplasma gondii in Cats (Felis domesticus) Reveals Predominance of Type II Infections in Germany

    Science.gov (United States)

    Background: Cats are definitive hosts of Toxoplasma gondii and play an essential role in the epidemiology of this parasite. The study aims at clarifying whether cats are able to develop specific antibodies against different clonal types of T. gondii and to determine by serotyping the T. gondii clona...

  5. Elp3 and RlmN: A tale of two mitochondrial tail-anchored radical SAM enzymes in Toxoplasma gondii.

    Science.gov (United States)

    Padgett, Leah R; Lentini, Jenna M; Holmes, Michael J; Stilger, Krista L; Fu, Dragony; Sullivan, William J

    2018-01-01

    Radical S-adenosylmethionine (rSAM) enzymes use a 5'-deoxyadensyl 5'-radical to methylate a wide array of diverse substrates including proteins, lipids and nucleic acids. One such enzyme, Elongator protein-3 (TgElp3), is an essential protein in Toxoplasma gondii, a protozoan parasite that can cause life-threatening opportunistic disease. Unlike Elp3 homologues which are present in all domains of life, TgElp3 localizes to the outer mitochondrial membrane (OMM) via a tail-anchored trafficking mechanism in Toxoplasma. Intriguingly, we identified a second tail-anchored rSAM domain containing protein (TgRlmN) that also localizes to the OMM. The transmembrane domain (TMD) on Toxoplasma Elp3 and RlmN homologues is required for OMM localization and has not been seen beyond the chromalveolates. Both TgElp3 and TgRlmN contain the canonical rSAM amino acid sequence motif (CxxxCxxC) necessary to form the 4Fe-4S cluster required for tRNA modifications. In E. coli, RlmN is responsible for the 2-methlyadenosine (m2A) synthesis at purine 37 in tRNA while in S. cerevisiae, Elp3 is necessary for the formation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at the wobble tRNA position. To investigate why these two rSAM enzymes localize to the mitochondrion in Toxoplasma, and whether or not TgRlmN and TgElp3 possess tRNA methyltransferase activity, a series of mutational and biochemical studies were performed. Overexpression of either TgElp3 or TgRlmN resulted in a significant parasite replication defect, but overexpression was tolerated if either the TMD or rSAM domain was mutated. Furthermore, we show the first evidence that Toxoplasma tRNAGlu contains the mcm5s2U modification, which is the putative downstream product generated by TgElp3 activity.

  6. Differential Roles for Inner Membrane Complex Proteins across Toxoplasma gondii and Sarcocystis neurona Development.

    Science.gov (United States)

    Dubey, Rashmi; Harrison, Brooke; Dangoudoubiyam, Sriveny; Bandini, Giulia; Cheng, Katherine; Kosber, Aziz; Agop-Nersesian, Carolina; Howe, Daniel K; Samuelson, John; Ferguson, David J P; Gubbels, Marc-Jan

    2017-01-01

    The inner membrane complex (IMC) of apicomplexan parasites contains a network of intermediate filament-like proteins. The 14 alveolin domain-containing IMC proteins in Toxoplasma gondii fall into different groups defined by their distinct spatiotemporal dynamics during the internal budding process of tachyzoites. Here, we analyzed representatives of different IMC protein groups across all stages of the Toxoplasma life cycle and during Sarcocystis neurona asexual development. We found that across asexually dividing Toxoplasma stages, IMC7 is present exclusively in the mother's cytoskeleton, whereas IMC1 and IMC3 are both present in mother and daughter cytoskeletons (IMC3 is strongly enriched in daughter buds). In developing macro- and microgametocytes, IMC1 and -3 are absent, whereas IMC7 is lost in early microgametocytes but retained in macrogametocytes until late in their development. We found no roles for IMC proteins during meiosis and sporoblast formation. However, we observed that IMC1 and IMC3, but not IMC7, are present in sporozoites. Although the spatiotemporal pattern of IMC15 and IMC3 suggests orthologous functions in Sarcocystis , IMC7 may have functionally diverged in Sarcocystis merozoites. To functionally characterize IMC proteins, we knocked out IMC7, -12, -14, and -15 in Toxoplasma . IMC14 and -15 appear to be involved in switching between endodyogeny and endopolygeny. In addition, IMC7, -12, and -14, which are all recruited to the cytoskeleton outside cytokinesis, are critical for the structural integrity of extracellular tachyzoites. Altogether, stage- and development-specific roles for IMC proteins can be discerned, suggesting different niches for each IMC protein across the entire life cycle. IMPORTANCE The inner membrane complex (IMC) is a defining feature of apicomplexan parasites key to both their motility and unique cell division. To provide further insights into the IMC, we analyzed the dynamics and functions of representative alveolin

  7. Toxoplasma gondii infection in the mountain hare (Lepus timidus) and domestic rabbit (Oryctolagus cuniculus). II. Early immune reactions

    DEFF Research Database (Denmark)

    Gustafsson, K.; Wattrang, E.; Fossum, C.

    1997-01-01

    As already reported, the mountain hare is much more susceptible than the domestic rabbit to oral inoculation with Toxoplasma gondii, as judged by pathological changes and dissemination of parasites within the body. In the present paper, further interspecies variations are reported. Concentrations...

  8. Occurrence of Toxoplasma gondii antibodies in Lowland Tapirs (Tapirus terrestris) maintained ex-situ in Brazil and Paraguay

    Science.gov (United States)

    Exposure to Toxoplasma gondii, by the presence of antibodies to the parasite, was documented in 47 Brazilian tapirs (Tapirus terrestris) maintained ex-situ in 10 Brazilian and in one Paraguayan Institution. One animal had samples collected on two occasions (November 2010 and October 2011), and 19 (4...

  9. Enforcing host cell polarity: an apicomplexan parasite strategy towards dissemination.

    Science.gov (United States)

    Baumgartner, Martin

    2011-08-01

    The propagation of apicomplexan parasites through transmitting vectors is dependent on effective dissemination of parasites inside the mammalian host. Intracellular Toxoplasma and Theileria parasites face the challenge that their spread inside the host depends in part on the motile capacities of their host cells. In response, these parasites influence the efficiency of dissemination by altering adhesive and/or motile properties of their host cells. Theileria parasites do so by targeting signalling pathways that control host cell actin dynamics. The resulting enforced polar host cell morphology facilitates motility and invasiveness, by establishing focal adhesion and invasion structures at the leading edge of the infected cell. This parasite strategy highlights mechanisms of motility regulation that are also likely relevant for immune or cancer cell motility. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Polyparasitism Is Associated with Increased Disease Severity in Toxoplasma gondii-Infected Marine Sentinel Species

    Science.gov (United States)

    Gibson, Amanda K.; Raverty, Stephen; Lambourn, Dyanna M.; Huggins, Jessica; Magargal, Spencer L.; Grigg, Michael E.

    2011-01-01

    In 1995, one of the largest outbreaks of human toxoplasmosis occurred in the Pacific Northwest region of North America. Genetic typing identified a novel Toxoplasma gondii strain linked to the outbreak, in which a wide spectrum of human disease was observed. For this globally-distributed, water-borne zoonosis, strain type is one variable influencing disease, but the inability of strain type to consistently explain variations in disease severity suggests that parasite genotype alone does not determine the outcome of infection. We investigated polyparasitism (infection with multiple parasite species) as a modulator of disease severity by examining the association of concomitant infection of T. gondii and the related parasite Sarcocystis neurona with protozoal disease in wild marine mammals from the Pacific Northwest. These hosts ostensibly serve as sentinels for the detection of terrestrial parasites implicated in water-borne epidemics of humans and wildlife in this endemic region. Marine mammals (151 stranded and 10 healthy individuals) sampled over 6 years were assessed for protozoal infection using multi-locus PCR-DNA sequencing directly from host tissues. Genetic analyses uncovered a high prevalence and diversity of protozoa, with 147/161 (91%) of our sampled population infected. From 2004 to 2009, the relative frequency of S. neurona infections increased dramatically, surpassing that of T. gondii. The majority of T. gondii infections were by genotypes bearing Type I lineage alleles, though strain genotype was not associated with disease severity. Significantly, polyparasitism with S. neurona and T. gondii was common (42%) and was associated with higher mortality and more severe protozoal encephalitis. Our finding of widespread polyparasitism among marine mammals indicates pervasive contamination of waterways by zoonotic agents. Furthermore, the significant association of concomitant infection with mortality and protozoal encephalitis identifies polyparasitism as

  11. Polyparasitism is associated with increased disease severity in Toxoplasma gondii-infected marine sentinel species.

    Directory of Open Access Journals (Sweden)

    Amanda K Gibson

    2011-05-01

    Full Text Available In 1995, one of the largest outbreaks of human toxoplasmosis occurred in the Pacific Northwest region of North America. Genetic typing identified a novel Toxoplasma gondii strain linked to the outbreak, in which a wide spectrum of human disease was observed. For this globally-distributed, water-borne zoonosis, strain type is one variable influencing disease, but the inability of strain type to consistently explain variations in disease severity suggests that parasite genotype alone does not determine the outcome of infection. We investigated polyparasitism (infection with multiple parasite species as a modulator of disease severity by examining the association of concomitant infection of T. gondii and the related parasite Sarcocystis neurona with protozoal disease in wild marine mammals from the Pacific Northwest. These hosts ostensibly serve as sentinels for the detection of terrestrial parasites implicated in water-borne epidemics of humans and wildlife in this endemic region. Marine mammals (151 stranded and 10 healthy individuals sampled over 6 years were assessed for protozoal infection using multi-locus PCR-DNA sequencing directly from host tissues. Genetic analyses uncovered a high prevalence and diversity of protozoa, with 147/161 (91% of our sampled population infected. From 2004 to 2009, the relative frequency of S. neurona infections increased dramatically, surpassing that of T. gondii. The majority of T. gondii infections were by genotypes bearing Type I lineage alleles, though strain genotype was not associated with disease severity. Significantly, polyparasitism with S. neurona and T. gondii was common (42% and was associated with higher mortality and more severe protozoal encephalitis. Our finding of widespread polyparasitism among marine mammals indicates pervasive contamination of waterways by zoonotic agents. Furthermore, the significant association of concomitant infection with mortality and protozoal encephalitis identifies

  12. Role of the Ubiquitin-Proteasome Systems in the Biology and Virulence of Protozoan Parasites

    Directory of Open Access Journals (Sweden)

    Christian Muñoz

    2015-01-01

    Full Text Available In eukaryotic cells, proteasomes perform crucial roles in many cellular pathways by degrading proteins to enforce quality control and regulate many cellular processes such as cell cycle progression, signal transduction, cell death, immune responses, metabolism, protein-quality control, and development. The catalytic heart of these complexes, the 20S proteasome, is highly conserved in bacteria, yeast, and humans. However, until a few years ago, the role of proteasomes in parasite biology was completely unknown. Here, we summarize findings about the role of proteasomes in protozoan parasites biology and virulence. Several reports have confirmed the role of proteasomes in parasite biological processes such as cell differentiation, cell cycle, proliferation, and encystation. Proliferation and cell differentiation are key steps in host colonization. Considering the importance of proteasomes in both processes in many different parasites such as Trypanosoma, Leishmania, Toxoplasma, and Entamoeba, parasite proteasomes might serve as virulence factors. Several pieces of evidence strongly suggest that the ubiquitin-proteasome pathway is also a viable parasitic therapeutic target. Research in recent years has shown that the proteasome is a valid drug target for sleeping sickness and malaria. Then, proteasomes are a key organelle in parasite biology and virulence and appear to be an attractive new chemotherapeutic target.

  13. Toxoplasma gondii infection reduces predator aversion in rats through epigenetic modulation in the host medial amygdala.

    Science.gov (United States)

    Hari Dass, Shantala Arundhati; Vyas, Ajai

    2014-12-01

    Male rats (Rattus novergicus) infected with protozoan Toxoplasma gondii relinquish their innate aversion to the cat odours. This behavioural change is postulated to increase transmission of the parasite to its definitive felid hosts. Here, we show that the Toxoplasma gondii infection institutes an epigenetic change in the DNA methylation of the arginine vasopressin promoter in the medial amygdala of male rats. Infected animals exhibit hypomethylation of arginine vasopressin promoter, leading to greater expression of this nonapeptide. The infection also results in the greater activation of the vasopressinergic neurons after exposure to the cat odour. Furthermore, we show that loss of fear in the infected animals can be rescued by the systemic hypermethylation and recapitulated by directed hypomethylation in the medial amygdala. These results demonstrate an epigenetic proximate mechanism underlying the extended phenotype in the Rattus novergicus-Toxoplasma gondii association. © 2014 John Wiley & Sons Ltd.

  14. Seroprevalence of Toxoplasma gondii infection among patients with non-schizophrenic neurodevelopmental disorders in Alexandria, Egypt.

    Science.gov (United States)

    Shehata, Amany I; Hassanein, Faika I; Abdul-Ghani, Rashad

    2016-02-01

    Toxoplasma gondii is an opportunistic parasite with neurotropic characteristics that can mediate neurodevelopmental disorders, including mental, behavioral and personality aspects of their hosts. Therefore, the seroprevalence of anti-Toxoplasma antibodies has been studied in patients with different neurological disorders from different localities. On searching online databases, however, we could not find published studies on the seroprevalence of anti-Toxoplasma antibodies among patients with neurodevelopmental disorders in Egypt. Therefore, the present preliminary study was conducted to determine the serological profile of T. gondii infection among patients with non-schizophrenic neurodevelopmental disorders in Alexandria, Egypt. Data and blood samples were collected from 188 patients recruited for the study from four mental rehabilitation centers in the period from July 2014 to March 2015. The overall seropositivity rates of IgM and IgG among patients were 16.5% (31/188) and 50.0% (94/188), respectively. Of the studied patients' characteristics, only age was significantly associated with anti-Toxoplasma IgG seropositivity, with older patients being about twice more likely exposed to infection. However, no statistically significant association was found with IgM. In addition, seropositivity of anti-Toxoplasma IgG, but not IgM, was significantly associated with non-schizophrenic neurodevelopmental disorders; however, neither IgG nor IgM showed a significant association with cognitive impairment as indicated by the intelligence quotient scores. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Taxonomy Icon Data: Toxoplasma gondii [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Toxoplasma gondii Toxoplasma gondii Toxoplasma_gondii_L.png Toxoplasma_gondii_NL.png Toxoplasma..._gondii_S.png Toxoplasma_gondii_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Toxoplasma...+gondii&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Toxoplasma+gondii&t=NL http://biosciencedbc.j...p/taxonomy_icon/icon.cgi?i=Toxoplasma+gondii&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Toxoplas...ma+gondii&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=113 ...

  16. Concentration and retention of Toxoplasma gondii surrogates from seawater by red abalone (Haliotis rufescens)

    Science.gov (United States)

    Schott, Kristen C; Krusor, Colin; Tinker, M. Tim; Moore, James G.; Conrad, Patricia A.; Shapiro, Karen

    2016-01-01

    Small marine snails and abalone have been identified as high- and low-risk prey items, respectively, for exposure of threatened southern sea otters to Toxoplasma gondii, a zoonotic parasite that can cause fatal encephalitis in animals and humans. While recent work has characterized snails as paratenic hosts for T. gondii, the ability of abalone to vector the parasite has not been evaluated. To further elucidate why abalone predation may be protective against T. gondii exposure, this study aimed to determine whether: (1) abalone are physiologically capable of acquiring T. gondii; and (2) abalone and snails differ in their ability to concentrate and retain the parasite. Abalone were exposed to T. gondii surrogate microspheres for 24 h, and fecal samples were examined for 2 weeks following exposure. Concentration of surrogates was 2–3 orders of magnitude greater in abalone feces than in the spiked seawater, and excretion of surrogates continued for 14 days post-exposure. These results indicate that, physiologically, abalone and snails can equally vector T. gondii as paratenic hosts. Reduced risk of T. gondii infection in abalone-specializing otters may therefore result from abalone's high nutritional value, which implies otters must consume fewer animals to meet their caloric needs.

  17. Concentration and retention of Toxoplasma gondii surrogates from seawater by red abalone (Haliotis rufescens).

    Science.gov (United States)

    Schott, Kristen C; Krusor, Colin; Tinker, M Tim; Moore, James; Conrad, Patricia A; Shapiro, Karen

    2016-11-01

    Small marine snails and abalone have been identified as high- and low-risk prey items, respectively, for exposure of threatened southern sea otters to Toxoplasma gondii, a zoonotic parasite that can cause fatal encephalitis in animals and humans. While recent work has characterized snails as paratenic hosts for T. gondii, the ability of abalone to vector the parasite has not been evaluated. To further elucidate why abalone predation may be protective against T. gondii exposure, this study aimed to determine whether: (1) abalone are physiologically capable of acquiring T. gondii; and (2) abalone and snails differ in their ability to concentrate and retain the parasite. Abalone were exposed to T. gondii surrogate microspheres for 24 h, and fecal samples were examined for 2 weeks following exposure. Concentration of surrogates was 2-3 orders of magnitude greater in abalone feces than in the spiked seawater, and excretion of surrogates continued for 14 days post-exposure. These results indicate that, physiologically, abalone and snails can equally vector T. gondii as paratenic hosts. Reduced risk of T. gondii infection in abalone-specializing otters may therefore result from abalone's high nutritional value, which implies otters must consume fewer animals to meet their caloric needs.

  18. Latitudinal variability in the seroprevalence of antibodies against Toxoplasma gondii in non-migrant and Arctic migratory geese

    NARCIS (Netherlands)

    Sandstrom, Cecilia A. M.; Buma, Anita G. J.; Hoye, Bethany J.; Prop, Jouke; van der Jeugd, Henk; Voslamber, Berend; Madsen, Jesper; Loonen, Maarten J. J. E.

    2013-01-01

    Toxoplasma gondii is an intracellular coccidian parasite found worldwide and is known to infect virtually all warm-blooded animals. It requires a cat (family Felidae) to complete its full life cycle. Despite the absence of wild felids on the Arctic archipelago of Svalbard, T. gondii has been found

  19. Induction of interferon-stimulated genes by IRF3 promotes replication of Toxoplasma gondii.

    Science.gov (United States)

    Majumdar, Tanmay; Chattopadhyay, Saurabh; Ozhegov, Evgeny; Dhar, Jayeeta; Goswami, Ramansu; Sen, Ganes C; Barik, Sailen

    2015-03-01

    Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell

  20. Toxoplasma DJ-1 Regulates Organelle Secretion by a Direct Interaction with Calcium-Dependent Protein Kinase 1

    Science.gov (United States)

    Child, Matthew A.; Garland, Megan; Foe, Ian; Madzelan, Peter; Treeck, Moritz; van der Linden, Wouter A.; Oresic Bender, Kristina; Weerapana, Eranthie; Wilson, Mark A.; Boothroyd, John C.; Reese, Michael L.

    2017-01-01

    ABSTRACT Human DJ-1 is a highly conserved and yet functionally enigmatic protein associated with a heritable form of Parkinson’s disease. It has been suggested to be a redox-dependent regulatory scaffold, binding to proteins to modulate their function. Here we present the X-ray crystal structure of the Toxoplasma orthologue Toxoplasma gondii DJ-1 (TgDJ-1) at 2.1-Å resolution and show that it directly associates with calcium-dependent protein kinase 1 (CDPK1). The TgDJ-1 structure identifies an orthologously conserved arginine dyad that acts as a phospho-gatekeeper motif to control complex formation. We determined that the binding of TgDJ-1 to CDPK1 is sensitive to oxidation and calcium, and that this interaction potentiates CDPK1 kinase activity. Finally, we show that genetic deletion of TgDJ-1 results in upregulation of CDPK1 expression and that disruption of the CDPK1/TgDJ-1 complex in vivo prevents normal exocytosis of parasite virulence-associated organelles called micronemes. Overall, our data suggest that TgDJ-1 functions as a noncanonical kinase-regulatory scaffold that integrates multiple intracellular signals to tune microneme exocytosis in T. gondii. PMID:28246362

  1. Human Parasites in Medieval Europe: Lifestyle, Sanitation and Medical Treatment.

    Science.gov (United States)

    Mitchell, Piers D

    2015-01-01

    Parasites have been infecting humans throughout our evolution. However, not all people suffered with the same species or to the same intensity throughout this time. Our changing way of life has altered the suitability of humans to infection by each type of parasite. This analysis focuses upon the evidence for parasites from archaeological excavations at medieval sites across Europe. Comparison between the patterns of infection in the medieval period allows us to see how changes in sanitation, herding animals, growing and fertilizing crops, the fishing industry, food preparation and migration all affected human susceptibility to different parasites. We go on to explore how ectoparasites may have spread infectious bacterial diseases, and also consider what medieval medical practitioners thought of parasites and how they tried to treat them. While modern research has shown the use of a toilet decreases the risk of contracting certain intestinal parasites, the evidence for past societies presented here suggests that the invention of latrines had no observable beneficial effects upon intestinal health. This may be because toilets were not sufficiently ubiquitous until the last century, or that the use of fresh human faeces for manuring crops still ensured those parasite species were easily able to reinfect the population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Fatal attraction phenomenon in humans: cat odour attractiveness increased for toxoplasma-infected men while decreased for infected women.

    Directory of Open Access Journals (Sweden)

    Jaroslav Flegr

    2011-11-01

    Full Text Available Latent toxoplasmosis, a lifelong infection with the protozoan Toxoplasma gondii, has cumulative effects on the behaviour of hosts, including humans. The most impressive effect of toxoplasmosis is the "fatal attraction phenomenon," the conversion of innate fear of cat odour into attraction to cat odour in infected rodents. While most behavioural effects of toxoplasmosis were confirmed also in humans, neither the fatal attraction phenomenon nor any toxoplasmosis-associated changes in olfactory functions have been searched for in them.Thirty-four Toxoplasma-infected and 134 noninfected students rated the odour of urine samples from cat, horse, tiger, brown hyena and dog for intensity and pleasantness. The raters were blind to their infection status and identity of the samples. No signs of changed sensitivity of olfaction were observed. However, we found a strong, gender dependent effect of toxoplasmosis on the pleasantness attributed to cat urine odour (p = 0.0025. Infected men rated this odour as more pleasant than did the noninfected men, while infected women rated the same odour as less pleasant than did noninfected women. Toxoplasmosis did not affect how subjects rated the pleasantness of any other animal species' urine odour; however, a non-significant trend in the same directions was observed for hyena urine.The absence of the effects of toxoplasmosis on the odour pleasantness score attributed to large cats would suggest that the amino acid felinine could be responsible for the fatal attraction phenomenon. Our results also raise the possibility that the odour-specific threshold deficits observed in schizophrenia patients could be caused by increased prevalence of Toxoplasma-infected subjects in this population rather than by schizophrenia itself. The trend observed with the hyena urine sample suggests that this carnivore, and other representatives of the Feliformia suborder, should be studied for their possible role as definitive hosts in

  3. Host-Parasite Interaction: Parasite-Derived and -Induced Proteases That Degrade Human Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Carolina Piña-Vázquez

    2012-01-01

    Full Text Available Parasitic protozoa are among the most important pathogens worldwide. Diseases such as malaria, leishmaniasis, amoebiasis, giardiasis, trichomoniasis, and trypanosomiasis affect millions of people. Humans are constantly threatened by infections caused by these pathogens. Parasites engage a plethora of surface and secreted molecules to attach to and enter mammalian cells. The secretion of lytic enzymes by parasites into host organs mediates critical interactions because of the invasion and destruction of interstitial tissues, enabling parasite migration to other sites within the hosts. Extracellular matrix is a complex, cross-linked structure that holds cells together in an organized assembly and that forms the basement membrane lining (basal lamina. The extracellular matrix represents a major barrier to parasites. Therefore, the evolution of mechanisms for connective-tissue degradation may be of great importance for parasite survival. Recent advances have been achieved in our understanding of the biochemistry and molecular biology of proteases from parasitic protozoa. The focus of this paper is to discuss the role of protozoan parasitic proteases in the degradation of host ECM proteins and the participation of these molecules as virulence factors. We divide the paper into two sections, extracellular and intracellular protozoa.

  4. Evidence for glycosyl-phosphatidylinositol anchoring of Toxoplasma gondii major surface antigens

    International Nuclear Information System (INIS)

    Tomavo, S.; Schwarz, R.T.; Dubremetz, J.F.

    1989-01-01

    The four major surface antigens of Toxoplasma gondii tachyzoites (P43, P35, P30, and P22) were made water soluble by phosphatidylinositol-specific phospholipase C (PI-PLC). These antigens were biosynthetically labeled with 3 H-fatty acids, [ 3 H]ethanolamine, and [ 3 H]carbohydrates. Treatment of 3 H-fatty-acid-labeled parasite lysates with PI-PLC removed the radioactive label from these antigens. A cross-reacting determinant was exposed on these antigens after PI-PLC treatment

  5. Seroprevalence rates of antibodies againstLeishmania infantum and other protozoan and rickettsial parasites in dogs

    Directory of Open Access Journals (Sweden)

    Silvana de Cássia Paulan

    Full Text Available Canine visceral leishmaniasis (CVL is caused by the protozoan Leishmania infantum, which infects dogs and humans in many regions of Brazil. The present study involved an indirect fluorescent antibody test (IFAT to analyze L. infantum,Ehrlichia spp., Babesia canis,Toxoplasma gondii and Neospora caninuminfection rates in serum samples from 93 dogs in a rural settlement in Ilha Solteira, SP, Brazil. The seroprevalence rates of anti-L. infantum, anti-Ehrlichia, anti-B. canis, anti-T. gondii and anti-N. caninum antibodies were 37.6%, 75.3%, 72%, 47.3% and 6.4%, respectively. In addition to IFAT, direct microscopic examination of popliteal lymph node aspirates revealed 26.9% of CVL positive dogs. Serological tests revealed that 17.2% of the dogs were seropositive for a single parasite, 29% for two parasites, 33% for three, 16.1% for four, and 1.1% for five parasites, while 3.2% were seronegative for five parasites. The presence of antibodies against these parasites in serum samples from dogs confirmed their exposure to these parasites in this rural area. Because of the potential zoonotic risk of these diseases, mainly leishmaniasis, ehrlichiosis and toxoplasmosis, special attention should focus on programs for the improvement of diagnostic assays and control measures against these parasites.

  6. The Effect of Toxoplasma gondii on Animal Behavior: Playing Cat and Mouse

    OpenAIRE

    Webster, Joanne P.

    2007-01-01

    A convincing body of evidence now exists to indicate that the ubiquitous protozoan Toxoplasma gondii can cause permanent behavioral changes in its host, even as a consequence of adult-acquired latent infection. Such behavioral alterations appear to be the product of strong selective pressures for the parasite to enhance transmission from its intermediate host reservoir, primarily rodent, to its feline definitive host, wherein sexual reproduction can occur and the life cycle completed. This ar...

  7. Blood protozoan parasites of rodents in Jos, Plateau State, Nigerai ...

    African Journals Online (AJOL)

    One hundred and thirty rodents, comprising nine different species caught from seven different locations in Jos, Nigeria, were examined for blood protozoan parasites, and 82(63.08%) were positive, with Plasmodium 63(48.46%), Trypanosoma 4(3.08%), Toxoplasma 6(4.62%), Babesia 7(5.38%) and Anaplasma 2(1.54%).

  8. People, pets, and parasites: one health surveillance in southeastern Saskatchewan.

    Science.gov (United States)

    Schurer, Janna M; Ndao, Momar; Quewezance, Helen; Elmore, Stacey A; Jenkins, Emily J

    2014-06-01

    Residents of remote and Indigenous communities might experience higher exposure to some zoonotic parasites than the general North American population. Human sero-surveillance conducted in two Saulteaux communities found 113 volunteers exposed as follows: Trichinella (2.7%), Toxocara canis (4.4%), Echinococcus (4.4%), and Toxoplasma gondii (1.8%). In dogs, 41% of 51 fecal samples were positive for at least one intestinal parasite, 3% of 77 were sero-positive for Borrelia burgdorferi, and 21% of 78 for T. gondii. Echinococcus exposure was more likely to occur in non-dog owners (odds ratio [OR]: 11.4, 95% confidence interval [CI]: 1.2-107, P = 0.03); while T. canis was more likely to occur in children (ages 4-17) (OR: 49, 95% CI: 3.9-624; P = 0.003), and those with a history of dog bites (OR: 13.5, 95% CI: 1.02-179; P = 0.048). Our results emphasize the use of dogs as sentinels for emerging pathogens such as Lyme disease, and the need for targeted surveillance and intervention programs tailored for parasite species, cultural groups, and communities. © The American Society of Tropical Medicine and Hygiene.

  9. First molecular evidence of Toxoplasma gondii in opossums (Didelphis virginiana) from Yucatan, Mexico

    OpenAIRE

    Torres-Castro, M.; Noh-Pech, H.; Puerto-Hern?ndez, R.; Reyes-Hern?ndez, B.; Panti-May, A.; Hern?ndez-Betancourt, S.; Yeh-Gorocica, A.; Gonz?lez-Herrera, L.; Zavala-Castro, J.; Puerto, F.I.

    2016-01-01

    Toxoplasma gondii is an obligate intracellular parasite recognized as a causal agent of toxoplasmosis; zoonotic disease endemic in many countries worldwide, including Mexico. Different species of animals participate in the wild cycle infection, including opossums of the species Didelphis virginiana. Thirteen D. virginiana were captured in Yucatan, Mexico. Detection of T. gondii was achieved by Polymerase Chain Reaction, which determined an infection of 76.9% (10/13) in brains. Positive amplic...

  10. The structure of bradyzoite-specific enolase from Toxoplasma gondii reveals insights into its dual cytoplasmic and nuclear functions

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Jiapeng [Northwestern University, 320 E. Superior Street, Morton 7-601, Chicago, IL 60611 (United States); Mouveaux, Thomas [Université Lille Nord de France, (France); Light, Samuel H.; Minasov, George; Anderson, Wayne F. [Northwestern University, 320 E. Superior Street, Morton 7-601, Chicago, IL 60611 (United States); Tomavo, Stanislas [Université Lille Nord de France, (France); Ngô, Huân M., E-mail: h-ngo@northwestern.edu [Northwestern University, 320 E. Superior Street, Morton 7-601, Chicago, IL 60611 (United States); BrainMicro LLC, 21 Pendleton Street, New Haven, CT 06511 (United States)

    2015-03-01

    The second crystal structure of a parasite protein preferentially enriched in the brain cyst of T. gondii has been solved at 2.75 Å resolution. Bradyzoite enolase 1 is reported to have differential functions as a glycolytic enzyme and a transcriptional regulator in bradyzoites. In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2) in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein in Toxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops. The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated in vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts.

  11. An overexpression screen of Toxoplasma gondii Rab-GTPases reveals distinct transport routes to the micronemes.

    Directory of Open Access Journals (Sweden)

    Katrin Kremer

    2013-03-01

    Full Text Available The basic organisation of the endomembrane system is conserved in all eukaryotes and comparative genome analyses provides compelling evidence that the endomembrane system of the last common eukaryotic ancestor (LCEA is complex with many genes required for regulated traffic being present. Although apicomplexan parasites, causative agents of severe human and animal diseases, appear to have only a basic set of trafficking factors such as Rab-GTPases, they evolved unique secretory organelles (micronemes, rhoptries and dense granules that are sequentially secreted during invasion of the host cell. In order to define the secretory pathway of apicomplexans, we performed an overexpression screen of Rabs in Toxoplasma gondii and identified Rab5A and Rab5C as important regulators of traffic to micronemes and rhoptries. Intriguingly, we found that not all microneme proteins traffic depends on functional Rab5A and Rab5C, indicating the existence of redundant microneme targeting pathways. Using two-colour super-resolution stimulated emission depletion (STED we verified distinct localisations of independent microneme proteins and demonstrate that micronemal organelles are organised in distinct subsets or subcompartments. Our results suggest that apicomplexan parasites modify classical regulators of the endocytic system to carryout essential parasite-specific roles in the biogenesis of their unique secretory organelles.

  12. Seropositive pigs to Toxoplasma gondii (Apicomplexa: Toxoplasmatinae sent to slaughter and destined for human consumption

    Directory of Open Access Journals (Sweden)

    Wanderley M. de Almeida

    2015-12-01

    Full Text Available ABSTRACT. de Almdeida W., Miranda Z.B., Flausino W., Coelho C.D., Fonseca A.B.M. & Lopes C.W.G. [Seropositive pigs to Toxoplasma gondii (Apicomplexa: Toxoplasmatinae sent to slaughter and destined for human consumption.] Suínos sororreagentes a Toxoplasma gondii (Apicomplexa: Toxoplasmatinae enviados para abate e destinados ao consumo humano. Revista Brasileira de Medicina Veterinária, 37(4:397-400, 2015. Curso de Pós-Graduação em Medicina Veterinária - Higiene Veterinária e Processamento Tecnológico de Produtos de Origem Animal, Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brasil Filho, 64, Vital Brazil, Niterói, RJ 24230-340, Brasil. E-mail: wanderleyma@yahoo.com.br This study aimed to determine the frequency of pigs seropositive to Toxoplasma gondii by indirect immunofluorescence assay with cutoff 1:16. Of blood samples collected at slaughter, 250 of them were from animals raised in the State of Minas Gerais; while 181 were from the State of Rio de Janeiro with a total of 431 examined samples. Of these, 19/250 (4.41% of MG and 39/181 (9.04% of RJ, determining a total of 13.45% seropositive animals. Regardless of slaughter be under the control of the inspection service, the precedence of the animals was highly significant (p = 0.0001 in the number of seropositive animals. Although the percentage of seropositive animals to T. gondii from both regions studied in this work, and from the point of view of a public health problem, pork and its frescal type products may continue to be considered as a source of infection of this coccidia for humans, if they are consumed as raw or undercooked.

  13. Toxoplasmosis: The value of molecular methods in diagnosis compared to conventional methods

    Directory of Open Access Journals (Sweden)

    Zineb Tlamçani

    2013-06-01

    Full Text Available Toxoplasmosis is a parasitic infection due to Toxoplasma gondii an obligate intracellular protozoan parasite. It is considerateone of the most common parasite worldwide. The contamination of the parasite is generally occurred via consumptionof infected food or water or, undercooked contaminated meat. Toxoplasma gondii infection may lead to seriousillness when the organism is contracted while pregnancy or when it is reactivated in immune-suppressed persons.Diagnosis of toxoplasmosis in humans is elaborated using various techniques such as detection of anti-Toxoplasmaantibodies, mouse inoculation, histological revelation of tachyzoites in tissue sections or smears of body fluid, but thedetection of Toxoplasma gondii DNA by molecular methods has revolutionized prenatal diagnosis of congenital toxoplasmosisand in immunocompromised patients. In this paper we will discuss the parasite and different methods ofdiagnosis including the usefulness of molecular methods. J Microbiol Infect Dis 2013; 3(2: 93-99Key words: Toxoplamosis, Toxoplasma gondii, diagnosis

  14. Toxoplasma gondii and schizophrenia: a review of published RCTs.

    Science.gov (United States)

    Chorlton, Sam D

    2017-07-01

    Over the last 60 years, accumulating evidence has suggested that acute, chronic, and maternal Toxoplasma gondii infections predispose to schizophrenia. More recent evidence suggests that chronically infected patients with schizophrenia present with more severe disease. After acute infection, parasites form walled cysts in the brain, leading to lifelong chronic infection and drug resistance to commonly used antiparasitics. Chronic infection is the most studied and closely linked with development and severity of schizophrenia. There are currently four published randomized controlled trials evaluating antiparasitic drugs, specifically azithromycin, trimethoprim, artemisinin, and artemether, in patients with schizophrenia. No trials have demonstrated a change in psychopathology with adjunctive treatment. Published trials have either selected drugs without evidence against chronic infection or used them at doses too low to reduce brain cyst burden. Furthermore, trials have failed to achieve sufficient power or account for confounders such as previous antipsychotic treatment, sex, age, or rhesus status on antiparasitic effect. There are currently no ongoing trials of anti-Toxoplasma therapy in schizophrenia despite ample evidence to justify further testing.

  15. Toxoplasma-safe meat: close to reality?

    NARCIS (Netherlands)

    Kijlstra, A.; Jongert, E.

    2009-01-01

    In 2008, the centennial of the discovery of Toxoplasma gondii was celebrated. However, toxoplasmosis is still seen as a neglected and underreported disease, despite having a disease burden similar to that of salmonellosis and campylobacteriosis. Human vaccines are not available and current

  16. Prevalence of Toxoplasma gondii infection in HIV-infected patients and food animals and direct genotyping of T. gondii isolates, Southern Ghana.

    Science.gov (United States)

    Pappoe, Faustina; Cheng, Weisheng; Wang, Lin; Li, Yuanling; Obiri-Yeboah, Dorcas; Nuvor, Samuel Victor; Ambachew, Henock; Hu, Xiaodong; Luo, Qingli; Chu, Deyong; Xu, Yuanhong; Shen, Jilong

    2017-06-01

    Toxoplasma gondii is of public health and veterinary importance causing severe diseases in immunocompromised individuals including HIV/AIDS patients and in congenital cases and animals. There is limited information on the epidemiology of T. gondii infection in humans, particularly HIV patients and food animals and the parasite genotypes in Ghana. A total of 394 HIV-infected patients from three hospitals were screened for T. gondii anti-IgG and IgM using ELISA. DNAs from blood samples of seropositve participants and 95 brain tissues of food animals were PCR assayed to detect Toxoplasma gra6. DNA positive samples were genotyped using multilocus nested polymerase chain reaction restriction fragment length polymorphism at 10 loci: sag1, alt.sag2, sag3, btub, gra6, l358, c22-8, c29-2, pk1, and apico. The overall seroprevalence was 74.37% (293/394). Toxoplasma DNAs were detected in 3.07% of the seropositive participants and 9.47% of the animals. Six of the human DNA positive samples were partly typed at sag3: 33.33, 50, and 16.67% isolates had type I, II, and III alleles, respectively. All nine isolates from food animals typed at nine loci except apico were atypical: six isolates were identical to ToxoDB #41 and #145, and one was identical to TgCkBrRj2 all identified in Brazil. The genotype of two isolates has not been reported previously and was named as TgCtGh1. T. gondii seroprevalence is high among the HIV-infected individuals with T. gondii circulating in Ghana being genetically diverse.

  17. Toxoplasma gondii chromodomain protein 1 binds to heterochromatin and colocalises with centromeres and telomeres at the nuclear periphery.

    Directory of Open Access Journals (Sweden)

    Mathieu Gissot

    Full Text Available BACKGROUND: Apicomplexan parasites are responsible for some of the most deadly parasitic diseases afflicting humans, including malaria and toxoplasmosis. These obligate intracellular parasites exhibit a complex life cycle and a coordinated cell cycle-dependant expression program. Their cell division is a coordinated multistep process. How this complex mechanism is organised remains poorly understood. METHODS AND FINDINGS: In this study, we provide evidence for a link between heterochromatin, cell division and the compartmentalisation of the nucleus in Toxoplasma gondii. We characterised a T. gondii chromodomain containing protein (named TgChromo1 that specifically binds to heterochromatin. Using ChIP-on-chip on a genome-wide scale, we report TgChromo1 enrichment at the peri-centromeric chromatin. In addition, we demonstrate that TgChromo1 is cell-cycle regulated and co-localised with markers of the centrocone. Through the loci-specific FISH technique for T. gondii, we confirmed that TgChromo1 occupies the same nuclear localisation as the peri-centromeric sequences. CONCLUSION: We propose that TgChromo1 may play a role in the sequestration of chromosomes at the nuclear periphery and in the process of T. gondii cell division.

  18. Targeted mutagenesis in a human-parasitic nematode

    Science.gov (United States)

    Gang, Spencer S.; Castelletto, Michelle L.

    2017-01-01

    Parasitic nematodes infect over 1 billion people worldwide and cause some of the most common neglected tropical diseases. Despite their prevalence, our understanding of the biology of parasitic nematodes has been limited by the lack of tools for genetic intervention. In particular, it has not yet been possible to generate targeted gene disruptions and mutant phenotypes in any parasitic nematode. Here, we report the development of a method for introducing CRISPR-Cas9-mediated gene disruptions in the human-parasitic threadworm Strongyloides stercoralis. We disrupted the S. stercoralis twitchin gene unc-22, resulting in nematodes with severe motility defects. Ss-unc-22 mutations were resolved by homology-directed repair when a repair template was provided. Omission of a repair template resulted in deletions at the target locus. Ss-unc-22 mutations were heritable; we passed Ss-unc-22 mutants through a host and successfully recovered mutant progeny. Using a similar approach, we also disrupted the unc-22 gene of the rat-parasitic nematode Strongyloides ratti. Our results demonstrate the applicability of CRISPR-Cas9 to parasitic nematodes, and thereby enable future studies of gene function in these medically relevant but previously genetically intractable parasites. PMID:29016680

  19. Parasites of wild animals as a potential source of hazard to humans.

    Science.gov (United States)

    Gałęcki, Remigiusz; Sokół, Rajmund; Koziatek, Sylwia

    2015-01-01

    The decline in wild animal habitats and the uncontrolled growth of their population make these animals come closer to human settlements. The aim of the study was to identify parasitic infections in wild animals in the selected area, and to specify the hazards they create for humans. In more than 66% of the analysed faecal samples from wild boar, hares, roe deer, deer and fallow deer various developmental forms of parasites were found. These included parasites dangerous for humans: Toxocara canis, Capillaria hepatica, Capillaria bovis, Trichuris suis, Trichuris ovis, Trichuris globulosus, Eimeria spp., and Trichostongylus spp. It is necessary to monitor parasitic diseases in wild animals as they can lead to the spread of parasites creating a hazard to humans, pets and livestock.

  20. Fundamental Roles of the Golgi-Associated Toxoplasma Aspartyl Protease, ASP5, at the Host-Parasite Interface

    Czech Academy of Sciences Publication Activity Database

    Hammoudi, P.-M.; Jacot, D.; Mueller, C.; Di Cristina, M.; Dogga, S.K.; Marq, J.-B.; Romano, J.; Tosetti, N.; Dubrot, J.; Emre, Y.; Lunghi, M.; Coppens, I.; Yamamoto, M.; Sojka, Daniel; Pino, P.; Soldati-Favre, D.

    2015-01-01

    Roč. 11, č. 10 (2015), e1005211 E-ISSN 1553-7374 Institutional support: RVO:60077344 Keywords : Toxoplasma gondii * Plasmodium proteins * ASP5 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.003, year: 2015

  1. Detection of toxoplasma-specific immunoglobulin G in human sera: performance comparison of in house Dot-ELISA with ECLIA and ELISA.

    Science.gov (United States)

    Teimouri, Aref; Modarressi, Mohammad Hossein; Shojaee, Saeedeh; Mohebali, Mehdi; Zouei, Nima; Rezaian, Mostafa; Keshavarz, Hossein

    2018-05-08

    In the current study, performance of electrochemiluminescence immunoassay (ECLIA) in detection of anti-toxoplasma IgG in human sera was compared with that of enzyme-linked immunosorbent assay (ELISA). Furthermore, performance of an in house Dot-ELISA in detection of anti-toxoplasma IgG was compared with that of ECLIA and ELISA. In total, 219 human sera were tested to detect anti-toxoplasma IgG using Dynex DS2® and Roche Cobas® e411 Automated Analyzers. Discordant results rechecked using immunofluorescence assay (IFA). Then, sera were used in an in house Dot-ELISA to assess toxoplasma-specific IgG. Of the 219 samples, two samples were found undetermined using ECLIA but reactive using ELISA. Using IFA, the two sera were reported unreactive. Furthermore, two samples were found reactive using ECLIA and unreactive using ELISA. These samples were reported reactive using IFA. The overall agreement for the two former methods was 98% (rZ0.98.1; P house Dot-ELISA included sensitivity of 79.5, specificity of 78.2, and accuracy of 78.9%, compared to ECLIA and ELISA. Positive and negative predictive values included 82.9 and 74.2%, respectively. A 100% sensitivity was found in in house Dot-ELISA for highly reactive sera in ECLIA and ELISA. ECLIA is appropriate for the first-line serological screening tests and can replace ELISA due to high speed, sensitivity, and specificity, particularly in large laboratories. Dot-ELISA is a rapid, sensitive, specific, cost-effective, user-friendly, and field-portable technique and hence can be used for screening toxoplasmosis, especially in rural fields or less equipped laboratories.

  2. Parasitic diseases of camels in Iran (1931–2017 – a literature review

    Directory of Open Access Journals (Sweden)

    Sazmand Alireza

    2017-01-01

    Full Text Available Parasitic diseases of camels are major causes of impaired milk and meat production, decreases in performance or even death. Some camel parasites also represent a threat to human health. About 171,500 one-humped camels (Camelus dromedarius and 100–300 two-humped camels (Camelus bactrianus live in Iran. Knowledge of the biodiversity of their parasites is still limited. The present review covers all information about camel parasitic diseases in Iran published as dissertations and in both Iranian and international journals from 1931 to February 2017. Ten genera of Protozoa (Trypanosoma, Eimeria, Cryptosporidium, Toxoplasma, Neospora, Sarcocystis, Besnoitia, Theileria, Babesia and Balantidium, 48 helminth species detected in the digestive system, including three species of Trematoda, four species of Cestoda, and 41 species of Nematoda, as well as helminths from other organs – Echinococcus spp., Dictyocaulus filaria, Thelazia leesei, Dipetalonema evansi and Onchocerca fasciata – have so far been described in Iranian camels. Furthermore, 13 species of hard ticks, mange mites, the myiasis flies Cephalopina titillator and Wohlfahrtia magnifica, and immature stages of the Pentastomida Linguatula serrata have also been reported from camels of Iran. Camel parasitic diseases are a major issue in Iran in terms of economics and public health. The present review offers information for an integrated control programme against economically relevant parasites of camels.

  3. Human intestinal parasites in the past: new findings and a review

    Directory of Open Access Journals (Sweden)

    Marcelo Luiz Carvalho Gonçalves

    2003-01-01

    Full Text Available Almost all known human specific parasites have been found in ancient feces. A review of the paleoparasitological helminth and intestinal protozoa findings available in the literature is presented. We also report the new paleoparasitologic findings from the examination performed in samples collected in New and Old World archaeological sites. New finds of ancylostomid, Ascaris lumbricoides, Trichuris trichiura, Enterobius vermicularis, Trichostrongylus spp., Diphyllobothrium latum, Hymenolepis nana and Acantocephalan eggs are reported. According to the findings, it is probable that A. lumbricoides was originally a human parasite. Human ancylostomids, A. lumbricoides and T. trichiura, found in the New World in pre-Columbian times, have not been introduced into the Americas by land via Beringia. These parasites could not supported the cold climate of the region. Nomadic prehistoric humans that have crossed the Bering Land Bridge from Asia to the Americas in the last glaciation, probably during generations, would have lost these parasites, which life cycles need warm temperatures in the soil to be transmitted from host to host. Alternative routes are discussed for human parasite introduction into the Americas.

  4. Food-borne human parasitic pathogens associated with household cockroaches and houseflies in Nigeria

    Directory of Open Access Journals (Sweden)

    Oyetunde T. Oyeyemi

    2016-03-01

    Full Text Available Cockroaches and houseflies pose significant public health threat owning to their ability to mechanically transmit human intestinal parasites and other disease-causing microorganisms. This study aims at assessing the vectoral capacity of cockroaches and houseflies in the transmission of human intestinal parasites. Intestinal parasite external surface contamination of 130 cockroaches and 150 houseflies caught within dwelling places in Ilishan-Remo town, Ogun State, Nigeria was determined. Cockroaches (six parasite species were more contaminated than houseflies (four parasite species. The most prevalent parasites were Trichuris trichiura (74.0% and hookworm (63.0% in houseflies and cockroaches respectively. There were significant differences in the prevalence of hookworm, T. trichiura and Taenia spp. isolated from cockroaches and houseflies (P < 0.05. There is high contamination of human intestinal parasites in cockroaches and houseflies in human dwelling places in the study area, thus they have the ability to transmit these parasites to unkempt food materials.

  5. Toxoplasma gondii in horse meat intended for human consumption in Romania.

    Science.gov (United States)

    Paştiu, Anamaria Ioana; Györke, Adriana; Kalmár, Zsuzsa; Bolfă, Pompei; Rosenthal, Benjamin Martin; Oltean, Miruna; Villena, Isabelle; Spînu, Marina; Cozma, Vasile

    2015-09-15

    The prevalence of Toxoplasma gondii, an economically important zoonotic protozoan, was investigated in horses slaughtered for export and human consumption in the North of Romania. Pairs of samples, sera and heart tissues, were collected from 82 slaughtered horses. Examination of horse sera by ELISA at a dilution of 1:10, and by modified agglutination test (MAT) at a dilution of 1:6, revealed that 32 (39%) and 31(37.8%) horses, respectively, had antibodies against T. gondii. Using polymerase chain reaction (PCR) analysis, T. gondii DNA was not found in any heart sample collected from horses. By bioassay in mice, we obtained viable isolates of T. gondii from two of ten horses determined to be strongly positive by serological assay/ELISA. The prevalence estimated in horses highlighted the potential risk for human contamination by consumption of raw or undercooked meat. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Seroprevalence of Toxoplasma gondii in the Iranian general population: a systematic review and meta-analysis.

    Science.gov (United States)

    Daryani, Ahmad; Sarvi, Shahabeddin; Aarabi, Mohsen; Mizani, Azadeh; Ahmadpour, Ehsan; Shokri, Azar; Rahimi, Mohammad-Taghi; Sharif, Mehdi

    2014-09-01

    Toxoplasma gondii is one of the most common protozoan parasites with widespread distribution globally. It is the causative agent of Toxoplasma infection, which is prevalent in human and other warm-blooded vertebrates. While T. gondii infection in healthy people is usually asymptomatic, it can lead to serious pathological effects in congenital cases and immunodeficient patients. We sought to identify the seroprevalence rate of Toxoplasma infection in the Iranian general population to develop a comprehensive description of the disease condition in Iran for future use. Electronic databases (PubMed, Google Scholar, Science Direct, and Scopus) and Persian language databases (Magiran, Scientific Information Database [SID], Iran Medex, and Iran Doc) were searched. Furthermore, graduate student dissertations and proceedings of national parasitology congresses were searched manually. Our search resulted in a total of 35 reports published from 1978 to 2012.These include 22 published articles, 1 unpublished study, 8 proceedings from the Iranian conference of parasitology, and 4 graduate student dissertations, resulting in 52,294 individuals and 23,385 IgG seropositive cases. The random errors method was used for this meta-analysis. The result shows that the overall seroprevalence rate of toxoplasmos is among the general population in Iran was 39.3% (95% CI=33.0%-45.7%). There was no significant difference in the seroprevalence rate between male and female patients. A significant linear trend of increasing overall prevalence by age was noted (P<0.0001). In addition, the data indicates that there are high seroprevalence in groups who have direct contact with cats, consume uncooked meat and raw fruits or vegetables, in farmers and Housewife, individuals who have a low level of education, and live in rural areas. To the best of our knowledge, this is the first systematic review of T. gondii infection seroprevalence in Iran, which shows a high prevalence of Toxoplasma infection

  7. DNA Amplification Techniques for the Detection of Toxoplasma gondii Tissue Cysts in Meat Producing Animals: A Narrative Review Article

    Directory of Open Access Journals (Sweden)

    Farooq RIAZ

    2016-12-01

    Full Text Available Background: Toxoplasma gondii is an intracellular parasite, which infects one-third population of world. Humans and animals acquire infection by ingesting oocytes from feces of cats or by meat of other animals having cysts that may lead to congenital, ocular or cephalic toxoplasmosis. Either it is important to detect T. gondii from meat of food animals from retail shops or directly at slaughterhouses, which is meant for export.Methods: The current research was done without time limitation using such terms as follows: “Toxoplasma gondii”, “Meat”, “Tissue cyst”, “PCR”, “LAMP”, “Screening” and “Immunological assay” alone or in combination, in English language. The used electronic databases for searching included as follows: PubMed, Scopus, Google Scholar, Web of Science and Science Direct. The searches were limited to the published papers to English language.Results: Sensitivity of different molecular techniques for diagnosis of Toxoplasma is real-time PCR > LAMP > conventional PCR. In addition to these DNA analysis tools, bioassay in mice and cats is considered as “gold standard” to detect T. gondii. Conclusion: This review article will help the readers for grasping advantages and limitations of different diagnostic tools for screening meat samples for T. gondii. This review also makes bibliography about the type of meat sample to be processed for diagnosis and different primers or sequences to be targeted for T. gondii by number of researches for its detection from meat or tissue sample using DNA amplification techniques.

  8. A unique dual activity amino acid hydroxylase in Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Gaskell

    Full Text Available The genome of the protozoan parasite Toxoplasma gondii was found to contain two genes encoding tyrosine hydroxylase; that produces L-DOPA. The encoded enzymes metabolize phenylalanine as well as tyrosine with substrate preference for tyrosine. Thus the enzymes catabolize phenylalanine to tyrosine and tyrosine to L-DOPA. The catalytic domain descriptive of this class of enzymes is conserved with the parasite enzyme and exhibits similar kinetic properties to metazoan tyrosine hydroxylases, but contains a unique N-terminal extension with a signal sequence motif. One of the genes, TgAaaH1, is constitutively expressed while the other gene, TgAaaH2, is induced during formation of the bradyzoites of the cyst stages of the life cycle. This is the first description of an aromatic amino acid hydroxylase in an apicomplexan parasite. Extensive searching of apicomplexan genome sequences revealed an ortholog in Neospora caninum but not in Eimeria, Cryptosporidium, Theileria, or Plasmodium. Possible role(s of these bi-functional enzymes during host infection are discussed.

  9. Detection and genotyping of Toxoplasma gondii DNA in the blood and milk of naturally infected donkeys (Equus asinus).

    Science.gov (United States)

    Mancianti, Francesca; Nardoni, Simona; Papini, Roberto; Mugnaini, Linda; Martini, Mina; Altomonte, Iolanda; Salari, Federica; D'Ascenzi, Carlo; Dubey, Jitender P

    2014-04-03

    Toxoplasma gondii is a worldwide zoonotic protozoan. Consumption of raw milk from infected animals is considered a risk factor for acquiring toxoplasmosis in humans. Recently, donkey milk has been indicated for therapeutic and nutritional purposes and T. gondii infection is common in donkeys. The purpose of the present paper was to detect the presence of parasite DNA in milk of T. gondii positive donkeys. Antibodies to T. gondii were found in 11 out of 44 healthy lactating donkeys by IFAT. T. gondii DNA was detected by PCR in blood of 6 and milk of 3 seropositive jennies. Results of limited RFLP-PCR genotyping indicated the presence of T. gondii genotype II or III, commonly found in Europe. The occurrence of T. gondii DNA in milk suggests that the consumption of raw milk from seropositive donkeys could be a potential source of human infection.

  10. Molecular Detection of Rickettsia amblyommii in Amblyomma americanum Parasitizing Humans

    Science.gov (United States)

    2010-01-01

    Detection of Rickettsia amblyommii in Amblyomma americanum Parasitizing Humans Ju Jiang~ Tamasin Yarina~ Melissa K. Miller,2 Ellen Y. Stromdahl? and...protein B gene (ompB) of Rickettsia amblyommii was employed to assess the threat of R. amblyommii exposure to humans parasitized by Amblyomma americanum...infection of and possibly disease in humans. Key Words: Amblyomma americanum-Lone star ticks-Real-time PCR- Rickettsia amblyommii. Introduction R

  11. Persistent Low Toxoplasma IgG Avidity Is Common in Pregnancy: Experience from Antenatal Testing in Norway.

    Directory of Open Access Journals (Sweden)

    Gry Findal

    Full Text Available The parasite Toxoplasma gondii might harm the fetus if a woman is infected during pregnancy. IgG seroconversion and significant increase in IgG antibody amount in pregnancy indicates maternal infection. Presence of toxoplasma immunoglobulin M (IgM, immunoglobulin G (IgG and low IgG avidity in a single serum sample indicates possible maternal infection, but positive toxoplasma IgM and low IgG avidity may persist for months and even years. We aimed to evaluate avidity development during pregnancy in a retrospective study. Serial blood samples from 176 pregnant women admitted to Oslo University Hospital 1993-2013 for amniocentesis because of suspected toxoplasma infection were included. Data were obtained from journals and laboratory records. The avidity method used was based on Platelia Toxo IgG assay. Mean maternal age at first serology was 29.9 years (SD 5.2, range 18-42. In 37 (21% women only the avidity increased from low to high in < 3 months. In 139 (79% the IgG avidity remained below the high threshold ≥ 3 months and within this group 74 (42% women had stable low IgG avidity during the observation period. Median gestational age at first test was 10.6 weeks (range 4.6-28.7. Fetal infection was detected in four children, but none among children whose mother had stable low IgG avidity. The first antenatal toxoplasma serology should ideally be collected in early pregnancy and if stable values of toxoplasma IgM and low IgG-avidity are detected in a second sample after three to four weeks, the need for amniocentesis can be questioned.

  12. Seroprevalence and risk factor of toxoplasmosis in schizophrenia ...

    African Journals Online (AJOL)

    Background: Toxoplasmosis is an infectious disease caused by protozoan parasite called Toxoplasma gondii. Toxoplasma gondii is an intracellular ... Human infection occurs mainly by ingesting food or water contaminated with oocyst or eating an undercook meat containing tissue cyst. Human might be infected via blood ...

  13. Strain- and Dose-Dependent Reduction of Toxoplasma gondii Burden in Pigs Is Associated with Interferon-Gamma Production by CD8+ Lymphocytes in a Heterologous Challenge Model

    Directory of Open Access Journals (Sweden)

    Malgorzata Jennes

    2017-06-01

    Full Text Available Toxoplasma gondii is a worldwide prevalent parasite of humans and animals. The global infection burden exceeds yearly one million disability-adjusted life years (DALY's in infected individuals. Therefore, effective preventive measures should be taken to decrease the risk of infection in humans. Although human toxoplasmosis is predominantly foodborne by ingestion of tissue cysts in meat from domestic animals such as pigs, the incidence risk is difficult to estimate due to the lack of screening of animals for infection and insights in location and persistence of the parasite in the tissues. Hence, experimental infections in pigs can provide more information on the risk for zoonosis based on the parasite burden in meat products intended for human consumption and on the immune responses induced by infection. In the present study, homo- and heterologous infection experiments with two distinct T. gondii strains (IPB-LR and IPB-Gangji were performed. The humoral and cellular immune responses, the presence of viable parasites and the parasite load in edible meat samples were evaluated. In homologous infection experiments the parasite persistence was clearly strain-dependent and inversely correlated with the infection dose. The results strongly indicate a change in the amount of parasite DNA and viable cysts in porcine tissues over time. Heterologous challenge infections demonstrated that IPB-G strain could considerably reduce the parasite burden in the subsequent IPB-LR infection. A strong, however, not protective humoral response was observed against GRA7 and TLA antigens upon inoculation with both strains. The in vitro IFN-γ production by TLA-stimulated PBMCs was correlated with the infection dose and predominantly brought about by CD3+CD4−CD8αbright T-lymphocytes. The described adaptive cellular and humoral immune responses in pigs are in line with the induced or natural infections in mice and humans. Previous studies underscored the

  14. Anthropogenics: human influence on global and genetic homogenization of parasite populations.

    Science.gov (United States)

    Zarlenga, Dante S; Hoberg, Eric; Rosenthal, Benjamin; Mattiucci, Simonetta; Nascetti, Giuseppe

    2014-12-01

    The distribution, abundance, and diversity of life on Earth have been greatly shaped by human activities. This includes the geographic expansion of parasites; however, measuring the extent to which humans have influenced the dissemination and population structure of parasites has been challenging. In-depth comparisons among parasite populations extending to landscape-level processes affecting disease emergence have remained elusive. New research methods have enhanced our capacity to discern human impact, where the tools of population genetics and molecular epidemiology have begun to shed light on our historical and ongoing influence. Only since the 1990s have parasitologists coupled morphological diagnosis, long considered the basis of surveillance and biodiversity studies, with state-of-the-art tools enabling variation to be examined among, and within, parasite populations. Prior to this time, populations were characterized only by phenotypic attributes such as virulence, infectivity, host range, and geographical location. The advent of genetic/molecular methodologies (multilocus allozyme electrophoresis, polymerase chain reaction-DNA [PCR-DNA] fragments analysis, DNA sequencing, DNA microsatellites, single nucleotide polymorphisms, etc.) have transformed our abilities to reveal variation among, and within, populations at local, regional, landscape, and global scales, and thereby enhanced our understanding of the biosphere. Numerous factors can affect population structure among parasites, e.g., evolutionary and ecological history, mode of reproduction and transmission, host dispersal, and life-cycle complexity. Although such influences can vary considerably among parasite taxa, anthropogenic factors are demonstrably perturbing parasite fauna. Minimal genetic structure among many geographically distinct (isolated) populations is a hallmark of human activity, hastened by geographic introductions, environmental perturbation, and global warming. Accelerating

  15. Toxoplasma gondii and schizophrenia

    OpenAIRE

    Mokhtari Mohammadreza; Mokhtari Mojgan

    2006-01-01

    Recent epidemiologic studies indicate that infectious agents may contribute to some cases of schizophrenia. In animals, infection with Toxoplasma gondii can alter behavior and neurotransmitter function. In humans, acute infection with T. gondii can produce psychotic symptoms similar to those displayed by persons with schizophrenia. Since 1953, a total of 19 studies of T. gondii antibodies in persons with schizophrenia and other severe psychiatric disorders and in controls have been reported; ...

  16. A protein extract and a cysteine protease inhibitor enriched fraction from Jatropha curcas seed cake have in vitro anti-Toxoplasma gondii activity.

    Science.gov (United States)

    Soares, A M S; Carvalho, L P; Melo, E J T; Costa, H P S; Vasconcelos, I M; Oliveira, J T A

    2015-06-01

    Toxoplasma gondii is a parasite of great medical and veterinary importance that has worldwide distribution and causes toxoplasmosis. There are few treatments available for toxoplasmosis and the search for plant extracts and compounds with anti-Toxoplasma activity is of utmost importance for the discovery of new active drugs. The objective of this study was to investigate the action of a protein extract and a protease inhibitor enriched fraction from J. curcas seed cake on developing tachyzoites of T. gondii-infected Vero cells. The protein extract (JcCE) was obtained after solubilization of the J. curcas seed cake with 100 mM sodium borate buffer, pH 10, centrifugation and dialysis of the resulting supernatant with the extracting buffer. JcCE was used for the in vitro assays of anti-Toxoplasma activity at 0.01, 0.1, 0.5, 1.5, 3.0 and 5.0 mg/ml concentration for 24 h. The results showed that JcCE reduced the percentage of infection and the number of intracellular parasites, but had no effect on the morphology of Vero cells up to 3.0 mg/mL. The cysteine protease inhibitor enriched fraction, which was obtained after chromatography of JcCE on Sephadex G-75 and presented a unique protein band following SDS-PAGE, reduced both the number of T. gondii infected cells and intracellular parasites. These results suggest that both JcCE and the cysteine protease inhibitor enriched fraction interfere with the intracellular growth of T. gondii. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Gastrointestinal parasites of feral cats from Christmas Island.

    Science.gov (United States)

    Adams, P J; Elliot, A D; Algar, D; Brazell, R I

    2008-01-01

    To investigate the gastrointestinal parasites present in feral cats on Christmas Island, with particular interest in the protozoan parasite Toxoplasma gondii. Faecal and serum samples were collected from 28 and 25 cats respectively that were trapped as part of an ongoing eradication program being run on Christmas Island by the Department of Environment and Conservation. Faecal samples were screened microscopically for helminth and protozoan parasites. Serum samples were screened for antibodies to T gondii using a commercial indirect immunofluorescence assay (IFA) and a latex agglutination test (LAT). The most common helminth parasites detected were Toxocara cati (present in 15 of 28 faecal samples), Strongyloides sp (13/28), Aelurostrongylus abstrusus, (7/28), an unidentified capillarid (6/28) and Ancylostoma sp (4/28). Based on serology, T gondii was the most common parasite detected (protozoan or otherwise) with antibodies detected in 24 serum samples by IFA and 23 serum samples by LAT. Cats on Christmas Island harbour many of the helminth and protozoan parasites reported from feral cats elsewhere in Australia. The high seroprevalence of T gondii in these cats indicates a high level of exposure to the parasite in this environment.

  18. Serological survey of antibodies to Toxoplasma gondii and Coxiella burnetii in rodents in north-western African islands (Canary Islands and Cape Verde).

    Science.gov (United States)

    Foronda, Pilar; Plata-Luis, Josué; del Castillo-Figueruelo, Borja; Fernández-Álvarez, Ángela; Martín-Alonso, Aarón; Feliu, Carlos; Cabral, Marilena D; Valladares, Basilio

    2015-05-29

    Coxiella burnetii and Toxoplasma gondii are intracellular parasites that cause important reproductive disorders in animals and humans worldwide, resulting in high economic losses. The aim of the present study was to analyse the possible role of peridomestic small mammals in the maintenance and transmission of C. burnetii and T. gondii in the north-western African archipelagos of the Canary Islands and Cape Verde, where these species are commonly found affecting humans and farm animals. Between 2009 and 2013, 108 black rats (Rattus rattus) and 77 mice (Mus musculus) were analysed for the presence of Coxiella and Toxoplasma antibodies by enzyme-linked immunosorbent assay (ELISA) and indirect immunofluorescence (IFA), respectively. Our results showed a wide distribution of C. burnetii and T. gondii, except for T. gondii in Cape Verde, in both rodent species. The overall seroprevalence of C. burnetii antibodies was 12.4%; 21.1% for Cape Verde and 10.2% for the Canary Islands. With respect to T. gondii, seropositive rodents were only observed in the Canary Islands, with an overall seroprevalence of 15%. Considering the fact that both pathogens can infect a large range of hosts, including livestock and humans, the results are of public health and veterinary importance and could be used by governmental entities to manage risk factors and to prevent future cases of Q fever and toxoplasmosis.

  19. Isolation and genetic characterization of Toxoplasma gondii from black bears (Ursus americanus), bobcats (Felis rufus), and feral cats (Felis catus) from Pennsylvania

    Science.gov (United States)

    Toxoplasma gondii infects virtually all warm-blooded hosts worldwide. Recently, attention has been focused on the genetic diversity of the parasite to explain its pathogenicity in different hosts. It has been hypothesized that interaction between feral and domestic cycles of T. gondii may increase u...

  20. Antibodies to Toxoplasma gondii in Backyard and Roaming Pigs ...

    African Journals Online (AJOL)

    Toxoplasma gondii, the etiologic agent of Toxoplasmosis, can be transmitted to pigs through the ingestion of oocysts, and to humans through consumption of pork containing viable cysts causing neonatal deaths and abortion in animals, and opportunistic infections in immunocompromised humans. The objective of this ...

  1. Diagnosis of toxoplasmosis and typing of Toxoplasma gondii.

    Science.gov (United States)

    Liu, Quan; Wang, Ze-Dong; Huang, Si-Yang; Zhu, Xing-Quan

    2015-05-28

    Toxoplasmosis, caused by the obligate intracellular protozoan Toxoplasma gondii, is an important zoonosis with medical and veterinary importance worldwide. The disease is mainly contracted by ingesting undercooked or raw meat containing viable tissue cysts, or by ingesting food or water contaminated with oocysts. The diagnosis and genetic characterization of T. gondii infection is crucial for the surveillance, prevention and control of toxoplasmosis. Traditional approaches for the diagnosis of toxoplasmosis include etiological, immunological and imaging techniques. Diagnosis of toxoplasmosis has been improved by the emergence of molecular technologies to amplify parasite nucleic acids. Among these, polymerase chain reaction (PCR)-based molecular techniques have been useful for the genetic characterization of T. gondii. Serotyping methods based on polymorphic polypeptides have the potential to become the choice for typing T. gondii in humans and animals. In this review, we summarize conventional non-DNA-based diagnostic methods, and the DNA-based molecular techniques for the diagnosis and genetic characterization of T. gondii. These techniques have provided foundations for further development of more effective and accurate detection of T. gondii infection. These advances will contribute to an improved understanding of the epidemiology, prevention and control of toxoplasmosis.

  2. Toxoplasma gondii acetyl-CoA synthetase is involved in fatty acid elongation (of long fatty acid chains) during tachyzoite life stages.

    Science.gov (United States)

    Dubois, David; Fernandes, Stella; Amiar, Souad; Dass, Sheena; Katris, Nicholas J; Botté, Cyrille Y; Yamaryo-Botté, Yoshiki

    2018-06-01

    Apicomplexan parasites are pathogens responsible for major human diseases such as toxoplasmosis caused by Toxoplasma gondii and malaria caused by Plasmodium spp. Throughout their intracellular division cycle, the parasites require vast and specific amounts of lipids to divide and survive. This demand for lipids relies on a fine balance between de novo synthesized lipids and scavenged lipids from the host. Acetyl-CoA is a major and central precursor for many metabolic pathways, especially for lipid biosynthesis. T. gondii possesses a single cytosolic acetyl-CoA synthetase ( Tg ACS). Its role in the parasite lipid synthesis is unclear. Here, we generated an inducible Tg ACS KO parasite line and confirmed the cytosolic localization of the protein. We conducted 13 C-stable isotope labeling combined with mass spectrometry-based lipidomic analyses to unravel its putative role in the parasite lipid synthesis pathway. We show that its disruption has a minor effect on the global FA composition due to the metabolic changes induced to compensate for its loss. However, we could demonstrate that Tg ACS is involved in providing acetyl-CoA for the essential fatty elongation pathway to generate FAs used for membrane biogenesis. This work provides novel metabolic insight to decipher the complex lipid synthesis in T. gondii . Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  3. Lifelong Persistence of Toxoplasma Cysts: A Questionable Dogma?

    Science.gov (United States)

    Rougier, Solène; Montoya, Jose G; Peyron, François

    2017-02-01

    It is believed that infection by Toxoplasma gondii triggers a lifelong protective immunity due to the persistence of parasitic cysts which induce immunoprotection against reinfection. A review of the scientific literature since the 1950s did not yield any definitive data regarding the duration of cysts in the host or the presence of lifelong protective immunity, which led us to question this dogma. We put forward the hypothesis that sustained immunity to T. gondii requires repeated antigenic stimulations. The decline of seroprevalence recently observed in many countries might contribute to explain the loss of immunity. We address the potential consequences of this phenomenon, should it persist and worsen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Anthropogenics: Human influence on global and genetic homogenization of parasite populations

    Science.gov (United States)

    The distribution, abundance, and diversity of life on Earth have been greatly shaped by human activities. This is no truer than in the geographic expansion of parasites; however, measuring the extent to which humans have influenced the dissemination and population structure of parasites has been cha...

  5. Prevalence of antibodies to Trypanosoma cruzi, Toxoplasma gondii, Encephalitozonn cuniculi, Sarcocystis neurona, Besnoitia darlingi, and Neospora caninum in North American opossum, Didelphis virginiana, from Southern Louisian

    Science.gov (United States)

    We examined the prevalence of antibodies to zoonotic protozoan parasites (Trypanosoma cruzi, Toxoplasma gondii, and Encephalitozoon cuniculi) and protozoan’s of veterinary importance (Neospora caninum, Sarcocystis neurona and Besnoitia darlingi) in a population of North American opossums (Didelphis...

  6. Evaluating Recombinant Antigen ROP1 Efficacy in Diagnosis of Toxoplasma Gondii Infection

    Directory of Open Access Journals (Sweden)

    F Keshavarzi

    2015-07-01

    Full Text Available Introduction:Toxoplasma gondii is a ubiquitous obligate intracellular parasite with a relatively broad host range infecting both mammals and birds. Toxoplasma proteins are strong antigens that can begin strong immune reactions, among which Rhoptry protein 1 (ROP1 can be named discharging from rhoptry cell-organ. ROP1 is regarded as a competitor for recombinant vaccines against toxoplasmosis. Therefore, the main objective of the current study was to evaluate the cloning and expression of ROP1 Toxoplasma gondii in a cloning vector as well as to create this recombinant antigen in order to be applied for later uses. Methods:Genomic DNA of Toxoplasma gondii was removed and reproduced by PCR, then the PCR product was cloned into the EcoR1 and BamH1 sites of cloning vector, pUET1, and transformed into Escherichia coli BL21 plysS strain. Moreover, pcROP1 was sub-cloned into the HindIII and EcoRI sites of the pcDNA3 in order to produce recombining eukaryotic declaration vector. The cloned ROP1 was verified by PCR, limitation enzymes (HindIII and BglΙ digestion and nucleotide sequencing. Then, this recombinant antigen was covered applying IgM and ELISAIgG. Results:The study results demonstrated that a fragment of 757 bp was separated. In addition, nucleotide sequence analysis of the ROP1 cloned in pUET1vector revealed high homology (96% with RH strain Gene Bank Accession (No. M71274. Conclusion:The recombinant ROP1 antigen in an IgM Rec-ELISA test can be replaced with the tachyzoite antigen in IgG and IgM serologic tests.

  7. Zoonotic bacteria and parasites found in raw meat-based diets for cats and dogs.

    Science.gov (United States)

    van Bree, Freek P J; Bokken, Gertie C A M; Mineur, Robin; Franssen, Frits; Opsteegh, Marieke; van der Giessen, Joke W B; Lipman, Len J A; Overgaauw, Paul A M

    2018-01-13

    Feeding raw meat-based diets (RMBDs) to companion animals has become increasingly popular. Since these diets may be contaminated with bacteria and parasites, they may pose a risk to both animal and human health. The purpose of this study was to test for the presence of zoonotic bacterial and parasitic pathogens in Dutch commercial RMBDs. We analysed 35 commercial frozen RMBDs from eight different brands. Escherichia coli serotype O157:H7 was isolated from eight products (23 per cent) and extended-spectrum beta-lactamases-producing E coli was found in 28 products (80 per cent). Listeria monocytogenes was present in 19 products (54 per cent), other Listeria species in 15 products (43 per cent) and Salmonella species in seven products (20 per cent). Concerning parasites, four products (11 per cent) contained Sarcocystis cruzi and another four (11 per cent) S tenella In two products (6 per cent) Toxoplasma gondii was found. The results of this study demonstrate the presence of potential zoonotic pathogens in frozen RMBDs that may be a possible source of bacterial infections in pet animals and if transmitted pose a risk for human beings. If non-frozen meat is fed, parasitic infections are also possible. Pet owners should therefore be informed about the risks associated with feeding their animals RMBDs. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. UNC93B1 mediates host resistance to infection with Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Mariane B Melo

    2010-08-01

    Full Text Available UNC93B1 associates with Toll-Like Receptor (TLR 3, TLR7 and TLR9, mediating their translocation from the endoplasmic reticulum to the endolysosome, hence allowing proper activation by nucleic acid ligands. We found that the triple deficient '3d' mice, which lack functional UNC93B1, are hyper-susceptible to infection with Toxoplasma gondii. We established that while mounting a normal systemic pro-inflammatory response, i.e. producing abundant MCP-1, IL-6, TNFα and IFNγ, the 3d mice were unable to control parasite replication. Nevertheless, infection of reciprocal bone marrow chimeras between wild-type and 3d mice with T. gondii demonstrated a primary role of hemopoietic cell lineages in the enhanced susceptibility of UNC93B1 mutant mice. The protective role mediated by UNC93B1 to T. gondii infection was associated with impaired IL-12 responses and delayed IFNγ by spleen cells. Notably, in macrophages infected with T. gondii, UNC93B1 accumulates on the parasitophorous vacuole. Furthermore, upon in vitro infection the rate of tachyzoite replication was enhanced in non-activated macrophages carrying mutant UNC93B1 as compared to wild type gene. Strikingly, the role of UNC93B1 on intracellular parasite growth appears to be independent of TLR function. Altogether, our results reveal a critical role for UNC93B1 on induction of IL-12/IFNγ production as well as autonomous control of Toxoplasma replication by macrophages.

  9. The Crystal Structure of Toxoplasma gondii Pyruvate Kinase 1

    Energy Technology Data Exchange (ETDEWEB)

    Bakszt, R.; Wernimont, A; Allali-Hassani, A; Mok, M; Hills, T; Hui, R; Pizarro, J

    2010-01-01

    Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population. We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers. We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two {alpha}-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  10. The crystal structure of Toxoplasma gondii pyruvate kinase 1.

    Directory of Open Access Journals (Sweden)

    Rebecca Bakszt

    2010-09-01

    Full Text Available Pyruvate kinase (PK, which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population.We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers.We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two α-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  11. The crystal structure of Toxoplasma gondii pyruvate kinase 1.

    Science.gov (United States)

    Bakszt, Rebecca; Wernimont, Amy; Allali-Hassani, Abdellah; Mok, Man Wai; Hills, Tanya; Hui, Raymond; Pizarro, Juan C

    2010-09-14

    Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population. We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers. We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two α-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  12. Parasite Infection, Carcinogenesis and Human Malignancy

    Directory of Open Access Journals (Sweden)

    Hoang van Tong

    2017-02-01

    Full Text Available Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity.

  13. Parasite Infection, Carcinogenesis and Human Malignancy.

    Science.gov (United States)

    van Tong, Hoang; Brindley, Paul J; Meyer, Christian G; Velavan, Thirumalaisamy P

    2017-02-01

    Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. High prevalence of Toxoplasma gondii infection in Ethiopian cats in Addis Ababa, coinfection, and a review of toxoplasmosis in humans and other animals in Ethiopia

    Science.gov (United States)

    Toxoplasma gondii and Bartonella spp. are zoonotic pathogens of cats. Feline Immunodeficiency Virus (FIV), and Feline Leukemia Virus (FeLv) are related to Human Immunodeficiency Virus, and Human T-lymphotrophic Virus, respectively, and these viruses are immunosuppressive. In the present study, the p...

  15. Group 1 innate lymphoid cells in Toxoplasma gondii infection.

    Science.gov (United States)

    Dunay, I R; Diefenbach, A

    2018-02-01

    Innate lymphoid cells (ILCs) are a group of lymphocytes that carry out important functions in immunity to infections and in organ homeostasis at epithelial barrier surfaces. ILCs are innate immune cells that provide an early source of cytokines to initiate immune responses against pathogens. Cytotoxic ILCs (i.e. conventional (c)NK cells) and several subsets of helper-like ILCs are the major branches of the ILC family. Conventional NK cells and group 1 ILCs share several characteristics such as surface receptors and the ability to produce IFN-γ upon activation, but they differ in their developmental paths and in their dependence on specific transcription factors. Infection of mice with the intracellular parasite Toxoplasma gondii is followed by a strong Th1-mediated immune response. Previous studies indicate that NK1.1 + cells contribute to the production of IFN-γ and TNF and cytotoxicity during acute T. gondii infection. Upon oral infection, the parasite infects intestinal enterocytes, and within the lamina propria, innate immune responses lead to initial parasite control although the infection disseminates widely and persists long-term in immune privileged sites despite adaptive immunity. Upon parasite entry into the small intestine, during the acute stage, ILC1 produce high levels of IFN-γ and TNF protecting barrier surfaces, thus essentially contributing to early parasite control. We will discuss here the role of innate lymphocytes during T. gondii infection in the context of the only recently appreciated diversity of ILC subsets. © 2018 John Wiley & Sons Ltd.

  16. Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the Toxoplasma invasion motor complex.

    Directory of Open Access Journals (Sweden)

    Thomas Nebl

    2011-09-01

    Full Text Available Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca²⁺-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of ³²[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca²⁺-dependent phosphorylation patterns on three of its components--GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component.

  17. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasitePlasmodium knowlesi

    KAUST Repository

    Moon, Robert W.; Sharaf, Hazem; Hastings, Claire H.; Ho, Yung Shwen; Nair, Mridul; Rchiad, ‍ Zineb; Knuepfer, Ellen; Ramaprasad, Abhinay; Mohring, Franziska; Amir, Amirah; Yusuf, Noor A.; Hall, Joanna; Almond, Neil; Lau, Yee Ling; Pain, Arnab; Blackman, Michael J.; Holder, Anthony A.

    2016-01-01

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.

  18. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasitePlasmodium knowlesi

    KAUST Repository

    Moon, Robert W.

    2016-06-15

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.

  19. Seroprevalence of Toxoplasma gondii from free-ranging black bears ( Ursus americanus ) from Florida.

    Science.gov (United States)

    Chambers, D L; Ulrey, W A; Guthrie, J M; Kwok, O C H; Cox, J J; Maehr, D S; Dubey, J P

    2012-06-01

    Toxoplasma gondii is a significant worldwide parasitic protozoan. In the present study, prevalence of antibodies of T. gondii was examined from 29 free-ranging black bears ( Ursus americanus ) from south-central Florida where the host species was listed as state threatened during this project. Overall T. gondii prevalence was found to be 44.8%, specifically 46.2% in male and 43.8% in female U. americanus , using a modified agglutination test (1:25 titer). Seroprevalence differences between sexes were not significant (P > 0.05). Results of the present study add supportive data to the growing body of evidence suggesting that U. americanus has one of the highest T. gondii seroprevalences among all known intermediate hosts. In addition, our data emphasize the importance of understanding parasitic disease dynamics from a conservation perspective.

  20. Beneficial Effects of Capparis Spinosa Honey on the Immune Response of Rats Infected with Toxoplasma Gundii

    Directory of Open Access Journals (Sweden)

    Ahmed Gaffer Hegazi

    2017-06-01

    Full Text Available Objectives: The Toxoplasma gondii (T. gondii is an intracellular opportunistic protozoan parasite that infects approximately one-third of the human population worldwide. Honey has long been used for treatment of many diseases in folk medicine. Honey has exhibited significant anthelmintic, nematicidal and anti-protozoal activities. This study was conducted to investigate the immunological patterns in rats infected with T. gondii who were treated orally with supplemented 15% Capparis spinosa honey (Saudi Arabia for a period of 28 days. Methods: Immunoglobulin M, immunoglobulin G, and cytokines were detected by using enzyme-linked immunosorbent assays (ELISAs. In addition, the mortality and the morbidity rates were assessed. Results: Oral administration of Capparis spinosa honey as a natural food additive was experimentally shown to increase the antibody titer; furthermore, compared with the rats in the control group,

  1. A comparative study of small RNAs in Toxoplasma gondii of distinct genotypes

    Directory of Open Access Journals (Sweden)

    Wang Jielin

    2012-09-01

    Full Text Available Abstract Background Toxoplasma gondii is an intracellular parasite with a significant impact on human health. Inside the mammalian and avian hosts, the parasite can undergo rapid development or remain inactive in the cysts. The mechanism that regulates parasite proliferation has not been fully understood. Small noncoding RNAs (sncRNA such as microRNAs (miRNAs are endogenous regulatory factors that can modulate cell differentiation and development. It is anticipated that hundreds of miRNAs regulate the expression of thousands of genes in a single organism. SncRNAs have been identified in T. gondii, however the profiles of sncRNAs expression and their potential regulatory function in parasites of distinct genotypes has largely been unknown. Methods The transcription profiles of miRNAs in the two genetically distinct strains, RH and ME49, of T. gondii were investigated and compared by a high-through-put RNA sequencing technique and systematic bioinformatics analysis. The expression of some of the miRNAs was confirmed by Northern blot analysis. Results 1,083,320 unique sequences were obtained. Of which, 17 conserved miRNAs related to 2 metazoan miRNA families and 339 novel miRNAs were identified. A total of 175 miRNAs showed strain-specific expression, of which 155 miRNAs were up-regulated in RH strain and 20 miRNAs were up-regulated in ME49 strain. Strain-specific expression of miRNAs in T. gondii could be due to activation of specific genes at different genomic loci or due to arm-switching of the same pre-miRNA duplex. Conclusions Evidence for the differential expression of miRNAs in the two genetically distinct strains of T. gondii has been identified and defined. MiRNAs of T. gondii are more species-specific as compared to other organisms, which can be developed as diagnostic biomarkers for toxoplasmosis. The data also provide a framework for future studies on RNAi-dependent regulatory mechanisms in the zoonotic parasite.

  2. Gastrointestinal parasites of canids, a latent risk to human health in Tunisia.

    Science.gov (United States)

    Oudni-M'rad, Myriam; Chaâbane-Banaoues, Raja; M'rad, Selim; Trifa, Fatma; Mezhoud, Habib; Babba, Hamouda

    2017-06-05

    Although data on the parasite environmental contamination are crucial to implement strategies for control and treatment, information about zoonotic helminths is very limited in Tunisia. Contamination of areas with canid faeces harboring infective parasite elements represents a relevant health-risk impact for humans. The aim of this study was to assess the environmental contamination with eggs and oocysts of gastrointestinal parasites of dogs and wild canids in Tunisia with special attention to those that can be transmitted to humans. One thousand two hundred and seventy faecal samples from stray dogs and 104 from wild canids (red foxes and golden jackals) were collected from different geographical regions throughout Tunisia. The helminth eggs and protozoan oocysts were concentrated by sucrose flotation and identified by microscopic examination. The most frequently observed parasites in dog samples were Toxocara spp. (27.2%), E. granulosus (25.8%), and Coccidia (13.1%). For wild canid faeces, the most commonly encountered parasites were Toxocara spp. (16.3%) followed by Capillaria spp. (9.6%). The parasite contamination of dog faeces varied significantly from one region to another in function of the climate. To our knowledge, the study highlights for the first time in Tunisia a serious environmental contamination by numerous parasitic stages infective to humans. Efforts should be made to increase the awareness of the contamination risk of such parasites in the environment and implement a targeted educational program.

  3. Toxoplasma gondii exposes phosphatidylserine inducing a TGF-β1 autocrine effect orchestrating macrophage evasion

    International Nuclear Information System (INIS)

    Seabra, Sergio H.; Souza, Wanderley de; Matta, Renato A. da

    2004-01-01

    Toxoplasmosis is a worldwide disease caused by Toxoplasma gondii. Activated macrophages control T. gondii growth by nitric oxide (NO) production. However, T. gondii active invasion inhibits NO production, allowing parasite persistence. Here we show that the mechanism used by T. gondii to inhibit NO production persisting in activated macrophages depends on phosphatidylserine (PS) exposure. Masking PS with annexin-V on parasites or activated macrophages abolished NO production inhibition and parasite persistence. NO production inhibition depended on a transforming growth factor-β 1 (TGF-β 1 ) autocrine effect confirmed by the expression of Smad 2 and 3 in infected macrophages. TGF-β 1 led to inducible nitric oxide synthase (iNOS) degradation, actin filament (F-actin) depolymerization, and lack of nuclear factor-κB (NF-κB) in the nucleus. All these features were reverted by TGF-β 1 neutralizing antibody treatment. Thus, T. gondii mimics the evasion mechanism used by Leishmania amazonensis and also the anti-inflammatory response evoked by apoptotic cells

  4. Dual congenital transmission of Toxoplasma gondii and Sarcocystis neurona in a late-term aborted pup from a chronically infected southern sea otter (Enhydra lutris nereis).

    Science.gov (United States)

    Shapiro, Karen; Miller, Melissa A; Packham, Andrea E; Aguilar, Beatriz; Conrad, Patricia A; Vanwormer, Elizabeth; Murray, Michael J

    2016-03-01

    Toxoplasma gondii and Sarcocystis neurona are protozoan parasites with terrestrial definitive hosts, and both pathogens can cause fatal disease in a wide range of marine animals. Close monitoring of threatened southern sea otters (Enhydra lutris nereis) in California allowed for the diagnosis of dual transplacental transmission of T. gondii and S. neurona in a wild female otter that was chronically infected with both parasites. Congenital infection resulted in late-term abortion due to disseminated toxoplasmosis. Toxoplasma gondii and S. neurona DNA was amplified from placental tissue culture, as well as from fetal lung tissue. Molecular characterization of T. gondii revealed a Type X genotype in isolates derived from placenta and fetal brain, as well as in all tested fetal organs (brain, lung, spleen, liver and thymus). This report provides the first evidence for transplacental transmission of T. gondii in a chronically infected wild sea otter, and the first molecular and immunohistochemical confirmation of concurrent transplacental transmission of T. gondii and S. neurona in any species. Repeated fetal and/or neonatal losses in the sea otter dam also suggested that T. gondii has the potential to reduce fecundity in chronically infected marine mammals through parasite recrudescence and repeated fetal infection.

  5. Tunisian Toxoplasma gondii strains genotyping by the use of AK69 marker

    Directory of Open Access Journals (Sweden)

    Aoun Karim

    2011-08-01

    Full Text Available Abstract Background Clinical manifestation due to infection by Toxoplasma gondii is closely linked to the infecting strain of the parasite. Several genetic markers are available to determinate its genotype but few of them are able to discriminate between the three predominant lineages, namely types I, II and III. The number of markers decreases when atypical, recombinant/mixed genotypes need to be identified. Findings In our study, the contribution of sequence polymorphisms in the AK69 gene as typing markers for T. gondii was investigated for the first time in an epidemiological study. The coding region of the marker was amplified, sequenced and aligned for different Toxoplasma strains. The identified nucleotide polymorphism at 12 positions was able to highly discriminate between the different congenital toxoplasmosis Tunisian strains. Moreover the high detection sensitivity level of the marker enabled unambiguous identification of mixed/recombinant genotypes directly. Conclusion It can be, thus, very useful for direct typing in areas where such genotypes are frequently encountered, mainly in the African continent.

  6. Toxoplasma gondii transmission by artificial insemination in sheep with experimentally contaminated frozen semen.

    Science.gov (United States)

    Consalter, Angélica; Silva, Andressa F; Frazão-Teixeira, Edwards; Matos, Luis F; de Oliveira, Francisco C R; Leite, Juliana S; Silva, Franciele B F; Ferreira, Ana M R

    2017-03-01

    Toxoplasma gondii is a parasite considered one of the major causes of reproductive problems in sheep. Furthermore, the presence of the agent in ram semen urges the possibility of sexual transmission in this species. The aim of this study was to evaluate if ram's frozen semen spiked with T. gondii tachyzoites would be able to cause infection in sheep by laparoscopic artificial insemination (AI). Nine ewes tested seronegative to anti-T. gondii antibodies by the modified agglutination test (MAT) were superovulated and inseminated to collect embryos. Animals were divided into two groups: G1 (n = 5), ewes inseminated with semen containing 4 × 10 7 tachyzoites; and G2 (n = 4), ewes inseminated with tachyzoite-free semen (control group). To confirm infection, ewe's blood samples were collected on days -14, -7, 0, 7, 14, 21, 28, 35, 49 and 57 after AI for analysis by MAT and PCR. Tissue samples of these ewes were also collected for histopathology and immunohistochemistry (IHC). Seven days after AI, all ewes of group G1 had specific antibodies to T. gondii, while those of G2 were negative. Toxoplasma gondii DNA was detected in the blood of one ewe and parasites were observed in tissues of all five animals inseminated with contaminated semen, indicating that semen freezing protocol does not affect T. gondii transmission by artificial insemination in sheep. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Toxoplasma gondii and Neospora caninum seroprevalence in dairy sheep and goats mixed stock farming.

    Science.gov (United States)

    Diakoua, Anastasia; Anastasia, Diakou; Papadopoulos, Elias; Elias, Papadopoulos; Panousis, Nikolaos; Nikolaos, Panousis; Karatzias, Charilaos; Charilaos, Karatzias; Giadinis, Nektarios; Nektarios, Giadinis

    2013-12-06

    Toxoplasma and Neospora infections are important causes of abortions and economic losses in animal production. Mixed stock farming of sheep and goats is a common practice in Mediterranean countries and could serve as a suitable model for the evaluation of differences between the two animal species regarding parasitic infections. In order to investigate the seroprevalence of T. gondii and N. caninum among flocks of small ruminants in Greece and to evaluate any prevalence difference between sheep and goats kept in mixed flocks, 833 sera samples (458 sheep and 375 goats) from 50 mixed flocks in different areas of the country were examined by ELISA for the detection of specific antibodies. Specific IgG against T. gondii were detected in 53.71% and 61.3% and against N. caninum in 16.8% and 6.9% of the sheep and goats, respectively. Goats had higher Toxoplasma seroprevalence than sheep (pgoats (pgoats that are kept together in mixed flocks. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. MYR1-Dependent Effectors Are the Major Drivers of a Host Cell’s Early Response to Toxoplasma, Including Counteracting MYR1-Independent Effects

    Directory of Open Access Journals (Sweden)

    Adit Naor

    2018-04-01

    Full Text Available The obligate intracellular parasite Toxoplasma gondii controls its host cell from within the parasitophorous vacuole (PV by using a number of diverse effector proteins, a subset of which require the aspartyl protease 5 enzyme (ASP5 and/or the recently discovered MYR1 protein to cross the PV membrane. To examine the impact these effectors have in the context of the entirety of the host response to Toxoplasma, we used RNA-Seq to analyze the transcriptome expression profiles of human foreskin fibroblasts infected with wild-type RH (RH-WT, RHΔmyr1, and RHΔasp5 tachyzoites. Interestingly, the majority of the differentially regulated genes responding to Toxoplasma infection are MYR1 dependent. A subset of MYR1 responses were ASP5 independent, and MYR1 function did not require ASP5 cleavage, suggesting the export of some effectors requires only MYR1. Gene set enrichment analysis of MYR1-dependent host responses suggests an upregulation of E2F transcription factors and the cell cycle and a downregulation related to interferon signaling, among numerous others. Most surprisingly, “hidden” responses arising in RHΔmyr1- but not RH-WT-infected host cells indicate counterbalancing actions of MYR1-dependent and -independent activities. The host genes and gene sets revealed here to be MYR1 dependent provide new insight into the parasite’s ability to co-opt host cell functions.

  9. Origin of the human malaria parasite Plasmodium falciparum in gorillas.

    Science.gov (United States)

    Liu, Weimin; Li, Yingying; Learn, Gerald H; Rudicell, Rebecca S; Robertson, Joel D; Keele, Brandon F; Ndjango, Jean-Bosco N; Sanz, Crickette M; Morgan, David B; Locatelli, Sabrina; Gonder, Mary K; Kranzusch, Philip J; Walsh, Peter D; Delaporte, Eric; Mpoudi-Ngole, Eitel; Georgiev, Alexander V; Muller, Martin N; Shaw, George M; Peeters, Martine; Sharp, Paul M; Rayner, Julian C; Hahn, Beatrice H

    2010-09-23

    Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here we develop a single-genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in faecal samples from wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed and almost always made up of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas comprised parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla origin and not of chimpanzee, bonobo or ancient human origin.

  10. Control of human parasitic diseases: Context and overview.

    Science.gov (United States)

    Molyneux, David H

    2006-01-01

    The control of parasitic diseases of humans has been undertaken since the aetiology and natural history of the infections was recognized and the deleterious effects on human health and well-being appreciated by policy makers, medical practitioners and public health specialists. However, while some parasitic infections such as malaria have proved difficult to control, as defined by a sustained reduction in incidence, others, particularly helminth infections can be effectively controlled. The different approaches to control from diagnosis, to treatment and cure of the clinically sick patient, to control the transmission within the community by preventative chemotherapy and vector control are outlined. The concepts of eradication, elimination and control are defined and examples of success summarized. Overviews of the health policy and financing environment in which programmes to control or eliminate parasitic diseases are positioned and the development of public-private partnerships as vehicles for product development or access to drugs for parasite disease control are discussed. Failure to sustain control of parasites may be due to development of drug resistance or the failure to implement proven strategies as a result of decreased resources within the health system, decentralization of health management through health-sector reform and the lack of financial and human resources in settings where per capita government expenditure on health may be less than $US 5 per year. However, success has been achieved in several large-scale programmes through sustained national government investment and/or committed donor support. It is also widely accepted that the level of investment in drug development for the parasitic diseases of poor populations is an unattractive option for pharmaceutical companies. The development of partnerships to specifically address this need provides some hope that the intractable problems of the treatment regimens for the trypanosomiases and

  11. Urine sample used for detection of toxoplasma gondii infection by loop-mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Hu, Xin; Pan, Chang-Wang; Li, Ya-Fei; Wang, Han; Tan, Feng

    2012-02-01

    In this study, a loop-mediated isothermal amplification (LAMP) assay was established to detect Toxoplasma gondii DNA in mice infected with T. gondii PRU strain. This LAMP assay was based on the sequence of highly repetitive B1 gene. The detection limit of T. gondii LAMP assay was 1 pg of T. gondii DNA, which was evaluated using 10-fold serially diluted DNA of cultured parasites. The LAMP assay was also highly specific for T. gondii and able to detect T. gondii DNA in urine of mice treated with dexamethasone at 90 day post infection (p.i.), although this assay could not detect the DNA in mice urine 2-6 days p.i. These results demonstrated that LAMP is effective for evaluation of therapy effectiveness for T. gondii infection. The established LAMP assay may represent a useful and practical tool for the routine diagnosis and therapeutic evaluation of human toxoplasmosis.

  12. Determination of the viability of Toxoplasma gondii in cured ham using bioassay: influence of technological processing and food safety implications.

    Science.gov (United States)

    Bayarri, Susana; Gracia, María J; Lázaro, Regina; Pe Rez-Arquillué, Consuelo; Barberán, Montserrat; Herrera, Antonio

    2010-12-01

    Toxoplasmosis is a zoonotic disease caused by the protozoan Toxoplasma gondii and distributed worldwide. Ingestion of viable cysts from infected raw or undercooked meat is an important route of horizontal transmission of the parasite to humans. Little information is available concerning the effect of commercial curing on cysts of T. gondii. This study is the first in which the influence of processing of cured ham on the viability of T. gondii has been evaluated, using bioassay to assess the risk of infection from eating this meat product. Naturally infected pigs were selected for the study, and a mouse concentration bioassay technique was used to demonstrate viable bradyzoites of T. gondii in porcine tissues and hams. No viable parasites were found in the final product (14 months of curing) based on results of the indirect immunofluorescence assay and histological and PCR analyses. Our results indicate that the consumption of hams cured as described here poses an insignificant risk of acquiring toxoplasmosis. However, additional studies are required to evaluate the safety of ham products cured under different conditions of curing time, salt, and nitrite concentration.

  13. Toxoplasma gondii abortion storm in sheep on a Texas farm and isolation of mouse virulent atypical genotype T. gondii from an aborted lamb from a chronically infected ewe

    Science.gov (United States)

    Sheep are commonly infected with the protozoan parasite, Toxoplasma gondii. Infection may cause early embryonic death and resorption, fetal death and mummification, abortion, stillbirth, and neonatal death. Most sheep acquire T. gondii infection after birth. Recent studies reported that repeat ovine...

  14. Computational Prediction of MicroRNAs from Toxoplasma gondii Potentially Regulating the Hosts’ Gene Expression

    Directory of Open Access Journals (Sweden)

    Müşerref Duygu Saçar

    2014-10-01

    Full Text Available MicroRNAs (miRNAs were discovered two decades ago, yet there is still a great need for further studies elucidating their genesis and targeting in different phyla. Since experimental discovery and validation of miRNAs is difficult, computational predictions are indispensable and today most computational approaches employ machine learning. Toxoplasma gondii, a parasite residing within the cells of its hosts like human, uses miRNAs for its post-transcriptional gene regulation. It may also regulate its hosts’ gene expression, which has been shown in brain cancer. Since previous studies have shown that overexpressed miRNAs within the host are causal for disease onset, we hypothesized that T. gondii could export miRNAs into its host cell. We computationally predicted all hairpins from the genome of T. gondii and used mouse and human models to filter possible candidates. These were then further compared to known miRNAs in human and rodents and their expression was examined for T. gondii grown in mouse and human hosts, respectively. We found that among the millions of potential hairpins in T. gondii, only a few thousand pass filtering using a human or mouse model and that even fewer of those are expressed. Since they are expressed and differentially expressed in rodents and human, we suggest that there is a chance that T. gondii may export miRNAs into its hosts for direct regulation.

  15. Functional and phylogenetic evidence of a bacterial origin for the first enzyme in sphingolipid biosynthesis in a phylum of eukaryotic protozoan parasites.

    Science.gov (United States)

    Mina, John G; Thye, Julie K; Alqaisi, Amjed Q I; Bird, Louise E; Dods, Robert H; Grøftehauge, Morten K; Mosely, Jackie A; Pratt, Steven; Shams-Eldin, Hosam; Schwarz, Ralph T; Pohl, Ehmke; Denny, Paul W

    2017-07-21

    Toxoplasma gondii is an obligate, intracellular eukaryotic apicomplexan protozoan parasite that can cause fetal damage and abortion in both animals and humans. Sphingolipids are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Here we report the identification, isolation, and analyses of the Toxoplasma serine palmitoyltransferase, an enzyme catalyzing the first and rate-limiting step in sphingolipid biosynthesis: the condensation of serine and palmitoyl-CoA. In all eukaryotes analyzed to date, serine palmitoyltransferase is a highly conserved heterodimeric enzyme complex. However, biochemical and structural analyses demonstrated the apicomplexan orthologue to be a functional, homodimeric serine palmitoyltransferase localized to the endoplasmic reticulum. Furthermore, phylogenetic studies indicated that it was evolutionarily related to the prokaryotic serine palmitoyltransferase, identified in the Sphingomonadaceae as a soluble homodimeric enzyme. Therefore this enzyme, conserved throughout the Apicomplexa, is likely to have been obtained via lateral gene transfer from a prokaryote. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. High prevalence and genotypes of Toxoplasma gondii isolated from goats, from a retail meat store, destined for human consumption in the USA.

    Science.gov (United States)

    Dubey, J P; Rajendran, C; Ferreira, L R; Martins, J; Kwok, O C H; Hill, D E; Villena, I; Zhou, H; Su, C; Jones, J L

    2011-07-01

    Little information is available concerning the presence of viable Toxoplasma gondii in tissues of goats worldwide. In the present study, hearts of 234 goats obtained from a local USA grocery store were examined for T. gondii infection. Blood clot or fluid removed from each heart was tested for antibodies to T. gondii by using the modified agglutination test (MAT). Antibodies to T. gondii were found in 125 (53.4%) of 234 goats, with titers of 1:5 in 20, 1:10 in 44, 1:20 in 16, 1:40 in five, 1:160 in five, 1:320 in five, and 1:640 or higher in 30 goats. Hearts of 112 goats (46 goats goats 1:10 or higher) were used for isolation of viable T. gondii by bioassays in mice. For bioassays, 50 g of the myocardium were digested in an acid pepsin solution and the digest inoculated into mice; the recipient mice were examined for T. gondii infection. Toxoplasma gondii was isolated from 29 goats; from hearts of one of 46 with titers of goat strains. Taken together, these results indicate high parasite prevalence and moderate genetic diversity of T. gondii in goats, which have important implications in public health. We believe this is the first genetic analysis of T. gondii isolates from goats in the USA. Published by Elsevier Ltd.

  17. Prevalence of Toxoplasma gondii antibodies in domestic donkeys (Equus asinus) in Durango, Mexico slaughtered for human consumption

    OpenAIRE

    Alvarado-Esquivel, Cosme; Alvarado-Esquivel, Domingo; Dubey, Jitender P

    2015-01-01

    Background Nothing is known about Toxoplasma gondii prevalence in donkeys in Mexico. Meat from donkey is consumed by humans in Mexico and also exported to other countries. We sought to determine the presence of antibodies against T. gondii in 239 domestic donkeys (Equus asinus) for slaughter in Durango, Mexico using the modified agglutination test (MAT). Donkeys were sampled in four premises (trade centers) where donkeys were gather for shipment to abattoirs in other Mexican states. Results A...

  18. Experimental infection with the Toxoplasma gondii ME-49 strain in the Brazilian BR-1 mini pig is a suitable animal model for human toxoplasmosis

    Directory of Open Access Journals (Sweden)

    Farlen José Bebber Miranda

    2015-02-01

    Full Text Available Toxoplasma gondii causes toxoplasmosis, a worldwide disease. Experimentation with pigs is necessary for the development of new therapeutic approaches to human diseases. BR-1 mini pigs were intramuscularly infected with T. gondii with tachyzoites (RH strain or orally infected with cysts (ME-49 strain. Haematology and serum biochemistry were analysed and buffy coat cells were inoculated in mice to determine tachyzoite circulation. No alterations were observed in erythrocyte and platelet values; however, band neutrophils increased seven days after infection with ME-49. Serology of the mice inoculated with pig blood leucocytes revealed circulating ME-49 or RH strain tachyzoites in the pigs' peripheral blood at two and seven or nine days post-infection. The tachyzoites were also directly observed in blood smears from the infected pigs outside and inside leucocytes for longer periods. Alanine-aminotransferase was high at days 21 and 32 in the RH infected pigs. After 90 days, the pigs were euthanised and their tissue samples were processed and inoculated into mice. The mice serology revealed the presence of parasites in the hearts, ileums and mesenteric lymph nodes of the pigs. Additionally, cysts in the mice were only observed after pig heart tissue inoculation. The infected pigs presented similar human outcomes with relatively low pathogenicity and the BR-1 mini pig model infected with ME-49 is suitable to monitor experimental toxoplasmosis.

  19. Prevalence of agglutinating antibodies to Toxoplasma gondii and Sarcocystis neurona in beavers (Castor canadensis) from Massachusetts

    Science.gov (United States)

    Jordan, C.N.; Kaur, T.; Koenen, K.; DeStefano, S.; Zajac, A.M.; Lindsay, D.S.

    2005-01-01

    The present study examined the seroprevalence of Toxoplasma gondii and Sarcocystls neurona in a population of beavers (Castor canadensis) from Massachusetts. Sixty-two blood samples were collected during the field seasons over 3 consecutive years from different animals. Blood was collected onto filter paper and shipped to the Department of Biomedical Sciences, Virginia Tech, Blacksburg, Virginia, for parasite testing. The samples were tested at dilutions of 1:25, 1:50, and 1:100 against each parasite antigen by modified agglutination tests to determine whether antibodies to either parasite were present in the blood. Six of 62 samples (10%) were positive for T. gondii, with 2 samples having titers of 1:25 and 4 having titers of 1:50. Four of 62 samples (6%) were positive for S. neurona, with 2 samples having titers of 1:25 and 2 having titers of 1:50. ?? American Society of Pathologists 2005.

  20. Point-of-care testing for Toxoplasma gondii IgG/IgM using Toxoplasma ICT IgG-IgM test with sera from the United States and implications for developing countries.

    Science.gov (United States)

    Begeman, Ian J; Lykins, Joseph; Zhou, Ying; Lai, Bo Shiun; Levigne, Pauline; El Bissati, Kamal; Boyer, Kenneth; Withers, Shawn; Clouser, Fatima; Noble, A Gwendolyn; Rabiah, Peter; Swisher, Charles N; Heydemann, Peter T; Contopoulos-Ioannidis, Despina G; Montoya, Jose G; Maldonado, Yvonne; Ramirez, Raymund; Press, Cindy; Stillwaggon, Eileen; Peyron, François; McLeod, Rima

    2017-06-01

    Congenital toxoplasmosis is a serious but preventable and treatable disease. Gestational screening facilitates early detection and treatment of primary acquisition. Thus, fetal infection can be promptly diagnosed and treated and outcomes can be improved. We tested 180 sera with the Toxoplasma ICT IgG-IgM point-of-care (POC) test. Sera were from 116 chronically infected persons (48 serotype II; 14 serotype I-III; 25 serotype I-IIIa; 28 serotype Atypical, haplogroup 12; 1 not typed). These represent strains of parasites infecting mothers of congenitally infected children in the U.S. 51 seronegative samples and 13 samples from recently infected persons known to be IgG/IgM positive within the prior 2.7 months also were tested. Interpretation was confirmed by two blinded observers. A comparison of costs for POC vs. commercial laboratory testing methods was performed. We found that this new Toxoplasma ICT IgG-IgM POC test was highly sensitive (100%) and specific (100%) for distinguishing IgG/IgM-positive from negative sera. Use of such reliable POC tests can be cost-saving and benefit patients. Our work demonstrates that the Toxoplasma ICT IgG-IgM test can function reliably as a point-of-care test to diagnose Toxoplasma gondii infection in the U.S. This provides an opportunity to improve maternal-fetal care by using approaches, diagnostic tools, and medicines already available. This infection has serious, lifelong consequences for infected persons and their families. From the present study, it appears a simple, low-cost POC test is now available to help prevent morbidity/disability, decrease cost, and make gestational screening feasible. It also offers new options for improved prenatal care in low- and middle-income countries.

  1. ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion

    International Nuclear Information System (INIS)

    Vieira da Silva, Claudio; Alves da Silva, Erika; Costa Cruz, Mario; Chavrier, Philippe; Arruda Mortara, Renato

    2009-01-01

    Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP 2 and PIP 3 to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.

  2. Towards vaccine against toxoplasmosis: evaluation of the immunogenic and protective activity of recombinant ROP5 and ROP18 Toxoplasma gondii proteins.

    Science.gov (United States)

    Grzybowski, Marcin M; Dziadek, Bożena; Gatkowska, Justyna M; Dzitko, Katarzyna; Długońska, Henryka

    2015-12-01

    Toxoplasmosis is one of the most common parasitic infections worldwide. An effective vaccine against human and animal toxoplasmosis is still needed to control this parasitosis. The polymorphic rhoptry proteins, ROP5 and ROP18, secreted by Toxoplasma gondii during the invasion of the host cell have been recently considered as promising vaccine antigens, as they appear to be the major determinants of T. gondii virulence in mice. The goal of this study was to evaluate their immunogenic and immunoprotective activity after their administration (separately or both recombinant proteins together) with the poly I:C as an adjuvant. Immunization of BALB/c and C3H/HeOuJ mice generated both cellular and humoral specific immune responses with some predominance of IgG1 antibodies. The spleen cells derived from vaccinated animals reacted to the parasite's native antigens. Furthermore, the immunization led to a partial protection against acute and chronic toxoplasmosis. These findings confirm the previous assumptions about ROP5 and ROP18 antigens as valuable components of a subunit vaccine against toxoplasmosis.

  3. The genome of the simian and human malaria parasite Plasmodium knowlesi

    DEFF Research Database (Denmark)

    Pain, A; Böhme, U; Berry, A E

    2008-01-01

    Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite...... species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood...... cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described...

  4. Investigating the Determinants of Toxoplasma gondii Prevalence in Meat: A Systematic Review and Meta-Regression.

    Directory of Open Access Journals (Sweden)

    Simone Belluco

    Full Text Available Toxoplasma gondii is one of the most widespread parasites in humans and can cause severe illness in immunocompromised individuals. However, its role in healthy people is probably under-appreciated. The complex epidemiology of this protozoan recognizes several infection routes but consumption of contaminated food is likely to be the predominant one. Among food, consumption of raw and undercooked meat is a relevant route of transmission, but the role of different meat producing animal species and meats thereof is controversial.The aim of the present work is to summarize and analyse literature data reporting prevalence estimates of T. gondii in meat animals/meats.We searched Medline, Web of Science, Science Direct (last update 31/03/2015.Relevant papers should report data from primary studies dealing with the prevalence of T. gondii in meat from livestock species as obtained through direct detection methods. Meta-analysis and meta-regression were performed.Of 1915 papers screened, 69 papers were included, dealing mainly with cattle, pigs and sheep. Pooled prevalences, based on random-effect models, were 2.6% (CI95 [0.5-5.8] for cattle, 12.3% (CI95 [7.6-17.8] for pigs and 14.7% (CI95 [8.9-21.5] for sheep. Due to the high heterogeneity observed, univariable and multivariable meta-regression models were fitted showing that the geographic area for cattle (p = 0.032, the farming type for pigs (p = 0.0004 and the sample composition for sheep (p = 0.03 had significant effects on the prevalences of Toxoplasma detected/estimated. Moreover, the role of different animal species was dependent on the geographic location of animals' origin.Limitations were due mainly to a possible publication bias.The present work confirms the role of meat, including beef, as T. gondii sources, and highlights the need for a control system for this parasite to be implemented along the meat production chain. Moreover, consumer knowledge should be strengthened in order to reduce

  5. Pathology, clinical signs, and tissue distribution of Toxoplasma gondii in experimentally infected reindeer (Rangifer tarandus

    Directory of Open Access Journals (Sweden)

    Émilie Bouchard

    2017-12-01

    Full Text Available Toxoplasma gondii is a zoonotic parasite found in vertebrates worldwide for which felids serve as definitive hosts. Despite low densities of felids in northern Canada, Inuit people in some regions show unexpectedly high levels of exposure, possibly through handling and consumption of Arctic wildlife. Free-ranging caribou (Rangifer tarandus are widely harvested for food across the Canadian North, show evidence of seroexposure to T. gondii, and are currently declining in numbers throughout the Arctic. We experimentally infected three captive reindeer (conspecific with caribou with 1000, 5000 or 10,000 oocysts of T. gondii via stomach intubation to assess clinical signs of infection, pathology, and tissue distribution. An unexposed reindeer served as a negative control. Signs of stress, aggression, and depression were noted for the first two weeks following infection. By 4 weeks post infection, all infected reindeer were positive on a modified agglutination test at the highest titer tested (1:200 for antibodies to T. gondii. At 20 weeks post infection, no gross abnormalities were observed on necropsy. Following histopathology and immunohistochemistry, tissue cysts were visualized in the reindeer given the highest and lowest dose of oocysts. Focal pleuritis and alveolitis were associated with respiratory problems in reindeer given the middle dose. DNA of T. gondii was detected following traditional DNA extraction and conventional PCR on 25 mg samples from 17/33 muscles and organs, and by magnetic capture DNA extraction from 100 g samples from all 26 tissues examined. This research demonstrated that reindeer/caribou can serve as intermediate hosts for T. gondii, and that the parasite may be associated with health effects in wildlife. The presence of T. gondii in all tissues tested, many of which are commonly consumed raw, smoked, or dried in northern communities, suggests that caribou may serve as a source of human exposure to T

  6. Prevalence and Risk Factors of Intestinal Parasites in Cats from China.

    Science.gov (United States)

    Yang, Yurong; Liang, Hongde

    2015-01-01

    The prevalence of intestinal parasites in cats from China was largely unknown prior to this study. The aim of the present study was to investigate the presence of intestinal parasites in cats from central China and also identify risk factors for parasitism. Fecal samples from 360 cats were examined using sugar flotation procedure and fecal smear test by microscope. Cats had mixed two or three kinds of parasites infections. Of the 360 cats feces, intestinal parasites positive feces were 149 (41.39%). 64 (17.78%) were infected with Toxocara cati, 61 (16.94%) with Isospora felis, 41 (11.39%) with Isospora rivolta, 33 (9.17%) with Paragonimus, 23 (6.39%) with hookworms, 11 (3.06%) with Toxoplasma-like oocysts, 10 (2.78%) with Trichuris, 4 (1.11%) with lungworm, 2 (0.56%) with Sarcocystis, and 1 (0.28%) with Trematode. The cats' living outdoor was identified as risk factor by statistical analysis. These results provide relevant basic data for assessing the infection of intestinal parasites in cats from central region of China. In conclusion, there was high prevalence of intestinal parasites in cats from China.

  7. Prevalence and Risk Factors of Intestinal Parasites in Cats from China

    Directory of Open Access Journals (Sweden)

    Yurong Yang

    2015-01-01

    Full Text Available The prevalence of intestinal parasites in cats from China was largely unknown prior to this study. The aim of the present study was to investigate the presence of intestinal parasites in cats from central China and also identify risk factors for parasitism. Fecal samples from 360 cats were examined using sugar flotation procedure and fecal smear test by microscope. Cats had mixed two or three kinds of parasites infections. Of the 360 cats feces, intestinal parasites positive feces were 149 (41.39%. 64 (17.78% were infected with Toxocara cati, 61 (16.94% with Isospora felis, 41 (11.39% with Isospora rivolta, 33 (9.17% with Paragonimus, 23 (6.39% with hookworms, 11 (3.06% with Toxoplasma-like oocysts, 10 (2.78% with Trichuris, 4 (1.11% with lungworm, 2 (0.56% with Sarcocystis, and 1 (0.28% with Trematode. The cats’ living outdoor was identified as risk factor by statistical analysis. These results provide relevant basic data for assessing the infection of intestinal parasites in cats from central region of China. In conclusion, there was high prevalence of intestinal parasites in cats from China.

  8. Toxoplasma gondii in wild ruminants bred in game preserves and farms with production destined for human consumption in the Czech Republic.

    Directory of Open Access Journals (Sweden)

    Alena Lorencova

    2015-08-01

    Full Text Available Toxoplasma gondii is the causative agent of the most common parasitic infection in humans. Almost all warm-blooded animals, as well as humans, can act as intermediate hosts that harbour infective cysts in their tissues. Felids act as definitive hosts excreting oocysts in faeces. In humans, T. gondii can cause subclinical infection but also severe clinical disease with a wide range of symptoms, especially in immunocompromised individuals. The infection is usually asymptomatic in animals and is not recognized at either ante- or post-mortem inspection. The consumption of undercooked meat from infected animals is one of the most important routes by which the infection can be transmitted to humans. Handling of the organs and other tissues of game animals and eating their undercooked meat have been described as a risk of T. gondii infection. For diagnosis of toxoplasmosis, the combination of serological and molecular methods has been described as a suitable approach. Antibodies against T. gondii were detected in 20.8%, 50.0%, 23.1%, and 24.4% of red deer, sika deer, fallow deer and mouflons, respectively, coming from game preserves and farms in the Czech Republic. T. gondii DNA was found in the muscle tissue of red deer (8.3% and mouflons (14.6%. The lower prevalence rates based on molecular screening could be due to the random distribution and low density of cysts in tissues of infected animals. Bearing in mind the increase in the number of hunted animals and the growing trend in game consumption, it is important to educate hunters and game meat consumers about the risk of exposure to this zoonotic infection during handling and consumption of the meat.

  9. Seroprevalence of Toxoplasma gondii infection in goats from the south-west region of Poland and the detection of T. gondii DNA in goat milk.

    Science.gov (United States)

    Sroka, Jacek; Kusyk, Pawel; Bilska-Zajac, Ewa; Karamon, Jacek; Dutkiewicz, Jacek; Wojcik-Fatla, Angelina; Zajac, Violetta; Stojecki, Krzysztof; Rozycki, Miroslaw; Cencek, Tomasz

    2017-07-11

    Toxoplasma gondii (Nicolle et Manceaux, 1908) is an obligatory intracellular protozoan parasite prevalent in animals and humans worldwide having medical and veterinary importance on account of causing abortion or congenital disease in intermediate hosts, including man. Since T. gondii has already been identified in the milk of goats, Capra aegagrus hircus (Linnaeus), the possibility of acquiring infection by ingesting unpasteurised goat milk should be taken into consideration. Thus, the aim of the present study was to determine the presence of T. gondii DNA in goat milk. First, 73 goats (females) from 36 farms located in Poland were examined serologically by direct agglutination test (DAT) to estimate the T. gondii serological status. Milk samples from 60 selected lactating females were examined for the presence of T. gondii DNA by Real time PCR and nested PCR (B1 gene). To estimate the clonal type of detected T. gondii, multiplex PCR was performed using 6 markers. In DAT, positive results were found in 70% of 73 goats. Among examined 60 milk samples, 65% were positive in Real time PCR and 43% in nested PCR. It is noteworthy that 11 samples positive in PCR were collected from seronegative goats. The multilocus PCR analysis mostly revealed the occurrence of genotype III, which is relatively rare in Europe. The recorded high prevalence of anti-Toxoplasma antibodies in tested goats (70%), associated with a high prevalence of T. gondii DNA in goat milk samples (65%), indicates a potential risk of the parasite transmission through goat milk ingestion.

  10. A Toxoplasma gondii protein with homology to intracellular type Na+/H+ exchangers is important for osmoregulation and invasion

    International Nuclear Information System (INIS)

    Francia, Maria E.; Wicher, Sarah; Pace, Douglas A.; Sullivan, Jack; Moreno, Silvia N.J.; Arrizabalaga, Gustavo

    2011-01-01

    The obligate intracellular parasite Toxoplasma gondii is exposed to a variety of physiological conditions while propagating in an infected organism. The mechanisms by which Toxoplasma overcomes these dramatic changes in its environment are not known. In yeast and plants, ion detoxification and osmotic regulation are controlled by vacuolar compartments. A novel compartment named the plant-like vacuole or vacuolar compartment (PLV/VAC) has recently been described in T.gondii, which could potentially protect extracellular tachyzoites against salt and other ionic stresses. Here, we report the molecular characterization of the vacuolar type Na + /H + exchanger in T. gondii, TgNHE3, and its co-localization with the PLV/VAC proton-pyrophosphatase (TgVP1). We have created a TgNHE3 knockout strain, which is more sensitive to hyperosmotic shock and toxic levels of sodium, possesses a higher intracellular Ca 2+ concentration [Ca 2+ ] i , and exhibits a reduced host invasion efficiency. The defect in invasion correlates with a measurable reduction in the secretion of the adhesin TgMIC2. Overall, our results suggest that the PLV/VAC has functions analogous to those of the vacuolar compartments of plants and yeasts, providing the parasite with a mechanism to resist ionic fluctuations and, potentially, regulate protein trafficking.

  11. Human fascioliasis: a parasitic health problem in Dakahlia Governorate, Egypt.

    Science.gov (United States)

    el Shazly, A M; Handousa, A E; Youssef, M E; Rizk, H; Hamouda, M M

    1991-08-01

    Fascioliasis has a cosmopolitan distribution and is prevalent in sheep-raising countries. Now, it is an increasingly important parasite of man in the Mediterranean countries. In Dakahlia G., human fascioliasis has imposed itself as a parasitic health problem. In this paper, 23 human cases were selected to throw some light on the signs, symptoms and diagnosis of the disease. It was concluded that painful hepatomegaly, fever, anaemia and marked eosinophilia are tetrad suggesting fascioliasis in patient who has consumed watercress as green salade. Data concerning treatment and follow up will be published later.

  12. Analysis of the accuracy of different laboratory methods for the diagnosis of intestinal parasites from stray and domiciled cats (Felis catus domesticus in Goiânia, Goiás, Brazil

    Directory of Open Access Journals (Sweden)

    Jaqueline Ataíde Silva Lima

    2018-02-01

    Full Text Available Abstract Cats are carriers of zoonotic agents to humans, including intestinal parasites. The purpose of this study was to analyze the accuracy of different laboratory methods for the diagnosis of intestinal parasites. Fecal samples were processed by the Willis, Sheather, Faust and Hoffman-Janer-Pons-Lutz (HJPL methods. Accuracy analysis was performed determining the sensitivity, specificity, positive and negative predictive value and Kappa. A total of 149 fecal samples were collected, 65 from stray cats and 84 from domiciled cats. The prevalence of intestinal parasites in stray cats was 60% while in domiciled cats it was 17%. In the analysis of accuracy, the techniques that showed the greatest accuracy for Ancylostomids were Willis and Faust, for Cystoisospora spp. Sheather with Faust or HPJL, and Toxoplasma gondii/Hammondia hammondi the association between Willis and Faust. Therefore, for a reliable evaluation of the prevalence of intestinal parasites, at least two different techniques should be used in parasitological exams of feces.

  13. Toxoplasma

    Science.gov (United States)

    T. gondii is an obligate intracellular protozoan parasite that can infect all warm blooded animals ranging from: humans, pets, livestock, to marine aquatic animals. The definitive host is the feline species (both domestic and wild cats), where the sexual stage of the life cycle o...

  14. Targeted Delivery of Toxoplasma gondii Antigens to Dendritic Cells Promote Immunogenicity and Protective Efficiency against Toxoplasmosis

    Directory of Open Access Journals (Sweden)

    Zineb Lakhrif

    2018-02-01

    Full Text Available Toxoplasmosis is a major public health problem and the development of a human vaccine is of high priority. Efficient vaccination against Toxoplasma gondii requires both a mucosal and systemic Th1 immune response. Moreover, dendritic cells play a critical role in orchestrating the innate immune functions and driving specific adaptive immunity to T. gondii. In this study, we explore an original vaccination strategy that combines administration via mucosal and systemic routes of fusion proteins able to target the major T. gondii surface antigen SAG1 to DCs using an antibody fragment single-chain fragment variable (scFv directed against DEC205 endocytic receptor. Our results show that SAG1 targeting to DCs by scFv via intranasal and subcutaneous administration improved protection against chronic T. gondii infection. A marked reduction in brain parasite burden is observed when compared with the intranasal or the subcutaneous route alone. DC targeting improved both local and systemic humoral and cellular immune responses and potentiated more specifically the Th1 response profile by more efficient production of IFN-γ, interleukin-2, IgG2a, and nasal IgA. This study provides evidence of the potential of DC targeting for the development of new vaccines against a range of Apicomplexa parasites.

  15. A seroepidemiological survey of Toxoplasma gondii infection in referred dogs to Veterinary Hospital of Ahvaz, Iran

    Directory of Open Access Journals (Sweden)

    Fatemeh Zarra-Nezhad

    2017-12-01

    Full Text Available Toxoplasma gondii is an intracellular protozoan parasite, which is the cause of toxoplasmosis and can infect a wide variety of warm-blooded animals, including dogs and humans. The present study evaluated the seroprevalence of T. gondii infection in pet dogs in Ahvaz, southwest city of Iran, and investigated the related possible risk factors. A total of 180 serum samples were collected from dogs referred to Veterinary Hospital of Ahvaz. The samples were then tested by indirect enzyme-linked immunosorbent assay. The prevalence of T. gondii antibodies were 46.67%. Logistic regression and chi square tests were used for evaluating of risk factors. The positivity increased statistically significantly with dog’s gender (56% females and 39% males, P = 0.001, age (18% in <2 years old, 96% in ≥4 years old, P = 0.001 and place of living (47% outdoor dogs 38% house hold dogs, P = 0.025. However, no statistically significant association was found with dogs’ breed, deworming, food ingestion or contact with cats. Overall, the results showed a relatively high seroprevalence of T. gondii infection in dogs in southwest Iran (Ahvaz and proved association of T. gondii prevalence rates with the dog’s age, gender and place of living. Keywords: Toxoplasma gondii, Toxoplasmosis, Indirect enzyme-linked immunosorbent assay, Outdoor dogs, House hold dogs, Deworming

  16. Oocyst-Derived Extract of Toxoplasma Gondii Serves as Potent Immunomodulator in a Mouse Model of Birch Pollen Allergy.

    Directory of Open Access Journals (Sweden)

    Angelika Wagner

    Full Text Available Previously, we have shown that oral infection with Toxoplasma gondii oocysts prevented type I allergy in mice. Here we investigated whether the application of a T. gondii oocyst lysate antigen (OLA could also reduce allergy development. BALB/c mice were immunised twice with OLA followed by sensitisation with the major birch pollen (BP allergen Bet v 1 and an aerosol challenge with BP extract.First, we tested OLA in vitro. Stimulation of splenocytes and bone marrow-derived dendritic cells (BMDC with OLA led to the production of pro-inflammatory and regulatory cytokines such as IL-6, IFN-γ and IL-10. Moreover, BMDC exposed to OLA upregulated the maturation markers CD40, CD80, CD86, and MHCII. Furthermore, OLA was recognised by TLR2-transfected human embryonic kidney cells.Immunisation of mice with OLA induced high levels of Toxoplasma-specific IgG antibodies in sera along with increased production of IFN-γ and IL-10 in Toxoplasma-antigen restimulated splenocytes. OLA reduced allergic airway inflammation as manifested by significant reduction of eosinophils in bronchoalveolar fluids, decreased cellular infiltrates and mucus production in the lungs. Accordingly, Bet v 1-specific IgE was decreased in OLA-pretreated mice. The reduced allergic immune responses were accompanied by increased numbers of CD4+CD25highFoxp3+ regulatory T cells in spleens as well as by increased numbers of granulocytic myeloid-derived suppressor cells in lungs when compared to sensitised controls suggesting that these two cell populations might be involved in the suppression of the allergic immune responses.Our data demonstrate that pretreatment with the oocyst extract can exert anti-allergic effects comparable to T. gondii infection. Thus, the immunomodulatory properties of the parasite extract indicate that this extract and in the future defined molecules thereof might serve as immunomodulatory adjuvants in allergy treatment and prophylaxis.

  17. Effect of Macrophage Migration Inhibitory Factor (MIF) in Human Placental Explants Infected with Toxoplasma gondii Depends on Gestational Age

    Science.gov (United States)

    de Oliveira Gomes, Angelica; de Oliveira Silva, Deise Aparecida; Silva, Neide Maria; de Freitas Barbosa, Bellisa; Franco, Priscila Silva; Angeloni, Mariana Bodini; Fermino, Marise Lopes; Roque-Barreira, Maria Cristina; Bechi, Nicoletta; Paulesu, Luana Ricci; dos Santos, Maria Célia; Mineo, José Roberto; Ferro, Eloisa Amália Vieira

    2011-01-01

    Because macrophage migration inhibitory factor (MIF) is a key cytokine in pregnancy and has a role in inflammatory response and pathogen defense, the objective of the present study was to investigate the effects of MIF in first- and third-trimester human placental explants infected with Toxoplasma gondii. Explants were treated with recombinant MIF, IL-12, interferon-γ, transforming growth factor-β1, or IL-10, followed by infection with T. gondii RH strain tachyzoites. Supernatants of cultured explants were assessed for MIF production. Explants were processed for morphologic analysis, immunohistochemistry, and real-time PCR analysis. Comparison of infected and stimulated explants versus noninfected control explants demonstrated a significant increase in MIF release in first-trimester but not third-trimester explants. Tissue parasitism was higher in third- than in first-trimester explants. Moreover, T. gondii DNA content was lower in first-trimester explants treated with MIF compared with untreated explants. However, in third-trimester explants, MIF stimulus decreased T. gondii DNA content only at the highest concentration of the cytokine. In addition, high expression of MIF receptor was observed in first-trimester placental explants, whereas MIF receptor expression was low in third-trimester explants. In conclusion, MIF was up-regulated and demonstrated to be important for control of T. gondii infection in first-trimester explants, whereas lack of MIF up-regulation in third-trimester placentas may be involved in higher susceptibility to infection at this gestational age. PMID:21641401

  18. HOW HUMAN HISTORY HAS INFLUENCED GEOGRAPHY AND GENETICS OF PARASITE POPULATIONS

    Science.gov (United States)

    Human beings have radically altered agricultural landscapes, establishing a limited repertoire of plants and animals over vast expanses. Here, I consider what impact such a history may have had on the distribution and diversity of animal parasite, hypothesizing that certain parasites may have been '...

  19. Impaired chromatin remodelling at STAT1-regulated promoters leads to global unresponsiveness of Toxoplasma gondii-infected macrophages to IFN-γ.

    Directory of Open Access Journals (Sweden)

    Christine Lang

    2012-01-01

    Full Text Available Intracellular pathogens including the apicomplexan and opportunistic parasite Toxoplasma gondii profoundly modify their host cells in order to establish infection. We have shown previously that intracellular T. gondii inhibit up-regulation of regulatory and effector functions in murine macrophages (MΦ stimulated with interferon (IFN-γ, which is the cytokine crucial for controlling the parasites' replication. Using genome-wide transcriptome analysis we show herein that infection with T. gondii leads to global unresponsiveness of murine macrophages to IFN-γ. More than 61% and 89% of the transcripts, which were induced or repressed by IFN-γ in non-infected MΦ, respectively, were not altered after stimulation of T. gondii-infected cells with IFN-γ. These genes are involved in a variety of biological processes, which are mostly but not exclusively related to immune responses. Analyses of the underlying mechanisms revealed that IFN-γ-triggered nuclear translocation of STAT1 still occurred in Toxoplasma-infected MΦ. However, STAT1 bound aberrantly to oligonucleotides containing the IFN-γ-responsive gamma-activated site (GAS consensus sequence. Conversely, IFN-γ did not induce formation of active GAS-STAT1 complexes in nuclear extracts from infected MΦ. Mass spectrometry of protein complexes bound to GAS oligonucleotides showed that T. gondii-infected MΦ are unable to recruit non-muscle actin to IFN-γ-responsive DNA sequences, which appeared to be independent of stimulation with IFN-γ and of STAT1 binding. IFN-γ-induced recruitment of BRG-1 and acetylation of core histones at the IFN-γ-regulated CIITA promoter IV, but not β-actin was diminished by >90% in Toxoplasma-infected MΦ as compared to non-infected control cells. Remarkably, treatment with histone deacetylase inhibitors restored the ability of infected macrophages to express the IFN-γ regulated genes H2-A/E and CIITA. Taken together, these results indicate that Toxoplasma

  20. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    Directory of Open Access Journals (Sweden)

    Kriti Tyagi

    Full Text Available The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites.Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively.Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1 showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3 showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs for human erythrocyte receptors. However, the third protein (PkTRAg67.1 utilized the additional but different human erythrocyte receptor(s as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite.Recognition and sharing of human erythrocyte receptor(s by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  1. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    Science.gov (United States)

    Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K; Sharma, Yagya D

    2015-01-01

    The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  2. Zoonotic and Non-Zoonotic Diseases in Relation to Human Personality and Societal Values: Support for the Parasite-Stress Model

    Directory of Open Access Journals (Sweden)

    Randy Thornhill

    2010-04-01

    Full Text Available The parasite-stress model of human sociality proposes that humans' ontogenetic experiences with infectious diseases as well as their evolutionary historical interactions with these diseases exert causal influences on human psychology and social behavior. This model has been supported by cross-national relationships between parasite prevalence and human personality traits, and between parasite prevalence and societal values. Importantly, the parasite-stress model emphasizes the causal role of non-zoonotic parasites (which have the capacity for human-to-human transmission, rather than zoonotic parasites (which do not, but previous studies failed to distinguish between these conceptually distinct categories. The present investigation directly tested the differential predictive effects of zoonotic and non-zoonotic (both human-specific and multihost parasite prevalence on personality traits and societal values. Supporting the parasite-stress model, cross-national differences in personality traits (unrestricted sexuality, extraversion, openness to experiences and in societal values (individualism, collectivism, gender equality, democratization are predicted specifically by non-zoonotic parasite prevalence.

  3. Human parasitic protozoan infection to infertility: a systematic review.

    Science.gov (United States)

    Shiadeh, Malihe Nourollahpour; Niyyati, Maryam; Fallahi, Shirzad; Rostami, Ali

    2016-02-01

    Protozoan parasitic diseases are endemic in many countries worldwide, especially in developing countries, where infertility is a major burden. It has been reported that such infections may cause infertility through impairment in male and female reproductive systems. We searched Medline, PubMed, and Scopus databases and Google scholar to identify the potentially relevant studies on protozoan parasitic infections and their implications in human and animal model infertility. Literature described that some of the protozoan parasites such as Trichomonas vaginalis may cause deformities of the genital tract, cervical neoplasia, and tubal and atypical pelvic inflammations in women and also non-gonoccocal urethritis, asthenozoospermia, and teratozoospermia in men. Toxopalasma gondii could cause endometritis, impaired folliculogenesis, ovarian and uterine atrophy, adrenal hypertrophy, vasculitis, and cessation of estrus cycling in female and also decrease in semen quality, concentration, and motility in male. Trypanosoma cruzi inhibits cell division in embryos and impairs normal implantation and development of placenta. Decrease in gestation rate, infection of hormone-producing glands, parasite invasion of the placenta, and overproduction of inflammatory cytokines in the oviducts and uterine horns are other possible mechanisms induced by Trypanosoma cruzi to infertility. Plasmodium spp. and Trypanosoma brucei spp. cause damage in pituitary gland, hormonal disorders, and decreased semen quality. Entamoeba histolytica infection leads to pelvic pain, salpingitis, tubo-ovarian abscess, and genital ulcers. Cutaneous and visceral leishmaniasis can induce genital lesion, testicular amyloidosis, inflammation of epididymis, prostatitis, and sperm abnormality in human and animals. In addition, some epidemiological studies have reported that rates of protozoan infections in infertile patients are higher than healthy controls. The current review indicates that protozoan parasitic

  4. Infection of male rats with Toxoplasma gondii induces effort-aversion in a T-maze decision-making task.

    Science.gov (United States)

    Tan, Donna; Vyas, Ajai

    2016-03-01

    Rats chronically infected with protozoan Toxoplasma gondii exhibit greater delay aversion in an inter-temporal task. Moreover T. gondii infection also results in dendritic atrophy of basolateral amygdala neurons. Basolateral amygdala is reported to bias decision making towards greater effortful alternatives. In this context, we report that T. gondii increases effort aversion in infected male rats. This host-parasite association has been widely studied in the context of loss of innate fear in the infected males. It is suggested that reduced fear towards predators reflects a parasitic behavioral manipulation to enhance trophic transmission of T. gondii. Observations reported here extend this paradigm away from a monolithic change in fear and towards a multi-dimensional change in decision making. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Toxoplasma gondii in the Cornigliese sheep breed in Italy: Meat juice serology, in vitro isolation and genotyping.

    Science.gov (United States)

    Vismarra, A; Barilli, E; Miceli, M; Mangia, C; Genchi, M; Brindani, F; Kramer, L; Bacci, C

    2017-08-30

    Toxoplasma gondii is considered one of the most important food-borne parasitic zoonoses globally and sheep are important intermediate hosts of the parasite. Meat and milk from infected sheep are considered an important source of infection for humans. Here, the authors evaluated T. gondii infection in the Italian Cornigliese sheep breed using meat juice ELISA, and in vitro assay for followed by Real Time-PCR and PCR-RFLP. Twenty-one hearts were collected at slaughter. Meat juice serology was carried out on all samples, while eleven hearts with the highest antibody titres were subjected to acid-peptic digestion and seeding onto Vero cells. DNA was extracted at three different time points following seeding. PCR-positive samples were then genotyped by PCR-RFLP. All the meat juice samples were positive for IgG antibodies against p30 protein of T. gondii. Five of the 11 samples, seeded onto Vero cells, were positive in PCR made on DNA extracted after 21days of culture and the PCR-RFLP revealed a Type-II or Type II variant profile at 9/10 loci. Two out of five samples showed an increase in terms of parasite growth by comparing the Cq values at three different time points. To the authors' knowledge, this is the first report of in vitro cultivation of T. gondii from muscle tissue of naturally-infected sheep. In vitro assays may be a promising alternative to bioassays and further studies are necessary in order to improve assay performance and to identify possible early markers of parasite proliferation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The Rhoptry Proteins ROP18 and ROP5 Mediate Toxoplasma gondii Evasion of the Murine, But Not the Human, Interferon-Gamma Response

    Science.gov (United States)

    Niedelman, Wendy; Gold, Daniel A.; Rosowski, Emily E.; Sprokholt, Joris K.; Lim, Daniel; Farid Arenas, Ailan; Melo, Mariane B.; Spooner, Eric; Yaffe, Michael B.; Saeij, Jeroen P. J.

    2012-01-01

    The obligate intracellular parasite Toxoplasma gondii secretes effector proteins into the host cell that manipulate the immune response allowing it to establish a chronic infection. Crosses between the types I, II and III strains, which are prevalent in North America and Europe, have identified several secreted effectors that determine strain differences in mouse virulence. The polymorphic rhoptry protein kinase ROP18 was recently shown to determine the difference in virulence between type I and III strains by phosphorylating and inactivating the interferon-γ (IFNγ)-induced immunity-related GTPases (IRGs) that promote killing by disrupting the parasitophorous vacuole membrane (PVM) in murine cells. The polymorphic pseudokinase ROP5 determines strain differences in virulence through an unknown mechanism. Here we report that ROP18 can only inhibit accumulation of the IRGs on the PVM of strains that also express virulent ROP5 alleles. In contrast, specific ROP5 alleles can reduce IRG coating even in the absence of ROP18 expression and can directly interact with one or more IRGs. We further show that the allelic combination of ROP18 and ROP5 also determines IRG evasion and virulence of strains belonging to other lineages besides types I, II and III. However, neither ROP18 nor ROP5 markedly affect survival in IFNγ-activated human cells, which lack the multitude of IRGs present in murine cells. These findings suggest that ROP18 and ROP5 have specifically evolved to block the IRGs and are unlikely to have effects in species that do not have the IRG system, such as humans. PMID:22761577

  7. Toxoplasma gondii infection induces suppression in a mouse model of allergic airway inflammation.

    Directory of Open Access Journals (Sweden)

    Ignacio M Fenoy

    Full Text Available Allergic asthma is an inflammatory disorder characterized by infiltration of the airway wall with inflammatory cells driven mostly by activation of Th2-lymphocytes, eosinophils and mast cells. There is a link between increased allergy and a reduction of some infections in Western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofecal and foodborne microbes such as Toxoplasma gondii. We previously showed that both acute and chronic parasite T. gondii infection substantially blocked development of airway inflammation in adult BALB/c mice. Based on the high levels of IFN-γ along with the reduction of Th2 phenotype, we hypothesized that the protective effect might be related to the strong Th1 immune response elicited against the parasite. However, other mechanisms could also be implicated. The possibility that regulatory T cells inhibit allergic diseases has received growing support from both animal and human studies. Here we investigated the cellular mechanisms involved in T. gondii induced protection against allergy. Our results show for the first time that thoracic lymph node cells from mice sensitized during chronic T. gondii infection have suppressor activity. Suppression was detected both in vitro, on allergen specific T cell proliferation and in vivo, on allergic lung inflammation after adoptive transference from infected/sensitized mice to previously sensitized animals. This ability was found to be contact-independent and correlated with high levels of TGF-β and CD4(+FoxP3(+ cells.

  8. Everyday and Exotic Foodborne Parasites

    Directory of Open Access Journals (Sweden)

    Marilyn B Lee

    2000-01-01

    Full Text Available Everyday foodborne parasites, which are endemic in Canada, include the protozoans Entamoeba histolytica, Giardia lamblia and Cryptosporidium parvum. However, these parasites are most frequently acquired through unfiltered drinking water, homosexual activity or close personal contact such as in daycare centres and occasionally via a food vehicle. It is likely that many foodborne outbreaks from these protozoa go undetected. Transmission of helminth infections, such as tapeworms, is rare in Canada because of effective sewage treatment. However, a common foodborne parasite of significance is Toxoplasma gondii. Although infection can be acquired from accidental ingestion of oocysts from cat feces, infection can also result from consumption of tissue cysts in undercooked meat, such as pork or lamb. Congenital transmission poses an immense financial burden, costing Canada an estimated $240 million annually. Also of concern is toxoplasmosis in AIDS patients, which may lead to toxoplasmosis encephalitis, the second most common AIDS-related opportunistic infection of the central nervous system. Exotic parasites (ie, those acquired from abroad or from imported food are of growing concern because more Canadians are travelling and the number of Canada?s trading partners is increasing. Since 1996, over 3000 cases of Cyclospora infection reported in the United States and Canada were epidemiologically associated with importation of Guatemalan raspberries. Unlike toxoplasmosis, where strategies for control largely rest with individual practices, control of cyclosporiasis rests with government policy, which should prohibit the importation of foods at high risk.

  9. Toxoplasma gondii Infection in Mice Impairs Long-Term Fear Memory Consolidation through Dysfunction of the Cortex and Amygdala.

    Science.gov (United States)

    Ihara, Fumiaki; Nishimura, Maki; Muroi, Yoshikage; Mahmoud, Motamed Elsayed; Yokoyama, Naoaki; Nagamune, Kisaburo; Nishikawa, Yoshifumi

    2016-10-01

    Chronic infection with Toxoplasma gondii becomes established in tissues of the central nervous system, where parasites may directly or indirectly modulate neuronal function. Epidemiological studies have revealed that chronic infection in humans is a risk factor for developing mental diseases. However, the mechanisms underlying parasite-induced neuronal dysfunction in the brain remain unclear. Here, we examined memory associated with conditioned fear in mice and found that T. gondii infection impairs consolidation of conditioned fear memory. To examine the brain pathology induced by T. gondii infection, we analyzed the parasite load and histopathological changes. T. gondii infects all brain areas, yet the cortex exhibits more severe tissue damage than other regions. We measured neurotransmitter levels in the cortex and amygdala because these regions are involved in fear memory expression. The levels of dopamine metabolites but not those of dopamine were increased in the cortex of infected mice compared with those in the cortex of uninfected mice. In contrast, serotonin levels were decreased in the amygdala and norepinephrine levels were decreased in the cortex and amygdala of infected mice. The levels of cortical dopamine metabolites were associated with the time spent freezing in the fear-conditioning test. These results suggest that T. gondii infection affects fear memory through dysfunction of the cortex and amygdala. Our findings provide insight into the mechanisms underlying the neurological changes seen during T. gondii infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Human Parasitic Diseases in Bulgaria in Between 2013-2014

    Science.gov (United States)

    Rainova, Iskra; Harizanov, Rumen; Kaftandjiev, Iskren; Tsvetkova, Nina; Mikov, Ognyan; Kaneva, Eleonora

    2018-01-01

    Background: In Bulgaria, more than 20 autochthonous human parasitic infections have been described and some of them are widespread. Over 50 imported protozoan and helminthic infections represent diagnostic and therapeutic challenges and pose epidemiological risks due to the possibility of local transmission. Aims: To establish the distribution of autochthonous and imported parasitic diseases among the population of the country over a 2-year period (2013-2014) and to evaluate their significance in the public health system. Study Design: Cross sectional study. Methods: We used the annual reports by regional health inspectorates and data from the National Reference Laboratory at the National Centre of Infectious and Parasitic Diseases on all individuals infected with parasitic diseases in the country. Prevalence was calculated for parasitic diseases with few or absent clinical manifestations (oligosymptomatic or asymptomatic infections). Incidence per 100.000 was calculated for diseases with an overt clinical picture or those that required hospitalisation and specialised medical interventions (e.g. surgery). Results: During the research period, parasitological studies were conducted on 1441.244 persons, and parasitic infections were diagnosed in 22.039 individuals. Distribution of various parasitic pathogens among the population displayed statistically significant differences in prevalence for some intestinal parasites (enterobiasis 0.81%, giardiasis 0.34% and blastocystosis 0.22%). For certain zoonotic diseases such as cystic echinococcosis (average incidence of 3.99 per 100.000) and trichinellosis (average incidence of 0.8 per 100.000), the incidence exceeds several times the annual incidence recorded in the European Union. Conclusion: Parasitic diseases still pose a substantial problem with social and medical impacts on the residents of our country. Improved efficiency regarding autochthonous and imported parasitic diseases is essential in providing the public

  11. Toxoplasma gondii infection induces dendritic retraction in basolateral amygdala accompanied by reduced corticosterone secretion

    Directory of Open Access Journals (Sweden)

    Rupshi Mitra

    2013-03-01

    Pathological anxiety is thought to reflect a maladaptive state characterized by exaggerated fear. Naturally occurring perturbations that reduce fear can be crucial in the search for new treatments. The protozoan parasite Toxoplasma gondii invades rat brain and removes the fear that rats have of cat odors, a change believed to be parasitic manipulation of host behavior aimed at increasing parasite transmission. It is likely that mechanisms employed by T. gondii can be used as a heuristic tool to understand possible means of fear reduction in clinical settings. Male Long-Evans rats were infected with T. gondii and compared with sham-infected animals 8 weeks after infection. The amount of circulating plasma corticosterone and dendritic arborization of basolateral amygdala principal neurons were quantified. Previous studies have shown that corticosterone, acting within the basolateral amygdala, enhances the fear response to environmental stimuli. Here we show that T. gondii infection causes a dendritic retraction in basolateral amygdala neurons. Such dendritic retraction is accompanied by lower amounts of circulating corticosterone, both at baseline and when induced by an aversive cat odor. The concerted effects of parasitism on two pivotal physiological nodes of the fear response provide an animal model relevant to interactions between stress hormones and amygdalar plasticity.

  12. Experimental toxoplasmosis in rats induced orally with eleven strains of Toxoplasma gondii of seven genotypes: Tissue tropism, tissue cyst size, neural lesions, tissue cyst rupture without reactivation, and ocular lesions

    Science.gov (United States)

    The protozoan parasite Toxoplasma gondii is one of the most widely distributed and most successful microorganism. Of all warm blooded hosts, only cats can excrete the environmentally resistant stage, the oocyst. T. gondii manipulates rodent behavior so that infected rodents are losing fear of the ca...

  13. Toxoplasma gondii: Biochemical and biophysical characterization of recombinant soluble dense granule proteins GRA2 and GRA6

    International Nuclear Information System (INIS)

    Bittame, Amina; Effantin, Grégory; Pètre, Graciane; Ruffiot, Pauline; Travier, Laetitia; Schoehn, Guy; Weissenhorn, Winfried; Cesbron-Delauw, Marie-France; Gagnon, Jean; Mercier, Corinne

    2015-01-01

    The most prominent structural feature of the parasitophorous vacuole (PV) in which the intracellular parasite Toxoplasma gondii proliferates is a membranous nanotubular network (MNN), which interconnects the parasites and the PV membrane. The MNN function remains unclear. The GRA2 and GRA6 proteins secreted from the parasite dense granules into the PV have been implicated in the MNN biogenesis. Amphipathic alpha-helices (AAHs) predicted in GRA2 and an alpha-helical hydrophobic domain predicted in GRA6 have been proposed to be responsible for their membrane association, thereby potentially molding the MMN in its structure. Here we report an analysis of the recombinant proteins (expressed in detergent-free conditions) by circular dichroism, which showed that full length GRA2 displays an alpha-helical secondary structure while recombinant GRA6 and GRA2 truncated of its AAHs are mainly random coiled. Dynamic light scattering and transmission electron microscopy showed that recombinant GRA6 and truncated GRA2 constitute a homogenous population of small particles (6–8 nm in diameter) while recombinant GRA2 corresponds to 2 populations of particles (∼8–15 nm and up to 40 nm in diameter, respectively). The unusual properties of GRA2 due to its AAHs are discussed. - Highlights: • Toxoplasma gondii: soluble GRA2 forms 2 populations of particles. • T. gondii: the dense granule protein GRA2 folds intrinsically as an alpha-helix. • T. gondii: monomeric soluble GRA6 forms particles of 6–8 nm in diameter. • T. gondii: monomeric soluble GRA6 is random coiled. • Unusual biophysical properties of the dense granule protein GRA2 from T. gondii

  14. Toxoplasma gondii: Biochemical and biophysical characterization of recombinant soluble dense granule proteins GRA2 and GRA6

    Energy Technology Data Exchange (ETDEWEB)

    Bittame, Amina [CNRS, UMR 5163, 38042 Grenoble (France); Université Grenoble Alpes, 38042 Grenoble (France); Effantin, Grégory [Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France); Unit for Virus Host-Cell Interactions (UVHCI), UMI 3265 (UJF-EMBL-CNRS), 38027 Grenoble (France); Pètre, Graciane; Ruffiot, Pauline; Travier, Laetitia [CNRS, UMR 5163, 38042 Grenoble (France); Université Grenoble Alpes, 38042 Grenoble (France); Schoehn, Guy; Weissenhorn, Winfried [Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France); Unit for Virus Host-Cell Interactions (UVHCI), UMI 3265 (UJF-EMBL-CNRS), 38027 Grenoble (France); Cesbron-Delauw, Marie-France; Gagnon, Jean [CNRS, UMR 5163, 38042 Grenoble (France); Université Grenoble Alpes, 38042 Grenoble (France); Mercier, Corinne, E-mail: corinne.mercier@ujf-grenoble.fr [CNRS, UMR 5163, 38042 Grenoble (France); Université Grenoble Alpes, 38042 Grenoble (France)

    2015-03-27

    The most prominent structural feature of the parasitophorous vacuole (PV) in which the intracellular parasite Toxoplasma gondii proliferates is a membranous nanotubular network (MNN), which interconnects the parasites and the PV membrane. The MNN function remains unclear. The GRA2 and GRA6 proteins secreted from the parasite dense granules into the PV have been implicated in the MNN biogenesis. Amphipathic alpha-helices (AAHs) predicted in GRA2 and an alpha-helical hydrophobic domain predicted in GRA6 have been proposed to be responsible for their membrane association, thereby potentially molding the MMN in its structure. Here we report an analysis of the recombinant proteins (expressed in detergent-free conditions) by circular dichroism, which showed that full length GRA2 displays an alpha-helical secondary structure while recombinant GRA6 and GRA2 truncated of its AAHs are mainly random coiled. Dynamic light scattering and transmission electron microscopy showed that recombinant GRA6 and truncated GRA2 constitute a homogenous population of small particles (6–8 nm in diameter) while recombinant GRA2 corresponds to 2 populations of particles (∼8–15 nm and up to 40 nm in diameter, respectively). The unusual properties of GRA2 due to its AAHs are discussed. - Highlights: • Toxoplasma gondii: soluble GRA2 forms 2 populations of particles. • T. gondii: the dense granule protein GRA2 folds intrinsically as an alpha-helix. • T. gondii: monomeric soluble GRA6 forms particles of 6–8 nm in diameter. • T. gondii: monomeric soluble GRA6 is random coiled. • Unusual biophysical properties of the dense granule protein GRA2 from T. gondii.

  15. The current status of Toxoplasma gondii infection among Egyptian rheumatoid arthritis patients

    Directory of Open Access Journals (Sweden)

    Nagwa Mostafa El-Sayed

    2016-10-01

    Full Text Available Objective: To ascertain a relationship between Toxoplasma gondii (T. gondii infection and rheumatoid arthritis (RA disease among Egyptian patients. Methods: One hundred RA patients and 50 healthy subjects participated in this study. The patients were classified into three groups, namely GI, G2 and G3. Patients in G1 were recently diagnosed with RA with the disease duration of less than one year (prior treatment; G2 included RA patients receiving anti-tumor necrosis factor agents and RA patients in G3 received disease modifying anti-rheumatic drugs (methotrexate, antimalarial, corticosteroids. Serum samples of all participants were examined for the presence of anti-Toxoplasma immunoglobulin G (IgG antibodies and positive samples were further analyzed for antiToxoplasma IgM antibodies to detect the possibility of reactivation of latent toxoplasmosis. Also, the association between Toxoplasma seropositivity and clinical, laboratory and radiological features of these patients were determined. Results: There was a significantly higher percentage of T. gondii IgG positivity in RA patients (54% than in the controls (32%. At the same time, 20.40% of T. gondii IgG positive patients had anti-T. gondii IgM antibodies with a statistically significant difference as comparing to T. gondii IgG positive controls. Out of T. gondii seropositive patients, 20.37% had a lower IgG level with a mean titer of (65.3 ± 17.7 IU/mL, 46.29% had moderate level with a mean titer of (184.2 ± 60.0 IU/mL and 33.33% had higher level with a mean titer of (404.3 ± 50.0 IU/ mL. A positive correlation was found between disease activity and Toxoplasma seropositivity. T. gondii seropositive RA patients had longer disease duration, longer time morning stiffness, higher numbers of tender and swollen joints and also increase in disease severity markers (erythrocyte sedimentation rate, C-reactive protein, disease activity score 28, anti-cyclic citrullinated peptide anti

  16. Loop-mediated isothermal amplification (LAMP): early detection of Toxoplasma gondii infection in mice.

    Science.gov (United States)

    Kong, Qing-Ming; Lu, Shao-Hong; Tong, Qun-Bo; Lou, Di; Chen, Rui; Zheng, Bin; Kumagai, Takashi; Wen, Li-Yong; Ohta, Nobuo; Zhou, Xiao-Nong

    2012-01-03

    Toxoplasmosis is a widespread zoonotic parasitic disease that occurs in both animals and humans. Traditional molecular assays are often difficult to perform, especially for the early diagnosis of Toxoplasma gondii infections. Here, we established a novel loop-mediated isothermal amplification targeting the 529 bp repeat element (529 bp-LAMP) to detect T. gondii DNA in blood samples of experimental mice infected with tachyzoites of the RH strain. The assay was performed with Bst DNA polymerase at 65°C for 1 h. The detection limit of the 529 bp-LAMP assay was as low as 0.6 fg of T. gondii DNA. The sensitivity of this assay was 100 and 1000 fold higher than that of the LAMP targeting B1 gene (B1-LAMP) and nested PCR targeting 529 bp repeat element (529 bp-nested PCR), respectively. The specificity of the 529 bp-LAMP assay was determined using the DNA samples of Trypanosoma evansi, Plasmodium falciparum, Paragonimus westermani, Schistosoma japonicum, Fasciola hepatica and Angiostrongylus cantonensis. No cross-reactivity with the DNA of any parasites was found. The assay was able to detect T. gondii DNA in all mouse blood samples at one day post infection (dpi). We report the following findings: (i) The detection limit of the 529 bp-LAMP assay is 0.6 fg of T. gondii DNA; (ii) The assay does not involve any cross-reactivity with the DNA of other parasites; (iii) This is the first report on the application of the LAMP assay for early diagnosis of toxoplasmosis in blood samples from experimentally infected mice. Due to its simplicity, sensitivity and cost-effectiveness for common use, we suggest that this assay should be used as an early diagnostic tool for health control of toxoplasmosis.

  17. Detection of Echinococcus multilocularis and other foodborne parasites in fox, cat and dog faeces collected in kitchen gardens in a highly endemic area for alveolar echinococcosis.

    Science.gov (United States)

    Poulle, Marie-Lazarine; Bastien, Matthieu; Richard, Yolan; Josse-Dupuis, Émilie; Aubert, Dominique; Villena, Isabelle; Knapp, Jenny

    2017-01-01

    Echinococcus multilocularis, Toxoplasma gondii and Toxocara spp. are foodborne parasites whose eggs or oocysts are spread in the environment via canid or felid faeces. They can cause infections in humans following the raw consumption of contaminated fruit or vegetables. In this study, their occurrence was investigated by quantitative polymerase chain reaction (qPCR) in 254 carnivore faeces deposited in 94 kitchen gardens of northeastern France that were sampled between two and six times from October 2011 to April 2013. Less than 25% of the sampled kitchen gardens contained more than 75% of the collected faeces. Of the 219 faeces that could be attributed to an emitter, cat accounted for 58%, fox for 32% and dog for 10%. Echinococcus multilocularis was detected in 35%, 11% and 7% of fox, dog and cat faeces, respectively, and Toxocara spp. in 33%, 12% and 5.5% of cat, fox and dog faeces, respectively. Toxoplasma gondii was detected in 2/125 cat faeces and 2/21 dog faeces. The 34 faeces that tested positive for E. multilocularis were found in only 19 out of the 94 sampled kitchen gardens, and the 40 faeces that tested positive for Toxocara spp. were found in 28 of them. Consequently, some kitchen gardens appeared particularly at risk of human exposure to foodborne parasites, including E. multilocularis responsible for alveolar echinococcosis (AE), which is a serious zoonosis. In endemic areas, kitchen garden owners should be informed about the zoonotic risk linked to carnivore faeces deposits and encouraged to set up preventive measures. © M.-L. Poulle et al., published by EDP Sciences, 2017.

  18. Detection of Echinococcus multilocularis and other foodborne parasites in fox, cat and dog faeces collected in kitchen gardens in a highly endemic area for alveolar echinococcosis

    Directory of Open Access Journals (Sweden)

    Poulle Marie-Lazarine

    2017-01-01

    Full Text Available Echinococcus multilocularis, Toxoplasma gondii and Toxocara spp. are foodborne parasites whose eggs or oocysts are spread in the environment via canid or felid faeces. They can cause infections in humans following the raw consumption of contaminated fruit or vegetables. In this study, their occurrence was investigated by quantitative polymerase chain reaction (qPCR in 254 carnivore faeces deposited in 94 kitchen gardens of northeastern France that were sampled between two and six times from October 2011 to April 2013. Less than 25% of the sampled kitchen gardens contained more than 75% of the collected faeces. Of the 219 faeces that could be attributed to an emitter, cat accounted for 58%, fox for 32% and dog for 10%. Echinococcus multilocularis was detected in 35%, 11% and 7% of fox, dog and cat faeces, respectively, and Toxocara spp. in 33%, 12% and 5.5% of cat, fox and dog faeces, respectively. Toxoplasma gondii was detected in 2/125 cat faeces and 2/21 dog faeces. The 34 faeces that tested positive for E. multilocularis were found in only 19 out of the 94 sampled kitchen gardens, and the 40 faeces that tested positive for Toxocara spp. were found in 28 of them. Consequently, some kitchen gardens appeared particularly at risk of human exposure to foodborne parasites, including E. multilocularis responsible for alveolar echinococcosis (AE, which is a serious zoonosis. In endemic areas, kitchen garden owners should be informed about the zoonotic risk linked to carnivore faeces deposits and encouraged to set up preventive measures.

  19. Detection of Echinococcus multilocularis and other foodborne parasites in fox, cat and dog faeces collected in kitchen gardens in a highly endemic area for alveolar echinococcosis

    Science.gov (United States)

    Poulle, Marie-Lazarine; Bastien, Matthieu; Richard, Yolan; Josse-Dupuis, Émilie; Aubert, Dominique; Villena, Isabelle; Knapp, Jenny

    2017-01-01

    Echinococcus multilocularis, Toxoplasma gondii and Toxocara spp. are foodborne parasites whose eggs or oocysts are spread in the environment via canid or felid faeces. They can cause infections in humans following the raw consumption of contaminated fruit or vegetables. In this study, their occurrence was investigated by quantitative polymerase chain reaction (qPCR) in 254 carnivore faeces deposited in 94 kitchen gardens of northeastern France that were sampled between two and six times from October 2011 to April 2013. Less than 25% of the sampled kitchen gardens contained more than 75% of the collected faeces. Of the 219 faeces that could be attributed to an emitter, cat accounted for 58%, fox for 32% and dog for 10%. Echinococcus multilocularis was detected in 35%, 11% and 7% of fox, dog and cat faeces, respectively, and Toxocara spp. in 33%, 12% and 5.5% of cat, fox and dog faeces, respectively. Toxoplasma gondii was detected in 2/125 cat faeces and 2/21 dog faeces. The 34 faeces that tested positive for E. multilocularis were found in only 19 out of the 94 sampled kitchen gardens, and the 40 faeces that tested positive for Toxocara spp. were found in 28 of them. Consequently, some kitchen gardens appeared particularly at risk of human exposure to foodborne parasites, including E. multilocularis responsible for alveolar echinococcosis (AE), which is a serious zoonosis. In endemic areas, kitchen garden owners should be informed about the zoonotic risk linked to carnivore faeces deposits and encouraged to set up preventive measures. PMID:28748783

  20. The first isolation and molecular characterization of Toxoplasma gondii from horses in Serbia.

    NARCIS (Netherlands)

    Klun, Ivana; Uzelac, Aleksandra; Villena, Isabelle; Mercier, Aurélien; Bobić, Branko; Nikolić, Aleksandra; Rajnpreht, Irena; Opsteegh, Marieke; Aubert, Dominique; Blaga, Radu; van der Giessen, Joke; Djurković-Djaković, Olgica

    2017-01-01

    Consumption of undercooked or insufficiently cured meat is a major risk factor for human infection with Toxoplasma gondii. Although horsemeat is typically consumed rare or undercooked, information on the risk of T. gondii from infected horse meat to humans is scarce. Here, we present the results of

  1. First molecular evidence of Toxoplasma gondii in opossums (Didelphis virginiana) from Yucatan, Mexico.

    Science.gov (United States)

    Torres-Castro, M; Noh-Pech, H; Puerto-Hernández, R; Reyes-Hernández, B; Panti-May, A; Hernández-Betancourt, S; Yeh-Gorocica, A; González-Herrera, L; Zavala-Castro, J; Puerto, F I

    2016-01-01

    Toxoplasma gondii is an obligate intracellular parasite recognized as a causal agent of toxoplasmosis; zoonotic disease endemic in many countries worldwide, including Mexico. Different species of animals participate in the wild cycle infection, including opossums of the species Didelphis virginiana. Thirteen D. virginiana were captured in Yucatan, Mexico. Detection of T. gondii was achieved by Polymerase Chain Reaction, which determined an infection of 76.9% (10/13) in brains. Positive amplicons were sequenced for analysis, this produced results similar to T. gondii with identity and coverage values of 98% and 96-100%, respectively. This study presents the first molecular evidence of the circulation of T. gondii in D. virginiana from Mexico.

  2. Detection of soluble antigens of Toxoplasma gondii by a four-layer modification of an enzyme immunoassay.

    Science.gov (United States)

    Turunen, H J

    1983-01-01

    A sensitive four-layer modification of an enzyme immunoassay for the detection of soluble antigens of Toxoplasma gondii is described. Microtiter plates were sensitized with rabbit anti-toxoplasma immunoglobulins (6 micrograms/ml) used as the primary antibodies; guinea pig anti-toxoplasma immunoglobulins (6 micrograms/ml) were used as the secondary trapping antibodies. Horseradish peroxidase-conjugated anti-guinea pig immunoglobulins were used as the indicator antibodies. The specificity of the antigen assay was confirmed by using guinea pig immunoglobulins from preimmunization sera. The sensitivity of the antigen assay was found to be at least 10 ng of antigen protein per ml. The suitability of the method for detecting antigens of T. gondii in different specimens was studied by experimental toxoplasma infection in mice. Antigenic components of T. gondii could be detected in different tissue specimens from infected animals from the first day after infection onwards. Toxoplasma antigen in serum and urine samples from infected mice reached detectable levels on day 2 after infection followed by a linear increase in antigen concentration in succeeding samples. This method might offer a valuable aid for a rapid etiological diagnosis also in human cases of acute toxoplasmosis. PMID:6345574

  3. Fierce competition between Toxoplasma and Chlamydia for host cell structures in dually infected cells.

    Science.gov (United States)

    Romano, Julia D; de Beaumont, Catherine; Carrasco, Jose A; Ehrenman, Karen; Bavoil, Patrik M; Coppens, Isabelle

    2013-02-01

    The prokaryote Chlamydia trachomatis and the protozoan Toxoplasma gondii, two obligate intracellular pathogens of humans, have evolved a similar modus operandi to colonize their host cell and salvage nutrients from organelles. In order to gain fundamental knowledge on the pathogenicity of these microorganisms, we have established a cell culture model whereby single fibroblasts are coinfected by C. trachomatis and T. gondii. We previously reported that the two pathogens compete for the same nutrient pools in coinfected cells and that Toxoplasma holds a significant competitive advantage over Chlamydia. Here we have expanded our coinfection studies by examining the respective abilities of Chlamydia and Toxoplasma to co-opt the host cytoskeleton and recruit organelles. We demonstrate that the two pathogen-containing vacuoles migrate independently to the host perinuclear region and rearrange the host microtubular network around each vacuole. However, Toxoplasma outcompetes Chlamydia to the host microtubule-organizing center to the detriment of the bacterium, which then shifts to a stress-induced persistent state. Solely in cells preinfected with Chlamydia, the centrosomes become associated with the chlamydial inclusion, while the Toxoplasma parasitophorous vacuole displays growth defects. Both pathogens fragment the host Golgi apparatus and recruit Golgi elements to retrieve sphingolipids. This study demonstrates that the productive infection by both Chlamydia and Toxoplasma depends on the capability of each pathogen to successfully adhere to a finely tuned developmental program that aims to remodel the host cell for the pathogen's benefit. In particular, this investigation emphasizes the essentiality of host organelle interception by intravacuolar pathogens to facilitate access to nutrients.

  4. Experimental toxoplasma gondii infection in grey seals (Halichoerus grypus)

    DEFF Research Database (Denmark)

    Gajadhar, A. A.; Measures, L.; Forbes, L. B.

    2004-01-01

    Laboratory-reared animals were used to assess the susceptibility of seals (Halichoerus grypus) to Toxoplasma gondii infection. Four seals were each orally inoculated with 100 or 10,000 oocysts of T. gondii (VEG strain), and another 4 seals served as negative controls. Occasionally, mild behavioral...... changes were observed in all inoculated seals but not in control animals. A modified agglutination test revealed the presence of antibodies to T. gondii in sera collected from inoculated seals and mice inoculated as controls. No evidence of the parasite was found on an extensive histological examination...... of seal tissues, and immunohistochemical staining of tissue sections from inoculated seals revealed a single tissue cyst in only 1 seal. Control mice inoculated with 10 oocysts from the same inoculum given to seals became serologically and histologically positive for T. gondii. Cats that were fed brain...

  5. Enrofloxacin is able to control Toxoplasma gondii infection in both in vitro and in vivo experimental models.

    Science.gov (United States)

    Barbosa, Bellisa Freitas; Gomes, Angelica Oliveira; Ferro, Eloisa Amália Vieira; Napolitano, Danielle Reis; Mineo, José Roberto; Silva, Neide Maria

    2012-06-08

    Currently, toxoplasmosis is treated with sulfadiazine and pyrimethamine. However, this treatment presents several adverse side effects; thus, there is a critical need for the development and evaluation of new drugs, which do not present the same problems of the standard therapy. Enrofloxacin is a fluoroquinolone antibiotic known to control infection against several bacteria in veterinary medicine. Recently, this drug has demonstrated protective effects against protozoan parasites such as Neospora caninum. The present study aimed to determine the effect of enrofloxacin in the control of Toxoplasma gondii infection. For this purpose, human foreskin fibroblast (HFF) cells were infected with T. gondii RH strain and treated with sulfadiazine, penicillin/streptomycin, pyrimethamine, or enrofloxacin. Following treatment, we analyzed the infection index, parasite intracellular proliferation and the number of plaques. Additionally, tissue parasitism and histological changes were investigated in the brain of Calomys callosus that were infected with T. gondii (ME49 strain) and treated with either sulfadiazine or enrofloxacin. Enrofloxacin was able to reduce the infection index, intracellular proliferation and the number of plaques in HFF cells infected by T. gondii in comparison with untreated or penicillin/streptomycin-treated ones. Enrofloxacin was more protective against T. gondii in HFF infected cells than sulfadiazine treatment (Penrofloxacin or the associations of sulfadiazine plus pyrimethamine, enrofloxacin plus sulfadiazine or enrofloxacin plus pyrimethamine-treatments were able to reduce the plaque numbers in HFF cells infected by T. gondii when compared to medium, penicillin/streptomycin or sulfadiazine alone. In vivo experiments demonstrated that enrofloxacin diminished significantly the tissue parasitism as well as the inflammatory alterations in the brain of C. callosus infected with T. gondii when compared with untreated animals. Based on our findings, it can

  6. 21 CFR 866.3780 - Toxoplasma gondii serological reagents.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3780 Toxoplasma... (immunofluorescent reagents) used to identify Toxoplasma gondii from clinical specimens. The identification aids in...

  7. In vitro action of antiparasitic drugs, especially artesunate, against Toxoplasma gondii.

    Science.gov (United States)

    Gomes, Thaís Cobellis; de Andrade Júnior, Heitor Franco; Lescano, Susana Angélica Zevallos; Amato-Neto, Vicente

    2012-01-01

    Toxoplasmosis is usually a benign infection, except in the event of ocular, central nervous system (CNS), or congenital disease and particularly when the patient is immunocompromised. Treatment consists of drugs that frequently cause adverse effects; thus, newer, more effective drugs are needed. In this study, the possible activity of artesunate, a drug successfully being used for the treatment of malaria, on Toxoplasma gondii growth in cell culture is evaluated and compared with the action of drugs that are already being used against this parasite. LLC-MK2 cells were cultivated in RPMI medium, kept in disposable plastic bottles, and incubated at 36ºC with 5% CO2. Tachyzoites of the RH strain were used. The following drugs were tested: artesunate, cotrimoxazole, pentamidine, pyrimethamine, quinine, and trimethoprim. The effects of these drugs on tachyzoites and LLC-MK2 cells were analyzed using nonlinear regression analysis with Prism 3.0 software. Artesunate showed a mean tachyzoite inhibitory concentration (IC50) of 0.075µM and an LLC MK2 toxicity of 2.003µM. Pyrimethamine was effective at an IC50 of 0.482µM and a toxicity of 11.178µM. Trimethoprim alone was effective against the in vitro parasite. Cotrimoxazole also was effective against the parasite but at higher concentrations than those observed for artesunate and pyrimethamine. Pentamidine and quinine had no inhibitory effect over tachyzoites. Artesunate is proven in vitro to be a useful alternative for the treatment of toxoplasmosis, implying a subsequent in vivo effect and suggesting the mechanism of this drug against the parasite.

  8. A novel Toxoplasma gondii nuclear factor TgNF3 is a dynamic chromatin-associated component, modulator of nucleolar architecture and parasite virulence.

    Directory of Open Access Journals (Sweden)

    Alejandro Olguin-Lamas

    2011-03-01

    Full Text Available In Toxoplasma gondii, cis-acting elements present in promoter sequences of genes that are stage-specifically regulated have been described. However, the nuclear factors that bind to these cis-acting elements and regulate promoter activities have not been identified. In the present study, we performed affinity purification, followed by proteomic analysis, to identify nuclear factors that bind to a stage-specific promoter in T. gondii. This led to the identification of several nuclear factors in T. gondii including a novel factor, designated herein as TgNF3. The N-terminal domain of TgNF3 shares similarities with the N-terminus of yeast nuclear FK506-binding protein (FKBP, known as a histone chaperone regulating gene silencing. Using anti-TgNF3 antibodies, HA-FLAG and YFP-tagged TgNF3, we show that TgNF3 is predominantly a parasite nucleolar, chromatin-associated protein that binds specifically to T. gondii gene promoters in vivo. Genome-wide analysis using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identified promoter occupancies by TgNF3. In addition, TgNF3 has a direct role in transcriptional control of genes involved in parasite metabolism, transcription and translation. The ectopic expression of TgNF3 in the tachyzoites revealed dynamic changes in the size of the nucleolus, leading to a severe attenuation of virulence in vivo. We demonstrate that TgNF3 physically interacts with H3, H4 and H2A/H2B assembled into bona fide core and nucleosome-associated histones. Furthermore, TgNF3 interacts specifically to histones in the context of stage-specific gene silencing of a promoter that lacks active epigenetic acetylated histone marks. In contrast to virulent tachyzoites, which express the majority of TgNF3 in the nucleolus, the protein is exclusively located in the cytoplasm of the avirulent bradyzoites. We propose a model where TgNF3 acts essentially to coordinate nucleolus and nuclear functions by modulating

  9. [The seroprevalence of Toxoplasma gondii in women from Sanliurfa, a province with a high raw meatball consumption].

    Science.gov (United States)

    Tekay, Fikret; Ozbek, Erdal

    2007-01-01

    Toxoplasma gondii is an obligate intracellular protozoan that can infect all kind of birds and all mammals including humans and is common throughout the world. The prevalence varies according to social and cultural habits, pet cats in homes and geographic factors. Domestic cats are considered to be an important source of Toxoplasma gondii infection. From January to June 2006, the prevalence of toxoplasmosis was retrospectively monitored from blood samples that had been sent to our laboratory in order to determine the levels of IgM and IgG. All the subjects were women and 2,586 blood samples were investigated with the chemiluminescence immunoassay method. The rates of Toxoplasma gondii IgM antibodies were found to be 3.0% (78/2,586) and that of Toxoplasma gondii IgG antibodies, 69.5% (1.798/2,586). The total rate of positivity of Toxoplasma gondii antibodies was 69.6% (1,801/2,586) and the negativity, 30.4% (785/2,586). The highest positive rates have been reported in the southeastern region of Turkey and the 69.6% detected in our study seems to be the highest rate. Raw meatball consumption is common in our region and raw meat has a high risk of Toxoplasma gondii infection by direct ingestion of tissue cysts. As a result we consider that the high frequency of Toxoplasma gondii seropositivity in this region is due to raw meatball consumption.

  10. Adenosine metabolism in Toxoplasma gondii: potential targets for chemotherapy.

    Science.gov (United States)

    el Kouni, Mahmoud H

    2007-01-01

    Toxoplasma gondii is an intracellular parasitic protozoan that infects approximately a billion people worldwide. Infection with T. gondii represents a major health problem for immunocompromised individuals, such as AIDS patients, organ transplant recipients, and the unborn children of infected mothers. Currently available drugs usually do not eradicate infection and as many as 50% of the patients do not respond to this therapy. Furthermore, they are ineffective against T. gondii tissue cysts. In addition, prolonged exposure to these drugs induces serious host toxicity forcing the discontinuation of the therapy. Finally, there is no effective vaccine currently available for the treatment of toxoplasmosis. Therefore, it is necessary to develop new and effective drugs for the treatment and management of toxoplasmosis. The rational design of a drug depends on the exploitation of fundamental biochemical or physiological differences between pathogens and their host. Some of the most striking differences between T. gondii and their mammalian host are found in purine metabolism. T. gondii, like most parasites studied, lack the ability to synthesize purines do novo and depend on the salvage of purines from their host to satisfy their requirements of purines. In this respect, the salvage of adenosine is the major source of purines in T. gondii. Therefore, interference with adenosine uptake and metabolism in T. gondii can be selectively detrimental to the parasite. The host cells, on the other hand, can still obtain their purine requirements by their de novo pathways. This review will focus on the broad aspects of the adenosine transport and the enzyme adenosine kinase (EC 2.7.1.20) which are the two primary routes for adenosine utilization in T. gondii, in an attempt to illustrate their potentials as targets for chemotherapy against this parasite.

  11. Toxoplasma gondii antibodies in wild rodents and marsupials from the Atlantic Forest, state of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Solange Maria Gennari

    Full Text Available Toxoplasma gondii is a protozoan parasite that infects a large spectrum of warm-blooded animals, including humans. Small rodents and marsupials play an important role in the epidemiology of T. gondii because they are sources of infection for domestic and feral cats. Serum samples from 151 rodents and 48 marsupials, captured in the Atlantic Forest, São Paulo State, southeastern Brazil, were analyzed for the presence of T. gondii antibodies. Antibodies detected by the modified agglutination test (MAT ≥ 25 were found in 8.6% (13/151 of the rodents and 10.4% (5/48 of the marsupials, with titers ranging from 25 to 6400 and from 25 to 3200, respectively for the rodents and marsupials. Three of the eight species of rodents (Akodon spp., Oligoryzomys nigripesand Rattus norvegicus, and one from the four marsupial species (Didelphis aurita presented positive animals. T. gondii was described for the first time in the rodent Oligoryzomys nigripes.

  12. Pregnancy and Toxoplasma Infection

    Directory of Open Access Journals (Sweden)

    Cihan Cetin

    2016-12-01

    Full Text Available Toxoplasmosis is an infectious disease caused by a protozoa named Toxoplasma gondii. It is a very important disease because it is related to fetal anomalies and poor perinatal outcomes like abortus and stillbirth. It spreads via uncooked meat and contaminated food. Timely and appropriate treatment and management of this infection prenatally reduces the risk of serious neurological sequelae. Therefore it is crucial that clinician who takes care of pregnant women know this infection deeply. In this review we aimed to summarize the prenatal diagnosis, complications and treatment of toxoplasma infection. [Archives Medical Review Journal 2016; 25(4.000: 457-466

  13. Parasites diversity in carnivorous animals in the territory of Dnipropetrovsk

    Directory of Open Access Journals (Sweden)

    О. О. Boyko

    2011-07-01

    Full Text Available In Dnipropetrovsk sity (Ukraine, Dnipropetrovsk region in carnivorous animals 10 species of parasites (helminths and coccidia were found: Uncinaria sp., Ancylostoma sp., Dictyocaulus immitis (Nematoda, Strongylata, Strongyloides stercoralis (Nematoda, Rhabditata, Spirocerca lupi (Nematoda, Spirurata, Toxocara canis (Nematoda, Ascaridata, Trichuris vulpis (Nematoda, Trichurata, Dipylidium caninum (Cestoda, Hymenolepidata, Cystoisospora sp. and Toxoplasma gondii (Sporozoa, Coccidia. In soil S. stercoralisand Uncinaria sp. weredominanted. In most carnivorous animals registered in L. Globa park and T. Shevchenko park the S. stercoralisand Uncinaria sp., Cystoisosporasp. and T. gondii were found.

  14. Exposure of free-living jaguars to Toxoplasma gondii, Neospora caninum and Sarcocystis neurona in the Brazilian Pantanal.

    Science.gov (United States)

    Onuma, Selma Samiko Miyazaki; Melo, Andréia Lima Tomé; Kantek, Daniel Luis Zanella; Crawshaw-Junior, Peter Gransden; Morato, Ronaldo Gonçalves; May-Júnior, Joares Adenílson; Pacheco, Thábata dos Anjos; Aguiar, Daniel Moura de

    2014-01-01

    Toxoplasma gondii, Neospora caninum and Sarcocystis neurona are related apicomplexan parasites that cause reproductive and neurological disorders in a wide range of domestic and wild animals. In the present study, the immunofluorescence antibody test (IFAT) was used to investigate the presence of antibodies against T. gondii, N. caninum and S. neurona in the sera of 11 free-living jaguars (Panthera onca) in two protected areas in the Pantanal region of Mato Grosso state, Brazil. Ten jaguars (90.9%) showed seropositivity for T. gondii, eight (72.7%) for S. neurona, and seven (63.6%) for N. caninum antigens. Our findings reveal exposure of jaguars to these related coccidian parasites and circulation of these pathogens in this wild ecosystem. To the best of our knowledge, this is the first serological detection of N. caninum and S. neurona in free-living jaguars.

  15. Exposure of free-living jaguars to Toxoplasma gondii, Neospora caninum and Sarcocystis neurona in the Brazilian Pantanal

    Directory of Open Access Journals (Sweden)

    Selma Samiko Miyazaki Onuma

    2014-12-01

    Full Text Available Toxoplasma gondii, Neospora caninum and Sarcocystis neurona are related apicomplexan parasites that cause reproductive and neurological disorders in a wide range of domestic and wild animals. In the present study, the immunofluorescence antibody test (IFAT was used to investigate the presence of antibodies against T. gondii, N. caninum and S. neurona in the sera of 11 free-living jaguars (Panthera onca in two protected areas in the Pantanal region of Mato Grosso state, Brazil. Ten jaguars (90.9% showed seropositivity for T. gondii, eight (72.7% for S. neurona, and seven (63.6% for N. caninum antigens. Our findings reveal exposure of jaguars to these related coccidian parasites and circulation of these pathogens in this wild ecosystem. To the best of our knowledge, this is the first serological detection of N. caninum and S. neurona in free-living jaguars.

  16. Confocal microscope is able to detect calcium metabolic in neuronal infection by toxoplasma gondii

    Science.gov (United States)

    Sensusiati, A. D.; Priya, T. K. S.; Dachlan, Y. P.

    2017-05-01

    Calcium metabolism plays a very important role in neurons infected by Toxoplasma. Detection of change of calcium metabolism of neuron infected by Toxoplasma and Toxoplasma requires the calculation both quantitative and qualitative method. Confocal microscope has the ability to capture the wave of the fluorescent emission of the fluorescent dyes used in the measurement of cell calcium. The purpose of this study was to prove the difference in calcium changes between infected and uninfected neurons using confocal microscopy. Neuronal culture of human-skin-derived neural stem cell were divided into 6 groups, consisting 3 uninfected groups and 3 infected groups. Among the 3 groups were 2 hours, 24 hours and 48 hours. The neuron Toxoplasma gondii ratio was 1:5. Observation of intracellular calcium of neuron and tachyzoite, evidence of necrosis, apoptosis and the expression of Hsp 70 of neuron were examined by confocal microscope. The normality of the data was analysed by Kolmogorov-Smirnov Test, differentiation test was checked by t2 Test, and ANOVAs, for correlation test was done by Pearson Correlation Test. The calcium intensity of cytosolic neuron and T. gondii was significantly different from control groups (pneurons both in quantitatively and qualitatively.

  17. Viruses of parasites as actors in the parasite-host relationship: A "ménage à trois".

    Science.gov (United States)

    Gómez-Arreaza, Amaranta; Haenni, Anne-Lise; Dunia, Irene; Avilán, Luisana

    2017-02-01

    The complex parasite-host relationship involves multiple mechanisms. Moreover, parasites infected by viruses modify this relationship adding more complexity to the system that now comprises three partners. Viruses infecting parasites were described several decades ago. However, until recently little was known about the viruses involved and their impact on the resulting disease caused to the hosts. To clarify this situation, we have concentrated on parasitic diseases caused to humans and on how virus-infected parasites could alter the symptoms inflicted on the human host. It is clear that the effect caused to the human host depends on the virus and on the parasite it has infected. Consequently, the review is divided as follows: Viruses with a possible effect on the virulence of the parasite. This section reviews pertinent articles showing that infection of parasites by viruses might increase the detrimental effect of the tandem virus-parasite on the human host (hypervirulence) or decrease virulence of the parasite (hypovirulence). Parasites as vectors affecting the transmission of viruses. In some cases, the virus-infected parasite might facilitate the transfer of the virus to the human host. Parasites harboring viruses with unidentified effects on their host. In spite of recently renewed interest in parasites in connection with their viruses, there still remains a number of cases in which the effect of the virus of a given parasite on the human host remains ambiguous. The triangular relationship between the virus, the parasite and the host, and the modulation of the pathogenicity and virulence of the parasites by viruses should be taken into account in the rationale of fighting against parasites. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Analysis of the association opportunistic infections with c-reactive protein focus toxoplasma, cytomegalovirus, rubella,and hepatitis in human immunodeficiency virus

    Science.gov (United States)

    Khadijah, K. H.; Ferica, K.; Katu, S.; Halim, R.; Mubin, A. H.

    2018-03-01

    Opportunistic infections occur more often severe in people with HIV. C-reactive protein is known to have a prognostic value in HIV and those with HIV-related opportunistic infections. High level of CRP will increase therisk of infection toxoplasma, CMV, rubella,and hepatitis in HIV.Analyzing association of opportunistic infections toxoplasma, CMV, rubella,and hepatitis with the level of CRP in HIV, a cross-sectional analytic study wasduring January-July 2017 on both outpatientand inpatient HIV subjects at Wahidin Sudirohusodo Hospital, Makassar. Each HIV patient is categorized into agroup of opportunistic infections: toxoplasma, CMV, rubella, hepatitis. CRP levels will be assessed in each group, defined by normal values 0.05).

  19. The role of parasites and pathogens in influencing generalised anxiety and predation-related fear in the mammalian central nervous system.

    Science.gov (United States)

    Kaushik, Maya; Lamberton, Poppy H L; Webster, Joanne P

    2012-08-01

    Behavioural and neurophysiological traits and responses associated with anxiety and predation-related fear have been well documented in rodent models. Certain parasites and pathogens which rely on predation for transmission appear able to manipulate these, often innate, traits to increase the likelihood of their life-cycle being completed. This can occur through a range of mechanisms, such as alteration of hormonal and neurotransmitter communication and/or direct interference with the neurons and brain regions that mediate behavioural expression. Whilst some post-infection behavioural changes may reflect 'general sickness' or a pathological by-product of infection, others may have a specific adaptive advantage to the parasite and be indicative of active manipulation of host behaviour. Here we review the key mechanisms by which anxiety and predation-related fears are controlled in mammals, before exploring evidence for how some infectious agents may manipulate these mechanisms. The protozoan Toxoplasma gondii, the causative agent of toxoplasmosis, is focused on as a prime example. Selective pressures appear to have allowed this parasite to evolve strategies to alter the behaviour in its natural intermediate rodent host. Latent infection has also been associated with a range of altered behavioural profiles, from subtle to severe, in other secondary host species including humans. In addition to enhancing our knowledge of the evolution of parasite manipulation in general, to further our understanding of how and when these potential changes to human host behaviour occur, and how we may prevent or manage them, it is imperative to elucidate the associated mechanisms involved. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Characterization of Toxoplasma DegP, a rhoptry serine protease crucial for lethal infection in mice.

    Directory of Open Access Journals (Sweden)

    Gaelle Lentini

    Full Text Available During the infection process, Apicomplexa discharge their secretory organelles called micronemes, rhoptries and dense granules to sustain host cell invasion, intracellular replication and to modulate host cell pathways and immune responses. Herein, we describe the Toxoplasma gondii Deg-like serine protein (TgDegP, a rhoptry protein homologous to High temperature requirement A (HtrA or Deg-like family of serine proteases. TgDegP undergoes processing in both types I and II strains as most of the rhoptries proteins. We show that genetic disruption of the degP gene does not impact the parasite lytic cycle in vitro but affects virulence in mice. While in a type I strain DegPI appears dispensable for the establishment of an infection, removal of DegPII in a type II strain dramatically impairs the virulence. Finally, we show that KO-DegPII parasites kill immunodeficient mice as efficiently as the wild-type strain indicating that the protease might be involved in the complex crosstalk that the parasite engaged with the host immune response. Thus, this study unravels a novel rhoptry protein in T. gondii important for the establishment of lethal infection.

  1. First molecular evidence of Toxoplasma gondii in opossums (Didelphis virginiana from Yucatan, Mexico

    Directory of Open Access Journals (Sweden)

    M. Torres-Castro

    2016-03-01

    Full Text Available Toxoplasma gondii is an obligate intracellular parasite recognized as a causal agent of toxoplasmosis; zoonotic disease endemic in many countries worldwide, including Mexico. Different species of animals participate in the wild cycle infection, including opossums of the species Didelphis virginiana. Thirteen D. virginiana were captured in Yucatan, Mexico. Detection of T. gondii was achieved by Polymerase Chain Reaction, which determined an infection of 76.9% (10/13 in brains. Positive amplicons were sequenced for analysis, this produced results similar to T. gondii with identity and coverage values of 98% and 96-100%, respectively. This study presents the first molecular evidence of the circulation of T. gondii in D. virginiana from Mexico.

  2. HLA-DQBl*0402 alleles polymorphisms detected in Javanese HIV patients with positive anti-Toxoplasma gondii IgM

    Science.gov (United States)

    Sari, Yulia; Haryati, Sri; Prasetyo, Afiono Agung; Hartono, Adnan, Zainal Arifin

    2017-02-01

    The human leukocyte antigen (HLA)-DQB1 gene polymorphisms may associated with the infection risk of Toxoplasma gondii in HIV patients. The HLA-DQB1*0402 in HIV-1-positive patients could be considered risk factors for developing neurological opportunistic infections, mainly Toxoplasma encephalitis. However, the HLA-DQB1*0402 gene polymorphisms status in the Javanese HIV patients is unknown. This study evaluated the prevalence of HLA-DQB*0402 alleles polymorphisms in Javanese HIV patients with positive anti-Toxoplasma gondii IgM status. Since 2009 our research group performing a molecular epidemiology of blood borne viruses in Central Java Indonesia, by collecting the epidemiological and clinical data from the high risk communities. All blood samples were screened for blood borne pathogens by serological and molecular assays including for HIV and Toxoplasma gondii. The genomic DNA was isolated from the whole blood samples. Genetic polymorphisms of HLA-DQB1*0402 alleles were detected with polymerase chain reaction-sequence-specific primers (PCR-SSPs) technique. The genotypes were defined according to generated fragment patterns in the agarose gel electrophoresis analysis of PCR products. All of the samples were tested at least in duplicate. HLA-DQB1*0402 alleles were detected in 20.8% (16/77) patients and not detected in all HIV positive samples with negative anti-Toxoplasma gondii IgM status (n= 200). The HLA-DQB1*0402 alleles polymorphisms were detected in Javanese HIV patients with positive anti-Toxoplasma gondii IgM. The polymorphisms found may have association with the infection risk of Toxoplasma gondii in HIV patients.

  3. Modeling effective transmission pathways and control of the world's most successful parasite.

    Science.gov (United States)

    Turner, Matthew; Lenhart, Suzanne; Rosenthal, Benjamin; Zhao, Xiaopeng

    2013-06-01

    Toxoplasma gondii(T. gondii) is a single-celled, intracellular protozoan responsible for the disease toxoplasmosis. The parasite is prevalent worldwide, and it infects all warm-blooded vertebrates. Consumption of meats in which this parasite has encysted confers risk of infection to people and other animals, as does ingestion of water or foods contaminated with environmentally resistant oocysts excreted by cats. Vertical transmission (from mother to offspring) is also possible, leading to disease risk and contributing additional means of ensuring perpetuation of transmission. In this work, we adopt a differential equation model to investigate the effective transmission pathways of T. gondii, as well as potential control mechanisms. Detailed analyses are carried out to examine the significance of transmission routes, virulence, vertical transmission, parasite-induced changes in host behavior, and controls based on vaccination and harvesting. Modeling and analysis efforts may shed insights into understanding the complex life cycle of T. gondii. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Concentration and retention of Toxoplasma gondii oocysts by marine snails demonstrate a novel mechanism for transmission of terrestrial zoonotic pathogens in coastal ecosystems

    Science.gov (United States)

    Krusor, Colin; Smith, Woutrina A.; Tinker, M. Tim; Silver, Mary; Conrad, Patricia A.; Shapiro, Karen

    2015-01-01

    The parasite Toxoplasma gondii is an environmentally persistent pathogen that can cause fatal disease in humans, terrestrial warm-blooded animals and aquatic mammals. Although an association between T. gondii exposure and prey specialization on marine snails was identified in threatened California sea otters, the ability of kelp-dwelling snails to transmit terrestrially derived pathogens has not been previously investigated. The objective of this study was to measure concentration and retention of T. gondii by marine snails in laboratory aquaria, and to test for natural T. gondii contamination in field-collected snails. Following exposure to T. gondii-containing seawater, oocysts were detected by microscopy in snail faeces and tissues for 10 and 3 days respectively. Nested polymerase chain reaction was also applied as a method for confirming putative T. gondii oocysts detected in snail faeces and tissues by microscopy. Toxoplasma gondiiwas not detected in field-collected snails. Results suggest that turban snails are competent transport hosts for T. gondii. By concentrating oocysts in faecal pellets, snails may facilitate entry of T. gondii into the nearshore marine food web. This novel mechanism also represents a general pathway by which marine transmission of terrestrially derived microorganisms can be mediated via pathogen concentration and retention by benthic invertebrates.

  5. Systems-based analysis of the Sarcocystis neurona genome identifies pathways that contribute to a heteroxenous life cycle.

    Science.gov (United States)

    Blazejewski, Tomasz; Nursimulu, Nirvana; Pszenny, Viviana; Dangoudoubiyam, Sriveny; Namasivayam, Sivaranjani; Chiasson, Melissa A; Chessman, Kyle; Tonkin, Michelle; Swapna, Lakshmipuram S; Hung, Stacy S; Bridgers, Joshua; Ricklefs, Stacy M; Boulanger, Martin J; Dubey, Jitender P; Porcella, Stephen F; Kissinger, Jessica C; Howe, Daniel K; Grigg, Michael E; Parkinson, John

    2015-02-10

    Sarcocystis neurona is a member of the coccidia, a clade of single-celled parasites of medical and veterinary importance including Eimeria, Sarcocystis, Neospora, and Toxoplasma. Unlike Eimeria, a single-host enteric pathogen, Sarcocystis, Neospora, and Toxoplasma are two-host parasites that infect and produce infectious tissue cysts in a wide range of intermediate hosts. As a genus, Sarcocystis is one of the most successful protozoan parasites; all vertebrates, including birds, reptiles, fish, and mammals are hosts to at least one Sarcocystis species. Here we sequenced Sarcocystis neurona, the causal agent of fatal equine protozoal myeloencephalitis. The S. neurona genome is 127 Mbp, more than twice the size of other sequenced coccidian genomes. Comparative analyses identified conservation of the invasion machinery among the coccidia. However, many dense-granule and rhoptry kinase genes, responsible for altering host effector pathways in Toxoplasma and Neospora, are absent from S. neurona. Further, S. neurona has a divergent repertoire of SRS proteins, previously implicated in tissue cyst formation in Toxoplasma. Systems-based analyses identified a series of metabolic innovations, including the ability to exploit alternative sources of energy. Finally, we present an S. neurona model detailing conserved molecular innovations that promote the transition from a purely enteric lifestyle (Eimeria) to a heteroxenous parasite capable of infecting a wide range of intermediate hosts. Sarcocystis neurona is a member of the coccidia, a clade of single-celled apicomplexan parasites responsible for major economic and health care burdens worldwide. A cousin of Plasmodium, Cryptosporidium, Theileria, and Eimeria, Sarcocystis is one of the most successful parasite genera; it is capable of infecting all vertebrates (fish, reptiles, birds, and mammals-including humans). The past decade has witnessed an increasing number of human outbreaks of clinical significance associated with

  6. Toxoplasma gondii: prevalence and characterization of new genotypes in free-range chickens from south Brazil.

    Science.gov (United States)

    Vieira, Fernando Emmanuel Gonçalves; Sasse, João Pedro; Minutti, Ana Flávia; Miura, Ana Carolina; de Barros, Luiz Daniel; Cardim, Sergio Tosi; Martins, Thais Agostinho; de Seixas, Mércia; Yamamura, Milton Issashi; Su, Chunlei; Garcia, João Luis

    2018-03-01

    Toxoplasma gondii is an intracellular parasite that can infect all warm-blooded animals including humans. Recent studies showed that T. gondii strains from South America are genetically diverse. The present work aimed to determine T. gondii prevalence in free-ranging chicken in northwest Parana state in Brazil by two serological tests, to isolate the parasites from seropositive chickens and to genotype the isolates. Antibodies to T. gondii in 386 serum samples from 24 farms were investigated by immunofluorescence antibody assay (IFA) and modified agglutination test (MAT). Samples having titers ≥ 16 were considered positive for both tests. Among the 386 serum samples, 102 (26.4%) were positive for IFA, 64 (16.6%) were positive for MAT, 47 (12.2%) were positive in both tests, and 119 (30.8%) were positive in at least one of the two tests. Brain and pool of heart, lung, and liver from the 119 seropositive chickens were used for mouse bioassay to isolate the parasites. Thirty eight (31.9%) of these seropositive chickens were considered positives in mouse bioassay and 18 isolates were obtained. The isolates were characterized by 10 PCR-RFLP genetic markers including SAG1, SAG2 (5'-3'SAG2, alt.SAG2), SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico. Results of genotyping were compared with the genotypes in ToxoDB database. It revealed ten genotypes, including ToxoDB PCR-RFLP genotypes #6 (n = 2), #19 (n = 1), #21 (n = 2), #111 (n = 2), #152 (n = 1), and #175 (n = 1) and four new types not described before. Our results confirmed a high genetic diversity of this parasite in southern Brazil and also showed that the use of two serological tests in combination can improve the chance of T. gondii isolation. More studies should be taken to determine the zoonotic potential of chickens in the transmission of T. gondii.

  7. Metabolic, Immune, Epigenetic, Endocrine and Phenotypic Abnormalities Found in Individuals with Autism Spectrum Disorders, Down Syndrome and Alzheimer Disease May Be Caused by Congenital and/or Acquired Chronic Cerebral Toxoplasmosis

    Science.gov (United States)

    Prandota, Joseph

    2011-01-01

    "Toxoplasma gondii" is a protozoan parasite that infects about a third of human population. It is generally believed that in immunocompetent hosts, the parasite infection takes usually asymptomatic course and induces self-limiting disease, but in immunocompromised individuals may cause significant morbidity and mortality. "T. gondii" uses sulfated…

  8. Seroprevalence of antibody to TgGRA7 antigen of Toxoplasma gondii in livestock animals from Western Java, Indonesia.

    Science.gov (United States)

    Ichikawa-Seki, Madoka; Guswanto, Azirwan; Allamanda, Puttik; Mariamah, Euis Siti; Wibowo, Putut Eko; Igarashi, Ikuo; Nishikawa, Yoshifumi

    2015-12-01

    Toxoplasmosis is a concern in both human and veterinary medicine, and the consumption of undercooked meat infected with Toxoplasma gondii is a major risk factor in human infection. Establishing the prevalence of the parasite in food-producing livestock is essential to reduce the risk of human infection. This study aimed to determine the prevalence of T. gondii-specific antibodies in cattle and pigs in Western Java, Indonesia. Serum samples from 598 cattle and 205 pigs from 18 locations in Western Java, Indonesia, were tested for antibodies to T. gondii using an enzyme-linked immunosorbent assay (ELISA). The seroprevalence was 14.6% in pigs and 7.4% in cattle, and significantly more pigs were seropositive compared with cattle (p<0.01). The results of this study suggest that consumption of undercooked meat should be regarded as an important source of infection in people. This study suggests that the risk factors for T. gondii infection in livestock appeared to be different in each location because geographical variation in seroprevalence was observed. The results of this study will facilitate further research to identify and control risk factors for T. gondii in the surveyed locations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Toxoplasma gondii infection in meat animals from Africa: Systematic review and meta-analysis of sero-epidemiological studies

    Directory of Open Access Journals (Sweden)

    Aretas Babatoundé Nounnagnon Tonouhewa

    2017-02-01

    Full Text Available Aim: Toxoplasma gondii is an ubiquitous apicomplexan parasite which causes toxoplasmosis in humans and animals. Felids especially cats are definitive hosts and almost all warm-blooded mammals, including livestock and human can serve as intermediate hosts. Food animals can be reservoirs for T. gondii and act as one of the sources for parasite transmission to humans. The objective of this study is to collect serological data on the prevalence of anti-T. gondii antibody, and risk factors for certain food animals from Africa to provide a quantitative estimate of T. gondii infection among these species from different African countries. Materials and Methods: Four databases were used to search seroepidemiological data on the prevalence of anti-T. gondii antibody in food animals between 1969 and 2016 from African countries. The search focused on data obtained by serologic test in food animals and meta-analyses were performed per species. Results: A total of 30,742 individual samples from 24 countries, described in 68 articles were studied. The overall estimated prevalence for toxoplasmosis in chicken, camel, cattle, sheep, goat, pig were 37.4% (29.2-46.0%, 36% (18-56%, 12% (8-17%, 26.1% (17.0-37.0%, 22.9% (12.3-36.0%, and 26.0% (20-32.0%, respectively. Moreover, major risk factor of infection was age, farming system, and farm location. Conclusions: A significant variation in the seroepidemiological data was observed within each species and country. The results can aid in an updated epidemiological analysis but also can be used as an important input in quantitative microbial risk assessment models. Further studies are required for a better and continual evaluation of the occurrence of this zoonotic infection.

  10. In vitro action of antiparasitic drugs, especially artesunate, against Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Thaís Cobellis Gomes

    2012-08-01

    Full Text Available INTRODUCTION: Toxoplasmosis is usually a benign infection, except in the event of ocular, central nervous system (CNS, or congenital disease and particularly when the patient is immunocompromised. Treatment consists of drugs that frequently cause adverse effects; thus, newer, more effective drugs are needed. In this study, the possible activity of artesunate, a drug successfully being used for the treatment of malaria, on Toxoplasma gondii growth in cell culture is evaluated and compared with the action of drugs that are already being used against this parasite. METHODS: LLC-MK2 cells were cultivated in RPMI medium, kept in disposable plastic bottles, and incubated at 36ºC with 5% CO2. Tachyzoites of the RH strain were used. The following drugs were tested: artesunate, cotrimoxazole, pentamidine, pyrimethamine, quinine, and trimethoprim. The effects of these drugs on tachyzoites and LLC-MK2 cells were analyzed using nonlinear regression analysis with Prism 3.0 software. RESULTS: Artesunate showed a mean tachyzoite inhibitory concentration (IC50 of 0.075µM and an LLC MK2 toxicity of 2.003µM. Pyrimethamine was effective at an IC50 of 0.482µM and a toxicity of 11.178µM. Trimethoprim alone was effective against the in vitro parasite. Cotrimoxazole also was effective against the parasite but at higher concentrations than those observed for artesunate and pyrimethamine. Pentamidine and quinine had no inhibitory effect over tachyzoites. CONCLUSIONS: Artesunate is proven in vitro to be a useful alternative for the treatment of toxoplasmosis, implying a subsequent in vivo effect and suggesting the mechanism of this drug against the parasite.

  11. Membrane-Wrapping Contributions to Malaria Parasite Invasion of the Human Erythrocyte

    Science.gov (United States)

    Dasgupta, Sabyasachi; Auth, Thorsten; Gov, Nir S.; Satchwell, Timothy J.; Hanssen, Eric; Zuccala, Elizabeth S.; Riglar, David T.; Toye, Ashley M.; Betz, Timo; Baum, Jake; Gompper, Gerhard

    2014-01-01

    The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells. PMID:24988340

  12. Heritability of the human infectious reservoir of malaria parasites.

    Directory of Open Access Journals (Sweden)

    Yaye Ramatoulaye Lawaly

    Full Text Available BACKGROUND: Studies on human genetic factors associated with malaria have hitherto concentrated on their role in susceptibility to and protection from disease. In contrast, virtually no attention has been paid to the role of human genetics in eliciting the production of parasite transmission stages, the gametocytes, and thus enhancing the spread of disease. METHODS AND FINDINGS: We analysed four longitudinal family-based cohort studies from Senegal and Thailand followed for 2-8 years and evaluated the relative impact of the human genetic and non-genetic factors on gametocyte production in infections of Plasmodium falciparum or P. vivax. Prevalence and density of gametocyte carriage were evaluated in asymptomatic and symptomatic infections by examination of Giemsa-stained blood smears and/or RT-PCR (for falciparum in one site. A significant human genetic contribution was found to be associated with gametocyte prevalence in asymptomatic P. falciparum infections. By contrast, there was no heritability associated with the production of gametocytes for P. falciparum or P. vivax symptomatic infections. Sickle cell mutation, HbS, was associated with increased gametocyte prevalence but its contribution was small. CONCLUSIONS: The existence of a significant human genetic contribution to gametocyte prevalence in asymptomatic infections suggests that candidate gene and genome wide association approaches may be usefully applied to explore the underlying human genetics. Prospective epidemiological studies will provide an opportunity to generate novel and perhaps more epidemiologically pertinent gametocyte data with which similar analyses can be performed and the role of human genetics in parasite transmission ascertained.

  13. Seroprevalence and risk factors for Toxoplasma gondii infection on pig farms in central China.

    Science.gov (United States)

    Tao, Qing; Wang, Zhengsong; Feng, Huihui; Fang, Rui; Nie, Hao; Hu, Min; Zhou, Yanqin; Zhao, Junlong

    2011-04-01

    Toxoplasma gondii is a protozoan parasite that causes severe diseases in mammals, including humans, around the world. In China, pork is the main meat source; accordingly, T. gondii in pigs is considered an important source for human toxoplasmosis. Understanding the epidemiology of toxoplasmosis in pig farms is thus important for control of the disease in humans. The purpose of the present study was to investigate the epizootiology of T. gondii infections in pig farms in central China by assessing the seroprevalence and risk factors of this disease. In the present study, 3,558 sera samples were collected from pigs in 37 large-scale pig farms in this region and tested by AG-ELISA. The total seroprevalence was 24.5%, with the greatest prevalence in breeding pigs. The risk factors for toxoplasmosis suggest that high frequency of the contact of pigs with cats (P ≤ 0.01; IC 95%), high density of pig breeding (P ≤ 0.01; IC 95%), the presence of mosquitoes and flies (P ≤ 0.01; IC 95%), semi-patency pens (P ≤ 0.05; IC 95%), and low frequency of scavenging (P ≤ 0.01; IC 95%) were all associated with seroprevalence. In addition, the use of sulfonamides (P ≤ 0.01; IC 95%) significantly decreased seroprevalence. This is the first report of anti- T. gondii antibodies in pigs on large-scale pig farms in central China. The findings will provide useful information for designing control strategies of toxoplasmasis in pig farms.

  14. The landscape of human genes involved in the immune response to parasitic worms

    Directory of Open Access Journals (Sweden)

    Fumagalli Matteo

    2010-08-01

    Full Text Available Abstract Background More than 2 billion individuals worldwide suffer from helminth infections. The highest parasite burdens occur in children and helminth infection during pregnancy is a risk factor for preterm delivery and reduced birth weight. Therefore, helminth infections can be regarded as a strong selective pressure. Results Here we propose that candidate susceptibility genes for parasitic worm infections can be identified by searching for SNPs that display a strong correlation with the diversity of helminth species/genera transmitted in different geographic areas. By a genome-wide search we identified 3478 variants that correlate with helminth diversity. These SNPs map to 810 distinct human genes including loci involved in regulatory T cell function and in macrophage activation, as well as leukocyte integrins and co-inhibitory molecules. Analysis of functional relationships among these genes identified complex interaction networks centred around Th2 cytokines. Finally, several genes carrying candidate targets for helminth-driven selective pressure also harbour susceptibility alleles for asthma/allergy or are involved in airway hyper-responsiveness, therefore expanding the known parallelism between these conditions and parasitic infections. Conclusions Our data provide a landscape of human genes that modulate susceptibility to helminths and indicate parasitic worms as one of the major selective forces in humans.

  15. Low Seroprevalence of Leishmania infantum and Toxoplasma gondii in the Horse Population in Israel.

    Science.gov (United States)

    Aharonson-Raz, Karin; Baneth, Gad; Lopes, Ana Patrícia; Brancal, Hugo; Schallig, Henk; Cardoso, Luís; Steinman, Amir

    2015-12-01

    A cross-sectional investigation was done on the seroprevalence of Leishmania infantum and Toxoplasma gondii infection among apparently healthy horses in Israel. This survey included 383 horses distributed in 22 farms throughout Israel during the years 2011-2013. Serum samples were tested for the presence of immunoglobulin G (IgG) antibodies using the direct agglutination test (DAT) specific to Leishmania and by the modified agglutination test (MAT) for the presence of IgG antibodies to T. gondii. Low seroprevalences were detected for both L. infantum and T. gondii in the horse population in Israel; of the 338 horses tested, 6 (1.4%) were found to be seropositive for L. infantum and 11 (2.5%) for T. gondii, with no significant association between seroprevalence and demographic/environmental factors. An ongoing geographical expansion of L. infantum, previously reported in humans and dogs in Israel, was also supported by our results in horses. Here we present evidence of exposure of horses to L. infantum and T. gondii in Israel. Continuous seroprevalence surveillance in horses, such as the one performed in this study, might further elucidate the eco-epidemiology of these two important zoonotic parasites in this country.

  16. Seroprevalence of Toxoplasma gondii and Neospora caninum in ...

    African Journals Online (AJOL)

    Background: Toxoplasma gondii and Neospora caninum are protozoans infecting a wide range of mammals; the etiologic agents of Toxoplasmosis and Neosporosis respectively, This study investigated the prevalence of antibodies to Toxoplasma gondii and Neospora caninum in dogs from southwestern Nigeria. Materials ...

  17. Toxoplasma Chinese 1 Strain of WH3Δrop16I/III/gra15II Genetic Background Contributes to Abnormal Pregnant Outcomes in Murine Model

    Directory of Open Access Journals (Sweden)

    Cong Wang

    2018-06-01

    Full Text Available Toxoplasma gondii infection evokes a strong Th1-type response with interleukin (IL-12 and interferon (IFN-γ secretion. Recent studies suggest that the infection of pregnant mice with T. gondii may lead to adverse pregnancy results caused by subversion of physiological immune tolerance at maternofetal interface rather than direct invasion of the parasite. Genotype-associated dense granule protein GRA15II tends to induce classically activated macrophage (M1 differentiation and subsequently activating NK, Th1, and Th17 cells whereas rhoptry protein ROP16I/III drives macrophages to alternatively activated macrophage (M2 polarization and elicits Th2 immune response. Unlike the archetypal strains of types I, II, and III, type Chinese 1 strains possess both GRA15II and ROP16I/III, suggesting a distinct pathogenesis of Toxoplasma-involved adverse pregnancies. We constructed T. gondii type Chinese 1 strain of WH3Δrop16 based on CRISPR/Cas9 technology to explore the ROP16I/III-deficient/GRA15II-dominant parasites in induction of trophoblast apoptosis in vitro and abnormal pregnant outcomes of mice in vivo. Our study showed that Toxoplasma WH3Δrop16 remarkably induced apoptosis of trophoblasts. C57BL/6 pregnant mice injected with the tachyzoites of WH3Δrop16 presented increased absorptivity of fetuses in comparison with the mice infected with WH3 wild type (WH3 WT parasites although no remarkable difference of virulence to mice was seen between the two strains. Additionally, the mice inoculated with WH3Δrop16 tachyzoites exhibited a notable expression of both IL-17A and IFN-γ, while the percentage of CD4+CD25+FoxP3 [T regulatory cells (Tregs] were diminished in splenocytes and placenta tissues compared to those infected with WH3 WT parasites. Accordingly, expressions of IL-4, IL-10, and transforming growth factor beta 1, the pivotal cytokines of Th2 and Tregs response, were significantly dampened whereas IFN-γ and IL-12 expressions were

  18. Molecular genetic transfection of the coccidian parasite Sarcocystis neurona.

    Science.gov (United States)

    Gaji, Rajshekhar Y; Zhang, Deqing; Breathnach, Cormac C; Vaishnava, Shipra; Striepen, Boris; Howe, Daniel K

    2006-11-01

    Sarcocystis neurona is an apicomplexan parasite that is the major cause of equine protozoal myeloencephalitis (EPM). The biology of this pathogen remains poorly understood in part due to unavailability of molecular genetic tools. Hence, with an objective to develop DNA transfection capabilities for S. neurona, the 5' flanking region of the SnSAG1 gene was isolated from a genomic library and used to construct expression plasmids. In transient assays, the reporter molecules beta-galactosidase (beta-gal) and yellow fluorescent protein (YFP) could be detected in electroporated S. neurona, thereby confirming the feasibility of transgene expression in this organism. Stable transformation of S. neurona was achieved using a mutant dihydrofolate reductase thymidylate synthase (DHFR-TS) gene of Toxoplasma gondii that confers resistance to pyrimethamine. This selection system was used to create transgenic S. neurona that stably express beta-gal and YFP. As shown in this study, these transgenic clones can be useful for analyzing growth rate of parasites in vitro and for assessing drug sensitivities. More importantly, the DNA transfection methods described herein should greatly facilitate studies examining intracellular parasitism by this important coccidian pathogen.

  19. Susceptibility of pregnant women to toxoplasma infection--potential benefits for newborn screening.

    LENUS (Irish Health Repository)

    Ferguson, W

    2008-08-20

    Congenital toxoplasmosis (CT) arises as a result of new acquisition of Toxoplasma infection by a susceptible woman during pregnancy. Early detection of CT through neonatal screening programmes could optimize management and improve infant outcome. This study sought to estimate the prevalence of Toxoplasma susceptibility in pregnant women. As detection of Toxoplasma antibodies in neonatal blood reflects maternal exposure history, maternal antibody seroprevalence was determined using anonymized residual blood from newborn screening cards. A total of 20,252 cards were tested in 1 year. 4,991 (24.6%) cards tested positive for Toxoplasma antibody. Results were stratified by county. Toxoplasma antibody seroprevalence rates of 25% indicated that Toxoplasma infection is common in Ireland and that up to 75% of women remain susceptible to primary infection during pregnancy. This study aimed to a) determine the seroprevalence of Toxoplasma antibody in pregnant women, and hence b) estimate the risk for acquisition of primary toxoplasmosis in pregnancy in order to support an application to fund a pilot newborn screening programme.

  20. Isolation and Genotyping of Toxoplasma gondii in Brazilian Dogs.

    Science.gov (United States)

    da Silva, Jamille Rodrigues; Maciel, Bianca Mendes; de Santana Souza Santos, Luana Karla Nogueira; Carvalho, Fábio Santos; de Santana Rocha, Daniele; Lopes, Carlos Wilson Gomes; Albuquerque, George Rêgo

    2017-06-01

    Strains of Toxoplasma gondii in Brazil are highly genetically diverse compared to strains from North America and Europe. Dogs are epidemiologically important because they act as sentinels for T. gondii infections in humans and are good indicators of environmental contamination. The aim of this study was to isolate and genetically characterize T. gondii strains from tissues of naturally infected Brazilian dogs. For this study, 21 blood samples were collected from dogs at the Zoonosis Control Centers of Ilhéus and Itabuna cities, Bahia, Brazil. The sera were examined for T. gondii antibodies using the indirect hemagglutination test. Brains and hearts of seropositive dogs were bioassayed in mice to isolate and characterize T. gondii parasites by PCR-RFLP using 10 genetic markers (SAG1, newSAG2, SAG3, BTUB, c22-8, c29-2, GRA6, PK1, APICO, and L358). However, T. gondii was isolated from only 4 (57.1%) dogs, designated TgDgBr6, 13, 17, and 21. All strains were virulent, causing clinical changes (rough hair coat, lethargy, and abdominal distention) and the death of all mice within 8-20 days after inoculation. Genetic analysis of these 4 T. gondii isolates revealed 4 distinct genotypes with different clonal lineage combinations (types I, II, and III) and 2 atypical alleles. Using PCR-RFLP with several markers, this study contributes to evaluations of the genetic diversity of strains circulating in Brazil.

  1. Prevalence and risk factors for Toxoplasma gondii infection in certified and non-certified pig breeding farms in the Toledo microregion, PR, Brazil Prevalência e fatores de risco para a infecção pelo Toxoplasma gondii em granjas de reprodutores suídeos certificados ou não da microregião de Toledo, PR, Brasil

    Directory of Open Access Journals (Sweden)

    Piassa Franciele Rossandra

    2010-09-01

    Full Text Available Toxoplasma gondii infection has been diagnosed in pigs all over the world. Economical losses are generally related to reproductive disorders. Toxoplasma infection is also a matter of public health because tissue cysts of the parasite may remain in pork and pork products, and become sources of human infection. The objective of this study was to evaluate the frequency and risk factors associated with Toxoplasma infection in certified and non-certified pig breeding farms in the Toledo microregion, in the State of Paraná, Brazil which includes the cities of Toledo, Nova Santa Rosa, Sao José das Palmeiras and Sao Pedro do Iguaçu. Relative frequency of infection was 13.4%, independently of the type of farm. Logistic regression analysis showed that the following factors were associated with infection: absence of workers exclusive for each area of the farm, access of other animals to feeders and drinkers, lack of lids in drinkers, lack of rodent control measures, mean piglet number and weight at weaning per female.A infecção pelo Toxoplasma gondii tem sido diagnosticada em suínos em todo o mundo. Perdas econômicas geralmente estão relacionadas a distúrbios reprodutivos. A infecção pelo Toxoplasma tem também importância em saúde pública, já que cistos teciduais do parasito podem persistir na carne e subprodutos oriundos de suínos, que servirão de fontes de infecção para o ser humano. O objetivo deste trabalho foi verificar a frequência e os fatores de risco associados à infecção pelo Toxoplasma em granjas de reprodutores suídeos certificados ou não da microrregião de Toledo, no Paraná, que inclui os municípios de Toledo, Nova Santa Rosa, São José das Palmeiras e São Pedro do Iguaçú. A frequência relativa de infecção foi 13,4%, sem diferença com o tipo de granja. A análise de regressão logística demonstrou os seguintes fatores associados à infecção: não utilização de funcionários separados por área da

  2. Morphological and Molecular Descriptors of the Developmental Cycle of Babesia divergens Parasites in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Ingrid Rossouw

    2015-05-01

    Full Text Available Human babesiosis, especially caused by the cattle derived Babesia divergens parasite, is on the increase, resulting in renewed attentiveness to this potentially life threatening emerging zoonotic disease. The molecular mechanisms underlying the pathophysiology and intra-erythrocytic development of these parasites are poorly understood. This impedes concerted efforts aimed at the discovery of novel anti-babesiacidal agents. By applying sensitive cell biological and molecular functional genomics tools, we describe the intra-erythrocytic development cycle of B. divergens parasites from immature, mono-nucleated ring forms to bi-nucleated paired piriforms and ultimately multi-nucleated tetrads that characterizes zoonotic Babesia spp. This is further correlated for the first time to nuclear content increases during intra-erythrocytic development progression, providing insight into the part of the life cycle that occurs during human infection. High-content temporal evaluation elucidated the contribution of the different stages to life cycle progression. Moreover, molecular descriptors indicate that B. divergens parasites employ physiological adaptation to in vitro cultivation. Additionally, differential expression is observed as the parasite equilibrates its developmental stages during its life cycle. Together, this information provides the first temporal evaluation of the functional transcriptome of B. divergens parasites, information that could be useful in identifying biological processes essential to parasite survival for future anti-babesiacidal discoveries.

  3. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts

    KAUST Repository

    Otto, Thomas D.

    2014-09-09

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host–parasite interface may have mediated host switching.

  4. Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Jessica K O'Hara

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ is an essential metabolite utilized as a redox cofactor and enzyme substrate in numerous cellular processes. Elevated NAD+ levels have been observed in red blood cells infected with the malaria parasite Plasmodium falciparum, but little is known regarding how the parasite generates NAD+. Here, we employed a mass spectrometry-based metabolomic approach to confirm that P. falciparum lacks the ability to synthesize NAD+ de novo and is reliant on the uptake of exogenous niacin. We characterized several enzymes in the NAD+ pathway and demonstrate cytoplasmic localization for all except the parasite nicotinamidase, which concentrates in the nucleus. One of these enzymes, the P. falciparum nicotinate mononucleotide adenylyltransferase (PfNMNAT, is essential for NAD+ metabolism and is highly diverged from the human homolog, but genetically similar to bacterial NMNATs. Our results demonstrate the enzymatic activity of PfNMNAT in vitro and demonstrate its ability to genetically complement the closely related Escherichia coli NMNAT. Due to the similarity of PfNMNAT to the bacterial enzyme, we tested a panel of previously identified bacterial NMNAT inhibitors and synthesized and screened twenty new derivatives, which demonstrate a range of potency against live parasite culture. These results highlight the importance of the parasite NAD+ metabolic pathway and provide both novel therapeutic targets and promising lead antimalarial compounds.

  5. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon.

    Science.gov (United States)

    Lalremruata, Albert; Magris, Magda; Vivas-Martínez, Sarai; Koehler, Maike; Esen, Meral; Kempaiah, Prakasha; Jeyaraj, Sankarganesh; Perkins, Douglas Jay; Mordmüller, Benjamin; Metzger, Wolfram G

    2015-09-01

    The quartan malaria parasite Plasmodium malariae is the widest spread and best adapted human malaria parasite. The simian Plasmodium brasilianum causes quartan fever in New World monkeys and resembles P. malariae morphologically. Since the genetics of the two parasites are nearly identical, differing only in a range of mutations expected within a species, it has long been speculated that the two are the same. However, no naturally acquired infection with parasites termed as P. brasilianum has been found in humans until now. We investigated malaria cases from remote Yanomami indigenous communities of the Venezuelan Amazon and analyzed the genes coding for the circumsporozoite protein (CSP) and the small subunit of ribosomes (18S) by species-specific PCR and capillary based-DNA sequencing. Based on 18S rRNA gene sequencing, we identified 12 patients harboring malaria parasites which were 100% identical with P. brasilianum isolated from the monkey, Alouatta seniculus. Translated amino acid sequences of the CS protein gene showed identical immunodominant repeat units between quartan malaria parasites isolated from both humans and monkeys. This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts.

  6. Tetrapyrrole Synthesis of Photosynthetic Chromerids Is Likely Homologous to the Unusual Pathway of Apicomplexan Parasites

    Czech Academy of Sciences Publication Activity Database

    Kořený, Luděk; Sobotka, Roman; Janouškovec, J.; Keeling, P. J.; Oborník, Miroslav

    2011-01-01

    Roč. 23, č. 9 (2011), s. 3454-3462 ISSN 1040-4651 R&D Projects: GA ČR GA206/08/1423; GA AV ČR IAA601410907 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z50200510 Keywords : YEAST SACCHAROMYCES-CEREVISIAE * HEME-BIOSYNTHESIS PATHWAY * PLASMODIUM-FALCIPARUM * MALARIA PARASITE * 5-AMINOLEVULINATE SYNTHASE * SECONDARY PLASTIDS * TOXOPLASMA-GONDII * PROTEIN-TRANSPORT * EUGLENA-GRACILIS * METABOLIC MAPS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.987, year: 2011

  7. Brain cancer mortality rates increase with Toxoplasma gondii seroprevalence in France

    Science.gov (United States)

    Vittecoq, Marion; Elguero, Eric; Lafferty, Kevin D.; Roche, Benjamin; Brodeur, Jacques; Gauthier-Clerc, Michel; Missé, Dorothée; Thomas, Frédéric

    2012-01-01

    The incidence of adult brain cancer was previously shown to be higher in countries where the parasite Toxoplasma gondii is common, suggesting that this brain protozoan could potentially increase the risk of tumor formation. Using countries as replicates has, however, several potential confounding factors, particularly because detection rates vary with country wealth. Using an independent dataset entirely within France, we further establish the significance of the association between T. gondii and brain cancer and find additional demographic resolution. In adult age classes 55 years and older, regional mortality rates due to brain cancer correlated positively with the local seroprevalence of T. gondii. This effect was particularly strong for men. While this novel evidence of a significant statistical association between T. gondii infection and brain cancer does not demonstrate causation, these results suggest that investigations at the scale of the individual are merited.

  8. Social Parasites

    Science.gov (United States)

    Lopez, Miguel A.; Nguyen, HoangKim T.; Oberholzer, Michael; Hill, Kent L.

    2011-01-01

    Summary of recent advances Protozoan parasites cause tremendous human suffering worldwide, but strategies for therapeutic intervention are limited. Recent studies illustrate that the paradigm of microbes as social organisms can be brought to bear on questions about parasite biology, transmission and pathogenesis. This review discusses recent work demonstrating adaptation of social behaviors by parasitic protozoa that cause African sleeping sickness and malaria. The recognition of social behavior and cell-cell communication as a ubiquitous property of bacteria has transformed our view of microbiology, but protozoan parasites have not generally been considered in this context. Works discussed illustrate the potential for concepts of sociomicrobiology to provide insight into parasite biology and should stimulate new approaches for thinking about parasites and parasite-host interactions. PMID:22020108

  9. A quantitative microbial risk assessment for meatborne Toxoplasma gondii infection in The Netherlands

    NARCIS (Netherlands)

    Opsteegh, M.; Prickaerts, S.; Frankena, K.; Evers, E.G.

    2011-01-01

    Toxoplasma gondii is an important foodborne pathogen, and the cause of a high disease burden due to congenital toxoplasmosis in The Netherlands. The aim of this study was to quantify the relative contribution of sheep, beef and pork products to human T. gondii infections by Quantitative Microbial

  10. Toxoplasma gondii in experimentally infected Bos taurus and Bos indicus semen and tissues Toxoplasma gondii em semen e tecidos de Bos taurus and Bos indicus experimentalmente infectados

    Directory of Open Access Journals (Sweden)

    Leslie Scarpelli

    2009-01-01

    Full Text Available Eighteen young steers were inoculated with Toxoplasma gondii and randomly distributed into three groups of six animals each: GI, 2.5x10(5 "P" strain oocysts, GII, 5.0x10(6 "RH" strain tachyzoites, and GIII (Control. Clinical, serological and parasitemia exams were realized. Parasite investigation by bioassay and PCR was realized on semen and fragments of skeletal musculature, lymph nodes, brain, retina, spleen, liver, lung, testicle, epididymis and seminal vesicle. Blood and semen samples were collected on days -2, -1, 1, 3, 5, 7, 14 and weekly thereafter, up to postinfection day (PID 84. The inoculated steers (GI and GII presented hyperthermia from PID 3 to 16. Antibodies against T. gondii were detected through the indirect fluorescence antibody test (IFAT on PID 5 (1:16 in both inoculated groups (oocysts and tachyzoites, reaching peaks of 1:4096 on PID 7. Parasitemia outbursts occurred in all infected bovines, principally from PID 7 to 28, independent of the strain and inoculate used. Bioassays revealed the presence of parasites in semen samples of animals infected with oocysts (GI and tachyzoites (GII on several experimental days between PID 7 and 84. Tissue parasitism by T. gondii was diagnosed by bioassay and the PCR technique in several organ and tissue fragments. These findings suggest the possibility of sexual transmission of T. gondii in the bovine species.Dezoito bovinos foram inoculados com Toxoplasma gondii e distribuídos aleatoriamente em três grupos de seis bovinos cada: GI (2,5x10(5 oocistos da cepa "P", GII (5,0x10(6 taquizoítos da cepa "RH" e GIII (controle. Exames clínicos, sorológicos e parasitêmicos foram realizados. Pesquisas do parasito, por meio da bioprova e pela técnica de Reação em Cadeia pela Polimerase (PCR, foram realizadas no sêmen e em fragmentos de musculatura esquelética, linfonodos, cérebro, retina, baço, fígado, pulmão, testículo, epidídimo e vesícula seminal. Amostras de sangue e sêmen foram

  11. The Occurrence of Some Nonblood Protozoan Parasites in Wild and Domestic Mammals in South Africa.

    Science.gov (United States)

    Lukášová, Radka; Halajian, Ali; Bártová, Eva; Kobédová, Kateřina; Swanepoel, Lourens H; O'Riain, M Justin

    2018-04-01

    Relatively little is known about protozoan parasites in African animals. Here we investigated the occurrence of protozoan parasites in mammals from South Africa. Oocysts of protozoan parasites were detected in 13 of 56 (23%) fecal samples using conventional microscopic examination methods. Cryptosporidium spp. and Cystoisospora spp. were detected in eight (14%) and five (9%) samples, respectively. Mixed parasitic infection of Cryptosporidium spp. and Cystoisospora spp. was recorded in banded mongoose ( Mungos mungo). Cryptosporidium spp. was detected for the first time in cheetah ( Acinonyx jubatus), spotted hyena ( Crocuta crocuta), and African polecat ( Ictonyx striatus). Antibodies to Toxoplasma gondii and Neospora caninum were not detected by enzyme-linked immunosorbent assay in any of 32 sera tested. We detected T. gondii by PCR in tissues of five of 243 (2%) animals: domestic dog ( Canis lupus familiaris), gerbil ( Gerbilliscus spp.), greater kudu ( Tragelaphus strepsiceros), honey badger ( Mellivora capensis), and white-tailed mongoose ( Ichneumia albicauda). Our isolation of T. gondii from white-tailed mongoose and honey badger was a unique finding. All tissue samples were negative for N. caninum. The study increases our knowledge on the occurrence of protozoan parasites in populations of wild and domestic animals in South Africa.

  12. [Current situation of human resources of parasitic disease control and prevention organizations in Henan Province].

    Science.gov (United States)

    Ya-Lan, Zhang; Yan-Kun, Zhu; Wei-Qi, Chen; Yan, Deng; Peng, Li

    2018-01-10

    To understand the current status of human resources of parasitic disease control and prevention organizations in Henan Province, so as to provide the reference for promoting the integrative ability of the prevention and control of parasitic diseases in Henan Province. The questionnaires were designed and the method of census was adopted. The information, such as the amounts, majors, education background, technical titles, working years, and turnover in each parasitic disease control and prevention organization was collected by the centers for disease control and prevention (CDCs) at all levels. The data were descriptively analyzed. Totally 179 CDCs were investigated, in which only 19.0% (34/179) had the independent parasitic diseases control institution (department) . There were only 258 full-time staffs working on parasitic disease control and prevention in the whole province, in which only 61.9% (159/258) were health professionals. Those with junior college degree or below in the health professionals accounted for 60.3% (96/159) . Most of them (42.1%) had over 20 years of experience, but 57.9% (92/159) of their technical post titles were at primary level or below. The proportion of the health professionals is low in the parasitic disease control and prevention organizations in Henan Province. The human resource construction for parasitic disease control and prevention at all levels should be strengthened.

  13. Pulmonary exposure to single-walled carbon nanotubes does not affect the early immune response against Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Swedin Linda

    2012-05-01

    Full Text Available Abstract Background Single-walled carbon nanotubes (SWCNT trigger pronounced inflammation and fibrosis in the lungs of mice following administration via pharyngeal aspiration or inhalation. Human exposure to SWCNT in an occupational setting may occur in conjunction with infections and this could yield enhanced or suppressed responses to the offending agent. Here, we studied whether the sequential exposure to SWCNT via pharyngeal aspiration and infection of mice with the ubiquitous intracellular parasite Toxoplasma gondii would impact on the immune response of the host against the parasite. Methods C57BL/6 mice were pre-exposed by pharyngeal administration of SWCNT (80 + 80 μg/mouse for two consecutive days followed by intravenous injection with either 1x103 or 1x104 green fluorescence protein and luciferase-expressing T. gondii tachyzoites. The dissemination of T. gondii was monitored by in vivo bioluminescence imaging in real time for 7 days and by plaque formation. The inflammatory response was analysed in bronchoalveolar lavage (BAL fluid, and by assessment of morphological changes and immune responses in lung and spleen. Results There were no differences in parasite distribution between mice only inoculated with T. gondii or those mice pre-exposed for 2 days to SWCNT before parasite inoculum. Lung and spleen histology and inflammation markers in BAL fluid reflected the effects of SWCNT exposure and T. gondii injection, respectively. We also noted that CD11c positive dendritic cells but not F4/80 positive macrophages retained SWCNT in the lungs 9 days after pharyngeal aspiration. However, co-localization of T. gondii with CD11c or F4/80 positive cells could not be observed in lungs or spleen. Pre-exposure to SWCNT did not affect the splenocyte response to T. gondii. Conclusions Taken together, our data indicate that pre-exposure to SWCNT does not enhance or suppress the early immune response to T. gondii in mice.

  14. Toxoplasma gondii-derived synthetic peptides containing B- and T-cell epitopes from GRA2 protein are able to enhance mice survival in a model of experimental toxoplasmosis

    Directory of Open Access Journals (Sweden)

    Luciana Machado Bastos

    2016-06-01

    Full Text Available Toxoplasmosis is a zoonosis distributed all over the world, which the etiologic agent is an intracellular protozoan parasite, Toxoplasma gondii. This disease may cause abortions and severe diseases in many warm-blood hosts, including humans, particularly the immunocompromised patients. The parasite specialized secretory organelles, as micronemes, rhoptries and dense granules, are critical for the successful parasitism. The dense granule protein 2 (GRA2 is a parasite immunogenic protein secreted during infections and previous studies have been shown that this parasite component is crucial for the formation of intravacuolar membranous nanotubular network (MNN, as well as for secretion into the vacuole and spatial organization of the parasites within the vacuole. In the present study, we produced a monoclonal antibody to GRA2 (C3C5 mAb, isotype IgG2b, mapped the immunodominant epitope of the protein by phage display and built GRA2 synthetic epitopes to evaluate their ability to protect mice in a model of experimental infection. Our results showed that synthetic peptides for B- and T-cell epitopes are able to improve survival of immunized animals. In contrast with non-immunized animals, the immunized mice with both B- and T-cell epitopes had a better balance of cytokines and demonstrated higher levels of IL-10, IL-4 and IL-17 production, though similar levels of TNF-alpha and IL-6 were observed. The immunization with both B- and T-cell epitopes resulted in survival rate higher than 85% of the challenged mice. Overall, these results demonstrate that immunization with synthetic epitopes for both B- and T-cells from GRA2 protein can be more effective to protect against infection by T. gondii.

  15. Occurrence of antibodies to Toxoplasma gondii in rheas (Rhea americana and ostriches (Struthio camelus from farms of different Brazilian regions

    Directory of Open Access Journals (Sweden)

    Amanda Brentano Almeida

    Full Text Available This study aimed to verify the occurrence of antibodies againstToxoplasma gondii in rheas (Rhea americana and ostriches (Struthio camelus commercially breeding in Brazil. Blood samples from 20 rheas and 46 ostriches (young and adults were serologically tested using a technique known as modified agglutination test (MAT at an initial titration of 1:16 for ostriches and 1:25 for rheas. Antibodies against T. gondii were found in 50% (10/20 of the rheas, with titers ranging from 1:25 to 1:6,400. The incidence of antibodies against T. gondii in ostriches was 17.4% (8/46 with titers ranging from 1:16 to 1:256. Birds showing titers higher than 1:200 forT. gondii were mainly the young ones. Therefore, rheas and ostriches may be parasitized by T. gondii, showing high levels of antibodies against this parasite.

  16. Partial protective effect of intranasal immunization with recombinant Toxoplasma gondii rhoptry protein 17 against toxoplasmosis in mice.

    Directory of Open Access Journals (Sweden)

    Hai-Long Wang

    Full Text Available Toxoplasma gondii (T. gondii is an obligate intracellular protozoan parasite that infects a variety of mammals, including humans. An effective vaccine for this parasite is therefore needed. In this study, RH strain T. gondii rhoptry protein 17 was expressed in bacteria as a fusion with glutathione S-transferase (GST and the recombinant proteins (rTgROP17 were purified via GST-affinity chromatography. BALB/c mice were nasally immunised with rTgROP17, and induction of immune responses and protection against chronic and lethal T. gondii infections were investigated. The results revealed that mice immunised with rTgROP17 produced high levels of specific anti-rTgROP17 IgGs and a mixed IgG1/IgG2a response of IgG2a predominance. The systemic immune response was associated with increased production of Th1 (IFN-γand IL-2 and Th2 (IL-4 cytokines, and enhanced lymphoproliferation (stimulation index, SI in the mice immunised with rTgROP17. Strong mucosal immune responses with increased secretion of TgROP17-specific secretory IgA (SIgA in nasal, vaginal and intestinal washes were also observed in these mice. The vaccinated mice displayed apparent protection against chronic RH strain infection as evidenced by their lower liver and brain parasite burdens (59.17% and 49.08%, respectively than those of the controls. The vaccinated mice also exhibited significant protection against lethal infection of the virulent RH strain (survival increased by 50% compared to the controls. Our data demonstrate that rTgROP17 can trigger strong systemic and mucosal immune responses against T. gondii and that ROP17 is a promising candidate vaccine for toxoplasmosis.

  17. Geographical distribution of Toxoplasma gondii genotypes in Asia: A link with neighboring continents.

    Science.gov (United States)

    Chaichan, P; Mercier, A; Galal, L; Mahittikorn, A; Ariey, F; Morand, S; Boumédiène, F; Udonsom, R; Hamidovic, A; Murat, J B; Sukthana, Y; Dardé, M L

    2017-09-01

    Defining the pattern of genetic diversity of Toxoplasma gondii is important to understand its worldwide distribution. During the last decades, a large number of studies have been published on Toxoplasma genotypes circulating in Europe, in North and South America. Two continents are still largely unexplored, Africa and, to a less extent, Asia. In this last continent, an increasing number of publications reported genotypes circulating in diverse provinces of China, but very few data are available for other Asian countries. After a systematic database search, 47 papers related to T. gondii genotypes in Asia were analyzed. Genetic characterization of DNA was performed by microsatellite markers, or more usually by a multiplex PCR using 11 PCR-RFLP markers, allowing data comparison to draw a first global picture of the population structure of this parasite throughout Asia. Overall, 390 isolates or DNA extracts were completely typed by PCR-RFLP and/or microsatellite marker methods, revealing 36 different PCR-RFLP or equivalent microsatellite genotypes: 15 genotypes identified by a ToxoDB number and 21 atypical or unique genotypes. The most common genotype found in Asia is the genotype ToxoDB#9 (Chinese 1). The clonal types I, II and II variant, and III were also commonly found in Asia. The geographical distribution of these genotypes across Asia may reflect either a continuum with Europe for the western part of Asia (presence of Type II), or the circulation of strains through animal migration or human activities between Africa and the Southwestern part of Asia (Africa 1 genotype in Turkey or ToxoDB#20 both I Sri-Lanka and in Ethiopia or Egypt). Although there are some indications of a genetic population structure in Southeast Asian countries different from the rest of Asia, more studies in this tropical part of Asia will be necessary for a region which represent as well as Africa one of the missing links of the T. gondii genetic diversity. Copyright © 2017 Elsevier B

  18. Molecular detection of Toxoplasma gondii and Neospora caninum in birds from South Africa.

    Science.gov (United States)

    Lukášová, Radka; Kobédová, Kateřina; Halajian, Ali; Bártová, Eva; Murat, Jean-Benjamin; Rampedi, Kgethedi Michael; Luus-Powell, Wilmien J

    2018-02-01

    There are not any records on the detection of Toxoplasma gondii and Neospora caninum in tissues of wild birds in the African continent. The aim of the study was to investigate the occurrence of DNA from these protozoan parasites in brain tissue samples collected in years 2014-2015 from 110 wild and domestic birds of 15 orders. Birds came mainly from the province of Limpopo (n=103); the other seven birds came from other five provinces of South Africa. Parasite DNAs were detected by PCR in animal brains. While all samples were negative for N. caninum, T. gondii DNA was detected in three (2.7%) birds: a Red-eyed Dove (Streptopelia semitorquata), a Laughing Dove (S. senegalensis) and a Southern-Yellow-billed Hornbill (Tockus leucomelas), all from Limpopo province. Positive samples were selected for genotyping by a 15 microsatellite markers method in a single multiplex PCR assay. Only the sample from the Red-eyed Dove was successfully genotyped and characterized as type II. This is the first detection of T. gondii in tissue of native African wild birds and the first study focusing on N. caninum in birds from South Africa. Copyright © 2017. Published by Elsevier B.V.

  19. Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii

    KAUST Repository

    Salunke, Rahul

    2018-05-14

    The mitochondrial F-type ATP synthase, a multi-subunit nanomotor, is critical for maintaining cellular ATP levels. In Toxoplasma gondii and other apicomplexan parasites, many subunit components, necessary for proper assembly and functioning of this enzyme, appear to be missing. Here, we report the identification of 20 novel subunits of T. gondii F-type ATP synthase from mass spectrometry analysis of partially purified monomer (~600 kDa) and dimer (>1 MDa) forms of the enzyme. Despite extreme sequence diversification, key FO subunits, a, b and d, can be identified from conserved structural features. Orthologs for these proteins are restricted to apicomplexan, chromerid and dinoflagellate species. Interestingly, their absence in ciliates indicates a major diversion, with respect to subunit composition of this enzyme, within the alveolate clade. Discovery of these highly diversified novel components of the apicomplexan F-type ATP synthase complex will facilitate the development of novel anti-parasitic agents. Structural and functional characterization of this unusual enzyme complex will advance our fundamental understanding of energy metabolism in apicomplexan species.

  20. Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii

    KAUST Repository

    Salunke, Rahul; Mourier, Tobias; Banerjee, Manidipa; Pain, Arnab; Shanmugam, Dhanasekaran

    2018-01-01

    The mitochondrial F-type ATP synthase, a multi-subunit nanomotor, is critical for maintaining cellular ATP levels. In Toxoplasma gondii and other apicomplexan parasites, many subunit components, necessary for proper assembly and functioning of this enzyme, appear to be missing. Here, we report the identification of 20 novel subunits of T. gondii F-type ATP synthase from mass spectrometry analysis of partially purified monomer (~600 kDa) and dimer (>1 MDa) forms of the enzyme. Despite extreme sequence diversification, key FO subunits, a, b and d, can be identified from conserved structural features. Orthologs for these proteins are restricted to apicomplexan, chromerid and dinoflagellate species. Interestingly, their absence in ciliates indicates a major diversion, with respect to subunit composition of this enzyme, within the alveolate clade. Discovery of these highly diversified novel components of the apicomplexan F-type ATP synthase complex will facilitate the development of novel anti-parasitic agents. Structural and functional characterization of this unusual enzyme complex will advance our fundamental understanding of energy metabolism in apicomplexan species.

  1. A survey study on gastrointestinal parasites of stray cats in northern region of Nile delta, Egypt.

    Directory of Open Access Journals (Sweden)

    Reda E Khalafalla

    Full Text Available A survey study on gastrointestinal parasites in 113 faecal samples from stray cats collected randomly from Kafrelsheikh province, northern region of Nile delta of Egypt; was conducted in the period between January and May 2010. The overall prevalence was 91%. The results of this study reported seven helminth species: Toxocara cati (9%, Ancylostoma tubaeforme (4%, Toxascaris leonina (5%, Dipylidium caninum (5%, Capillaria spp. (3%, Taenia taeniformis (22% and Heterophyes heterophyes (3%, four protozoal species: Toxoplasma gondii (9%, Sarcocyst spp. (1%, Isospora spp. (2% and Giardia spp. (2% and two arthropod species; Linguatula serrata (2% and mites eggs (13%. The overall prevalence of intestinal parasites may continue to rise due to lack of functional veterinary clinics for cat care in Egypt. Therefore, there is a need to plan adequate control programs to diagnose, treat and control gastrointestinal parasites of companion as well as stray cats in the region.

  2. A Survey Study on Gastrointestinal Parasites of Stray Cats in Northern Region of Nile Delta, Egypt

    Science.gov (United States)

    Khalafalla, Reda E.

    2011-01-01

    A survey study on gastrointestinal parasites in 113 faecal samples from stray cats collected randomly from Kafrelsheikh province, northern region of Nile delta of Egypt; was conducted in the period between January and May 2010. The overall prevalence was 91%. The results of this study reported seven helminth species: Toxocara cati (9%), Ancylostoma tubaeforme (4%), Toxascaris leonina (5%), Dipylidium caninum (5%), Capillaria spp. (3%), Taenia taeniformis (22%) and Heterophyes heterophyes (3%), four protozoal species: Toxoplasma gondii (9%), Sarcocyst spp. (1%), Isospora spp. (2%) and Giardia spp. (2%) and two arthropod species; Linguatula serrata (2%) and mites eggs (13%). The overall prevalence of intestinal parasites may continue to rise due to lack of functional veterinary clinics for cat care in Egypt. Therefore, there is a need to plan adequate control programs to diagnose, treat and control gastrointestinal parasites of companion as well as stray cats in the region. PMID:21760884

  3. Seroprevalence and Risk Factors Associated with Seropositivity to Toxoplasma gondii among Stray and Domestic Cats (Felis silvestris catus

    Directory of Open Access Journals (Sweden)

    Christel Bohn T. Garcia

    2014-12-01

    Full Text Available Toxoplasma gondii is a protozoan parasite that causes toxoplasmosis. It is widespread in the environment and infects a variety of warm-blooded animals, causing miscarriages and birth problems. Previous studies in the Philippines have determined the seropositivity of T. gondii in humans. However, the seroprevalence of the parasite among household pets, par ticularly its feline def initive host, remains insufficient . This study aimed to: (1 determine the seroprevalence of T. gondii antibodies among domestic and stray cats in the Philippines; and, (2 to analyze the risk factors associated with seropositivity. Blood samples from 59 domestic and stray cats were collected and tested for T. gondii seropositivity using a commercially available indirect ELISA kit, while pet owners and handlers were given questionnaires about their cats. Thirteen or 22.03% of the cats were seropositive to T. gondii, and risk factor analysis revealed a significant difference between domestic and stray cats with regard to diet (p = 0.026, OR = 8.333, c = 0.299 and domestication (p = 0.039, OR = 5.000, c = 0.276. Cats fed with table food tested 31.43% seropositive compared to the 4.35% of those fed with cat food, whereas 33.33% of the stray cats were seropositive compared to 7.69% for domestic cats. Odds ratio test showed that the risk factors studied were associated with higher likelihood of T. gondii seropositivity. These results implicate diet and environment in the transmission dynamics of T. gondii among cats.

  4. Cloning and expression of Toxoplasma gondii tachyzoite P22 protein

    African Journals Online (AJOL)

    Jane

    2011-08-01

    Aug 1, 2011 ... Expressd protein was purified by affinity chromatography and confirmed by western blot ... Key words: Toxoplasma gondii, cloning, recombinant P22. INTRODUCTION. Toxoplasma gondii ..... an ELISA Assay. Iran. J. Immunol.

  5. Proteins involved in invasion of human red blood cells by malaria parasites

    Directory of Open Access Journals (Sweden)

    Ewa Jaśkiewicz

    2010-11-01

    Full Text Available Malaria is a disease caused by parasites of Plasmodium species. It is responsible for around 1-2 million deaths annually, mainly children under the age of 5. It occurs mainly in tropical and subtropical areas.Malaria is caused by five Plasmodium species:[i] P. falciparum, P. malariae, P. vivax, P. knowlesi[/i] and [i]P. ovale[/i]. Mosquitoes spread the disease by biting humans. The malaria parasite has two stages of development: the human stage and the mosquito stage. The first stage occurs in the human body and is divided into two phases: the liver phase and the blood phase.The invasion of erythrocytes by [i]Plasmodium[/i] merozoites is a multistep process of specific protein interactions between the parasite and red blood cell. The first step is the reversible merozoite attachment to the erythrocyte followed by its apical reorientation, then formation of an irreversible “tight” junction and finally entry into the red cell in a parasitophorous vacuole.The blood phase is supported by a number of proteins produced by the parasite. The merozoite surface GPI-anchored proteins (MSP-1, 2, 4, 5, 8 and 10 assist in the process of recognition of susceptible erythrocytes, apical membrane antigen (AMA-1 may be directly responsible for apical reorientation of the merozoite and apical proteins which function in tight junction formation. These ligands are members of two families: Duffy binding-like (DBL and reticulocyte binding-like (RBL proteins. In [i]Plasmodium[/i] [i]falciparum[/i] the DBL family includes: EBA-175, EBA-140 (BAEBL, EBA-181 (JESEBL, EBA-165 (PEBL and EBL-1 ligands.To date, no effective antimalarial vaccine has been developed, but there are several studies for this purpose. Therefore, it is crucial to understand the molecular basis of host cells invasion by parasites. Major efforts are focused on developing a multiantigenic and multiepitope vaccine preventing all steps of [i]Plasmodium[/i] invasion.

  6. Genotyping of polymorphic effectors of Toxoplasma gondii isolates from China

    Directory of Open Access Journals (Sweden)

    Weisheng Cheng

    2017-11-01

    Full Text Available Abstract Background Toxoplasma gondii is an opportunistic protozoan apicomplexan and obligate intracellular parasite that infects a wide range of animals and humans. Rhoptry proteins 5 (ROP5, ROP16, ROP18 and dense granules 15 (GRA15 are the important effectors secreted by T. gondii which link to the strain virulence for mice and modulate the host’s response to the parasite. Little has been known about these molecules as well as GRA3 in type Chinese 1 strains that show polymorphism among strains of archetypical genotypes. This study examined the genetic diversity of these effectors and its correlated virulence in mice among T. gondii isolates from China. Results Twenty-one isolates from stray cats were detected, of which 15 belong to Chinese 1, and 6 to ToxoDB #205. Wh6 isolate, a Chinese 1 strain, has an avirulent phenotype. PCR-RFLP results of ROP5 and ROP18 presented few variations among the strains. Genotyping of GRA15 and ROP16 revealed that all the strains belong to type II allele except Xz7 which carries type I allele. ROP16 amino acid alignment at 503 locus demonstrated that 17 isolates are featured as type I or type III (ROP16I/III, and the other 4 as type II (ROP16II. The strains investigated may be divided into four groups based on GRA3 amino acid alignment, and all isolates of type Chinese 1 belong to the μ-1 allele except Wh6 which is identical to type II strain. Conclusions PCR-RFLP and sequence alignment analyses of ROP5, ROP16, ROP18, GRA3, and GRA15 in T. gondii revealed that strains with the same genotype may have variations in some of their key genes. GRA3 variation exhibited by Wh6 strain may be associated with the difference in phenotype and pathogenesis.

  7. Analysis of a summary network of co-infection in humans reveals that parasites interact most via shared resources

    OpenAIRE

    Griffiths, Emily C; Pedersen, Amy B; Fenton, Andy; Petchey, Owen L

    2014-01-01

    Simultaneous infection by multiple parasite species (viruses, bacteria, helminths, protozoa or fungi) is commonplace. Most reports show co-infected humans to have worse health than those with single infections. However, we have little understanding of how co-infecting parasites interact within human hosts. We used data from over 300 published studies to construct a network that offers the first broad indications of how groups of co-infecting parasites tend to interact. The network had three l...

  8. Volutin granules of Eimeria parasites are acidic compartments and have physiological and structural characteristics similar to acidocalcisomes

    Science.gov (United States)

    Medeiros, Lia Carolina Soares; Gomes, Fabio; Maciel, Luis Renato Maia; Seabra, Sergio Henrique; Docampo, Roberto; Moreno, Silvia; Plattner, Helmut; Hentschel, Joachim; Kawazoe, Urara; Barrabin, Hector; de Souza, Wanderley; DaMatta, Renato Augusto; Miranda, Kildare

    2012-01-01

    The structural organization of parasites has been the subject of investigation by many groups and has lead to the identification of structures and metabolic pathways that may represent targets for anti-parasitic drugs. A specific group of organelles named acidocalcisomes has been identified in a number of organisms, including the apicomplexan parasites such as Toxoplasma and Plasmodium, where they have been shown to be involved in cation homeostasis, polyphosphate metabolism, and osmoregulation. Their structural counterparts in the apicomplexan parasite Eimeria have not been fully characterized. In this work, the ultrastructural and chemical properties of acidocalcisomes in Eimeria were characterized. Electron microscopy analysis of Eimeria parasites showed the dense organelles called volutin granules similar to acidocalcisomes. Immunolocalization of the vacuolar proton pyrophosphatase, considered as a marker for acidocalcisomes, showed labeling in vesicles of size and distribution similar to the dense organelles seen by electron microscopy. Spectrophotometric measurements of the kinetics of proton uptake showed a vacuolar proton pyrophosphatase activity. X-ray mapping revealed significant amounts of Na, Mg, P, K, Ca, and Zn in their matrix. The results suggest that volutin granules of Eimeria parasites are acidic, dense organelles and possess structural and chemical properties analogous to those of other acidocalcisomes, suggesting a similar functional role in these parasites. PMID:21699625

  9. The prevalence and diversity of intestinal parasitic infections in humans and domestic animals in a rural Cambodian village

    DEFF Research Database (Denmark)

    Schär, Fabian; Inpankaew, Tawin; Traub, Rebecca J.

    2014-01-01

    In Cambodia, intestinal parasitic infections are prevalent in humans and particularly in children. Yet, information on potentially zoonotic parasites in animal reservoir hosts is lacking. In May 2012, faecal samples from 218 humans, 94 dogs and 76 pigs were collected from 67 households in Dong vi...

  10. Human presence increases parasitic load in endangered lion-tailed macaques (Macaca silenus in its fragmented rainforest habitats in Southern India.

    Directory of Open Access Journals (Sweden)

    Shaik Hussain

    Full Text Available BACKGROUND: Understanding changes in the host-parasite relationship due to habitat fragmentation is necessary for better management and conservation of endangered species in fragmented landscapes. Pathogens and parasites can pose severe threat to species in restricted environments such as forest fragments where there is increased contact of wildlife with human and livestock populations. Environmental stress and reduced nutritional level in forest fragments can influence parasite infection and intensity on the native species. In this study, we examine the impact of habitat fragmentation on the prevalence of gastrointestinal parasites in lion-tailed macaques in a fragmented rainforest in Western Ghats. METHODS: The prevalence of different gastrointestinal parasites was estimated from 91 fecal samples collected from 9 lion-tailed macaque groups in nine forest fragments. The parasites were identified up to genus level on the basis of the morphology and coloration of the egg, larva and cyst. The covariates included forest fragment area, group size and the presence/absence of human settlements and livestock in proximity. We used a linear regression model to identify the covariates that significantly influenced the prevalence of different parasite taxa. RESULTS: Nine gastrointestinal parasite taxa were detected in lion-tailed macaque groups. The groups near human settlements had greater prevalence and number of taxa, and these variables also had significant positive correlations with group size. We found that these parameters were also greater in groups near human settlements after controlling for group size. Livestock were present in all five fragments that had human settlements in proximity. CONCLUSION: The present study suggests that high prevalence and species richness of gastrointestinal parasites in lion-tailed macaque groups are directly related to habitat fragmentation, high anthropogenic activities and high host density. The parasite load

  11. Mice, men and MHC supertypes

    DEFF Research Database (Denmark)

    Lundegaard, Claus

    2010-01-01

    vaccine formulations. Toxoplasma gondii, an intracellular parasite, causes severe neurologic and ocular disease in congenitally infected and immunocompromised individuals. No protective vaccine exists against human toxoplasmosis. However, studies with mice have revealed immunodominant cytotoxic T...

  12. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites

    Directory of Open Access Journals (Sweden)

    Sibley L David

    2005-12-01

    Full Text Available Abstract Background The phylum Apicomplexa is an early-branching eukaryotic lineage that contains a number of important human and animal pathogens. Their complex life cycles and unique cytoskeletal features distinguish them from other model eukaryotes. Apicomplexans rely on actin-based motility for cell invasion, yet the regulation of this system remains largely unknown. Consequently, we focused our efforts on identifying actin-related proteins in the recently completed genomes of Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., and Theileria spp. Results Comparative genomic and phylogenetic studies of apicomplexan genomes reveals that most contain only a single conventional actin and yet they each have 8–10 additional actin-related proteins. Among these are a highly conserved Arp1 protein (likely part of a conserved dynactin complex, and Arp4 and Arp6 homologues (subunits of the chromatin-remodeling machinery. In contrast, apicomplexans lack canonical Arp2 or Arp3 proteins, suggesting they lost the Arp2/3 actin polymerization complex on their evolutionary path towards intracellular parasitism. Seven of these actin-like proteins (ALPs are novel to apicomplexans. They show no phylogenetic associations to the known Arp groups and likely serve functions specific to this important group of intracellular parasites. Conclusion The large diversity of actin-like proteins in apicomplexans suggests that the actin protein family has diverged to fulfill various roles in the unique biology of intracellular parasites. Conserved Arps likely participate in vesicular transport and gene expression, while apicomplexan-specific ALPs may control unique biological traits such as actin-based gliding motility.

  13. Recombinant TgHSP70 Immunization Protects against Toxoplasma gondii Brain Cyst Formation by Enhancing Inducible Nitric Oxide Expression

    Directory of Open Access Journals (Sweden)

    Neide M. Silva

    2017-04-01

    Full Text Available Toxoplasma gondii is known to cause congenital infection in humans and animals and severe disease in immunocompromised individuals; consequently development of vaccines against the parasite is highly necessary. Under stress conditions, T. gondii expresses the highly immunogenic heat shock protein 70 (TgHSP70. Here, we assessed the protective efficacy of rTgHSP70 immunization combined with Alum in oral ME-49 T. gondii infection and the mechanisms involved on it. It was observed that immunized mice with rTgHSP70 or rTgHSP70 adsorbed in Alum presented a significantly reduced number of cysts in the brain that was associated with increased iNOS+ cell numbers in the organ, irrespective the use of the adjuvant. Indeed, ex vivo experiments showed that peritoneal macrophages pre-stimulated with rTgHSP70 presented increased NO production and enhanced parasite killing, and the protein was able to directly stimulate B cells toward antibody producing profile. In addition, rTgHSP70 immunization leads to high specific antibody titters systemically and a mixed IgG1/IgG2a response, with predominance of IgG1 production. Nonetheless, it was observed that the pretreatment of the parasite with rTgHSP70 immune sera was not able to control T. gondii internalization and replication by NIH fibroblast neither peritoneal murine macrophages, nor anti-rTgHSP70 antibodies were able to kill T. gondii by complement-mediated lysis, suggesting that these mechanisms are not crucial to resistance. Interestingly, when in combination with Alum, rTgHSP70 immunization was able to reduce inflammation in the brain of infected mice and in parallel anti-rTgHSP70 immune complexes in the serum. In conclusion, immunization with rTgHSP70 induces massive amounts of iNOS expression and reduced brain parasitism, suggesting that iNOS expression and consequently NO production in the brain is a protective mechanism induced by TgHSP70 immunization, therefore rTgHSP70 can be a good candidate for

  14. Effects of ionizing radiation over the structure, metabolism and infectivity of a pathogenic protozoan, Toxoplasma gondii; Efeitos da radiacao ionizante sobre a estrutura, metabolismo e infectividade de um protozoario patogenico, Toxoplasma gondii (Nicole and Manceau, 1908)

    Energy Technology Data Exchange (ETDEWEB)

    Hiramoto, Roberto Mitsuyoshi

    1998-07-01

    The intracellular parasite Toxoplasma gondii (Apicomplexa), has as definitive host domestic and wild felines and as intermediate hosts most species of mammals and birds, Including man. The infection in man is usually asymptomatic, but can become a severe and lethal illness in some special groups like the fetus of primoinfected pregnant woman, or in AIDS and transplanted patients. The transmission is due to ingestion of food or water contaminated with oocysts from cat feces as well as raw or rare cooked cyst containing meet. There is no available vaccine against toxoplasmosis, with some reports of the use ionizing radiation in order to attenuate or suppress the parasite. These studies are promising, but more research is needed to optimize the radiation process and to clarify those alterations caused on T gondii.Using a increasing doses of {sup 60} Co irradiation on T.gondii tachyzoites, we studied many parameters such as morphology, both at optical and electron microscopy level, detection of DNA fragmentation, metabolism alterations (cellular oxidative burst, protein, nucleic acids and DNA synthesis), determination of the parasite survival both in in vivo and in vitro models, antigenicity and immunogenicity after the process, cellular invasion and irradiated tachyzoite induced protection. After definition of 200 Gy of {sup 60} Co irradiation as the lower radiation dose that suppress parasite growth in vitro and in vivo, we found no detectable changes in parasite viability, its cell invasion capacity or in its structural proteins. DNA fragmentation like apoptosis or alterations of the parasite metabolism were similarly not affected by radiation. Mice infection with irradiated parasites induce partial protection when these animals were re-inoculated with non irradiated virulent parasites, inducing greater specific IgG levels as well as a longer survival. Irradiated T.gondii maintains its the ability of invasion, even under radiation effects. Based on our results we

  15. [i]Toxoplasma gondii[/i] in protected wildlife in the Tatra National Park (TANAP, Slovakia

    Directory of Open Access Journals (Sweden)

    Ludmila Turčeková

    2014-06-01

    Full Text Available [i]Toxoplasma gondii[/i] is an obligatory intracellular protozoan parasite that infects a broad spectrum of warm-blooded vertebrate species. As a part of the food chain, farm animals play a significant role in transmission of [i]T. gondii [/i]to humans, while rats and mice serve as a main source of infection for free-living animals. The spread of toxoplasmosis in the human population is due to the interchange of the domestic and sylvatic cycles. During 2009–2011, a survey on toxoplasmosis distribution was conducted in wildlife of the Tatra National Park (TANAP in Slovakia. A total of 60 animals were examined. The presence of [i]T. gondii[/i] was detected by means of molecular methods based on TGR1E gene analyses. The highest prevalence was recorded in birds (40.0%, followed by carnivores (30.8% and rodents (18.2%. RFLP analyses of SAG2 locus confirmed in birds the genotype II and III, belonging to the avirulent strain; rodents exclusively had genotype I, characterised as a virulent train, and in carnivores all three genotypes were detected. These results present the first survey on the parasite’s occurrence in several species of free-living animals in the TANAP area. An epidemiological study confirmed the prevalence of 30.0%, implicitly referring to the level of environmental contamination with [i]T. gondii [/i]oocysts.

  16. Foodborne parasites from wildlife

    DEFF Research Database (Denmark)

    Kapel, Christian Moliin Outzen; Fredensborg, Brian Lund

    2015-01-01

    The majority of wild foods consumed by humans are sourced from intensively managed or semi-farmed populations. Management practices inevitably affect wildlife density and habitat characteristics, which are key elements in the transmission of parasites. We consider the risk of transmission...... of foodborne parasites to humans from wildlife maintained under natural or semi-natural conditions. A deeper understanding will be useful in counteracting foodborne parasites arising from the growing industry of novel and exotic foods....

  17. Serological Survey and Factors Associated with Toxoplasma gondii Infection in Domestic Goats in Myanmar

    Science.gov (United States)

    Bawm, Saw; Maung, Wint Yi; Win, Myat Yee; Thu, May June; Chel, Hla Myet; Khaing, Tin Aye; Wai, Soe Soe; Htun, Lat Lat; Myaing, Tin Tin; Tiwananthagorn, Saruda; Igarashi, Makoto; Katakura, Ken

    2016-01-01

    Goat farming is important for the livelihood of millions of rural people because it contributes to food security and creation of assets. However, infection of goats with Toxoplasma gondii could be a source of parasite transmission to humans. The information on T. gondii infection of goat was not reported yet in Myanmar. A total of 119 goat serum samples were collected from three cities in the central region of Myanmar for T. gondii antibody survey. With the occurrence value obtained in this first study, a second one, more complete, with larger number (162) of animals and properties, was carried out and the risk factors and prevalence were determined. In both studies the samples were analyzed by the LAT. Of these, 32 (11.4%) samples were showed to be positive. The infection was associated with the presence of cats at the farm (odds ratio [OR] = 4.66, 95% confidential interval [CI] = 1.03–21.06), farming with different animal species (sheep, cattle, and pigs) (OR = 4.33, 95% CI = 1.57–11.94), and farming without good management practices (OR = 0.23, 95% CI = 0.06–0.83). This is the first T. gondii prevalence study in goats in the country. PMID:26904362

  18. Serological Survey and Factors Associated with Toxoplasma gondii Infection in Domestic Goats in Myanmar

    Directory of Open Access Journals (Sweden)

    Saw Bawm

    2016-01-01

    Full Text Available Goat farming is important for the livelihood of millions of rural people because it contributes to food security and creation of assets. However, infection of goats with Toxoplasma gondii could be a source of parasite transmission to humans. The information on T. gondii infection of goat was not reported yet in Myanmar. A total of 119 goat serum samples were collected from three cities in the central region of Myanmar for T. gondii antibody survey. With the occurrence value obtained in this first study, a second one, more complete, with larger number (162 of animals and properties, was carried out and the risk factors and prevalence were determined. In both studies the samples were analyzed by the LAT. Of these, 32 (11.4% samples were showed to be positive. The infection was associated with the presence of cats at the farm (odds ratio [OR] = 4.66, 95% confidential interval [CI] = 1.03–21.06, farming with different animal species (sheep, cattle, and pigs (OR = 4.33, 95% CI = 1.57–11.94, and farming without good management practices (OR = 0.23, 95% CI = 0.06–0.83. This is the first T. gondii prevalence study in goats in the country.

  19. Genomic data reveal Toxoplasma gondii differentiation mutants are also impaired with respect to switching into a novel extracellular tachyzoite state.

    Directory of Open Access Journals (Sweden)

    Pamela J Lescault

    2010-12-01

    Full Text Available Toxoplasma gondii pathogenesis includes the invasion of host cells by extracellular parasites, replication of intracellular tachyzoites, and differentiation to a latent bradyzoite stage. We present the analysis of seven novel T. gondii insertional mutants that do not undergo normal differentiation to bradyzoites. Microarray quantification of the variation in genome-wide RNA levels for each parasite line and times after induction allowed us to describe states in the normal differentiation process, to analyze mutant lines in the context of these states, and to identify genes that may have roles in initiating the transition from tachyzoite to bradyzoite. Gene expression patterns in wild-type parasites undergoing differentiation suggest a novel extracellular state within the tachyzoite stage. All mutant lines exhibit aberrant regulation of bradyzoite gene expression and notably some of the mutant lines appear to exhibit high proportions of the intracellular tachyzoite state regardless of whether they are intracellular or extracellular. In addition to the genes identified by the insertional mutagenesis screen, mixture model analysis allowed us to identify a small number of genes, in mutants, for which expression patterns could not be accounted for using the three parasite states--genes that may play a mechanistic role in switching from the tachyzoite to bradyzoite stage.

  20. Effects of ionizing radiation over the structure, metabolism and infectivity of a pathogenic protozoan, Toxoplasma gondii

    International Nuclear Information System (INIS)

    Hiramoto, Roberto Mitsuyoshi

    1998-01-01

    The intracellular parasite Toxoplasma gondii (Apicomplexa), has as definitive host domestic and wild felines and as intermediate hosts most species of mammals and birds, Including man. The infection in man is usually asymptomatic, but can become a severe and lethal illness in some special groups like the fetus of primoinfected pregnant woman, or in AIDS and transplanted patients. The transmission is due to ingestion of food or water contaminated with oocysts from cat feces as well as raw or rare cooked cyst containing meet. There is no available vaccine against toxoplasmosis, with some reports of the use ionizing radiation in order to attenuate or suppress the parasite. These studies are promising, but more research is needed to optimize the radiation process and to clarify those alterations caused on T gondii.Using a increasing doses of 60 Co irradiation on T.gondii tachyzoites, we studied many parameters such as morphology, both at optical and electron microscopy level, detection of DNA fragmentation, metabolism alterations (cellular oxidative burst, protein, nucleic acids and DNA synthesis), determination of the parasite survival both in in vivo and in vitro models, antigenicity and immunogenicity after the process, cellular invasion and irradiated tachyzoite induced protection. After definition of 200 Gy of 60 Co irradiation as the lower radiation dose that suppress parasite growth in vitro and in vivo, we found no detectable changes in parasite viability, its cell invasion capacity or in its structural proteins. DNA fragmentation like apoptosis or alterations of the parasite metabolism were similarly not affected by radiation. Mice infection with irradiated parasites induce partial protection when these animals were re-inoculated with non irradiated virulent parasites, inducing greater specific IgG levels as well as a longer survival. Irradiated T.gondii maintains its the ability of invasion, even under radiation effects. Based on our results we conclude that

  1. Toxoplasmosis in geese and detection of two new atypical Toxoplasma gondii strains from naturally infected Canada geese (Branta canadensis)

    Science.gov (United States)

    The protozoan Toxoplasma gondii infects virtually all warm-blooded animals, including birds, humans, livestock, and marine mammals. The consumption of raw or undercooked meat infected with T. gondii is considered an important source of infection in humans. Canada goose (Branta canadensis), the most ...

  2. Confocal microscope is able to detect calcium metabolic in neuronal infection by toxoplasma gondii

    International Nuclear Information System (INIS)

    Sensusiati, A D; Priya, T K S; Dachlan, Y P

    2017-01-01

    Calcium metabolism plays a very important role in neurons infected by Toxoplasma. Detection of change of calcium metabolism of neuron infected by Toxoplasma and Toxoplasma requires the calculation both quantitative and qualitative method. Confocal microscope has the ability to capture the wave of the fluorescent emission of the fluorescent dyes used in the measurement of cell calcium. The purpose of this study was to prove the difference in calcium changes between infected and uninfected neurons using confocal microscopy. Neuronal culture of human-skin-derived neural stem cell were divided into 6 groups, consisting 3 uninfected groups and 3 infected groups. Among the 3 groups were 2 hours, 24 hours and 48 hours. The neuron Toxoplasma gondii ratio was 1:5. Observation of intracellular calcium of neuron and tachyzoite, evidence of necrosis, apoptosis and the expression of Hsp 70 of neuron were examined by confocal microscope. The normality of the data was analysed by Kolmogorov-Smirnov Test, differentiation test was checked by t2 Test, and ANOVAs, for correlation test was done by Pearson Correlation Test. The calcium intensity of cytosolic neuron and T. gondii was significantly different from control groups (p<0.05). There was also significant correlation between calcium intensity with the evidence of necrosis and Hsp70 expression at 2 hours after infection. Apoptosis and necrosis were simultaneously shown with calcium contribution in this study. Confocal microscopy can be used to measure calcium changes in infected and uninfected neurons both in quantitatively and qualitatively. (paper)

  3. Advances in the application of genetic manipulation methods to apicomplexan parasites.

    Science.gov (United States)

    Suarez, C E; Bishop, R P; Alzan, H F; Poole, W A; Cooke, B M

    2017-10-01

    Apicomplexan parasites such as Babesia, Theileria, Eimeria, Cryptosporidium and Toxoplasma greatly impact animal health globally, and improved, cost-effective measures to control them are urgently required. These parasites have complex multi-stage life cycles including obligate intracellular stages. Major gaps in our understanding of the biology of these relatively poorly characterised parasites and the diseases they cause severely limit options for designing novel control methods. Here we review potentially important shared aspects of the biology of these parasites, such as cell invasion, host cell modification, and asexual and sexual reproduction, and explore the potential of the application of relatively well-established or newly emerging genetic manipulation methods, such as classical transfection or gene editing, respectively, for closing important gaps in our knowledge of the function of specific genes and proteins, and the biology of these parasites. In addition, genetic manipulation methods impact the development of novel methods of control of the diseases caused by these economically important parasites. Transient and stable transfection methods, in conjunction with whole and deep genome sequencing, were initially instrumental in improving our understanding of the molecular biology of apicomplexan parasites and paved the way for the application of the more recently developed gene editing methods. The increasingly efficient and more recently developed gene editing methods, in particular those based on the CRISPR/Cas9 system and previous conceptually similar techniques, are already contributing to additional gene function discovery using reverse genetics and related approaches. However, gene editing methods are only possible due to the increasing availability of in vitro culture, transfection, and genome sequencing and analysis techniques. We envisage that rapid progress in the development of novel gene editing techniques applied to apicomplexan parasites of

  4. Seroprevalence and risk factors of Neospora spp. and Toxoplasma gondii infections among horses and donkeys in Nigeria, West Africa.

    Science.gov (United States)

    Bártová, Eva; Sedlák, Kamil; Kobédová, Kateřina; Budíková, Marie; Joel Atuman, Yakubu; Kamani, Joshua

    2017-09-26

    Neospora spp. and Toxoplasma gondii are considered to be a globally distributed parasites affecting wide range of warm-blooded animals. Neosporosis has caused clinical illness in horses and consumption of horse meat has been epidemiologically linked to clinical toxoplasmosis in humans. This study was conducted to determine Neospora spp. and T. gondii antibodies and risk factors of infection in horses and donkeys from three states of Nigeria. A total of 144 samples were collected from clinically healthy animals (120 horses and 24 donkeys). The sera were tested for antibodies to Neospora spp. and T. gondii by indirect fluorescence antibody test, a titer ≥ 50 was considered positive. Seroprevalence data were statistically analyzed, considering the variables of gender, age, use, state, origin of breed and type of management. Antibodies to Neospora spp. and T. gondii were detected in 8% horses with titers 50 and in 24% horses with titers 50-800, respectively. Co-infection of both parasites was proved in three horses (3%). Statistical differences were found only for T. gondii seroprevalence in horses with different use, locality, origin and management (p-value ≤ 0.05). Antibodies to T. gondii were detected in four (17%) of 24 donkeys with statistical difference (p-value ≤ 0.05) in animals of different use; antibodies to Neospora spp. were not proved in any of the donkeys. This is the first seroprevalence study of Neospora spp. and T. gondii in equids from Nigeria.

  5. AN EVALUATION STUDY OF ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA USING RECOMBINANT PROTEIN GRA1 FOR DETECTION OF IGG ANTIBODIES AGAINTS TOXOPLASMA GONDII INFECTIONS

    Directory of Open Access Journals (Sweden)

    Nina Difla Muflikhah

    2017-08-01

    Full Text Available Toxoplasmosis is an infectious disease caused by Toxoplasma gondii, an intracellular protozoan parasite that live inside the cells of the reticulo endothelial and parenchymal cells of human and animals (mammals and birds. Some cases of toxoplasmosis usually have no symptoms, but in any cases caused severe symptoms, such as hydrocephalus, microcephalus, intracranial calcification, retinal damage, brain abscess, mental retardation, lymphadenopathy, and others. Its severe symptoms usually showed a long time after first exposure, except symptoms showed by congenital transmission caused by infected mother. Early diagnosis is important to prevent the illness but methods for toxoplasmosis screening are still too expensive for developing country. Enzyme-linked immunosorbent assay (ELISA allow the testing of a large number samples within short time frame and based on antibody or antigen detection. This study aimed to know the sensitivity and specificity of recombinat protein GRA1 as antigen using ELISA methods. We tested the sensitivity and spesificity of GRA1 protein as antigen in ELISA methods to diagnose toxoplasmosis and compared with ELISA Kit Commercial. Reliable laboratory testing is important to detect Toxoplasma gondii infection, and focused to improving the low cost and easy-to-use diagnostic instrument. Seventy sera collected and tested using both indirect ELISA, commercial ELISA kit and GRA1 protein coated as antigen. Fourty eight and fifty one samples showed positive IgG antibody result of ELISA-GRA1 and ELISA kit. Negative sample tested by ELISA-GRA1 was 22 samples and 19 sample tested by ELISA Kit. The sensitivity and specificity of GRA1-based on ELISA were 100% and 86.36%, positive prediction value (ppv was 94.11%. These data indicate that the recombinant protein GRA1 is a highly immunogenic protein in human toxoplasmosis and become a promising marker for the screening of toxoplasmosis.

  6. Dichotomy in the human CD4+ T-cell response to Leishmania parasites

    DEFF Research Database (Denmark)

    Kemp, M; Kurtzhals, J A; Kharazmi, A

    1994-01-01

    Leishmania parasites cause human diseases ranging from self-healing cutaneous ulcers to fatal systemic infections. In addition, many individuals become infected without developing disease. In mice the two subsets of CD4+ T cells, Th1 and Th2, have different effects on the outcome of experimental...... in humans, and that the balance between subsets of parasite-specific T cells may play an important regulatory role in determining the outcome of the infections....

  7. Toxoplasma gondii: biochemical and biophysical characterization of recombinant soluble dense granule proteins GRA2 and GRA6.

    Science.gov (United States)

    Bittame, Amina; Effantin, Grégory; Pètre, Graciane; Ruffiot, Pauline; Travier, Laetitia; Schoehn, Guy; Weissenhorn, Winfried; Cesbron-Delauw, Marie-France; Gagnon, Jean; Mercier, Corinne

    2015-03-27

    The most prominent structural feature of the parasitophorous vacuole (PV) in which the intracellular parasite Toxoplasma gondii proliferates is a membranous nanotubular network (MNN), which interconnects the parasites and the PV membrane. The MNN function remains unclear. The GRA2 and GRA6 proteins secreted from the parasite dense granules into the PV have been implicated in the MNN biogenesis. Amphipathic alpha-helices (AAHs) predicted in GRA2 and an alpha-helical hydrophobic domain predicted in GRA6 have been proposed to be responsible for their membrane association, thereby potentially molding the MMN in its structure. Here we report an analysis of the recombinant proteins (expressed in detergent-free conditions) by circular dichroism, which showed that full length GRA2 displays an alpha-helical secondary structure while recombinant GRA6 and GRA2 truncated of its AAHs are mainly random coiled. Dynamic light scattering and transmission electron microscopy showed that recombinant GRA6 and truncated GRA2 constitute a homogenous population of small particles (6-8 nm in diameter) while recombinant GRA2 corresponds to 2 populations of particles (∼8-15 nm and up to 40 nm in diameter, respectively). The unusual properties of GRA2 due to its AAHs are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Structure of Toxoplasma gondii fructose-1,6-bisphosphate aldolase

    International Nuclear Information System (INIS)

    Boucher, Lauren E.; Bosch, Jürgen

    2014-01-01

    The structure of T. gondii fructose-1,6-bisphosphate aldolase, a glycolytic enzyme and structural component of the invasion machinery, was determined to a resolution of 2.0 Å. The apicomplexan parasite Toxoplasma gondii must invade host cells to continue its lifecycle. It invades different cell types using an actomyosin motor that is connected to extracellular adhesins via the bridging protein fructose-1,6-@@bisphosphate aldolase. During invasion, aldolase serves in the role of a structural bridging protein, as opposed to its normal enzymatic role in the glycolysis pathway. Crystal structures of the homologous Plasmodium falciparum fructose-1,6-bisphosphate aldolase have been described previously. Here, T. gondii fructose-1,6-bisphosphate aldolase has been crystallized in space group P22 1 2 1 , with the biologically relevant tetramer in the asymmetric unit, and the structure has been determined via molecular replacement to a resolution of 2.0 Å. An analysis of the quality of the model and of the differences between the four chains in the asymmetric unit and a comparison between the T. gondii and P. falciparum aldolase structures is presented

  9. IMPORTANT PROTOZOAN PARASITES IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Srisasi Gandahusada

    2012-09-01

    Full Text Available The most important protozoan parasites in Indonesia are the malaria parasites, Toxoplasma gondii and Entamoeba histolytica. After the second world war the residual insecticides and effective antimalarial drugs were used in the control of malaria. After development of resistance among mosquitoes to insecticides, the Malaria Control Programme was switched over to the Malaria Eradication Programme. Malaria incidence dropped heavily. However, due to the quick development of vector resistance and financial limitations, malaria came back and so did the Malaria Control Programme. P. falciparum and P.vivax are the most common species in Indonesia. Important vectors are An. sundaicus, An. aconitus, An. maculatus, An. hyrcanus group, An. balabacensis, An. farauti etc. An. sundaicus and An. aconitus have developed resistance to DDT and Dieldrin in Java. In 1959 the Malaria Eradication Programme was started in Java, Bali and Lampung. In 1965 the API dropped to 0,15 per thousand. From 1966 onwards malaria transmission was on the increase, because spraying activities were slowed down, but dropped again from 1974 onwards by occasional residual house spraying with DDT or Fenitrothion, malaria surveillance and treatment of malaria cases, resulting in an API of 0.18 per thousand in 1987. At present malaria is not transmitted in Jakarta and in capitals of the provinces and kabupatens, except in Irian Jaya, Nusa Tenggara Timur and one or two other provinces, but it still exists in rural areas. The distribution of chloroquine resistant P.falciparum is patchy. Resistance is at the RI, RII and RUT levels. The main problems of malaria control are : the increasing development of resistance of the vector to insecticides, the change of An.aconitus from zoophili to anthropophili and from indoor to outdoor biting, the increasing resistance of P.falciparum to chloroquine, the shortage of skilled manpower and limitation of budget. In Indonesia many newborns with congenital

  10. In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome.

    Science.gov (United States)

    Liu, Xuewu; Wang, Yuanyuan; Liang, Jiao; Wang, Luojun; Qin, Na; Zhao, Ya; Zhao, Gang

    2018-05-02

    Plasmodium falciparum is the most virulent malaria parasite capable of parasitizing human erythrocytes. The identification of genes related to this capability can enhance our understanding of the molecular mechanisms underlying human malaria and lead to the development of new therapeutic strategies for malaria control. With the availability of several malaria parasite genome sequences, performing computational analysis is now a practical strategy to identify genes contributing to this disease. Here, we developed and used a virtual genome method to assign 33,314 genes from three human malaria parasites, namely, P. falciparum, P. knowlesi and P. vivax, and three rodent malaria parasites, namely, P. berghei, P. chabaudi and P. yoelii, to 4605 clusters. Each cluster consisted of genes whose protein sequences were significantly similar and was considered as a virtual gene. Comparing the enriched values of all clusters in human malaria parasites with those in rodent malaria parasites revealed 115 P. falciparum genes putatively responsible for parasitizing human erythrocytes. These genes are mainly located in the chromosome internal regions and participate in many biological processes, including membrane protein trafficking and thiamine biosynthesis. Meanwhile, 289 P. berghei genes were included in the rodent parasite-enriched clusters. Most are located in subtelomeric regions and encode erythrocyte surface proteins. Comparing cluster values in P. falciparum with those in P. vivax and P. knowlesi revealed 493 candidate genes linked to virulence. Some of them encode proteins present on the erythrocyte surface and participate in cytoadhesion, virulence factor trafficking, or erythrocyte invasion, but many genes with unknown function were also identified. Cerebral malaria is characterized by accumulation of infected erythrocytes at trophozoite stage in brain microvascular. To discover cerebral malaria-related genes, fast Fourier transformation (FFT) was introduced to extract

  11. Seroepidemiology of Toxoplasma gondii in dogs in the State of Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Nathalie Costa da Cunha

    2016-11-01

    Full Text Available ABSTRACT. Cunha N.C., Cordeiro M.D., Bravo S.A.C., Matos P.C.M., Almosny N.R.P. & da Fonseca A.H. [Seroepidemiology of Toxoplasma gondii in dogs in the State of Rio de Janeiro.] Soroepidemiologia de Toxoplasma gondii em cães no estado do Rio de Janeiro. Revista Brasileira de Medicina Veterinária 38(supl. 3: 114-121, 2016. Departamento de Saúde Coletiva Veterinária e Saúde Pública, Faculdade de Veterinária. Universidade Federal Fluminense, Vital Brazil, Niterói, RJ, Brazil. E-mail: nathaliecunha@id.uff.br Toxoplasmosis is a serious public health problem worldwide as it can cause prenatal and neonatal morbidity and mortality in humans. Although dogs are not definitive hosts of T. gondii, they play an important role in the mechanical dissemination of oocysts. This study aimed to carry out a seroepidemiological investigation of anti-Toxoplasma gondii antibodies in domestic dogs from seven municipalities in the state of Rio de Janeiro, Brazil. A crosssectional epidemiological study was carried out to evaluate the profile of anti-Toxoplasma gondii IgG antibodies in dogs from canine sera from different municipalities in the state of Rio de Janeiro. The municipalities studied were Cachoeiras de Macacu, Guapimirim, Itaboraí, Magé, Resende, Seropédica and Silva Jardim. The detection of antibodies of the IgG class anti-Toxoplasma gondii was performed using the indirect enzyme immunoadsorption (ELISA assay and the statistical analyzes used were the chi-square test and the prevalence ratio. Of the 651 samples tested, 300 were reactive for T. gondii, representing a relative frequency of 46.08% of seroreactive dogs. It was concluded that dogs are good sentinels for evaluations of risk for occurrence of T. gondii, emphasizing those coming from rural areas and that there was no difference in the occurrence of serorreative dogs in front of different municipalities studies of the state of Rio de Janeiro.

  12. The prevalence and diversity of intestinal parasitic infections in humans and domestic animals in a rural Cambodian village.

    Science.gov (United States)

    Schär, Fabian; Inpankaew, Tawin; Traub, Rebecca J; Khieu, Virak; Dalsgaard, Anders; Chimnoi, Wissanuwat; Chhoun, Chamnan; Sok, Daream; Marti, Hanspeter; Muth, Sinuon; Odermatt, Peter

    2014-08-01

    In Cambodia, intestinal parasitic infections are prevalent in humans and particularly in children. Yet, information on potentially zoonotic parasites in animal reservoir hosts is lacking. In May 2012, faecal samples from 218 humans, 94 dogs and 76 pigs were collected from 67 households in Dong village, Preah Vihear province, Cambodia. Faecal samples were examined microscopically using sodium nitrate and zinc sulphate flotation methods, the Baermann method, Koga Agar plate culture, formalin-ether concentration technique and Kato Katz technique. PCR was used to confirm hookworm, Ascaris spp., Giardia spp. and Blastocystis spp. Major gastrointestinal parasitic infections found in humans included hookworms (63.3%), Entamoeba spp. (27.1%) and Strongyloides stercoralis (24.3%). In dogs, hookworm (80.8%), Spirometra spp. (21.3%) and Strongyloides spp. (14.9%) were most commonly detected and in pigs Isospora suis (75.0%), Oesophagostomum spp. (73.7%) and Entamoeba spp. (31.6%) were found. Eleven parasite species were detected in dogs (eight helminths and three protozoa), seven of which have zoonotic potential, including hookworm, Strongyloides spp., Trichuris spp., Toxocara canis, Echinostoma spp., Giardia duodenalis and Entamoeba spp. Five of the parasite species detected in pigs also have zoonotic potential, including Ascaris spp., Trichuris spp., Capillaria spp., Balantidium coli and Entamoeba spp. Further molecular epidemiological studies will aid characterisation of parasite species and genotypes and allow further insight into the potential for zoonotic cross transmission of parasites in this community. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Pets and Parasites

    Science.gov (United States)

    ... good news is that this rarely happens. Most pet-to-people diseases can be avoided by following a few ... your doctor Can a parasite cause death in people and pets? Can human disease from a parasite be treated ...

  14. Fishing drives declines in fish parasite diversity and has variable effects on parasite abundance.

    Science.gov (United States)

    Wood, Chelsea L; Sandin, Stuart A; Zgliczynski, Brian; Guerra, Ana Sofía; Micheli, Fiorenza

    2014-07-01

    Despite the ubiquity and ecological importance of parasites, relatively few studies have assessed their response to anthropogenic environmental change. Heuristic models have predicted both increases and decreases in parasite abundance in response to human disturbance, with empirical support for both. However, most studies focus on one or a few selected parasite species. Here, we assess the abundance of parasites of seven species of coral reef fishes collected from three fished and three unfished islands of the Line Islands archipelago in the central equatorial Pacific. Because we chose fish hosts that spanned different trophic levels, taxonomic groups, and body sizes, we were able to compare parasite responses across a broad cross section of the total parasite community in the presence and absence of fishing, a major human impact on marine ecosystems. We found that overall parasite species richness was substantially depressed on fished islands, but that the response of parasite abundance varied among parasite taxa: directly transmitted parasites were significantly more abundant on fished than on unfished islands, while the reverse was true for trophically transmitted parasites. This probably arises because trophically transmitted parasites require multiple host species, some of which are the top predators most sensitive to fishing impacts. The increase in directly transmitted parasites appeared to be due to fishing-driven compensatory increases in the abundance of their hosts. Together, these results provide support for the predictions of both heuristic models, and indicate that the direction of fishing's impact on parasite abundance is mediated by parasite traits, notably parasite transmission strategies.

  15. Human waterborne parasites in zebra mussels ( Dreissena polymorpha) from the Shannon River drainage area, Ireland.

    Science.gov (United States)

    Graczyk, Thaddeus K; Conn, David Bruce; Lucy, Frances; Minchin, Dan; Tamang, Leena; Moura, Lacy N S; DaSilva, Alexandre J

    2004-08-01

    Zebra mussels ( Dreissena polymorpha) from throughout the Shannon River drainage area in Ireland were tested for the anthropozoonotic waterborne parasites Cryptosporidium parvum, Giardia lamblia, Encephalitozoon intestinalis, E. hellem, and Enterocytozoon bieneusi, by the multiplexed combined direct immunofluorescent antibody and fluorescent in situ hybridization method, and PCR. Parasite transmission stages were found at 75% of sites, with the highest mean concentration of 16, nine, and eight C. parvum oocysts, G. lamblia cysts, and Encephalitozoon intestinalis spores/mussel, respectively. On average eight Enterocytozoon bieneusi spores/mussel were recovered at any selected site. Approximately 80% of all parasites were viable and thus capable of initiating human infection. The Shannon River is polluted with serious emerging human waterborne pathogens including C. parvum, against which no therapy exists. Zebra mussels can recover and concentrate environmentally derived pathogens and can be used for the sanitary assessment of water quality.

  16. Anatomopathological study in BALB/c mice brains experimentally infected with Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Marcos Gontijo da Silva

    Full Text Available Toxoplasmosis is one of the most important diseases of the nervous central system, leading to severe symptoms and, many times, irreversible sequelae. This work demonstrated the main anatomopathological lesions caused by Toxoplasma gondii in brains from experimentally infected BALB/c mice. We analyzed 51 cases of mice that developed toxoplasmosis after experimental infection by intraperitoneal inoculation of blood, amniotic liquid and cerebrospinal fluid from fetuses, newly born children and pregnant women with clinical and laboratory signals of toxoplasmosis. In all experiments where we detected the parasite in mice we also detected pathological lesions in the animal brains with great polymorphism between experiments. Edema was the most found lesion in all cases. Besides, it was possible to demonstrate the inflammatory process in 82.4% of cases and necrosis in 64.7% of cases, in agreement with the literature that describes severe neurological damage in its hosts.

  17. Macrophages facilitate the excystation and differentiation of Toxoplasma gondii sporozoites into tachyzoites following oocyst internalisation.

    Science.gov (United States)

    Freppel, Wesley; Puech, Pierre-Henri; Ferguson, David J P; Azas, Nadine; Dubey, Jitender P; Dumètre, Aurélien

    2016-09-19

    Toxoplasma gondii is a common parasite of humans and animals, which is transmitted via oocysts in cat faeces or tissue cysts in contaminated meat. The robust oocyst and sporocyst walls protect the infective sporozoites from deleterious external attacks including disinfectants. Upon oocyst acquisition, these walls lose their integrity to let the sporozoites excyst and invade host cells following a process that remains poorly understood. Given the resistance of the oocyst wall to digestive enzymes and the ability of oocysts to cause parenteral infections, the present study investigated the possible contribution of macrophages in supporting sporozoite excystation following oocyst internalisation. By using single cell micromanipulations, real-time and time-point imaging techniques, we demonstrated that RAW macrophages could interact rapidly with oocysts and engulfed them by remodelling of their actin cytoskeleton. Internalised oocysts were associated to macrophage acidic compartments and showed evidences of wall disruption. Sporozoites were observed in macrophages containing oocyst remnants or in new macrophages, giving rise to dividing tachyzoites. All together, these results highlight an unexpected role of phagocytic cells in processing T. gondii oocysts, in line with non-classical routes of infection, and open new perspectives to identify chemical factors that lead to oocyst wall disruption under physiological conditions.

  18. Producción de anticuerpos policlonales IgG contra una proteína con actividad de óxido nítrico sintetasa de Toxoplasma gondii recombinante (NOS-Tg-r y marcación inmunológica en taquizoítoso Production of Polyclonal Antibodies against Toxoplasma gondii Recombinant protein with Nitric Oxide Synthase activity and immunologic marking in Tachyzoites

    Directory of Open Access Journals (Sweden)

    Jonathan Mauricio Padilla-Londoño

    2008-06-01

    Full Text Available La enzima óxido nítrico sintetasa ha sido estudiada en mamíferos; en los últimos años se ha descrito que existe también en protozoos, pero se desconocen aspectos importantes de su función. Se logró producir anticuerpos policlonales contra la proteína recombinante con actividad de óxido nítrico sintetasa (NOS-Tg-r de Toxoplasma gondii y realizar marcación inmunológica en taquizoítos. Se usaron dos conejos Nueva Zelanda (Oryctolagus cuniculusque se inmunizaron por vía intramuscular con NOS-Tg-r, y dos tipos de adyuvantes, hidróxido de aluminio y adyuvante de Freund. Se comprobó la presencia de anticuerpos policlonales con la técnica de ensayo inmunoenzimático indirecto. Los resultados obtenidos mostraron que a NOS-Tg-r con adyuvante de Freund indujo mayor respuesta inmune que la de la NOS-Tg-r con hidróxido aluminio p 0,005. Para verificar si había reacción cruzada, se realizó una prueba ELISA utilizando como antígenos: metaloproteasa de T. gondii recombinante, cisteína proteasa 5 de Entamoeba histolytica recombinante, albúmina al 2%, hidróxido de aluminio y adyuvante de Freund. Los valores obtenidos con sueros preinmunes y contra proteínas alternas no superaron el punto de corte (0,069, lo cual indica que los anticuerpos policlonales obtenidos son específicos para NOS-Tg-r. Se realizó marcación inmunológica en taquizoítos de Toxoplasma gondii con inmunofluorescencia indirecta que mostró una marcación difusa a nivel de citoplasma y confirmó la presencia de esta proteína en los taquizoítos.The nitric oxide synthase (NOSis an enzyme well described on mammals but little is known about the role of these enzymes on pathogenic parasites. We produced polyclonal antibodies against a recombinant NOS enzyme from Toxoplasma gondii nd e lso er formed n mmunol locali zation of the enzyme on tachyzoites. We used two New Zealand rabbits (Oryctolagus cuniculus to perform intramuscular immunization and we used two types of

  19. Epidemiology and pathology of Toxoplasma gondii in free-ranging California sea lions (Zalophus californianus).

    Science.gov (United States)

    Carlson-Bremer, Daphne; Colegrove, Kathleen M; Gulland, Frances M D; Conrad, Patricia A; Mazet, Jonna A K; Johnson, Christine K

    2015-04-01

    The coccidian parasite Toxoplasma gondii infects humans and warm-blooded animals worldwide. The ecology of this parasite in marine systems is poorly understood, although many marine mammals are infected and susceptible to clinical toxoplasmosis. We summarized the lesions associated with T. gondii infection in the California sea lion (Zalophus californianus) population and investigated the prevalence of and risk factors associated with T. gondii exposure, as indicated by antibody. Five confirmed and four suspected cases of T. gondii infection were identified by analysis of 1,152 medical records of necropsied sea lions from 1975-2009. One suspected and two confirmed cases were identified in aborted fetuses from a sea lion rookery. Toxoplasmosis was the primary cause of death in five cases, including the two fetuses. Gross and histopathologic findings in T. gondii-infected sea lions were similar to those reported in other marine mammals. The most common lesions were encephalitis, meningitis, and myocarditis. The antibody prevalence in stranded, free-ranging sea lions for 1998-2009 was 2.5% (±0.03%; IgG titer 640). There was an increase in odds of exposure in sea lions with increasing age, suggesting cumulative risk of exposure and persistent antibody over time. The occurrence of disseminated T. gondii infection in aborted fetuses confirms vertical transmission in sea lions, and the increasing odds of exposure with age is consistent with additional opportunities for horizontal transmission in free-ranging sea lions over time. These data suggest that T. gondii may have two modes of transmission in the sea lion population. Overall, clinical disease was uncommon in our study which, along with low prevalence of T. gondii antibody, suggests substantially less-frequent exposure and lower susceptibility to clinical disease in California sea lions as compared to sympatric southern sea otters (Enhydra lutris nereis).

  20. [Seroprevalance Differences of Toxoplasma Between Syrian Refugees Pregnants and Indigenous Turkish Pregnants in Kahramanmaraş].

    Science.gov (United States)

    Bakacak, Murat; Serin, Salih; Aral, Murat; Ercan, Önder; Köstü, Bülent; Kireçci, Ahmet; Bostancı, Mehmet Sühha; Bakacak, Zeyneb

    2015-06-01

    In this study, we aimed to compare the Syrian refugees and resident Turkish pregnant population in terms of Toxoplasma seroprevalence. Data acquired from Kahramanmaraş Necip Fazıl City Hospital Department of Obstetrics and Gynecology between 2012 and 2013 were analyzed retrospectively. Results of 7201 Toxoplasma IgM tests and 4113 Toxoplasma IgG tests were evaluated. For 2012 and 2013 Toxoplasma IgM seropositivity was found in Syrian refugees 4.76% and 4.84% respectively in our study. In the same population Toxoplasma IgG seropositivity rates were 80% and 62.6%, respectively. Toxoplasma IgM seropositivity rates for the native peoples in Turkey in 2012 and 2013 was 1.96% and 2.34%, while in the same population Toxoplasma IgG seropositivity was detected 49.7% and 45.7% respectively. Toxoplasma IgM seropositivity was statistically higher in Syrian refugees for each year (p Syrian refugees was statistically higher (p Syrian refugees living in the region of Kahramanmaraş were statistically higher than the rates of local inhabitants, we consider that this condition should be taken into account in the follow-ups of Syrian pregnant refugees outnumbering in Kahramanmaraş and its vicinity.

  1. Epidemiological review of toxoplasmosis in humans and animals in Romania.

    Science.gov (United States)

    Dubey, J P; Hotea, I; Olariu, T R; Jones, J L; Dărăbuş, G

    2014-03-01

    Infections by the protozoan parasite Toxoplasma gondii are widely prevalent in humans and other animals worldwide. However, information from eastern European countries is sketchy. In many eastern European countries, including Romania, it has been assumed that chronic T. gondii infection is a common cause of infertility and abortion. For this reason, many women in Romania with these problems were needlessly tested for T. gondii infection. Most papers on toxoplasmosis in Romania were published in Romanian in local journals and often not available to scientists in other countries. Currently, the rate of congenital infection in Romania is largely unknown. In addition, there is little information on genetic characteristics of T. gondii or prevalence in animals and humans in Romania. In the present paper we review prevalence, clinical spectrum and epidemiology of T. gondii in humans and animals in Romania. This knowledge should be useful to biologists, public health workers, veterinarians and physicians.

  2. Molecular characterisation of protist parasites in human-habituated mountain gorillas (Gorilla beringei beringei), humans and livestock, from Bwindi impenetrable National Park, Uganda.

    Science.gov (United States)

    Nolan, Matthew J; Unger, Melisa; Yeap, Yuen-Ting; Rogers, Emma; Millet, Ilary; Harman, Kimberley; Fox, Mark; Kalema-Zikusoka, Gladys; Blake, Damer P

    2017-07-18

    Over 60 % of human emerging infectious diseases are zoonotic, and there is growing evidence of the zooanthroponotic transmission of diseases from humans to livestock and wildlife species, with major implications for public health, economics, and conservation. Zooanthroponoses are of relevance to critically endangered species; amongst these is the mountain gorilla (Gorilla beringei beringei) of Uganda. Here, we assess the occurrence of Cryptosporidium, Cyclospora, Giardia, and Entamoeba infecting mountain gorillas in the Bwindi Impenetrable National Park (BINP), Uganda, using molecular methods. We also assess the occurrence of these parasites in humans and livestock species living in overlapping/adjacent geographical regions. Diagnostic PCR detected Cryptosporidium parvum in one sample from a mountain gorilla (IIdA23G2) and one from a goat (based on SSU). Cryptosporidium was not detected in humans or cattle. Cyclospora was not detected in any of the samples analysed. Giardia was identified in three human and two cattle samples, which were linked to assemblage A, B and E of G. duodenalis. Sequences defined as belonging to the genus Entamoeba were identified in all host groups. Of the 86 sequence types characterised, one, seven and two have been recorded previously to represent genotypes of Cryptosporidium, Giardia, and Entamoeba, respectively, from humans, other mammals, and water sources globally. This study provides a snapshot of the occurrence and genetic make-up of selected protists in mammals in and around BINP. The genetic analyses indicated that 54.6% of the 203 samples analysed contained parasites that matched species, genotypes, or genetic assemblages found globally. Seventy-six new sequence records were identified here for the first time. As nothing is known about the zoonotic/zooanthroponotic potential of the corresponding parasites, future work should focus on wider epidemiological investigations together with continued surveillance of all parasites in

  3. Experimental Toxoplasmosis in Rats Induced Orally with Eleven Strains of Toxoplasma gondii of Seven Genotypes: Tissue Tropism, Tissue Cyst Size, Neural Lesions, Tissue Cyst Rupture without Reactivation, and Ocular Lesions.

    Directory of Open Access Journals (Sweden)

    Jitender P Dubey

    Full Text Available The protozoan parasite Toxoplasma gondii is one of the most widely distributed and successful parasites. Toxoplasma gondii alters rodent behavior such that infected rodents reverse their fear of cat odor, and indeed are attracted rather than repelled by feline urine. The location of the parasite encysted in the brain may influence this behavior. However, most studies are based on the highly susceptible rodent, the mouse.Latent toxoplasmosis was induced in rats (10 rats per T. gondii strains of the same age, strain, and sex, after oral inoculation with oocysts (natural route and natural stage of infection of 11 T. gondii strains of seven genotypes. Rats were euthanized at two months post inoculation (p.i. to investigate whether the parasite genotype affects the distribution, location, tissue cyst size, or lesions. Tissue cysts were enumerated in different regions of the brains, both in histological sections as well in saline homogenates. Tissue cysts were found in all regions of the brain. The tissue cyst density in different brain regions varied extensively between rats with many regions highly infected in some animals. Overall, the colliculus was most highly infected although there was a large amount of variability. The cerebral cortex, thalamus, and cerebellum had higher tissue cyst densities and two strains exhibited tropism for the colliculus and olfactory bulb. Histologically, lesions were confined to the brain and eyes. Tissue cyst rupture was frequent with no clear evidence for reactivation of tachyzoites. Ocular lesions were found in 23 (25% of 92 rat eyes at two months p.i. The predominant lesion was focal inflammation in the retina. Tissue cysts were seen in the sclera of one and in the optic nerve of two rats. The choroid was not affected. Only tissue cysts, not active tachyzoite infections, were detected. Tissue cysts were seen in histological sections of tongue of 20 rats but not in myocardium and leg muscle.This study reevaluated

  4. An experimental Toxoplasma gondii dose response challenge model to study therapeutic or vaccine efficacy in cats

    NARCIS (Netherlands)

    Cornelissen, J.B.W.J.; Giessen, van der J.W.B.; Takumi, K.; Teunis, P.F.M.; Wisselink, H.J.

    2014-01-01

    High numbers of Toxoplasma gondii oocysts in the environment are a risk factor to humans. The environmental contamination might be reduced by vaccinating the definitive host, cats. An experimental challenge model is necessary to quantitatively assess the efficacy of a vaccine or drug treatment.

  5. Epidemiology of infections with intestinal parasites and human immunodeficiency virus (HIV) among sugar-estate residents in Ethiopia

    NARCIS (Netherlands)

    Fontanet, A. L.; Sahlu, T.; Rinke de Wit, T.; Messele, T.; Masho, W.; Woldemichael, T.; Yeneneh, H.; Coutinho, R. A.

    2000-01-01

    Intestinal parasitic infections could play an important role in the progression of infection with human immunodeficiency virus (HIV), by further disturbing the immune system whilst it is already engaged in the fight against HIV. HIV and intestinal parasitic infections were investigated in 1239,

  6. Identification of Eimeria acervulina conoid antigen using chicken monoclonal antibody and liquid chromatography coupled to mass spectrometry

    Science.gov (United States)

    Protozoan parasites of the phylum Apicomplexa include a large number of medically important species. Among them, Toxoplasma gondii, Plasmodium, Cryptosporidium that cause watery diarrhea and mortality in humans and livestock, and Eimeria which induces gastrointestinal disorder in livestock and poul...

  7. Look what the cat dragged in: do parasites contribute to human cultural diversity?

    Science.gov (United States)

    Lafferty, Kevin D.

    2005-01-01

    If human culture emerges from the modal personality of a population, can global variation in parasitism that affects personality lead to cultural diversity among nations? The answer could help explain why people seem to vary so much from one land to another. Thomas et al. (2005) review how parasites manipulate behaviour, including human behaviour. To quote them, “The rabies virus lives in the brain, affording the virus ample opportunity to directly affect host behaviour. Rabid animals do show changes in behaviour, including increased aggression and biting.” Rabies affects a wide range of mammals and the aggressive biting associated with furious rabies appears to increase transmission. The personality transformation of infected humans can be horrifying, transforming loved ones into thrashing, baying beasts. Not coincidentally, in Europe, past periods of rabies outbreaks correspond to increases in werewolf trials. Although rabies can have a dramatic effect, the present rarity of human rabies cases and the availability of a vaccine, means that the behavioural effects of rabies are primarily an illustrative curiosity.

  8. Toxoplasma gondii seroprevalence and genotype diversity in select wildlife species from the southeastern United States

    Directory of Open Access Journals (Sweden)

    Richard W. Gerhold

    2017-10-01

    Full Text Available Abstract Background Toxoplasma gondii is a widespread protozoan parasite that infects humans and other animals. Previous studies indicate some genotypes of T. gondii are more frequently isolated in wildlife than agricultural animals, suggesting a wild/feral animal diversity model. To determine seroprevalence and genetic diversity of T. gondii in southeastern US wildlife, we collected sera from 471 wild animals, including 453 mammals and 18 birds, between 2011 and 2014. These serum samples were assayed for T. gondii infection using the modified agglutination test (MAT. Heart or tongue tissues from 66 seropositive animals were bioassayed in mice and 19 isolates were obtained. The isolated parasites were genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP method employing 10 genetic markers. Results One hundred and ninety-six of 471 samples (41.6% had a titer ≥1:32 and were considered positive for T. gondii infection. Of 453 mammals, 195 (43% were seropositive, whereas only one (5.6% of 18 birds was seropositive. The seroprevalence in mammals was significantly higher than in the birds. Mammalian hosts with adequate samples size (≥ 20 comprised white-tailed deer (n = 241, feral hogs (n = 100, raccoons (n = 34 and coyotes (n = 22, with seroprevalences of 41.0%, 51.0%, 50.0% and 72.7%, respectively. Coyotes had significantly higher seroprevalence than the white-tailed deer. Genotyping revealed five distinct genotypes, including the ToxoDB PCR-RFLP genotype #5 (a.k.a type 12 for 15 isolates, genotype #3 (a.k.a. type II for 1 isolate, and genotypes #154, #167 and #216, each for 1 isolate. The results showed moderate to high infection rates of T. gondii in white-tailed deer, feral hogs, raccoons and coyotes. Genotyping results indicated limited genetic diversity and a dominance of genotype #5, which has been reported as a major type in wildlife in North America. Conclusions We conclude that T. gondii

  9. Seroprevalence of Toxoplasma gondii and concurrent bartonella spp., feline immunodeficiency virus, and feline leukemia infections in cats from Grenada, West Indies

    Science.gov (United States)

    Toxoplasma gondii and Bartonella spp. are zoonotic pathogens of cats. Feline Immunodeficiency Virus (FIV), and Feline Leukemia Virus (FeLv) are related to Human Iimmunodeficiency Virus, and Human Leukemia Virus, respectively, and these viruses are immunosuppressive. In the present study, the prevale...

  10. Dynamic protein S-palmitoylation mediates parasite life cycle progression and diverse mechanisms of virulence.

    Science.gov (United States)

    Brown, Robert W B; Sharma, Aabha I; Engman, David M

    2017-04-01

    Eukaryotic parasites possess complex life cycles and utilize an assortment of molecular mechanisms to overcome physical barriers, suppress and/or bypass the host immune response, including invading host cells where they can replicate in a protected intracellular niche. Protein S-palmitoylation is a dynamic post-translational modification in which the fatty acid palmitate is covalently linked to cysteine residues on proteins by the enzyme palmitoyl acyltransferase (PAT) and can be removed by lysosomal palmitoyl-protein thioesterase (PPT) or cytosolic acyl-protein thioesterase (APT). In addition to anchoring proteins to intracellular membranes, functions of dynamic palmitoylation include - targeting proteins to specific intracellular compartments via trafficking pathways, regulating the cycling of proteins between membranes, modulating protein function and regulating protein stability. Recent studies in the eukaryotic parasites - Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei, Cryptococcus neoformans and Giardia lamblia - have identified large families of PATs and palmitoylated proteins. Many palmitoylated proteins are important for diverse aspects of pathogenesis, including differentiation into infective life cycle stages, biogenesis and tethering of secretory organelles, assembling the machinery powering motility and targeting virulence factors to the plasma membrane. This review aims to summarize our current knowledge of palmitoylation in eukaryotic parasites, highlighting five exemplary mechanisms of parasite virulence dependent on palmitoylation.

  11. TgICMAP1 is a novel microtubule binding protein in Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Aoife T Heaslip

    Full Text Available The microtubule cytoskeleton provides essential structural support for all eukaryotic cells and can be assembled into various higher order structures that perform drastically different functions. Understanding how microtubule-containing assemblies are built in a spatially and temporally controlled manner is therefore fundamental to understanding cell physiology. Toxoplasma gondii, a protozoan parasite, contains at least five distinct tubulin-containing structures, the spindle pole, centrioles, cortical microtubules, the conoid, and the intra-conoid microtubules. How these five structurally and functionally distinct sets of tubulin containing structures are constructed and maintained in the same cell is an intriguing problem. Previously, we performed a proteomic analysis of the T. gondii apical complex, a cytoskeletal complex located at the apical end of the parasite that is composed of the conoid, three ring-like structures, and the two short intra-conoid microtubules. Here we report the characterization of one of the proteins identified in that analysis, TgICMAP1. We show that TgICMAP1 is a novel microtubule binding protein that can directly bind to microtubules in vitro and stabilizes microtubules when ectopically expressed in mammalian cells. Interestingly, in T. gondii, TgICMAP1 preferentially binds to the intra-conoid microtubules, providing us the first molecular tool to investigate the intra-conoid microtubule assembly process during daughter construction.

  12. Cloning and expression of Toxoplasma gondii tachyzoite P22 protein

    African Journals Online (AJOL)

    Delay in diagnosis of Toxoplasma gondii infection in pregnant women who have been infected during the first trimester of gestation can lead to death of her fetus. Serological tests based on recombinant proteins are the main diagnosis methods for the detection of anti Toxoplasma antibody in serum samples. The aim of this ...

  13. Seroprevalence of Toxoplasma gondii in mainland and sub-Antarctic New Zealand sea lion (Phocarctos hookeri) populations.

    Science.gov (United States)

    Michael, S A; Howe, L; Chilvers, B L; Morel, Pch; Roe, W D

    2016-09-01

    To investigate the seroprevalence of antibodies to Toxoplasma gondii in New Zealand sea lions (Phocarctos hookeri), as a potential contributor to reproductive failure. Archived sera were sourced from New Zealand sea lions from two recolonising mainland populations in the Otago Peninsula (n=15) and Stewart Island (n=12), as well as a declining population at Enderby Island (n=28) in the New Zealand sub-Antarctic. Sera were tested for antibodies to T. gondii using a commercially available ELISA (with samples considered positive if the sample to positive ratio was >30%), and latex agglutination test (LAT; with titres ≥1:32 considered positive). Western blot analysis was used to validate the results of a subset of 14 samples. Five samples from sea lions in mainland locations were confirmed positive for antibodies to T. gondii. Two adult females exhibited high LAT antibody titres (min 1:2048, max 1:4096) on both occasions when sampled 1 and 2 years apart, respectively. No animals from Enderby Island were seropositive. Toxoplasma gondii infection is unlikely to be a major contributor to poor reproductive success in New Zealand sea lions. However, continued surveillance is pertinent to assess subclinical and clinical impacts of the parasite on these threatened populations. The commercial tests evaluated here, with further species-specific threshold refinement could provide a fast, inexpensive and reliable indicator of T. gondii exposure in New Zealand sea lions.

  14. Characterization of IgG monoclonal antibody targeted to both tissue cyst and sporocyst walls of Toxoplasma gondii

    Science.gov (United States)

    Toxoplasma gondii infects approximately one third of the human population and animals habiting terrestrial and aquatic environments. Its environmentally resistant oocysts are excreted by felids, and the stage encysted in tissues (tissue cysts), are important in the horizontal transmission of T. gon...

  15. Cytometric quantification of singlet oxygen in the human malaria parasite Plasmodium falciparum

    NARCIS (Netherlands)

    Butzloff, Sabine; Groves, Matthew R; Wrenger, Carsten; Müller, Ingrid B

    The malaria parasite Plasmodium falciparum proliferates within human erythrocytes and is thereby exposed to a variety of reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical, superoxide anion, and highly reactive singlet oxygen ((1)O(2)). While most ROS are already well studied

  16. mRNA export in the apicomplexan parasite Toxoplasma gondii: emerging divergent components of a crucial pathway.

    Science.gov (United States)

    Ávila, Andréa Rodrigues; Cabezas-Cruz, Alexjandro; Gissot, Mathieu

    2018-01-25

    Control of gene expression is crucial for parasite survival and is the result of a series of processes that are regulated to permit fine-tuning of gene expression in response to biological changes during the life-cycle of apicomplexan parasites. Control of mRNA nuclear export is a key process in eukaryotic cells but is poorly understood in apicomplexan parasites. Here, we review recent knowledge regarding this process with an emphasis on T. gondii. We describe the presence of divergent orthologs and discuss structural and functional differences in export factors between apicomplexans and other eukaryotic lineages. Undoubtedly, the use of the CRISPR/Cas9 system in high throughput screenings associated with the discovery of mRNA nuclear export complexes by proteomic analysis will contribute to identify these divergent factors. Ligand-based or structure-based strategies may be applied to investigate the potential use of these proteins as targets for new antiprotozoal agents.

  17. Detection of Toxoplasma gondii DNA in Brazilian oysters (Crassostrea rhizophorae).

    Science.gov (United States)

    Ribeiro, L A; Santos, L K N S S; Brito, P A; Maciel, B M; Da Silva, A V; Albuquerque, G R

    2015-05-04

    The aim of this study was to detect evidence of Toxoplasma gondii using polymerase chain reaction (PCR)-based techniques in oysters (Crassostrea rhizophorae) obtained from the southern coastal region of Bahia, Brazil. A total of 624 oysters were collected, and the gills and digestive glands were dissected. Each tissue sample was separated into pools containing tissues (of the same type) from three animals, leading to a total of 416 experimental samples for analysis (208 samples each from the gills and digestive glands). Molecular analysis using PCR-based detection of the T. gondii AF 146527 repetitive fragment yielded negative results for all samples. However, when nested-PCR was used for detection of the T. gondii SAG-1 gene, 17 samples were positive, with the gills being the tissue with maximal detection of the parasite. These positive results were confirmed by sample sequencing. It is therefore suggested that C. rhizophorae oysters are capable of filtering and retaining T. gondii oocysts in their tissue. This represents a risk to public health because they are traditionally ingested in natura.

  18. Infection with Toxoplasma gondii in a red kangaroo (Macropus rufus and a Patagonian mara (Dolichotis patagonum in captivity

    Directory of Open Access Journals (Sweden)

    Nataly Díaz-Ayala

    Full Text Available Abstract Toxoplasmosis is an infectious, zoonotic and parasitic disease, caused by Toxoplasma gondii. In this manucript, two cases of infection with T. gondii in captive animals from a zoological park in the central region of Chile are described. One case was a red kangaroo (Macropus rufus, which is highly susceptible to the infection, and the other was a Patagonian mara (Dolichotis patagonum, a rodent in which there is no previous report of the infection. Both animals had myocarditis, with the presence of intralesional tachizoites and cysts suggestive of infection with T. gondii. This infection was confirmed by immunohistochemistry in both animals. The origin of the infection is unknown, but it is likely that free ranging domestic felines were associated with the dissemination of the parasites. This highlights the importance of controlling the domestic animal populations in zoological parks. To the best of our knowledge, this is the first time that T. gondii infection is described in a Patagonian mara, adding a new host for this infectious agent.

  19. Genetic Diversity of Toxoplasma gondii Strains from Different Hosts and Geographical Regions by Sequence Analysis of GRA20 Gene.

    Science.gov (United States)

    Ning, Hong-Rui; Huang, Si-Yang; Wang, Jin-Lei; Xu, Qian-Ming; Zhu, Xing-Quan

    2015-06-01

    Toxoplasma gondii is a eukaryotic parasite of the phylum Apicomplexa, which infects all warm-blood animals, including humans. In the present study, we examined sequence variation in dense granule 20 (GRA20) genes among T. gondii isolates collected from different hosts and geographical regions worldwide. The complete GRA20 genes were amplified from 16 T. gondii isolates using PCR, sequence were analyzed, and phylogenetic reconstruction was analyzed by maximum parsimony (MP) and maximum likelihood (ML) methods. The results showed that the complete GRA20 gene sequence was 1,586 bp in length among all the isolates used in this study, and the sequence variations in nucleotides were 0-7.9% among all strains. However, removing the type III strains (CTG, VEG), the sequence variations became very low, only 0-0.7%. These results indicated that the GRA20 sequence in type III was more divergence. Phylogenetic analysis of GRA20 sequences using MP and ML methods can differentiate 2 major clonal lineage types (type I and type III) into their respective clusters, indicating the GRA20 gene may represent a novel genetic marker for intraspecific phylogenetic analyses of T. gondii.

  20. Genetic characterization of human-pathogenic Cyclospora cayetanensis parasites from three endemic regions at the 18S ribosomal RNA locus.

    Science.gov (United States)

    Sulaiman, Irshad M; Ortega, Ynes; Simpson, Steven; Kerdahi, Khalil

    2014-03-01

    Cyclospora cayetanensis is an apicocomplexan parasite that infects the gastrointestinal tract and causes acute diarrheal disease in humans. In recent years, this human-pathogenic parasite has led to several foodborne outbreaks in the United States and Canada, mostly associated with imported produce. Understanding the biology and epidemiology of C. cayetanensis is difficult because little is known about its origin, possible zoonotic reservoirs, and genetic relationships with other coccidian parasites. Recently, we developed a 70kDa heat shock protein (HSP70) gene based nested PCR protocol for detection of C. cayetanensis parasite and sequenced the PCR products of 16 human isolates from Nepal, Mexico, and Peru. In this study, we have characterized the regions of 18S ribosomal RNA (rRNA) gene of 17 human C. cayetanensis isolates for molecular detection, and also to ascertain the genetic diversity of this parasite. The 18S rRNA primer sets were further tested by PCR amplification followed by nucleotide sequencing of the PCR amplified products of previously characterized C. cayetanensis isolates from three endemic regions at HSP70 locus. Although no genetic polymorphism was observed at the regions of HSP70 locus characterized in our previous study, the data analysis of this study revealed a minor genetic diversity at the 18S rRNA locus among the C. cayetanensis isolates. The 18S rRNA gene-based nested PCR protocol provides a useful genetic marker for the detection of C. cayetanensis parasite and confirms it as a genetically distinct species in genus Cyclospora. The results also supported lack of geographic segregation and existence of genetically homogeneous population for the C. cayetanensis parasites both at the HSP70 as well as at the18S rRNA loci. Published by Elsevier B.V.

  1. A survey of innovation through duplication in the reduced genomes of twelve parasites.

    Directory of Open Access Journals (Sweden)

    Jeremy D DeBarry

    Full Text Available We characterize the prevalence, distribution, divergence, and putative functions of detectable two-copy paralogs and segmental duplications in the Apicomplexa, a phylum of parasitic protists. Apicomplexans are mostly obligate intracellular parasites responsible for human and animal diseases (e.g. malaria and toxoplasmosis. Gene loss is a major force in the phylum. Genomes are small and protein-encoding gene repertoires are reduced. Despite this genomic streamlining, duplications and gene family amplifications are present. The potential for innovation introduced by duplications is of particular interest. We compared genomes of twelve apicomplexans across four lineages and used orthology and genome cartography to map distributions of duplications against genome architectures. Segmental duplications appear limited to five species. Where present, they correspond to regions enriched for multi-copy and species-specific genes, pointing toward roles in adaptation and innovation. We found a phylum-wide association of duplications with dynamic chromosome regions and syntenic breakpoints. Trends in the distribution of duplicated genes indicate that recent, species-specific duplicates are often tandem while most others have been dispersed by genome rearrangements. These trends show a relationship between genome architecture and gene duplication. Functional analysis reveals: proteases, which are vital to a parasitic lifecycle, to be prominent in putative recent duplications; a pair of paralogous genes in Toxoplasma gondii previously shown to produce the rate-limiting step in dopamine synthesis in mammalian cells, a possible link to the modification of host behavior; and phylum-wide differences in expression and subcellular localization, indicative of modes of divergence. We have uncovered trends in multiple modes of duplicate divergence including sequence, intron content, expression, subcellular localization, and functions of putative recent duplicates that

  2. Effect of 3-bromopyruvate and atovaquone on infection during in vitro interaction of Toxoplasma gondii and LLC-MK2 cells.

    Science.gov (United States)

    de Lima, Loyze Paola O; Seabra, Sergio H; Carneiro, Henrique; Barbosa, Helene S

    2015-09-01

    Toxoplasma gondii infection can be severe during pregnancy and in immunocompromised patients. Current therapies for toxoplasmosis are restricted to tachyzoites and have little or no effect on bradyzoites, which are maintained in tissue cysts. Consequently, new therapeutic alternatives have been proposed as the use of atovaquone has demonstrated partial efficacy against tachyzoites and bradyzoites. This work studies the effect of 3-bromopyruvate (3-BrPA), a compound that is being tested against cancer cells, on the infection of LLC-MK2 cells with T. gondii tachyzoites, RH strain. No effect of 3-BrPA on host cell proliferation or viability was observed, but it inhibited the proliferation of T. gondii. The incubation of cultures with lectin Dolichos biflorus agglutinin (DBA) showed the development of cystogenesis, and an ultrastructural analysis of parasite intracellular development confirmed morphological characteristics commonly found in tissue cysts. Moreover, the presence of degraded parasites and the influence of 3-BrPA on endodyogeny were observed. Infected cultures were alternatively treated with a combination of this compound plus atovaquone. This resulted in a 73% reduction in intracellular parasites after 24 h of treatment and a 71% reduction after 48 h; cyst wall formation did not occur in these cultures. Therefore, we conclude that the use of 3-BrPA may serve as an important tool for the study of (i) in vitro cystogenesis; (ii) parasite metabolism, requiring a deeper understanding of the target of action of this compound on T. gondii; (iii) the alternative parasite metabolic pathways; and (iv) the molecular/cellular mechanisms that trigger parasite death. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Stray Cats Gastrointestinal Parasites and its Association With Public Health in Ahvaz City, South Western of Iran

    Science.gov (United States)

    Khademvatan, Shahram; Abdizadeh, Rahman; Rahim, Fakher; Hashemitabar, Mahamoud; Ghasemi, Mohammad; Tavalla, Mahdi

    2014-01-01

    Background: Cats are the hosts for some zoonotic parasites such as Toxoplasma gondii and Toxocara spp. which are important in medicine and veterinary. Studies on the prevalence of intestinal parasites of cats have received little attention in south west of Iran. Objectives: The current study aimed to investigate the prevalence of parasites in stray cats in Ahvaz. Materials and Methods: Random sampling was carried out from January to May 2012. One hundred and forty fecal samples from stray cats were examined using sucrose flotation method. Results: Gastrointestinal parasites were found in 121 of the 140 (86.4%) examined samples. The parasites detected in stray cats were Toxocara spp. (45%, 63/140), Isospora spp. (21.4%, 30/140), nematode larvae (21.4%, 30/140), Taenia spp. (18.6%, 26/140), Sarcocystis spp. (17.1%, 24/140), Eimeria spp. (15%, 21/140), Blastocystis spp. (14.3%, 20/140), Giardia spp, (10.7%, 15/140), Physaloptera spp. (7.1%, 10/140), and amoeba cyst (5.7%, 8/140) respectively. The prevalence of infection by Joyexiella spp. and hook worms (4.3%, 6/140), for example, Dipylidium caninum (2.9%, 4/140) was similar; and the prevalence of infection by T. gondii and Dicrocoelium dendriticum was similar (1.4%, 2/140). Conclusions: Since the prevalence of zoonotic gastrointestinal parasites such as Toxocara spp. in stray cats is high, there is a need to plan adequate programs to control these zoonotic parasites. PMID:25485047

  4. Seroprevalence of Toxoplasma gondii in American Black Bears ( Ursus americanus ) of the Central Appalachians, USA.

    Science.gov (United States)

    Cox, John J; Murphy, Sean M; Augustine, Ben C; Guthrie, Joseph M; Hast, John T; Maehr, Sutton C; McDermott, Joseph

    2017-07-01

    We assessed Toxoplasma gondii seroprevalence in 53 free-ranging American black bears ( Ursus americanus ) in the Central Appalachian Mountains, US. Seroprevalence was 62% with no difference between males and females or between juvenile and adult bears. Wildlife agencies should consider warnings in hunter education programs to reduce the chances for human infection from this source.

  5. MyD88 is crucial for the development of a protective CNS immune response to Toxoplasma gondii infection

    Directory of Open Access Journals (Sweden)

    Torres Marbel

    2013-02-01

    Full Text Available Abstract Background Toxoplasmosis is one of the most common parasitic infections in humans. It can establish chronic infection and is characterized by the formation of tissue cysts in the brain. The cysts remain largely quiescent for the life of the host, but can reactivate and cause life-threatening toxoplasmic encephalitis in immunocompromised patients, such as those with AIDS, neoplastic diseases and organ transplants. Toll-like receptor (TLR adaptor MyD88 activation is required for the innate sensing of Toxoplasma gondii. Mice deficient in MyD88 have defective IL-12 and Th1 effector responses, and are highly susceptible to the acute phase of T. gondii infection. However, the role of this signaling pathway during cerebral infection is poorly understood and requires examination. Method MyD88-deficient mice and control mice were orally infected with T. gondii cysts. Cellular and parasite infiltration in the peripheral organs and in the brain were determined by histology and immunohistochemistry. Cytokine levels were determined by ELISA and chemokine mRNA levels were quantified by real-time PCR (qPCR. Results Thirteen days after infection, a higher parasite burden was observed but there was no histological change in the liver, heart, lungs and small intestine of MyD88−/− and MyD88+/+ mice. However, MyD88−/− mice compared to MyD88+/+ mice were highly susceptible to cerebral infection, displayed high parasite migration to the brain, severe neuropathological signs of encephalitis and succumbed within 2 weeks of oral infection. Susceptibility was primarily associated with lower expression of Th1 cytokines, especially IL-12, IFN-γ and TNF-α, significant decrease in the expression of CCL3, CCL5, CCL7 and CCL19 chemokines, marked defect of CD8+ T cells, and infiltration of CD11b+ and F4/80+ cells in the brain. Conclusion MyD88 is essential for the protection of mice during the cerebral installation of T. gondii infection. These results

  6. A survey of blood and other tissue parasites of leopard frogs Rana pipiens in the United States.

    Science.gov (United States)

    Levine, N D; Nye, R R

    1977-01-01

    In a survey of blood and other tissue parasites from 137 leopard frogs, Rana pipiens complex, purchased from 13 commercial vendors in 8 states in the United States, Trypanosoma pipientis was found in 2 R. p. berlandieri, Toxoplasma ranae in 1 R. pipiens, Isospora lieberkuehni in 1 leopard frog, Haemogregarina magna in 44, Lankesterella minima in 3, Leptotheca ohlmacheri in 3 and microfilariae of Foleyella sp. in 6. The report of I. lieberkuehni is presumably a new host record. Haemogregarina temporariae (Nöller,, 1920) nov. comb. is established as a new combination for Nematopsis temporariae.

  7. Meat juice serology for Toxoplasma gondii infection in chickens

    Directory of Open Access Journals (Sweden)

    Alice Vismarra

    2016-01-01

    Full Text Available Toxoplasma gondii is an important foodborne zoonosis. Free-range chickens are at particularly high risk of infection and are also excellent indicators of soil contamination by oocysts. In the present study, hearts of 77 freerange chickens were collected at slaughter. T. gondii meat juice enzyme-linked immunosorbent assay was performed with a commercial kit, following validation with positive controls, from experimentally infected chickens, and negative ones. Out of 77 samples, only 66 gave sufficient meat juice for serology. Of these, 24 (36.4% were positive for T. gondii considering the 5*standard deviation values (calculated on the optical density of negative controls, while all the samples were negative considering sample/positive% values. Parasite-specific polymerase chain reaction was carried out on all samples obtained from heart tissue and none were positive for the presence of T. gondii DNA. Results would suggest that further study on the use of meat juice with a validated serological test to detect T. gondii in chickens could lead to widespread epidemiological studies in this important intermediate host. However, sample collection and test specificity require further evaluation.

  8. Infecção per os de gatos com formas vegetativas de Toxoplasma gondii Nicolle & Manceaux, 1909 sem produção de oocistos Oral infections of domestic cats with vegetative forms of Toxoplasma gondii Nicolle & Manceaux, 1909 without oocyst production

    Directory of Open Access Journals (Sweden)

    Felippe Nery-Guimarães

    1973-01-01

    Full Text Available Quatro grupos de 6 gatos (24 gatos recém-nascidos e desmamados receberam "per os", respectivamente, suspensões de toxoplasmas de camundongos com 3-4 dias de infecção, de 4 amostras de T. gondii. Cada grupo teve um gato testemunha. Nenhum dos gatos de experiência eliminou oocistos atribuíveis a T. gondii, em períodos de observação de 6 a 20 dias; e suas fezes, conservadas 2-4 dais em bicromato de potássio a 2,5% e ministradas "per os" a camundongos, não induziram toxoplasmose nesses roedores. Com exceção dos que eram portadores de Isospora, os gatos não mostraram formas evolutivas de coccídios no epitélio intestinal. Em todos os grupos a infecção toxoplásmica foi comprovada pela positividade da reação de Sabin & Feldman (1:16 a 1:1024; e pelo isolamento de toxoplasmas pela inoculação de triturados dos seus principais órgãos em camundongos indicadores. De um modo geral, os gatos mais crescidos não mostraram sinais de doença, porém os outros, e principalmente os recém-nascidos adoeceram e vários morreram de toxoplasmose sistêmica: esplenite, hepatite, enterite, penumonia e, mais raramente, miocardite e encefalite. Os toxoplasmas foram encontrados em todos esses órgãos e, tamém, nos rins e supra-renais.Vegetative forms of 4 strains of Toxoplasma from peritoneal fluid of mice with 3-4 days of acute infection were orally administered to 4 groups of 6 newborn and wealing kittens respectivelly. Each group had a control kitten. All kittens were observed for eriods of 6-20 days ans never passed in their faeces oocysts attributabel to T. gondii. On the other hand, their faces after 2-4 days in potassium dichromate at 2.5% inoculated orally in mice didn't produce Toxoplasma infection in these animals; and with exception of the cats that have had spontaneous isosporosis (I. felis and/or I. rivolta we didn´t see evolutive forms of Coccidia in the intestinal wall of the cats. In all cat groups the toxoplasmic infection was

  9. Crystallization and preliminary X-ray analysis of Na-SAA-2 from the human hookworm parasite Necator americanus

    International Nuclear Information System (INIS)

    Asojo, Oluwatoyin A.; Goud, Gaddam N.; Zhan, Bin; Ordonez, Katherine; Sedlacek, Meghan; Homma, Kohei; Deumic, Vehid; Gupta, Richi; Brelsford, Jill; Price, Merelyn K.; Ngamelue, Michelle N.; Hotez, Peter J.

    2010-01-01

    The purification, crystallization and preliminary X-ray diffraction analysis of a surface-associated antigen from the major human hookworm N. americanus is presented. Human hookworms are among the most pathogenic soil-transmitted helminths. These parasitic nematodes have co-evolved with the host and are able to maintain a high worm burden for decades without killing the human host. However, it is possible to develop vaccines against laboratory-challenge hookworm infections using either irradiated third-state infective larvae (L3) or enzymes from the adult parasites. In an effort to control hookworm infection globally, the Human Hookworm Vaccine Initiative, a product-development partnership with the Sabin Vaccine Institute to develop new control tools including vaccines, has identified a battery of protein antigens, including surface-associated antigens (SAAs) from L3. SAA proteins are characterized by a 13 kDa conserved domain of unknown function. SAA proteins are found on the surface of infective L3 stages (and some adult stages) of different nematode parasites, suggesting that they may play important roles in these organisms. The atomic structures and function of SAA proteins remain undetermined and in an effort to remedy this situation recombinant Na-SAA-2 from the most prevalent human hookworm parasite Necator americanus has been expressed, purified and crystallized. Useful X-ray data have been collected to 2.3 Å resolution from a crystal that belonged to the monoclinic space group C2 with unit-cell parameters a = 73.88, b = 35.58, c = 42.75 Å, β = 116.1°

  10. Toxoplasma gondii Infection and Mixed Anxiety and Depressive Disorder: A Case-Control Seroprevalence Study in Durango, Mexico.

    Science.gov (United States)

    Alvarado-Esquivel, Cosme; Sanchez-Anguiano, Luis Francisco; Hernandez-Tinoco, Jesus; Berumen-Segovia, Luis Omar; Torres-Prieto, Yazmin Elizabeth; Estrada-Martinez, Sergio; Perez-Alamos, Alma Rosa; Ortiz-Jurado, Maria Nalleli; Molotla-de-Leon, Gabriel; Beristain Garcia, Isabel; Rabago-Sanchez, Elizabeth; Liesenfeld, Oliver

    2016-07-01

    The parasite Toxoplasma gondii (T. gondii) may invade the brain and might induce behavioral changes. We sought to determine the association of T. gondii infection and mixed anxiety and depressive disorder. Through an age- and gender-matched case-control seroprevalence study, we examined 65 patients suffering from mixed anxiety and depressive disorder (WHO ICD-10 code: F41.2) attending in a public hospital of mental health and 260 control subjects without this disorder from the general population. Sera of participants were analyzed for anti-Toxoplasma IgG and IgM antibodies using enzyme-linked immunoassays. Fifteen (23.1%) of the 65 patients and 18 (6.9%) of the 260 controls had anti-T. gondii IgG antibodies (odds ratio (OR): 4.03; 95% confidence interval (CI): 1.90 - 8.53; P 150 IU/mL) anti-T. gondii IgG levels was similar in cases and controls (OR: 0.25; 95% CI: 0.05 - 1.06; P = 0.05). Seroprevalence was similar in male cases and controls (P = 1.0); however, seroprevalence was significantly higher in female cases than in female controls (OR: 7.08; 95% CI: 2.83 - 17.67; P mixed anxiety and depressive disorder. Further research to confirm this association and to determine the seroepidemiology of T. gondii infection in patients with this disorder is needed.

  11. ALOX12 in Human Toxoplasmosis

    Science.gov (United States)

    Witola, William H.; Liu, Susan Ruosu; Montpetit, Alexandre; Welti, Ruth; Hypolite, Magali; Roth, Mary; Zhou, Ying; Mui, Ernest; Cesbron-Delauw, Marie-France; Fournie, Gilbert J.; Cavailles, Pierre; Bisanz, Cordelia; Boyer, Kenneth; Withers, Shawn; Noble, A. Gwendolyn; Swisher, Charles N.; Heydemann, Peter T.; Rabiah, Peter; Muench, Stephen P.

    2014-01-01

    ALOX12 is a gene encoding arachidonate 12-lipoxygenase (12-LOX), a member of a nonheme lipoxygenase family of dioxygenases. ALOX12 catalyzes the addition of oxygen to arachidonic acid, producing 12-hydroperoxyeicosatetraenoic acid (12-HPETE), which can be reduced to the eicosanoid 12-HETE (12-hydroxyeicosatetraenoic acid). 12-HETE acts in diverse cellular processes, including catecholamine synthesis, vasoconstriction, neuronal function, and inflammation. Consistent with effects on these fundamental mechanisms, allelic variants of ALOX12 are associated with diseases including schizophrenia, atherosclerosis, and cancers, but the mechanisms have not been defined. Toxoplasma gondii is an apicomplexan parasite that causes morbidity and mortality and stimulates an innate and adaptive immune inflammatory reaction. Recently, it has been shown that a gene region known as Toxo1 is critical for susceptibility or resistance to T. gondii infection in rats. An orthologous gene region with ALOX12 centromeric is also present in humans. Here we report that the human ALOX12 gene has susceptibility alleles for human congenital toxoplasmosis (rs6502997 [P, <0.000309], rs312462 [P, <0.028499], rs6502998 [P, <0.029794], and rs434473 [P, <0.038516]). A human monocytic cell line was genetically engineered using lentivirus RNA interference to knock down ALOX12. In ALOX12 knockdown cells, ALOX12 RNA expression decreased and levels of the ALOX12 substrate, arachidonic acid, increased. ALOX12 knockdown attenuated the progression of T. gondii infection and resulted in greater parasite burdens but decreased consequent late cell death of the human monocytic cell line. These findings suggest that ALOX12 influences host responses to T. gondii infection in human cells. ALOX12 has been shown in other studies to be important in numerous diseases. Here we demonstrate the critical role ALOX12 plays in T. gondii infection in humans. PMID:24686056

  12. Production, characterization and applications for Toxoplasma gondii-specific polyclonal chicken egg yolk immunoglobulins.

    Directory of Open Access Journals (Sweden)

    Álvaro Ferreira Júnior

    Full Text Available Toxoplasma gondii may cause abortions, ocular and neurological disorders in warm-blood hosts. Immunized mammals are a wide source of hyperimmune sera used in different approaches, including diagnosis and the study of host-parasite interactions. Unfortunately, mammalian antibodies present limitations for its production, such as the necessity for animal bleeding, low yield, interference with rheumatoid factor, complement activation and affinity to Fc mammalian receptors. IgY antibodies avoid those limitations; therefore they could be an alternative to be applied in T. gondii model.In this study we immunized hens with soluble tachyzoite antigens of T. gondii (STAg and purified egg yolk antibodies (IgY by an inexpensive and simple method, with high yield and purity degree. IgY anti-STAg antibodies presented high avidity and were able to recognize a broad range of parasite antigens, although some marked differences were observed in reactivity profile between antibodies produced in immunized hens and mice. Interestingly, IgY antibodies against Neospora caninum and Eimeria spp. did not react to STAg. We also show that IgY antibodies were suitable to detect T. gondii forms in paraffin-embedded sections and culture cell monolayers.Due to its cost-effectiveness, high production yield and varied range of possible applications, polyclonal IgY antibodies are useful tools for studies involving T. gondii.

  13. A Bacterial Parasite Effector Mediates Insect Vector Attraction in Host Plants Independently of Developmental Changes

    Science.gov (United States)

    Orlovskis, Zigmunds; Hogenhout, Saskia A.

    2016-01-01

    Parasites can take over their hosts and trigger dramatic changes in host appearance and behavior that are typically interpreted as extended phenotypes that promote parasite survival and fitness. For example, Toxoplasma gondii is thought to manipulate the behaviors of infected rodents to aid transmission to cats and parasitic trematodes of the genus Ribeiroia alter limb development in their amphibian hosts to facilitate predation of the latter by birds. Plant parasites and pathogens also reprogram host development and morphology. However, whereas some parasite-induced morphological alterations may have a direct benefit to the fitness of the parasite and may therefore be adaptive, other host alterations may be side effects of parasite infections having no adaptive effects on parasite fitness. Phytoplasma parasites of plants often induce the development of leaf-like flowers (phyllody) in their host plants, and we previously found that the phytoplasma effector SAP54 generates these leaf-like flowers via the degradation of plant MADS-box transcription factors (MTFs), which regulate all major aspects of development in plants. Leafhoppers prefer to reproduce on phytoplasma-infected and SAP54-trangenic plants leading to the hypothesis that leafhopper vectors are attracted to plants with leaf-like flowers. Surprisingly, here we show that leafhopper attraction occurs independently of the presence of leaf-like flowers. First, the leafhoppers were also attracted to SAP54 transgenic plants without leaf-like flowers and to single leaves of these plants. Moreover, leafhoppers were not attracted to leaf-like flowers of MTF-mutant plants without the presence of SAP54. Thus, the primary role of SAP54 is to attract leafhopper vectors, which spread the phytoplasmas, and the generation of leaf-like flowers may be secondary or a side effect of the SAP54-mediated degradation of MTFs. PMID:27446117

  14. Spatial and simultaneous representative seroprevalence of anti-Toxoplasma gondii antibodies in owners and their domiciled dogs in a major city of southern Brazil.

    Directory of Open Access Journals (Sweden)

    Aline do Nascimento Benitez

    Full Text Available Toxoplasmosis, caused by Toxoplasma gondii, has traditionally been considered an important water and foodborne protozoonosis with important public health considerations. Although felids play a well-established role as definitive hosts, canine epidemiological involvement in the parasite's life cycle remains questionable and controversial. The increasing closeness of the human-dog bond, particularly seen in urban settings, has been recognized as a historically unprecedented worldwide movement. Sharing daily lives in the same households, dogs may be exposed to similar associated risks of T. gondii infection as their owners. Thus, epidemiological assessment of the intra-domiciled environment, especially among socio-economically different human populations, may provide novel information regarding the actual role of dogs in animal and human toxoplasmosis. Despite spatial approaches being recently used for other water and foodborne diseases, no study has been conducted on the simultaneous spatial seroprevalence of both human and animal IgG anti-T. gondii antibodies in urban areas of major cities. Accordingly, the aim of the present study was to assess the seroprevalence and associated variables of Toxoplasma infection in owners and their domiciled dogs in Londrina, southern Brazil. Human and canine seroprevalence rates and variables associated with seroprevalence were investigated through representative random sampling among 564 households, which included 597 owners and 729 dogs. Overall, statistically significant differences between the seroprevalence of human and dog anti-T. gondii antibodies were found by Immunofluorescence Antibody Testing in 248/597 (41.54% owners and 119/729 (16.32% dogs. Through multiple analysis, significant concomitant variables for seropositivity of household individuals (people and dogs were determined, including public sewer service, yard cleaning frequency, and having a dirty yard. Although no statistically significant

  15. African origin of the malaria parasite Plasmodium vivax.

    Science.gov (United States)

    Liu, Weimin; Li, Yingying; Shaw, Katharina S; Learn, Gerald H; Plenderleith, Lindsey J; Malenke, Jordan A; Sundararaman, Sesh A; Ramirez, Miguel A; Crystal, Patricia A; Smith, Andrew G; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N; Speede, Sheri; Sanz, Crickette M; Morgan, David B; Gonder, Mary K; Kranzusch, Philip J; Walsh, Peter D; Georgiev, Alexander V; Muller, Martin N; Piel, Alex K; Stewart, Fiona A; Wilson, Michael L; Pusey, Anne E; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J; Nolder, Debbie; Hart, John A; Hart, Terese B; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F; Schneider, Bradley S; Wolfe, Nathan D; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L; Shaw, George M; Rayner, Julian C; Peeters, Martine; Hahn, Beatrice H; Sharp, Paul M

    2014-01-01

    Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa.

  16. African origin of the malaria parasite Plasmodium vivax

    Science.gov (United States)

    Liu, Weimin; Li, Yingying; Shaw, Katharina S.; Learn, Gerald H.; Plenderleith, Lindsey J.; Malenke, Jordan A.; Sundararaman, Sesh A.; Ramirez, Miguel A.; Crystal, Patricia A.; Smith, Andrew G.; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N.; Speede, Sheri; Sanz, Crickette M.; Morgan, David B.; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Georgiev, Alexander V.; Muller, Martin N.; Piel, Alex K.; Stewart, Fiona A.; Wilson, Michael L.; Pusey, Anne E.; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J.; Nolder, Debbie; Hart, John A.; Hart, Terese B.; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F.; Schneider, Bradley S.; Wolfe, Nathan D.; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Hahn, Beatrice H.; Sharp, Paul M.

    2014-01-01

    Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa. PMID:24557500

  17. Role of parasites in cancer.

    Science.gov (United States)

    Mandong, B M; Ngbea, J A; Raymond, Vhriterhire

    2013-01-01

    In areas of parasitic endemicity, the occurrence of cancer that is not frequent may be linked with parasitic infection. Epidemiological correlates between some parasitic infections and cancer is strong, suggesting a strong aetiological association. The common parasites associated with human cancers are schistosomiasis, malaria, liver flukes (Clonorchis sinenses, Opistorchis viverrini). To review the pathology, literature and methods of diagnosis. Literature review from peer reviewed Journals cited in PubMed and local journals. Parasites may serve as promoters of cancer in endemic areas of infection.

  18. Seroprevalensi Toxoplasma gondii pada Kambing dan Bioassay Patogenitasnya pada Kucing

    Directory of Open Access Journals (Sweden)

    Ni Made Yunik Novita Dewi Dewi

    2013-11-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE The study aimed to determine seroprevalence of Toxoplasmosis in goats sloughtered at Kampung Jawa, Denpasar, Bali and to evaluate their pathogenicities through bioassay in cats.One hundred serums and meats of goats were collected. Anti-Toxoplasma gondii antibody was determined using Indirect Haemaglutination (IHA test. The pathogenicity bioassay of Toxoplasma gondii was carried out through inoculating the meats of goats which had seropositive of Toxoplasma gondii to the cats. The pathogenicity was evaluated using the intensity of oocyte sheding from the cats. The result showed that the seroprevalence of Toxoplasmosis was 46%. There was not significant difference between pathogenicity of Toxoplasma gondii in cat inoculated with meat of goat which had a high and low titer of antibody against Toxoplasma gondii. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; text-align:justify; line-height:150%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

  19. A qualitative assessment of Toxoplasma gondii risk in ready-to-eat smallgoods processing.

    Science.gov (United States)

    Mie, Tanya; Pointon, Andrew M; Hamilton, David R; Kiermeier, Andreas

    2008-07-01

    Toxoplasma gondii is one of the most common parasitic infections of humans and other warm-blooded animals. In most adults, it does not cause serious illness, but severe disease may result from infection in fetuses and immunocompromised people. Consumption of raw or undercooked meats has consistently been identified as an important source of exposure to T. gondii. Several studies indicate the potential failure to inactivate T. gondii in the processes of cured meat products, This article presents a qualitative risk-based assessment of the processing of ready-to-eat smallgoods, which include cooked or uncooked fermented meat, pâté, dried meat, slow cured meat, luncheon meat, and cooked muscle meat including ham and roast beef. The raw meat ingredients are rated with respect to their likelihood of containing T. gondii cysts and an adjustment is made based on whether all the meat from a particular source is frozen. Next, the effectiveness of common processing steps to inactivate T. gondii cysts is assessed, including addition of spices, nitrates, nitrites and salt, use of fermentation, smoking and heat treatment, and the time and temperature during maturation. It is concluded that processing steps that may be effective in the inactivation of T. gondii cysts include freezing, heat treatment, and cooking, and the interaction between salt concentration, maturation time, and temperature. The assessment is illustrated using a Microsoft Excel-based software tool that was developed to facilitate the easy assessment of four hypothetical smallgoods products.

  20. Toxoplasma gondii Infection Is Associated with Mitochondrial Dysfunction in-Vitro

    Directory of Open Access Journals (Sweden)

    Genevieve Syn

    2017-12-01

    Full Text Available Upon invasion of host cells, the ubiquitous pathogen Toxoplasma gondii manipulates several host processes, including re-organization of host organelles, to create a replicative niche. Host mitochondrial association to T. gondii parasitophorous vacuoles is rapid and has roles in modulating host immune responses. Here gene expression profiling of T. gondii infected cells reveals enrichment of genes involved in oxidative phosphorylation (OXPHOS and mitochondrial dysfunction 6 h post-infection. We identified 11 hub genes (HIF-1α, CASP8, FN1, POU5F1, CD44, ISG15, HNRNPA1, MDM2, RPL35, VHL, and NUPR1 and 10 predicted upstream regulators, including 4 endogenous regulators RICTOR, KDM5A, RB1, and D-glucose. We characterized a number of mitochondrial parameters in T. gondii infected human foreskin fibroblast cells over a 36 h time-course. In addition to the usual rapid recruitment and apparent enlargement of mitochondria around the parasitophorous vacuole we observed fragmented host mitochondria in infected cells, not linked to cellular apoptosis, from 24 h post-infection. An increase in mitochondrial superoxide levels in T. gondii infected cells was observed that required active parasite invasion and peaked at 30 h post-infection. Measurement of OXPHOS proteins showed decreased expression of Complex IV in infected cells at 24 h post-infection, followed by decreased expression of Complexes I and II at 36 h post-infection. No change occurred in Complex V. No difference in host mitochondrial membrane potential between infected and mock-infected cells was observed at any time. Our results show perturbation of host mitochondrial function following T. gondii infection that likely impacts on pathogenesis of disease.

  1. Intestinal Parasitic Infections in Human Immunodeficiency Virus-Infected and Noninfected Persons in a High Human Immunodeficiency Virus Prevalence Region of Cameroon.

    Science.gov (United States)

    Nkenfou, Céline Nguefeu; Tchameni, Sandrine Mboula; Nkenfou, Carine Nguefeu; Djataou, Patrice; Simo, Ulrich Florian; Nkoum, Alexandre Benjamin; Estrin, William

    2017-09-01

    The problem of intestinal parasitic infection in human immunodeficiency virus (HIV)-infected people requires careful consideration in the developing world where poor nutrition is associated with poor hygiene and several coinfecting diseases. Studies have addressed this issue in Cameroon, especially in the low HIV prevalence area. The current study was conducted to determine the prevalence of intestinal parasitosis in people living with HIV (PLHIV) in Adamaoua and to identify associated risk factors. Stool and blood specimens from study participants were screened for intestinal parasites and anti-HIV antibodies, respectively. Of 235 participants, 68 (28.9%) were HIV positive, 38 of them on antiretroviral treatment (ART). The overall prevalence of intestinal parasites was 32.3%. Of 68 PLHIV, 32.3% (22/68) were infected with intestinal parasites, compared with 32.3% (54/167) of the HIV-negative patients. Univariate analysis showed no difference between the prevalence of intestinal parasites among PLHIV and HIV-negative patients ( P = 0.69). ART was not associated with the prevalence of intestinal parasites. Multivariate analysis showed that the quality of water and the personal hygiene were the major risk factors associated to intestinal parasitosis. The level of education was associated with HIV serostatus: the higher the level of education, the lower the risk of being infected with HIV ( P = 0.00). PLHIV and the general population should be screened routinely for intestinal parasites and treated if infected.

  2. New views of the Toxoplasma gondii parasitophorous vacuole as revealed by Helium Ion Microscopy (HIM).

    Science.gov (United States)

    de Souza, Wanderley; Attias, Marcia

    2015-07-01

    The Helium Ion Microscope (HIM) is a new technology that uses a highly focused helium ion beam to scan and interact with the sample, which is not coated. The images have resolution and depth of field superior to field emission scanning electron microscopes. In this paper, we used HIM to study LLC-MK2 cells infected with Toxoplasma gondii. These samples were chemically fixed and, after critical point drying, were scraped with adhesive tape to expose the inner structure of the cell and parasitophorous vacuoles. We confirmed some of the previous findings made by field emission-scanning electron microscopy and showed that the surface of the parasite is rich in structures suggestive of secretion, that the nanotubules of the intravacuolar network (IVN) are not always straight, and that bifurcations are less frequent than previously thought. Fusion of the tubules with the parasite membrane or the parasitophorous vacuole membrane (PVM) was also infrequent. Tiny adhesive links were observed for the first time connecting the IVN tubules. The PVM showed openings of various sizes that even allowed the observation of endoplasmic reticulum membranes in the cytoplasm of the host cell. These findings are discussed in relation to current knowledge on the cell biology of T. gondii. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Environmental risk and toxicology of human and veterinary waste pharmaceutical exposure to wild aquatic host-parasite relationships.

    Science.gov (United States)

    Morley, Neil J

    2009-03-01

    Pollution of the aquatic environment by human and veterinary waste pharmaceuticals is an increasing area of concern but little is known about their ecotoxicological effects on wildlife. In particular the interactions between pharmaceuticals and natural stressors of aquatic communities remains to be elucidated. A common natural stressor of freshwater and marine organisms are protozoan and metazoan parasites, which can have significant effects on host physiology and population structure, especially under the influence of many traditional kinds of toxic pollutants. However, little is known about the effects of waste pharmaceuticals to host-parasite dynamics. In order to assess the risk waste pharmaceuticals pose to aquatic wildlife it has been suggested the use of toxicological data derived from mammals during the product development of pharmaceuticals may be useful for predicting toxic effects. An additional similar source of information is the extensive clinical studies undertaken with numerous classes of drugs against parasites of human and veterinary importance. These studies may form the basis of preliminary risk assessments to aquatic populations and their interactions with parasitic diseases in pharmaceutical-exposed habitats. The present article reviews the effects of the most common classes of pharmaceutical medicines to host-parasite relationships and assesses the risk they may pose to wild aquatic organisms. In addition the effects of pharmaceutical mixtures, the importance of sewage treatment, and the risk of developing resistant strains of parasites are also assessed. Copyright © 2008 Elsevier B.V. All rights reserved.

  4. Parasites, Plants, and People.

    Science.gov (United States)

    Johnson, Marion; Moore, Tony

    2016-06-01

    Anthelminthic resistance is acknowledged worldwide and is a major problem in Aotearoa New Zealand, thus alternative parasite management strategies are imperative. One Health is an initiative linking animal, human, and environmental health. Parasites, plants, and people illustrate the possibilities of providing diverse diets for stock thereby lowering parasite burdens, improving the cultural wellbeing of a local community, and protecting the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Genotyping of Toxoplasma gondii and Sarcocystis spp. in road-killed wild mammals from the Central Western Region of the State of São Paulo, Brazil.

    Science.gov (United States)

    Richini-Pereira, Virgínia Bodelão; Marson, Pâmela Merlo; Silva, Rodrigo Costa da; Langoni, Helio

    2016-01-01

    Road-killed wild animals host zoonotic pathogens such as Toxoplasma gondii, offering a new opportunity for the epidemiological study of these infectious organisms. This investigation aimed to determine the presence of T. gondii and other apicomplexan parasites in tissue samples of 64 road-killed wild animals, using polymerase chain reaction (PCR). Positive samples were then typed by PCR-restriction fragment length polymorphism (RFLP) using 7 markers: SAG1, 5'-3'SAG2, SAG3, BTUB, c29-6, PK1, and Apico. PCR-RFLP targeting 18S ribosomal RNA (rRNA) genes was also performed on all samples to detect other apicomplexan parasites. T. gondii DNA was detected in 16 tissue samples from 8 individual animals, as follows: 1 Cerdocyon thous (crab-eating fox), 1 Didelphis albiventris (white-eared opossum), 1 Lutreolina crassicaudata (lutrine opossum), 2 Myrmecophaga tridactyla (giant anteater), 1 Procyon cancrivorus (crab-eating raccoon), and 2 Sphiggurus spinosus (Paraguay hairy dwarf porcupine). Seven different T. gondii genotypes were identified, 6 of which were novel. Typing by 18S rRNA verified these 16 T. gondii-infected samples, and identified 1 Sarcocystis spp.-infected animal [Dasypus novemcinctus (nine-banded armadillo)]. The amplified T. gondii (GenBank accession No. L37415.1) and Sarcocystis spp. 18S rRNA products were confirmed by sequencing. Our results indicate that T. gondii is commonly present in wild mammals, which act as sources of infection for humans and animals, including other wild species. The approach employed herein proved useful for detecting T. gondii and Sarcocystis spp. in the environment and identifying their natural reservoirs, contributing to our understanding of host-parasite interactions.

  6. Genotyping of Toxoplasma gondii and Sarcocystis spp. in road-killed wild mammals from the Central Western Region of the State of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Virgínia Bodelão Richini-Pereira

    Full Text Available Abstract INTRODUCTION: Road-killed wild animals host zoonotic pathogens such as Toxoplasma gondii, offering a new opportunity for the epidemiological study of these infectious organisms. METHODS This investigation aimed to determine the presence of T. gondii and other apicomplexan parasites in tissue samples of 64 road-killed wild animals, using polymerase chain reaction (PCR. Positive samples were then typed by PCR-restriction fragment length polymorphism (RFLP using 7 markers: SAG1, 5′-3′SAG2, SAG3, BTUB, c29-6, PK1, and Apico. PCR-RFLP targeting 18S ribosomal RNA (rRNA genes was also performed on all samples to detect other apicomplexan parasites. RESULTS T. gondii DNA was detected in 16 tissue samples from 8 individual animals, as follows: 1 Cerdocyon thous (crab-eating fox, 1 Didelphis albiventris (white-eared opossum, 1 Lutreolina crassicaudata (lutrine opossum, 2 Myrmecophaga tridactyla (giant anteater, 1 Procyon cancrivorus (crab-eating raccoon, and 2 Sphiggurus spinosus (Paraguay hairy dwarf porcupine. Seven different T. gondii genotypes were identified, 6 of which were novel. Typing by 18S rRNA verified these 16 T. gondii-infected samples, and identified 1 Sarcocystis spp.-infected animal [Dasypus novemcinctus (nine-banded armadillo]. The amplified T. gondii (GenBank accession No. L37415.1 and Sarcocystis spp. 18S rRNA products were confirmed by sequencing. CONCLUSIONS Our results indicate that T. gondii is commonly present in wild mammals, which act as sources of infection for humans and animals, including other wild species. The approach employed herein proved useful for detecting T. gondii and Sarcocystis spp. in the environment and identifying their natural reservoirs, contributing to our understanding of host-parasite interactions.

  7. Recovery of Toxoplasma gondii DNA in experimentally mummified skin and bones: Prospects for paleoparasitological studies to unveil the origin of toxoplasmosis.

    Science.gov (United States)

    Leles, Daniela; Lobo, Amanda; Rhodes, Taís; Millar, Patrícia Riddell; Amendoeira, Maria Regina Reis; Araújo, Adauto

    2016-09-01

    Paleoparasitology studies parasite infections by finding the parasites' remains in preserved organic remains such as natural or artificial mummy tissues, skeletons, teeth, and coprolites, among others. However, some currently important infections like toxoplasmosis have not been studied by paleoparasitology. The reasons include this parasite's complex life cycle, the resulting difficulties in locating this protozoan in the intermediate host tissues, and the limitation of coprolite studies to felines, the protozoan's definitive host. The current study thus aimed to produce an experimental model for molecular diagnosis of toxoplasmosis, prioritizing its study in bones and skin, the most abundant materials in archeological collections and sites. The study demonstrated the feasibility of recovering Toxoplasma gondii DNA from desiccated material, including bones and skin, in experimental models both with circulating tachyzoites (RH strain), characteristic of acute infection, and with cysts (ME49 cystogenic strain), characteristic of chronic infection. At present, most individuals with T. gondii infection are in the chronic phase, and the same was probably true in the past. The current study thus expands the odds of finding the parasite in archeological material, enhanced by the nature of the material in which the diagnosis was made. Finding the parasite may help answer questions that are widely debated in the literature on this protozoan's origin (Old World versus New World). In addition, when conditions do not allow ideal storage of samples for molecular tests, the methodology creates the possibility of testing oven-dried samples transported at room temperature. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Effects of Extracts from Thai Piperaceae Plants against Infection with Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Arpron Leesombun

    Full Text Available Herbal medicines and natural herb extracts are widely used as alternative treatments for various parasitic diseases, and such extracts may also have potential to decrease the side effects of the standard regimen drugs used to treat toxoplasmosis (sulfadiazine-pyrimethamine combination. We evaluated how effective the Thai piperaceae plants Piper betle, P. nigrum and P. sarmentosum are against Toxoplasma gondii infection in vitro and in vivo. Individually, we extracted the piperaceae plants with ethanol, passed them through a rotary evaporator and then lyophilized them to obtain crude extracts for each one. The in vitro study indicated that the P. betle extract was the most effective extract at inhibiting parasite growth in HFF cells (IC50 on RH-GFP: 23.2 μg/mL, IC50 on PLK-GFP: 21.4 μg/mL. Furthermore, treatment of experimental mice with the P. betle extract for 7 days after infection with 1,000 tachyzoites of the T. gondii PLK strain increased their survival (survival rates: 100% in 400 mg/kg-treated, 83.3% in 100 mg/kg-treated, 33.3% in 25 mg/kg-treated, 33.3% in untreated mice. Furthermore, treatment with 400 mg/kg of the P. betle extract resulted in 100% mouse survival following infection with 100,000 tachyzoites. The present study shows that P. betle extract has the potential to act as a medical plant for the treatment of toxoplasmosis.

  9. Effects of Extracts from Thai Piperaceae Plants against Infection with Toxoplasma gondii

    Science.gov (United States)

    Leesombun, Arpron; Boonmasawai, Sookruetai; Shimoda, Naomi; Nishikawa, Yoshifumi

    2016-01-01

    Herbal medicines and natural herb extracts are widely used as alternative treatments for various parasitic diseases, and such extracts may also have potential to decrease the side effects of the standard regimen drugs used to treat toxoplasmosis (sulfadiazine-pyrimethamine combination). We evaluated how effective the Thai piperaceae plants Piper betle, P. nigrum and P. sarmentosum are against Toxoplasma gondii infection in vitro and in vivo. Individually, we extracted the piperaceae plants with ethanol, passed them through a rotary evaporator and then lyophilized them to obtain crude extracts for each one. The in vitro study indicated that the P. betle extract was the most effective extract at inhibiting parasite growth in HFF cells (IC50 on RH-GFP: 23.2 μg/mL, IC50 on PLK-GFP: 21.4 μg/mL). Furthermore, treatment of experimental mice with the P. betle extract for 7 days after infection with 1,000 tachyzoites of the T. gondii PLK strain increased their survival (survival rates: 100% in 400 mg/kg-treated, 83.3% in 100 mg/kg-treated, 33.3% in 25 mg/kg-treated, 33.3% in untreated mice). Furthermore, treatment with 400 mg/kg of the P. betle extract resulted in 100% mouse survival following infection with 100,000 tachyzoites. The present study shows that P. betle extract has the potential to act as a medical plant for the treatment of toxoplasmosis. PMID:27213575

  10. Comparison of two DNA targets for the diagnosis of Toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes

    Directory of Open Access Journals (Sweden)

    Ernault Pauline

    2003-05-01

    Full Text Available Abstract Background Toxoplasmosis is an infectious disease caused by the parasitic protozoan Toxoplasma gondii. It is endemic worldwide and, depending on the geographic location, 15 to 85% of the human population are asymptomatically infected. Routine diagnosis is based on serology. The parasite has emerged as a major opportunistic pathogen for immunocompromised patients, in whom it can cause life-threatening disease. Moreover, when a pregnant woman develops a primary Toxoplasma gondii infection, the parasite may be transmitted to the fetus and cause serious damnage. For these two subpopulations, a rapid and accurate diagnosis is required to initiate treatment. Serological diagnosis of active infection is unreliable because reactivation is not always accompanied by changes in antibody levels, and the presence of IgM does not necessarily indicate recent infection. Application of quantitative PCR has evolved as a sensitive, specific, and rapid method for the detection of Toxoplasma gondii DNA in amniotic fluid, blood, tissue samples, and cerebrospinal fluid. Methods Two separate, real-time fluorescence PCR assays were designed and evaluated with clinical samples. The first, targeting the 35-fold repeated B1 gene, and a second, targeting a newly described multicopy genomic fragment of Toxoplasma gondii. Amplicons of different intragenic copies were analyzed for sequence heterogeneity. Results Comparative LightCycler experiments were conducted with a dilution series of Toxoplasma gondii genomic DNA, 5 reference strains, and 51 Toxoplasma gondii-positive amniotic fluid samples revealing a 10 to 100-fold higher sensitivity for the PCR assay targeting the newly described 529-bp repeat element of Toxoplasma gondii. Conclusion We have developed a quantitative LightCycler PCR protocol which offer rapid cycling with real-time, sequence-specific detection of amplicons. Results of quantitative PCR demonstrate that the 529-bp repeat element is repeated more

  11. Histological identification of muscular sarcocystis: A report of two cases

    Directory of Open Access Journals (Sweden)

    Mani Makhija

    2012-01-01

    Full Text Available Sarcocystis is an apicomplexan protozoan belonging to same phylum as toxoplasma. The parasite encysts inside striated muscles of its intermediate host. Humans are accidental host infected by eating food or water contaminated with oocysts or sporocysts of an infected definitive host. The infection is increasing in Southeast Asia and may be overlooked in histological sections if one is not aware of the histomorphological features. The size and shape of the bradyzoites and the appearance of the cyst wall are the reliable features to distinguish this parasite from other parasites of the same phylum. The incidence of human infection is rising in Southeast Asia and histopathology is an important method for the diagnosis of muscular infection. It is important to recognize the histomorphology of this parasite and its differentiation from similar parasites.

  12. Occurrence of anti-Toxoplasma gondii antibodies in meat and dairy goat herds in Rio Grande do Norte, Brazil.

    Science.gov (United States)

    Medeiros, Andréa Dantas de; Andrade, Milena de Medeiros Clementino; Vítor, Ricardo Wagner de Almeida; Andrade-Neto, Valter Ferreira de

    2014-01-01

    Toxoplasmosis is caused by Toxoplasma gondii, which is the main causative agent of abortion in small ruminants. Goats are among the animals that are most susceptible to this protozoon, and the disease that it causes leads to significant economic losses and has implications for public health, since presence of the parasite in products of goat origin is one of the main sources of human infection. Because of the significant economic impact, there is an urgent need to study the prevalence of T. gondii infection among goats in Sertão do Cabugi, which is the largest goat-producing region in Rio Grande do Norte. In the present study, the ELISA assay was used to test 244 serum samples from nine farms, located in four different municipalities in the Sertão do Cabugi region, which is an important goat-rearing region. The results showed that the prevalence of anti-T. gondii antibodies was 47.1% and that there was a significant association between positivity and the variables of age (≥ 34 months), location (Lajes, Angicos and Afonso Bezerra) and farm (all the farms). The avidity test was applied to all the 115 ELISA-positive samples to distinguish between acute and chronic infection. One hundred and three samples (89.6%) displayed high-avidity antibodies, thus indicating that most of the animals presented chronic infection, with a consequent great impact on the development of the goat production system and a risk to human health.

  13. Occurrence of anti-Toxoplasma gondii antibodies in meat and dairy goat herds in Rio Grande do Norte, Brazil

    Directory of Open Access Journals (Sweden)

    Andréa Dantas de Medeiros

    2014-12-01

    Full Text Available Toxoplasmosis is caused by Toxoplasma gondii, which is the main causative agent of abortion in small ruminants. Goats are among the animals that are most susceptible to this protozoon, and the disease that it causes leads to significant economic losses and has implications for public health, since presence of the parasite in products of goat origin is one of the main sources of human infection. Because of the significant economic impact, there is an urgent need to study the prevalence of T. gondii infection among goats in Sertão do Cabugi, which is the largest goat-producing region in Rio Grande do Norte. In the present study, the ELISA assay was used to test 244 serum samples from nine farms, located in four different municipalities in the Sertão do Cabugi region, which is an important goat-rearing region. The results showed that the prevalence of anti-T. gondii antibodies was 47.1% and that there was a significant association between positivity and the variables of age (≥ 34 months, location (Lajes, Angicos and Afonso Bezerra and farm (all the farms. The avidity test was applied to all the 115 ELISA-positive samples to distinguish between acute and chronic infection. One hundred and three samples (89.6% displayed high-avidity antibodies, thus indicating that most of the animals presented chronic infection, with a consequent great impact on the development of the goat production system and a risk to human health.

  14. CCR5 controls immune and metabolic functions during Toxoplasma gondii infection.

    Directory of Open Access Journals (Sweden)

    Giuliano Bonfá

    Full Text Available CCR5, an important receptor related to cell recruitment and inflammation, is expressed during experimental Toxoplasma gondii infection. However, its role in the immunopathology of toxoplasmosis is not clearly defined yet. Thus, we inoculated WT and CCR5(-/- mice with a sub lethal dose of the parasite by oral route. CCR5(-/- mice were extremely susceptible to infection, presenting higher parasite load and lower tissue expression of IL-12p40, IFN-γ, TNF, IL-6, iNOS, Foxp3, T-bet, GATA-3 and PPARα. Although both groups presented inflammation in the liver with prominent neutrophil infiltration, CCR5(-/- mice had extensive tissue damage with hepatocyte vacuolization, steatosis, elevated serum triglycerides and transaminases. PPARα agonist Gemfibrozil improved the vacuolization but did not rescue CCR5(-/- infected mice from high serum triglycerides levels and enhanced mortality. We also found intense inflammation in the ileum of CCR5(-/- infected mice, with epithelial ulceration, augmented CD4 and decreased frequency of NK cells in the gut lamina propria. Most interestingly, these findings were accompanied by an outstanding accumulation of neutrophils in the ileum, which seemed to be involved in the gut immunopathology, once the depletion of these cells was accompanied by reduced local damage. Altogether, these data demonstrated that CCR5 is essential to the control of T. gondii infection and to maintain the metabolic, hepatic and intestinal integrity. These findings add novel information on the disease pathogenesis and may be relevant for directing future approaches to the treatment of multi-deregulated diseases.

  15. The origin of malarial parasites in orangutans.

    Directory of Open Access Journals (Sweden)

    M Andreína Pacheco

    Full Text Available BACKGROUND: Recent findings of Plasmodium in African apes have changed our perspectives on the evolution of malarial parasites in hominids. However, phylogenetic analyses of primate malarias are still missing information from Southeast Asian apes. In this study, we report molecular data for a malaria parasite lineage found in orangutans. METHODOLOGY/PRINCIPAL FINDINGS: We screened twenty-four blood samples from Pongo pygmaeus (Kalimantan, Indonesia for Plasmodium parasites by PCR. For all the malaria positive orangutan samples, parasite mitochondrial genomes (mtDNA and two antigens: merozoite surface protein 1 42 kDa (MSP-1(42 and circumsporozoite protein gene (CSP were amplified, cloned, and sequenced. Fifteen orangutans tested positive and yielded 5 distinct mitochondrial haplotypes not previously found. The haplotypes detected exhibited low genetic divergence among them, indicating that they belong to one species. We report phylogenetic analyses using mitochondrial genomes, MSP-1(42 and CSP. We found that the orangutan malaria parasite lineage was part of a monophyletic group that includes all the known non-human primate malaria parasites found in Southeast Asia; specifically, it shares a recent common ancestor with P. inui (a macaque parasite and P. hylobati (a gibbon parasite suggesting that this lineage originated as a result of a host switch. The genetic diversity of MSP-1(42 in orangutans seems to be under negative selection. This result is similar to previous findings in non-human primate malarias closely related to P. vivax. As has been previously observed in the other Plasmodium species found in non-human primates, the CSP shows high polymorphism in the number of repeats. However, it has clearly distinctive motifs from those previously found in other malarial parasites. CONCLUSION: The evidence available from Asian apes indicates that these parasites originated independently from those found in Africa, likely as the result of host

  16. Anti-N-methyl-D-aspartate receptor encephalitis associated with acute Toxoplasma gondii infection: A case report.

    Science.gov (United States)

    Cai, Xiaotang; Zhou, Hui; Xie, Yongmei; Yu, Dan; Wang, Zhiling; Ren, Haitao

    2018-02-01

    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis has been recognized as the most frequent autoimmune encephalitis in children. Several infectious agents have been implicated in anti-NMDA encephalitis. A previously healthy immunocompetent 9-year-old girl first presented with seizures, headaches and vomiting. Cerebrospinal fluid and brain magnetic resonance imaging were normal. After one week onset, the patient gradually developed unexplained personality and behavior changes, accompanied by fever and seizures again. Repeated CSF analysis revealed a slightly lymphocytic predominant pleocytosis and positive anti-NMDAR antibody. A variety of pathogenic examinations were negative, except for positive toxoplasma IgM and IgG. The patient was diagnoses for anti-NMDA encephalitis associated with acute acquired toxoplasma gondii infection. The patient received 10 days azithromycin for treatment of acquired toxoplasma infection. The parents refuse immunotherapy because substantial recovery from clinical symptoms. The patient was substantially recovered with residual mild agitation after therapy for acquired toxoplasma gondii infection. Two months later, the patient was completely devoid of symptoms, and the levels of serum IgM and IgG of toxoplasma gondii were decreased. Acquired toxoplasma gondii infection may trigger anti-NMDAR encephalitis in children, which has not been reported previously. Clinicians should assess the possibility of toxoplasma gondii infection when evaluating a patient with anti-NMDA encephalitis.

  17. Isolation and RFLP genotyping of toxoplasma gondii in free-range chicken(Gallus domesticus) in Grenada, West Indies, revealed widespread and dominance of clonal type III parasites

    Science.gov (United States)

    The objectives of the present cross sectional study were to estimate the prevalence and to isolate and genotype Toxoplasma gondii in free range chickens from Grenada, West Indies. Using the modified agglutination test, antibodies to T. gondii were found in 39 (26.9%) of 145 free-range chickens with ...

  18. Parasitic Nematode Interactions with Mammals and Plants

    NARCIS (Netherlands)

    Jasmer, D.P.; Goverse, A.; Smant, G.

    2003-01-01

    Parasitic nematodes that infect humans, animals, and plants cause serious diseases that are deleterious to human health and agricultural productivity. Chemical and biological control methods have reduced the impact of these parasites. However, surviving environmental stages lead to persistent

  19. PRMT1 methylates the single Argonaute of Toxoplasma gondii and is important for the recruitment of Tudor nuclease for target RNA cleavage by antisense guide RNA

    Science.gov (United States)

    Musiyenko, Alla; Majumdar, Tanmay; Andrews, Joel; Adams, Brian; Barik, Sailen

    2013-01-01

    Summary Argonaute (Ago) plays a central role in RNA interference in metazoans, but its status in lower organisms remains ill-defined. We report on the Ago complex of the unicellular protozoan, Toxoplasma gondii (Tg), an obligatory pathogen of mammalian hosts. The PIWI-like domain of TgAgo lacked the canonical DDE/H catalytic triad, explaining its weak target RNA cleavage activity. However, TgAgo associated with a stronger RNA slicer, a Tudor staphylococcal nuclease (TSN), and with a protein Arg methyl transferase, PRMT1. Mutational analysis suggested that the N-terminal RGG-repeat domain of TgAgo was methylated by PRMT1, correlating with the recruitment of TSN. The slicer activity of TgAgo was Mg2+-dependent and required perfect complementarity between the guide RNA and the target. In contrast, the TSN activity was Ca2+-dependent and required an imperfectly paired guide RNA. Ago knockout parasites showed essentially normal growth, but in contrast, the PRMT1 knockouts grew abnormally. Chemical inhibition of Arg-methylation also had an anti-parasitic effect. These results suggest that the parasitic PRMT1 plays multiple roles, and its loss affects the recruitment of a more potent second slicer to the parasitic RNA silencing complex, the exact mechanism of which remains to be determined. PMID:22309152

  20. Comportamento imunológico e antigênico de cinco amostras de Toxoplasma gondii inoculadas em gatos Immunogenic and antigenic aspects from five Toxoplasma gondii strains inoculated in cats

    Directory of Open Access Journals (Sweden)

    Italmar Teodorico Navarro

    1998-09-01

    Full Text Available A biologia do Toxoplasma gondii demonstra que o gato é o hospedeiro completo, responsável pela disseminação do parasito. Assim, dois gatos domésticos foram imunizados com cada uma das amostras, VPS (humano, LIV-IV e LIV-V (suíno, CPL (caprino e CN (felino de T. gondii. Foram utilizados taquizoítas vivos em inóculos endovenosos de 2x10(6 (1° inóculo} e 4x10(7 (2° inóculo - 35 dias após, exceto a amostra VPS, onde 1 gato morreu no 10° dia com sinais clínicos agudos da doença, nas outras amostras, nenhum sinal clínico foi constatado durante os 6 meses de observação. O nível de anticorpos na imunização foi acompanhado através da reação de imunofluorescência indireta (IFI com conjugado anti-IgG de felino. Os títulos de anticorpos obtidos no 20° dia variaram de 1:1.024 a 1:4.096 e de 1:1.024 a 1:8.000 no 40° dia. Somente a amostra VPS expressou títulos de 1:16.000 no 30° dia da imunização. Títulos homólogos e heterólogos foram equivalentes sem nenhuma diferença entre as amostras. Quando soros imunes foram adsorvidos com taquizoítas vivos de cada amostra, a redução nos títulos de anticorpos foi demonstrada em ambos homólogos e heterólogos. Esses resultados sugerem que, embora diferente em virulência para gatos, a superfície antigênica é comum entre as amostras do T. gondii, com base no nível de anticorpo demonstrado pela IFI. Esses resultados também demonstram que, aparentemente, não há correlação entre virulência e as características sorológicas das amostras estudadas no T. gondii. Entretanto, a importância do teste IFI em diagnóstico laboratorial é reforçada.The biology of Toxoplasma gondii demonstrate that cats are the complete host responsable for the dissemination of this parasites. Two domestic cats were immunised with Toxoplasma gondii strains VPS (human, LIV-IV and LIV-V (porcine, CPL (caprine and CN (feline. Live tachyzoites were utilized in intravenous inoculation of 2x10(7 (first

  1. Parasitic Zoonoses in Humans and Their Dogs from a Rural Community of Tropical Mexico

    Directory of Open Access Journals (Sweden)

    Antonio Ortega-Pacheco

    2015-01-01

    Full Text Available A cross-sectional study was made on 89 inhabitants and their dogs from a rural community of Yucatan, Mexico, to determine the serological prevalence of some zoonotic parasitic agents. Samples were taken to monitor the presence and intensity of infection with gastrointestinal parasites in dogs. In humans, the serological prevalence of T. canis, T. gondii, and T. spiralis was 29.2%, 91.0%, and 6.7%, respectively. No associations were found between positive cases and studied variables. From the total of blood samples taken from dogs, 87 (97.6% were seropositive to T. gondii; only 52 viable fecal samples were collected from dogs of which 46.2% had the presence of gastrointestinal parasites with low to moderate intensity; from those, 12% had the presence of T. canis. This study demonstrates the presence of the studied zoonotic agents in the area particularly T. gondii which suggest a common source of infection in dogs and humans and a high number of oocyts present in the environment. Preventive measures must be designed towards good prophylactic practices in domestic and backyard animals (T. canis and T. spiralis. Contaminated sources with T. gondii (food and water should be further investigated in order to design effective control measures.

  2. Mast cell activator compound 48/40 is not an effective adjuvant for UV-attenuated Toxoplasma gondii vaccine.

    Science.gov (United States)

    Li, Xi; Chen, Shengjie; Huang, Shiguang; Lu, Fangli

    2017-08-01

    Toxoplasma gondii (T. gondii, Tg) is a globally distributed parasitic protozoan causing different forms of toxoplasmosis in humans. Mast cells (MCs) play a role during T. gondii infection. Several studies suggest that MC activator compound 48/80 (C48/80) may be an effective vaccine adjuvant resulting in a potent and protective antigen-specific immune response against bacteria or virus infections. The present study was performed to determine whether C48/80 had adjuvant activity for ultraviolet (UV)-attenuated T. gondii vaccine to induce protective immune responses against T. gondii in mouse model. Kunming mice were divided into the following groups: naive mice, naive mice administrated with C48/80 intraperitoneal (i.p.) injection, mice infected by i.p. injection of 10 4 T. gondii RH strain alone (Tg group), mice infected with 10 4 RH tachyzoites plus C48/80 administration (Tg + C48/80), mice immunized with UV-Tg alone, and mice immunized with UV-Tg plus C48/80 administration (UV-Tg + C48/80). All the vaccinated mice were challenged with 10 4 tachyzoites of T. gondii RH strain at the same time as the primary infection. The survival rates, liver histopathologies, liver parasite burdens, and mRNA expression levels of Th1 and Th2 cytokines in the livers and spleens detected by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) were compared among the aforementioned groups after primary infection or challenge infection. The results showed that, compared to the Tg group or Tg + C48/80 group, the UV-Tg + Tg group and UV-Tg + C48/80 + Tg group had significantly prolonged survival time, lower liver histopathological scores, decreased liver parasite burdens, and increased levels of Th1 and Th2 cytokines in the livers and spleens. There was no significant difference of survival time between the UV-Tg + Tg group and the UV-Tg + C48/80 + Tg group; however, the UV-Tg + C48/80 + Tg group showed higher parasite burden, more severe

  3. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    Directory of Open Access Journals (Sweden)

    Ryuma Matsubara

    Full Text Available The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  4. Levantamento soroepidemiológico da frequência de Toxoplasma gondii em doadores de córnea do Banco de Olhos de Volta Redonda, RJ, Brasil

    Directory of Open Access Journals (Sweden)

    Mariana Gleice Seabra

    2016-11-01

    Full Text Available ABSTRACT. Seabra M.G., Aleixo A.L.Q. do C., Pereira P.F., Pinheiro J., Amendoeira M.R.R. [Levantamento soroepidemiológico da frequência de Toxoplasma gondii em doadores de córnea do Banco de Olhos de Volta Redonda, RJ, Brasil] A seroepidemiological survey of the frequency of Toxoplasma gondii in corneal donors from Volta Redonda eye bank . Revista Brasileira de Medicina Veterinária, 38(supl. 3:229-239, 2016. Programa de Pós-graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, BR 465, km 7, Campus Seropédica 23897-970, Seropédica, RJ, Brazil. E-mail: jairopinheirodasilva@gmail.com Toxoplasma gondii is a protozoan parasite that infects up to a third of the world's population. Infection is mainly acquired by ingestion of food or water that is contaminated with oocysts shed by cats or by eating undercooked or raw meat containing tissue cysts and by blood transfusion or organ transplantation. Primary infection is usually subclinical but in some patients cervical lymphadenopathy or ocular disease can be present. Infection acquired during pregnancy may cause severe damage to the fetus. In immunocompromised patients, reactivation of latent disease can cause life-threatening encephalitis. Diagnosis of toxoplasmosis can be established by direct detection of the parasite or by serological techniques. The aim of the present study was verify the seroprevalence of toxoplasmosis in cornea donors of Rio de Janeiro, Brazil. IgM and IgG anti- T. gondii antibodies were investigated in 426 sera of corneal donors by using the indirect fluorescent antibody test (IFAT and immunoenzymatic assay (ELISA techniques. The participants were selected by convenience sampling. Demographic information of study subjects including their gender, age, cause of death and home region were recorded. Out of 426 serum samples, 338 (79.34% and 17 (3.99% were positive regarding anti-T. gondii IgG and IgM antibodies ELISA

  5. Unique parasite aDNA in moa coprolites from New Zealand suggests mass parasite extinctions followed human-induced megafauna extinctions

    Science.gov (United States)

    Lafferty, Kevin D.; Hopkins, Skylar R.

    2018-01-01

    Having split early from Gondwana, Zealandia (now modern New Zealand) escaped discovery until the late 13th century, and therefore remains an important glimpse into a human-free world. Without humans or other land mammals, diverse and peculiar birds evolved in isolation, including several flightless moa species, the giant pouakai eagle (Harpagornis moorei), the kiwi (Apteryx mantelli), and the kakapo parrot (Strigops habroptila). This unique community has fascinated paleoecologists, who have spent almost two centuries devising new ways to glean information from ancient bird remains. In PNAS, Boast et al. (1) apply one recent technological advance, ancient DNA (aDNA) metabarcoding, to confirm previous discoveries and report new details about moa and kakapo diets, parasites, and niches. Their efforts confirm Zealandia was a lot different before humans arrived.

  6. Infection rate of toxoplasma gondii and age distribution in female patients with sterility

    International Nuclear Information System (INIS)

    Li Shuhong; Dai Pei; Cui Liming; Zong Shan; Zuo Wenjing

    2006-01-01

    Objective: To discuss the relationship between the infection of Toxoplasma gondii and female sterility. Methods: Toxoplasma gondii serum antibody were determined in 882 women with sterility (experimental group) and 107 normal bearing women (control group) by using ELISA. At the same time the differences of the infection with Toxoplasma gondii between the ages of the sterility women were analyzed. Results: The positive rate in experimental group was 15.87% (140/882), the positive rate in control group was 5.61% (6/107), remarkable difference was found between two groups (P<0.01). The infection rate in the different age groups (20-24, 25-29, 30-34, 35-39 and ≥40) is 5.63%, 15.24%, 17.91%, 19.44% and 15.38%. Conclusion: Toxoplasma gondii infection may be one of the factors which can cause sterility, and the infection rates at different ages have no instinct differences. (authors)

  7. Human toxoplasmosis-Searching for novel chemotherapeutics.

    Science.gov (United States)

    Antczak, Magdalena; Dzitko, Katarzyna; Długońska, Henryka

    2016-08-01

    The protozoan Toxoplasma gondii, an obligate intracellular parasite, is an etiological agent of human and animal toxoplasmosis. Treatment regimens for T. gondii-infected patients have not essentially changed for years. The most common chemotherapeutics used in the therapy of symptomatic toxoplasmosis are a combination of pyrimethamine and sulfadiazine plus folinic acid or a combination of pyrimethamine with lincosamide or macrolide antibiotics. To protect a fetus from parasite transplacental transmission, therapy of pregnant women is usually based on spiramycin, which is quite safe for the organism, but not efficient in the treatment of infected children. Application of recommended drugs limits replication of T. gondii, however, it may be associated with numerous an severe adverse effects. Moreover, medicines have no impact on the tissue cysts of the parasite located predominantly in a brain and muscles. Thus, there is urgent need to develop new drugs and establish "gold standard" treatment. In this review classical treatment of toxoplasmosis as well as potential compounds active against T. gondii have been discussed. For two last decades studies on the development of new anti-T. gondii medications have been focused on both natural and novel synthetic compounds based on existing chemical scaffolds. They have revealed several promising drug candidates characterized by a high selectivity, the low IC50 (the half maximal inhibitory concentration) and low cytotoxicity towards host cells. These drugs are expected to replace or supplement current anti-T. gondii drug arsenal soon. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. The distribution of Toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis.

    Directory of Open Access Journals (Sweden)

    Miroslava Berenreiterová

    Full Text Available BACKGROUND: The highly prevalent parasite Toxoplasma gondii reportedly manipulates rodent behavior to enhance the likelihood of transmission to its definitive cat host. The proximate mechanisms underlying this adaptive manipulation remain largely unclear, though a growing body of evidence suggests that the parasite-entrained dysregulation of dopamine metabolism plays a central role. Paradoxically, the distribution of the parasite in the brain has received only scant attention. METHODOLOGY/PRINCIPAL FINDINGS: The distributions of T. gondii cysts and histopathological lesions in the brains of CD1 mice with latent toxoplasmosis were analyzed using standard histological techniques. Mice were infected per orally with 10 tissue cysts of the avirulent HIF strain of T. gondii at six months of age and examined 18 weeks later. The cysts were distributed throughout the brain and selective tropism of the parasite toward a particular functional system was not observed. Importantly, the cysts were not preferentially associated with the dopaminergic system and absent from the hypothalamic defensive system. The striking interindividual differences in the total parasite load and cyst distribution indicate a probabilistic nature of brain infestation. Still, some brain regions were consistently more infected than others. These included the olfactory bulb, the entorhinal, somatosensory, motor and orbital, frontal association and visual cortices, and, importantly, the hippocampus and the amygdala. By contrast, a consistently low incidence of tissue cysts was recorded in the cerebellum, the pontine nuclei, the caudate putamen and virtually all compact masses of myelinated axons. Numerous perivascular and leptomeningeal infiltrations of inflammatory cells were observed, but they were not associated with intracellular cysts. CONCLUSION/SIGNIFICANCE: The observed pattern of T. gondii distribution stems from uneven brain colonization during acute infection and explains

  9. Detection of Toxoplasma gondii oocysts in different water resources by Loop Mediated Isothermal Amplification (LAMP).

    Science.gov (United States)

    Gallas-Lindemann, Carmen; Sotiriadou, Isaia; Mahmoodi, Mohammad Reza; Karanis, Panagiotis

    2013-02-01

    Human toxoplasmosis is potentially contracted due to consumption of contaminated drinking water and represents an increasing public health risk worldwide. Toxoplasma gondii oocysts can be resistant to standard disinfection processes, including UV radiation. Increased awareness of the risk of waterborne toxoplasmosis outbreaks has led to an increase in research interest in the detection of oocysts in environmental water systems. Ninety-five environmental water samples from the Lower Rhine area in Germany have been included in the study and examined for the presence of Toxoplasma. Water samples were filtered or flocculated by aluminum sulfate and purified by sucrose density gradient. DNA was then extracted, and the DNA samples were then examined by LAMP analysis. T. gondii DNA was detected in eight out of 83 (9.6%) influent and effluent samples obtained from wastewater treatment plants. All samples (n=12) from the surface, ground, raw and tap waters tested negative. The purpose of this work was to investigate the occurrence and distribution of Toxoplasma oocysts on the Lower Rhine in Germany. Our study provides evidence that the assay is a sensitive, specific, rapid and cost effective method for the detection of T. gondii and is useful for both the investigations of cases of waterborne outbreaks and for identifying the source of contamination. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Seroprevalence of Toxoplasma gondii infection in zoo and domestic animals in Jiangxi Province, China

    Directory of Open Access Journals (Sweden)

    Luo Houqiang

    2017-01-01

    Full Text Available Toxoplasma gondii is a zoonotic protozoan parasite that infects a wide range of warm-blooded animals throughout the world. In the present study, antibodies to T. gondii were determined using a commercial indirect hemagglutination (IHA test in wild animals in a zoo. Three of 11 giraffes (Giraffa camelopardalis (27%, 1 of 5 wolves (Canis lupus laniger (20%, 1 of 6 hippopotamuses (Hippopotamus amphibious (17%, and 2 of 9 tundra swans (Cygnus columbianus (22% were found to be positive. No antibodies were detected in leopards (Panthera pardus, wild geese (Anser cygnoides, and Eastern grey kangaroos (Macropus giganteus. Domestic species from 13 counties of Jiangxi Province, China were also investigated by an indirect hemagglutination (IHA test. Thirty-five of 340 goats (10%, 94 of 560 water buffaloes (17%, and 4 of 35 cattle (11% were found to be seropositive. This is the first report of T. gondii infection in animals kept in zoos and domestic animals in this province.

  11. Functional expression of parasite drug targets and their human orthologs in yeast.

    Directory of Open Access Journals (Sweden)

    Elizabeth Bilsland

    2011-10-01

    Full Text Available The exacting nutritional requirements and complicated life cycles of parasites mean that they are not always amenable to high-throughput drug screening using automated procedures. Therefore, we have engineered the yeast Saccharomyces cerevisiae to act as a surrogate for expressing anti-parasitic targets from a range of biomedically important pathogens, to facilitate the rapid identification of new therapeutic agents.Using pyrimethamine/dihydrofolate reductase (DHFR as a model parasite drug/drug target system, we explore the potential of engineered yeast strains (expressing DHFR enzymes from Plasmodium falciparum, P. vivax, Homo sapiens, Schistosoma mansoni, Leishmania major, Trypanosoma brucei and T. cruzi to exhibit appropriate differential sensitivity to pyrimethamine. Here, we demonstrate that yeast strains (lacking the major drug efflux pump, Pdr5p expressing yeast ((ScDFR1, human ((HsDHFR, Schistosoma ((SmDHFR, and Trypanosoma ((TbDHFR and (TcDHFR DHFRs are insensitive to pyrimethamine treatment, whereas yeast strains producing Plasmodium ((PfDHFR and (PvDHFR DHFRs are hypersensitive. Reassuringly, yeast strains expressing field-verified, drug-resistant mutants of P. falciparum DHFR ((Pfdhfr(51I,59R,108N are completely insensitive to pyrimethamine, further validating our approach to drug screening. We further show the versatility of the approach by replacing yeast essential genes with other potential drug targets, namely phosphoglycerate kinases (PGKs and N-myristoyl transferases (NMTs.We have generated a number of yeast strains that can be successfully harnessed for the rapid and selective identification of urgently needed anti-parasitic agents.

  12. Human behavior and opportunities for parasite transmission in communities surrounding long-tailed macaque populations in Bali, Indonesia.

    Science.gov (United States)

    Lane-DeGraaf, Kelly E; Putra, I G A Arta; Wandia, I Nengah; Rompis, Aida; Hollocher, Hope; Fuentes, Agustin

    2014-02-01

    Spatial overlap and shared resources between humans and wildlife can exacerbate parasite transmission dynamics. In Bali, Indonesia, an agricultural-religious temple system provides sanctuaries for long-tailed macaques (Macaca fascicularis), concentrating them in areas in close proximity to humans. In this study, we interviewed individuals in communities surrounding 13 macaque populations about their willingness to participate in behaviors that would put them at risk of exposure to gastrointestinal parasites to understand if age, education level, or occupation are significant determinants of exposure behaviors. These exposure risk behaviors and attitudes include fear of macaques, direct contact with macaques, owning pet macaques, hunting and eating macaques, and overlapping water uses. We find that willingness to participate in exposure risk behaviors are correlated with an individual's occupation, age, and/or education level. We also found that because the actual risk of infection varies across populations, activities such as direct macaque contact and pet ownership, could be putting individuals at real risk in certain contexts. Thus, we show that human demographics and social structure can influence willingness to participate in behaviors putting them at increased risk for exposure to parasites. © 2013 Wiley Periodicals, Inc.

  13. Using molecular epidemiology to track Toxoplasma gondii from terrestrial carnivores to marine hosts: implications for public health and conservation.

    Science.gov (United States)

    VanWormer, Elizabeth; Miller, Melissa A; Conrad, Patricia A; Grigg, Michael E; Rejmanek, Daniel; Carpenter, Tim E; Mazet, Jonna A K

    2014-01-01

    Environmental transmission of the zoonotic parasite Toxoplasma gondii, which is shed only by felids, poses risks to human and animal health in temperate and tropical ecosystems. Atypical T. gondii genotypes have been linked to severe disease in people and the threatened population of California sea otters. To investigate land-to-sea parasite transmission, we screened 373 carnivores (feral domestic cats, mountain lions, bobcats, foxes, and coyotes) for T. gondii infection and examined the distribution of genotypes in 85 infected animals sampled near the sea otter range. Nested PCR-RFLP analyses and direct DNA sequencing at six independent polymorphic genetic loci (B1, SAG1, SAG3, GRA6, L358, and Apico) were used to characterize T. gondii strains in infected animals. Strains consistent with Type X, a novel genotype previously identified in over 70% of infected sea otters and four terrestrial wild carnivores along the California coast, were detected in all sampled species, including domestic cats. However, odds of Type X infection were 14 times higher (95% CI: 1.3-148.6) for wild felids than feral domestic cats. Type X infection was also linked to undeveloped lands (OR = 22, 95% CI: 2.3-250.7). A spatial cluster of terrestrial Type II infection (P = 0.04) was identified in developed lands bordering an area of increased risk for sea otter Type II infection. Two spatial clusters of animals infected with strains consistent with Type X (P ≤ 0.01) were detected in less developed landscapes. Differences in T. gondii genotype prevalence among domestic and wild felids, as well as the spatial distribution of genotypes, suggest co-existing domestic and wild T. gondii transmission cycles that likely overlap at the interface of developed and undeveloped lands. Anthropogenic development driving contact between these cycles may increase atypical T. gondii genotypes in domestic cats and facilitate transmission of potentially more pathogenic genotypes to humans, domestic animals

  14. Using molecular epidemiology to track Toxoplasma gondii from terrestrial carnivores to marine hosts: implications for public health and conservation.

    Directory of Open Access Journals (Sweden)

    Elizabeth VanWormer

    Full Text Available Environmental transmission of the zoonotic parasite Toxoplasma gondii, which is shed only by felids, poses risks to human and animal health in temperate and tropical ecosystems. Atypical T. gondii genotypes have been linked to severe disease in people and the threatened population of California sea otters. To investigate land-to-sea parasite transmission, we screened 373 carnivores (feral domestic cats, mountain lions, bobcats, foxes, and coyotes for T. gondii infection and examined the distribution of genotypes in 85 infected animals sampled near the sea otter range.Nested PCR-RFLP analyses and direct DNA sequencing at six independent polymorphic genetic loci (B1, SAG1, SAG3, GRA6, L358, and Apico were used to characterize T. gondii strains in infected animals. Strains consistent with Type X, a novel genotype previously identified in over 70% of infected sea otters and four terrestrial wild carnivores along the California coast, were detected in all sampled species, including domestic cats. However, odds of Type X infection were 14 times higher (95% CI: 1.3-148.6 for wild felids than feral domestic cats. Type X infection was also linked to undeveloped lands (OR = 22, 95% CI: 2.3-250.7. A spatial cluster of terrestrial Type II infection (P = 0.04 was identified in developed lands bordering an area of increased risk for sea otter Type II infection. Two spatial clusters of animals infected with strains consistent with Type X (P ≤ 0.01 were detected in less developed landscapes.Differences in T. gondii genotype prevalence among domestic and wild felids, as well as the spatial distribution of genotypes, suggest co-existing domestic and wild T. gondii transmission cycles that likely overlap at the interface of developed and undeveloped lands. Anthropogenic development driving contact between these cycles may increase atypical T. gondii genotypes in domestic cats and facilitate transmission of potentially more pathogenic genotypes to humans

  15. Toxoplasmosis: a review | Efunshile | Nigerian Medical Practitioner

    African Journals Online (AJOL)

    Toxoplasmosis is caused by an obligate intracellular protozoan parasite, Toxoplasma gondii which is estimated to infect about a third of the human population. Infections have also been documented in more than 350 species of birds and mammals. Cats are the only definitive hosts. Infection is mostly a symptomatic in ...

  16. Helminth parasites of cats from the Vientiane Province, Laos, as indicators of the occurrence of causative agents of human parasitoses

    Directory of Open Access Journals (Sweden)

    Scholz T.

    2003-12-01

    Full Text Available A total of 55 domestic cats (Felis calus f. domestico and one wild (Bengal cat (Prionailurus bengalensis from the Vientiane Province, central Laos, were examined for helminth parasites with emphasis given to potential human parasites. The following species were found (parasites infective to man marked with an asterisk: Opisthorchis viverrini*, Haplorchis pumilio*,H. laichui*,H. yokogawai*, Stellantchasmus falcatus* (Digenea; Spirometra sp.*, Dipylidium caninum*, Taenia taeniaeformis (Cestoda; Capillariidae gen. sp., Toxocara canis*, T. cati*, Ancylostoma ceylanicum*, A. tubaeforme, Gnathostoma spinigerum*, Physaloptera preputials (Nematoda; and Oncicola sp. (Acanthocephala. This study demonstrated that examination of cats may provide useful data on the occurrence of helminths which are potential causative agents of human diseases.

  17. Cockroaches as carriers of human intestinal parasites in two localities in Ethiopia.

    Science.gov (United States)

    Kinfu, Addisu; Erko, Berhanu

    2008-11-01

    A study was undertaken to assess the role of cockroaches as potential carriers of human intestinal parasites in Addis Ababa and Ziway, Ethiopia. A total of 6480 cockroaches were trapped from the two localities from October 2006 to March 2007. All the cockroaches trapped in Addis Ababa (n=2240) and almost 50% (2100/4240) of those trapped in Ziway were identified as Blattella germanica. The rest of the cockroaches trapped in Ziway were identified as Periplaneta brunnea (24.52%), Pycnoscelus surinamensis (16.03%) and Supella longipalpa (9.90%). Microscopic examination of the external body washes of pooled cockroaches and individual gut contents revealed that cockroaches are carriers of Entamoeba coli and Entamoeba histolytica/dispar cysts as well as Enterobius vermicularis, Trichuris trichiura, Taenia spp. and Ascaris lumbricoides ova. Besides their role as a nuisance, the present study further confirms that cockroaches serve as carriers of human intestinal parasites. The possible association of cockroaches with allergic conditions such as asthma is also discussed. Hence, appropriate control measures should be taken particularly to make hotels and residential areas free of cockroaches as they represent a health risk.

  18. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    Science.gov (United States)

    Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo

    2014-01-01

    Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005

  19. Detection of Toxoplasma gondii in a free-ranging giant anteater

    Directory of Open Access Journals (Sweden)

    Thais Oliveira Morgado

    Full Text Available ABSTRACT: Toxoplasmosis is caused by Toxoplasma gondii, an obligatory intracellular protozoan, which establishes acute and chronic infections in birds and mammals, including humans. This note reports, for the first time, the detection and sequencing of DNA from T. gondii in the peripheral blood of a young free range giant anteater (Myrmecophaga tridactyla. For the diagnosis, the following methods were used: polymerase chain reaction (PCR and positive serology (1:800 by means of the modified agglutination test (MAT. Since this species may be consumed by humans and predated by wild felids, its importance is emphasized as a probable source of zoonotic infection, in addition to its possible participation in the infection enzootic cycle. Although, parasitemia has been confirmed in this specimen, it presented no clinical sign of infection.

  20. Loop-Mediated Isothermal Amplification-Lateral-Flow Dipstick (LAMP-LFD) to detect Toxoplasma gondii oocyst in ready-to-eat salad.

    Science.gov (United States)

    Lalle, Marco; Possenti, Alessia; Dubey, Jitender P; Pozio, Edoardo

    2018-04-01

    The apicomplexan parasite Toxoplasma gondii is the causative agent of toxoplasmosis, a foodborne zoonosis with a global distribution and estimated to cause up to 20% of the total foodborne disease burden in Europe. Association between T. gondii infection and the consumption of unwashed raw fruits and vegetables contaminated with oocysts has been reported and the increasing habit to eat pre-washed ready-to-eat salads poses a new potential risk for consumers. It is therefore important to trace the occurrence of potential contamination with this parasite to guarantee the safety of ready-to-eat vegetables. Detection of T. gondii in vegetables by molecular techniques has been achieved but low sensitivity (PCR) or expensive equipments (qPCR) limit routine applicability. Here, we describe the development and validation of a sensitive and robust method relying on a LAMP assay, targeting the 529 bp locus, to detect T. gondii oocysts down to 25 oocysts/50 g in ready-to-eat baby lettuce. The LAMP has been also adapted for a faster visualization of the result by a lateral flow dipstick chromatographic detection method. Copyright © 2017 Elsevier Ltd. All rights reserved.