WorldWideScience

Sample records for human parainfluenza virus

  1. Human Parainfluenza Viruses

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search The CDC Human Parainfluenza Viruses (HPIVs) Note: Javascript is disabled or ... CDC.gov . Recommend on Facebook Tweet Share Compartir Human parainfluenza viruses (HPIVs) commonly cause respiratory illnesses in ...

  2. About Human Parainfluenza Viruses (HPIVs)

    Science.gov (United States)

    ... Healthcare Professionals Clinical Overview Laboratory Diagnosis HPIV Seasons Resources & References About Human Parainfluenza Viruses (HPIVs) Recommend on Facebook Tweet Share Compartir Symptoms & Illnesses Lists symptoms and ...

  3. Human and Mouse Eosinophils Have Antiviral Activity against Parainfluenza Virus.

    Science.gov (United States)

    Drake, Matthew G; Bivins-Smith, Elizabeth R; Proskocil, Becky J; Nie, Zhenying; Scott, Gregory D; Lee, James J; Lee, Nancy A; Fryer, Allison D; Jacoby, David B

    2016-09-01

    Respiratory viruses cause asthma exacerbations. Because eosinophils are the prominent leukocytes in the airways of 60-70% of patients with asthma, we evaluated the effects of eosinophils on a common respiratory virus, parainfluenza 1, in the lung. Eosinophils recruited to the airways of wild-type mice after ovalbumin sensitization and challenge significantly decreased parainfluenza virus RNA in the lungs 4 days after infection compared with nonsensitized animals. This antiviral effect was also seen in IL-5 transgenic mice with an abundance of airway eosinophils (NJ.1726) but was lost in transgenic eosinophil-deficient mice (PHIL) and in IL-5 transgenic mice crossed with eosinophil-deficient mice (NJ.1726-PHIL). Loss of the eosinophil granule protein eosinophil peroxidase, using eosinophil peroxidase-deficient transgenic mice, did not reduce eosinophils' antiviral effect. Eosinophil antiviral mechanisms were also explored in vitro. Isolated human eosinophils significantly reduced parainfluenza virus titers. This effect did not involve degradation of viral RNA by eosinophil granule RNases. However, eosinophils treated with a nitric oxide synthase inhibitor lost their antiviral activity, suggesting eosinophils attenuate viral infectivity through production of nitric oxide. Consequently, eosinophil nitric oxide production was measured with an intracellular fluorescent probe. Eosinophils produced nitric oxide in response to virus and to a synthetic agonist of the virus-sensing innate immune receptor, Toll-like receptor (TLR) 7. IFNγ increased expression of eosinophil TLR7 and potentiated TLR7-induced nitric oxide production. These results suggest that eosinophils promote viral clearance in the lung and contribute to innate immune responses against respiratory virus infections in humans.

  4. Identification of a natural human serotype 3 parainfluenza virus

    Directory of Open Access Journals (Sweden)

    Wang Xiao-Jing

    2011-02-01

    Full Text Available Abstract Parainfluenza virus is an important pathogen threatening the health of animals and human, which brings human many kinds of disease, especially lower respiratory tract infection involving infants and young children. In order to control the virus, it is necessary to fully understand the molecular basis resulting in the genetic diversity of the virus. Homologous recombination is one of mechanisms for the rapid change of genetic diversity. However, as a negative-strand virus, it is unknown whether the recombination can naturally take place in human PIV. In this study, we isolated and identified a mosaic serotype 3 human PIV (HPIV3 from in China, and also provided several putative PIV mosaics from previous reports to reveal that the recombination can naturally occur in the virus. In addition, two swine PIV3 isolates transferred from cattle to pigs were found to have mosaic genomes. These results suggest that homologous recombination can promote the genetic diversity and potentially bring some novel biologic characteristics of HPIV.

  5. Rhabdomyolysis Associated with Parainfluenza Virus

    Directory of Open Access Journals (Sweden)

    Miltiadis Douvoyiannis

    2013-01-01

    Full Text Available Influenza virus is the most frequently reported viral cause of rhabdomyolysis. A 7-year-old child is presented with rhabdomyolysis associated with parainfluenza type 2 virus. Nine cases of rhabdomyolysis associated with parainfluenza virus have been reported. Complications may include electrolyte disturbances, acute renal failure, and compartment syndrome.

  6. Expression of the Surface Glycoproteins of Human Parainfluenza Virus Type 3 by Bovine Parainfluenza Virus Type 3, a Novel Attenuated Virus Vaccine Vector

    OpenAIRE

    Haller, Aurelia A.; Miller, Tessa; Mitiku, Misrach; Coelingh, Kathleen

    2000-01-01

    Bovine parainfluenza virus type 3 (bPIV3) is being evaluated as an intranasal vaccine for protection against human PIV3 (hPIV3). In young infants, the bPIV3 vaccine appears to be infectious, attenuated, immunogenic, and genetically stable, which are desirable characteristics for an RNA virus vector. To test the potential of the bPIV3 vaccine strain as a vector, an infectious DNA clone of bPIV3 was assembled and recombinant bPIV3 (r-bPIV3) was rescued. r-bPIV3 displayed a temperature-sensitive...

  7. Parainfluenza virus as a cause of acute respiratory infection in hospitalized children.

    Science.gov (United States)

    Pecchini, Rogério; Berezin, Eitan Naaman; Souza, Maria Cândida; Vaz-de-Lima, Lourdes de Andrade; Sato, Neuza; Salgado, Maristela; Ueda, Mirthes; Passos, Saulo Duarte; Rangel, Raphael; Catebelota, Ana

    2015-01-01

    Human parainfluenza viruses account for a significant proportion of lower respiratory tract infections in children. To assess the prevalence of Human parainfluenza viruses as a cause of acute respiratory infection and to compare clinical data for this infection against those of the human respiratory syncytial virus. A prospective study in children younger than five years with acute respiratory infection was conducted. Detection of respiratory viruses in nasopharyngeal aspirate samples was performed using the indirect immunofluorescence reaction. Length of hospital stay, age, clinical history and physical exam, clinical diagnoses, and evolution (admission to Intensive Care Unit or general ward, discharge or death) were assessed. Past personal (premature birth and cardiopathy) as well as family (smoking and atopy) medical factors were also assessed. A total of 585 patients were included with a median age of 7.9 months and median hospital stay of six days. No difference between the HRSV+ and HPIV+ groups was found in terms of age, gender or length of hospital stay. The HRSV+ group had more fever and cough. Need for admission to the Intensive Care Unit was similar for both groups but more deaths were recorded in the HPIV+ group. The occurrence of parainfluenza peaked during the autumn in the first two years of the study. Parainfluenza was responsible for significant morbidity, proving to be the second-most prevalent viral agent in this population after respiratory syncytial virus. No difference in clinical presentation was found between the two groups, but mortality was higher in the HPIV+ group. Copyright © 2015. Published by Elsevier Editora Ltda.

  8. Prevalence of Human Parainfluenza Viruses and Noroviruses Genomes on Office Fomites.

    Science.gov (United States)

    Stobnicka, Agata; Gołofit-Szymczak, Małgorzata; Wójcik-Fatla, Angelina; Zając, Violetta; Korczyńska-Smolec, Joanna; Górny, Rafał L

    2018-06-01

    The aim of this study was to evaluate the potential role of office fomites in respiratory (human parainfluenza virus 1-HPIV1, human parainfluenza virus 3-HPIV3) and enteric (norovirus GI-NoV GI, norovirus GII-NoV GII) viruses transmission by assessing the occurrence of these viruses on surfaces in office buildings. Between 2016 and 2017, a total of 130 surfaces from open-space and non-open-space rooms in office buildings located in one city were evaluated for HPIV1, HPIV3, NoV GI, and NoV GII viral RNA presence. Detection of viruses was performed by RT-qPCR method. Study revealed 27 positive samples, among them 59.3% were HPIV3-positive, 25.9% HPIV1-positive, and 14.8% NoV GII-positive. All tested surfaces were NoV GI-negative. Statistical analysis of obtained data showed that the surfaces of office equipment including computer keyboards and mice, telephones, and desktops were significantly more contaminated with respiratory viruses than the surfaces of building equipment elements such as door handles, light switches, or ventilation tracts (χ 2 p = 0.006; Fisher's Exact p = 0.004). All examined surfaces were significantly more contaminated with HPIVs than NoVs (χ 2 p = 0.002; Fisher's Exact p = 0.003). Office fomites in open-space rooms were more often contaminated with HPIVs than with NoVs (χ 2 p = 0.016; Fisher's Exact p = 0.013). The highest average concentration of HPIVs RNA copies was observed on telephones (1.66 × 10 2 copies/100 cm 2 ), while NoVs on the light switches (1.40 × 10 2 copies/100 cm 2 ). However, the Kruskal-Wallis test did not show statistically significant differences in concentration levels of viral RNA copies on surfaces between the all tested samples. This study unequivocally showed that individuals in office environment may have contact with both respiratory and enteric viral particles present on frequently touched surfaces.

  9. Epidemiology and clinical presentation of the four human parainfluenza virus types

    Directory of Open Access Journals (Sweden)

    Liu Wen-Kuan

    2013-01-01

    Full Text Available Abstract Background Human parainfluenza viruses (HPIVs are important causes of upper respiratory tract illness (URTI and lower respiratory tract illness (LRTI. To analyse epidemiologic and clinical characteristics of the four types of human parainfluenza viruses (HPIVs, patients with acute respiratory tract illness (ARTI were studied in Guangzhou, southern China. Methods Throat swabs (n=4755 were collected and tested from children and adults with ARTI over a 26-month period, and 4447 of 4755 (93.5% patients’ clinical presentations were recorded for further analysis. Results Of 4755 patients tested, 178 (3.7% were positive for HPIV. Ninety-nine (2.1% samples were positive for HPIV-3, 58 (1.2% for HPIV-1, 19 (0.4% for HPIV-2 and 8 (0.2% for HPIV-4. 160/178 (88.9% HPIV-positive samples were from paediatric patients younger than 5 years old, but no infant under one month of age was HPIV positive. Seasonal peaks of HPIV-3 and HPIV-1 occurred as autumn turned to winter and summer turned to autumn. HPIV-2 and HPIV-4 were detected less frequently, and their frequency of isolation increased when the frequency of HPIV-3 and HPIV-1 declined. HPIV infection led to a wide spectrum of symptoms, and more “hoarseness” (p=0.015, “abnormal pulmonary breathing sound” (p Conclusions HPIV infection led to a wide spectrum of symptoms, and similar clinical manifestations were found in the patients with four different types of HPIVs. The study suggested pathogenic activity of HPIV in gastrointestinal illness. The clinical presentation of HPIV infection may differ by patient age.

  10. Parainfluenza virus infections in a tropical city: clinical and epidemiological aspects

    Directory of Open Access Journals (Sweden)

    Mariana Mota Moura Fé

    Full Text Available Little information on the epidemiology and clinical characteristics of human parainfluenza virus (HPIV infections, especially in children from tropical countries, has been published. The aim of this study was to determine the frequency of HPIV infections in children attended at a large hospital in Fortaleza in Northeast Brazil, and describe seasonal patterns, clinical and epidemiological characteristics of these infections. From January 2001 to December 2006, a total of 3070 nasopharyngeal aspirates collected from children were screened by indirect immunofluorescence for human parainfluenza viruses 1, 2, and 3 (HPIV-1, 2 and 3 and other respiratory viruses. Viral antigens were identified in 933 samples and HPIV in 117. The frequency of HPIV-3, HPIV-1 and HPIV-2 was of 83.76%, 11.96% and 4.27%, respectively. Only HPIV-3 showed a seasonal occurrence, with most cases observed from September to November, and with an inverse relationship to the rainy season. Most HPIV-3 infections seen in outpatients were diagnosed as upper respiratory tract infections.

  11. Identification of Interferon-Stimulated Gene Proteins That Inhibit Human Parainfluenza Virus Type 3.

    Science.gov (United States)

    Rabbani, M A G; Ribaudo, Michael; Guo, Ju-Tao; Barik, Sailen

    2016-12-15

    A major arm of cellular innate immunity is type I interferon (IFN), represented by IFN-α and IFN-β. Type I IFN transcriptionally induces a large number of cellular genes, collectively known as IFN-stimulated gene (ISG) proteins, which act as antivirals. The IFIT (interferon-induced proteins with tetratricopeptide repeats) family proteins constitute a major subclass of ISG proteins and are characterized by multiple tetratricopeptide repeats (TPRs). In this study, we have interrogated IFIT proteins for the ability to inhibit the growth of human parainfluenza virus type 3 (PIV3), a nonsegmented negative-strand RNA virus of the Paramyxoviridae family and a major cause of respiratory disease in children. We found that IFIT1 significantly inhibited PIV3, whereas IFIT2, IFIT3, and IFIT5 were less effective or not at all. In further screening a set of ISG proteins we discovered that several other such proteins also inhibited PIV3, including IFITM1, IDO (indoleamine 2,3-dioxygenase), PKR (protein kinase, RNA activated), and viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible)/Cig5. The antiviral effect of IDO, the enzyme that catalyzes the first step of tryptophan degradation, could be counteracted by tryptophan. These results advance our knowledge of diverse ISG proteins functioning as antivirals and may provide novel approaches against PIV3. The innate immunity of the host, typified by interferon (IFN), is a major antiviral defense. IFN inhibits virus growth by inducing a large number of IFN-stimulated gene (ISG) proteins, several of which have been shown to have specific antiviral functions. Parainfluenza virus type 3 (PIV3) is major pathogen of children, and no reliable vaccine or specific antiviral against it currently exists. In this article, we report several ISG proteins that strongly inhibit PIV3 growth, the use of which may allow a better antiviral regimen targeting PIV3. Copyright © 2016, American Society for Microbiology

  12. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge

    International Nuclear Information System (INIS)

    Bukreyev, Alexander; Marzi, Andrea; Feldmann, Friederike; Zhang Liqun; Yang Lijuan; Ward, Jerrold M.; Dorward, David W.; Pickles, Raymond J.; Murphy, Brian R.; Feldmann, Heinz; Collins, Peter L.

    2009-01-01

    We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/ΔF-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/ΔF-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface, the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/ΔF-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV

  13. Long-Term Shedding of Influenza Virus, Parainfluenza Virus, Respiratory Syncytial Virus and Nosocomial Epidemiology in Patients with Hematological Disorders.

    Directory of Open Access Journals (Sweden)

    Nicola Lehners

    Full Text Available Respiratory viruses are a cause of upper respiratory tract infections (URTI, but can be associated with severe lower respiratory tract infections (LRTI in immunocompromised patients. The objective of this study was to investigate the genetic variability of influenza virus, parainfluenza virus and respiratory syncytial virus (RSV and the duration of viral shedding in hematological patients. Nasopharyngeal swabs from hematological patients were screened for influenza, parainfluenza and RSV on admission as well as on development of respiratory symptoms. Consecutive swabs were collected until viral clearance. Out of 672 tested patients, a total of 111 patients (17% were infected with one of the investigated viral agents: 40 with influenza, 13 with parainfluenza and 64 with RSV; six patients had influenza/RSV or parainfluenza/RSV co-infections. The majority of infected patients (n = 75/111 underwent stem cell transplantation (42 autologous, 48 allogeneic, 15 autologous and allogeneic. LRTI was observed in 48 patients, of whom 15 patients developed severe LRTI, and 13 patients with respiratory tract infection died. Phylogenetic analysis revealed a variety of influenza A(H1N1pdm09, A(H3N2, influenza B, parainfluenza 3 and RSV A, B viruses. RSV A was detected in 54 patients, RSV B in ten patients. The newly emerging RSV A genotype ON1 predominated in the study cohort and was found in 48 (75% of 64 RSV-infected patients. Furthermore, two distinct clusters were detected for RSV A genotype ON1, identical RSV G gene sequences in these patients are consistent with nosocomial transmission. Long-term viral shedding for more than 30 days was significantly associated with prior allogeneic transplantation (p = 0.01 and was most pronounced in patients with RSV infection (n = 16 with a median duration of viral shedding for 80 days (range 35-334 days. Long-term shedding of respiratory viruses might be a catalyzer of nosocomial transmission and must be considered for

  14. Parainfluenza Virus Infection Sensitizes Cancer Cells to DNA-Damaging Agents: Implications for Oncolytic Virus Therapy.

    Science.gov (United States)

    Fox, Candace R; Parks, Griffith D

    2018-04-01

    A parainfluenza virus 5 (PIV5) with mutations in the P/V gene (P/V-CPI - ) is restricted for spread in normal cells but not in cancer cells in vitro and is effective at reducing tumor burdens in mouse model systems. Here we show that P/V-CPI - infection of HEp-2 human laryngeal cancer cells results in the majority of the cells dying, but unexpectedly, over time, there is an emergence of a population of cells that survive as P/V-CPI - persistently infected (PI) cells. P/V-CPI - PI cells had elevated levels of basal caspase activation, and viability was highly dependent on the activity of cellular inhibitor-of-apoptosis proteins (IAPs) such as Survivin and XIAP. In challenge experiments with external inducers of apoptosis, PI cells were more sensitive to cisplatin-induced DNA damage and cell death. This increased cisplatin sensitivity correlated with defects in DNA damage signaling pathways such as phosphorylation of Chk1 and translocation of damage-specific DNA binding protein 1 (DDB1) to the nucleus. Cisplatin-induced killing of PI cells was sensitive to the inhibition of wild-type (WT) p53-inducible protein 1 (WIP1), a phosphatase which acts to terminate DNA damage signaling pathways. A similar sensitivity to cisplatin was seen with cells during acute infection with P/V-CPI - as well as during acute infections with WT PIV5 and the related virus human parainfluenza virus type 2 (hPIV2). Our results have general implications for the design of safer paramyxovirus-based vectors that cannot establish PI as well as the potential for combining chemotherapy with oncolytic RNA virus vectors. IMPORTANCE There is intense interest in developing oncolytic viral vectors with increased potency against cancer cells, particularly those cancer cells that have gained resistance to chemotherapies. We have found that infection with cytoplasmically replicating parainfluenza virus can result in increases in the killing of cancer cells by agents that induce DNA damage, and this is linked

  15. Attenuated Human Parainfluenza Virus Type 1 Expressing Ebola Virus Glycoprotein GP Administered Intranasally Is Immunogenic in African Green Monkeys.

    Science.gov (United States)

    Lingemann, Matthias; Liu, Xueqiao; Surman, Sonja; Liang, Bo; Herbert, Richard; Hackenberg, Ashley D; Buchholz, Ursula J; Collins, Peter L; Munir, Shirin

    2017-05-15

    The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation. IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect

  16. Inhibition of Primary Clinical Isolates of Human Parainfluenza Virus by DAS181 in Cell Culture and in a Cotton Rat Model

    OpenAIRE

    Jones, B. G.; Hayden, R.T.; Hurwitz, J. L.

    2013-01-01

    DAS181 is a novel drug in development for the treatment of influenza as well as human parainfluenza viruses (hPIV). Previous studies demonstrated that DAS181 inhibited laboratory strains of hPIV, but no tests were conducted with primary clinical isolates of hPIV. To fill this gap, we studied six primary isolates including hPIV-2 and hPIV-3. First tests showed that the amplification of all viruses in vitro was reproducibly inhibited with DAS181 drug concentrations ranging between 0.1 and 1 nM....

  17. Virucidal activities of medium- and long-chain fatty alcohols and lipids against respiratory syncytial virus and parainfluenza virus type 2: comparison at different pH levels.

    Science.gov (United States)

    Hilmarsson, H; Traustason, B S; Kristmundsdóttir, T; Thormar, H

    2007-01-01

    Recent studies have shown that some lipids and fatty alcohols have microbicidal activities against a broad variety of pathogens. In this study, virucidal activities of fatty acids, monoglycerides and fatty alcohols were tested against respiratory syncytial virus (RSV) and human parainfluenza virus type 2 (HPIV2) at different concentrations, times and pH levels. The most active compounds were mixed with milk products and fruit juices and the mixtures tested for virucidal effects. The aim was to determine which compounds are the most active against these respiratory viruses and could possibly be used in pharmaceutical formulations or as additives to milk products or juice. Several compounds caused a significant inactivation of virus, and there was generally a good agreement between the activities against RSV and parainfluenza virus. By changing the pH from 7 to 4.2, the virucidal activities of some of the compounds were greatly increased, i.e., they inactivated virus in a shorter time and at lower concentrations. The most active compound tested was 1-monoglyceride of capric acid, monocaprin, which also showed activity against influenza A virus and significant virucidal activities after addition to milk products and fruit juices, even at a concentration as low as 0.06-0.12%. The significant virucidal activities of fatty alcohols and lipids on RSV and parainfluenza virus demonstrated in this in vitro study raise the question of the feasibility of using such compounds as ingredients in pharmaceutical dosage forms against respiratory infections caused by these viruses, and possibly other paramyxo- and myxoviruses.

  18. Novel Atlantic bottlenose dolphin parainfluenza virus TtPIV-1 clusters with bovine PIV-3 genotype B strains

    Science.gov (United States)

    Parainfluenza virus 3 (PIV-3) is a common viral infection not only in humans, but many other species. Serological evidence suggests that nearly 100% of children in the United States have been infected with PIV-3 by five years of age. Similarly, in cattle PIV-3 is commonly associated with bovine re...

  19. 5-Hydroxytryptophan, a major product of tryptophan degradation, is essential for optimal replication of human parainfluenza virus.

    Science.gov (United States)

    Rabbani, M A G; Barik, Sailen

    2017-03-01

    Interferon (IFN) exerts its antiviral effect by inducing a large family of cellular genes, named interferon (IFN)-stimulated genes (ISGs). An intriguing member of this family is indoleamine 2,3-dioxygenase (IDO), which catalyzes the first and rate-limiting step of the main branch of tryptophan (Trp) degradation, the kynurenine pathway. We recently showed that IDO strongly inhibits human parainfluenza virus type 3 (PIV3), a significant respiratory pathogen. Here, we show that 5-hydoxytryptophan (5-HTP), the first product of an alternative branch of Trp degradation and a serotonin precursor, is essential to protect virus growth against IDO in cell culture. We also show that the apparent antiviral effect of IDO on PIV3 is not due to the generation of the kynurenine pathway metabolites, but rather due to the depletion of intracellular Trp by IDO, as a result of which this rare amino acid becomes unavailable for the alternative, proviral 5-HTP pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge.

    Science.gov (United States)

    Mooney, Alaina J; Gabbard, Jon D; Li, Zhuo; Dlugolenski, Daniel A; Johnson, Scott K; Tripp, Ralph A; He, Biao; Tompkins, S Mark

    2017-12-01

    Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats. IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing

  1. ENDOGENOUS PYROGEN RELEASE FROM RABBIT BLOOD CELLS INCUBATED IN VITRO WITH PARAINFLUENZA VIRUS.

    Science.gov (United States)

    ATKINS, E; CRONIN, M; ISACSON, P

    1964-12-11

    Rabbit blood cells incubated in vitro with purified parainfluenza-5 virus (DA strain) released a rapidly acting pyrogen. Spleen and lymph node cells were inactive. The pyrogen resembled in behavior a pyrogen extracted from granulocytic exudates. Similar cells in the blood are believed to be activated by virus in vivo to produce the circulating endogenous pyrogen that mediates virus-induced fever.

  2. [Detection and Analysis of Human Parainfluenza Virus Infection in Hospitalized Adults with Acute Respiratory Tract Infections].

    Science.gov (United States)

    Li, Xing-Qiao; Liu, Xue-Wei; Zhou, Tao; Pei, Xiao-Fang

    2017-11-01

    To investigate the prevalence and gene characteristics of different groups of human parainfluenza virus (HPIV) infection in hospitalized adults with acute respiratory tract infections (ARI). RT-PCR was used to detect HPIV hemagglutinin (HA) DNA,which was extracted from sputum samples of 1 039 adult patients with ARI from March,2014 to June,2016. The HA gene amplified from randomly selected positive samples were sequenced to analyze the homology and variation. 10.6% (110/1 039) of these samples were positive for HPIV,including 8 cases of HPIV-1,22 cases of HPIV-2,46 cases of HPIV-3 and 34 cases of HPIV-4. Detectable rate varied among different groups of HPIV according to seasons of the year and ages of patients. No significant differences were found between the positive samples and the reference sequences. Compared with different reference strains of different regions,the genetic distance of nucleotide is the smallest between the strains tested in this study and the reference strains of other provinces and cities in China. In Chengdu region,HPIV virus is highly detected in ARI,all subtypes were detected with HPIV-3 being the main subtype.

  3. High Resistance of Human Parainfluenza Type 2 Virus Protein-Expressing Cells to the Antiviral and Anti-Cell Proliferative Activities of Alpha/Beta Interferons: Cysteine-Rich V-Specific Domain Is Required for High Resistance to the Interferons

    OpenAIRE

    Nishio, Machiko; Tsurudome, Masato; Ito, Morihiro; Kawano, Mitsuo; Komada, Hiroshi; Ito, Yasuhiko

    2001-01-01

    Human parainfluenza type 2 virus (hPIV-2)-infected HeLa (HeLa-CA) cells and hPIV-2 V-expressing HeLa (HeLa-V) cells show high resistance to alpha/beta interferons (IFN-α/β) irrespective of whether vesicular stomatitis virus or Sindbis virus is used as a challenge virus. When Sindbis virus is used, these cells show high susceptibility to human IFN-γ. Furthermore, the multiplication of HeLa-V cells is not inhibited by IFN-α/β. HeLa cells expressing the N-terminally truncated V protein show resi...

  4. Crazy-paving sign in high-resolution computed tomography in parainfluenza virus pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Matsuno, Osamu [Department of Respiratory Disease, NHO National Osaka Minami Medical Center, Kido higashi machi 2-1, Kawachinagano City, Osaka 586-8521 (Japan)], E-mail: matsuno@ommc-hp.jp; Hayama, Yoshitomo; Honda, Hidehiro; Yamane, Hiroyuki; Yamamoto, Suguru; Ueno, Kiyonobu [Department of Respiratory Disease, NHO National Osaka Minami Medical Center, Kido higashi machi 2-1, Kawachinagano City, Osaka 586-8521 (Japan); Saeki, Yukihiko [Department of Clinical Research, NHO National Osaka Minami Medical Center, Kido higashi machi 2-1, Kawachinagano city, Osaka 586-8521 (Japan)

    2010-05-15

    The crazy-paving sign is the appearance of a smooth linear pattern superimposed on an area of ground-glass opacity on thin-section computed tomography (CT). A 69-year-old woman was admitted to our hospital for treatment of pneumonia. Thoracic CT showed a crazy-paving sign in the right lung field on admission. She received ceftriaxone and clarithromycin, and the symptoms and infiltration shadow promptly disappeared. Serologic testing revealed a greater than 4-fold increase in the IgG titer for parainfluenza virus I. To our knowledge, there is no previous report of the crazy-paving sign in associated with viral pneumonia in a non-immunocompromised host or with parainfluenza pneumonia.

  5. A Tryptophan-Rich Motif in the Human Parainfluenza Virus Type 2 V Protein Is Critical for the Blockade of Toll-Like Receptor 7 (TLR7)- and TLR9-Dependent Signaling▿

    OpenAIRE

    Kitagawa, Yoshinori; Yamaguchi, Mayu; Zhou, Min; Komatsu, Takayuki; Nishio, Machiko; Sugiyama, Tsuyoshi; Takeuchi, Kenji; Itoh, Masae; Gotoh, Bin

    2011-01-01

    Plasmacytoid dendritic cells (pDCs) do not produce alpha interferon (IFN-α) unless viruses cause a systemic infection or overcome the first-line defense provided by conventional DCs and macrophages. We show here that even paramyxoviruses, whose infections are restricted to the respiratory tract, have a V protein able to prevent Toll-like receptor 7 (TLR7)- and TLR9-dependent IFN-α induction specific to pDCs. Mutational analysis of human parainfluenza virus type 2 demonstrates that the second ...

  6. 21 CFR 866.3400 - Parainfluenza virus serological reagents.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3400 Parainfluenza... that consist of antigens and antisera used in serological tests to identify antibodies to parainfluenza...

  7. Current management of parainfluenza pneumonitis in immunocompromised patients: a review

    Directory of Open Access Journals (Sweden)

    Falsey AR

    2012-08-01

    Full Text Available Ann R FalseyUniversity of Rochester, Rochester General Hospital, Rochester, NY, USAAbstract: Parainfluenza viruses (PIV are common respiratory viruses that belong to the Paramyxoviridae family. PIV infection can lead to a wide variety of clinical syndromes ranging from mild upper respiratory illness to severe pneumonia. Severe disease can be seen in elderly or chronically ill persons and may be fatal in persons with compromised immune systems, particularly children with severe combined immunodeficiency disease syndrome and hematopathic stem cell transplant recipients. At present, there are no licensed antiviral agents for the treatment of PIV infection. Aerosolized or systemic ribavirin in combination with intravenous gamma globulin has been reported in small, uncontrolled series and case reports of immunocompromised patients. A number of agents show antiviral activity in vitro and in animals, but none are currently approved for human use.Keywords: parainfluenza virus, antiviral agents, immunocompromised host

  8. A study of genetic variability of human parainfluenza virus type 1 in Croatia, 2011-2014.

    Science.gov (United States)

    Košutić-Gulija, Tanja; Slovic, Anamarija; Ljubin-Sternak, Sunčanica; Mlinarić-Galinović, Gordana; Forčić, Dubravko

    2016-08-01

    Molecular epidemiology of human parainfluenza viruses type 1 (HPIV1) was investigated. Samples were collected from patients hospitalized in Croatia during the three consecutive epidemic seasons (2011-2014). Results indicated co-circulation of two major genetic clusters of HPIV1. Samples from the current study refer to clades II and III in a phylogenetic tree of haemagglutinin-neuraminidase (HN) gene. Additional phylogenetic trees of fusion (F) and phosphoprotein (P) genes confirmed the topology. Analysis of nucleotide diversity of entire P, F and HN genes demonstrated similar values: 0.0255, 0.0236 and 0.0237, respectively. However, amino acid diversity showed F protein to be the most conserved, while P protein was the most tolerant to mutations. Potential N- and O-glycosylation sites suggested that HPIV1 HN protein is abundantly glycosylated, and a specific N-glycosylation pattern could distinguish between clades II and III. Analysis of potential O-glycosylation sites in F protein indicated that samples from this study have two potential O-glycosylation sites, while publicly available sequences have five potential sites. This study provides data on the molecular characterization and epidemic pattern of HPIV1 in Croatia.

  9. Safety and immunogenicity of an intranasal Sendai virus-based human parainfluenza virus type 1 vaccine in 3- to 6-year-old children.

    Science.gov (United States)

    Adderson, Elisabeth; Branum, Kristen; Sealy, Robert E; Jones, Bart G; Surman, Sherri L; Penkert, Rhiannon; Freiden, Pamela; Slobod, Karen S; Gaur, Aditya H; Hayden, Randall T; Allison, Kim; Howlett, Nanna; Utech, Jill; Allay, Jim; Knight, James; Sleep, Susan; Meagher, Michael M; Russell, Charles J; Portner, Allen; Hurwitz, Julia L

    2015-03-01

    Human parainfluenza virus type 1 (hPIV-1) is the most common cause of laryngotracheobronchitis (croup), resulting in tens of thousands of hospitalizations each year in the United States alone. No licensed vaccine is yet available. We have developed murine PIV-1 (Sendai virus [SeV]) as a live Jennerian vaccine for hPIV-1. Here, we describe vaccine testing in healthy 3- to 6-year-old hPIV-1-seropositive children in a dose escalation study. One dose of the vaccine (5 × 10(5), 5 × 10(6), or 5 × 10(7) 50% egg infectious doses) was delivered by the intranasal route to each study participant. The vaccine was well tolerated by all the study participants. There was no sign of vaccine virus replication in the airway in any participant. Most children exhibited an increase in antibody binding and neutralizing responses toward hPIV-1 within 4 weeks from the time of vaccination. In several children, antibody responses remained above incoming levels for at least 6 months after vaccination. Data suggest that SeV may provide a benefit to 3- to 6-year-old children, even when vaccine recipients have preexisting cross-reactive antibodies due to previous exposures to hPIV-1. Results encourage the testing of SeV administration in young seronegative children to protect against the serious respiratory tract diseases caused by hPIV-1 infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Human parainfluenza virus type 2 hemagglutinin-neuramindase gene: sequence and phylogenetic analysis of the Saudi strain Riyadh 105/2009

    Directory of Open Access Journals (Sweden)

    Almajhdi Fahad N

    2012-12-01

    Full Text Available Abstract Background Although human parainfluenza type 2 (HPIV-2 virus is an important respiratory pathogen, a little is known about strains circulating in Saudi Arabia. Findings Among 180 nasopharyngeal aspirates collected from suspected cases in Riyadh, only one sample (0.56% was confirmed HPIV-2 positive by nested RT-PCR. The sample that was designated Riyadh 105/2009 was used for sequencing and phylogenetic analysis of the most variable virus gene; the haemagglutinin-neuramindase (HN. Comparison of HN gene of Riyadh 105/2009 strain and the relevant sequences available in GenBank revealed a strong relationship with Oklahoma-94-2009 strain. Phylogenetic analysis indicated four different clusters of HPIV-2 strains (G1-4. Twenty-three amino acid substitutions were recorded for Riyadh 105/2009, from which four are unique. The majority of substitutions (n=18 had changed their amino acids characteristics. By analyzing the effect of the recorded substitutions on the protein function using SIFT program, only two located at positions 360 and 571 were predicted to be deleterious. Conclusions The presented changes of Riyadh 105/2009 strain may possess potential effect on the protein structure and/or function level. This is the first report that describes partial characterization of Saudi HPIV-2 strain.

  11. THE TREATMENT EFFECT OF OXYTETRACYCLINE AND VITAMIN C IN AN EPISODE OF PARAINFLUENZA SHEEP IN TIMIS COUNTY

    Directory of Open Access Journals (Sweden)

    Stancu, A

    2017-06-01

    Full Text Available Sheep parainfluenza It is a disease with high diffusibility, sometimes with fatal serious, especially youth. It is caused by parainfluenza 3 virus (PI-3, identical to the bovine parainfluenza virus isolate, in combination with certain bacteria. PI-3 virus was firstly isolated from Hore et al. (1966 in the lungs and nasal mucus of sheep with pneumopathies and Gilmour et al (1968 successfully experimenting with an inactivated vaccine for the prophylaxis of diseases. In our country, parainfluenza sheep was diagnosed in 1977 by pathological examinations. Also by pathological examination was differentiated by Maedi-visna disease and pulmonary adenomatosis.

  12. Parainfluenza Virus Type 1 Induces Epithelial IL-8 Production via p38-MAPK Signalling

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Galván Morales

    2014-01-01

    Full Text Available Human parainfluenza virus type 1 (HPIV-1 is the most common cause of croup in infants. The aim of this study was to describe molecular mechanisms associated with IL-8 production during HPIV-1 infection and the role of viral replication in MAPK synthesis and activation. An in vitro model of HPIV-1 infection in the HEp-2 and A549 cell lines was used; a kinetic-based ELISA for IL-8 detection was also used, phosphorylation of the mitogen-activated protein kinases (MAPKs was identified by Western blot analysis, and specific inhibitors for each kinase were used to identify which MAPK was involved. Inactivated viruses were used to assess whether viral replication is required for IL-8 production. Results revealed a gradual increase in IL-8 production at different selected times, when phosphorylation of MAPK was detected. The secretion of IL-8 in the two cell lines infected with the HPIV-1 is related to the phosphorylation of the MAPK as well as viral replication. Inhibition of p38 suppressed the secretion of IL-8 in the HEp-2 cells. No kinase activation was observed when viruses were inactivated.

  13. A tryptophan-rich motif in the human parainfluenza virus type 2 V protein is critical for the blockade of toll-like receptor 7 (TLR7)- and TLR9-dependent signaling.

    Science.gov (United States)

    Kitagawa, Yoshinori; Yamaguchi, Mayu; Zhou, Min; Komatsu, Takayuki; Nishio, Machiko; Sugiyama, Tsuyoshi; Takeuchi, Kenji; Itoh, Masae; Gotoh, Bin

    2011-05-01

    Plasmacytoid dendritic cells (pDCs) do not produce alpha interferon (IFN-α) unless viruses cause a systemic infection or overcome the first-line defense provided by conventional DCs and macrophages. We show here that even paramyxoviruses, whose infections are restricted to the respiratory tract, have a V protein able to prevent Toll-like receptor 7 (TLR7)- and TLR9-dependent IFN-α induction specific to pDCs. Mutational analysis of human parainfluenza virus type 2 demonstrates that the second Trp residue of the Trp-rich motif (Trp-X(3)-Trp-X(9)-Trp) in the C-terminal domain unique to V, a determinant for IRF7 binding, is critical for the blockade of TLR7/9-dependent signaling.

  14. First complete genome sequence of parainfluenza virus 5 isolated from lesser panda.

    Science.gov (United States)

    Zhai, Jun-Qiong; Zhai, Shao-Lun; Lin, Tao; Liu, Jian-Kui; Wang, He-Xing; Li, Bing; Zhang, He; Zou, Shu-Zhan; Zhou, Xia; Wu, Meng-Fan; Chen, Wu; Luo, Man-Lin

    2017-05-01

    Parainfluenza virus 5 (PIV5) is widespread in mammals and humans. Up to now, there is little information about PIV5 infection in lesser pandas. In this study, a PIV5 variant (named ZJQ-221) was isolated from a lesser panda with respiratory disease in Guangzhou zoo in Guangdong province, southern China. The full-length genome of ZJQ-221 was found to be 15,246 nucleotides and consisted of seven non-overlapping genes encoding eight proteins (i.e., NP, V, P, M, F, SH, HN and L). Sequence alignment and genetic analysis revealed that ZJQ-221 shared a close relationship with a PIV5 strain of canine-origin (1168-1) from South Korea. The findings of this study confirm the presence of PIV5 in lesser panda and indicate this mammal as a possible natural reservoir. Furthermore they highlight the urgent need to strengthen viral surveillance and control of PIV5 in zoo animals.

  15. Estimates of Parainfluenza Virus-Associated Hospitalizations and Cost Among Children Aged Less Than 5 Years in the United States, 1998–2010

    Science.gov (United States)

    Abedi, Glen R.; Prill, Mila M.; Langley, Gayle E.; Wikswo, Mary E.; Weinberg, Geoffrey A.; Curns, Aaron T.; Schneider, Eileen

    2018-01-01

    Background Parainfluenza virus (PIV) is the second leading cause of hospitalization for respiratory illness in young children in the United States. Infection can result in a full range of respiratory illness, including bronchiolitis, croup, and pneumonia. The recognized human subtypes of PIV are numbered 1–4. This study calculates estimates of PIV-associated hospitalizations among US children younger than 5 years using the latest available data. Methods Data from the National Respiratory and Enteric Virus Surveillance System were used to characterize seasonal PIV trends from July 2004 through June 2010. To estimate the number of PIV-associated hospitalizations that occurred annually among US children aged PIV among young children enrolled in the New Vaccine Surveillance Network. Estimates of hospitalization charges attributable to PIV infection were also calculated. Results Parainfluenza virus seasonality follows type-specific seasonal patterns, with PIV-1 circulating in odd-numbered years and PIV-2 and -3 circulating annually. The average annual estimates of PIV-associated bronchiolitis, croup, and pneumonia hospitalizations among children aged PIV-associated bronchiolitis, croup, and pneumonia hospitalizations were approximately $43 million, $58 million, and $158 million, respectively. Conclusions The majority of PIV-associated hospitalizations in young children occur among those aged 0 to 2 years. When vaccines for PIV become available, immunization would be most effective if realized within the first year of life. PMID:26908486

  16. PREVALENCE OF BOVINE HERPESVIRUS-1,PARAINFLUENZA-3,BOVINE ROTAVIRUS, BOVINE VIRAL DIARRHEA, BOVINE ADENOVIRUS-7,BOVINE LEUKEMIA VIRUS AND BLUETONGUE VIRUS ANTIBODIES IN CATTLE IN MEXICO

    OpenAIRE

    SUZAN, Victor M.; ONUMA, Misao; AGUILAR, Romero E.; MURAKAMI, Yosuke

    1983-01-01

    Sera were collected from dairy and beef cattle in 19 different states of Mexico. These sera were tested for bovine herpesvirus-1 (BHV-1), parainfluenza-3 virus (PIV-3), bovine rotavirus (BRV), bovine leukemia virus (BLV), bovine adenovirus-7 (BAV-7), bluetongue virus (BTV) and bovine viral diarrhea virus (BVDV). Seropositive rates for each virus for dairy cattle tested were 158/277(57.0%) for BHV-1,217/286(75.0%) for PIV-3,541/1498(36.1%) for BLV, 134/144(93.1%) for BRV, 39/90(43.3%) for BTV,...

  17. Haemophilus parainfluenzae urethritis among homosexual men.

    Science.gov (United States)

    Hsu, Meng-Shiuan; Wu, Mei-Yu; Lin, Tsui-Hsien; Liao, Chun-Hsing

    2015-08-01

    Haemophilus parainfluenzae is a common inhabitant of the human upper respiratory tract of the normal oral microflora. We report three men who had been having unprotected sex with men (MSM) and subsequently acquired H. parainfluenzae urethritis, which was confirmed by 16S rRNA gene sequencing analysis. Two men were treated with ceftriaxone and doxycycline, and the third man was treated with clarithromycin. All three patients responded to treatment. This case series highlights the potential role of H. parainfluenzae as a sexually transmitted genitourinary pathogen. Copyright © 2012. Published by Elsevier B.V.

  18. DAS181 Treatment of Severe Parainfluenza Virus 3 Pneumonia in Allogeneic Hematopoietic Stem Cell Transplant Recipients Requiring Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    B. Dhakal

    2016-01-01

    Full Text Available Parainfluenza virus (PIV may cause life-threatening pneumonia in allogeneic hematopoietic stem cell transplant (HSCT recipients. Currently, there are no proven effective therapies. We report the use of inhaled DAS181, a novel sialidase fusion protein, for treatment of PIV type 3 pneumonia in two allogeneic hematopoietic SCT recipients with respiratory failure.

  19. An Amino Acid of Human Parainfluenza Virus Type 3 Nucleoprotein Is Critical for Template Function and Cytoplasmic Inclusion Body Formation

    Science.gov (United States)

    Zhang, Shengwei; Chen, Longyun; Zhang, Guangyuan; Yan, Qin; Yang, Xiaodan; Ding, Binbin; Tang, Qiaopeng; Sun, Shengjun; Hu, Zhulong

    2013-01-01

    The nucleoprotein (N) and phosphoprotein (P) interaction of nonsegmented negative-strand RNA viruses is essential for viral replication; this includes N0-P (N0, free of RNA) interaction and the interaction of N-RNA with P. The precise site(s) within N that mediates the N-P interaction and the detailed regulating mechanism, however, are less clear. Using a human parainfluenza virus type 3 (HPIV3) minigenome assay, we found that an N mutant (NL478A) did not support reporter gene expression. Using in vivo and in vitro coimmunoprecipitation, we found that NL478A maintains the ability to form NL478A0-P, to self-assemble, and to form NL478A-RNA but that NL478A-RNA does not interact with P. Using an immunofluorescence assay, we found that N-P interaction provides the minimal requirement for the formation of cytoplasmic inclusion bodies, which contain viral RNA, N, P, and polymerase in HPIV3-infected cells. NL478A was unable to form inclusion bodies when coexpressed with P, but the presence of N rescued the ability of NL478A to form inclusion bodies and the transcriptional function of NL478A, thereby suggesting that hetero-oligomers formed by N and NL478A are functional and competent to form inclusion bodies. Furthermore, we found that NL478A is also defective in virus growth. To our knowledge, we are the first to use a paramyxovirus to identify a precise amino acid within N that is critical for N-RNA and P interaction but not for N0-P interaction for the formation of inclusion bodies, which appear to be bona fide sites of RNA synthesis. PMID:24027324

  20. Structure of the parainfluenza virus 5 (PIV5 hemagglutinin-neuraminidase (HN ectodomain.

    Directory of Open Access Journals (Sweden)

    Brett D Welch

    Full Text Available Paramyxoviruses cause a wide variety of human and animal diseases. They infect host cells using the coordinated action of two surface glycoproteins, the receptor binding protein (HN, H, or G and the fusion protein (F. HN binds sialic acid on host cells (hemagglutinin activity and hydrolyzes these receptors during viral egress (neuraminidase activity, NA. Additionally, receptor binding is thought to induce a conformational change in HN that subsequently triggers major refolding in homotypic F, resulting in fusion of virus and target cell membranes. HN is an oligomeric type II transmembrane protein with a short cytoplasmic domain and a large ectodomain comprising a long helical stalk and large globular head domain containing the enzymatic functions (NA domain. Extensive biochemical characterization has revealed that HN-stalk residues determine F specificity and activation. However, the F/HN interaction and the mechanisms whereby receptor binding regulates F activation are poorly defined. Recently, a structure of Newcastle disease virus (NDV HN ectodomain revealed the heads (NA domains in a "4-heads-down" conformation whereby two of the heads form a symmetrical interaction with two sides of the stalk. The interface includes stalk residues implicated in triggering F, and the heads sterically shield these residues from interaction with F (at least on two sides. Here we report the x-ray crystal structure of parainfluenza virus 5 (PIV5 HN ectodomain in a "2-heads-up/2-heads-down" conformation where two heads (covalent dimers are in the "down position," forming a similar interface as observed in the NDV HN ectodomain structure, and two heads are in an "up position." The structure supports a model in which the heads of HN transition from down to up upon receptor binding thereby releasing steric constraints and facilitating the interaction between critical HN-stalk residues and F.

  1. Immunogenicity of a modified-live virus vaccine against bovine viral diarrhea virus types 1 and 2, infectious bovine rhinotracheitis virus, bovine parainfluenza-3 virus, and bovine respiratory syncytial virus when administered intranasally in young calves.

    Science.gov (United States)

    Xue, Wenzhi; Ellis, John; Mattick, Debra; Smith, Linda; Brady, Ryan; Trigo, Emilio

    2010-05-14

    The immunogenicity of an intranasally-administered modified-live virus (MLV) vaccine in 3-8 day old calves was evaluated against bovine viral diarrhea virus (BVDV) types 1 and 2, infectious bovine rhinotracheitis (IBR) virus, parainfluenza-3 (PI-3) virus and bovine respiratory syncytial virus (BRSV). Calves were intranasally vaccinated with a single dose of a multivalent MLV vaccine and were challenged with one of the respective viruses three to four weeks post-vaccination in five separate studies. There was significant sparing of diseases in calves intranasally vaccinated with the MLV vaccine, as indicated by significantly fewer clinical signs, lower rectal temperatures, reduced viral shedding, greater white blood cell and platelet counts, and less severe pulmonary lesions than control animals. This was the first MLV combination vaccine to demonstrate efficacy against BVDV types 1 and 2, IBR, PI-3 and BRSV in calves 3-8 days of age. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. The L polymerase protein of parainfluenza virus 3 forms an oligomer and can interact with the heterologous Sendai virus L, P and C proteins

    International Nuclear Information System (INIS)

    Smallwood, Sherin; Moyer, Sue A.

    2004-01-01

    We recently showed that the L protein of Sendai virus is present as an oligomer in the active P-L polymerase complex [Smallwood et al., Virology 304 (2002) 235]. We now demonstrate using two different epitope tags that the L protein of a second respirovirus, human parainfluenza type 3 virus (PIV3), also forms an L-L complex. L oligomerization requires the coexpression of the differentially epitope tagged L proteins. By exploiting a series of C-terminal truncations the L-L binding site maps to the N-terminal half of L. There is some complex formation between the heterologous PIV3 and Sendai L and P proteins; however, the heterologous L protein does not function in transcription of either the PIV3 or Sendai template. The PIV3 C protein binds PIV3 L and inhibits RNA synthesis in vitro and in vivo. Significant homology exists between the C proteins of PIV3 and Sendai and complex formation occurs between the PIV3 and Sendai heterologous C and L proteins. In addition, the heterologous C proteins can inhibit transcription at ∼50% of the level of the homologous protein. These data suggest that while the C proteins may be functionally somewhat interchangeable, the L and P proteins are specific for each virus

  3. Inhibition of interleukin-6 expression by the V protein of parainfluenza virus 5

    International Nuclear Information System (INIS)

    Lin Yuan; Sun Minghao; Fuentes, Sandra M.; Keim, Celia D.; Rothermel, Terri; He Biao

    2007-01-01

    The V protein of parainfluenza virus 5 (PIV5) plays an important role in the evasion of host immune responses. The V protein blocks interferon (IFN) signaling in human cells by causing degradation of the STAT1 protein, a key component of IFN signaling, and blocks IFN-β production by preventing nuclear translocation of IRF3, a key transcription factor for activating IFN-β promoter. Interleukin-6 (IL-6), along with tumor necrosis factor (TNF)-α and IL-1β, is a major proinflammatory cytokine that plays important roles in clearing virus infection through inflammatory responses. Many viruses have developed strategies to block IL-6 expression. Wild-type PIV5 infection induces little, if any, expression of cytokines such as IL-6 or TNF-α, whereas infection by a mutant PIV5 lacking the conserved C-terminal cysteine rich domain (rPIV5VΔC) induced high levels of IL-6 expression. Examination of mRNA levels of IL-6 indicated that the transcription activation of IL-6 played an important role in the increased IL-6 expression. Co-infection with wild-type PIV5 prevented the activation of IL-6 transcription by rPIV5VΔC, and a plasmid encoding the full-length PIV5 V protein prevented the activation of IL-6 promoter-driven reporter gene expression by rPIV5VΔC, indicating that the V protein played a role in inhibiting IL-6 transcription. The activation of IL-6 was independent of IFN-β even though rPIV5VΔC-infected cells produced IFN-β. Using reporter gene assays and chromatin immunoprecipitation (ChIP), it was found that NF-κB played an important role in activating expression of IL-6. We have proposed a model of activating and inhibiting IL-6 transcription by PIV5

  4. The Role of the Hendra Virus and Nipah Virus Attachment Glycoproteins in Receptor Binding and Antibody Neutralization

    Science.gov (United States)

    2014-01-31

    of important human (measles (MeV), mumps, human parainfluenza and respiratory syncytial virus (RSV)) and animal ( canine distemper virus (CDV...occurrence of a natural canine infection (6; 7). Since the emergence of HeV there have been a total of 86 horse fatalities, 2 canine infections and 7...Infectious Diseases 6. Anonymous. 2011. HENDRA VIRUS, EQUINE - AUSTRALIA (21): (QUEENSLAND) CANINE . Pro-Med-mail, Archive No. 20110802.2324

  5. Recombinant Parainfluenza Virus 5 Expressing Hemagglutinin of Influenza A Virus H5N1 Protected Mice against Lethal Highly Pathogenic Avian Influenza Virus H5N1 Challenge

    Science.gov (United States)

    Li, Zhuo; Mooney, Alaina J.; Gabbard, Jon D.; Gao, Xiudan; Xu, Pei; Place, Ryan J.; Hogan, Robert J.; Tompkins, S. Mark

    2013-01-01

    A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine. PMID:23077314

  6. PRESENCE OF RESPIRATORY VIRUSES IN EQUINES IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Dalva Assunção Portari Mancini

    2014-06-01

    Full Text Available Equines are susceptible to respiratory viruses such as influenza and parainfluenza. Respiratory diseases have adversely impacted economies all over the world. This study was intended to determine the presence of influenza and parainfluenza viruses in unvaccinated horses from some regions of the state of São Paulo, Brazil. Blood serum collected from 72 equines of different towns in this state was tested by hemagglutination inhibition test to detect antibodies for both viruses using the corresponding antigens. About 98.6% (71 and 97.2% (70 of the equines responded with antibody protective titers (≥ 80 HIU/25µL H7N7 and H3N8 subtypes of influenza A viruses, respectively. All horses (72 also responded with protective titers (≥ 80 HIU/25µL against the parainfluenza virus. The difference between mean antibody titers to H7N7 and H3N8 subtypes of influenza A viruses was not statistically significant (p > 0.05. The mean titers for influenza and parainfluenza viruses, on the other hand, showed a statistically significant difference (p < 0.001. These results indicate a better antibody response from equines to parainfluenza 3 virus than to the equine influenza viruses. No statistically significant differences in the responses against H7N7 and H3N8 subtypes of influenza A and parainfluenza 3 viruses were observed according to the gender (female, male or the age (≤ 2 to 20 years-old groups. This study provides evidence of the concomitant presence of two subtypes of the equine influenza A (H7N7 and H3N8 viruses and the parainfluenza 3 virus in equines in Brazil. Thus, it is advisable to vaccinate equines against these respiratory viruses.

  7. CXCR3 Directs Antigen-Specific Effector CD4+ T Cell Migration to the Lung During Parainfluenza Virus Infection

    DEFF Research Database (Denmark)

    Kohlmeier, Jacob E; Cookenham, Tres; Miller, Shannon C

    2009-01-01

    effector CD4(+) T cell migration to the lungs. To assess the role of CCR5 and CXCR3 in vivo, we directly compared the migration of Ag-specific wild-type and chemokine receptor-deficient effector T cells in mixed bone marrow chimeric mice during a parainfluenza virus infection. CXCR3-deficient effector CD4......(+) T cells were 5- to 10-fold less efficient at migrating to the lung compared with wild-type cells, whereas CCR5-deficient effector T cells were not impaired in their migration to the lung. In contrast to its role in trafficking, CXCR3 had no impact on effector CD4(+) T cell proliferation, phenotype......, or function in any of the tissues examined. These findings demonstrate that CXCR3 controls virus-specific effector CD4(+) T cell migration in vivo, and suggest that blocking CXCR3-mediated recruitment may limit T cell-induced immunopathology during respiratory virus infections....

  8. Alix serves as an adaptor that allows human parainfluenza virus type 1 to interact with the host cell ESCRT system.

    Directory of Open Access Journals (Sweden)

    Jim Boonyaratanakornkit

    Full Text Available The cellular ESCRT (endosomal sorting complex required for transport system functions in cargo-sorting, in the formation of intraluminal vesicles that comprise multivesicular bodies (MVB, and in cytokinesis, and this system can be hijacked by a number of enveloped viruses to promote budding. The respiratory pathogen human parainfluenza virus type I (HPIV1 encodes a nested set of accessory C proteins that play important roles in down-regulating viral transcription and replication, in suppressing the type I interferon (IFN response, and in suppressing apoptosis. Deletion or mutation of the C proteins attenuates HPIV1 in vivo, and such mutants are being evaluated preclinically and clinically as vaccines. We show here that the C proteins interact and co-localize with the cellular protein Alix, which is a member of the class E vacuolar protein sorting (Vps proteins that assemble at endosomal membranes into ESCRT complexes. The HPIV1 C proteins interact with the Bro1 domain of Alix at a site that is also required for the interaction between Alix and Chmp4b, a subunit of ESCRT-III. The C proteins are ubiquitinated and subjected to proteasome-mediated degradation, but the interaction with AlixBro1 protects the C proteins from degradation. Neither over-expression nor knock-down of Alix expression had an effect on HPIV1 replication, although this might be due to the large redundancy of Alix-like proteins. In contrast, knocking down the expression of Chmp4 led to an approximately 100-fold reduction in viral titer during infection with wild-type (WT HPIV1. This level of reduction was similar to that observed for the viral mutant, P(C- HPIV1, in which expression of the C proteins were knocked out. Chmp4 is capable of out-competing the HPIV1 C proteins for binding Alix. Together, this suggests a possible model in which Chmp4, through Alix, recruits the C proteins to a common site on intracellular membranes and facilitates budding.

  9. Attenuation and efficacy of human parainfluenza virus type 1 (HPIV1 vaccine candidates containing stabilized mutations in the P/C and L genes

    Directory of Open Access Journals (Sweden)

    Skiadopoulos Mario H

    2007-07-01

    Full Text Available Abstract Background Two recombinant, live attenuated human parainfluenza virus type 1 (rHPIV1 mutant viruses have been developed, using a reverse genetics system, for evaluation as potential intranasal vaccine candidates. These rHPIV1 vaccine candidates have two non-temperature sensitive (non-ts attenuating (att mutations primarily in the P/C gene, namely CR84GHNT553A (two point mutations used together as a set and CΔ170 (a short deletion mutation, and two ts att mutations in the L gene, namely LY942A (a point mutation, and LΔ1710–11 (a short deletion, the last of which has not been previously described. The latter three mutations were specifically designed for increased genetic and phenotypic stability. These mutations were evaluated on the HPIV1 backbone, both individually and in combination, for attenuation, immunogenicity, and protective efficacy in African green monkeys (AGMs. Results The rHPIV1 mutant bearing the novel LΔ1710–11 mutation was highly ts and attenuated in AGMs and was immunogenic and efficacious against HPIV1 wt challenge. The rHPIV1-CR84G/Δ170HNT553ALY942A and rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 vaccine candidates were highly ts, with shut-off temperatures of 38°C and 35°C, respectively, and were highly attenuated in AGMs. Immunization with rHPIV1-CR84G/Δ170HNT553ALY942A protected against HPIV1 wt challenge in both the upper and lower respiratory tracts. In contrast, rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 was not protective in AGMs due to over-attenuation, but it is expected to replicate more efficiently and be more immunogenic in the natural human host. Conclusion The rHPIV1-CR84G/Δ170HNT553ALY942A and rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 vaccine candidates are clearly highly attenuated in AGMs and clinical trials are planned to address safety and immunogenicity in humans.

  10. Differential impact of respiratory syncytial virus and parainfluenza virus on the frequency of acute otitis media is explained by lower adaptive and innate immune responses in otitis-prone children.

    Science.gov (United States)

    Verhoeven, David; Xu, Qingfu; Pichichero, Michael E

    2014-08-01

    Acute otitis media (AOM) is a leading cause of bacterial pediatric infections associated with viral upper respiratory infections (URIs). We examined the differential impact of respiratory syncytial virus (RSV) and parainfluenza virus URIs on the frequency of AOM caused by Streptococcus pneumoniae (Spn) and nontypeable Haemophilus influenzae (NTHi) in stringently defined otitis-prone (sOP) and non-otitis-prone (NOP) children as a potential mechanism to explain increased susceptibility to AOM. Peripheral blood and nasal washes were obtained from sOP and NOP children (n = 309). Colonization events and antiviral responses consisting of total specific immunoglobulin G (IgG) responses, neutralizing antibody responses, and T-cell responses were determined. Isolated neutrophils were infected with varying multiplicities of infection of both viruses, and opsonophagocytosis potential was measured. A significant increase was found in frequency of AOM events caused by Spn and NTHi, with a concurrent RSV infection in sOP children. These results correlated with diminished total RSV-specific IgG, higher viral nasal burdens, and lower IgG neutralizing capacity. The sOP children had diminished T-cell responses to RSV that correlated with lower Toll-like receptor 3/7 transcript and decreased expression of HLA-DR on antigen-presenting cells. RSV interfered with the Spn phagocytic capacity of neutrophils in a dose-dependent manner. Parainfluenza virus infections did not differentially affect AOM events in sOP and NOP children. Lower innate and adaptive immune responses to RSV in sOP children may slow the kinetics of viral clearance from the nasopharynx and allow for viral interference with antibacterial immune responses, thus contributing to increased frequency of AOMs. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Transmission pattern of parainfluenza 3 virus in guinea pig breeding herds.

    Science.gov (United States)

    Blomqvist, Gunilla A M; Martin, Krister; Morein, Bror

    2002-07-01

    In searching for the cause of experimental variations in respiratory research data, serology revealed the prevalence of antibodies against parainfluenza virus type 3 (PIV 3) in guinea pigs. The aim of the present study was to explore the transmission rate, course, and kinetics of enzootic PIV 3 infection in guinea pig breeding units. In the first part of the study, blood samples to be analyzed for PIV 3 antibodies were collected from guinea pigs of a PIV 3-positive breeding colony at different times after birth. In the same breeding unit, 6 of 12 2-week-old guinea pigs were relocated and separately housed. The PIV 3 serum antibody titers of the two groups were compared at various times from birth to 13 weeks after birth. In the second part of the study, the spread of infectious virus and virus persistence were explored by housing seronegative sentinel animals together with 2- to 3-week-old guinea pigs from three different PIV 3-positive breeding units. The guinea pigs remaining in the breeding colony as well as those removed and housed separately showed declining serum antibody titers for about 1 month after birth, thereafter the titers were stable until about 8 weeks after birth. Five weeks later, the mean antibody titer of the guinea pigs remaining in the breeding colony had increased to a markedly higher level than that of the relocated, separately housed guinea pigs. Seroconversion was demonstrated in 7 of the 14 sentinels housed with the 2- to 3-week-old guinea pigs from PIV 3-positive breeding units. Sentinels housed together with PIV 3-positive guinea pigs 24 weeks after the start of the experiment did not seroconvert. We conclude that young guinea pigs born to PIV 3-positive mothers were protected by maternal immunity against infection with PIV 3 during their first 14 days of life. The guinea pig offspring became infected during the period from about 2 weeks until 8 weeks after birth, as demonstrated by seroconversion of sentinel animals and an increasing

  12. Role of Bibersteinia trehalosi, respiratory syncytial virus, and parainfluenza-3 virus in bighorn sheep pneumonia.

    Science.gov (United States)

    Dassanayake, Rohana P; Shanthalingam, Sudarvili; Subramaniam, Renuka; Herndon, Caroline N; Bavananthasivam, Jegarubee; Haldorson, Gary J; Foreyt, William J; Evermann, James F; Herrmann-Hoesing, Lynn M; Knowles, Donald P; Srikumaran, Subramaniam

    2013-02-22

    Pneumonic bighorn sheep (BHS) have been found to be culture- and/or sero-positive for Bibersteinia trehalosi, respiratory syncytial virus (RSV), and parainfluenza-3 virus (PI-3). The objective of this study was to determine whether these pathogens can cause fatal pneumonia in BHS. In the first study, two groups of four BHS each were intra-tracheally administered with leukotoxin-positive (Group I) or leukotoxin-negative (Group II) B. trehalosi. All four animals in Group I developed severe pneumonia, and two of them died within 3 days. The other two animals showed severe pneumonic lesions on euthanasia and necropsy. Animals in Group II neither died nor showed gross pneumonic lesions on necropsy, suggesting that leukotoxin-positive, but not leukotoxin-negative, B. trehalosi can cause fatal pneumonia in BHS. In the second study, two other groups of four BHS (Groups III and IV) were intra-nasally administered with a mixture of RSV and PI-3. Four days later, RSV/PI-3-inoculated Group IV and another group of four BHS (Group V, positive control) were intra-nasally administered with Mannheimia haemolytica, the pathogen that consistently causes fatal pneumonia in BHS. All four animals in group III developed pneumonia, but did not die during the study period. However all four animals in Group IV, and three animals in Group V developed severe pneumonia and died within two days of M. haemolytica inoculation. The fourth animal in Group V showed severe pneumonic lesions on euthanasia and necropsy. These findings suggest that RSV/PI-3 can cause non-fatal pneumonia, but are not necessary predisposing agents for M. haemolytica-caused pneumonia of BHS. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Safety and infectivity of two doses of live-attenuated recombinant cold-passaged human parainfluenza type 3 virus vaccine rHPIV3cp45 in HPIV3-seronegative young children.

    Science.gov (United States)

    Englund, Janet A; Karron, Ruth A; Cunningham, Coleen K; Larussa, Philip; Melvin, Ann; Yogev, Ram; Handelsman, Ed; Siberry, George K; Thumar, Bhavanji; Schappell, Elizabeth; Bull, Catherine V; Chu, Helen Y; Schaap-Nutt, Anne; Buchholz, Ursula; Collins, Peter L; Schmidt, Alexander C

    2013-11-19

    Human parainfluenza virus type 3 (HPIV3) is a common cause of upper and lower respiratory tract illness in infants and young children. Live-attenuated cold-adapted HPIV3 vaccines have been evaluated in infants but a suitable interval for administration of a second dose of vaccine has not been defined. HPIV3-seronegative children between the ages of 6 and 36 months were randomized 2:1 in a blinded study to receive two doses of 10⁵ TCID₅₀ (50% tissue culture infectious dose) of live-attenuated, recombinant cold-passaged human PIV3 vaccine (rHPIV3cp45) or placebo 6 months apart. Serum antibody levels were assessed prior to and approximately 4-6 weeks after each dose. Vaccine virus infectivity, defined as detection of vaccine-HPIV3 in nasal wash and/or a≥4-fold rise in serum antibody titer, and reactogenicity were assessed on days 3, 7, and 14 following immunization. Forty HPIV3-seronegative children (median age 13 months; range 6-35 months) were enrolled; 27 (68%) received vaccine and 13 (32%) received placebo. Infectivity was detected in 25 (96%) of 26 evaluable vaccinees following doses 1 and 9 of 26 subject (35%) following dose 2. Among those who shed virus, the median duration of viral shedding was 12 days (range 6-15 days) after dose 1 and 6 days (range 3-8 days) after dose 2, with a mean peak log₁₀ viral titer of 3.4 PFU/mL (SD: 1.0) after dose 1 compared to 1.5 PFU/mL (SD: 0.92) after dose 2. Overall, reactogenicity was mild, with no difference in rates of fever and upper respiratory infection symptoms between vaccine and placebo groups. rHPIV3cp45 was immunogenic and well-tolerated in seronegative young children. A second dose administered 6 months after the initial dose was restricted in those previously infected with vaccine virus; however, the second dose boosted antibody responses and induced antibody responses in two previously uninfected children. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Nation-wide surveillance of human acute respiratory virus infections between 2013 and 2015 in Korea.

    Science.gov (United States)

    Kim, Jeong-Min; Jung, Hee-Dong; Cheong, Hyang-Min; Lee, Anna; Lee, Nam-Joo; Chu, Hyuk; Lee, Joo-Yeon; Kim, Sung Soon; Choi, Jang-Hoon

    2018-07-01

    The prevalence of eight respiratory viruses detected in patients with acute respiratory infections (ARIs) in Korea was investigated through analysis of data recorded by the Korea Influenza and Respiratory Viruses Surveillance System (KINRESS) from 2013 to 2015. Nasal aspirate and throat swabs specimens were collected from 36 915 patients with ARIs, and viral nucleic acids were detected by real-time (reverse-transcription) polymerase chain reaction for eight respiratory viruses, including human respiratory syncytial viruses (HRSVs), influenza viruses (IFVs), human parainfluenza viruses (HPIVs), human coronaviruses (HCoVs), human rhinovirus (HRV), human adenovirus (HAdV), human bocavirus (HBoV), and human metapneumovirus (HMPV). The overall positive rate of patient specimens was 49.4% (18 236/36 915), 5% of which carried two or more viruses simultaneously. HRV (15.6%) was the most predominantly detected virus, followed by IFVs (14.6%), HAdV (7.5%), HPIVs (5.8%), HCoVs (4.2%), HRSVs (3.6%), HBoV (1.9%), and HMPV (1.6%). Most of the ARIs were significantly correlated with clinical symptoms of fever, cough, and runny nose. Although HRV and HAdV were frequently detected throughout the year in patients, other respiratory viruses showed apparent seasonality. HRSVs and IFVs were the major causative agents of acute respiratory diseases in infants and young children. Overall, this study demonstrates a meaningful relationship between viral infection and typical manifestations of known clinical features as well as seasonality, age distribution, and co-infection among respiratory viruses. Therefore, these data could provide useful information for public health management and to enhance patient care for primary clinicians. © 2018 Wiley Periodicals, Inc.

  15. Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein.

    Science.gov (United States)

    Welch, Brett D; Liu, Yuanyuan; Kors, Christopher A; Leser, George P; Jardetzky, Theodore S; Lamb, Robert A

    2012-10-09

    The paramyxovirus parainfluenza virus 5 (PIV5) enters cells by fusion of the viral envelope with the plasma membrane through the concerted action of the fusion (F) protein and the receptor binding protein hemagglutinin-neuraminidase. The F protein folds initially to form a trimeric metastable prefusion form that is triggered to undergo large-scale irreversible conformational changes to form the trimeric postfusion conformation. It is thought that F refolding couples the energy released with membrane fusion. The F protein is synthesized as a precursor (F0) that must be cleaved by a host protease to form a biologically active molecule, F1,F2. Cleavage of F protein is a prerequisite for fusion and virus infectivity. Cleavage creates a new N terminus on F1 that contains a hydrophobic region, known as the FP, which intercalates target membranes during F protein refolding. The crystal structure of the soluble ectodomain of the uncleaved form of PIV5 F is known; here we report the crystal structure of the cleavage-activated prefusion form of PIV5 F. The structure shows minimal movement of the residues adjacent to the protease cleavage site. Most of the hydrophobic FP residues are buried in the uncleaved F protein, and only F103 at the newly created N terminus becomes more solvent-accessible after cleavage. The conformational freedom of the charged arginine residues that compose the protease recognition site increases on cleavage of F protein.

  16. Novel Atlantic bottlenose dolphin parainfluenza virus TtPIV-1 clusters with bovine PIV-3 genotype B strains.

    Science.gov (United States)

    Eberle, Kirsten C; Neill, John D; Venn-Watson, Stephanie K; McGill, Jodi L; Sacco, Randy E

    2015-10-01

    Parainfluenza virus 3 (PIV-3) is a common viral infection not only in humans, but also in many other species. Serological evidence suggests that nearly 100 % of children in the United States have been infected with PIV-3 by 5 years of age. Similarly, in cattle, PIV-3 is commonly associated with bovine respiratory disease complex. A novel dolphin PIV-3 (TtPIV-1) was described by Nollens et al. in 2008 from a dolphin that was diagnosed with an unknown respiratory illness. At that time, TtPIV-1 was found to be most similar to, but distinct from, bovine PIV-3 (BPIV-3). In the present study, similar viral growth kinetics and pro-inflammatory cytokine (IL-1β, IL-6, and CXCL8) production were seen between BPIV-3 and TtPIV-1 in BEAS-2B, MDBK, and Vero cell lines. Initial nomenclature of TtPIV-1 was based on partial sequence of the fusion and RNA polymerase genes. Based on the similarities we saw with the in vitro work, it was important to examine the TtPIV-1 genome in more detail. Full genome sequencing and subsequent phylogenetic analysis revealed that all six viral genes of TtPIV-1 clustered within the recently described BPIV-3 genotype B strains, and it is proposed that TtPIV-1 be re-classified with BPIV-3 genotype B strains.

  17. Epiglottitis with an abscess caused by Haemophilus parainfluenzae

    DEFF Research Database (Denmark)

    Juul, Marie Louise; Johansen, Helle Krogh; Homøe, Preben

    2014-01-01

    A healthy 23-year-old man was admitted under the diagnosis of acute epiglottitis. Flexible fiber laryngoscopic examination showed a swollen epiglottis with an abscess. Microbiologic swab showed Haemophilus parainfluenzae, non-haemolytic Streptococcus and non-haemolytic Streptococcus salivarius. O....... Only in 1984 a case of acute epiglottitis due to H. parainfluenzae has been described in the literature. Still, in this case we think that H. parainfluenzae was the most likely pathogen causing the abscess....

  18. Structure of the Paramyxovirus Parainfluenza Virus 5 Nucleoprotein in Complex with an Amino-Terminal Peptide of the Phosphoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Megha; Leser, George P.; Kors, Christopher A.; Lamb, Robert A.; Sundquist, Wesley I.

    2017-12-13

    Parainfluenza virus 5 (PIV5) belongs to the familyParamyxoviridae, which consists of enveloped viruses with a nonsegmented negative-strand RNA genome encapsidated by the nucleoprotein (N). Paramyxovirus replication is regulated by the phosphoprotein (P) through protein-protein interactions with N and the RNA polymerase (L). The chaperone activity of P is essential to maintain the unassembled RNA-free form of N in order to prevent nonspecific RNA binding and premature N oligomerization. Here, we determined the crystal structure of unassembled PIV5 N in complex with a P peptide (N0P) derived from the N terminus of P (P50) at 2.65 Å. The PIV5 N0P consists of two domains: an N-terminal domain (NTD) and a C-terminal domain (CTD) separated by a hinge region. The cleft at the hinge region of RNA-bound PIV5 N was previously shown to be an RNA binding site. The N0P structure shows that the P peptide binds to the CTD of N and extends toward the RNA binding site to inhibit N oligomerization and, hence, RNA binding. Binding of P peptide also keeps the PIV5 N in the open form. A molecular dynamics (MD) analysis of both the open and closed forms of N shows the flexibility of the CTD and the preference of the N protein to be in an open conformation. The gradual opening of the hinge region, to release the RNA, was also observed. Together, these results advance our knowledge of the conformational swapping of N required for the highly regulated paramyxovirus replication.

    IMPORTANCEParamyxovirus replication is regulated by the interaction of P with N and L proteins. Here, we report the crystal structure of unassembled parainfluenza virus 5 (PIV5) N chaperoned with P peptide. Our results provide a detailed understanding of the binding of P to N. The conformational switching of N between closed and open forms during its initial interaction with P, as well as

  19. Molecular epidemiology and environmental contamination during an outbreak of parainfluenza virus 3 in a haematology ward.

    Science.gov (United States)

    Kim, T; Jin, C E; Sung, H; Koo, B; Park, J; Kim, S-M; Kim, J Y; Chong, Y P; Lee, S-O; Choi, S-H; Kim, Y S; Woo, J H; Lee, J-H; Lee, J-H; Lee, K-H; Shin, Y; Kim, S-H

    2017-12-01

    Although fomites or contaminated surfaces have been considered as transmission routes, the role of environmental contamination by human parainfluenza virus type 3 (hPIV-3) in healthcare settings is not established. To describe an hPIV-3 nosocomial outbreak and the results of environmental sampling to elucidate the source of nosocomial transmission and the role of environmental contamination. During an hPIV-3 outbreak between May and June 2016, environmental surfaces in contact with clustered patients were swabbed and respiratory specimens used from infected patients and epidemiologically unlinked controls. The epidemiologic relatedness of hPIV-3 strains was investigated by sequencing of the haemagglutinin-neuraminidase and fusion protein genes. Of 19 hPIV-3-infected patients, eight were haematopoietic stem cell recipients and one was a healthcare worker. In addition, four had upper and 12 had lower respiratory tract infections. Of the 19 patients, six (32%) were community-onset infections (symptom onset within environmental swabs up to 12 days after negative respiratory polymerase chain reaction conversion. At least one-third of a peak season nosocomial hPIV-3 outbreak originated from nosocomial transmission, with multiple importations of hPIV-3 from the community, providing experimental evidence for extensive environmental hPIV-3 contamination. Direct contact with the contaminated surfaces and fomites or indirect transmission from infected healthcare workers could be responsible for nosocomial transmission. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  20. Chemical disinfection of non-porous inanimate surfaces experimentally contaminated with four human pathogenic viruses.

    OpenAIRE

    Sattar, S. A.; Springthorpe, V. S.; Karim, Y.; Loro, P.

    1989-01-01

    The chemical disinfection of virus-contaminated non-porous inanimate surfaces was investigated using coxsackievirus B3, adenovirus type 5, parainfluenza virus type 3 and coronavirus 229E as representatives of important nosocomial viral pathogens. A 10 microliter amount of the test virus, suspended in either faeces or mucin, was placed onto each stainless steel disk (about 1 cm in diameter) and the inoculum allowed to dry for 1 h under ambient conditions. Sixteen disinfectant formulations were...

  1. Efficacy of a parainfluenza virus 5 (PIV5-based H7N9 vaccine in mice and guinea pigs: antibody titer towards HA was not a good indicator for protection.

    Directory of Open Access Journals (Sweden)

    Zhuo Li

    Full Text Available H7N9 has caused fatal infections in humans. A safe and effective vaccine is the best way to prevent large-scale outbreaks in the human population. Parainfluenza virus 5 (PIV5, an avirulent paramyxovirus, is a promising vaccine vector. In this work, we generated a recombinant PIV5 expressing the HA gene of H7N9 (PIV5-H7 and tested its efficacy against infection with influenza virus A/Anhui/1/2013 (H7N9 in mice and guinea pigs. PIV5-H7 protected the mice against lethal H7N9 challenge. Interestingly, the protection did not require antibody since PIV5-H7 protected JhD mice that do not produce antibody against lethal H7N9 challenge. Furthermore, transfer of anti-H7 serum did not protect mice against H7N9 challenge. PIV5-H7 generated high HAI titers in guinea pigs, however it did not protect against H7N9 infection or transmission. Intriguingly, immunization of guinea pigs with PIV5-H7 and PIV5 expressing NP of influenza A virus H5N1 (PIV5-NP conferred protection against H7N9 infection and transmission. Thus, we have obtained a H7N9 vaccine that protected both mice and guinea pigs against lethal H7N9 challenge and infection respectively.

  2. Anticorpos fixadores de complemento para o vírus respiratório sincicial e adenovírus e inibidores da hemaglutinação para os vírus parainfluenza 1, 2 e 3 numa população infantil brasileira

    Directory of Open Access Journals (Sweden)

    José Alberto Neves Candeias

    1968-06-01

    Full Text Available Apresentaram-se os resultados obtidos na pesquisa de anticorpos fixadores de complemento para o vírus respiratório sincicial e adenovírus, assim como de anticorpos inibidores da hemaglutinação para os vírus parainfluenza dos tipos 1, 2 e 3, num grupo de 972 crianças de idade compreendida entre 3 meses e 14 anos. A técnica de colheita de sangue foi a de embebição em papel de filtro. Do total de crianças examinadas, considerando o conjunto de todas as idades, 34,6% apresentavam anticorpos para o vírus respiratório sincicial; as porcentagens com anticorpos para adenovírus, parainfluenza 1, parainfluenza 2 e parainfluenza 3, foram respectivamente 47,7%, 46,8%, 54,1% e 66,6%. Foram estudadas as distribuições dos anticorpos em função da idade, do sexo e da localização do domicílio. Em relação aos dois últimos atributos obtiveram-se os seguintes resultados: dos indivíduos do sexo masculino, 32,3% apresentavam anticorpos contra o vírus respiratório sincicial, 49,2% contra adenovírus, 60,1%, 65,1% e 78,3%, respectivamente, contra os vírus parainfluenza 1, 2 e 3; nas crianças do sexo feminino as porcentagens de positividade encontradas foram, respectivamente, 37,4%, 45,9%, 31,1%, 41,2% e 52,9%; em relação à localização do domicílio, 44,8% do total de crianças da zona rural mostraram possuir anticorpos contra o vírus respiratório sincicial, 70,1% contra adenovírus, 43,8% contra vírus parainfluenza 1 e 46,8% e 65,4% contra os vírus parainfluenza dos tipos 2 e 3; as porcentagens de positividade na zona urbana foram, respectivamente, 30,5%, 38,7%, 47,9%, 57,1% e 67,1%.The author presents the results of a survey for respiratory syncytial virus and adenovirus complement fixing antibodies and parainfluenza viruses 1, 2, 3 haemagglutination inhibition antibodies in a group of 972 chidren between 3 months and 14 years of age. The filter paper method of collecting whole blood was used. Altogether, the percentage of children

  3. Frecuencia de virus respiratorios y características clínicas de niños que acuden a un hospital en México Frequency of respiratory viruses and clinical characteristics in children attending a care center in Mexico City

    Directory of Open Access Journals (Sweden)

    Rosa María Wong-Chew

    2010-12-01

    Full Text Available OBJETIVO. Describir la frecuencia de virus respiratorios y características clínicas en niños con cuadros respiratorios de un hospital de tercer nivel en México. MATERIAL Y MÉTODOS. Se incluyeron niños con diagnóstico de infección respiratoria y un resultado positivo por inmunofluorescencia de enero 2004 a octubre 2006. RESULTADOS. De 986 muestras nasofaríngeas, 138 (14% fueron positivas. La frecuencia fue: 80% virus sincicial respiratorio (VSR, 8% parainfluenza 1, 5% parainfluenza3, 2% adenovirus, 2% influenza A, 1% parainfluenza 2 y 1% influenza B. CONCLUSIONES. La frecuencia de virus respiratorios fue de 14%. El VSR se identificó asociado con más frecuencia, a neumonía y bronquiolitis en menores de 3 años.OBJECTIVE. To describe the frequency of respiratory viruses and clinical characteristics in children with respiratory signs and symptoms in a tertiary care center in Mexico. MATERIAL AND METHODS. Patients with a clinical diagnosis of respiratory infection and a positive immunofluorescence result (Light Diagnostics from January 2004 to October 2006 were included. RESULTS. From the 986 nashopharyngeal samples, 138 (14% were positive by immunofluorescence. The frequency was: 80% RSV, 8% parainfluenza 1, 5% parainfluenza 3, 2% adenovirus, 2% influenza A, 1% parainfluenza 2 and 1% influenza B. CONCLUSIONS. Respiratory viruses were detected in 14% of samples tested. RSV was the most frequently identified virus and was associated with pneumonia and bronchiolitis in children younger than 3 years old.

  4. Relative Contribution of Cellular Complement Inhibitors CD59, CD46, and CD55 to Parainfluenza Virus 5 Inhibition of Complement-Mediated Neutralization

    Directory of Open Access Journals (Sweden)

    Yujia Li

    2018-04-01

    Full Text Available The complement system is a part of the innate immune system that viruses need to face during infections. Many viruses incorporate cellular regulators of complement activation (RCA to block complement pathways and our prior work has shown that Parainfluenza virus 5 (PIV5 incorporates CD55 and CD46 to delay complement-mediated neutralization. In this paper, we tested the role of a third individual RCA inhibitor CD59 in PIV5 interactions with complement pathways. Using a cell line engineered to express CD59, we show that small levels of functional CD59 are associated with progeny PIV5, which is capable of blocking assembly of the C5b-C9 membrane attack complex (MAC. PIV5 containing CD59 (PIV5-CD59 showed increased resistance to complement-mediated neutralization in vitro comparing to PIV5 lacking regulators. Infection of A549 cells with PIV5 and RSV upregulated CD59 expression. TGF-beta treatment of PIV5-infected cells also increased cell surface CD59 expression and progeny virions were more resistant to complement-mediated neutralization. A comparison of individual viruses containing only CD55, CD46, or CD59 showed a potency of inhibiting complement-mediated neutralization, which followed a pattern of CD55 > CD46 > CD59.

  5. Engineering of a parainfluenza virus type 5 fusion protein (PIV-5 F): development of an autonomous and hyperfusogenic protein by a combinational mutagenesis approach.

    Science.gov (United States)

    Terrier, O; Durupt, F; Cartet, G; Thomas, L; Lina, B; Rosa-Calatrava, M

    2009-12-01

    The entry of enveloped viruses into host cells is accomplished by fusion of the viral envelope with the target cell membrane. For the paramyxovirus parainfluenza virus type 5 (PIV-5), this fusion involves an attachment protein (HN) and a class I viral fusion protein (F). We investigated the effect of 20 different combinations of 12 amino-acid substitutions within functional domains of the PIV-5 F glycoprotein, by performing cell surface expression measurements, quantitative fusion and syncytia assays. We found that combinations of mutations conferring an autonomous phenotype with mutations leading to an increased fusion activity were compatible and generated functional PIV-5 F proteins. The addition of mutations in the heptad-repeat domains led to both autonomous and hyperfusogenic phenotypes, despite the low cell surface expression of the corresponding mutants. Such engineering approach may prove useful not only for deciphering the fundamental mechanism behind viral-mediated membrane fusion but also in the development of potential therapeutic applications.

  6. Recombinant human parainfluenza virus type 2 with mutations in V that permit cellular interferon signaling are not attenuated in non-human primates

    Science.gov (United States)

    Schaap-Nutt, Anne; D’Angelo, Christopher; Amaro-Carambot, Emerito; Nolan, Sheila M.; Davis, Stephanie; Wise, Shenelle-Marie; Higgins, Caraline; Bradley, Konrad; Kim, Olivia; Mayor, Reina; Skiadopoulos, Mario H.; Collins, Peter L.; Murphy, Brian R.; Schmidt, Alexander C.

    2010-01-01

    The HPIV2 V protein inhibits type I interferon (IFN) induction and signaling. To manipulate the V protein, whose coding sequence overlaps that of the polymerase-associated phosphoprotein (P), without altering the P protein, we generated an HPIV2 virus in which P and V are expressed from separate genes (rHPIV2-P+V). rHPIV2-P+V replicated like HPIV2-WT in vitro and in non-human primates. HPIV2-P+V was modified by introducing two separate mutations into the V protein to create rHPIV2-L101E/L102E and rHPIV2-Δ122–127. In contrast to HPIV2-WT, both mutant viruses were unable to degrade STAT2, leaving virus-infected cells susceptible to IFN. Neither mutant, nor HPIV2-WT, induced significant amounts of IFN-β in infected cells. Surprisingly, neither rHPIV2-L101E/L102E nor rHPIV2-Δ122–127 was attenuated in two species of non-human primates. This indicates that loss of HPIV2's ability to inhibit IFN signaling is insufficient to attenuate virus replication in vivo as long as IFN induction is still inhibited. PMID:20667570

  7. Parainfluenza virus type 5 (PIV-5) morphology revealed by cryo-electron microscopy.

    Science.gov (United States)

    Terrier, Olivier; Rolland, Jean-Paul; Rosa-Calatrava, Manuel; Lina, Bruno; Thomas, Daniel; Moules, Vincent

    2009-06-01

    The knowledge of parainfluenza type 5 (PIV-5) virion morphology is essentially based on the observation of negatively stained preparations in conventional transmission electron microscopy (CTEM). In this study, the ultrastructure of frozen-hydrated intact PIV-5 was examined by cryo-electron microscopy (cryo-EM). Cryo-EM revealed a majority of spherical virions (70%), with a lower pleiomorphy than originally observed in CTEM. Phospholipid bilayer thickness, spike length and glycoprotein spikes density were measured. About 2000 glycoprotein spikes were present in an average-sized spherical virion. Altogether, these data depict a more precise view of PIV-5 morphology.

  8. Duration of serological response to canine parvovirus-type 2, canine distemper virus, canine adenovirus type 1 and canine parainfluenza virus in client-owned dogs in Australia.

    Science.gov (United States)

    Mitchell, S A; Zwijnenberg, R J; Huang, J; Hodge, A; Day, M J

    2012-12-01

    To determine whether client-owned dogs in Australia, last vaccinated with Canvac(®) vaccines containing canine parvovirus-type 2 (CPV-2), canine distemper virus (CDV), canine adenovirus type 2 (CAV-2) ± canine parainfluenza virus (CPiV) at least 18 months ago, were seropositive or responded serologically to revaccination. A total of 235 dogs were recruited from 23 veterinary clinics, representing a variety of breeds, ages and time since last vaccination (TSLV: range 1.5-9 years, mean 2.8 years). Dogs had a blood sample taken and were revaccinated on day 0. A second blood sample was taken 7-14 days later. Blood samples were assessed for antibody titres to CPV-2 (by haemagglutination inhibition) and CDV, CAV type 1 (CAV-1) and CPiV (by virus neutralisation). Dogs with a day 0 titre >10 or a four-fold increase in titre following revaccination were considered to be serological responders. The overall percentage of dogs classified as serological responders was 98.7% for CPV-2, 96.6% for CDV, 99.6% for CAV-1 and 90.3% for CPiV. These results suggest that the duration of serological response induced by modified-live vaccines against CPV-2, CDV, CAV-1 and CPiV, including Canvac(®) vaccines, is beyond 18 months and may extend up to 9 years. Accordingly, these vaccines may be considered for use in extended revaccination interval protocols as recommended by current canine vaccine guidelines. © 2012 The Authors. Australian Veterinary Journal © 2012 Australian Veterinary Association.

  9. Replacement of the Ectodomains of the Hemagglutinin-Neuraminidase and Fusion Glycoproteins of Recombinant Parainfluenza Virus Type 3 (PIV3) with Their Counterparts from PIV2 Yields Attenuated PIV2 Vaccine Candidates

    OpenAIRE

    Tao, Tao; Skiadopoulos, Mario H.; Davoodi, Fatemeh; Riggs, Jeffrey M.; Collins, Peter L.; Murphy, Brian R.

    2000-01-01

    We sought to develop a live attenuated parainfluenza virus type 2 (PIV2) vaccine strain for use in infants and young children, using reverse genetic techniques that previously were used to rapidly produce a live attenuated PIV1 vaccine candidate. The PIV1 vaccine candidate, designated rPIV3-1cp45, was generated by substituting the full-length HN and F proteins of PIV1 for those of PIV3 in the attenuated cp45 PIV3 vaccine candidate (T. Tao et al., J. Virol. 72:2955–2961, 1998; M. H. Skiadopoul...

  10. Serum amyloid P component inhibits influenza A virus infections: in vitro and in vivo studies

    DEFF Research Database (Denmark)

    Horvath, A; Andersen, I; Junker, K

    2001-01-01

    . These studies were extended to comprise five mouse-adapted influenza A strains, two swine influenza A strains, a mink influenza A virus, a ferret influenza A reassortant virus, a influenza B virus and a parainfluenza 3 virus. The HA activity of all these viruses was inhibited by SAP. Western blotting showed......Serum amyloid P component (SAP) binds in vitro Ca(2+)-dependently to several ligands including oligosaccharides with terminal mannose and galactose. We have earlier reported that SAP binds to human influenza A virus strains, inhibiting hemagglutinin (HA) activity and virus infectivity in vitro...... that SAP bound to HA trimers, monomers and HA1 and HA2 subunits of influenza A virus. Binding studies indicated that galactose, mannose and fucose moieties contributed to the SAP reacting site(s). Intranasal administration of human SAP to mice induced no demonstrable toxic reactions, and circulating...

  11. Haemophilus parainfluenzae Strain ATCC 33392 Forms Biofilms In Vitro and during Experimental Otitis Media Infections.

    Science.gov (United States)

    Pang, Bing; Swords, W Edward

    2017-09-01

    Haemophilus parainfluenzae is a nutritionally fastidious, Gram-negative bacterium with an oropharyngeal/nasopharyngeal carriage niche that is associated with a range of opportunistic infections, including infectious endocarditis and otitis media (OM). These infections are often chronic/recurrent in nature and typically involve bacterial persistence within biofilm communities that are highly resistant to host clearance. This study addresses the primary hypothesis that H. parainfluenzae forms biofilm communities that are important determinants of persistence in vivo The results from in vitro biofilm studies confirmed that H. parainfluenzae formed biofilm communities within which the polymeric matrix was mainly composed of extracellular DNA and proteins. Using a chinchilla OM infection model, we demonstrated that H. parainfluenzae formed surface-associated biofilm communities containing bacterial and host components that included neutrophil extracellular trap (NET) structures and that the bacteria mainly persisted in these biofilm communities. We also used this model to examine the possible interaction between H. parainfluenzae and its close relative Haemophilus influenzae , which is also commonly carried within the same host environments and can cause OM. The results showed that coinfection with H. influenzae promoted clearance of H. parainfluenzae from biofilm communities during OM infection. The underlying mechanisms for bacterial persistence and biofilm formation by H. parainfluenzae and knowledge about the survival defects of H. parainfluenzae during coinfection with H. influenzae are topics for future work. Copyright © 2017 American Society for Microbiology.

  12. Analysis of microRNAs Expression Profiles in Madin-Darby Bovine Kidney Cells Infected With Caprine Parainfluenza Virus Type 3

    Directory of Open Access Journals (Sweden)

    Jizong Li

    2018-03-01

    Full Text Available Caprine parainfluenza virus type 3 (CPIV3 is a newly emerging pathogenic respiratory agent infecting both young and adult goats, and it was identified in eastern China in 2013. Cellular microRNAs (miRNAs have been reported to be important modulators of the intricate virus-host interactions. In order to elucidate the role of miRNAs in madin-darby bovine kidney (MDBK cells during CPIV3 infection. In this study, we performed high-throughput sequencing technology to analyze small RNA libraries in CPIV3-infected and mock-infected MDBK cells. The results showed that a total of 249 known and 152 novel candidate miRNAs were differentially expressed in MDBK cells after CPIV3 infection, and 22,981 and 22,572 target genes were predicted, respectively. In addition, RT-qPCR assay was used to further confirm the expression patterns of 13 of these differentially expressed miRNAs and their mRNA targets. Functional annotation analysis showed these up- and downregulated target genes were mainly involved in MAPK signaling pathway, Jak-STAT signaling pathway, Toll-like receptor signaling pathway, p53 signaling pathway, focal adhesion, NF-kappa B signaling pathway, and apoptosis, et al. To our knowledge, this is the first report of the comparative expression of miRNAs in MDBK cells after CPIV3 infection. Our finding provides information concerning miRNAs expression profile in response to CPIV3 infection, and offers clues for identifying potential candidates for antiviral therapies against CPIV3.

  13. The C proteins of human parainfluenza virus type 1 block IFN signaling by binding and retaining Stat1 in perinuclear aggregates at the late endosome.

    Directory of Open Access Journals (Sweden)

    Henrick Schomacker

    Full Text Available Interferons (IFNs play a crucial role in the antiviral immune response. Whereas the C proteins of wild-type human parainfluenza virus type 1 (WT HPIV1 inhibit both IFN-β induction and signaling, a HPIV1 mutant encoding a single amino acid substitution (F170S in the C proteins is unable to block either host response. Here, signaling downstream of the type 1 IFN receptor was examined in Vero cells to define at what stage WT HPIV1 can block, and F170S HPIV1 fails to block, IFN signaling. WT HPIV1 inhibited phosphorylation of both Stat1 and Stat2, and this inhibition was only slightly reduced for F170S HPIV1. Degradation of Stat1 or Stat2 was not observed. The HPIV1 C proteins were found to accumulate in the perinuclear space, often forming large granules, and co-localized with Stat1 and the cation-independent mannose 6-phosphate receptor (M6PR that is a marker for late endosomes. Upon stimulation with IFN-β, both the WT and F170S C proteins remained in the perinuclear space, but only the WT C proteins prevented Stat1 translocation to the nucleus. In addition, WT HPIV1 C proteins, but not F170S C proteins, co-immunoprecipitated both phosphorylated and unphosphorylated Stat1. Our findings suggest that the WT HPIV1 C proteins form a stable complex with Stat1 in perinuclear granules that co-localize with M6PR, and that this direct interaction between the WT HPIV1 C proteins and Stat1 is the basis for the ability of HPIV1 to inhibit IFN signaling. The F170S mutation in HPIV1 C did not prevent perinuclear co-localization with Stat1, but apparently weakened this interaction such that, upon IFN stimulation, Stat1 was translocated to the nucleus to induce an antiviral response.

  14. Cholesterol is required for stability and infectivity of influenza A and respiratory syncytial viruses.

    Science.gov (United States)

    Bajimaya, Shringkhala; Frankl, Tünde; Hayashi, Tsuyoshi; Takimoto, Toru

    2017-10-01

    Cholesterol-rich lipid raft microdomains in the plasma membrane are considered to play a major role in the enveloped virus lifecycle. However, the functional role of cholesterol in assembly, infectivity and stability of respiratory RNA viruses is not fully understood. We previously reported that depletion of cellular cholesterol by cholesterol-reducing agents decreased production of human parainfluenza virus type 1 (hPIV1) particles by inhibiting virus assembly. In this study, we analyzed the role of cholesterol on influenza A virus (IAV) and respiratory syncytial virus (RSV) production. Unlike hPIV1, treatment of human airway cells with the agents did not decrease virus particle production. However, the released virions were less homogeneous in density and unstable. Addition of exogenous cholesterol to the released virions restored virus stability and infectivity. Collectively, these data indicate a critical role of cholesterol in maintaining IAV and RSV membrane structure that is essential for sustaining viral stability and infectivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Pathogenesis of a genotype C strain of bovine parainfluenza virus type 3 infection in albino guinea pigs.

    Science.gov (United States)

    Shi, Hong-Fei; Zhu, Yuan-Mao; Dong, Xiu-Mei; Cai, Hong; Ma, Lei; Wang, Shu; Yan, Hao; Wang, Xue-Zhi; Xue, Fei

    2014-08-08

    Bovine parainfluenza virus type 3 (BPIV3) is one of the most important of the known viral respiratory tract agents of both young and adult cattle and widespread among cattle around the world. Up to present, three genotypes A, B and C of BPIV3 have been described on the basis of genetic and phylogenetic analysis and only limited studies on the pathogenesis of the genotype A of BPIV3 infection in calves and laboratory animals have been performed. The report about experimental infections of the genotypes B and C of BPIV3 in laboratory animals and calves was scant. Therefore, an experimental infection of guinea pigs with the Chinese BPIV3 strain SD0835 of the genotype C was performed. Sixteen guinea pigs were intranasally inoculated with the suspension of SD0835, while eight control guinea pigs were also intranasally inoculated with the same volume of supernatant from uninfected MDBK cells. The virus-inoculated guinea pigs displayed a few observable clinical signs that were related to the respiratory tract disease and two of the sixteen experimentally infected guinea pigs died at 2 and 3 days post inoculation (PI), respectively, and apparent gross pneumonic lesions were observed at necropsy. The gross pneumonic lesions in guinea pigs inoculated with SD0835 consisted of dark red, slightly depressed, irregular areas of consolidation in the lung lobes from the second to 9th day of infection at necropsy, and almost complete consolidation and atelectasis of the lung lobes were seen at 7 days PI. Histopathological changes including alveoli septa thickening and focal cellulose pneumonia were also observed in the lungs of guinea pigs experimentally infected with SD0835. Viral replication was detectable by virus isolation and titration, real-time RT-PCR and immunohistochemistry (IHC) staining in the respiratory tissues of guinea pigs as early as 24h after intranasal inoculation with SD0835. The results of virus isolation and titration showed that guinea pigs were permissive for

  16. Achados de tomografia computadorizada de alta resolução em pneumonia pelo vírus parainfluenza pós-transplante de medula óssea: relato de caso

    Directory of Open Access Journals (Sweden)

    Emerson L. Gasparetto

    2004-11-01

    Full Text Available RESUMO: Paciente feminina, de 19 anos, transplantada de medula óssea devido a leucemia mielóide crónica, apresentando tosse seca e coriza no 67.º dia após o procedimento. A radiografia de tórax não evidenciou alterações. A tomografia computadorizada de alta resolução do tórax revelou consolidação subsegmentar na periferia do lobo inferior esquerdo e áreas de redução da atenuação nos terços superior e médio dos pulmões. O lavado broncoalveolar demonstrou pesquisa positiva por imunoflorescência direta para anticorpos anti-vírus parainfluenza. Foi instituído tratamento com ribavirina aerolizada durante 10 dias, havendo melhoria clínico-radiológica do quadro infeccioso.REV PORT PNEUMOL 2004; X (6: 485-489 ABSTRACT: Nineteen year-old female patient, who underwent bone marrow transplantation because of chronic myelogenous leukemia, presented with dry cough and coriza sixty-seven days after the procedure. The chest radiograph was normal. The high resolution computed tomography showed a subsegmental air-space consolidation at the periphery of the left inferior lobe and areas of low attenuation at the superior and middle lung zones. The bronchoalveolar lavage demonstrated positive direct fluorescence antibody testing against parainfluenza virus. Treatment with aerolizated ribavirin was instituted during 10 days and the patient showed clinical-radiological improvement.REV PORT PNEUMOL 2004; X (6: 485-489 Palavras-chave: Vírus parainfluenza, tomografia computadorizada de alta resolução, transplante de medula óssea, Key-words: Parainfluenza virus, high resolution computed tomography, bone marrow transplantation

  17. The CD8 T Cell Response to Respiratory Virus Infections.

    Science.gov (United States)

    Schmidt, Megan E; Varga, Steven M

    2018-01-01

    Humans are highly susceptible to infection with respiratory viruses including respiratory syncytial virus (RSV), influenza virus, human metapneumovirus, rhinovirus, coronavirus, and parainfluenza virus. While some viruses simply cause symptoms of the common cold, many respiratory viruses induce severe bronchiolitis, pneumonia, and even death following infection. Despite the immense clinical burden, the majority of the most common pulmonary viruses lack long-lasting efficacious vaccines. Nearly all current vaccination strategies are designed to elicit broadly neutralizing antibodies, which prevent severe disease following a subsequent infection. However, the mucosal antibody response to many respiratory viruses is not long-lasting and declines with age. CD8 T cells are critical for mediating clearance following many acute viral infections in the lung. In addition, memory CD8 T cells are capable of providing protection against secondary infections. Therefore, the combined induction of virus-specific CD8 T cells and antibodies may provide optimal protective immunity. Herein, we review the current literature on CD8 T cell responses induced by respiratory virus infections. Additionally, we explore how this knowledge could be utilized in the development of future vaccines against respiratory viruses, with a special emphasis on RSV vaccination.

  18. Infection of Parainfluenza type 3 (PI-3 as one of the causative agent of pneumonia in sheep and goats

    Directory of Open Access Journals (Sweden)

    Indrawati Sendow

    2002-03-01

    Full Text Available Serological survey was conducted to obtain the prevalence of Parainfluenza type 3 (PI-3 reactor as one of the causative agent of pneumonia in sheep and goats in abatoir at Jakarta and some small holder farms in Indonesia. Serological test using serum neutralization from 724 goat sera and 109 sheep sera indicated that only 1% of goats were serologically reactors and none of sheep sera had antibodies against PI-3 virus. Isolation of the virus from 56 bronchus and trachea swab and 345 lungs indicated that only one sampel from lung showed cythopathic effect (CPE in Madin Darby Bovine Kidney (MDBK cell lines identification of the virus using serum neutralization test indicated that the virus neutralized reference PI-3 antisera. The isolate came from one lung (7% of 24 that showed histopathologically pneumonia intertitialis that usually caused by viral infection.

  19. Detection of 12 respiratory viruses by duplex real time PCR assays in respiratory samples.

    Science.gov (United States)

    Arvia, Rosaria; Corcioli, Fabiana; Ciccone, Nunziata; Della Malva, Nunzia; Azzi, Alberta

    2015-12-01

    Different viruses can be responsible for similar clinical manifestations of respiratory infections. Thus, the etiological diagnosis of respiratory viral diseases requires the detection of a large number of viruses. In this study, 6 duplex real-time PCR assays, using EvaGreen intercalating dye, were developed to detect 12 major viruses responsible for respiratory diseases: influenza A and B viruses, enteroviruses (including enterovirus spp, and rhinovirus spp), respiratory syncytial virus, human metapneumovirus, coronaviruses group I (of which CoV 229E and CoV NL63 are part) and II (including CoV OC43 and CoV HKU1), parainfluenza viruses type 1, 2, 3 and 4, human adenoviruses and human bocaviruses. The 2 target viruses of each duplex reaction were distinguishable by the melting temperatures of their amplicons. The 6 duplex real time PCR assays were applied for diagnostic purpose on 202 respiratory samples from 157 patients. One hundred fifty-seven samples were throat swabs and 45 were bronchoalveolar lavages. The results of the duplex PCR assays were confirmed by comparison with a commercial, validated, assay; in addition, the positive results were confirmed by sequencing. The analytical sensitivity of the duplex PCR assays varied from 10(3) copies/ml to 10(4) copies/ml. For parainfluenza virus 2 only it was 10(5) copies/ml. Seventy clinical samples (35%) from 55 patients (30 children and 25 adults) were positive for 1 or more viruses. In adult patients, influenza A virus was the most frequently detected respiratory virus followed by rhinoviruses. In contrast, respiratory syncytial virus was the most common virus in children, followed by enteroviruses, influenza A virus and coronavirus NL63. The small number of samples/patients does not allow us to draw any epidemiological conclusion. Altogether, the results of this study indicate that the 6 duplex PCR assays described in this study are sensitive, specific and cost-effective. Thus, this assay could be

  20. Proteotyping for the rapid identification of influenza virus and other biopathogens.

    Science.gov (United States)

    Downard, Kevin M

    2013-11-21

    The influenza virus is one of the most deadly infectious agents known to man and has been responsible for the deaths of some hundred million lives throughout human history. The need to rapidly and reliably survey circulating virus strains down to the molecular level is ever present. This tutorial describes the development and application of a new proteotyping approach that harnesses the power of high resolution of mass spectrometry to characterise the influenza virus, and by extension other bacterial and viral pathogens. The approach is shown to be able to type, subtype, and determine the lineage of human influenza virus strains through the detection of one or more signature peptide ions in the mass spectrum of whole virus digests. Pandemic strains can be similarly distinguished from seasonal ones, and new computer algorithms have been written to allow reassorted strains that pose the greatest pandemic risk to be rapidly identified from such datasets. The broader application of the approach is further demonstrated here for the parainfluenza virus, a virus which can be life threatening to children and presents similar clinical symptoms to influenza.

  1. Bronchiolitis in Abha, Southwest Saudi Arabia: viral etiology and ...

    African Journals Online (AJOL)

    Other viruses isolated were: Influenza virus A (11%), influenza virus B (7%), Parainfluenza viruses (18%), parainfluenza virus type 1 (4%), parainfluenza virus type 2 (2%) and parainfluenza virus type 3 (13 %). Conclusions: Respiratory syncytial virus was the most frequent cause of admitted-cases of bronchiolitis, followed ...

  2. Activity of Ingavirin (6-[2-(1H-Imidazol-4-ylethylamino]-5-oxo-hexanoic Acid Against Human Respiratory Viruses in in Vivo Experiments

    Directory of Open Access Journals (Sweden)

    Oleg I. Kiselev

    2011-11-01

    Full Text Available Respiratory viral infections constitute the most frequent reason for medical consultations in the World. They can be associated with a wide range of clinical manifestations ranging from self-limited upper respiratory tract infections to more devastating conditions such as pneumonia. In particular, in serious cases influenza A leads to pneumonia, which is particularly fatal in patients with cardiopulmonary diseases, obesity, young children and the elderly. In the present study, we show a protective effect of the low-molecular weight compound Ingavirin (6-[2-(1H-imidazol-4-ylethylamino]-5-oxohexanoic acid against influenza A (H1N1 virus, human parainfluenza virus and human adenovirus infections in animals. Mortality, weight loss, infectious titer of the virus in tissues and tissue morphology were monitored in the experimental groups of animals. The protective action of Ingavirin was observed as a reduction of infectious titer of the virus in the lung tissue, prolongation of the life of the infected animals, normalization of weight dynamics throughout the course of the disease, lowering of mortality of treated animals compared to a placebo control and normalization of tissue structure. In case of influenza virus infection, the protective activity of Ingavirin was similar to that of the reference compound Tamiflu. Based on the results obtained, Ingavirin should be considered as an important part of anti-viral prophylaxis and therapy.

  3. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    Science.gov (United States)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  4. Adenovirus 2, Bordetella bronchiseptica, and Parainfluenza Molecular Diagnostic Assay Results in Puppies After vaccination with Modified Live Vaccines.

    Science.gov (United States)

    Ruch-Gallie, R; Moroff, S; Lappin, M R

    2016-01-01

    Canine adenovirus 2, parainfluenza, and Bordetella bronchiseptica cause respiratory disease in dogs, and each has a modified live intranasal vaccine available. Molecular diagnostic assays to amplify specific nucleic acids are available for each of these agents. If positive molecular diagnostic assay results are common after vaccination, the positive predictive value of the diagnostic assays for disease would be decreased. To determine the impact of administration of commercially available modified live topical adenovirus 2, B. bronchiseptica, and parainfluenza vaccine has on the results of a commercially available PCR panel. Eight puppies from a research breeding facility negative for these pathogens. Blinded prospective pilot study. Puppies were vaccinated with a single dose of modified live topical adenovirus 2, B. bronchiseptica, and parainfluenza and parenteral dose of adenovirus 2, canine distemper virus, and parvovirus. Nasal and pharyngeal swabs were collected on multiple days and submitted for PCR assay. Nucleic acids of all 3 organisms contained in the topical vaccine were detected from both samples multiple times through 28 days after vaccination with higher numbers of positive samples detected between days 3 and 10 after vaccination. Vaccine status should be considered when interpreting respiratory agent PCR results if modified live vaccines have been used. Development of quantitative PCR and wild-type sequencing are necessary to improve positive predictive value of these assays by distinguishing vaccinate from natural infection. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  5. Chemical disinfection of non-porous inanimate surfaces experimentally contaminated with four human pathogenic viruses.

    Science.gov (United States)

    Sattar, S A; Springthorpe, V S; Karim, Y; Loro, P

    1989-06-01

    The chemical disinfection of virus-contaminated non-porous inanimate surfaces was investigated using coxsackievirus B3, adenovirus type 5, parainfluenza virus type 3 and coronavirus 229E as representatives of important nosocomial viral pathogens. A 10 microliter amount of the test virus, suspended in either faeces or mucin, was placed onto each stainless steel disk (about 1 cm in diameter) and the inoculum allowed to dry for 1 h under ambient conditions. Sixteen disinfectant formulations were selected for this study based on the findings of an earlier investigation with a human rotavirus. After 1 min exposure to 20 microliters of the disinfectant, the virus from the disks was immediately eluted into tryptose phosphate broth and plaque assayed. Using an efficacy criterion of a 3 log10 or greater reduction in virus infectivity titre and irrespective of the virus suspending medium, only the following five disinfectants proved to be effective against all the four viruses tested: (1) 2% glutaraldehyde normally used as an instrument soak, (2) a strongly alkaline mixture of 0.5% sodium o-benzyl-p-chlorophenate and 0.6% sodium lauryl sulphate, generally used as a domestic disinfectant cleaner for hard surfaces, (3) a 0.04% solution of a quaternary ammonium compound containing 7% hydrochloric acid, which is the basis of many toilet bowl cleaners, (4) chloramine T at a minimum free chlorine level of 3000 p.p.m. and (5) sodium hypochlorite at a minimum free chlorine concentration of 5000 p.p.m. Of those chemicals suitable for use as topical antiseptics, 70% ethanol alone or products containing at least 70% ethanol were ineffective only against coxsackievirus B3. These results emphasize the care needed in selecting chemical disinfectants for routine use in infection control.

  6. Immunological responses against human papilloma virus and human papilloma virus induced laryngeal cancer.

    Science.gov (United States)

    Chitose, Shun-ichi; Sakazaki, T; Ono, T; Kurita, T; Mihashi, H; Nakashima, T

    2010-06-01

    This study aimed to clarify the local immune status in the larynx in the presence of infection or carcinogenesis associated with human papilloma virus. Cytological samples (for human papilloma virus detection) and laryngeal secretions (for immunoglobulin assessment) were obtained from 31 patients with laryngeal disease, during microscopic laryngeal surgery. On histological examination, 12 patients had squamous cell carcinoma, four had laryngeal papilloma and 15 had other benign laryngeal disease. Cytological samples were tested for human papilloma virus DNA using the Hybrid Capture 2 assay. High risk human papilloma virus DNA was detected in 25 per cent of patients (three of 12) with laryngeal cancer. Low risk human papilloma virus DNA was detected only in three laryngeal papilloma patients. The mean laryngeal secretion concentrations of immunoglobulins M, G and A and secretory immunoglobulin A in human papilloma virus DNA positive patients were more than twice those in human papilloma virus DNA negative patients. A statistically significant difference was observed between the secretory immunoglobulin A concentrations in the two groups. Patients with laryngeal cancer had higher laryngeal secretion concentrations of each immunoglobulin type, compared with patients with benign laryngeal disease. The study assessed the mean laryngeal secretion concentrations of each immunoglobulin type in the 12 laryngeal cancer patients, comparing human papilloma virus DNA positive patients (n = 3) and human papilloma virus DNA negative patients (n = 9); the mean concentrations of immunoglobulins M, G and A and secretory immunoglobulin A tended to be greater in human papilloma virus DNA positive cancer patients, compared with human papilloma virus DNA negative cancer patients. These results suggest that the local laryngeal immune response is activated by infection or carcinogenesis due to human papilloma virus. The findings strongly suggest that secretory IgA has inhibitory activity

  7. Comparative studies on virus detection in acute respiratory diseases in humans by means of RIA and cultivation

    International Nuclear Information System (INIS)

    Ehrlicher, L.

    1982-01-01

    In winter 1981, 146 patients with an acute respiratory infection were examined. Nasopharyngeal specimens were obtained by intranasal catheter. Comparative investigations were performed by cultivation in tissue culture and by a four-layer radioimmunoassay. In the radioimmunoassay, polystyrene beads were used as the solid phase, ginea pig antivirus immunoglobulins as the captive antibodies, rabbit anti-virus immunoglobulins as the secondary antibodies and 125 I-labelled sheep anti-rabbit immunoglobulins were used as the indicator antibodies. The radioimmunoassay was developed for the detection of adenovirus, respiratory syncytial virus, influenza A and B virus and parainfluenza type 1, type 2 and type 3 virus. Tissue culture seems to be more sensitive for detection of adenovirus and influenza A virus, though some infections with influenza A virus could only be diagnosed by the radioimmunoassay. In other cases (respiratory syncytial virus, influenza B virus) antigen detection by radioimmunoassay is more efficient. Presently the combination of both antigen-detection-systems still is the optimal diagnostic procedure for detecting virus infections of the respiratory tract. (orig./MG) [de

  8. Potent Inhibitors against Newcastle Disease Virus Hemagglutinin-Neuraminidase.

    Science.gov (United States)

    Rota, Paola; La Rocca, Paolo; Piccoli, Marco; Montefiori, Marco; Cirillo, Federica; Olsen, Lars; Orioli, Marica; Allevi, Pietro; Anastasia, Luigi

    2018-02-06

    Neuraminidase activity is essential for the infection and propagation of paramyxoviruses, including human parainfluenza viruses (hPIVs) and the Newcastle disease virus (NDV). Thus, many inhibitors have been developed based on the 2-deoxy-2,3-didehydro-d-N-acetylneuraminic acid inhibitor (DANA) backbone. Along this line, herein we report a series of neuraminidase inhibitors, having C4 (p-toluenesulfonamido and azido substituents) and C5 (N-perfluorinated chains) modifications to the DANA backbone, resulting in compounds with 5- to 15-fold greater potency than the currently most active compound, the N-trifluoroacetyl derivative of DANA (FANA), toward the NDV hemagglutinin-neuraminidase (NDV-HN). Remarkably, these inhibitors were found to be essentially inactive against the human sialidase NEU3, which is present on the outer layer of the cell membrane and is highly affected by the current NDV inhibitor FANA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 9 CFR 113.316 - Canine Parainfluenza Vaccine.

    Science.gov (United States)

    2010-01-01

    ... furnished or approved by Animal and Plant Health Inspection Service. (4) The rectal temperature of each dog...: (1) Twenty-five canine parainfluenza susceptible dogs (20 vaccinates and 5 controls) shall be used as test animals. Nasal swabs shall be collected from each dog on the day the first dose of vaccine is...

  10. [A case of pulmonary abscess in which Haemophilus parainfluenzae and Streptococcus intermedius were isolated by percutaneous needle aspiration].

    Science.gov (United States)

    Miyamoto, Atsushi; Tsuboi, Eiyasu; Takaya, Hisashi; Sugino, Keishi; Sakamoto, Susumu; Kawabata, Masateru; Kishi, Kazuma; Narui, Koji; Homma, Sakae; Nakatani, Tatsuo; Nakata, Koichiro; Yoshimura, Kunihiko

    2006-08-01

    Some microbes, including the Bacteroides species, Staphylococcus aureus and Streptococcus milleri groups, can cause pulmonary abscess. Haemophilus parainfluenzae is usually categorized as one of the normal flora which colonizes in the ears and the nasopharynx, and it has been long considered that H. parainfluenzae has little pathogenicity in the lower respiratory tract and lung parenchymal. In this report, we present a case of pulmonary abscess caused by both H. parainfluenzae and Streptococcus intermedius. The patient was a 75-year-old man who had had total esophageo-gastrectomy because of esophageal cancer. He presented with purulent sputum, and chest X-ray film showed a dense consolidation in the right upper lung field. CT-guided transcutaneous fine needle aspiration was performed as a diagnostic procedure. Since both H. parainfluenzae and S. intermedius had been isolated from the lesion, pulmonary abscess caused by these two pathogens was diagnosed. The patient was treated with panipenem/betamipron, and his symptoms and pulmonary infiltrates on the chest X-ray film improved thereafter. So far, very few cases have been reported in which H. parainfluenzae caused lower respiratory tract infection. Although S. intermedius is known as one of the pathogens of pulmonary abscess, it is possible that H. parainfluenzae could also be pathogenic in infectious diseases of the lung.

  11. 78 FR 29755 - Human Immunodeficiency Virus Patient-Focused Drug Development and Human Immunodeficiency Virus...

    Science.gov (United States)

    2013-05-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0473] Human Immunodeficiency Virus Patient-Focused Drug Development and Human Immunodeficiency Virus Cure... an opportunity for public comment on human immunodeficiency virus (HIV) Patient-Focused Drug...

  12. Development and application of radioimmunoassay and enzyme immunoassays in microbiological and immunological diagnosis. 3. Comparative studies for the detection of virus antibodies with passive hemagglutination test, radioimmunoassay and enzyme immunoassay, resp

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, H; Struy, H; Morenz, J [Medizinische Akademie, Magdeburg (German Democratic Republic)

    1982-06-01

    Radioimmuno- and enzyme immunoassays (solid phase RIA and ELISA) developed by the authors for the determination of antibodies of adeno-2- and parainfluenza-1-viruses are described and the detection sensibility for antibodies is compared with that of the conventional passive hemagglutination test. The sensibility of the radioimmunoassay for the detection of IgG antibodies against adeno-2-viruses is nearly 10 times higher than that of the passive hemagglutination. RIA and ELISA show no essential differences in their detection sensibilities in the detection of IgG antibodies against parainfluenza-1-viruses.

  13. 78 FR 46969 - Human Immunodeficiency Virus Patient-Focused Drug Development and Human Immunodeficiency Virus...

    Science.gov (United States)

    2013-08-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0473] Human Immunodeficiency Virus Patient-Focused Drug Development and Human Immunodeficiency Virus Cure... for the notice of public meeting entitled ``Human Immunodeficiency Virus (HIV) Patient-Focused Drug...

  14. Haemophilus parainfluenzae Mural Endocarditis: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Luca T. Giurgea

    2016-01-01

    Full Text Available Haemophilus parainfluenzae, which uncommonly causes endocarditis, has never been documented to cause mural involvement. A 62-year-old immunocompetent female without predisposing risk factors for endocarditis except for poor dentition presented with fever, emesis, and dysmetria. Echocardiography found a mass attached to the left ventricular wall with finger-like projections. Computed tomography showed evidence of embolic phenomena to the brain, kidneys, spleen, and colon. Cardiac MRI revealed involvement of the chordae tendineae of the anterior papillary muscles. Blood cultures grew Haemophilus parainfluenzae. The patient was treated successfully with ceftriaxone with resolution of symptoms, including neurologic deficits. After eleven days of antibiotics a worsening holosystolic murmur was discovered. Worsening mitral regurgitation on echocardiography was only found three weeks later. Nine weeks after presentation, intraoperative evaluation revealed chord rupture but no residual vegetation and mitral repair was performed. Four weeks after surgery, the patient was back to her baseline. This case illustrates the ability of Haemophilus parainfluenzae to form large mural vegetations with high propensity of embolization in otherwise normal cardiac tissue among patients with dental risk factors. It also underscores the importance of physical examination in establishing a diagnosis of endocarditis and monitoring for progression of disease.

  15. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses

    Science.gov (United States)

    Hendricks, Gabriel L.; Velazquez, Lourdes; Pham, Serena; Qaisar, Natasha; Delaney, James C.; Viswanathan, Karthik; Albers, Leila; Comolli, James C.; Shriver, Zachary; Knipe, David M.; Kurt-Jones, Evelyn A.; Fygenson, Deborah K.; Trevejo, Jose M.

    2016-01-01

    Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as ‘molecular sinks’ and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform. PMID:25637710

  16. Validation of statistical models for estimating hospitalization associated with influenza and other respiratory viruses.

    Directory of Open Access Journals (Sweden)

    Lin Yang

    Full Text Available BACKGROUND: Reliable estimates of disease burden associated with respiratory viruses are keys to deployment of preventive strategies such as vaccination and resource allocation. Such estimates are particularly needed in tropical and subtropical regions where some methods commonly used in temperate regions are not applicable. While a number of alternative approaches to assess the influenza associated disease burden have been recently reported, none of these models have been validated with virologically confirmed data. Even fewer methods have been developed for other common respiratory viruses such as respiratory syncytial virus (RSV, parainfluenza and adenovirus. METHODS AND FINDINGS: We had recently conducted a prospective population-based study of virologically confirmed hospitalization for acute respiratory illnesses in persons <18 years residing in Hong Kong Island. Here we used this dataset to validate two commonly used models for estimation of influenza disease burden, namely the rate difference model and Poisson regression model, and also explored the applicability of these models to estimate the disease burden of other respiratory viruses. The Poisson regression models with different link functions all yielded estimates well correlated with the virologically confirmed influenza associated hospitalization, especially in children older than two years. The disease burden estimates for RSV, parainfluenza and adenovirus were less reliable with wide confidence intervals. The rate difference model was not applicable to RSV, parainfluenza and adenovirus and grossly underestimated the true burden of influenza associated hospitalization. CONCLUSION: The Poisson regression model generally produced satisfactory estimates in calculating the disease burden of respiratory viruses in a subtropical region such as Hong Kong.

  17. Avian influenza viruses in humans.

    Science.gov (United States)

    Malik Peiris, J S

    2009-04-01

    Past pandemics arose from low pathogenic avian influenza (LPAI) viruses. In more recent times, highly pathogenic avian influenza (HPAI) H5N1, LPAI H9N2 and both HPAI and LPAI H7 viruses have repeatedly caused zoonotic disease in humans. Such infections did not lead to sustained human-to-human transmission. Experimental infection of human volunteers and seroepidemiological studies suggest that avian influenza viruses of other subtypes may also infect humans. Viruses of the H7 subtype appear to have a predilection to cause conjunctivitis and influenza-like illness (ILI), although HPAI H7N7 virus has also caused fatal respiratory disease. Low pathogenic H9N2 viruses have caused mild ILI and its occurrence may be under-recognised for this reason. In contrast, contemporary HPAI H5N1 viruses are exceptional in their virulence for humans and differ from human seasonal influenza viruses in their pathogenesis. Patients have a primary viral pneumonia progressing to acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome. Over 380 human cases have been confirmed to date, with an overall case fatality of 63%. The zoonotic transmission of avian influenza is a rare occurrence, butthe greater public health concern is the adaptation of such viruses to efficient human transmission, which could lead to a pandemic. A better understanding of the ecology of avian influenza viruses and the biological determinants of transmissibility and pathogenicity in humans is important for pandemic preparedness.

  18. Para influenza virus 3 infection in cattle and small ruminants in Sudan

    Directory of Open Access Journals (Sweden)

    Intisar Kamil Saeed

    2016-09-01

    Results: Positive results were found in 29 (12.8% cattle, 31 (9.8% sheep and 11 (47.8% goat samples. All the studied areas showed positive results. Highest prevalence (66.7% was detected in the sheep and goats in Khartoum, followed by in goats in Nyala (33.3% at western Sudan. Sequence analyses of PIV3 of different regions of Sudan indicated that these were similar in sequence and length. The BLAST analysis indicated that the test sequences were closely related to the available annotated sequences at the GenBank. All these sequences matched with Bovine parainfluenza virus 3 except two those were matching with Swine parainfluenza virus 3. Conclusion: The results prove the existence of PIV3 infection in cattle, sheep and goats in the studied areas in Sudan and suggest its possible role in the respiratory infections. Genetic analysis indicate that the virus is mostly similar with bovine PIV3. [J Adv Vet Anim Res 2016; 3(3.000: 236-241

  19. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses.

    Science.gov (United States)

    van Riel, Debby; den Bakker, Michael A; Leijten, Lonneke M E; Chutinimitkul, Salin; Munster, Vincent J; de Wit, Emmie; Rimmelzwaan, Guus F; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs

    2010-04-01

    Influenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by virus histochemistry of three human and three avian influenza viruses in human nasal septum, conchae, nasopharynx, paranasal sinuses, and larynx. We found that the human influenza viruses-two seasonal influenza viruses and pandemic H1N1 virus-attached abundantly to ciliated epithelial cells and goblet cells throughout the upper respiratory tract. In contrast, the avian influenza viruses, including the highly pathogenic H5N1 virus, attached only rarely to epithelial cells or goblet cells. Both human and avian viruses attached occasionally to cells of the submucosal glands. The pattern of virus attachment was similar among the different sites of the human upper respiratory tract for each virus tested. We conclude that influenza viruses that are transmitted efficiently among humans attach abundantly to human upper respiratory tract, whereas inefficiently transmitted influenza viruses attach rarely. These results suggest that the ability of an influenza virus to attach to human upper respiratory tract is a critical factor for efficient transmission in the human population.

  20. Recent advances in the development of vaccines for Ebola virus disease.

    Science.gov (United States)

    Ohimain, Elijah Ige

    2016-01-04

    Ebola virus is one of the most dangerous microorganisms in the world causing hemorrhagic fevers in humans and non-human primates. Ebola virus (EBOV) is a zoonotic infection, which emerges and re-emerges in human populations. The 2014 outbreak was caused by the Zaire strain, which has a kill rate of up to 90%, though 40% was recorded in the current outbreak. The 2014 outbreak is larger than all 20 outbreaks that have occurred since 1976, when the virus was first discovered. It is the first time that the virus was sustained in urban centers and spread beyond Africa into Europe and USA. Thus far, over 22,000 cases have been reported with about 50% mortality in one year. There are currently no approved therapeutics and preventive vaccines against Ebola virus disease (EVD). Responding to the devastating effe1cts of the 2014 outbreak and the potential risk of global spread, has spurred research for the development of therapeutics and vaccines. This review is therefore aimed at presenting the progress of vaccine development. Results showed that conventional inactivated vaccines produced from EBOV by heat, formalin or gamma irradiation appear to be ineffective. However, novel vaccines production techniques have emerged leading to the production of candidate vaccines that have been demonstrated to be effective in preclinical trials using small animal and non-human primates (NHP) models. Some of the promising vaccines have undergone phase 1 clinical trials, which demonstrated their safety and immunogenicity. Many of the candidate vaccines are vector based such as Vesicular Stomatitis Virus (VSV), Rabies Virus (RABV), Adenovirus (Ad), Modified Vaccinia Ankara (MVA), Cytomegalovirus (CMV), human parainfluenza virus type 3 (HPIV3) and Venezuelan Equine Encephalitis Virus (VEEV). Other platforms include virus like particle (VLP), DNA and subunit vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Successful topical respiratory tract immunization of primates against Ebola virus.

    Science.gov (United States)

    Bukreyev, Alexander; Rollin, Pierre E; Tate, Mallory K; Yang, Lijuan; Zaki, Sherif R; Shieh, Wun-Ju; Murphy, Brian R; Collins, Peter L; Sanchez, Anthony

    2007-06-01

    Ebola virus causes outbreaks of severe viral hemorrhagic fever with high mortality in humans. The virus is highly contagious and can be transmitted by contact and by the aerosol route. These features make Ebola virus a potential weapon for bioterrorism and biological warfare. Therefore, a vaccine that induces both systemic and local immune responses in the respiratory tract would be highly beneficial. We evaluated a common pediatric respiratory pathogen, human parainfluenza virus type 3 (HPIV3), as a vaccine vector against Ebola virus. HPIV3 recombinants expressing the Ebola virus (Zaire species) surface glycoprotein (GP) alone or in combination with the nucleocapsid protein NP or with the cytokine adjuvant granulocyte-macrophage colony-stimulating factor were administered by the respiratory route to rhesus monkeys--in which HPIV3 infection is mild and asymptomatic--and were evaluated for immunogenicity and protective efficacy against a highly lethal intraperitoneal challenge with Ebola virus. A single immunization with any construct expressing GP was moderately immunogenic against Ebola virus and protected 88% of the animals against severe hemorrhagic fever and death caused by Ebola virus. Two doses were highly immunogenic, and all of the animals survived challenge and were free of signs of disease and of detectable Ebola virus challenge virus. These data illustrate the feasibility of immunization via the respiratory tract against the hemorrhagic fever caused by Ebola virus. To our knowledge, this is the first study in which topical immunization through respiratory tract achieved prevention of a viral hemorrhagic fever infection in a primate model.

  2. Human Respiratory Syncytial Virus and Human Metapneumovirus

    Directory of Open Access Journals (Sweden)

    Luciana Helena Antoniassi da Silva

    2009-08-01

    Full Text Available The human respiratory syncytial virus (hRSV and the human metapneumovírus (hMPV are main etiological agents of acute respiratory infections (ARI. The ARI is an important cause of childhood morbidity and mortality worldwide.  hRSV and hMPV are members of the Paramyxoviridae. They are enveloped, non-segmented viruses, with negative-sense single stranded genomes. Respiratory syncytial virus (hRSV is the best characterized agent viral of this group, associated with respiratory diseases in lower respiratory tract. Recently, a new human pathogen belonging to the subfamily Pneumovirinae was identified, the human metapneumovirus (hMPV, which is structurally similar to the hRSV, in genomic organization, viral structure, antigenicity and clinical symptoms.  The subfamily Pneumovirinae contains two genera: genus Pneumovirus contains hRSV, the bovine (bRSV, as well as the ovine and caprine respiratory syncytial virus and pneumonia virus of mice, the second genus Metapneumovirus, consists of avian metapneumovirus (aMPV and human metapneumovirus (hMPV. In this work, we present a brief narrative review of the literature on important aspects of the biology, epidemiology and clinical manifestations of infections by two respiratory viruses.

  3. Anticorpos neutralizantes contra os vírus da cinomose e da parainfluenza em cães de canis dos municípios de Novo Hamburgo e Porto Alegre, RS, Brasil Neutralizing antibodies to distemper and parainfluenza viruses in dogs in shelter kennels in the municipalities of Novo Hamburgo and Porto Alegre, RS, Brazil

    Directory of Open Access Journals (Sweden)

    Tamahine Larronda Schmidt Hartmann

    2007-08-01

    Full Text Available No presente estudo, foi realizada uma pesquisa em busca de anticorpos neutralizantes contra os vírus da cinomose (CDV e da parainfluenza (CPIV caninos em amostras de soro de 173 cães recolhidos a canis municipais em Novo Hamburgo (n=82 e Porto Alegre (n=91, RS. A pesquisa de anticorpos neutralizantes foi realizada pela técnica de soroneutralização frente a duas amostras vacinais de CDV (Rockborn e Snyder Hill e frente a uma amostra de CPIV (V660. Em relação ao CDV, 95,9% das amostras de soros foram negativas para anticorpos neutralizantes contra a amostra Snyder Hill e 90,7% soronegativas para a amostra Rockborn. Entre os soropositivos (n=20; 11,6%, somente três deles apresentaram anticorpos neutralizantes frente às duas amostras de CDV testadas, indicando pouca reatividade cruzada entre as mesmas. Quanto ao CPIV, a prevalência de anticorpos neutralizantes encontrada frente à amostra V660 foi de 51,4%. Esses achados indicam que a maioria dos cães examinados não teve contato prévio com o CDV, seja por infecção natural ou por imunização prévia. O CPIV, porém, parece estar amplamente difundido na população canina examinada, provavelmente por exposição natural ao vírus.In this report a serological survey was carried out in search for antibodies to canine distemper virus (CDV and canine parainfluenza virus (CPIV in 173 sera from dogs withdraw in kennels of the municipalities of Novo Hamburgo (n=82 and Porto Alegre (n=91, RS, Brazil. Neutralizing antibodies were evaluated against two CDV strains used for vaccine production (Rockborn and Snyder Hill as well as one strain of CPIV (V660. Search for anti-CDV neutralizing antibodies revealed that 95.9% of sera were negative for antibodies to CDV Snyder Hill and 90.7% were negative for antibodies to CDV Rockborn. Among the positive sera (n=20; 11.6 % only three of those had neutralizing antibodies to both CDV strains, indicating a low degree of cross reactivity between those. As

  4. SURVEILLANCE FOR ANTIBODIES AGAINST SIX CANINE VIRUSES IN WILD RACCOONS (PROCYON LOTOR) IN JAPAN.

    Science.gov (United States)

    Aoki, Emiko; Soma, Takehisa; Yokoyama, Mayumi; Matsubayashi, Makoto; Sasai, Kazumi

    2017-10-01

    Raccoons (Procyon lotor) are found worldwide. They are frequently seen in crowded inner cities as well as in forests or wooded areas, often living in proximity to humans and their pets. We examined sera from 100 wild raccoons in Japan for antibodies to six canine viruses with veterinary significance to assess their potential as reservoirs. We also aimed to understand the distribution of potentially infected wildlife. We found that 7% of samples were seropositive for canine distemper virus (CDV), 10% for canine parvovirus type 2, 2% for canine adenovirus type 1, 6% for canine adenovirus type 2, and 7% for canine coronavirus. No samples were found to be seropositive for canine parainfluenza virus. Seropositivity rates for canine distemper virus and canine parvovirus type 2 were significantly different between areas, and younger raccoons (Canis lupus familiaris), our results suggest that they can act as reservoirs for some of these important canine viruses and might be involved in viral transmission. Further study should include isolation and analysis of canine viruses in wild raccoons from a wider area.

  5. The role of infections and coinfections with newly identified and emerging respiratory viruses in children

    Directory of Open Access Journals (Sweden)

    Debiaggi Maurizia

    2012-10-01

    Full Text Available Abstract Acute respiratory infections are a major cause of morbidity in children both in developed and developing countries. A wide range of respiratory viruses, including respiratory syncytial virus (RSV, influenza A and B viruses, parainfluenza viruses (PIVs, adenovirus, rhinovirus (HRV, have repeatedly been detected in acute lower respiratory tract infections (LRTI in children in the past decades. However, in the last ten years thanks to progress in molecular technologies, newly discovered viruses have been identified including human Metapneumovirus (hMPV, coronaviruses NL63 (HcoV-NL63 and HKU1 (HcoV-HKU1, human Bocavirus (HBoV, new enterovirus (HEV, parechovirus (HpeV and rhinovirus (HRV strains, polyomaviruses WU (WUPyV and KI (KIPyV and the pandemic H1N1v influenza A virus. These discoveries have heavily modified previous knowledge on respiratory infections mainly highlighting that pediatric population is exposed to a variety of viruses with similar seasonal patterns. In this context establishing a causal link between a newly identified virus and the disease as well as an association between mixed infections and an increase in disease severity can be challenging. This review will present an overview of newly recognized as well as the main emerging respiratory viruses and seek to focus on the their contribution to infection and co-infection in LRTIs in childhood.

  6. Virus-induced exacerbations in asthma and COPD

    Directory of Open Access Journals (Sweden)

    Daisuke eKurai

    2013-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterized by chronic airway inflammation and/or airflow limitation due to pulmonary emphysema. Chronic bronchitis, pulmonary emphysema, and bronchial asthma may all be associated with airflow limitation; therefore, exacerbation of asthma may be associated with the pathophysiology of COPD. Furthermore, recent studies have suggested that the exacerbation of asthma, namely virus-induced asthma, may be associated with a wide variety of respiratory viruses.COPD and asthma have different underlying pathophysiological processes and thus require individual therapies. Exacerbation of both COPD and asthma, which are basically defined and diagnosed by clinical symptoms, is associated with a rapid decline in lung function and increased mortality. Similar pathogens, including human rhinovirus, respiratory syncytial virus, influenza virus, parainfluenza virus and coronavirus, are also frequently detected during exacerbation of asthma and/or COPD. Immune response to respiratory viral infections, which may be related to the severity of exacerbation in each disease, varies in patients with both COPD and asthma. In this regard, it is crucial to recognize and understand both the similarities and differences of clinical features in patients with COPD and/or asthma associated with respiratory viral infections, especially in the exacerbative stage.In relation to definition, epidemiology, and pathophysiology, this review aims to summarize current knowledge concerning exacerbation of both COPD and asthma by focusing on the clinical significance of associated respiratory virus infections.

  7. Clinical and epidemiological characteristics of acute respiratory virus infections in Vietnamese children.

    Science.gov (United States)

    Tran, D N; Trinh, Q D; Pham, N T K; Vu, M P; Ha, M T; Nguyen, T Q N; Okitsu, S; Hayakawa, S; Mizuguchi, M; Ushijima, H

    2016-02-01

    Information about viral acute respiratory infections (ARIs) is essential for prevention, diagnosis and treatment, but it is limited in tropical developing countries. This study described the clinical and epidemiological characteristics of ARIs in children hospitalized in Vietnam. Nasopharyngeal samples were collected from children with ARIs at Ho Chi Minh City Children's Hospital 2 between April 2010 and May 2011 in order to detect respiratory viruses by polymerase chain reaction. Viruses were found in 64% of 1082 patients, with 12% being co-infections. The leading detected viruses were human rhinovirus (HRV; 30%), respiratory syncytial virus (RSV; 23·8%), and human bocavirus (HBoV; 7·2%). HRV was detected all year round, while RSV epidemics occurred mainly in the rainy season. Influenza A (FluA) was found in both seasons. The other viruses were predominant in the dry season. HRV was identified in children of all age groups. RSV, parainfluenza virus (PIV) 1, PIV3 and HBoV, and FluA were detected predominantly in children aged 24 months, respectively. Significant associations were found between PIV1 with croup (P < 0·005) and RSV with bronchiolitis (P < 0·005). HBoV and HRV were associated with hypoxia (P < 0·05) and RSV with retraction (P < 0·05). HRV, RSV, and HBoV were detected most frequently and they may increase the severity of ARIs in children.

  8. [Effect of extracted ZG from gardenia on Hep-2 cell membrane post infected with parainfluenza virus type 1 (PIV-1)].

    Science.gov (United States)

    Guo, Shan-Shan; Huang, Yang; Zhao, Ye; Gao, Ying-Jie; Gong, Wen-Feng; Cui, Xiao-Lan

    2007-09-01

    In order to study the anti-viral mechanism of extracted ZG from Gardenia, the effect of extracted ZG on Hep-2 cell membrane potential, Na -K+-ATPase activity and membrane fluidity post infected with parainfluenza virus type 1 (PIV-1) was observed. Acetylcholine which was fluorescent labeled with DiBAC4 (3) was taken as positive control to observe the changes of membrane potential and was measured by flow cytometer. The phosphorus determination method and spectrophotometer were used to measure the Na+-K+-ATPase activity of Hep-2 cell membrane post PIV-1 infection. Hep-2 cell membrane phospholipids was labeled with fluorescent NBD-C6-HPC and membrane fluidity was measured by confocal laser scanning microscope. The results demonstated that after PIV-1 infection the Hep-2 cell membrane potential decreased significantly and the membrane was in the state of hyperpolarization, Na+-K+-ATPase activity increased and membrane fluidity decreased significantly. There was no apparent interferring effect of extracted ZG on the changes of membrane potential and Na+-K+-ATPase activity post PIV-1 infection, while membrane fluidity was improved significantly. Acetylcholine improved the state of hyperpolarization. The changes of membrane potential, Na -K+-ATPase activity and membrane fluidity might be the biomechanism of PIV-1 infectoin. The extracted ZG improved membrane fluidity to prevent from PIV-1 infection by protecting the cell membrane, which was probably the mechanism of anti-PIV-1 activity of the extracted ZG, but ZG probably had nothing to do with membrane potential and Na+-K+-ATPase activity.

  9. Human Respiratory Syncytial Virus and Human Metapneumovirus

    OpenAIRE

    Luciana Helena Antoniassi da Silva; Fernando Rosado Spilki; Adriana Gut Lopes Riccetto; Emilio Elias Baracat; Clarice Weis Arns

    2009-01-01

    The human respiratory syncytial virus (hRSV) and the human metapneumovírus (hMPV) are main etiological agents of acute respiratory infections (ARI). The ARI is an important cause of childhood morbidity and mortality worldwide.  hRSV and hMPV are members of the Paramyxoviridae. They are enveloped, non-segmented viruses, with negative-sense single stranded genomes. Respiratory syncytial virus (hRSV) is the best characterized agent viral of this group, associated with respiratory diseases in...

  10. Herpes viruses and human papilloma virus in nasal polyposis and controls

    Directory of Open Access Journals (Sweden)

    Dimitrios Ioannidis

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: Chronic rhinosinusitis with nasal polyps is a multifactorial disease entity with an unclear pathogenesis. Contradictory data exist in the literature on the potential implication of viral elements in adult patients with chronic rhinosinusitis. OBJECTIVE: To compare the prevalence of human herpes viruses (1-6 and Human Papilloma Virus in adult patients with chronic rhinosinusitis with nasal polyps and healthy controls. METHODS: Viral DNA presence was evaluated by real-time polymerase chain reaction application to nasal polyps specimens from 91 chronic rhinosinusitis with nasal polyps patients and nasal turbinate mucosa from 38 healthy controls. RESULTS: Epstein-Barr virus positivity was higher in nasal polyps (24/91; 26.4% versus controls (4/38; 10.5%, but the difference did not reach significance (p = 0.06. Human herpes virus-6 positivity was lower in nasal polyps (13/91; 14.29% versus controls (10/38; 26.32%,p = 0.13. In chronic rhinosinusitis with nasal polyps group, 1 sample was herpes simplex virus-1-positive (1/91; 1.1%, and another was cytomegalovirus-positive (1/91; 1.1%, versus none in controls. No sample was positive for herpes simplex virus-2, varicella-zoster virus, high-risk-human papilloma viruses (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and low-risk-human papilloma viruses (6, 11. CONCLUSION: Differences in Epstein-Barr virus and human herpes virus-6 positivity among patients with chronic rhinosinusitis with nasal polyps and healthy controls are not statistically significant, weakening the likelihood of their implication in chronic rhinosinusitis with nasal polyps pathogenesis.

  11. Prevalence of human papilloma virus and human herpes virus types 1-7 in human nasal polyposis.

    Science.gov (United States)

    Zaravinos, Apostolos; Bizakis, John; Spandidos, Demetrios A

    2009-09-01

    This study aimed to investigate the prevalence of human papilloma virus (HPV), herpes simplex virus-1/-2 (HSV-1/-2), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), and human herpes virus-6/-7 (HHV-6/-7) in 23 human nasal polyps by applying PCR. Two types of control tissues were used: adjacent inferior/middle turbinates from the patients and inferior/middle turbinates from 13 patients undergoing nasal corrective surgery. EBV was the virus most frequently detected (35%), followed by HPV (13%), HSV-1 (9%), and CMV (4%). The CMV-positive polyp was simultaneously positive for HSV-1. HPV was also detected in the adjacent turbinates (4%) and the adjacent middle turbinate (4%) of one of the HPV-positive patients. EBV, HSV, and CMV were not detected in the adjacent turbinates of the EBV-, HSV- or CMV-positive patients. All mucosae were negative for the VZV, HHV-6, and HHV-7. This is the first study to deal with the involvement of a comparable group of viruses in human nasal polyposis. The findings support the theory that the presence of viral EBV markedly influences the pathogenesis of these benign nasal tumors. The low incidence of HPV detected confirms the hypothesis that HPV is correlated with infectious mucosal lesions to a lesser extent than it is with proliferative lesions, such as inverted papilloma. The low incidence of HSV-1 and CMV confirms that these two herpes viruses may play a minor role in the development of nasal polyposis. Double infection with HSV-1 and CMV may also play a minor, though causative, role in nasal polyp development. VZV and HHV-6/-7 do not appear to be involved in the pathogenesis of these mucosal lesions.

  12. Longitudinal study of acute respiratory diseases in Rio de Janeiro: occurrence of respiratory viruses during four consecutive years Estudo longitudinal sobre doença repiratória aguda no Rio de Janeiro: ocorrência de vírus respiratório durante quatro anos consecutivos

    Directory of Open Access Journals (Sweden)

    Jussara P. Nascimento

    1991-08-01

    Full Text Available The occurrence of different viruses in nasopharyngeal secretions from children less than 5 years old with acute respiratory infections (ARI was investigated over a period of 4 years (1982-1985 in Rio de Janeiro. Of the viruses known to be associated with ARI, all but influenza C and parainfluenza types 1, 2 and 4 were found. Viruses were found more frequently in children attending emergency or pediatric wards than in outpatients. This was clearly related to the high incidence of respiratory syncytial virus (RSV in the more severe cases of ARI. RSV positive specimens appeared mainly during the fall, over four consecutive years, showing a clear seasonal ocurrence of this virus. Emergency wards provide the best source of data for RSV surveillance, showing sharp increase in the number of positive cases coinciding with increased incidence of ARI cases. Adenovirus were the second most frequent viruses isolated and among these serotypes 1,2 and 7 were predominant. Influenza virus and parainfluenza virus type 3 were next in frequency. Influenza A virus were isolated with equal frequency in outpatient departments, emergency and pediatric wards. Influenza B was more frequent among outpatients. Parainfluenza type 3 caused outbreaks in the shanty town population annually during the late winter or spring and were isolated mainly from outpatients. Herpesvirus, enterovi-rus and rhinovirus were found less frequently. Other viruses than RSV and parainfluenza type 3 did not show a clear seasonal incidence.Investigamos, durante um período de 4 anos (1982 a 1985, a ocorrência de vírus em secreções de nasofaringe coletadas de crianças com menos de 5 anos de idade apresentando quadro clínico de infecção respiratória aguda (IRA, residentes na cidade do Rio de Janeiro. Foram encontrados todos os vírus conhecidos como associados a IRA, com excessão do vírus influenza C e parainfluenza 1, 2 e 4. Vírus foram isolados mais freqüentemente de crian

  13. Incidence of respiratory viruses in Peruvian children with acute respiratory infections.

    Science.gov (United States)

    del Valle Mendoza, Juana; Cornejo-Tapia, Angela; Weilg, Pablo; Verne, Eduardo; Nazario-Fuertes, Ronald; Ugarte, Claudia; del Valle, Luis J; Pumarola, Tomás

    2015-06-01

    Acute respiratory infections are responsible for high morbi-mortality in Peruvian children. However, the etiological agents are poorly identified. This study, conducted during the pandemic outbreak of H1N1 influenza in 2009, aims to determine the main etiological agents responsible for acute respiratory infections in children from Lima, Peru. Nasopharyngeal swabs collected from 717 children with acute respiratory infections between January 2009 and December 2010 were analyzed by multiplex RT-PCR for 13 respiratory viruses: influenza A, B, and C virus; parainfluenza virus (PIV) 1, 2, 3, and 4; and human respiratory syncytial virus (RSV) A and B, among others. Samples were also tested with direct fluorescent-antibodies (DFA) for six respiratory viruses. RT-PCR and DFA detected respiratory viruses in 240 (33.5%) and 85 (11.9%) cases, respectively. The most common etiological agents were RSV-A (15.3%), followed by influenza A (4.6%), PIV-1 (3.6%), and PIV-2 (1.8%). The viruses identified by DFA corresponded to RSV (5.9%) and influenza A (1.8%). Therefore, respiratory syncytial viruses (RSV) were found to be the most common etiology of acute respiratory infections. The authors suggest that active surveillance be conducted to identify the causative agents and improve clinical management, especially in the context of possible circulation of pandemic viruses. © 2015 Wiley Periodicals, Inc.

  14. Herpes viruses and human papilloma virus in nasal polyposis and controls.

    Science.gov (United States)

    Ioannidis, Dimitrios; Lachanas, Vasileios A; Florou, Zoe; Bizakis, John G; Petinaki, Efthymia; Skoulakis, Charalampos E

    2015-01-01

    Chronic rhinosinusitis with nasal polyps is a multifactorial disease entity with an unclear pathogenesis. Contradictory data exist in the literature on the potential implication of viral elements in adult patients with chronic rhinosinusitis. To compare the prevalence of human herpes viruses (1-6) and Human Papilloma Virus in adult patients with chronic rhinosinusitis with nasal polyps and healthy controls. Viral DNA presence was evaluated by real-time polymerase chain reaction application to nasal polyps specimens from 91 chronic rhinosinusitis with nasal polyps patients and nasal turbinate mucosa from 38 healthy controls. Epstein-Barr virus positivity was higher in nasal polyps (24/91; 26.4%) versus controls (4/38; 10.5%), but the difference did not reach significance (p=0.06). Human herpes virus-6 positivity was lower in nasal polyps (13/91; 14.29%) versus controls (10/38; 26.32%, p=0.13). In chronic rhinosinusitis with nasal polyps group, 1 sample was herpes simplex virus-1-positive (1/91; 1.1%), and another was cytomegalovirus-positive (1/91; 1.1%), versus none in controls. No sample was positive for herpes simplex virus-2, varicella-zoster virus, high-risk-human papilloma viruses (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59) and low-risk-human papilloma viruses (6, 11). Differences in Epstein-Barr virus and human herpes virus-6 positivity among patients with chronic rhinosinusitis with nasal polyps and healthy controls are not statistically significant, weakening the likelihood of their implication in chronic rhinosinusitis with nasal polyps pathogenesis. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  15. Haemophilus parainfluenzae Endocarditis Associated With Maxillary Sinusitis and Complicated by Cerebral Emboli in a Young Man

    Directory of Open Access Journals (Sweden)

    Anthony E. Duzenli MD

    2017-04-01

    Full Text Available HACEK endocarditis is often difficult to diagnose given the slow-growing characteristics of the organisms involved. Haemophilus parainfluenzae, one of the HACEK organisms, is an uncommon cause of endocarditis. We describe a case of a previously healthy young man with H parainfluenzae endocarditis that was associated with maxillary sinusitis and severe systemic complications, including septic cerebral emboli and mitral valve perforation. Previously reported cases have also described a predilection for younger people, cardiac valve pathology, and a high prevalence of stroke.

  16. Theories about evolutionary origins of human hepatitis B virus in primates and humans.

    Science.gov (United States)

    Souza, Breno Frederico de Carvalho Dominguez; Drexler, Jan Felix; Lima, Renato Santos de; Rosário, Mila de Oliveira Hughes Veiga do; Netto, Eduardo Martins

    2014-01-01

    The human hepatitis B virus causes acute and chronic hepatitis and is considered one of the most serious human health issues by the World Health Organization, causing thousands of deaths per year. There are similar viruses belonging to the Hepadnaviridae family that infect non-human primates and other mammals as well as some birds. The majority of non-human primate virus isolates were phylogenetically close to the human hepatitis B virus, but like the human genotypes, the origins of these viruses remain controversial. However, there is a possibility that human hepatitis B virus originated in primates. Knowing whether these viruses might be common to humans and primates is crucial in order to reduce the risk to humans. To review the existing knowledge about the evolutionary origins of viruses of the Hepadnaviridae family in primates. This review was done by reading several articles that provide information about the Hepadnaviridae virus family in non-human primates and humans and the possible origins and evolution of these viruses. The evolutionary origin of viruses of the Hepadnaviridae family in primates has been dated back to several thousand years; however, recent analyses of genomic fossils of avihepadnaviruses integrated into the genomes of several avian species have suggested a much older origin of this genus. Some hypotheses about the evolutionary origins of human hepatitis B virus have been debated since the '90s. One theory suggested a New World origin because of the phylogenetic co-segregation between some New World human hepatitis B virus genotypes F and H and woolly monkey human hepatitis B virus in basal sister-relationship to the Old World non-human primates and human hepatitis B virus variants. Another theory suggests an Old World origin of human hepatitis B virus, and that it would have been spread following prehistoric human migrations over 100,000 years ago. A third theory suggests a co-speciation of human hepatitis B virus in non-human primate

  17. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses

    NARCIS (Netherlands)

    D.A.J. van Riel (Debby); M.A. den Bakker (Michael); L.M.E. Leijten (Lonneke); S. Chutinimitkul (Salin); V.J. Munster (Vincent); E. de Wit (Emmie); G.F. Rimmelzwaan (Guus); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2010-01-01

    textabstractInfluenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by

  18. Detection of viruses and atypical bacteria associated with acute respiratory infection of children in Hubei, China.

    Science.gov (United States)

    Wu, Zegang; Li, Yan; Gu, Jian; Zheng, Hongyun; Tong, Yongqing; Wu, Qing

    2014-02-01

    Acute respiratory infection is the major cause of disease and death in children, particularly in developing countries. However, the spectrum of pathogenic viruses and atypical bacteria that exist in many of these countries remains incompletely characterized. The aim of this study was to examine the spectrum of pathogenic viruses and atypical bacteria associated with acute respiratory infection in children under the age of 16. A total of 10 435 serum sera specimens were collected from hospitalized children presenting with acute respiratory infection symptoms. Indirect immunofluorescence assays were performed to detect immunoglobulin M antibodies against nine common pathogens: mycoplasma pneumonia, influenza virus B, respiratory syncytial virus, parainfluenza virus, adenovirus, influenza virus A, legionella pneumophila, coxiella burnetii and chamydophila pneumonia. Of the 10 435 specimens examined, 7046 tested positive for at least one pathogen. Among all of the tested pathogens, mycoplasma pneumonia had the highest detection rate (56.9%). Influenza virus A and influenza virus B epidemics occurred during both winter and summer. The detection rate of respiratory syncytial virus and adenovirus was higher in spring. Cases of mixed infection were more complex: 4136 specimens (39.6%) tested positive for ≥2 pathogens. There were statistically significant difference in detection rates of mycoplasma pneumonia, influenza virus B, respiratory syncytial virus, parainfluenza virus, adenovirus, influenza virus A, legionella pneumophila and chamydophila pneumonia among different age groups (P acute respiratory infection among children in Hubei of China were mycoplasma pneumonia, influenza virus B and respiratory syncytial virus. The detection rates for each pathogen displayed specific seasonal and age group variations. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  19. Theories about evolutionary origins of human hepatitis B virus in primates and humans

    Directory of Open Access Journals (Sweden)

    Breno Frederico de Carvalho Dominguez Souza

    2014-09-01

    Conclusion: Some hypotheses about the evolutionary origins of human hepatitis B virus have been debated since the ‘90s. One theory suggested a New World origin because of the phylogenetic co-segregation between some New World human hepatitis B virus genotypes F and H and woolly monkey human hepatitis B virus in basal sister-relationship to the Old World non-human primates and human hepatitis B virus variants. Another theory suggests an Old World origin of human hepatitis B virus, and that it would have been spread following prehistoric human migrations over 100,000 years ago. A third theory suggests a co-speciation of human hepatitis B virus in non-human primate hosts because of the proximity between the phylogeny of Old and New World non-human primate and their human hepatitis B virus variants. The importance of further research, related to the subject in South American wild fauna, is paramount and highly relevant for understanding the origin of human hepatitis B virus.

  20. Prevalence of human immunodeficiency virus, hepatitis C virus ...

    African Journals Online (AJOL)

    Background. Human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV) and syphilis remain major infections around the world. In Angola, about 166 000 individuals are living with HIV, representing a prevalence of 1.98% in adults between 15 and 49 years of age. In a 2003 study in Luanda, 4.5% ...

  1. Epidemiology of parainfluenza infection in England and Wales, 1998-2013: any evidence of change?

    Science.gov (United States)

    Zhao, H; Harris, R J; Ellis, J; Donati, M; Pebody, R G

    2017-04-01

    Human parainfluenza virus (HPIV) infections are one of the commonest causes of upper and lower respiratory tract infections. In order to determine if there have been any recent changes in HPIV epidemiology in England and Wales, laboratory surveillance data between 1998 and 2013 were analysed. The UK national laboratory surveillance database, LabBase, and the newly established laboratory-based virological surveillance system, the Respiratory DataMart System (RDMS), were used. Descriptive analysis was performed to examine the distribution of cases by year, age, sex and serotype, and to examine the overall temporal trend using the χ 2 test. A random-effects model was also employed to model the number of cases. Sixty-eight per cent of all HPIV detections were due to HPIV type 3 (HPIV-3). HPIV-3 infections were detected all year round but peaked annually between March and June. HPIV-1 and HPIV-2 circulated at lower levels accounting for 20% and 8%, respectively, peaking during the last quarter of the year with a biennial cycle. HPIV-4 was detected in smaller numbers, accounting for only 4% and also mainly observed in the last quarter of the year. However, in recent years, HPIV-4 detection has been reported much more commonly with an increase from 0% in 1998 to 3·7% in 2013. Although an overall higher proportion of HPIV infection was reported in infants (43·0%), a long-term decreasing trend in proportion in infants was observed. An increase was also observed in older age groups. Continuous surveillance will be important in tracking any future changes.

  2. The Complete Sequence of a Human Parainfluenzavirus 4 Genome

    Science.gov (United States)

    Yea, Carmen; Cheung, Rose; Collins, Carol; Adachi, Dena; Nishikawa, John; Tellier, Raymond

    2009-01-01

    Although the human parainfluenza virus 4 (HPIV4) has been known for a long time, its genome, alone among the human paramyxoviruses, has not been completely sequenced to date. In this study we obtained the first complete genomic sequence of HPIV4 from a clinical isolate named SKPIV4 obtained at the Hospital for Sick Children in Toronto (Ontario, Canada). The coding regions for the N, P/V, M, F and HN proteins show very high identities (95% to 97%) with previously available partial sequences for HPIV4B. The sequence for the L protein and the non-coding regions represent new information. A surprising feature of the genome is its length, more than 17 kb, making it the longest genome within the genus Rubulavirus, although the length is well within the known range of 15 kb to 19 kb for the subfamily Paramyxovirinae. The availability of a complete genomic sequence will facilitate investigations on a respiratory virus that is still not completely characterized. PMID:21994536

  3. The Complete Sequence of a Human Parainfluenzavirus 4 Genome

    Directory of Open Access Journals (Sweden)

    Carmen Yea

    2009-06-01

    Full Text Available Although the human parainfluenza virus 4 (HPIV4 has been known for a long time, its genome, alone among the human paramyxoviruses, has not been completely sequenced to date. In this study we obtained the first complete genomic sequence of HPIV4 from a clinical isolate named SKPIV4 obtained at the Hospital for Sick Children in Toronto (Ontario, Canada. The coding regions for the N, P/V, M, F and HN proteins show very high identities (95% to 97% with previously available partial sequences for HPIV4B. The sequence for the L protein and the non-coding regions represent new information. A surprising feature of the genome is its length, more than 17 kb, making it the longest genome within the genus Rubulavirus, although the length is well within the known range of 15 kb to 19 kb for the subfamily Paramyxovirinae. The availability of a complete genomic sequence will facilitate investigations on a respiratory virus that is still not completely characterized.

  4. Human papilloma virus vaccine associated uveitis.

    Science.gov (United States)

    Holt, Henry D; Hinkle, David M; Falk, Naomi S; Fraunfelder, Frederick T; Fraunfelder, Frederick W

    2014-03-01

    To report a possible association between human papilloma virus (HPV) vaccination and uveitis. Spontaneous reports from the National Registry of Drug-Induced Ocular Side effects, World Health Organization and Food and Drug Administration were collected on uveitis associated with human papilloma virus vaccination. A MEDLINE search was performed using keywords "uveitis," "iritis," "iridocyclitis," "human papilloma virus," "Cervarix", and "Gardasil." Data garnered from spontaneous reports included the age, gender, adverse drug reaction (ADR), date of administration, concomitant administration of other vaccinations, time until onset of ADR, other systemic reactions, and dechallenge and rechallenge data. A total of 24 case reports of uveitis associated with human papilloma virus vaccination were identified, all cases were female, and the median age was 17. Median time from HPV vaccination to reported ADR was 30 days (range 0-476 days). According to World Health Organization criteria, the relationship between human papilloma virus vaccination and uveitis is "possible." Causality assessments are based on the time relationship of drug administration, uveitis development and re-challenge data. Clinicians should be aware of a possible bilateral uveitis and papillitis following HPV vaccination.

  5. Solubilization of glycoproteins of envelope viruses by detergents

    International Nuclear Information System (INIS)

    Berezin, V.E.; Zaides, V.M.; Artamsnov, A.F.; Isaeva, E.S.; Zhdanov, V.M.

    1986-01-01

    The action of a number of known ionic and nonionic detergents, as well as the new nonionic detergent MESK, on envelope viruses was investigated. It was shown that the nonionic detergents MESK, Triton X-100, and octyl-β-D-glucopyranoside selectively solubilize the outer glycoproteins of the virus particles. The nonionic detergent MESK has the mildest action. Using MESK, purified glycoproteins of influenza, parainfluenza, Venezuelan equine encephalomyelitis, vesicular stomatitis, rabies, and herpes viruses were obtained. The procedure for obtaining glycoproteins includes incubation of the virus suspension with the detergent MESK, removal of subvirus structures by centrifuging, and purification of glycoproteins from detergents by dialysis. Isolated glycoproteins retain a native structure and biological activity and possess high immunogenicity. The detergent MESK is promising for laboratory tests and with respect to the production of subunit vaccines

  6. Respiratory Viruses in Febrile Neutropenic Patients with Respiratory Symptoms

    Directory of Open Access Journals (Sweden)

    Mohsen Meidani

    2018-01-01

    Full Text Available Background: Respiratory infections are a frequent cause of fever in neutropenic patients, whereas respiratory viral infections are not frequently considered as a diagnosis, which causes high morbidity and mortality in these patients. Materials and Methods: This prospective study was performed on 36 patients with neutropenia who admitted to hospital were eligible for inclusion with fever (single temperature of >38.3°C or a sustained temperature of >38°C for more than 1 h, upper and lower respiratory symptoms. Sampling was performed from the throat of the patient by the sterile swab. All materials were analyzed by quantitative real-time multiplex polymerase chain reaction covering the following viruses; influenza, parainfluenza virus (PIV, rhinovirus (RV, human metapneumovirus, and respiratory syncytial virus (RSV. Results: RV was the most frequently detected virus and then RSV was the most. PIV was not present in any of the tested samples. Furthermore, no substantial differences in the distribution of specific viral species were observed based on age, sex, neutropenia duration, hematological disorder, and respiratory tract symptoms and signs (P > 0.05. Conclusion: Our prospective study supports the hypothesis that respiratory viruses play an important role in the development of neutropenic fever, and thus has the potential to individualize infection treatment and to reduce the extensive use of antibiotics in immunocompromised patients with neutropenia.

  7. Evaluation of a multiplex real-time PCR assay for the detection of respiratory viruses in clinical specimens.

    Science.gov (United States)

    Rheem, Insoo; Park, Joowon; Kim, Tae-Hyun; Kim, Jong Wan

    2012-11-01

    In this study, we evaluated the analytical performance and clinical potential of a one-step multiplex real-time PCR assay for the simultaneous detection of 14 types of respiratory viruses using the AdvanSure RV real-time PCR Kit (LG Life Sciences, Korea). Three hundred and twenty clinical specimens were tested with the AdvanSure RV real-time PCR Kit and conventional multiplex reverse transcription (RT)-PCR assay. The assay results were analyzed and the one-step AdvanSure RV real-time PCR Kit was compared with the conventional multiplex RT-PCR assay with respect to the sensitivity and specificity of the detection of respiratory viruses. The limit of detection (LOD) was 1.31 plaque-forming units (PFU)/mL for human rhinoviruses (hRVs), 4.93 PFU/mL for human coronavirus HCoV-229E/NL63, 2.67 PFU/mL for human coronavirus HCoV-OC43, 18.20 PFU/mL for parainfluenza virus 1 (PIV)-1, 24.57 PFU/mL for PIV-2, 1.73 PFU/mL for PIV-3, 1.79 PFU/mL for influenza virus group (Flu) A, 59.51 PFU/mL for FluB, 5.46 PFU/mL for human respiratory syncytial virus (hRSV)-A, 17.23 PFU/mL for hRSV-B, 9.99 PFU/mL for human adenovirus (ADVs). The cross-reactivity test for this assay against 23 types of non-respiratory viruses showed negative results for all viruses tested. The agreement between the one-step AdvanSure multiplex real-time PCR assay and the conventional multiplex RT-PCR assay was 98%. The one-step AdvanSure RV multiplex real-time PCR assay is a simple assay with high potential for specific, rapid and sensitive laboratory diagnosis of respiratory viruses compared to conventional multiplex RT-PCR.

  8. RNASEK is required for internalization of diverse acid-dependent viruses.

    Science.gov (United States)

    Hackett, Brent A; Yasunaga, Ari; Panda, Debasis; Tartell, Michael A; Hopkins, Kaycie C; Hensley, Scott E; Cherry, Sara

    2015-06-23

    Viruses must gain entry into cells to establish infection. In general, viruses enter either at the plasma membrane or from intracellular endosomal compartments. Viruses that use endosomal pathways are dependent on the cellular factors that control this process; however, these genes have proven to be essential for endogenous cargo uptake, and thus are of limited value for therapeutic intervention. The identification of genes that are selectively required for viral uptake would make appealing drug targets, as their inhibition would block an early step in the life cycle of diverse viruses. At this time, we lack pan-antiviral therapeutics, in part because of our lack of knowledge of such cellular factors. RNAi screening has begun to reveal previously unknown genes that play roles in viral infection. We identified dRNASEK in two genome-wide RNAi screens performed in Drosophila cells against West Nile and Rift Valley Fever viruses. Here we found that ribonuclease kappa (RNASEK) is essential for the infection of human cells by divergent and unrelated positive- and negative-strand-enveloped viruses from the Flaviviridae, Togaviridae, Bunyaviridae, and Orthomyxoviridae families that all enter cells from endosomal compartments. In contrast, RNASEK was dispensable for viruses, including parainfluenza virus 5 and Coxsackie B virus, that enter at the plasma membrane. RNASEK is dispensable for attachment but is required for uptake of these acid-dependent viruses. Furthermore, this requirement appears specific, as general endocytic uptake of transferrin is unaffected in RNASEK-depleted cells. Therefore, RNASEK is a potential host cell Achilles' heel for viral infection.

  9. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV, Bovine Leukemia Virus (BLV, Human Papilloma Virus (HPV, and Epstein–Barr Virus (EBV

    Directory of Open Access Journals (Sweden)

    James S. Lawson

    2018-01-01

    Full Text Available BackgroundAlthough the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV, bovine leukemia virus (BLV, human papilloma viruses (HPVs, and Epstein–Barr virus (EBV-also known as human herpes virus type 4. Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence.The evidenceMMTV and human breast cancer—the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer—the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer—the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer—the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal.ConclusionThe influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.

  10. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV), Bovine Leukemia Virus (BLV), Human Papilloma Virus (HPV), and Epstein-Barr Virus (EBV).

    Science.gov (United States)

    Lawson, James S; Salmons, Brian; Glenn, Wendy K

    2018-01-01

    Although the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV), bovine leukemia virus (BLV), human papilloma viruses (HPVs), and Epstein-Barr virus (EBV-also known as human herpes virus type 4). Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence. MMTV and human breast cancer-the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer-the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer-the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer-the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal. The influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.

  11. RNAi suppressors encoded by pathogenic human viruses

    NARCIS (Netherlands)

    de Vries, Walter; Berkhout, Ben

    2008-01-01

    RNA silencing or RNAi interference (RNAi) serves as an innate antiviral mechanism in plants, fungi and animals. Human viruses, like plant viruses, encode suppressor proteins or RNAs that block or modulate the RNAi pathway. This review summarizes the mechanisms by which pathogenic human viruses

  12. Human papilloma virus prevalence in laryngeal squamous cell carcinoma.

    Science.gov (United States)

    Gungor, A; Cincik, H; Baloglu, H; Cekin, E; Dogru, S; Dursun, E

    2007-08-01

    To determine the prevalence and type of human papilloma virus deoxyribonucleic acid (DNA) in cases of laryngeal squamous cell carcinoma. We analysed the prevalence of human papilloma virus infection in archived paraffin block specimens taken from 99 cases of laryngeal squamous cell carcinoma between 1990 and 2005, using polymerase chain reaction techniques. Biopsy specimens from five proven verrucous skin lesions were used as positive controls, and peripheral blood samples from five healthy volunteers were used as negative controls. Four test samples were found to have inadequate deoxyribonucleic acid purity and were therefore excluded from the study. Human papilloma virus deoxyribonucleic acid was detected in seven of 95 cases of laryngeal squamous cell carcinoma (7.36 per cent). Human papilloma virus genotyping revealed double human papilloma virus infection in three cases and single human papilloma virus infection in the remaining four cases. The human papilloma virus genotypes detected were 6, 11 and 16 (the latter detected in only one case). In our series, a very low human papilloma virus prevalence was found among laryngeal squamous cell carcinoma cases. The human papilloma virus genotypes detected were mostly 6 and/or 11, and 16 in only one case. To the best of our knowledge, this is the first report of human papilloma virus prevalence in laryngeal squamous cell carcinoma, based on polymerase chain reaction genotyping in a Turkish population.

  13. Saffold virus infection associated with human myocarditis

    DEFF Research Database (Denmark)

    Nielsen, Trine Skov; Nielsen, Alex Yde; Banner, Jytte

    2016-01-01

    BACKGROUND: Saffold virus was described in 2007 as one of the first human viruses within the genus cardioviruses. Cardioviruses may cause severe infections of the myocardium in animals, and several studies have associated saffold virus with human disease. As a result, saffold virus has been...... isolated from different anatomical compartments, including the myocardium, but, until now, it has not been possible to demonstrate the accompanying histopathological signs of inflammation. OBJECTIVES: The aim of the study was to examine if saffold virus is capable of causing invasive infection in the human...... myocardium. STUDY DESIGN: Using real-time PCR, we retrospectively examined formalin-fixed paraffin embedded cardiac tissue specimens from 150 deceased individuals diagnosed with myocarditis at autopsy. The results were compared with histological findings. RESULTS AND CONCLUSIONS: Saffold virus was detected...

  14. Epidemiological studies on viral infections and co-infections : Human immunodeficiency virus, hepatitis C virus and human papillomavirus

    NARCIS (Netherlands)

    van Santen, D.K.

    2018-01-01

    The research described in this thesis aimed to increase our understanding of the incidence, disease progression and treatment of human immunodeficiency virus (HIV), hepatitis C virus (HCV), and human papillomavirus (HPV) infections and co-infections in key populations. Chapter 1 contains an overview

  15. Antiviral activity of gliotoxin, gentian violet and brilliant green against Nipah and Hendra virus in vitro

    Directory of Open Access Journals (Sweden)

    Meyer Adam G

    2009-11-01

    Full Text Available Abstract Background Using a recently described monolayer assay amenable to high throughput screening format for the identification of potential Nipah virus and Hendra virus antivirals, we have partially screened a low molecular weight compound library (>8,000 compounds directly against live virus infection and identified twenty eight promising lead molecules. Initial single blind screens were conducted with 10 μM compound in triplicate with a minimum efficacy of 90% required for lead selection. Lead compounds were then further characterised to determine the median efficacy (IC50, cytotoxicity (CC50 and the in vitro therapeutic index in live virus and pseudotype assay formats. Results While a number of leads were identified, the current work describes three commercially available compounds: brilliant green, gentian violet and gliotoxin, identified as having potent antiviral activity against Nipah and Hendra virus. Similar efficacy was observed against pseudotyped Nipah and Hendra virus, vesicular stomatitis virus and human parainfluenza virus type 3 while only gliotoxin inhibited an influenza A virus suggesting a non-specific, broad spectrum activity for this compound. Conclusion All three of these compounds have been used previously for various aspects of anti-bacterial and anti-fungal therapy and the current results suggest that while unsuitable for internal administration, they may be amenable to topical antiviral applications, or as disinfectants and provide excellent positive controls for future studies.

  16. Radioimmunoassay of measles virus hemagglutinin protein G

    International Nuclear Information System (INIS)

    Lund, G.A.; Salmi, A.A.

    1982-01-01

    Guinea pig and rabbit antisera from animals immunized with purified measles virus hemagglutinin (G) protein were used to establish a solid-phase four-layer radioimmunoassay for quantitative measurement of the G protein. The sensitivity of the assay was 2 ng of purified G protein, and 200 μg of protein from uninfected Vero cells neither decreased the sensitivity nor reacted non-specifically in the assay. Radioimmunoassay standard dose-response curves were established and unknown values interpolated from these using the logit program of a desktop computer. Using this procedure, a measles virus growth curve in infected Vero cells was determined by measurement of G protein production. Under these same conditions, hemagglutination was not sensitive enough to detect early hemagglutinin production. Viral antigens in canine distemper virus, Newcastle disease virus, parainfluenza viruses 1-4, simian virus 5, and respiratory syncytial virus-infected cell lysates did not cross-react in the radioimmunoassay. A small degree of cross-reactivity was detected with mumps viral antigens, both with Vero cell-derived (wild-type strain) and egg-derived (Enders strain) purified virus preparations and with a cell lysate antigen prepared from wild-type mumps virus-infected Vero cells. (Auth.)

  17. Radioimmunoassay of measles virus hemagglutinin protein G

    Energy Technology Data Exchange (ETDEWEB)

    Lund, G A; Salmi, A A [Turku Univ. (Finland)

    1982-08-01

    Guinea pig and rabbit antisera from animals immunized with purified measles virus hemagglutinin (G) protein were used to establish a solid-phase four-layer radioimmunoassay for quantitative measurement of the G protein. The sensitivity of the assay was 2 ng of purified G protein, and 200 ..mu..g of protein from uninfected Vero cells neither decreased the sensitivity nor reacted non-specifically in the assay. Radioimmunoassay standard dose-response curves were established and unknown values interpolated from these using the logit program of a desktop computer. Using this procedure, a measles virus growth curve in infected Vero cells was determined by measurement of G protein production. Under these same conditions, hemagglutination was not sensitive enough to detect early hemagglutinin production. Viral antigens in canine distemper virus, Newcastle disease virus, parainfluenza viruses 1-4, simian virus 5, and respiratory syncytial virus-infected cell lysates did not cross-react in the radioimmunoassay. A small degree of cross-reactivity was detected with mumps viral antigens, both with Vero cell-derived (wild-type strain) and egg-derived (Enders strain) purified virus preparations and with a cell lysate antigen prepared from wild-type mumps virus-infected Vero cells.

  18. Human Immunodeficiency Virus and Hepatitis C Virus Co-infection ...

    African Journals Online (AJOL)

    Human Immunodeficiency Virus and Hepatitis C Virus Co-infection in Cameroon: Investigation of the Genetic Diversity and Virulent ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL · RESOURCES ... DNA sequencing, and bioinformatics tools for sequence management and analysis.

  19. Ebola virus: bioterrorism for humans

    Directory of Open Access Journals (Sweden)

    Pramodkumar Pyarelal Gupta

    2015-01-01

    Full Text Available Ebola virus disease is a severe, often fatal, zoonotic infection caused by a virus of the Filoviridae family (genus Ebolavirus. Ebola virus (EBOV spreads by human to human transmission through contacts with body fluids from infected patients. Initial stages of EBOV are non-specific which makes the differential diagnosis broad. Here in this review article we focused on to show the details of EBOV, from its first case right up to the possible targets to cure this lethal disease. In this study we have shown the statistical survey, epidemiology, disease ontology, different genes coding for different proteins in EBOV and future aspects of it.

  20. Hepatitis C virus infection in the human immunodeficiency virus infected patient

    DEFF Research Database (Denmark)

    Clausen, Louise Nygaard; Lundbo, Lene Fogt; Benfield, Thomas

    2014-01-01

    Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) share the same transmission routes; therefore, coinfection is frequent. An estimated 5-10 million individuals alone in the western world are infected with both viruses. The majority of people acquire HCV by injection drug use and...

  1. The oral microbiome in human immunodeficiency virus (HIV)-positive individuals.

    Science.gov (United States)

    Kistler, James O; Arirachakaran, Pratanporn; Poovorawan, Yong; Dahlén, Gunnar; Wade, William G

    2015-09-01

    Human immunodeficiency virus (HIV) infection is associated with a range of oral conditions, and increased numbers of disease-associated microbial species have previously been found in HIV-positive subjects. The aim of this study was to use next-generation sequencing to compare the composition of the oral microbiome in HIV-positive and -negative individuals. Plaque and saliva were collected from 37 HIV-positive individuals and 37 HIV-negative individuals, and their bacterial composition determined by pyrosequencing of partial 16S rRNA genes. A total of 855,222 sequences were analysed. The number of species-level operational taxonomic units (OTUs) detected was significantly lower in the saliva of HIV-positive individuals (mean = 303.3) than in that of HIV-negative individuals (mean = 365.5) (P PCoA) based on community membership (Jaccard index) and structure (Yue and Clayton measure of dissimilarity) showed significant separation of plaque and saliva samples [analysis of molecular variance (AMOVA), P PCoA plots did not show any clear separation based on HIV status. However, AMOVA indicated that there was a significant difference in the community membership of saliva between HIV-positive and -negative groups (P = 0.001). Linear discriminant analysis effect size revealed an OTU identified as Haemophilus parainfluenzae to be significantly associated with HIV-positive individuals, whilst Streptococcus mitis/HOT473 was most significantly associated with HIV-negative individuals. In conclusion, this study has confirmed that the microbial composition of saliva and plaque is different. The oral microbiomes of HIV-positive and -negative individuals were found to be similar overall, although there were minor but significant differences in the composition of the salivary microbiota of the two groups.

  2. Expression of varicella-zoster virus and herpes simplex virus in normal human trigeminal ganglia

    International Nuclear Information System (INIS)

    Vafai, A.; Wellish, M.; Devlin, M.; Gilden, D.H.; Murray, R.S.

    1988-01-01

    Lysates of radiolabeled explants from four human trigeminal ganglia were immunoprecipitated with antibodies to varicella-zoster virus (VZV) and to herpes simplex virus. Both herpes simplex virus- and VZV-specific proteins were detected in lysates of all four ganglia. Absence of reactivity in ganglion explants with monoclonal antibodies suggested that herpes simplex virus and VZV were not reactivated during the culture period. In situ hybridization studies demonstrated the presence of RNA transcripts from the VZV immediate early gene 63. This approach to the detection of herpes simplex virus and VZV expression in human ganglia should facilitate analysis of viral RNA and proteins in human sensory ganglia

  3. Human immunodeficiency virus and hepatitus B virus co-infection ...

    African Journals Online (AJOL)

    Human immunodeficiency virus and hepatitus B virus co-infection amog patients in Kano Nigeria. EE Nwokedi, MA Emokpae, AI Dutse. Abstract. No Abstract. Nigerian Journal of Medicine Vol. 15(3) July-September 2006: 227-229. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD ...

  4. Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response

    OpenAIRE

    Marques, Joao T.; Rebouillat, Dominique; Ramana, Chilakamarti V.; Murakami, Junko; Hill, Jason E.; Gudkov, Andrei; Silverman, Robert H.; Stark, George R.; Williams, Bryan R. G.

    2005-01-01

    p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus la...

  5. Virus-neutralizing antibody response of mice to consecutive infection with human and avian influenza A viruses.

    Science.gov (United States)

    Janulíková, J; Stropkovská, A; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-06-01

    In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenza A viruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population.

  6. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.; Rinaldi, Vera D.; Marcano, Valerie C.; Whittaker, Gary R., E-mail: grw7@cornell.edu

    2014-07-25

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.

  7. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    International Nuclear Information System (INIS)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.; Rinaldi, Vera D.; Marcano, Valerie C.; Whittaker, Gary R.

    2014-01-01

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza

  8. Modulation of TIP60 by Human Papilloma Virus in Breast Cancer

    Science.gov (United States)

    2013-04-01

    1 AG________ Award Number: W81XWH-11-1-0687 Title Modulation of TIP60 by Human Papilloma Virus in Breast Cancer... Human Papilloma Virus in Breast Cancer 5b. GRANT NUMBER 1 H 11 1 06 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Betty Diamond 5d. PROJECT...virus (EBV), Hepatitis B Virus (HBV), Hepatitis C virus (HCV), Human Papilloma virus (HPV), Human T-cell lymphotropic virus (HTLV-1) and Kaposi’s

  9. A paramyxovirus-vectored intranasal vaccine against Ebola virus is immunogenic in vector-immune animals.

    Science.gov (United States)

    Yang, Lijuan; Sanchez, Anthony; Ward, Jerrold M; Murphy, Brian R; Collins, Peter L; Bukreyev, Alexander

    2008-08-01

    Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans. The virus can be transmitted by direct contact as well as by aerosol and is considered a potential bioweapon. Because direct immunization of the respiratory tract should be particularly effective against infection of mucosal surfaces, we previously developed an intranasal vaccine based on replication-competent human parainfluenza virus type 3 (HPIV3) expressing EBOV glycoprotein GP (HPIV3/EboGP) and showed that it is immunogenic and protective against a high dose parenteral EBOV challenge. However, because the adult human population has considerable immunity to HPIV3, which is a common human pathogen, replication and immunogenicity of the vaccine in this population might be greatly restricted. Indeed, in the present study, replication of the vaccine in the respiratory tract of HPIV3-immune guinea pigs was found to be restricted to undetectable levels. This restriction appeared to be based on both neutralizing antibodies and cellular or other components of the immunity to HPIV3. Surprisingly, even though replication of HPIV3/EboGP was highly restricted in HPIV3-immune animals, it induced a high level of EBOV-specific antibodies that nearly equaled that obtained in HPIV3-naive animals. We also show that the previously demonstrated presence of functional GP in the vector particle was not associated with increased replication in the respiratory tract nor with spread beyond the respiratory tract of HPIV3-naive guinea pigs, indicating that expression and functional incorporation of the attachment/penetration glycoprotein of this systemic virus did not mediate a change in tissue tropism.

  10. Spirometry filters can be used to detect exhaled respiratory viruses.

    Science.gov (United States)

    Mitchell, Alicia B; Mourad, Bassel; Tovey, Euan; Buddle, Lachlan; Peters, Matthew; Morgan, Lucy; Oliver, Brian G

    2016-09-26

    Respiratory viruses are very common in the community and contribute to the burden of illness for patients with chronic respiratory diseases, including acute exacerbations. Traditional sampling methods are invasive and problematic to repeat. Accordingly, we explored whether respiratory viruses could be isolated from disposable spirometry filters and whether detection of viruses in this context represented presence in the upper or lower respiratory tract. Discovery (n  =  53) and validation (n  =  49) cohorts were recruited from a hospital outpatient department during two different time periods. Spirometry mouthpiece filters were collected from all participants. Respiratory secretions were sampled from the upper and lower respiratory tract by nasal washing (NW), sputum, and bronchoalveolar lavage (BAL). All samples were examined using RT-PCR to identify a panel of respiratory viruses (rhinovirus, respiratory syncytial virus, influenza A, influenza B, parainfluenza virus 1, 2 & 3, and human metapneumovirus). Rhinovirus was quantified using qPCR. Paired filter-NW samples (n  =  29), filter-sputum samples (n  =  24), filter-BAL samples (n  =  39) and filter-NW-BAL samples (n  =  10) provided a range of comparisons. At least one virus was detected in any sample in 85% of participants in the discovery cohort versus 45% in the validation cohort. Overall, 72% of viruses identified in the paired comparator method matched those detected in spirometry filters. There was a high correlation between viruses identified in spirometry filters compared with viruses identified in both the upper and lower respiratory tract using traditional sampling methods. Our results suggest that examination of spirometry filters may be a novel and inexpensive sampling method for the presence of respiratory viruses in exhaled breath.

  11. Evaluation of the efficacy and duration of immunity of a canine combination vaccine against virulent parvovirus, infectious canine hepatitis virus, and distemper virus experimental challenges.

    Science.gov (United States)

    Abdelmagid, Omar Y; Larson, Laurie; Payne, Laurie; Tubbs, Anna; Wasmoen, Terri; Schultz, Ronald

    2004-01-01

    The results of this study confirmed that dogs vaccinated subcutaneously with a commercially available multivalent vaccine containing modified-live canine distemper virus, canine adenovirus type 2, canine parvovirus type 2b, and canine parainfluenza virus antigens were protected against sequential experimental challenge 55 to 57 months after initial vaccination given at 7 to 8 weeks of age. All 10 vaccinates were protected against clinical diseases and mortality following parvovirus and infectious canine hepatitis experimental infections. All vaccinates were protected against mortality and 90% against clinical disease following distemper challenge. These data support at least a 4-year duration of immunity for these three "core" fractions in the combination vaccine.

  12. Viral Causes of Lymphoma: The History of Epstein-Barr Virus and Human T-Lymphotropic Virus 1.

    Science.gov (United States)

    Esau, Daniel

    2017-01-01

    In 1964, Epstein, Barr, and Achong published a report outlining their discovery of viral particles in lymphoblasts isolated from a patient with Burkitt lymphoma. The Epstein-Barr virus (EBV) was the first human cancer virus to be described, and its discovery paved the way for further investigations into the oncogenic potential of viruses. In the decades following the discovery of EBV, multinational research efforts led to the discovery of further viral causes of various human cancers. Lymphomas are perhaps the cancer type that is most closely associated with oncogenic viruses: infection with EBV, human T-lymphotropic virus 1 (HTLV-1), human immunodeficiency virus (HIV), Kaposi sarcoma-associated herpesvirus/human herpesvirus 8, and hepatitis C virus have all been associated with lymphomagenesis. Lymphomas have also played an important role in the history of oncoviruses, as both the first human oncovirus (EBV) and the first human retrovirus (HTLV-1) were discovered through isolates taken from patients with unique lymphoma syndromes. The history of the discovery of these 2 key oncoviruses is presented here, and their impact on further medical research, using the specific example of HIV research, is briefly discussed.

  13. Viral Causes of Lymphoma: The History of Epstein-Barr Virus and Human T-Lymphotropic Virus 1

    Directory of Open Access Journals (Sweden)

    Daniel Esau

    2017-09-01

    Full Text Available In 1964, Epstein, Barr, and Achong published a report outlining their discovery of viral particles in lymphoblasts isolated from a patient with Burkitt lymphoma. The Epstein-Barr virus (EBV was the first human cancer virus to be described, and its discovery paved the way for further investigations into the oncogenic potential of viruses. In the decades following the discovery of EBV, multinational research efforts led to the discovery of further viral causes of various human cancers. Lymphomas are perhaps the cancer type that is most closely associated with oncogenic viruses: infection with EBV, human T-lymphotropic virus 1 (HTLV-1, human immunodeficiency virus (HIV, Kaposi sarcoma-associated herpesvirus/human herpesvirus 8, and hepatitis C virus have all been associated with lymphomagenesis. Lymphomas have also played an important role in the history of oncoviruses, as both the first human oncovirus (EBV and the first human retrovirus (HTLV-1 were discovered through isolates taken from patients with unique lymphoma syndromes. The history of the discovery of these 2 key oncoviruses is presented here, and their impact on further medical research, using the specific example of HIV research, is briefly discussed.

  14. Women's awareness of the human papilloma virus and related health problems.

    Science.gov (United States)

    Akyuz, Aygul; Yılmaz, Cevriye; Yenen, Müfit Cemal; Yavan, Tülay; Kılıç, Ayşe

    2011-12-01

    This paper is a report of a study of women's awareness of the human papilloma virus and related health problems. Cervical cancer is an important cause of mortality, making up approximately 12% of all cancers in women. Awareness on the part of carriers of human papilloma virus is crucial in preventing transmission of the infection and protecting against cervical cancer. The study was performed as a cross-sectional descriptive study. The study consists of 79 human papilloma virus-positive women who had not been diagnosed with cervical cancer and 150 women who had not been diagnosed with human papilloma virus. Data were collected via questionnaires between November 2007 and April 2008. Percentages and chi-square test were used. A significantly higher percentage of women with positive human papilloma virus knew the definition of human papilloma virus, the fact that it is transmitted via sexual contact and that it can lead to cervical cancer than did women with negative human papilloma virus. It was established that approximately half the women with positive human papilloma virus presented at the hospital with a genital wart. None of the women knew that a Pap smear test was a necessary tool in the prevention of cervical cancer. Women with positive human papilloma virus have insufficient knowledge of human papilloma virus, sexually transmitted diseases, the health risks associated with human papilloma virus and the means of preventing these risks. It is therefore necessary to evaluate the education of health workers, and especially of nurses, on human papilloma virus and its prevention. © 2011 Blackwell Publishing Ltd.

  15. Tracking Human Immunodeficiency Virus-1 Infection in the Humanized DRAG Mouse Model

    OpenAIRE

    Jiae Kim; Jiae Kim; Kristina K. Peachman; Kristina K. Peachman; Ousman Jobe; Ousman Jobe; Elaine B. Morrison; Atef Allam; Atef Allam; Linda Jagodzinski; Sofia A. Casares; Mangala Rao

    2017-01-01

    Humanized mice are emerging as an alternative model system to well-established non-human primate (NHP) models for studying human immunodeficiency virus (HIV)-1 biology and pathogenesis. Although both NHP and humanized mice have their own strengths and could never truly reflect the complex human immune system and biology, there are several advantages of using the humanized mice in terms of using primary HIV-1 for infection instead of simian immunodeficiency virus or chimera simian/HIV. Several...

  16. Respiratory virus laboratory pandemic planning and surveillance in central Viet Nam, 2008-2010.

    Science.gov (United States)

    Tran, Thomas; Chien, Bui Trong; Papadakis, Georgina; Druce, Julian; Birch, Chris; Chibo, Doris; An, Truong Phuoc; Trang, Le Thi Kim; Trieu, Nguyen Bao; Thuy, Doan Thi Thanh; Catton, Mike; Mai, Trinh Xuan

    2012-07-01

    Laboratory capacity is needed in central Viet Nam to provide early warning to public health authorities of respiratory outbreaks of importance to human health, for example the outbreak of influenza A(H1N1) pandemic in 2009. Polymerase chain reaction (PCR) procedures established as part of a capacity-building process were used to conduct prospective respiratory surveillance in a region where few previous studies have been undertaken. Between October 2008 and September 2010, nose and throat swabs from adults and children (approximately 20 per week) presenting with an acute respiratory illness to the Ninh Hoa General Hospital were collected. Same-day PCR testing and result reporting for 13 respiratory viruses were carried out by locally trained scientists. Of 2144 surveillance samples tested, 1235 (57.6%) were positive for at least one virus. The most common were influenza A strains (17.9%), with pandemic influenza A(H1N1) 2009 and seasonal H3N2 strain accounting for 52% and 43% of these, respectively. Other virus detections included: rhinovirus (12.4%), enterovirus (8.9%), influenza B (8.3%), adenovirus (5.3%), parainfluenza (4.7%), respiratory syncytial virus (RSV) (3.9%), human coronavirus (3.0%) and human metapneumovirus (0.3%). The detection rate was greatest in the 0-5 year age group. Viral co-infections were identified in 148 (6.9%) cases. The outbreak in 2009 of the influenza A(H1N1) pandemic strain provided a practical test of the laboratory's pandemic plan. This study shows that the availability of appropriate equipment and molecular-based testing can contribute to important individual and public health outcomes in geographical locations susceptible to emerging infections.

  17. Infection of endothelial cells by common human viruses.

    Science.gov (United States)

    Friedman, H M

    1989-01-01

    Common human viruses were evaluated for their ability to replicate in the endothelial cells of human umbilical vein and bovine thoracic aorta in vitro. Infection occurred with most viruses. The susceptibilities of endothelial cells derived from bovine aorta, pulmonary artery, and vena cava were compared. Among the viruses studied, no differences were noted in the ability to grow in endothelial cells from these three large vessels. One virus, herpes simplex virus type 1, was evaluated for its ability to produce persistent infection of endothelial cells. Infection developed and persisted for up to 3 months. After the first week, productive infection was found in less than 1% of cells. Nevertheless, the infection markedly affected the growth and morphology of the endothelial monolayer. Infection with any of several different viruses was noted to alter endothelial cell functions, including adherence of granulocytes, production of colony-stimulating factor, and synthesis of matrix protein. In addition, herpes simplex virus type 1 induced receptors for the Fc portion of IgG and for complement component C3b. These findings indicate that common human viruses can profoundly affect the biology of the endothelium.

  18. [Human Metapneumovirus (hMPV) associated to severe bronchial asthmatic crisis].

    Science.gov (United States)

    López, M A; Kusznierz, G F; Imaz, M S; Cociglio, R; Tedeschi, F A; Zalazar, F E

    2006-01-01

    Human Metapneumovirus (hMPV) is a recently reported agent of acute infection in the respiratory tract. It has been found in children as well as in young adults and elders. The clinical manifestations produced by hMPV are indistinguishable from those by common respiratory virus, and can evolve from asymptomatic infection into severe pneumonia. On the other hand, some authors have described cases of bronchial asthma exacerbation associated with hMPV infection. In this work we report a case of a child who presented a severe bronchial asthmatic crisis with a suspected viral associated infection. Immunofluorescence tests yielded negative results for sincitial respiratory virus, adenovirus, a-b influenza virus and parainfluenza 1, 2, 3, virus. In an attempt to detect the presence of hMPV, a RT-PCR was carried out to amplify sequences from both N and F genes. Using this approach, a positive result for hMPV was obtained. To our knowledge, this is the first description of a case of asthma exacerbation associated to hMPV in our region. In addition, these results are similar to previous reports where it was hypothesized that, like RSV, hMPV can trigger a respiratory chronic disease as asthma.

  19. Within-Host Evolution of Human Influenza Virus.

    Science.gov (United States)

    Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D

    2018-03-10

    The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Etiology and Clinical Characteristics of Single and Multiple Respiratory Virus Infections Diagnosed in Croatian Children in Two Respiratory Seasons

    Directory of Open Access Journals (Sweden)

    Sunčanica Ljubin-Sternak

    2016-01-01

    Full Text Available The aim of this study was to determine the causative agent of acute respiratory infection (ARI in hospitalized children, as well as investigate the characteristics of ARIs with single and multiple virus detection in two respiratory seasons. In 2010 and 2015, nasopharyngeal and pharyngeal swabs from a total of 134 children, admitted to the hospital due to ARI, were tested using multiplex PCR. Viral etiology was established in 81.3% of the patients. Coinfection with two viruses was diagnosed in 27.6% of the patients, and concurrent detection of three or more viruses was diagnosed in 12.8% of the patients. The most commonly diagnosed virus in both seasons combined was respiratory syncytial virus (RSV (28.6%, followed by parainfluenza viruses (PIVs types 1–3 (18.4%, rhinovirus (HRV (14.3%, human metapneumovirus (10.1%, adenovirus (AdV (7.1%, influenza viruses types A and B (4.8%, and coronaviruses (4.2%. In 2015, additional pathogens were investigated with the following detection rate: enterovirus (13.2%, bocavirus (HBoV (10.5%, PIV-4 (2.6%, and parechovirus (1.3%. There were no statistical differences between single and multiple virus infection regarding patients age, localization of infection, and severity of disease (P>0.05. AdV, HRV, HBoV, and PIVs were significantly more often detected in multiple virus infections compared to the other respiratory viruses (P<0.001.

  1. Seroepidemiological study of parainfluenza 3 virus in bovines with reproductive failure, from monteria-colombia

    Directory of Open Access Journals (Sweden)

    César Betancur Hurtado

    2010-12-01

    Full Text Available The virus of the bovine Para influenza 3 is known to be a part of the bovine respiratory complex, along with another infectious agent as the bovine sincitialrespiratory virus, which has not as yet been diagnosed at the geographical area of this study. This work was carried out at Monteria, Colombia, in bovines from 28 farms, with the aim of finding the serological prevalence of the PI-3 virus. Blood samples were collected from 137 females, with a history of reproductive failure, and from 26 bulls from the same farms. The serological test used was the ELISA test. A descriptive analysis was carried out, recording data from positives and from negatives sera. A Chi-square test was used to test for association between the variables: sex, age, reproductive condition and type of production system, with serological reactivity to the PI-3virus. Concerning the results of the study, the point prevalence for the PI-3 virus found was 13, 5%, and under statistical bases, statistical significance was found between age groups and association was not found for the others variables taken in account for the study. According to the results, it was concluded that the PI-3 virus is present in bovines of Monteria, and that a part of the reproductive failure in females of the region, mostly the return to estrus and abortions, is due to the effect of that pathological entity. Finally, the authors recommend more extensive studies on PI-3 Infection, at the different cattle raising areas of Colombia, a country of 24 million heads.

  2. Can Plant Viruses Cross the Kingdom Border and Be Pathogenic to Humans?

    Directory of Open Access Journals (Sweden)

    Fanny Balique

    2015-04-01

    Full Text Available Phytoviruses are highly prevalent in plants worldwide, including vegetables and fruits. Humans, and more generally animals, are exposed daily to these viruses, among which several are extremely stable. It is currently accepted that a strict separation exists between plant and vertebrate viruses regarding their host range and pathogenicity, and plant viruses are believed to infect only plants. Accordingly, plant viruses are not considered to present potential pathogenicity to humans and other vertebrates. Notwithstanding these beliefs, there are many examples where phytoviruses circulate and propagate in insect vectors. Several issues are raised here that question if plant viruses might further cross the kingdom barrier to cause diseases in humans. Indeed, there is close relatedness between some plant and animal viruses, and almost identical gene repertoires. Moreover, plant viruses can be detected in non-human mammals and humans samples, and there are evidence of immune responses to plant viruses in invertebrates, non-human vertebrates and humans, and of the entry of plant viruses or their genomes into non-human mammal cells and bodies after experimental exposure. Overall, the question raised here is unresolved, and several data prompt the additional extensive study of the interactions between phytoviruses and non-human mammals and humans, and the potential of these viruses to cause diseases in humans.

  3. Methodological approaches to disinfection of human hepatitis B virus.

    OpenAIRE

    Prince, D L; Prince, H N; Thraenhart, O; Muchmore, E; Bonder, E; Pugh, J

    1993-01-01

    Three commercial disinfectants (two quaternary formulations and one phenolic) were tested against human hepatitis B virus (HHBV). The treated virus was assayed for infectivity by the chimpanzee assay and for morphological alteration by the Morphological Alteration and Disintegration Test. The same agents were tested against duck hepatitis B virus in a duck hepatocyte infectivity assay. It is apparent that human and duck hepatitis viruses were relatively susceptible to disinfection, becoming n...

  4. Clinical and Molecular Epidemiology of Human Parainfluenza Viruses 1-4 in Children from Viet Nam.

    Science.gov (United States)

    Linster, Martin; Do, Lien Anh Ha; Minh, Ngo Ngoc Quang; Chen, Yihui; Zhe, Zhu; Tuan, Tran Anh; Tuan, Ha Manh; Su, Yvonne C F; van Doorn, H Rogier; Moorthy, Mahesh; Smith, Gavin J D

    2018-05-01

    HPIVs are serologically and genetically grouped into four species that account for up to 10% of all hospitalizations due to acute respiratory infection in children under the age of five. Genetic and epidemiological data for the four HPIVs derived from two pediatric cohorts in Viet Nam are presented. Respiratory samples were screened for HPIV1-4 by real-time PCR. Demographic and clinical data of patients infected with different HPIV were compared. We used a hemi-nested PCR approach to generate viral genome sequences from HPIV-positive samples and conducted a comprehensive phylogenetic analysis. In total, 170 samples tested positive for HPIV. HPIV3 was most commonly detected in our cohort and 80 co-detections of HPIV with other respiratory viruses were found. Phylogenetic analyses suggest local endemic circulation as well as punctuated introductions of new HPIV lineages. Viral gene flow analysis revealed that Viet Nam is a net importer of viral genetic diversity. Epidemiological analyses imply similar disease severity for all HPIV species. HPIV sequences from Viet Nam formed local clusters and were interspersed with sequences from diverse geographic regions. Combined, this new knowledge will help to investigate global HPIV circulation patterns in more detail and ultimately define more suitable vaccine strains.

  5. Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways

    OpenAIRE

    Scull, Margaret A.; Gillim-Ross, Laura; Santos, Celia; Roberts, Kim L.; Bordonali, Elena; Subbarao, Kanta; Barclay, Wendy S.; Pickles, Raymond J.

    2009-01-01

    Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human p...

  6. Human papilloma virus vaccination: perceptions of young Korean women.

    Science.gov (United States)

    Kang, Hee Sun; Shin, Hyunsook; Hyun, Myung-Sun; Kim, Mi Ja

    2010-09-01

    This paper is a report of a descriptive study of young Korean women's perceptions of use of the human papilloma virus vaccine. In Korea, cervical cancer is one of the leading cancers in women, and the rate of human papilloma virus infection is increasing. A national media campaign has recently begun to promote human papilloma virus vaccination. However, research addressing the acceptability of this vaccine to women in Korea has been limited. Twenty-five Korean women, 21-30 years of age, participated in seven focus groups. The data were collected in 2007. Participants were concerned about the potential harmful effects of the human papilloma virus vaccine, a possible increase in unsafe sexual behaviours, and the high cost of the vaccine, which is not covered by health insurance. They suggested group vaccination at-cost or free of charge. They discussed ambivalence about the vaccination, the need for more information about the vaccine, and questions about its effectiveness. Most preferred to wait until more people have been vaccinated. There is a need for more aggressive dissemination of information about the safety and efficacy of the human papilloma virus vaccine. More reasonable cost, insurance coverage, or free vaccination using a group approach might increase young Korean women's acceptance and use of the human papilloma virus vaccine.

  7. Avian Influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways.

    Directory of Open Access Journals (Sweden)

    Margaret A Scull

    2009-05-01

    Full Text Available Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE, we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C, avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32 degrees C. These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40 degrees C, rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32 degrees C and 37 degrees C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32 degrees C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2 or A/PR/8/34 (H1N1 genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA and neuraminidase (NA from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and

  8. Polymicrobial infective endocarditis caused by Neisseria sicca and Haemophilus parainfluenzae

    Directory of Open Access Journals (Sweden)

    Nikoloz Koshkelashvili

    2016-01-01

    Full Text Available Infective endocarditis is a common clinical problem in industrialized countries. Risk factors include abnormal cardiac valves, a history of endocarditis, intracardiac devices, prosthetic valves and intravenous drug use. We report a case of polymicrobial infective endocarditis in a 33 year-old female with a history chronic heroin use caused by Neisseria sicca and Haemophilus parainfluenzae. We believe the patient was exposed to these microbes by cleansing her skin with saliva prior to injection. Pairing a detailed history with the consideration of atypical agents is crucial in the proper diagnosis and management of endocarditis in patients with high-risk injection behaviors.

  9. Comparison of automated microarray detection with real-time PCR assays for detection of respiratory viruses in specimens obtained from children.

    Science.gov (United States)

    Raymond, Frédéric; Carbonneau, Julie; Boucher, Nancy; Robitaille, Lynda; Boisvert, Sébastien; Wu, Whei-Kuo; De Serres, Gaston; Boivin, Guy; Corbeil, Jacques

    2009-03-01

    Respiratory virus infections are a major health concern and represent the primary cause of testing consultation and hospitalization for young children. We developed and compared two assays that allow the detection of up to 23 different respiratory viruses that frequently infect children. The first method consisted of single TaqMan quantitative real-time PCR assays in a 96-well-plate format. The second consisted of a multiplex PCR followed by primer extension and microarray hybridization in an integrated molecular diagnostic device, the Infiniti analyzer. Both of our assays can detect adenoviruses of groups A, B, C, and E; coronaviruses HKU1, 229E, NL63, and OC43; enteroviruses A, B, C, and D; rhinoviruses of genotypes A and B; influenza viruses A and B; human metapneumoviruses (HMPV) A and B, human respiratory syncytial viruses (HRSV) A and B; and parainfluenza viruses of types 1, 2, and 3. These tests were used to identify viruses in 221 nasopharyngeal aspirates obtained from children hospitalized for respiratory tract infections. Respiratory viruses were detected with at least one of the two methods in 81.4% of the 221 specimens: 10.0% were positive for HRSV A, 38.0% for HRSV B, 13.1% for influenzavirus A, 8.6% for any coronaviruses, 13.1% for rhinoviruses or enteroviruses, 7.2% for adenoviruses, 4.1% for HMPV, and 1.5% for parainfluenzaviruses. Multiple viral infections were found in 13.1% of the specimens. The two methods yielded concordant results for 94.1% of specimens. These tests allowed a thorough etiological assessment of respiratory viruses infecting children in hospital settings and would assist public health interventions.

  10. Comparison of Automated Microarray Detection with Real-Time PCR Assays for Detection of Respiratory Viruses in Specimens Obtained from Children▿

    Science.gov (United States)

    Raymond, Frédéric; Carbonneau, Julie; Boucher, Nancy; Robitaille, Lynda; Boisvert, Sébastien; Wu, Whei-Kuo; De Serres, Gaston; Boivin, Guy; Corbeil, Jacques

    2009-01-01

    Respiratory virus infections are a major health concern and represent the primary cause of testing consultation and hospitalization for young children. We developed and compared two assays that allow the detection of up to 23 different respiratory viruses that frequently infect children. The first method consisted of single TaqMan quantitative real-time PCR assays in a 96-well-plate format. The second consisted of a multiplex PCR followed by primer extension and microarray hybridization in an integrated molecular diagnostic device, the Infiniti analyzer. Both of our assays can detect adenoviruses of groups A, B, C, and E; coronaviruses HKU1, 229E, NL63, and OC43; enteroviruses A, B, C, and D; rhinoviruses of genotypes A and B; influenza viruses A and B; human metapneumoviruses (HMPV) A and B, human respiratory syncytial viruses (HRSV) A and B; and parainfluenza viruses of types 1, 2, and 3. These tests were used to identify viruses in 221 nasopharyngeal aspirates obtained from children hospitalized for respiratory tract infections. Respiratory viruses were detected with at least one of the two methods in 81.4% of the 221 specimens: 10.0% were positive for HRSV A, 38.0% for HRSV B, 13.1% for influenzavirus A, 8.6% for any coronaviruses, 13.1% for rhinoviruses or enteroviruses, 7.2% for adenoviruses, 4.1% for HMPV, and 1.5% for parainfluenzaviruses. Multiple viral infections were found in 13.1% of the specimens. The two methods yielded concordant results for 94.1% of specimens. These tests allowed a thorough etiological assessment of respiratory viruses infecting children in hospital settings and would assist public health interventions. PMID:19158263

  11. 45 CFR 96.128 - Requirements regarding human immunodeficiency virus.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Requirements regarding human immunodeficiency virus. 96.128 Section 96.128 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL... human immunodeficiency virus. (a) In the case of a designated State as described in paragraph (b) of...

  12. Adaptive pathways of zoonotic influenza viruses: from exposure to establishment in humans.

    Science.gov (United States)

    Reperant, Leslie A; Kuiken, Thijs; Osterhaus, Albert D M E

    2012-06-22

    Human influenza viruses have their ultimate origin in avian reservoirs and may adapt, either directly or after passage through another mammalian species, to circulate independently in the human population. Three sets of barriers must be crossed by a zoonotic influenza virus before it can become a human virus: animal-to-human transmission barriers; virus-cell interaction barriers; and human-to-human transmission barriers. Adaptive changes allowing zoonotic influenza viruses to cross these barriers have been studied extensively, generating key knowledge for improved pandemic preparedness. Most of these adaptive changes link acquired genetic alterations of the virus to specific adaptation mechanisms that can be screened for, both genetically and phenotypically, as part of zoonotic influenza virus surveillance programs. Human-to-human transmission barriers are only sporadically crossed by zoonotic influenza viruses, eventually triggering a worldwide influenza outbreak or pandemic. This is the most devastating consequence of influenza virus cross-species transmission. Progress has been made in identifying some of the determinants of influenza virus transmissibility. However, interdisciplinary research is needed to further characterize these ultimate barriers to the development of influenza pandemics, at both the level of the individual host and that of the population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Etiology and clinical characterization of respiratory virus infections in adult patients attending an emergency department in Beijing.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Yu

    Full Text Available BACKGROUND: Acute respiratory tract infections (ARTIs represent a serious global health burden. To date, few reports have addressed the prevalence of respiratory viruses (RVs in adults with ARTIs attending an emergency department (ED. Therefore, the potential impact of respiratory virus infections on such patients remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: To determine the epidemiological and clinical profiles of common and recently discovered respiratory viruses in adults with ARTIs attending an ED in Beijing, a 1-year consecutive study was conducted from May, 2010, to April, 2011. Nose and throat swab samples from 416 ARTI patients were checked for 13 respiratory viruses using multiple reverse transcription polymerase chain reaction(RT-PCR assays for common respiratory viruses, including influenza viruses (Flu A, B, and adenoviruses (ADVs, picornaviruses (PICs, respiratory syncytial virus (RSV, parainfluenza viruses (PIVs 1-3, combined with real-time RT-PCR for human metapneumovirus (HMPV and human coronaviruses (HCoVs, -OC43, -229E, -NL63, and -HKU1. Viral pathogens were detected in 52.88% (220/416 of patient samples, and 7.21% (30/416 of patients tested positive for more than one virus. PICs (17.79% were the dominant agents detected, followed by FluA (16.11%, HCoVs (11.78%, and ADV (11.30%. HMPV, PIVs, and FluB were also detected (<3%, but not RSV. The total prevalence and the dominant virus infections detected differed significantly between ours and a previous report. Co-infection rates were high for HCoV-229E (12/39, 30.76%, PIC (22/74, 29.73%, ADV (12/47, 25.53% and FluA (15/67, 22.39%. Different patterns of clinical symptoms were associated with different respiratory viruses. CONCLUSIONS: The pattern of RV involvement in adults with ARTIs attending an ED in China differs from that previously reported. The high prevalence of viruses (PIC, FluA, HCoVs and ADV reported here strongly highlight the need for the development of safe and

  14. Respiratory virus laboratory pandemic planning an surveillance in central Viet Nam, 2008-2010

    Directory of Open Access Journals (Sweden)

    Trinh Xuan Mai

    2012-07-01

    Full Text Available Introduction: Laboratory capacity is needed in central Viet Nam to provide early warning to public health authorities of respiratory outbreaks of importance to human health, for example the outbreak of influenza A(H1N1 pandemic in 2009. Polymerase chain reaction (PCR procedures established as part of a capacity-building process were used to conduct prospective respiratory surveillance in a region where few previous studies have been undertaken.Methods: Between October 2008 and September 2010, nose and throat swabs from adults and children (approximately 20 per week presenting with an acute respiratory illness to the Ninh Hoa General Hospital were collected. Same-day PCR testing and result reporting for 13 respiratory viruses were carried out by locally trained scientists.Results: Of 2144 surveillance samples tested, 1235 (57.6% were positive for at least one virus. The most common were influenza A strains (17.9%, with pandemic influenza A(H1N1 2009 and seasonal H3N2 strain accounting for 52% and 43% of these, respectively. Other virus detections included: rhinovirus (12.4%, enterovirus (8.9%, influenza B (8.3%, adenovirus (5.3%, parainfluenza (4.7%, respiratory syncytial virus (RSV (3.9%, human coronavirus (3.0% and human metapneumovirus (0.3%. The detection rate was greatest in the 0–5 year age group. Viral co-infections were identified in 148 (6.9% cases.Discussion: The outbreak in 2009 of the influenza A(H1N1 pandemic strain provided a practical test of the laboratory’s pandemic plan. This study shows that the availability of appropriate equipment and molecular-based testing can contribute to important individual and public health outcomes in geographical locations susceptible to emerging infections.

  15. Detecting emerging transmissibility of avian influenza virus in human households.

    Directory of Open Access Journals (Sweden)

    Michiel van Boven

    2007-07-01

    Full Text Available Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i the animal reservoir, (ii humans who were infected by animals (primary human-to-human transmission, or (iii humans who were infected by humans (secondary human-to-human transmission. Here we propose a method of analysing household infection data to detect changes in the transmissibility of avian influenza viruses in humans at an early stage. The method is applied to an outbreak of H7N7 avian influenza virus in The Netherlands that was the cause of more than 30 human-to-human transmission events. The analyses indicate that secondary human-to-human transmission is plausible for the Dutch household infection data. Based on the estimates of the within-household transmission parameters, we evaluate the effectiveness of antiviral prophylaxis, and conclude that it is unlikely that all household infections can be prevented with current antiviral drugs. We discuss the applicability of our method for the detection of emerging human-to-human transmission of avian influenza viruses in particular, and for the analysis of within-household infection data in general.

  16. Release of Virus from Lymphoid Tissue Affects Human Immunodeficiency Virus Type 1 and Hepatitis C Virus Kinetics in the Blood

    NARCIS (Netherlands)

    Müller, Viktor; Marée, Athanasius F.M.; Boer, R.J. de

    2000-01-01

    Kinetic parameters of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infections have been estimated from plasma virus levels following perturbation of the chronically infected (quasi-) steady state. We extend previous models by also considering the large pool of virus

  17. No evidence of murine leukemia virus-related viruses in live attenuated human vaccines.

    Directory of Open Access Journals (Sweden)

    William M Switzer

    Full Text Available The association of xenotropic murine leukemia virus (MLV-related virus (XMRV in prostate cancer and chronic fatigue syndrome reported in previous studies remains controversial as these results have been questioned by recent data. Nonetheless, concerns have been raised regarding contamination of human vaccines as a possible source of introduction of XMRV and MLV into human populations. To address this possibility, we tested eight live attenuated human vaccines using generic PCR for XMRV and MLV sequences. Viral metagenomics using deep sequencing was also done to identify the possibility of other adventitious agents.All eight live attenuated vaccines, including Japanese encephalitis virus (JEV (SA-14-14-2, varicella (Varivax, measles, mumps, and rubella (MMR-II, measles (Attenuvax, rubella (Meruvax-II, rotavirus (Rotateq and Rotarix, and yellow fever virus were negative for XMRV and highly related MLV sequences. However, residual hamster DNA, but not RNA, containing novel endogenous gammaretrovirus sequences was detected in the JEV vaccine using PCR. Metagenomics analysis did not detect any adventitious viral sequences of public health concern. Intracisternal A particle sequences closest to those present in Syrian hamsters and not mice were also detected in the JEV SA-14-14-2 vaccine. Combined, these results are consistent with the production of the JEV vaccine in Syrian hamster cells.We found no evidence of XMRV and MLV in eight live attenuated human vaccines further supporting the safety of these vaccines. Our findings suggest that vaccines are an unlikely source of XMRV and MLV exposure in humans and are consistent with the mounting evidence on the absence of these viruses in humans.

  18. Viruses and human cancers: challenges for preventive strategies.

    Science.gov (United States)

    de The, G

    1995-01-01

    Virus-associated human cancers provide unique opportunities for preventive strategies. The role of human papilloma viruses (HPV 16 and 18), hepatitis B virus (HBV), Epstein-Barr herpes virus (EBV), and retroviruses (human immunodeficiency virus [HIV] and human T-cell leukemia/lymphoma virus [HTLV]) in the development of common carcinomas and lymphomas represents a major cancer threat, particularly among individuals residing in developing countries, which account for 80% of the world's population. Even though these viruses are not the sole etiological agents of these cancers (as would be the case for infectious diseases), different approaches can be implemented to significantly decrease the incidence of virus-associated malignancies. The first approach is vaccination, which is available for HBV and possibly soon for EBV. The long delay between primary viral infection and development of associated tumors as well as the cost involved with administering vaccinations detracts from the feasibility of such an approach within developing countries. The second approach is to increase efforts to detect pre-cancerous lesions or early tumors using immunovirological means. This would allow early diagnosis and better treatment. The third strategy is linked to the existence of disease susceptibility genes, and suggests that counseling be provided for individuals carrying these genes to encourage them to modify their lifestyles and other conditions associated with increased cancer risks (predictive oncology). Specific recommendations include: a) increase international studies that explore the causes of the large variations in prevalence of common cancers throughout the world; b) conduct interdisciplinary studies involving laboratory investigation and social sciences, which may suggest hypotheses that may then be tested experimentally; and c) promote more preventive and health enhancement strategies in addition to curative and replacement therapies. PMID:8741797

  19. Detecting emerging transmissibility of avian influenza virus in human households

    NARCIS (Netherlands)

    Boven, M. van; Koopmans, M.; Du Ry van Beest Holle, M.; Meijer, Adam; Klinkenberg, D.; Donnelly, C.A.; Heesterbeek, J.A.P.

    Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore,

  20. Detecting emerging transmissibility of avian influenza virus in human households

    NARCIS (Netherlands)

    Boven, van R.M.; Koopmans, M.; Du Ry Beest Holle, van M.; Meijer, A.; Klinkenberg, D.; Donnelly, C.; Heesterbeek, J.A.P.

    2007-01-01

    Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore,

  1. Isolation of a new herpes virus from human CD4+ T cells

    International Nuclear Information System (INIS)

    Frenkel, N.; Schirmer, E.C.; Wyatt, L.S.; Katsafanas, G.; Roffman, E.; Danovich, R.M.; June, C.H.

    1990-01-01

    A new human herpes virus has been isolated from CD4 + T cells purified from peripheral blood mononuclear cells of a healthy individual (RK), following incubation of the cells under conditions promoting T-cell activation. The virus could not be recovered from nonactivated cells. Cultures of lymphocytes infected with the RK virus exhibited a cytopathic effect, and electron microscopic analyses revealed a characteristic herpes virus structure. RK virus DNA did not hybridize with large probes derived from herpes simplex virus, Epstein-Barr virus, varicella-zoster virus, and human cytomegalovirus. The genetic relatedness of the RK virus to the recently identified T-lymphotropic human herpes virus 6 (HHV-6) was investigated by restriction enzyme analyses using 21 different enzymes and by blot hydridization analyses using 11 probes derived from two strains of HHV-6 (Z29 and U1102). Whereas the two HHV-6 strains exhibited only limited restriction enzyme polymorphism, cleavage of the RK virus DNA yielded distinct patterns. Of the 11 HHV-6 DNA probes tested, only 6 cross-hybridized with DNA fragments derived from the RK virus. Taken together, the maximal homology amounted to 31 kilobases of the 75 kilobases tested. The authors conclude that the RK virus is distinct from previously characterized human herpesviruses. The authors propose to designate it as the prototype of a new herpes virus, the seventh human herpes virus identified to date

  2. Respiratory virus laboratory pandemic planning and surveillance in central Viet Nam, 2008–2010

    Science.gov (United States)

    Chien, Bui Trong; Papadakis, Georgina; Druce, Julian; Birch, Chris; Chibo, Doris; An, Truong Phuoc; Trang, Le Thi Kim; Trieu, Nguyen Bao; Thuy, Doan Thi Thanh; Catton, Mike; Mai, Trinh Xuan

    2012-01-01

    Introduction Laboratory capacity is needed in central Viet Nam to provide early warning to public health authorities of respiratory outbreaks of importance to human health, for example the outbreak of influenza A(H1N1) pandemic in 2009. Polymerase chain reaction (PCR) procedures established as part of a capacity-building process were used to conduct prospective respiratory surveillance in a region where few previous studies have been undertaken. Methods Between October 2008 and September 2010, nose and throat swabs from adults and children (approximately 20 per week) presenting with an acute respiratory illness to the Ninh Hoa General Hospital were collected. Same-day PCR testing and result reporting for 13 respiratory viruses were carried out by locally trained scientists. Results Of 2144 surveillance samples tested, 1235 (57.6%) were positive for at least one virus. The most common were influenza A strains (17.9%), with pandemic influenza A(H1N1) 2009 and seasonal H3N2 strain accounting for 52% and 43% of these, respectively. Other virus detections included: rhinovirus (12.4%), enterovirus (8.9%), influenza B (8.3%), adenovirus (5.3%), parainfluenza (4.7%), respiratory syncytial virus (RSV) (3.9%), human coronavirus (3.0%) and human metapneumovirus (0.3%). The detection rate was greatest in the 0–5 year age group. Viral co-infections were identified in 148 (6.9%) cases. Discussion The outbreak in 2009 of the influenza A(H1N1) pandemic strain provided a practical test of the laboratory’s pandemic plan. This study shows that the availability of appropriate equipment and molecular-based testing can contribute to important individual and public health outcomes in geographical locations susceptible to emerging infections. PMID:23908924

  3. Epstein-Barr virus, human papillomavirus and mouse mammary tumour virus as multiple viruses in breast cancer.

    Science.gov (United States)

    Glenn, Wendy K; Heng, Benjamin; Delprado, Warick; Iacopetta, Barry; Whitaker, Noel J; Lawson, James S

    2012-01-01

    The purpose of this investigation is to determine if Epstein Barr virus (EBV), high risk human papillomavirus (HPV), and mouse mammary tumour viruses (MMTV) co-exist in some breast cancers. All the specimens were from women residing in Australia. For investigations based on standard PCR, we used fresh frozen DNA extracts from 50 unselected invasive breast cancers. For normal breast specimens, we used DNA extracts from epithelial cells from milk donated by 40 lactating women. For investigations based on in situ PCR we used 27 unselected archival formalin fixed breast cancer specimens and 18 unselected archival formalin fixed normal breast specimens from women who had breast reduction surgery. Thirteen of these fixed breast cancer specimens were ductal carcinoma in situ (dcis) and 14 were predominantly invasive ductal carcinomas (idc). EBV sequences were identified in 68%, high risk HPV sequences in 50%, and MMTV sequences in 78% of DNA extracted from 50 invasive breast cancer specimens. These same viruses were identified in selected normal and breast cancer specimens by in situ PCR. Sequences from more than one viral type were identified in 72% of the same breast cancer specimens. Normal controls showed these viruses were also present in epithelial cells in human milk - EBV (35%), HPV, 20%) and MMTV (32%) of 40 milk samples from normal lactating women, with multiple viruses being identified in 13% of the same milk samples. We conclude that (i) EBV, HPV and MMTV gene sequences are present and co-exist in many human breast cancers, (ii) the presence of these viruses in breast cancer is associated with young age of diagnosis and possibly an increased grade of breast cancer.

  4. Evaluation of the suitability of a plant virus, pepper mild mottle virus, as a surrogate of human enteric viruses for assessment of the efficacy of coagulation-rapid sand filtration to remove those viruses.

    Science.gov (United States)

    Shirasaki, N; Matsushita, T; Matsui, Y; Yamashita, R

    2018-02-01

    Here, we evaluated the removal of three representative human enteric viruses - adenovirus (AdV) type 40, coxsackievirus (CV) B5, and hepatitis A virus (HAV) IB - and one surrogate of human caliciviruses - murine norovirus (MNV) type 1 - by coagulation-rapid sand filtration, using water samples from eight water sources for drinking water treatment plants in Japan. The removal ratios of a plant virus (pepper mild mottle virus; PMMoV) and two bacteriophages (MS2 and φX174) were compared with the removal ratios of human enteric viruses to assess the suitability of PMMoV, MS2, and φX174 as surrogates for human enteric viruses. The removal ratios of AdV, CV, HAV, and MNV, evaluated via the real-time polymerase chain reaction (PCR) method, were 0.8-2.5-log 10 when commercially available polyaluminum chloride (PACl, basicity 1.5) and virgin silica sand were used as the coagulant and filter medium, respectively. The type of coagulant affected the virus removal efficiency, but the age of silica sand used in the rapid sand filtration did not. Coagulation-rapid sand filtration with non-sulfated, high-basicity PACls (basicity 2.1 or 2.5) removed viruses more efficiently than the other aluminum-based coagulants. The removal ratios of MS2 were sometimes higher than those of the three human enteric viruses and MNV, whereas the removal ratios of φX174 tended to be smaller than those of the three human enteric viruses and MNV. In contrast, the removal ratios of PMMoV were similar to and strongly correlated with those of the three human enteric viruses and MNV. Thus, PMMoV appears to be a suitable surrogate for human enteric viruses for the assessment of the efficacy of coagulation-rapid sand filtration to remove viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Canine parvovirus type 2 vaccine protects against virulent challenge with type 2c virus.

    Science.gov (United States)

    Spibey, N; Greenwood, N M; Sutton, D; Chalmers, W S K; Tarpey, I

    2008-04-01

    The ability of dogs vaccinated with a live attenuated CPV type 2 (Nobivac Intervet) vaccine to resist challenge with a current CPV2c isolate was investigated. Six SPF beagle dogs were given the minimum recommended course of vaccination, comprising a single inoculation of vaccine (Nobivac Lepto+Nobivac Pi) at 8-10 weeks of age followed 3 weeks later with a parvovirus vaccine in combination with distemper, adenovirus and parainfluenza virus (Nobivac DHPPi) and a repeat leptospirosis vaccine. Six control dogs were kept unvaccinated. All animals were challenged orally with a type 2c isolate of CPV and monitored for clinical signs, virus shedding, white blood cell fluctuations and serological responses. All vaccinated dogs were fully protected; showing no clinical signs nor shedding challenge virus in the faeces, in contrast to control animals, which displayed all the typical signs of infection with pathogenic CPV and shed challenge virus in the faeces.

  6. West Nile virus meningitis in a patient with human immunodeficiency virus type 1 infection

    Directory of Open Access Journals (Sweden)

    D. Pilalas

    2017-09-01

    Full Text Available The emergence of West Nile virus lineage 2 in central Macedonia, Greece, in 2010 resulted in large outbreaks for 5 consecutive years. We report a case of viral meningitis in an individual infected with human immunodeficiency virus type 1, which preceded the recognition of the outbreak and was confirmed retrospectively as West Nile virus neuroinvasive disease.

  7. HumanViCe: Host ceRNA network in virus infected cells in human

    Directory of Open Access Journals (Sweden)

    Suman eGhosal

    2014-07-01

    Full Text Available Host-virus interaction via host cellular components has been an important field of research in recent times. RNA interference mediated by short interfering RNAs and microRNAs (miRNA, is a widespread anti-viral defence strategy. Importantly, viruses also encode their own miRNAs. In recent times miRNAs were identified as key players in host-virus interaction. Furthermore, viruses were shown to exploit the host miRNA networks to suite their own need. The complex cross-talk between host and viral miRNAs and their cellular and viral targets forms the environment for viral pathogenesis. Apart from protein-coding mRNAs, non-coding RNAs may also be targeted by host or viral miRNAs in virus infected cells, and viruses can exploit the host miRNA mediated gene regulatory network via the competing endogenous RNA effect. A recent report showed that viral U-rich non-coding RNAs called HSUR, expressed in primate virus herpesvirus saimiri (HVS infected T cells, were able to bind to three host miRNAs, causing significant alteration in cellular level for one of the miRNAs. We have predicted protein coding and non protein-coding targets for viral and human miRNAs in virus infected cells. We identified viral miRNA targets within host non-coding RNA loci from AGO interacting regions in three different virus infected cells. Gene ontology (GO and pathway enrichment analysis of the genes comprising the ceRNA networks in the virus infected cells revealed enrichment of key cellular signalling pathways related to cell fate decisions and gene transcription, like Notch and Wnt signalling pathways, as well as pathways related to viral entry, replication and virulence. We identified a vast number of non-coding transcripts playing as potential ceRNAs to the immune response associated genes; e.g. APOBEC family genes, in some virus infected cells. All these information are compiled in HumanViCe, a comprehensive database that provides the potential ceRNA networks in virus

  8. The humoral immune response to recombinant nucleocapsid antigen of canine distemper virus in dogs vaccinated with attenuated distemper virus or DNA encoding the nucleocapsid of wild-type virus.

    Science.gov (United States)

    Griot-Wenk, M E; Cherpillod, P; Koch, A; Zurbriggen, R; Bruckner, L; Wittek, R; Zurbriggen, A

    2001-06-01

    This study compared the humoral immune response against the nucleocapsid-(N) protein of canine distemper virus (CDV) of dogs vaccinated with a multivalent vaccine against parvo-, adeno-, and parainfluenza virus and leptospira combined with either the attenuated CDV Onderstepoort strain (n = 15) or an expression plasmid containing the N-gene of CDV (n = 30). The vaccinations were applied intramuscularly three times at 2-week intervals beginning at the age of 6 weeks. None of the pre-immune sera recognized the recombinant N-protein, confirming the lack of maternal antibodies at this age. Immunization with DNA vaccine for CDV resulted in positive serum N-specific IgG response. However, their IgG (and IgA) titres were lower than those of CDV-vaccinated dogs. Likewise, DNA-vaccinated dogs did not show an IgM peak. There was no increase in N-specific serum IgE titres in either group. Serum titres to the other multivalent vaccine components were similar in both groups.

  9. Ebola Virus and Marburg Virus in Human Milk Are Inactivated by Holder Pasteurization.

    Science.gov (United States)

    Hamilton Spence, Erin; Huff, Monica; Shattuck, Karen; Vickers, Amy; Yun, Nadezda; Paessler, Slobodan

    2017-05-01

    Potential donors of human milk are screened for Ebola virus (EBOV) using standard questions, but testing for EBOV and Marburg virus (MARV) is not part of routine serological testing performed by milk banks. Research aim: This study tested the hypothesis that EBOV would be inactivated in donor human milk (DHM) by standard pasteurization techniques (Holder) used in all North American nonprofit milk banks. Milk samples were obtained from a nonprofit milk bank. They were inoculated with EBOV (Zaire strain) and MARV (Angola strain) and processed by standard Holder pasteurization technique. Plaque assays for EBOV and MARV were performed to detect the presence of virus after pasteurization. Neither EBOV nor MARV was detectable by viral plaque assay in DHM or culture media samples, which were pasteurized by the Holder process. EBOV and MARV are safely inactivated in human milk by standard Holder pasteurization technique. Screening for EBOV or MARV beyond questionnaire and self-deferral is not needed to ensure safety of DHM for high-risk infants.

  10. Hepatitis B Virus, Hepatitis C Virus and Human Immunodeficiency ...

    African Journals Online (AJOL)

    Background: The epidemiology of viral hepatitis and Human immunodeficiency virus (HIV) during pregnancy is of great importance for health planners and program managers. However, few published data on viral hepatitis and HIV are available in Sudan especially during pregnancy. Objectives: The current study was ...

  11. Associations between pathogens in the upper respiratory tract of young children: interplay between viruses and bacteria.

    Directory of Open Access Journals (Sweden)

    Menno R van den Bergh

    Full Text Available High rates of potentially pathogenic bacteria and respiratory viruses can be detected in the upper respiratory tract of healthy children. Investigating presence of and associations between these pathogens in healthy individuals is still a rather unexplored field of research, but may have implications for interpreting findings during disease.We selected 986 nasopharyngeal samples from 433 6- to 24-month-old healthy children that had participated in a randomized controlled trial. We determined the presence of 20 common respiratory viruses using real-time PCR. Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and Staphylococcus aureus were identified by conventional culture methods. Information on risk factors was obtained by questionnaires. We performed multivariate logistic regression analyses followed by partial correlation analysis to identify the overall pattern of associations. S. pneumoniae colonization was positively associated with the presence of H. influenzae (adjusted odds ratio 1.60, 95% confidence interval 1.18-2.16, M. catarrhalis (1.78, 1.29-2.47, human rhinoviruses (1.63, 1.19-2.22 and enteroviruses (1.97, 1.26-3.10, and negatively associated with S. aureus presence (0.59, 0.35-0.98. H. influenzae was positively associated with human rhinoviruses (1.63, 1.22-2.18 and respiratory syncytial viruses (2.78, 1.06-7.28. M. catarrhalis colonization was positively associated with coronaviruses (1.99, 1.01-3.93 and adenoviruses (3.69, 1.29-10.56, and negatively with S. aureus carriage (0.42, 0.25-0.69. We observed a strong positive association between S. aureus and influenza viruses (4.87, 1.59-14.89. In addition, human rhinoviruses and enteroviruses were positively correlated (2.40, 1.66-3.47, as were enteroviruses and human bocavirus, WU polyomavirus, parainfluenza viruses, and human parechovirus. A negative association was observed between human rhinoviruses and coronaviruses.Our data revealed high viral and

  12. Companion Animals as a Source of Viruses for Human Beings and Food Production Animals.

    Science.gov (United States)

    Reperant, L A; Brown, I H; Haenen, O L; de Jong, M D; Osterhaus, A D M E; Papa, A; Rimstad, E; Valarcher, J-F; Kuiken, T

    2016-07-01

    Companion animals comprise a wide variety of species, including dogs, cats, horses, ferrets, guinea pigs, reptiles, birds and ornamental fish, as well as food production animal species, such as domestic pigs, kept as companion animals. Despite their prominent place in human society, little is known about the role of companion animals as sources of viruses for people and food production animals. Therefore, we reviewed the literature for accounts of infections of companion animals by zoonotic viruses and viruses of food production animals, and prioritized these viruses in terms of human health and economic importance. In total, 138 virus species reportedly capable of infecting companion animals were of concern for human and food production animal health: 59 of these viruses were infectious for human beings, 135 were infectious for food production mammals and birds, and 22 were infectious for food production fishes. Viruses of highest concern for human health included hantaviruses, Tahyna virus, rabies virus, West Nile virus, tick-borne encephalitis virus, Crimean-Congo haemorrhagic fever virus, Aichi virus, European bat lyssavirus, hepatitis E virus, cowpox virus, G5 rotavirus, influenza A virus and lymphocytic choriomeningitis virus. Viruses of highest concern for food production mammals and birds included bluetongue virus, African swine fever virus, foot-and-mouth disease virus, lumpy skin disease virus, Rift Valley fever virus, porcine circovirus, classical swine fever virus, equine herpesvirus 9, peste des petits ruminants virus and equine infectious anaemia virus. Viruses of highest concern for food production fishes included cyprinid herpesvirus 3 (koi herpesvirus), viral haemorrhagic septicaemia virus and infectious pancreatic necrosis virus. Of particular concern as sources of zoonotic or food production animal viruses were domestic carnivores, rodents and food production animals kept as companion animals. The current list of viruses provides an objective

  13. Virus-induced asthma attack: The importance of allergic inflammation in response to viral antigen in an animal model of asthma.

    Science.gov (United States)

    Skappak, Christopher; Ilarraza, Ramses; Wu, Ying-Qi; Drake, Matthew G; Adamko, Darryl J

    2017-01-01

    Asthma exacerbation can be a life-threatening condition, and is most often triggered by common respiratory viruses. Poor asthma control and worsening of respiratory function is associated with increased airway inflammation, including eosinophilia. Prevention of asthma exacerbation relies on treatment with corticosteroids, which preferentially inhibit allergic inflammation like eosinophils. Human studies demonstrate that inactivated virus can trigger eosinophil activation in vitro through antigen presentation and memory CD4+ lymphocytes. We hypothesized that animals with immunologic memory to a respiratory virus would also develop airway hyperresponsiveness in response to a UV-inactivated form of the virus if they have pre-existing allergic airway inflammation. Guinea pigs were ovalbumin-sensitized, infected with live parainfluenza virus (PIV), aerosol-challenged with ovalbumin, and then re-inoculated 60 days later with live or UV-inactivated PIV. Some animals were either treated with dexamethasone prior to the second viral exposure. Lymphocytes were isolated from parabronchial lymph nodes to confirm immunologic memory to the virus. Airway reactivity was measured and inflammation was assessed using bronchoalveolar lavage and lung histology. The induction of viral immunologic memory was confirmed in infected animals. Allergen sensitized and challenged animals developed airway hyperreactivity with eosinophilic airway inflammation when re-exposed to UV-inactivated PIV, while non-sensitized animals did not. Airway hyperreactivity in the sensitized animals was inhibited by pre-treatment with dexamethasone. We suggest that the response of allergic inflammation to virus antigen is a significant factor causing asthma exacerbation. We propose that this is one mechanism explaining how corticosteroids prevent virus-induced asthma attack.

  14. Viruses associated with human and animal influenza - a review ...

    African Journals Online (AJOL)

    In this review, the most important viruses associated with human and animal influenza are reported. These include Influenza A,B and C. Influenza viruses are members of the family Orthomyxoviridae. Influenza A virus being the most pathogenic and wide spread with many subtypes has constantly cause epidemics in several ...

  15. Prevalence of herpes simplex, Epstein Barr and human papilloma viruses in oral lichen planus.

    Science.gov (United States)

    Yildirim, Benay; Sengüven, Burcu; Demir, Cem

    2011-03-01

    The aim of the present study was to assess the prevalence of Herpes Simplex virus, Epstein Barr virus and Human Papilloma virus -16 in oral lichen planus cases and to evaluate whether any clinical variant, histopathological or demographic feature correlates with these viruses. The study was conducted on 65 cases. Viruses were detected immunohistochemically. We evaluated the histopathological and demographic features and statistically analysed correlation of these features with Herpes Simplex virus, Epstein Barr virus and Human Papilloma virus-16 positivity. Herpes Simplex virus was positive in six (9%) cases and this was not statistically significant. The number of Epstein Barr virus positive cases was 23 (35%) and it was statistically significant. Human Papilloma virus positivity in 14 cases (21%) was statistically significant. Except basal cell degeneration in Herpes Simplex virus positive cases, we did not observe any significant correlation between virus positivity and demographic or histopathological features. However an increased risk of Epstein Barr virus and Human Papilloma virus infection was noted in oral lichen planus cases. Taking into account the oncogenic potential of both viruses, oral lichen planus cases should be detected for the presence of these viruses.

  16. Virus load in chimpanzees infected with human immunodeficiency virus type 1: effect of pre-exposure vaccination

    NARCIS (Netherlands)

    ten Haaft, P.; Cornelissen, M.; Goudsmit, J.; Koornstra, W.; Dubbes, R.; Niphuis, H.; Peeters, M.; Thiriart, C.; Bruck, C.; Heeney, J. L.

    1995-01-01

    Many reports indicate that a long-term asymptomatic state following human immunodeficiency virus type 1 (HIV-1) infection is associated with a low amount of circulating virus. To evaluate the possible effect of stabilizing a low virus load by non-sterilizing pre-exposure vaccination, a quantitative

  17. Sero-prevalence of Human Immunodeficiency Virus and hepatitis ...

    African Journals Online (AJOL)

    Sero-prevalence of Human Immunodeficiency Virus and hepatitis viruses and their correlation with CD4 T-cell lymphocyte counts in pregnant women in the Buea Health District of Cameroon. Rebecca Enow Tanjong, Pride Teyim, Henry Lucien Kamga, Edwin Suh Neba, Theresia Nkuo-Akenji ...

  18. [Infections which humans in the household transmit to dogs and cats].

    Science.gov (United States)

    Mayr, A

    1989-04-01

    An overview of the most important infections which can be transmitted from humans to pet dogs and cats is presented. Two quite different sources of infection stand diametrically opposite each other: 1. The transmission of active human infections to dogs and cats and 2. the transmission of infectious agents by feeding raw meat, offal, unsterilized milk products, kitchen scraps and contaminated feedstuffs. Humans can be the source of the following infections: 1. Zoonoses with reciprocal modes of transmission, e.g. Campylobacter and E. coli infections, trichophyton and microsporum infections, reo-, parainfluenza-, adeno, rota- and corona infections. 2. Zoonoses in which the main direction of infection is human----animal, e.g. tuberculosis and influenza A. 3. Infections originally pathogenic to humans which meet an impasse in dogs and cats (blind alley hosts), e.g. herpes simplex, varicella-zoster, measles and Corynebacterium diphtheriae. Listeria, salmonella, campylobacteria, toxoplasma, fungi, yeasts and viruses are transmitted via feed. The most dangerous virus infection to be transmitted to cats and dogs via raw pork leftovers is Aujeszky's disease. The dog or cat, which is the last link in the infection chain, suffers an agonizing death. The other infections originating from feed must be assessed quite differently. They are links in infection chains, which spread pathogens and endanger the health of man and animal in turn. A typical example is toxoplasmosis. Man becomes infected via sporulated oocysts from feces. Pet cats mainly become infected via raw pork containing cysts.

  19. Controlled human infection models for vaccine development: Zika virus debate.

    Science.gov (United States)

    Gopichandran, Vijayaprasad

    2018-01-01

    An ethics panel, convened by the National Institute of Health and other research bodies in the USA, disallowed researchers from the Johns Hopkins University and University of Vermont from performing controlled human infection of healthy volunteers to develop a vaccine against Zika virus infection. The members published their ethical analysis and recommendations in February 2017. They have elaborated on the risks posed by human challenge with Zika virus to the volunteers and other uninvolved third parties and have systematically analysed the social value of such a human challenge experiment. They have also posited some mandatory ethical requirements which should be met before allowing the infection of healthy volunteers with the Zika virus. This commentary elaborates on the debate on the ethics of the human challenge model for the development of a Zika virus vaccine and the role of systematic ethical analysis in protecting the interests of research participants. It further analyses the importance of this debate to the development of a Zika vaccine in India.

  20. Herpes Simplex Virus Type-2 and Human Immunodeficiency Virus ...

    African Journals Online (AJOL)

    Objectives: To estimate the seroprevalence of Herpes Simplex Type 2 (HSV-2) and its association with Human Immunodeficiency Virus type 1 (HIV-1) infections in rural Kilimanjaro Tanzania. Methods: A cross-sectional survey was conducted in Oria village from March to June 2005 involving all individuals aged 15-44 years ...

  1. Awareness and practice of Human Immunodeficiency Virus And ...

    African Journals Online (AJOL)

    Background: Human Immunodeficiency Virus(HIV) and Hepatitis B Virus(HBV) infections are global viral diseases with various seroprevalence rates in different parts of the world. They share similar modes of transmission and are very important in Transfusion Medicine. Aim/Objective: To determine the level of awareness ...

  2. Seroprevalence of Hepatitis A virus infection in non-human primates in Assam, India

    Directory of Open Access Journals (Sweden)

    B.G. Nath

    2013-08-01

    Full Text Available The present study investigated 37 serum samples of non-human primates in Assam State Zoo and the Department of Forest and Environment, Govt. of Assam for seroprevalence of hepatitis A virus infection during the period from December, 2007 to November, 2009. Four serum samples were also collected from animal keepers of the zoo to investigate transmission of the disease to the attendants working with these primates. Competitive ELISA was performed using hepatitis A virus ELISA kit (Wanti Hep. AV to detect hepatitis A virus antibody in serum samples. Ten (27.21% of the non-human primate samples and three (75% human samples had detectable anti-hepatitis A virus antibodies. Living status of the non-human primates (Free living was a high potential risk for hepatitis A virus infection. Seroprevalence of hepatitis A virus infection had significant difference between free living non-human primates and captive non-human primates (P less than 0.05. No significant difference (p=0.86 was seen between male and female non-human primates

  3. Gamma interferon augments Fc gamma receptor-mediated dengue virus infection of human monocytic cells.

    OpenAIRE

    Kontny, U; Kurane, I; Ennis, F A

    1988-01-01

    It has been reported that anti-dengue antibodies at subneutralizing concentrations augment dengue virus infection of monocytic cells. This is due to the increased uptake of dengue virus in the form of virus-antibody complexes by cells via Fc gamma receptors. We analyzed the effects of recombinant human gamma interferon (rIFN-gamma) on dengue virus infection of human monocytic cells. U937 cells, a human monocytic cell line, were infected with dengue virus in the form of virus-antibody complexe...

  4. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals

    NARCIS (Netherlands)

    D.A.J. van Riel (Debby); V.J. Munster (Vincent); E. de Wit (Emmie); G.F. Rimmelzwaan (Guus); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2007-01-01

    textabstractViral attachment to the host cell is critical for tissue and species specificity of virus infections. Recently, pattern of viral attachment (PVA) in human respiratory tract was determined for highly pathogenic avian influenza virus of subtype H5N1. However, PVA of human influenza viruses

  5. Tracking Human Immunodeficiency Virus-1 Infection in the Humanized DRAG Mouse Model

    Science.gov (United States)

    Kim, Jiae; Peachman, Kristina K.; Jobe, Ousman; Morrison, Elaine B.; Allam, Atef; Jagodzinski, Linda; Casares, Sofia A.; Rao, Mangala

    2017-01-01

    Humanized mice are emerging as an alternative model system to well-established non-human primate (NHP) models for studying human immunodeficiency virus (HIV)-1 biology and pathogenesis. Although both NHP and humanized mice have their own strengths and could never truly reflect the complex human immune system and biology, there are several advantages of using the humanized mice in terms of using primary HIV-1 for infection instead of simian immunodeficiency virus or chimera simian/HIV. Several different types of humanized mice have been developed with varying levels of reconstitution of human CD45+ cells. In this study, we utilized humanized Rag1KO.IL2RγcKO.NOD mice expressing HLA class II (DR4) molecule (DRAG mice) infused with HLA-matched hematopoietic stem cells from umbilical cord blood to study early events after HIV-1 infection, since the mucosal tissues of these mice are highly enriched for human lymphocytes and express the receptors and coreceptors needed for HIV-1 entry. We examined the various tissues on days 4, 7, 14, and 21 after an intravaginal administration of a single dose of purified primary HIV-1. Plasma HIV-1 RNA was detected as early as day 7, with 100% of the animals becoming plasma RNA positive by day 21 post-infection. Single cells were isolated from lymph nodes, bone marrow, spleen, gut, female reproductive tissue, and brain and analyzed for gag RNA and strong stop DNA by quantitative (RT)-PCR. Our data demonstrated the presence of HIV-1 viral RNA and DNA in all of the tissues examined and that the virus was replication competent and spread rapidly. Bone marrow, gut, and lymph nodes were viral RNA positive by day 4 post-infection, while other tissues and plasma became positive typically between 7 and 14 days post-infection. Interestingly, the brain was the last tissue to become HIV-1 viral RNA and DNA positive by day 21 post-infection. These data support the notion that humanized DRAG mice could serve as an excellent model for studying the

  6. Tracking Human Immunodeficiency Virus-1 Infection in the Humanized DRAG Mouse Model

    Directory of Open Access Journals (Sweden)

    Jiae Kim

    2017-10-01

    Full Text Available Humanized mice are emerging as an alternative model system to well-established non-human primate (NHP models for studying human immunodeficiency virus (HIV-1 biology and pathogenesis. Although both NHP and humanized mice have their own strengths and could never truly reflect the complex human immune system and biology, there are several advantages of using the humanized mice in terms of using primary HIV-1 for infection instead of simian immunodeficiency virus or chimera simian/HIV. Several different types of humanized mice have been developed with varying levels of reconstitution of human CD45+ cells. In this study, we utilized humanized Rag1KO.IL2RγcKO.NOD mice expressing HLA class II (DR4 molecule (DRAG mice infused with HLA-matched hematopoietic stem cells from umbilical cord blood to study early events after HIV-1 infection, since the mucosal tissues of these mice are highly enriched for human lymphocytes and express the receptors and coreceptors needed for HIV-1 entry. We examined the various tissues on days 4, 7, 14, and 21 after an intravaginal administration of a single dose of purified primary HIV-1. Plasma HIV-1 RNA was detected as early as day 7, with 100% of the animals becoming plasma RNA positive by day 21 post-infection. Single cells were isolated from lymph nodes, bone marrow, spleen, gut, female reproductive tissue, and brain and analyzed for gag RNA and strong stop DNA by quantitative (RT-PCR. Our data demonstrated the presence of HIV-1 viral RNA and DNA in all of the tissues examined and that the virus was replication competent and spread rapidly. Bone marrow, gut, and lymph nodes were viral RNA positive by day 4 post-infection, while other tissues and plasma became positive typically between 7 and 14 days post-infection. Interestingly, the brain was the last tissue to become HIV-1 viral RNA and DNA positive by day 21 post-infection. These data support the notion that humanized DRAG mice could serve as an excellent model

  7. The novel human influenza A(H7N9) virus is naturally adapted to efficient growth in human lung tissue.

    Science.gov (United States)

    Knepper, Jessica; Schierhorn, Kristina L; Becher, Anne; Budt, Matthias; Tönnies, Mario; Bauer, Torsten T; Schneider, Paul; Neudecker, Jens; Rückert, Jens C; Gruber, Achim D; Suttorp, Norbert; Schweiger, Brunhilde; Hippenstiel, Stefan; Hocke, Andreas C; Wolff, Thorsten

    2013-10-08

    A novel influenza A virus (IAV) of the H7N9 subtype has been isolated from severely diseased patients with pneumonia and acute respiratory distress syndrome and, apparently, from healthy poultry in March 2013 in Eastern China. We evaluated replication, tropism, and cytokine induction of the A/Anhui/1/2013 (H7N9) virus isolated from a fatal human infection and two low-pathogenic avian H7 subtype viruses in a human lung organ culture system mimicking infection of the lower respiratory tract. The A(H7N9) patient isolate replicated similarly well as a seasonal IAV in explanted human lung tissue, whereas avian H7 subtype viruses propagated poorly. Interestingly, the avian H7 strains provoked a strong antiviral type I interferon (IFN-I) response, whereas the A(H7N9) virus induced only low IFN levels. Nevertheless, all viruses analyzed were detected predominantly in type II pneumocytes, indicating that the A(H7N9) virus does not differ in its cellular tropism from other avian or human influenza viruses. Tissue culture-based studies suggested that the low induction of the IFN-β promoter correlated with an efficient suppression by the viral NS1 protein. These findings demonstrate that the zoonotic A(H7N9) virus is unusually well adapted to efficient propagation in human alveolar tissue, which most likely contributes to the severity of lower respiratory tract disease seen in many patients. Humans are usually not infected by avian influenza A viruses (IAV), but this large group of viruses contributes to the emergence of human pandemic strains. Transmission of virulent avian IAV to humans is therefore an alarming event that requires assessment of the biology as well as pathogenic and pandemic potentials of the viruses in clinically relevant models. Here, we demonstrate that an early virus isolate from the recent A(H7N9) outbreak in Eastern China replicated as efficiently as human-adapted IAV in explanted human lung tissue, whereas avian H7 subtype viruses were unable to

  8. Replacement of Murine Leukemia Virus Readthrough Mechanism by Human Immunodeficiency Virus Frameshift Allows Synthesis of Viral Proteins and Virus Replication

    Science.gov (United States)

    Brunelle, Marie-Noëlle; Brakier-Gingras, Léa; Lemay, Guy

    2003-01-01

    Retroviruses use unusual recoding strategies to synthesize the Gag-Pol polyprotein precursor of viral enzymes. In human immunodeficiency virus, ribosomes translating full-length viral RNA can shift back by 1 nucleotide at a specific site defined by the presence of both a slippery sequence and a downstream stimulatory element made of an extensive secondary structure. This so-called frameshift mechanism could become a target for the development of novel antiviral strategies. A different recoding strategy is used by other retroviruses, such as murine leukemia viruses, to synthesize the Gag-Pol precursor; in this case, a stop codon is suppressed in a readthrough process, again due to the presence of a specific structure adopted by the mRNA. Development of antiframeshift agents will greatly benefit from the availability of a simple animal and virus model. For this purpose, the murine leukemia virus readthrough region was rendered inactive by mutagenesis and the frameshift region of human immunodeficiency virus was inserted to generate a chimeric provirus. This substitution of readthrough by frameshift allows the synthesis of viral proteins, and the chimeric provirus sequence was found to generate infectious viruses. This system could be a most interesting alternative to study ribosomal frameshift in the context of a virus amenable to the use of a simple animal model. PMID:12584361

  9. Human immunodeficiency virus-associated malignant lymphoma in eastern Denmark diagnosed from 1990-1996: clinical features, histopathology, and association with Epstein-Barr virus and human herpesvirus-8

    DEFF Research Database (Denmark)

    Hansen, P B; Penkowa, M; Kirk, O

    2000-01-01

    The clinicopathological features of human immunodeficiency virus (HIV)-associated lymphoma were investigated in a retrospective study of 85 adult patients in eastern Denmark diagnosed during the period 1990-1996. The possible pathogenetic role of Epstein-Barr virus (EBV) and human herpesvirus 8...

  10. Predictors associated with the willingness to take human papilloma virus vaccination.

    Science.gov (United States)

    Naing, Cho; Pereira, Joanne; Abe, Tatsuki; Eh Zhen Wei, Daniel; Rahman Bajera, Ibrizah Binti Abdul; Kavinda Perera, Undugodage Heshan

    2012-04-01

    Human papilloma virus vaccine is considered to be the primary form of cervical cancer prevention. The objectives were (1) to determine knowledge about, and perception of human papilloma virus infection in relation to cervical cancer, (2) to explore the intention of the community to be vaccinated with human papilloma virus vaccine, and (3) to identify variables that could predict the likelihood of uptake of the vaccine. A cross-sectional survey was carried out in a semi-urban Town of Malaysia, using a pre-tested structured questionnaire. Summary statistics, Pearson chi-square test and a binary logistic regression were used for data analysis. A total of 232 respondents were interviewed. Overall, only a few had good knowledge related to human papilloma virus (14%) or vaccination (8%). Many had misconceptions that it could be transmitted through blood transfusion (57%). Sixty percent had intention to take vaccination. In the binary logistic model, willingness to take vaccination was significant with 'trusts that vaccination would be effective for prevention of cervical cancer' (P = 0.001), 'worries for themselves' (P human papilloma virus infection and cervical cancer would be helpful to increase the acceptability of vaccination program.

  11. Oncogenic impact of human papilloma virus in head and neck cancer.

    LENUS (Irish Health Repository)

    Heffernan, C B

    2012-02-01

    There is considerable debate within the literature about the significance of human papilloma virus in head and neck squamous cell carcinoma, and its potential influence on the prevention, diagnosis, grading, treatment and prognosis of these cancers. Cigarette smoking and alcohol consumption have traditionally been cited as the main risk factors for head and neck cancers. However, human papilloma virus, normally associated with cervical and other genital carcinomas, has emerged as a possible key aetiological factor in head and neck squamous cell carcinoma, especially oropharyngeal cancers. These cancers pose a significant financial burden on health resources and are increasing in incidence. The recent introduction of vaccines targeted against human papilloma virus types 16 and 18, to prevent cervical cancer, has highlighted the need for ongoing research into the importance of human papilloma virus in head and neck squamous cell carcinoma.

  12. Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections

    Directory of Open Access Journals (Sweden)

    Müller Marcel A

    2005-02-01

    Full Text Available Abstract Ten potential reference genes were compared for their use in experiments investigating cellular mRNA expression of virus infected cells. Human cell lines were infected with Cytomegalovirus, Human Herpesvirus-6, Camelpox virus, SARS coronavirus or Yellow fever virus. The expression levels of these genes and the viral replication were determined by real-time PCR. Genes were ranked by the BestKeeper tool, the GeNorm tool and by criteria we reported previously. Ranking lists of the genes tested were tool dependent. However, over all, β-actin is an unsuitable as reference gene, whereas TATA-Box binding protein and peptidyl-prolyl-isomerase A are stable reference genes for expression studies in virus infected cells.

  13. Sero-prevalence of Human Immunodeficiency Virus (HIV) and ...

    African Journals Online (AJOL)

    Three hundred and seven (307) healthy blood donors aged 18 – 55 years were used to determine the sero-prevalence of Human Immunodeficiency Virus (HIV) and Hepatitis B virus (HBV) in Yola, Nigeria. The association between donors' age, occupation and marital status and the prevalence of the infections among blood ...

  14. Real-Time Detection of a Virus Using Detection Dogs

    Directory of Open Access Journals (Sweden)

    Craig eAngle

    2016-01-01

    Full Text Available Viral infections are ubiquitous in humans, animals, and plants. Real-time methods to identify viral infections are limited and do not exist for use in harsh or resource-constrained environments. Previous research identified that tissues produce unique volatile organic compounds (VOC and demonstrated that VOC concentrations change during pathologic states including infection, neoplasia, or metabolic disease. Patterns of VOC expression may be pathogen-specific and may be associated with an odor that could be used for disease detection.We investigated the ability of two trained dogs to detect cell cultures infected with bovine viral diarrhea virus (BVDV and to discriminate BVDV-infected cell cultures from uninfected cell cultures and from cell cultures infected with bovine herpes virus 1 (BHV 1 and bovine parainfluenza virus 3 (BPIV 3. Dogs were trained to recognize cell cultures infected with two different biotypes of BVDV propagated in MDBK cells using one of three culture media. For detection trials, one target and seven distractors were presented on a scent wheel by a dog handler unaware of the location of targets and distractors.Detection of BVDV- infected cell cultures by Dog 1 had a diagnostic sensitivity of 0.850 (95% CI: 0.701 - 0.942, which was lower than Dog 2 (0.967, 95% CI: 0.837 - 0.994. Both dogs exhibited very high diagnostic specificity (0.981, 95% CI: 0.960 - 0.993 and (0.993, 95% CI: 0.975 - 0.999, respectively.These findings demonstrate that trained dogs can differentiate between cultured cells infected with BVDV, BHV1, and BPIV3 and are a realistic real-time mobile pathogen sensing technology for viral pathogens. The ability to discriminate between target and distractor samples plausibly results from expression of unique VOC patterns virus-infected and uninfected cells.

  15. Real-Time Detection of a Virus Using Detection Dogs.

    Science.gov (United States)

    Angle, T Craig; Passler, Thomas; Waggoner, Paul L; Fischer, Terrence D; Rogers, Bart; Galik, Patricia K; Maxwell, Herris S

    2015-01-01

    Viral infections are ubiquitous in humans, animals, and plants. Real-time methods to identify viral infections are limited and do not exist for use in harsh or resource-constrained environments. Previous research identified that tissues produce unique volatile organic compounds (VOC) and demonstrated that VOC concentrations change during pathologic states, including infection, neoplasia, or metabolic disease. Patterns of VOC expression may be pathogen specific and may be associated with an odor that could be used for disease detection. We investigated the ability of two trained dogs to detect cell cultures infected with bovine viral diarrhea virus (BVDV) and to discriminate BVDV-infected cell cultures from uninfected cell cultures and from cell cultures infected with bovine herpes virus 1 (BHV 1) and bovine parainfluenza virus 3 (BPIV 3). Dogs were trained to recognize cell cultures infected with two different biotypes of BVDV propagated in Madin-Darby bovine kidney cells using one of three culture media. For detection trials, one target and seven distractors were presented on a scent wheel by a dog handler unaware of the location of targets and distractors. Detection of BVDV-infected cell cultures by Dog 1 had a diagnostic sensitivity of 0.850 (95% CI: 0.701-0.942), which was lower than Dog 2 (0.967, 95% CI: 0.837-0.994). Both dogs exhibited very high diagnostic specificity (0.981, 95% CI: 0.960-0.993) and (0.993, 95% CI: 0.975-0.999), respectively. These findings demonstrate that trained dogs can differentiate between cultured cells infected with BVDV, BHV1, and BPIV3 and are a realistic real-time mobile pathogen sensing technology for viral pathogens. The ability to discriminate between target and distractor samples plausibly results from expression of unique VOC patterns in virus-infected and -uninfected cells.

  16. Humanized Mouse Model of Ebola Virus Disease Mimics the Immune Responses in Human Disease.

    Science.gov (United States)

    Bird, Brian H; Spengler, Jessica R; Chakrabarti, Ayan K; Khristova, Marina L; Sealy, Tara K; Coleman-McCray, JoAnn D; Martin, Brock E; Dodd, Kimberly A; Goldsmith, Cynthia S; Sanders, Jeanine; Zaki, Sherif R; Nichol, Stuart T; Spiropoulou, Christina F

    2016-03-01

    Animal models recapitulating human Ebola virus disease (EVD) are critical for insights into virus pathogenesis. Ebola virus (EBOV) isolates derived directly from human specimens do not, without adaptation, cause disease in immunocompetent adult rodents. Here, we describe EVD in mice engrafted with human immune cells (hu-BLT). hu-BLT mice developed EVD following wild-type EBOV infection. Infection with high-dose EBOV resulted in rapid, lethal EVD with high viral loads, alterations in key human antiviral immune cytokines and chemokines, and severe histopathologic findings similar to those shown in the limited human postmortem data available. A dose- and donor-dependent clinical course was observed in hu-BLT mice infected with lower doses of either Mayinga (1976) or Makona (2014) isolates derived from human EBOV cases. Engraftment of the human cellular immune system appeared to be essential for the observed virulence, as nonengrafted mice did not support productive EBOV replication or develop lethal disease. hu-BLT mice offer a unique model for investigating the human immune response in EVD and an alternative animal model for EVD pathogenesis studies and therapeutic screening. Published by Oxford University Press for the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China.

    Science.gov (United States)

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and homology of the nucleotide sequence, the virus was confirmed to be a novel triple-reassortant H1N2 virus containing genes from classical swine (PB2, PB1, HA, NP, and NS genes), triple-reassortant swine (PA and M genes), and recent human (NA gene) lineages. It indicated that the novel reassortment virus among human and swine influenza viruses occurred in pigs in southern China. The isolation of the novel reassortant H1N2 influenza viruses provides further evidence that pigs are "mixing vessels," and swine influenza virus surveillance in southern China will provide important information about genetic evaluation and antigenic variation of swine influenza virus to formulate the prevention and control measures for the viruses.

  18. Vaccinia virus recombinants expressing chimeric proteins of human immunodeficiency virus and gamma interferon are attenuated for nude mice.

    OpenAIRE

    Giavedoni, L D; Jones, L; Gardner, M B; Gibson, H L; Ng, C T; Barr, P J; Yilma, T

    1992-01-01

    We have developed a method for attenuating vaccinia virus recombinants by expressing a fusion protein of a lymphokine and an immunogen. Chimeric genes were constructed that coded for gamma interferon (IFN-gamma) and structural proteins of the human immunodeficiency virus type 1 (HIV-1). In this study, we describe the biological and immunological properties of vaccinia virus recombinants expressing chimeric genes of murine or human IFN-gamma with glycoprotein gp120, gag, and a fragment of gp41...

  19. Hendra and Nipah virus infection in cultured human olfactory epithelial cells

    NARCIS (Netherlands)

    Borisevich, V. (Viktoriya); Ozdener, M.H. (Mehmet Hakan); Malik, B. (Bilal); B. Rockx (Barry)

    2017-01-01

    textabstractHenipaviruses are emerging zoonotic viruses and causative agents of encephalitis in humans. However, the mechanisms of entry into the central nervous system (CNS) in humans are not known. Here, we evaluated the possible role of olfactory epithelium in virus entry into the CNS. We

  20. Replication of swine and human influenza viruses in juvenile and layer turkey hens.

    Science.gov (United States)

    Ali, Ahmed; Yassine, Hadi; Awe, Olusegun O; Ibrahim, Mahmoud; Saif, Yehia M; Lee, Chang-Won

    2013-04-12

    Since the first reported isolation of swine influenza viruses (SIVs) in turkeys in the 1980s, transmission of SIVs to turkeys was frequently documented. Recently, the 2009 pandemic H1N1 virus, that was thought to be of swine origin, was detected in turkeys with a severe drop in egg production. In this study, we assessed the infectivity of different mammalian influenza viruses including swine, pandemic H1N1 and seasonal human influenza viruses in both juvenile and layer turkeys. In addition, we investigated the potential influenza virus dissemination in the semen of experimentally infected turkey toms. Results showed that all mammalian origin influenza viruses tested can infect turkeys. SIVs were detected in respiratory and digestive tracts of both juvenile and layer turkeys. Variations in replication efficiencies among SIVs were observed especially in the reproductive tract of layer turkeys. Compared to SIVs, limited replication of seasonal human H1N1 and no detectable replication of recent human-like swine H1N2, pandemic H1N1 and seasonal human H3N2 viruses was noticed. All birds seroconverted to all tested viruses regardless of their replication level. In turkey toms, we were able to detect swine H3N2 virus in semen and reproductive tract of infected toms by real-time RT-PCR although virus isolation was not successful. These data suggest that turkey hens could be affected by diverse influenza strains especially SIVs. Moreover, the differences in the replication efficiency we demonstrated among SIVs and between SIV and human influenza viruses in layer turkeys suggest a possible use of turkeys as an animal model to study host tropism and pathogenesis of influenza viruses. Our results also indicate a potential risk of venereal transmission of influenza viruses in turkeys. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The role of human papilloma virus and herpes viruses in the etiology of nasal polyposis.

    Science.gov (United States)

    Koçoğlu, Mücahide Esra; Mengeloğlu, Fırat Zafer; Apuhan, Tayfun; Özsoy, Şeyda; Yilmaz, Beyhan

    2016-02-17

    The aim of this study was to investigate the etiological role of human papilloma virus (HPV), herpes simplex virus (HSV), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), and human herpes virus-6 (HHV-6) and -7 (HHV-7) in the occurrence of nasal polyposis. Nasal polyp samples from 30 patients with nasal polyposis and normal nasal mucosa from 10 patients without nasal polyps were obtained. DNA was extracted from tissues. Real-time polymerase chain reaction was performed for all runs. No HSV-1, HSV-2, or VZV was detected in the samples. Among the patient samples, EBV and HHV-7 DNA were detected in 18 (60%), HHV-6 was detected in 20 (66.7%), and HPV was detected in 4 (13.3%) samples. Among the controls, CMV DNA was positive in one (10%). EBV was positive in 5 (50%), HHV-6 and HHV-7 were positive in 7 (70%), and HPV was positive in 2 (20%) samples. No significant difference was found among the groups with any test in terms of positivity. The association of Herpesviridae and HPV with the pathogenesis of nasal polyps was investigated in this study and no relationship was found. Thus, these viruses do not play a significant role in the formation of nasal polyps.

  2. Antiviral Activity of Favipiravir (T-705) against a Broad Range of Paramyxoviruses In Vitro and against Human Metapneumovirus in Hamsters.

    Science.gov (United States)

    Jochmans, D; van Nieuwkoop, S; Smits, S L; Neyts, J; Fouchier, R A M; van den Hoogen, B G

    2016-08-01

    The clinical impact of infections with respiratory viruses belonging to the family Paramyxoviridae argues for the development of antiviral therapies with broad-spectrum activity. Favipiravir (T-705) has demonstrated potent antiviral activity against multiple RNA virus families and is presently in clinical evaluation for the treatment of influenza. Here we demonstrate in vitro activity of T-705 against the paramyxoviruses human metapneumovirus (HMPV), respiratory syncytial virus, human parainfluenza virus, measles virus, Newcastle disease virus, and avian metapneumovirus. In addition, we demonstrate activity against HMPV in hamsters. T-705 treatment inhibited replication of all paramyxoviruses tested in vitro, with 90% effective concentration (EC90) values of 8 to 40 μM. Treatment of HMPV-challenged hamsters with T-705 at 200 mg/kg of body weight/day resulted in 100% protection from infection of the lungs. In all treated and challenged animals, viral RNA remained detectable in the respiratory tract. The observation that T-705 treatment had a significant effect on infectious viral titers, with a limited effect on viral genome titers, is in agreement with its proposed mode of action of viral mutagenesis. However, next-generation sequencing of viral genomes isolated from treated and challenged hamsters did not reveal (hyper)mutation. Polymerase activity assays revealed a specific effect of T-705 on the activity of the HMPV polymerase. With the reported antiviral activity of T-705 against a broad range of RNA virus families, this small molecule is a promising broad-range antiviral drug candidate for limiting the viral burden of paramyxoviruses and for evaluation for treatment of infections with (re)emerging viruses, such as the henipaviruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Inactivation of Zika virus in human breast milk by prolonged storage or pasteurization.

    Science.gov (United States)

    Pfaender, Stephanie; Vielle, Nathalie J; Ebert, Nadine; Steinmann, Eike; Alves, Marco P; Thiel, Volker

    2017-01-15

    Zika virus infection during pregnancy poses a serious risk for pregnant women as it can cause severe birth defects. Even though the virus is mainly transmitted via mosquitos, human-to-human transmission has been described. Infectious viral particles have been detected in breast milk of infected women which raised concerns regarding the safety of breastfeeding in areas of Zika virus transmission or in case of a suspected or confirmed Zika virus infection. In this study, we show that Zika virus is effectively inactivated in human breast milk after prolonged storage or upon pasteurization of milk. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Human papilloma virus infection and psoriasis: Did human papilloma virus infection trigger psoriasis?

    Science.gov (United States)

    Jain, Sonia P; Gulhane, Sachin; Pandey, Neha; Bisne, Esha

    2015-01-01

    Psoriasis is an autoimmune chronic inflammatory skin disease known to be triggered by streptococcal and HIV infections. However, human papilloma virus infection (HPV) as a triggering factor for the development of psoriasis has not been reported yet. We, hereby report a case of plaque type with inverse psoriasis which probably could have been triggered by genital warts (HPV infection) and discuss the possible pathomechanisms for their coexistence and its management.

  5. Coinfection with Epstein–Barr Virus (EBV), Human Papilloma Virus (HPV) and Polyoma BK Virus (BKPyV) in Laryngeal, Oropharyngeal and Oral Cavity Cancer

    OpenAIRE

    Drop, Bartłomiej; Strycharz-Dudziak, Małgorzata; Kliszczewska, Ewa; Polz-Dacewicz, Małgorzata

    2017-01-01

    Most research providing evidence for the role of oncogenic viruses in head and neck squamous cell carcinoma (SCC) development is focused on one type of virus without analyzing possible interactions between two or more types of viruses. The aim of this study was to analyse the prevalence of co-infection with human papillomavirus (HPV), Epstein–Barr virus (EBV) and polyoma BK virus (BKPyV) in oral, oropharyngeal and laryngeal squamous cell carcinomas in Polish patients. The correlations between...

  6. Granulocyte colony-stimulating factor protects mice during respiratory virus infections.

    Directory of Open Access Journals (Sweden)

    Tamar Hermesh

    Full Text Available A burst in the production of pro-inflammatory molecules characterizes the beginning of the host response to infection. Cytokines, chemokines, and growth factors work in concert to control pathogen replication and activate innate and adaptive immune responses. Granulocyte colony-stimulating factor (G-CSF mobilizes and activates hematopoietic cells from the bone marrow, and it has been shown to mediate the generation of effective immunity against bacterial and fungal infections. G-CSF is produced at high levels in the lungs during infection with influenza and parainfluenza viruses, but its role during these infections is unknown. Here we show that during infection of mice with a non-lethal dose of influenza or Sendai virus, G-CSF promotes the accumulation of activated Ly6G+ granulocytes that control the extent of the lung pro-inflammatory response. Remarkably, these G-CSF-mediated effects facilitate viral clearance and sustain mouse survival.

  7. Genetic Reassortment Among the Influenza Viruses (Avian Influenza, Human Influenza and Swine Influenza in Pigs

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2012-12-01

    Full Text Available Influenza A virus is a hazardous virus and harm to respiratory tract. The virus infect birds, pigs, horses, dogs, mammals and humans. Pigs are important hosts in ecology of the influenza virus because they have two receptors, namely NeuAc 2,3Gal and NeuAc 2,6Gal which make the pigs are sensitive to infection of influenza virus from birds and humans and genetic reassortment can be occurred. Classical swine influenza H1N1 viruses had been circulated in pigs in North America and other countries for 80 years. In 1998, triple reassortant H3N2 swine influenza viruses that contains genes of human influenza A virus (H3N2, swine influenza virus (H1N1 and avian influenza are reported as cause an outbreaks in pigs in North America. Furthermore, the circulation of triple reassortant H3N2 swine influenza virus resulting reassortant H1N1 swine influenza and reassortant H1N2 swine influenza viruses cause infection in humans. Humans who were infected by triple reassortant swine influenza A virus (H1N1 usually made direct contact with pigs. Although without any clinical symptoms, pigs that are infected by triple reassortant swine influenza A (H1N1 can transmit infection to the humans around them. In June 2009, WHO declared that pandemic influenza of reassortant H1N1 influenza A virus (novel H1N1 has reached phase 6. In Indonesia until 2009, there were 1005 people were infected by H1N1 influenza A and 5 of them died. Novel H1N1 and H5N1 viruses have been circulated in humans and pigs in Indonesia. H5N1 reassortant and H1N1 viruses or the seasonal flu may could arise because of genetic reassortment between avian influenza and humans influenza viruses that infect pigs together.

  8. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Directory of Open Access Journals (Sweden)

    Neil Arvin Bretaña

    Full Text Available Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase

  9. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Science.gov (United States)

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site

  10. Inactivation of Zika virus in human breast milk by prolonged storage or pasteurization

    OpenAIRE

    Pfaender, Stephanie; Vielle, Nathalie J.; Ebert, Nadine; Steinmann, Eike; Alves, Marco P.; Thiel, Volker

    2017-01-01

    Zika virus infection during pregnancy poses a serious risk for pregnant women as it can cause severe birth defects. Even though the virus is mainly transmitted via mosquitos, human-to-human transmission has been described. Infectious viral particles have been detected in breast milk of infected women which raised concerns regarding the safety of breastfeeding in areas of Zika virus transmission or in case of a suspected or confirmed Zika virus infection. In this study, we show that Zika virus...

  11. Transurethral prostatectomy in human immunodeficiency virus ...

    African Journals Online (AJOL)

    Human immunodeficiency virus (HIV) infection is increasing world-wide and highly active antiretroviral treatment ... Hospital with urethral catheter in situ and having failed medical therapy, he opted for transurethral ... endoscopic visualization of operation field, the .... percutaneous exposure: Centers for Disease Control and.

  12. Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease.

    Science.gov (United States)

    Kozak, Robert; He, Shihua; Kroeker, Andrea; de La Vega, Marc-Antoine; Audet, Jonathan; Wong, Gary; Urfano, Chantel; Antonation, Kym; Embury-Hyatt, Carissa; Kobinger, Gary P; Qiu, Xiangguo

    2016-10-15

    Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such a model for BDBV is

  13. Influenza and other respiratory viruses in three Central American countries

    Science.gov (United States)

    Laguna‐Torres, Victor A.; Sánchez‐Largaespada, José F.; Lorenzana, Ivette; Forshey, Brett; Aguilar, Patricia; Jimenez, Mirna; Parrales, Eduardo; Rodriguez, Francisco; García, Josefina; Jimenez, Ileana; Rivera, Maribel; Perez, Juan; Sovero, Merly; Rios, Jane; Gamero, María E.; Halsey, Eric S.; Kochel, Tadeusz J.

    2010-01-01

    Please cite this paper as: Laguna‐Torres et al. (2011) Influenza and other respiratory viruses in three Central American countries. Influenza and Other Respiratory Viruses 5(2), 123–134. Background  Despite the disease burden imposed by respiratory diseases on children in Central America, there is a paucity of data describing the etiologic agents of the disease. Aims  To analyze viral etiologic agents associated with influenza‐like illness (ILI) in participants reporting to one outpatient health center, one pediatric hospital, and three general hospitals in El Salvador, Honduras, and Nicaragua Material & Methods  Between August 2006 and April 2009, pharyngeal swabs were collected from outpatients and inpatients. Patient specimens were inoculated onto cultured cell monolayers, and viral antigens were detected by indirect and direct immunofluorescence staining. Results  A total of 1,756 patients were enrolled, of whom 1,195 (68.3%) were under the age of 5; and 183 (10.4%) required hospitalization. One or more viral agents were identified in 434 (24.7%) cases, of which 17 (3.9%) were dual infections. The most common viruses isolated were influenza A virus (130; 7.4% of cases), respiratory syncytial virus (122; 6.9%), adenoviruses (63; 3.6%), parainfluenza viruses (57; 3.2%), influenza B virus (47; 2.7% of cases), and herpes simplex virus 1 (22; 1.3%). In addition, human metapneumovirus and enteroviruses (coxsackie and echovirus) were isolated from patient specimens. Discussion  When compared to the rest of the population, viruses were isolated from a significantly higher percentage of patients age 5 or younger. The prevalence of influenza A virus or influenza B virus infections was similar between the younger and older age groups. RSV was the most commonly detected pathogen in infants age 5 and younger and was significantly associated with pneumonia (p < 0.0001) and hospitalization (p < 0.0001). Conclusion  Genetic analysis of influenza

  14. Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses.

    Science.gov (United States)

    Clark, Amelia M; Nogales, Aitor; Martinez-Sobrido, Luis; Topham, David J; DeDiego, Marta L

    2017-09-01

    In 2009, a novel H1N1 influenza virus emerged in humans, causing a global pandemic. It was previously shown that the NS1 protein from this human 2009 pandemic H1N1 (pH1N1) virus was an effective interferon (IFN) antagonist but could not inhibit general host gene expression, unlike other NS1 proteins from seasonal human H1N1 and H3N2 viruses. Here we show that the NS1 protein from currently circulating pH1N1 viruses has evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) with respect to the original protein. Notably, these 6 residue changes restore the ability of pH1N1 NS1 to inhibit general host gene expression, mainly by their ability to restore binding to the cellular factor CPSF30. This is the first report describing the ability of the pH1N1 NS1 protein to naturally acquire mutations that restore this function. Importantly, a recombinant pH1N1 virus containing these 6 amino acid changes in the NS1 protein (pH1N1/NSs-6mut) inhibited host IFN and proinflammatory responses to a greater extent than that with the parental virus (pH1N1/NS1-wt), yet virus titers were not significantly increased in cell cultures or in mouse lungs, and the disease was partially attenuated. The pH1N1/NSs-6mut virus grew similarly to pH1N1/NSs-wt in mouse lungs, but infection with pH1N1/NSs-6mut induced lower levels of proinflammatory cytokines, likely due to a general inhibition of gene expression mediated by the mutated NS1 protein. This lower level of inflammation induced by the pH1N1/NSs-6mut virus likely accounts for the attenuated disease phenotype and may represent a host-virus adaptation affecting influenza virus pathogenesis. IMPORTANCE Seasonal influenza A viruses (IAVs) are among the most common causes of respiratory infections in humans. In addition, occasional pandemics are caused when IAVs circulating in other species emerge in the human population. In 2009, a swine-origin H1N1 IAV (pH1N1) was transmitted to humans, infecting people then and up

  15. A DNA Vaccine Protects Human Immune Cells against Zika Virus Infection in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Guohua Yi

    2017-11-01

    Full Text Available A DNA vaccine encoding prM and E protein has been shown to induce protection against Zika virus (ZIKV infection in mice and monkeys. However, its effectiveness in humans remains undefined. Moreover, identification of which immune cell types are specifically infected in humans is unclear. We show that human myeloid cells and B cells are primary targets of ZIKV in humanized mice. We also show that a DNA vaccine encoding full length prM and E protein protects humanized mice from ZIKV infection. Following administration of the DNA vaccine, humanized DRAG mice developed antibodies targeting ZIKV as measured by ELISA and neutralization assays. Moreover, following ZIKV challenge, vaccinated animals presented virtually no detectable virus in human cells and in serum, whereas unvaccinated animals displayed robust infection, as measured by qRT-PCR. Our results utilizing humanized mice show potential efficacy for a targeted DNA vaccine against ZIKV in humans.

  16. Culturing of respiratory viruses in well-differentiated pseudostratified human airway epithelium as a tool to detect unknown viruses

    Science.gov (United States)

    Jazaeri Farsani, Seyed Mohammad; Deijs, Martin; Dijkman, Ronald; Molenkamp, Richard; Jeeninga, Rienk E; Ieven, Margareta; Goossens, Herman; van der Hoek, Lia

    2015-01-01

    Background Currently, virus discovery is mainly based on molecular techniques. Here, we propose a method that relies on virus culturing combined with state-of-the-art sequencing techniques. The most natural ex vivo culture system was used to enable replication of respiratory viruses. Method Three respiratory clinical samples were tested on well-differentiated pseudostratified tracheobronchial human airway epithelial (HAE) cultures grown at an air–liquid interface, which resemble the airway epithelium. Cells were stained with convalescent serum of the patients to identify infected cells and apical washes were analyzed by VIDISCA-454, a next-generation sequencing virus discovery technique. Results Infected cells were observed for all three samples. Sequencing subsequently indicated that the cells were infected by either human coronavirus OC43, influenzavirus B, or influenzavirus A. The sequence reads covered a large part of the genome (52%, 82%, and 57%, respectively). Conclusion We present here a new method for virus discovery that requires a virus culture on primary cells and an antibody detection. The virus in the harvest can be used to characterize the viral genome sequence and cell tropism, but also provides progeny virus to initiate experiments to fulfill the Koch's postulates. PMID:25482367

  17. Human papilloma virus: a new risk factor in a subset of head and neck cancers.

    Science.gov (United States)

    Bisht, Manisha; Bist, Sampan Singh

    2011-01-01

    Head and neck cancer is the sixth most common malignancy worldwide. Tobacco smoking and alcohol consumption are two well known behavioral risk factors associated with head and neck cancer. Recently, evidence is mounting that infection with human papilloma virus, most commonly human papilloma virus-16 is responsible for a subset of head and neck squamous cell carcinoma especially tumors of tonsillar origin. The molecular pathway used by human papilloma virus to trigger malignant transformation of tissue is different from that of other well known risk factors, i.e. smoking and alcohol, associated with squamous cell carcinoma. Apparently, these subsets of patients with human papilloma virus positive tumor are more likely to have a better prognosis than human papilloma virus negative tumor. Considering this fact, the human papilloma virus infection should be determined in all oropharyngeal cancers since it can have a major impact on the decision making process of the treatment.

  18. A Defective Interfering Influenza RNA Inhibits Infectious Influenza Virus Replication in Human Respiratory Tract Cells: A Potential New Human Antiviral

    Directory of Open Access Journals (Sweden)

    Claire M. Smith

    2016-08-01

    Full Text Available Defective interfering (DI viruses arise during the replication of influenza A virus and contain a non-infective version of the genome that is able to interfere with the production of infectious virus. In this study we hypothesise that a cloned DI influenza A virus RNA may prevent infection of human respiratory epithelial cells with infection by influenza A. The DI RNA (244/PR8 was derived by a natural deletion process from segment 1 of influenza A/PR/8/34 (H1N1; it comprises 395 nucleotides and is packaged in the DI virion in place of a full-length genome segment 1. Given intranasally, 244/PR8 DI virus protects mice and ferrets from clinical influenza caused by a number of different influenza A subtypes and interferes with production of infectious influenza A virus in cells in culture. However, evidence that DI influenza viruses are active in cells of the human respiratory tract is lacking. Here we show that 244/PR8 DI RNA is replicated by an influenza A challenge virus in human lung diploid fibroblasts, bronchial epithelial cells, and primary nasal basal cells, and that the yield of challenge virus is significantly reduced in a dose-dependent manner indicating that DI influenza virus has potential as a human antiviral.

  19. Human Infection with Avian Influenza A(H7N9) Virus - China

    Science.gov (United States)

    ... response operations Diseases Biorisk reduction Disease outbreak news Human infection with avian influenza A(H7N9) virus – China ... Region (SAR) notified WHO of a laboratory-confirmed human infection with avian influenza A(H7N9) virus and ...

  20. Antiviral treatment for chronic hepatitis C in patients with human immunodeficiency virus

    DEFF Research Database (Denmark)

    Iorio, Alfonso; Marchesini, Emanuela; Awad, Tahany

    2010-01-01

    Antiviral treatment for chronic hepatitis C may be less effective if patients are co-infected with human immunodeficiency virus (HIV).......Antiviral treatment for chronic hepatitis C may be less effective if patients are co-infected with human immunodeficiency virus (HIV)....

  1. Borna disease virus and its role in the pathology of animals and humans

    Directory of Open Access Journals (Sweden)

    A. O. Mikheev

    2017-12-01

    Full Text Available Infectious diseases that are caused by numerous pathogenic microorganisms – bacteria, viruses, protozoa or fungi – can be transmitted from patients or carriers to healthy people or animals. A large group of infectious disease is caused by pathogens of animal infections – zoonoses. The issue of zoonoses is of great significance in human pathology and requires comprehensive study. This is of particular relevance to Ukraine, as the question of prevalence, level within the population and threats to human life and health from zoonoses, though highly important, has remained insufficiently studied. Information about many of these pathogens is absent in the existing scientific literature accessible in Ukraine – both veterinary and medical. This applies, in particular, to a causative agent of viral zoonoses the Borna disease virus or Bornavirus. For this purpose, an analysis of the literature concerning the role of the Bornavirus in the pathology of animals and humans was conducted. It is well known that a large number of pathogens of animal infections (zoonoses, including viral, pose a potential threat to human health. Among these potential threats is the Borna disease virus belonging to the family of Bornaviridae, order Mononegavirales. This order includes representatives of deadly human diseases like rabies (family Rhabdoviridae, Ebola virus (family Filoviridae and Nipah virus (family Paramyxoviridae. Borna virus disease affects mainly mammals, but can infect birds and even reptiles (Aspid bornavirus. It is established that Bornaviruses have a wide range of natural hosts (horses, sheeps, cats, bats and various birds, including domestic animals, which poses a potential threat to human health. This is evidenced by numerous, although contradictory, research into the role of the Borna disease virus in human pathologies such as schizophrenia, depression, prolonged fatigue syndrome, multiple sclerosis and others. Analysis of the literature clearly

  2. The use of non-human primates as animal models for the study of hepatitis viruses

    Directory of Open Access Journals (Sweden)

    C.L. Vitral

    1998-08-01

    Full Text Available Hepatitis viruses belong to different families and have in common a striking hepatotropism and restrictions for propagation in cell culture. The transmissibility of hepatitis is in great part limited to non-human primates. Enterically transmitted hepatitis viruses (hepatitis A virus and hepatitis E virus can induce hepatitis in a number of Old World and New World monkey species, while the host range of non-human primates susceptible to hepatitis viruses transmitted by the parenteral route (hepatitis B virus, hepatitis C virus and hepatitis delta virus is restricted to few species of Old World monkeys, especially the chimpanzee. Experimental studies on non-human primates have provided an invaluable source of information regarding the biology and pathogenesis of these viruses, and represent a still indispensable tool for vaccine and drug testing.

  3. Mitochondrial dysfunction and human immunodeficiency virus ...

    African Journals Online (AJOL)

    Human immunodeficiency virus (HIV) infection and the pharmacological treatment thereof have both been shown to affect mitochondrial function in a number of tissues, and each may cause specific organ pathology through specific mitochondrial pathways. HIV has been shown to kill various tissue cells by activation of ...

  4. Avian and human influenza A virus receptors in trachea and lung of animals.

    Science.gov (United States)

    Thongratsakul, Sukanya; Suzuki, Yasuo; Hiramatsu, Hiroaki; Sakpuaram, Thavajchai; Sirinarumitr, Theerapol; Poolkhet, Chaithep; Moonjit, Pattra; Yodsheewan, Rungrueang; Songserm, Thaweesak

    2010-12-01

    Influenza A viruses are capable of crossing the specific barrier between human beings and animals resulting in interspecies transmission. The important factor of potential infectivity of influenza A viruses is the suitability of the receptor binding site of the host and viruses. The affinities of avian and human influenza virus to bind with the receptors and the distributions of receptors in animals are different. This study aims to investigate the anatomical distribution of avian and human influenza virus receptors using the double staining lectin histochemistry method. Double staining of lectin histochemistry was performed to identify both SA alpha2,3 Gal and SA alpha2,6 Gal receptors in trachea and lung tissue of dogs, cats, tigers, ferret, pigs, ducks and chickens. We have demonstrated that avian and human influenza virus receptors were abundantly present in trachea, bronchus and bronchiole, but in alveoli of dogs, cats and tigers showed SA alpha2,6 Gal only. Furthermore, endothelial cells in lung tissues showed presence of SA alpha2,3 Gal. The positive sites of both receptors in respiratory tract, especially in the trachea, suggest that all mammalian species studied can be infected with avian influenza virus. These findings suggested that dogs and cats in close contact with humans should be of greater concern as an intermediate host for avian influenza A in which there is the potential for viral adaptation and reassortment.

  5. Recovery of Epstein--Barr virus from nonproducer neonatal human lymphoid cell transformants

    International Nuclear Information System (INIS)

    Wilson, G.; Miller, G.

    1979-01-01

    Lymphoid cell lines (LCL) were established by infection of two batches of human umbilical cord lymphocytes with low multiplicities of the B95-8 strain of Epstein--Barr virus. Three of the 17 lines released minute mounts of transforming virus. The rest did not, nor did they make capsid antigen. However virus could be regularly recovered by lethal x-irradiation of transformed cells followed by cocultivation with primary human umbilical cord leukocytes. By this technique transforming activity could be identified in 15 of the 17 lines. These data indicate that these nonproducer human neonatal cell transformants established by EBV infection in vitro possess sufficient genetic information to code for production of biologically active mature virions. X rays alone failed to cause a detectable increase in the number of cells with capsid antigen or to enhance extracellular virus production. EBV-positive human serum blocked rescue if it was added during the first 2 to 4 hr after cocultivation, but not thereafter. Transforming virus could be recovered from x-rayed cells which were immediately thereafter lysed by freezing and thawing. These results suggest that recovery of virus following x-ray and cocultivation is not due to activation of the intracellular virus genome. Rather, it is likely that the method detects small numbers of virions which are cell associated. While transforming virus could regularly be rescued from lymphoblastoid cell lines resulting from in vitro transformation, attempts to rescue virus from Raji or EBV-converted BJAB cells were unsuccessful. This discrepancy suggests differences in genome complexity or in genome-cell interactions in different types of EBV-transformed cells

  6. Human immunodeficiency virus (HIV) infection in tuberculosis ...

    African Journals Online (AJOL)

    Human immunodeficiency virus (HIV) infection in tuberculosis patients in Addis ... METHODS: A cross-sectional survey whereby blood sample was collected ... of co-infection appeared to have increased compared to previous studies, 6.6%, ...

  7. Propagation of respiratory viruses in human airway epithelia reveals persistent virus-specific signatures.

    Science.gov (United States)

    Essaidi-Laziosi, Manel; Brito, Francisco; Benaoudia, Sacha; Royston, Léna; Cagno, Valeria; Fernandes-Rocha, Mélanie; Piuz, Isabelle; Zdobnov, Evgeny; Huang, Song; Constant, Samuel; Boldi, Marc-Olivier; Kaiser, Laurent; Tapparel, Caroline

    2018-06-01

    The leading cause of acute illnesses, respiratory viruses, typically cause self-limited diseases, although severe complications can occur in fragile patients. Rhinoviruses (RVs), respiratory enteroviruses (EVs), influenza virus, respiratory syncytial viruses (RSVs), and coronaviruses are highly prevalent respiratory pathogens, but because of the lack of reliable animal models, their differential pathogenesis remains poorly characterized. We sought to compare infections by respiratory viruses isolated from clinical specimens using reconstituted human airway epithelia. Tissues were infected with RV-A55, RV-A49, RV-B48, RV-C8, and RV-C15; respiratory EV-D68; influenza virus H3N2; RSV-B; and human coronavirus (HCoV)-OC43. Replication kinetics, cell tropism, effect on tissue integrity, and cytokine secretion were compared. Viral adaptation and tissue response were assessed through RNA sequencing. RVs, RSV-B, and HCoV-OC43 infected ciliated cells and caused no major cell death, whereas H3N2 and EV-D68 induced ciliated cell loss and tissue integrity disruption. H3N2 was also detected in rare goblet and basal cells. All viruses, except RV-B48 and HCoV-OC43, altered cilia beating and mucociliary clearance. H3N2 was the strongest cytokine inducer, and HCoV-OC43 was the weakest. Persistent infection was observed in all cases. RNA sequencing highlighted perturbation of tissue metabolism and induction of a transient but important immune response at 4 days after infection. No majority mutations emerged in the viral population. Our results highlight the differential in vitro pathogenesis of respiratory viruses during the acute infection phase and their ability to persist under immune tolerance. These data help to appreciate the range of disease severity observed in vivo and the occurrence of chronic respiratory tract infections in immunocompromised hosts. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Ethnopharmacology of human immunodeficiency virus in South ...

    African Journals Online (AJOL)

    Administrator

    2006-10-02

    Oct 2, 2006 ... This mini-review takes a look at the evaluations of South African medicinal plants to determine ... Key words: Human immunodeficiency virus, Medicinal plants, South Africa. ... The greatest degree of antiviral activity against.

  9. Hepatitis B, C and Human Immunodeficiency Virus (HIV) Co ...

    African Journals Online (AJOL)

    TNHJOURNALPH

    BACKGROUND. Nigeria which has one of the world's highest burden of children living with. Sickle cell anaemia is also endemic for hepatitis B, C and the Human immunodeficiency virus (HIV). This study set out to determine the prevalence of. Hepatitis B surface antigen (HBsAg), antibodies to Hepatitis C Virus (HCV) and.

  10. Weighing serological evidence of human exposure to animal influenza viruses - a literature review.

    Science.gov (United States)

    Sikkema, Reina Saapke; Freidl, Gudrun Stephanie; de Bruin, Erwin; Koopmans, Marion

    2016-11-03

    Assessing influenza A virus strains circulating in animals and their potential to cross the species barrier and cause human infections is important to improve human influenza surveillance and preparedness. We reviewed studies describing serological evidence of human exposure to animal influenza viruses. Comparing serological data is difficult due to a lack of standardisation in study designs and in laboratory methods used in published reports. Therefore, we designed a scoring system to assess and weigh specificity of obtained serology results in the selected articles. Many studies report reliable evidence of antibodies to swine influenza viruses among persons occupationally exposed to pigs. Most avian influenza studies target H5, H7 and H9 subtypes and most serological evidence of human exposure to avian influenza viruses is reported for these subtypes. Avian influenza studies receiving a low grade in this review often reported higher seroprevalences in humans compared with studies with a high grade. Official surveillance systems mainly focus on avian H5 and H7 viruses. Swine influenza viruses and avian subtypes other than H5 and H7 (emphasising H9) should be additionally included in official surveillance systems. Surveillance efforts should also be directed towards understudied geographical areas, such as Africa and South America. This article is copyright of The Authors, 2016.

  11. Nonstructural Protein L* Species Specificity Supports a Mouse Origin for Vilyuisk Human Encephalitis Virus.

    Science.gov (United States)

    Drappier, Melissa; Opperdoes, Fred R; Michiels, Thomas

    2017-07-15

    Vilyuisk human encephalitis virus (VHEV) is a picornavirus related to Theiler's murine encephalomyelitis virus (TMEV). VHEV was isolated from human material passaged in mice. Whether this VHEV is of human or mouse origin is therefore unclear. We took advantage of the species-specific activity of the nonstructural L* protein of theiloviruses to track the origin of TMEV isolates. TMEV L* inhibits RNase L, the effector enzyme of the interferon pathway. By using coimmunoprecipitation and functional RNase L assays, the species specificity of RNase L antagonism was tested for L* from mouse (DA) and rat (RTV-1) TMEV strains as well as for VHEV. Coimmunoprecipitation and functional assay data confirmed the species specificity of L* activity and showed that L* from rat strain RTV-1 inhibited rat but not mouse or human RNase L. Next, we showed that the VHEV L* protein was phylogenetically related to L* of mouse viruses and that it failed to inhibit human RNase L but readily antagonized mouse RNase L, unambiguously showing the mouse origin of VHEV. IMPORTANCE Defining the natural host of a virus can be a thorny issue, especially when the virus was isolated only once or when the isolation story is complex. The species Theilovirus includes Theiler's murine encephalomyelitis virus (TMEV), infecting mice and rats, and Saffold virus (SAFV), infecting humans. One TMEV strain, Vilyuisk human encephalitis virus (VHEV), however, was isolated from mice that were inoculated with cerebrospinal fluid of a patient presenting with chronic encephalitis. It is therefore unclear whether VHEV was derived from the human sample or from the inoculated mouse. The L* protein encoded by TMEV inhibits RNase L, a cellular enzyme involved in innate immunity, in a species-specific manner. Using binding and functional assays, we show that this species specificity even allows discrimination between TMEV strains of mouse and of rat origins. The VHEV L* protein clearly inhibited mouse but not human RNase L

  12. Association of human papilloma virus infection and oral squamous cell carcinoma in Bangladesh.

    Science.gov (United States)

    Akhter, Mahmuda; Ali, Liaquat; Hassan, Zahid; Khan, Imran

    2013-03-01

    Oral squamous cell carcinoma is the sixth most common malignancy worldwide. In Bangladesh, it comprises 20% of the whole body malignancies. Several studies found that 15% to 25% of oropharyngeal cancer cases are associated with human papilloma virus (HPV). This study is done to find the association of human papilloma virus subtypes, particularly HPV type 16 and HPV type 18, with the oral squamous cell carcinoma in Bangladeshi patients. In total, 34 diagnosed patients of oral squamous cell carcinoma were included in the study. Extracted DNA from the cancerous tissues was checked for PCR reaction to detect the subtypes of human papilloma virus. Data of the present study suggest that oral squamous cell carcinoma are almost absent in Bangladeshi patients with human papilloma virus, particularly HPV 16 and 18.

  13. Association of Human Papilloma Virus Infection and Oral Squamous Cell Carcinoma in Bangladesh

    Science.gov (United States)

    Ali, Liaquat; Hassan, Zahid; Khan, Imran

    2013-01-01

    Oral squamous cell carcinoma is the sixth most common malignancy worldwide. In Bangladesh, it comprises 20% of the whole body malignancies. Several studies found that 15% to 25% of oropharyngeal cancer cases are associated with human papilloma virus (HPV). This study is done to find the association of human papilloma virus subtypes, particularly HPV type 16 and HPV type 18, with the oral squamous cell carcinoma in Bangladeshi patients. In total, 34 diagnosed patients of oral squamous cell carcinoma were included in the study. Extracted DNA from the cancerous tissues was checked for PCR reaction to detect the subtypes of human papilloma virus. Data of the present study suggest that oral squamous cell carcinoma are almost absent in Bangladeshi patients with human papilloma virus, particularly HPV 16 and 18. PMID:23617206

  14. Inactivation of enveloped and non-enveloped viruses in the process of chemical treatment and gamma irradiation of bovine-derived grafting materials.

    Science.gov (United States)

    Lee, Kwang-Il; Lee, Jung-Soo; Jung, Hong-Hee; Lee, Hwa-Yong; Moon, Seong-Hwan; Kang, Kyoung-Tak; Shim, Young-Bock; Jang, Ju-Woong

    2012-01-01

    Xenografts, unlike other grafting products, cannot be commercialized unless they conform to stringent safety regulations. Particularly with bovine-derived materials, it is essential to remove viruses and inactivate infectious factors because of the possibility that raw materials are imbrued with infectious viruses. The removal of the characteristics of infectious viruses from the bovine bone grafting materials need to be proved and inactivation process should satisfy the management provision of the Food and Drug Administration (FDA). To date, while most virus inactivation studies were performed in human allograft tissues, there have been almost no studies on bovine bone. To evaluate the efficacy of virus inactivation after treatment of bovine bone with 70% ethanol, 4% sodium hydroxide, and gamma irradiation, we selected a variety of experimental model viruses that are known to be associated with bone pathogenesis, including bovine parvovirus (BPV), bovine herpes virus (BHV), bovine viral diarrhea virus (BVDV), and bovine parainfluenza-3 virus (BPIV-3). The cumulative virus log clearance factor or cumulative virus log reduction factor for the manufacturing process was obtained by calculating the sum of the individual virus log clearance factors or log reduction factors determined for individual process steps with different physicochemical methods. The cumulative log clearance factors achieved by three different virus inactivation processes were as follows: BPV ≥ 17.73, BHV ≥ 20.53, BVDV ≥ 19.00, and BPIV-3 ≥ 16.27. On the other hand, the cumulative log reduction factors achieved were as follows: BPV ≥ 16.95, BHV ≥ 20.22, BVDV ≥ 19.27, and BPIV-3 ≥ 15.58. Treatment with 70% ethanol, 4% sodium hydroxide, or gamma irradiation was found to be very effective in virus inactivation, since all viruses were at undetectable levels during each process. We have no doubt that application of this established process to bovine bone graft manufacture will be

  15. Transcriptomic profiles of human foreskin fibroblast cells in response to orf virus.

    Science.gov (United States)

    Chen, Daxiang; Long, Mingjian; Xiao, Bin; Xiong, Yufeng; Chen, Huiqin; Chen, Yu; Kuang, Zhenzhan; Li, Ming; Wu, Yingsong; Rock, Daniel L; Gong, Daoyuan; Wang, Yong; He, Haijian; Liu, Fang; Luo, Shuhong; Hao, Wenbo

    2017-08-29

    Orf virus has been utilized as a safe and efficient viral vector against not only diverse infectious diseases, but also against tumors. However, the nature of the genes triggered by the vector in human cells is poorly characterized. Using RNA sequencing technology, we compared specific changes in the transcriptomic profiles in human foreskin fibroblast cells following infection by the orf virus. The results indicated that orf virus upregulates or downregulates expression of a variety of genes, including genes involved in antiviral immune response, apoptosis, cell cycle and a series of signaling pathways, such as the IFN and p53-signaling pathways. The orf virus stimulates or inhibits immune gene expression such as chemokines, chemokine receptors, cytokines, cytokine receptors, and molecules involved in antigen uptake and processing after infection. Expression of pro-apoptotic genes increased at 8 hours post-infection. The p53 signaling pathway was activated to induce apoptosis at the same time. However, the cell cycle program was promoted after infection, which may be due to the immunomodulatory genes of the orf virus. This presents the first description of transcription profile changes in human foreskin fibroblast cells after orf virus infection and provides an in-depth analysis of the interaction between the host and orf virus. These data offer new insights into the understanding of the mechanisms of infection by orf virus and identify potential targets for future studies.

  16. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... people has ranged from mild to severe. Avian Influenza Transmission Avian Influenza Transmission Infographic [555 KB, 2 pages] Spanish [ ... important for public health. Signs and Symptoms of Avian Influenza A Virus Infections in Humans The reported signs ...

  17. Synthetic protocells interact with viral nanomachinery and inactivate pathogenic human virus.

    Directory of Open Access Journals (Sweden)

    Matteo Porotto

    Full Text Available We present a new antiviral strategy and research tool that could be applied to a wide range of enveloped viruses that infect human beings via membrane fusion. We test this strategy on two emerging zoonotic henipaviruses that cause fatal encephalitis in humans, Nipah (NiV and Hendra (HeV viruses. In the new approach, artificial cell-like particles (protocells presenting membrane receptors in a biomimetic manner were developed and found to attract and inactivate henipavirus envelope glycoprotein pseudovirus particles, preventing infection. The protocells do not accumulate virus during the inactivation process. The use of protocells that interact with, but do not accumulate, viruses may provide significant advantages over current antiviral drugs, and this general approach may have wide potential for antiviral development.

  18. Humanized Mouse Models of Epstein-Barr Virus Infection and Associated Diseases

    Science.gov (United States)

    Fujiwara, Shigeyoshi; Matsuda, Go; Imadome, Ken-Ichi

    2013-01-01

    Epstein-Barr virus (EBV) is a ubiquitous herpesvirus infecting more than 90% of the adult population of the world. EBV is associated with a variety of diseases including infectious mononucleosis, lymphoproliferative diseases, malignancies such as Burkitt lymphoma and nasopharyngeal carcinoma, and autoimmune diseases including rheumatoid arthritis (RA). EBV in nature infects only humans, but in an experimental setting, a limited species of new-world monkeys can be infected with the virus. Small animal models, suitable for evaluation of novel therapeutics and vaccines, have not been available. Humanized mice, defined here as mice harboring functioning human immune system components, are easily infected with EBV that targets cells of the hematoimmune system. Furthermore, humanized mice can mount both cellular and humoral immune responses to EBV. Thus, many aspects of human EBV infection, including associated diseases (e.g., lymphoproliferative disease, hemophagocytic lymphohistiocytosis and erosive arthritis resembling RA), latent infection, and T-cell-mediated and humoral immune responses have been successfully reproduced in humanized mice. Here we summarize recent achievements in the field of humanized mouse models of EBV infection and show how they have been utilized to analyze EBV pathogenesis and normal and aberrant human immune responses to the virus. PMID:25436886

  19. The role of influenza, RSV and other common respiratory viruses in severe acute respiratory infections and influenza-like illness in a population with a high HIV sero-prevalence, South Africa 2012-2015.

    Science.gov (United States)

    Pretorius, Marthi A; Tempia, Stefano; Walaza, Sibongile; Cohen, Adam L; Moyes, Jocelyn; Variava, Ebrahim; Dawood, Halima; Seleka, Mpho; Hellferscee, Orienka; Treurnicht, Florette; Cohen, Cheryl; Venter, Marietjie

    2016-02-01

    Viruses detected in patients with acute respiratory infections may be the cause of illness or asymptomatic shedding. To estimate the attributable fraction (AF) and the detection rate attributable to illness for each of the different respiratory viruses We compared the prevalence of 10 common respiratory viruses (influenza A and B viruses, parainfluenza virus 1-3; respiratory syncytial virus (RSV); adenovirus, rhinovirus, human metapneumovirus (hMPV) and enterovirus) in both HIV positive and negative patients hospitalized with severe acute respiratory illness (SARI), outpatients with influenza-like illness (ILI), and control subjects who did not report any febrile, respiratory or gastrointestinal illness during 2012-2015 in South Africa. We enrolled 1959 SARI, 3784 ILI and 1793 controls with a HIV sero-prevalence of 26%, 30% and 43%, respectively. Influenza virus (AF: 86.3%; 95%CI: 77.7-91.6%), hMPV (AF: 85.6%; 95%CI: 72.0-92.6%), and RSV (AF: 83.7%; 95%CI: 77.5-88.2%) infections were associated with severe disease., while rhinovirus (AF: 46.9%; 95%CI: 37.6-56.5%) and adenovirus (AF: 36.4%; 95%CI: 20.6-49.0%) were only moderately associated. Influenza, RSV and hMPV can be considered pathogens if detected in ILI and SARI while rhinovirus and adenovirus were commonly identified in controls suggesting that they may cause only a proportion of clinical disease observed in positive patients. Nonetheless, they may be important contributors to disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Assessing Human Immunodeficiency Virus Type 1 Tropism: Comparison of Assays Using Replication-Competent Virus versus Plasma-Derived Pseudotyped Virions ▿

    Science.gov (United States)

    Hosoya, Noriaki; Su, Zhaohui; Wilkin, Timothy; Gulick, Roy M.; Flexner, Charles; Hughes, Michael D.; Skolnik, Paul R.; Giguel, Françoise; Greaves, Wayne L.; Coakley, Eoin; Kuritzkes, Daniel R.

    2009-01-01

    Detection of CXCR4-using human immunodeficiency virus by the Trofile assay was compared to that by assays using virus isolates or replication-competent recombinants. Concordance with the Trofile assay was good, but assays using replicating viruses did not increase substantially the ability to detect the presence of CXCR4-using virus. PMID:19494074

  1. A novel sampling method to detect airborne influenza and other respiratory viruses in mechanically ventilated patients: a feasibility study.

    Science.gov (United States)

    Mitchell, Alicia B; Tang, Benjamin; Shojaei, Maryam; Barnes, Lachlan S; Nalos, Marek; Oliver, Brian G; McLean, Anthony S

    2018-04-17

    Respiratory viruses circulate constantly in the ambient air. The risk of opportunistic infection from these viruses can be increased in mechanically ventilated patients. The present study evaluates the feasibility of detecting airborne respiratory viruses in mechanically ventilated patients using a novel sample collection method involving ventilator filters. We collected inspiratory and expiratory filters from the ventilator circuits of mechanically ventilated patients in an intensive care unit over a 14-month period. To evaluate whether we could detect respiratory viruses collected in these filters, we performed a reverse transcription polymerase chain reaction on the extracted filter membrane with primers specific for rhinovirus, respiratory syncytial virus, influenza virus A and B, parainfluenza virus (type 1, 2 and 3) and human metapneumovirus. For each patient, we also performed a full virology screen (virus particles, antibody titres and virus-induced biomarkers) on respiratory samples (nasopharyngeal swab, tracheal aspirate or bronchoalveolar fluid) and blood samples. Respiratory viruses were detected in the ventilator filters of nearly half the patients in the study cohort (n = 33/70). The most common virus detected was influenza A virus (n = 29). There were more viruses detected in the inspiratory filters (n = 18) than in the expiratory filters (n = 15). A third of the patients with a positive virus detection in the ventilator filters had a hospital laboratory confirmed viral infection. In the remaining cases, the detected viruses were different from viruses already identified in the same patient, suggesting that these additional viruses come from the ambient air or from cross-contamination (staff or visitors). In patients in whom new viruses were detected in the ventilator filters, there was no evidence of clinical signs of an active viral infection. Additionally, the levels of virus-induced biomarker in these patients were not

  2. Effect of human milk prostaglandins and lactoferrin on respiratory syncytial virus and rotavirus.

    Science.gov (United States)

    Grover, M; Giouzeppos, O; Schnagl, R D; May, J T

    1997-03-01

    The effect of lactoferrin and prostaglandins E and F2 alpha on the growth of rotavirus and respiratory syncytial virus in cell culture was investigated. Lactoferrin inhibited the growth of respiratory syncytial virus at a concentration tenfold lower than that normally present in human milk. The prostaglandins had no effect on either virus growth, even at a concentration of 100-fold more than that found in human milk. Lactoferrin may have some antiviral properties in human milk in addition to its known antibacterial functions.

  3. [Origin and evolution of human immunodeficiency viruses].

    Science.gov (United States)

    Marian, Constantin V

    2009-01-01

    After the diagnosis of the AIDS symptoms, in 1981, and after the discovery of the virus that causes AIDS, in 1983, the virologists have formulated different theories about its origin. Some of them involved natural causes, e.g., HIV origin from SIV strains. Other theories go further to the possibility of a deadly man-made virus escaped from laboratories or voluntary spread by some conspirative organisations. At this moment, the scientists limits themselves to search proofs to sustain the zoonotic origin of HIV from SIV and its accomodation to human body conditions.

  4. Syrian Hamster as an Animal Model for the Study of Human Influenza Virus Infection.

    Science.gov (United States)

    Iwatsuki-Horimoto, Kiyoko; Nakajima, Noriko; Ichiko, Yurie; Sakai-Tagawa, Yuko; Noda, Takeshi; Hasegawa, Hideki; Kawaoka, Yoshihiro

    2018-02-15

    Ferrets and mice are frequently used as animal models for influenza research. However, ferrets are demanding in terms of housing space and handling, whereas mice are not naturally susceptible to infection with human influenza A or B viruses. Therefore, prior adaptation of human viruses is required for their use in mice. In addition, there are no mouse-adapted variants of the recent H3N2 viruses, because these viruses do not replicate well in mice. In this study, we investigated the susceptibility of Syrian hamsters to influenza viruses with a view to using the hamster model as an alternative to the mouse model. We found that hamsters are sensitive to influenza viruses, including the recent H3N2 viruses, without adaptation. Although the hamsters did not show weight loss or clinical signs of H3N2 virus infection, we observed pathogenic effects in the respiratory tracts of the infected animals. All of the H3N2 viruses tested replicated in the respiratory organs of the hamsters, and some of them were detected in the nasal washes of infected animals. Moreover, a 2009 pandemic (pdm09) virus and a seasonal H1N1 virus, as well as one of the two H3N2 viruses, but not a type B virus, were transmissible by the airborne route in these hamsters. Hamsters thus have the potential to be a small-animal model for the study of influenza virus infection, including studies of the pathogenicity of H3N2 viruses and other strains, as well as for use in H1N1 virus transmission studies. IMPORTANCE We found that Syrian hamsters are susceptible to human influenza viruses, including the recent H3N2 viruses, without adaptation. We also found that a pdm09 virus and a seasonal H1N1 virus, as well as one of the H3N2 viruses, but not a type B virus tested, are transmitted by the airborne route in these hamsters. Syrian hamsters thus have the potential to be used as a small-animal model for the study of human influenza viruses. Copyright © 2018 American Society for Microbiology.

  5. Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity

    International Nuclear Information System (INIS)

    Skiadopoulos, Mario H.; Biacchesi, Stephane; Buchholz, Ursula J.; Amaro-Carambot, Emerito; Surman, Sonja R.; Collins, Peter L.; Murphy, Brian R.

    2006-01-01

    We evaluated the individual contributions of the three surface glycoproteins of human metapneumovirus (HMPV), namely the fusion F, attachment G, and small hydrophobic SH proteins, to the induction of serum HMPV-binding antibodies, serum HMPV-neutralizing antibodies, and protective immunity. Using reverse genetics, each HMPV protein was expressed individually from an added gene in recombinant human parainfluenza virus type 1 (rHPIV1) and used to infect hamsters once or twice by the intranasal route. The F protein was highly immunogenic and protective, whereas G and SH were only weakly or negligibly immunogenic and protective, respectively. Thus, in contrast to other paramyxoviruses, the HMPV attachment G protein is not a major neutralization or protective antigen. Also, although the SH protein of HMPV is a virion protein that is much larger than its counterparts in previously studied paramyxoviruses, it does not appear to be a significant neutralization or protective antigen

  6. Molecular Diagnosis Of Human Boca virus Gastroenteritis

    International Nuclear Information System (INIS)

    Kassem, N.N.; Kamel, E.M.; Ismail, G.A.; Emam, E.K.; Saber, S.M.; EL Ashry, M.A.

    2012-01-01

    The idea that human boca virus (HBoV) infection possibly plays a role in gastroenteritis has been suggested because of the frequent manifestation of gastrointestinal symptoms. The purpose of this study was to investigate the role of HBoV In children with gastroenteritis. We studied the etiologic agents in 100 fecal samples in children suffered from acute gastroenteritis. Bacterial etiological agents were dtected by conventional bacteriological culture, and viral etiologic agents were detected by rotavirus latex agglutination and conventional PCR for HBoV and enteric adenovirus. Enteropathogenic E-Coli (EPEC) was detected in 4% of cases. Rotatavirus, enteric adenovirus and co infection between rotavirus and adenovirus were detected in 14%, 6% and 2% respectively. Human boca virus was detected in 1% of cases without associated respiratory symptoms or co infection with other pathogen which suggests its role in children gastroenteritis

  7. Human and bovine viruses in the Milwaukee River Watershed: hydrologically relevant representation and relations with environmental variables

    Science.gov (United States)

    Corsi, Steven R.; Borchardt, M. A.; Spencer, S. K.; Hughes, Peter E.; Baldwin, Austin K.

    2014-01-01

    To examine the occurrence, hydrologic variability, and seasonal variability of human and bovine viruses in surface water, three stream locations were monitored in the Milwaukee River watershed in Wisconsin, USA, from February 2007 through June 2008. Monitoring sites included an urban subwatershed, a rural subwatershed, and the Milwaukee River at the mouth. To collect samples that characterize variability throughout changing hydrologic periods, a process control system was developed for unattended, large-volume (56–2800 L) filtration over extended durations. This system provided flow-weighted mean concentrations during runoff and extended (24-h) low-flow periods. Human viruses and bovine viruses were detected by real-time qPCR in 49% and 41% of samples (n = 63), respectively. All human viruses analyzed were detected at least once including adenovirus (40% of samples), GI norovirus (10%), enterovirus (8%), rotavirus (6%), GII norovirus (1.6%) and hepatitis A virus (1.6%). Three of seven bovine viruses analyzed were detected including bovine polyomavirus (32%), bovine rotavirus (19%), and bovine viral diarrhea virus type 1 (5%). Human viruses were present in 63% of runoff samples resulting from precipitation and snowmelt, and 20% of low-flow samples. Maximum human virus concentrations exceeded 300 genomic copies/L. Bovine viruses were present in 46% of runoff samples resulting from precipitation and snowmelt and 14% of low-flow samples. The maximum bovine virus concentration was 11 genomic copies/L. Statistical modeling indicated that stream flow, precipitation, and season explained the variability of human viruses in the watershed, and hydrologic condition (runoff event or low-flow) and season explained the variability of the sum of human and bovine viruses; however, no model was identified that could explain the variability of bovine viruses alone. Understanding the factors that affect virus fate and transport in rivers will aid watershed management for minimizing

  8. From human behavior to the spread of mobile phone viruses

    Science.gov (United States)

    Wang, Pu

    Percolation theory was initiated some 50 years ago as a mathematical framework for the study of random physical processes such as the flow of a fluid through a disordered porous medium. It has been proved to be a remarkably rich theory, with applications from thermodynamic phase transitions to complex networks. In this dissertation percolation theory is used to study the diffusion process of mobile phone viruses. Some methodologies widely used in statistical physics are also applied to uncover the underlying statistical laws of human behavior and simulate the spread of mobile phone viruses in a large population. I find that while Bluetooth viruses can reach all susceptible handsets with time, they spread slowly due to human mobility, offering ample opportunities to deploy antiviral software. In contrast, viruses utilizing multimedia messaging services (MMS) could infect all users in hours, but currently a phase transition on the underlying call graph limits them to only a small fraction of the susceptible users. These results explain the lack of a major mobile virus breakout so far and predict that once a mobile operating system's market share reaches the phase transition point, viruses will pose a serious threat to mobile communications. These studies show how the large datasets and tools of statistical physics can be used to study some specific and important problems, such as the spread of mobile phone viruses.

  9. Human immunodeficiency virus infection and the liver.

    Science.gov (United States)

    Crane, Megan; Iser, David; Lewin, Sharon R

    2012-03-27

    Liver disease in human immunodeficiency virus (HIV)-infected individuals encompasses the spectrum from abnormal liver function tests, liver decompensation, with and without evidence of cirrhosis on biopsy, to non-alcoholic liver disease and its more severe form, non-alcoholic steatohepatitis and hepatocellular cancer. HIV can infect multiple cells in the liver, leading to enhanced intrahepatic apoptosis, activation and fibrosis. HIV can also alter gastro-intestinal tract permeability, leading to increased levels of circulating lipopolysaccharide that may have an impact on liver function. This review focuses on recent changes in the epidemiology, pathogenesis and clinical presentation of liver disease in HIV-infected patients, in the absence of co-infection with hepatitis B virus or hepatitis C virus, with a specific focus on issues relevant to low and middle income countries.

  10. Transurethral prostatectomy in human immunodeficiency virus ...

    African Journals Online (AJOL)

    A 63-year old man was admitted to our Hospital with urethral catheter in situ and having failed medical therapy, he opted for transurethral prostatectomy (TURP) which was done without any post-operative complication. He was known to be afflicted with human immunodeficiency virus and on treatment for 3 years. He also ...

  11. A Reverse Genetics Approach for the Design of Methyltransferase-Defective Live Attenuated Avian Metapneumovirus Vaccines.

    Science.gov (United States)

    Zhang, Yu; Sun, Jing; Wei, Yongwei; Li, Jianrong

    2016-01-01

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. aMPV belongs to the family Paramyxoviridae which includes many important human pathogens such as human respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (PIV3). The family also includes highly lethal emerging pathogens such as Nipah virus and Hendra virus, as well as agriculturally important viruses such as Newcastle disease virus (NDV). For many of these viruses, there is no effective vaccine. Here, we describe a reverse genetics approach to develop live attenuated aMPV vaccines by inhibiting the viral mRNA cap methyltransferase. The viral mRNA cap methyltransferase is an excellent target for the attenuation of paramyxoviruses because it plays essential roles in mRNA stability, efficient viral protein translation and innate immunity. We have described in detail the materials and methods used to generate recombinant aMPVs that lack viral mRNA cap methyltransferase activity. We have also provided methods to evaluate the genetic stability, pathogenesis, and immunogenicity of live aMPV vaccine candidates in turkeys.

  12. Post exposure prophylaxis against human immunodeficiency virus ...

    African Journals Online (AJOL)

    Objective: To determine the level of awareness, knowledge and practice of human immunodeficiency virus post exposure prophylaxis (HIV PEP) among paediatricians in Nigeria. Methodology: The study was a cross sectional questionnairebased survey conducted among paediatrcians that attended the Paediatric ...

  13. Co–inection of hepatitis B and C viruses among human ...

    African Journals Online (AJOL)

    Introduction: The co–infection of Human immunodeficiency virus (HIV), Hepatitis B and C viruses remains a public health problem particularly in resource limited setting like Nigeria. Studies on these co–infections have been done principally among adult and pregnant women with limited information on the pediatric ...

  14. Search strategy has influenced the discovery rate of human viruses.

    Science.gov (United States)

    Rosenberg, Ronald; Johansson, Michael A; Powers, Ann M; Miller, Barry R

    2013-08-20

    A widely held concern is that the pace of infectious disease emergence has been increasing. We have analyzed the rate of discovery of pathogenic viruses, the preeminent source of newly discovered causes of human disease, from 1897 through 2010. The rate was highest during 1950-1969, after which it moderated. This general picture masks two distinct trends: for arthropod-borne viruses, which comprised 39% of pathogenic viruses, the discovery rate peaked at three per year during 1960-1969, but subsequently fell nearly to zero by 1980; however, the rate of discovery of nonarboviruses remained stable at about two per year from 1950 through 2010. The period of highest arbovirus discovery coincided with a comprehensive program supported by The Rockefeller Foundation of isolating viruses from humans, animals, and arthropod vectors at field stations in Latin America, Africa, and India. The productivity of this strategy illustrates the importance of location, approach, long-term commitment, and sponsorship in the discovery of emerging pathogens.

  15. Human and bovine viruses in the Milwaukee River watershed: Hydrologically relevant representation and relations with environmental variables

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, S.R., E-mail: srcorsi@usgs.gov [U.S. Geological Survey, Wisconsin Water Science Center, Middleton, WI 53562 (United States); Borchardt, M.A.; Spencer, S.K. [U.S. Department of Agriculture, Agricultural Research Service, 2615 Yellowstone Dr., Marshfield, WI 54449 (United States); Hughes, P.E.; Baldwin, A.K. [U.S. Geological Survey, Wisconsin Water Science Center, Middleton, WI 53562 (United States)

    2014-08-15

    To examine the occurrence, hydrologic variability, and seasonal variability of human and bovine viruses in surface water, three stream locations were monitored in the Milwaukee River watershed in Wisconsin, USA, from February 2007 through June 2008. Monitoring sites included an urban subwatershed, a rural subwatershed, and the Milwaukee River at the mouth. To collect samples that characterize variability throughout changing hydrologic periods, a process control system was developed for unattended, large-volume (56–2800 L) filtration over extended durations. This system provided flow-weighted mean concentrations during runoff and extended (24-h) low-flow periods. Human viruses and bovine viruses were detected by real-time qPCR in 49% and 41% of samples (n = 63), respectively. All human viruses analyzed were detected at least once including adenovirus (40% of samples), GI norovirus (10%), enterovirus (8%), rotavirus (6%), GII norovirus (1.6%) and hepatitis A virus (1.6%). Three of seven bovine viruses analyzed were detected including bovine polyomavirus (32%), bovine rotavirus (19%), and bovine viral diarrhea virus type 1 (5%). Human viruses were present in 63% of runoff samples resulting from precipitation and snowmelt, and 20% of low-flow samples. Maximum human virus concentrations exceeded 300 genomic copies/L. Bovine viruses were present in 46% of runoff samples resulting from precipitation and snowmelt and 14% of low-flow samples. The maximum bovine virus concentration was 11 genomic copies/L. Statistical modeling indicated that stream flow, precipitation, and season explained the variability of human viruses in the watershed, and hydrologic condition (runoff event or low-flow) and season explained the variability of the sum of human and bovine viruses; however, no model was identified that could explain the variability of bovine viruses alone. Understanding the factors that affect virus fate and transport in rivers will aid watershed management for minimizing

  16. Human and bovine viruses in the Milwaukee River watershed: Hydrologically relevant representation and relations with environmental variables

    International Nuclear Information System (INIS)

    Corsi, S.R.; Borchardt, M.A.; Spencer, S.K.; Hughes, P.E.; Baldwin, A.K.

    2014-01-01

    To examine the occurrence, hydrologic variability, and seasonal variability of human and bovine viruses in surface water, three stream locations were monitored in the Milwaukee River watershed in Wisconsin, USA, from February 2007 through June 2008. Monitoring sites included an urban subwatershed, a rural subwatershed, and the Milwaukee River at the mouth. To collect samples that characterize variability throughout changing hydrologic periods, a process control system was developed for unattended, large-volume (56–2800 L) filtration over extended durations. This system provided flow-weighted mean concentrations during runoff and extended (24-h) low-flow periods. Human viruses and bovine viruses were detected by real-time qPCR in 49% and 41% of samples (n = 63), respectively. All human viruses analyzed were detected at least once including adenovirus (40% of samples), GI norovirus (10%), enterovirus (8%), rotavirus (6%), GII norovirus (1.6%) and hepatitis A virus (1.6%). Three of seven bovine viruses analyzed were detected including bovine polyomavirus (32%), bovine rotavirus (19%), and bovine viral diarrhea virus type 1 (5%). Human viruses were present in 63% of runoff samples resulting from precipitation and snowmelt, and 20% of low-flow samples. Maximum human virus concentrations exceeded 300 genomic copies/L. Bovine viruses were present in 46% of runoff samples resulting from precipitation and snowmelt and 14% of low-flow samples. The maximum bovine virus concentration was 11 genomic copies/L. Statistical modeling indicated that stream flow, precipitation, and season explained the variability of human viruses in the watershed, and hydrologic condition (runoff event or low-flow) and season explained the variability of the sum of human and bovine viruses; however, no model was identified that could explain the variability of bovine viruses alone. Understanding the factors that affect virus fate and transport in rivers will aid watershed management for minimizing

  17. Using Bovine Viral Diarrhea Virus (BVDV) As Surrogate for Human Hepatitis C Virus

    Science.gov (United States)

    This test is designed to validate virucidal effectiveness claims for a product to be registered as a virucide. It determines the potential of the test agent to disinfect hard surfaces contaminated with human Hepatitis C virus (HCV).

  18. Pathogenic human viruses in coastal waters

    Science.gov (United States)

    Griffin, Dale W.; Donaldson, Kim A.; Paul, J.H.; Rose, Joan B.

    2003-01-01

    This review addresses both historical and recent investigations into viral contamination of marine waters. With the relatively recent emergence of molecular biology-based assays, a number of investigations have shown that pathogenic viruses are prevalent in marine waters being impacted by sewage. Research has shown that this group of fecal-oral viral pathogens (enteroviruses, hepatitis A viruses, Norwalk viruses, reoviruses, adenoviruses, rotaviruses, etc.) can cause a broad range of asymptomatic to severe gastrointestinal, respiratory, and eye, nose, ear, and skin infections in people exposed through recreational use of the water. The viruses and the nucleic acid signature survive for an extended period in the marine environment. One of the primary concerns of public health officials is the relationship between the presence of pathogens and the recreational risk to human health in polluted marine environments. While a number of studies have attempted to address this issue, the relationship is still poorly understood. A contributing factor to our lack of progress in the field has been the lack of sensitive methods to detect the broad range of both bacterial and viral pathogens. The application of new and advanced molecular methods will continue to contribute to our current state of knowledge in this emerging and

  19. Swine Influenza Virus Antibodies in Humans, Western Europe, 2009

    Science.gov (United States)

    Gerloff, Nancy A.; Kremer, Jacques R.; Charpentier, Emilie; Sausy, Aurélie; Olinger, Christophe M.; Weicherding, Pierre; Schuh, John; Van Reeth, Kristien

    2011-01-01

    Serologic studies for swine influenza viruses (SIVs) in humans with occupational exposure to swine have been reported from the Americas but not from Europe. We compared levels of neutralizing antibodies against 3 influenza viruses—pandemic (H1N1) 2009, an avian-like enzootic subtype H1N1 SIV, and a 2007–08 seasonal subtype H1N1—in 211 persons with swine contact and 224 matched controls in Luxembourg. Persons whose profession involved contact with swine had more neutralizing antibodies against SIV and pandemic (H1N1) 2009 virus than did the controls. Controls also had antibodies against these viruses although exposure to them was unlikely. Antibodies against SIV and pandemic (H1N1) 2009 virus correlated with each other but not with seasonal subtype H1N1 virus. Sequential exposure to variants of seasonal influenza (H1N1) viruses may have increased chances for serologic cross-reactivity with antigenically distinct viruses. Further studies are needed to determine the extent to which serologic responses correlate with infection. PMID:21392430

  20. Interaction of Human Enteric Viruses with Microbial Compounds: Implication for Virus Persistence and Disinfection Treatments.

    Science.gov (United States)

    Waldman, Prunelle; Meseguer, Alba; Lucas, Françoise; Moulin, Laurent; Wurtzer, Sébastien

    2017-12-05

    Although the interaction between phages and bacteria has already been well described, it only recently emerged that human viruses also interact with bacteria in the mammalian gut. We studied whether this interaction could occur in tap water and thus confer enteric viruses protection against temperature and the classical disinfection treatments used in drinking water production. We demonstrated that the addition of lipopolysaccharide or peptidoglycan of bacterial origin to enterovirus provides thermal protection through stabilization of the viral capsid. This interaction plays a role when viruses are exposed to disinfection that targets the capsid, but less so when the virus genome is directly targeted. The interaction seems to be serotype-specific, suggesting that the capsid protein sequence could be important. The protection is linked to a direct association between viral particles and bacterial compounds as observed by microscopy. These results show that bacterial compounds present in the environment can affect virus inactivation.

  1. Paramyxovirus Infection Mimics In Vivo Cellular Dynamics in Three-Demensional Human Bronchio-Epithelial Tissue-Like Assemblies

    Science.gov (United States)

    Deatly, Anne M.; Lin, Yen-Huei; McCarthy, Maureen; Chen, Wei; Miller, Lynn Z.; Quiroz, Jorge; Nowak, Becky M.; Lerch, Robert A.; Udem, Stephen A.; Goodwin, Thomas J.

    2012-01-01

    Respiratory syncytial virus and parainfluenza virus cause severe respiratory disease, especially in infants, children and the elderly. An in vitro model that accurately mimics infection of the human respiratory epithelium (HRE) would facilitate vaccine development greatly. Monolayer cultures traditionally used to study these viruses do not accurately and precisely differentiate the replication efficiencies of wild type and attenuated viruses. Therefore, we engineered novel three-dimensional (3D) tissue-like assemblies (TLAs) of human broncho-epithelial (HBE) cells to produce a more physiologically relevant in vitro model of the HRE. TLAs resemble HRE structurally and by expression of differentiated epithelial cell markers. Most significantly, wild type viruses exhibited a clear growth advantage over attenuated strains in TLAs unlike monolayer cultures. In addition, the TLAs responded to virus infection by secreting pro-inflammatory mediators similar to the respiratory epithelia of infected children. These characteristics make the TLA model a valuable platform technology to develop and evaluate live, attenuated respiratory virus vaccine candidates for human use. Respiratory virus diseases, the most frequent and least preventable of all infectious diseases, range in severity from the common cold to severe bronchiolitis and pneumonia . Two paramyxoviruses, respiratory syncytial virus (RSV) and parainfluenza virus type 3 (PIV3), are responsible for a majority of the most severe respiratory diseases of infants and young children. RSV causes 70% of all bronchiolitis cases and is a major cause of morbidity and mortality worldwide, especially in infants. PIV3 causes 10-15% of bronchiolitis and pneumonia during infancy, second only to RSV, and 40% of croup in infants To date, licensed vaccines are not available to prevent these respiratory diseases. At present, traditional monkey kidney (Vero and LLC-MK2) and human (HEp-2) tissue culture cells and small animal models (mouse

  2. Molecular cloning and characterization of human papilloma virus DNA derived from a laryngeal papilloma.

    OpenAIRE

    Gissmann, L; Diehl, V; Schultz-Coulon, H J; zur Hausen, H

    1982-01-01

    Papilloma virus DNA from a laryngeal papilloma was cloned in phage lambda L 47 and characterized after cleavage with different restriction enzymes. Hybridization with the DNAs of human papilloma virus types 1, 2, 3, 4, 5, and 8 showed no homology under stringent hybridization conditions. Human papilloma virus type 6 DNA, however, was partially identical to laryngeal papilloma virus DNA; different restriction enzyme fragments hybridizing with the other DNA were identified on each genome. The d...

  3. Avian influenza virus (H5N1): a threat to human health

    NARCIS (Netherlands)

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes.

  4. Immunotherapy of Human Papilloma Virus Induced Disease

    Science.gov (United States)

    van der Burg, Sjoerd H

    2012-01-01

    Immunotherapy is the generic name for treatment modalities aiming to reinforce the immune system against diseases in which the immune system plays a role. The design of an optimal immunotherapeutic treatment against chronic viruses and associated diseases requires a detailed understanding of the interactions between the target virus and its host, in order to define the specific strategies that may have the best chance to deliver success at each stage of disease. Recently, a first series of successes was reported for the immunotherapy of Human Papilloma Virus (HPV)-induced premalignant diseases but there is definitely room for improvement. Here I discuss a number of topics that in my opinion require more study as the answers to these questions allows us to better understand the underlying mechanisms of disease and as such to tailor treatment. PMID:23341861

  5. Deleterious effect of Usutu virus on human neural cells.

    Directory of Open Access Journals (Sweden)

    Sara Salinas

    2017-09-01

    Full Text Available In the last decade, the number of emerging Flaviviruses described worldwide has increased considerably. Among them Zika virus (ZIKV and Usutu virus (USUV are African mosquito-borne viruses that recently emerged. Recently, ZIKV has been intensely studied due to major outbreaks associated with neonatal death and birth defects, as well as neurological symptoms. USUV pathogenesis remains largely unexplored, despite significant human and veterinary associated disorders. Circulation of USUV in Africa was documented more than 50 years ago, and it emerged in Europe two decades ago, causing massive bird mortality. More recently, USUV has been described to be associated with neurological disorders in humans such as encephalitis and meningoencephalitis, highlighting USUV as a potential health threat. The aim of this study was to evaluate the ability of USUV to infect neuronal cells. Our results indicate that USUV efficiently infects neurons, astrocytes, microglia and IPSc-derived human neuronal stem cells. When compared to ZIKV, USUV led to a higher infection rate, viral production, as well as stronger cell death and anti-viral response. Our results highlight the need to better characterize the physiopathology related to USUV infection in order to anticipate the potential threat of USUV emergence.

  6. Bug breakfast in the bulletin: human papilloma virus.

    Science.gov (United States)

    Wallace, Cate; Weisberg, Edith; McCaffery, Kirsten

    2007-01-01

    The Bug Breakfast topic for October was Human Papilloma Virus (HPV). The presenters covered the epidemiology of HPV, the newly introduced HPV vaccine and social and psychological issues relating to HPV vaccination.

  7. Weighing serological evidence of human exposure to animal influenza viruses − a literature review

    Science.gov (United States)

    Sikkema, Reina Saapke; Freidl, Gudrun Stephanie; de Bruin, Erwin; Koopmans, Marion

    2016-01-01

    Assessing influenza A virus strains circulating in animals and their potential to cross the species barrier and cause human infections is important to improve human influenza surveillance and preparedness. We reviewed studies describing serological evidence of human exposure to animal influenza viruses. Comparing serological data is difficult due to a lack of standardisation in study designs and in laboratory methods used in published reports. Therefore, we designed a scoring system to assess and weigh specificity of obtained serology results in the selected articles. Many studies report reliable evidence of antibodies to swine influenza viruses among persons occupationally exposed to pigs. Most avian influenza studies target H5, H7 and H9 subtypes and most serological evidence of human exposure to avian influenza viruses is reported for these subtypes. Avian influenza studies receiving a low grade in this review often reported higher seroprevalences in humans compared with studies with a high grade. Official surveillance systems mainly focus on avian H5 and H7 viruses. Swine influenza viruses and avian subtypes other than H5 and H7 (emphasising H9) should be additionally included in official surveillance systems. Surveillance efforts should also be directed towards understudied geographical areas, such as Africa and South America. PMID:27874827

  8. Post exposure prophylaxis against human immunodeficiency virus ...

    African Journals Online (AJOL)

    2015-11-23

    Nov 23, 2015 ... Abstract: Objective: To deter- mine the level of awareness, knowledge and practice of human immunodeficiency virus post ex- posure prophylaxis (HIV PEP) among paediatricians in Nigeria. Methodology: The study was a cross sectional questionnaire- based survey conducted among paediatrcians that ...

  9. Knowledge of human immunodeficiency virus post-exposure ...

    African Journals Online (AJOL)

    2011-05-21

    May 21, 2011 ... Appropriate post-exposure prophylaxis is an integral part of prevention, control and workplace safety. This study was undertaken to assess the level of knowledge of post-exposure prophylaxis (PEP) against human immunodeficiency virus (HIV) among doctors in Federal Medical Centre, Gombe, Nigeria.

  10. Human Papilloma Virus and Autophagy

    Directory of Open Access Journals (Sweden)

    Domenico Mattoscio

    2018-06-01

    Full Text Available Human papilloma viruses (HPVs are a group of double-stranded DNA viruses known to be the primary cause of cervical cancer. In addition, evidence has now established their role in non-melanoma skin cancers, head and neck cancer (HNC, and the development of other anogenital malignancies. The prevalence of HPV-related HNC, in particular oropharyngeal cancers, is rapidly increasing, foreseeing that HPV-positive oropharyngeal cancers will outnumber uterine cervical cancers in the next 15–20 years. Therefore, despite the successful advent of vaccines originally licensed for cervical cancer prevention, HPV burden is still very high, and a better understanding of HPV biology is urgently needed. Autophagy is the physiological cellular route that accounts for removal, degradation, and recycling of damaged organelles, proteins, and lipids in lysosomal vacuoles. In addition to this scavenger function, autophagy plays a fundamental role during viral infections and cancers and is, therefore, frequently exploited by viruses to their own benefit. Recently, a link between HPV and autophagy has clearly emerged, leading to the conceivable development of novel anti-viral strategies aimed at restraining HPV infectivity. Here, recent findings on how oncogenic HPV16 usurp autophagy are described, highlighting similarities and differences with mechanisms adopted by other oncoviruses.

  11. Human Embryonic Stem Cell-Derived Neurons Are Highly Permissive for Varicella-Zoster Virus Lytic Infection.

    Science.gov (United States)

    Sadaoka, Tomohiko; Schwartz, Cindi L; Rajbhandari, Labchan; Venkatesan, Arun; Cohen, Jeffrey I

    2018-01-01

    Varicella-zoster virus (VZV) is highly cell associated when grown in culture and has a much higher (4,000- to 20,000-fold increased) particle-to-PFU ratio in vitro than herpes simplex virus (HSV). In contrast, VZV is highly infectious in vivo by airborne transmission. Neurons are major targets for VZV in vivo ; in neurons, the virus can establish latency and reactivate to produce infectious virus. Using neurons derived from human embryonic stem cells (hESC) and cell-free wild-type (WT) VZV, we demonstrated that neurons are nearly 100 times more permissive for WT VZV infection than very-early-passage human embryonic lung cells or MRC-5 diploid human fibroblasts, the cells used for vaccine production or virus isolation. The peak titers achieved after infection were ∼10-fold higher in human neurons than in MRC-5 cells, and the viral genome copy number-to-PFU ratio for VZV in human neurons was 500, compared with 50,000 for MRC-5 cells. Thus, VZV may not necessarily have a higher particle-to-PFU ratio than other herpesviruses; instead, the cells previously used to propagate virus in vitro may have been suboptimal. Furthermore, based on electron microscopy, neurons infected with VZV produced fewer defective or incomplete viral particles than MRC-5 cells. Our data suggest that neurons derived from hESC may have advantages compared to other cells for studies of VZV pathogenesis, for obtaining stocks of virus with high titers, and for isolating VZV from clinical specimens. IMPORTANCE Varicella-zoster virus (VZV) causes chickenpox and shingles. Cell-free VZV has been difficult to obtain, both for in vitro studies and for vaccine production. While numerous cells lines have been tested for their ability to produce high titers of VZV, the number of total virus particles relative to the number of viral particles that can form plaques in culture has been reported to be extremely high relative to that in other viruses. We show that VZV grows to much higher titers in human

  12. Characterization of human coronavirus etiology in Chinese adults with acute upper respiratory tract infection by real-time RT-PCR assays.

    Directory of Open Access Journals (Sweden)

    Roujian Lu

    Full Text Available BACKGROUND: In addition to SARS associated coronaviruses, 4 non-SARS related human coronaviruses (HCoVs are recognized as common respiratory pathogens. The etiology and clinical impact of HCoVs in Chinese adults with acute upper respiratory tract infection (URTI needs to be characterized systematically by molecular detection with excellent sensitivity. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we detected 4 non-SARS related HCoV species by real-time RT-PCR in 981 nasopharyngeal swabs collected from March 2009 to February 2011. All specimens were also tested for the presence of other common respiratory viruses and newly identified viruses, human metapneumovirus (hMPV and human bocavirus (HBoV. 157 of the 981 (16.0% nasopharyngeal swabs were positive for HCoVs. The species detected were 229E (96 cases, 9.8%, OC43 (42 cases, 4.3%, HKU1 (16 cases, 1.6% and NL63 (11 cases, 1.1%. HCoV-229E was circulated in 21 of the 24 months of surveillance. The detection rates for both OC43 and NL63 were showed significantly year-to-year variation between 2009/10 and 2010/11, respectively (P<0.001 and P = 0.003, and there was a higher detection frequency of HKU1 in patients aged over 60 years (P = 0.03. 48 of 157(30.57% HCoV positive patients were co-infected. Undifferentiated human rhinoviruses and influenza (Flu A were the most common viruses detected (more than 35% in HCoV co-infections. Respiratory syncytial virus (RSV, human parainfluenza virus (PIV and HBoV were detected in very low rate (less than 1% among adult patients with URTI. CONCLUSIONS/SIGNIFICANCE: All 4 non-SARS-associated HCoVs were more frequently detected by real-time RT-PCR assay in adults with URTI in Beijing and HCoV-229E led to the most prevalent infection. Our study also suggested that all non-SARS-associated HCoVs contribute significantly to URTI in adult patients in China.

  13. A literature review on cardiovascular risk in human immunodeficiency virus-infected patients: implications for clinical management

    Directory of Open Access Journals (Sweden)

    Mansueto Gomes Neto

    Full Text Available INTRODUCTION: In recent years, there has been growing concern about an increasing rate of cardiovascular diseases in human immunodeficiency virus-infected patients, which could be associated with side effects of highly active antiretroviral therapy. It is likely that the metabolic disorders related to anti-human immunodeficiency virus treatment will eventually translate into a increased cardiovascular risk in patients submitted to such regimens. OBJECTIVE: To evaluate if human immunodeficiency virus-infected patients receiving highly active antiretroviral therapy are at higher risk of cardiovascular diseases than human immunodeficiency virus infected patients not receiving highly active antiretroviral therapy, or the general population. RESEARCH DESIGN AND METHODS: We conducted a computer-based search in representative databases, and also performed manual tracking of citations in selected articles. RESULT: The available evidence suggests an excess risk of cardiovascular events in human immunodeficiency virus-infected persons compared to non-human immunodeficiency virus infected individuals. The use of highly active antiretroviral therapy is associated with increased levels of total cholesterol, triglycerides, low-density lipoprotein and morphological signs of cardiovascular diseases. Some evidence suggested that human immunodeficiency virus-infected individuals on highly active antiretroviral therapy regimens are at increased risk of dyslipidemia, ischemic heart disease, and myocardial infarction, particularly if the highly active antiretroviral therapy regimen contains a protease inhibitor. CONCLUSION: Physicians must weigh the cardiovascular risk against potential benefits when prescribing highly active antiretroviral therapy. Careful cardiac screening is warranted for patients who are being evaluated for, or who are receiving highly active antiretroviral therapy regimens, particularly for those with known underlying cardiovascular risk

  14. Interference Between Respiratory Syncytial Virus and Human Rhinovirus Infection in Infancy

    NARCIS (Netherlands)

    Achten, Niek B.; Wu, Pingsheng; Bont, Louis; Blanken, Maarten O; Gebretsadik, Tebeb; Chappell, James D; Wang, Li; Yu, Chang; Larkin, Emma K; Carroll, Kecia N; Anderson, Larry J; Moore, Martin L; Sloan, Chantel D; Hartert, Tina V

    2017-01-01

    Background.: Respiratory syncytial virus (RSV) and human rhinovirus (HRV) are the most common viruses associated with acute respiratory tract infections in infancy. Viral interference is important in understanding respiratory viral circulation and the impact of vaccines. Methods.: To study viral

  15. Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection.

    Directory of Open Access Journals (Sweden)

    Trevenan Walther

    2013-03-01

    Full Text Available The first step in influenza infection of the human respiratory tract is binding of the virus to sialic (Sia acid terminated receptors. The binding of different strains of virus for the receptor is determined by the α linkage of the sialic acid to galactose and the adjacent glycan structure. In this study the N- and O-glycan composition of the human lung, bronchus and nasopharynx was characterized by mass spectrometry. Analysis showed that there was a wide spectrum of both Sia α2-3 and α2-6 glycans in the lung and bronchus. This glycan structural data was then utilized in combination with binding data from 4 of the published glycan arrays to assess whether these current glycan arrays were able to predict replication of human, avian and swine viruses in human ex vivo respiratory tract tissues. The most comprehensive array from the Consortium for Functional Glycomics contained the greatest diversity of sialylated glycans, but was not predictive of productive replication in the bronchus and lung. Our findings indicate that more comprehensive but focused arrays need to be developed to investigate influenza virus binding in an assessment of newly emerging influenza viruses.

  16. Avian Influenza Virus (H5N1): a Threat to Human Health

    OpenAIRE

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, ...

  17. CCR5 Signal Transduction in Macrophages by Human Immunodeficiency Virus and Simian Immunodeficiency Virus Envelopes

    OpenAIRE

    Arthos, James; Rubbert, Andrea; Rabin, Ronald L.; Cicala, Claudia; Machado, Elizabeth; Wildt, Kathryne; Hanbach, Meredith; Steenbeke, Tavis D.; Swofford, Ruth; Farber, Joshua M.; Fauci, Anthony S.

    2000-01-01

    The capacity of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelopes to transduce signals through chemokine coreceptors on macrophages was examined by measuring the ability of recombinant envelope proteins to mobilize intracellular calcium stores. Both HIV and SIV envelopes mobilized calcium via interactions with CCR5. The kinetics of these responses were similar to those observed when macrophages were treated with MIP-1β. Distinct differences in the capacity o...

  18. Human Immunodeficiency Virus Type 1-Hepatitis C Virus Coinfection: Intraindividual Comparison of Cellular Immune Responses against Two Persistent Viruses

    OpenAIRE

    Lauer, Georg M.; Nguyen, Tam N.; Day, Cheryl L.; Robbins, Gregory K.; Flynn, Theresa; McGowan, Katherine; Rosenberg, Eric S.; Lucas, Michaela; Klenerman, Paul; Chung, Raymond T.; Walker, Bruce D.

    2002-01-01

    Both human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) lead to chronic infection in a high percentage of persons, and an expanding epidemic of HIV-1-HCV coinfection has recently been identified. These individuals provide an opportunity for simultaneous assessment of immune responses to two viral infections associated with chronic plasma viremia. In this study we analyzed the breadth and magnitude of the CD8+- and CD4+-T-lymphocyte responses in 22 individuals infected wit...

  19. 76 FR 58517 - Public Health Service Guideline for Reducing Transmission of Human Immunodeficiency Virus (HIV...

    Science.gov (United States)

    2011-09-21

    ...-2011-0011] Public Health Service Guideline for Reducing Transmission of Human Immunodeficiency Virus... public comment on the draft Public Health Service Guideline for Reducing Transmission of Human..., Attn: Public Health Service Guideline for Reducing Transmission of Human Immunodeficiency Virus (HIV...

  20. Otitis media: viruses, bacteria, biofilms and vaccines.

    Science.gov (United States)

    Massa, Helen M; Cripps, Allan W; Lehmann, Deborah

    2009-11-02

    Otitis media typically presents as either acute otitis media (AOM), with symptoms including fever, otalgia, otorrhoea or irritability and short duration; or as otitis media with effusion (OME), which is often asymptomatic and characterised by accumulation of fluid in the middle ear. Diagnostic certainty of otitis media is challenging, given the young age of patients and variability of symptoms. Otitis media predominantly occurs as coincident to viral upper respiratory tract infections and/or bacterial infections. Common viruses that cause upper respiratory tract infection are frequently associated with AOM and new-onset OME. These include respiratory syncytial virus, rhinovirus, adenovirus, parainfluenza and coronavirus. Predominant bacteria that cause otitis media are Streptococcus pneumoniae, Moraxella catarrhalis, and non-typeable Haemophilus influenzae. Antibiotic therapy does not significantly benefit most patients with AOM, but long-term prophylactic antibiotic therapy can reduce the risk of otitis media recurrence among children at high risk. In Australia, 84% of AOM is treated with antibiotic therapy, which contributes to development of antibiotic resistance. Vaccine development is a key future direction for reducing the world burden of otitis media, but requires polymicrobial formulation and ongoing monitoring and modification to ensure sustained reduction in disease burden.

  1. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Yi-Mo Deng

    Full Text Available BACKGROUND: Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. METHODOLOGY/PRINCIPAL FINDINGS: A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. CONCLUSIONS/SIGNIFICANCE: In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.

  2. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing.

    Science.gov (United States)

    Deng, Yi-Mo; Caldwell, Natalie; Barr, Ian G

    2011-01-01

    Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.

  3. Continental synchronicity of human influenza virus epidemics despite climactic variation.

    Science.gov (United States)

    Geoghegan, Jemma L; Saavedra, Aldo F; Duchêne, Sebastián; Sullivan, Sheena; Barr, Ian; Holmes, Edward C

    2018-01-01

    The factors that determine the pattern and rate of spread of influenza virus at a continental-scale are uncertain. Although recent work suggests that influenza epidemics in the United States exhibit a strong geographical correlation, the spatiotemporal dynamics of influenza in Australia, a country and continent of approximately similar size and climate complexity but with a far smaller population, are not known. Using a unique combination of large-scale laboratory-confirmed influenza surveillance comprising >450,000 entries and genomic sequence data we determined the local-level spatial diffusion of this important human pathogen nationwide in Australia. We used laboratory-confirmed influenza data to characterize the spread of influenza virus across Australia during 2007-2016. The onset of established epidemics varied across seasons, with highly synchronized epidemics coinciding with the emergence of antigenically distinct viruses, particularly during the 2009 A/H1N1 pandemic. The onset of epidemics was largely synchronized between the most populous cities, even those separated by distances of >3000 km and those that experience vastly diverse climates. In addition, by analyzing global phylogeographic patterns we show that the synchronized dissemination of influenza across Australian cities involved multiple introductions from the global influenza population, coupled with strong domestic connectivity, rather than through the distinct radial patterns of geographic dispersal that are driven by work-flow transmission as observed in the United States. In addition, by comparing the spatial structure of influenza A and B, we found that these viruses tended to occupy different geographic regions, and peak in different seasons, perhaps indicative of moderate cross-protective immunity or viral interference effects. The highly synchronized outbreaks of influenza virus at a continental-scale revealed here highlight the importance of coordinated public health responses in the

  4. Cross talk between animal and human influenza viruses.

    Science.gov (United States)

    Ozawa, Makoto; Kawaoka, Yoshihiro

    2013-01-01

    Although outbreaks of highly pathogenic avian influenza in wild and domestic birds have been posing the threat of a new influenza pandemic for the past decade, the first pandemic of the twenty-first century came from swine viruses. This fact emphasizes the complexity of influenza viral ecology and the difficulty of predicting influenza viral dynamics. Complete control of influenza viruses seems impossible. However, we must minimize the impact of animal and human influenza outbreaks by learning lessons from past experiences and recognizing the current status. Here, we review the most recent influenza virology data in the veterinary field, including aspects of zoonotic agents and recent studies that assess the pandemic potential of H5N1 highly pathogenic avian influenza viruses.

  5. Saffold virus, a human Theiler's-like cardiovirus, is ubiquitous and causes infection early in life.

    Directory of Open Access Journals (Sweden)

    Jan Zoll

    2009-05-01

    Full Text Available The family Picornaviridae contains well-known human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and parechovirus. In addition, this family contains a number of viruses that infect animals, including members of the genus Cardiovirus such as Encephalomyocarditis virus (EMCV and Theiler's murine encephalomyelits virus (TMEV. The latter are important murine pathogens that cause myocarditis, type 1 diabetes and chronic inflammation in the brains, mimicking multiple sclerosis. Recently, a new picornavirus was isolated from humans, named Saffold virus (SAFV. The virus is genetically related to Theiler's virus and classified as a new species in the genus Cardiovirus, which until the discovery of SAFV did not contain human viruses. By analogy with the rodent cardioviruses, SAFV may be a relevant new human pathogen. Thus far, SAFVs have sporadically been detected by molecular techniques in respiratory and fecal specimens, but the epidemiology and clinical significance remained unclear. Here we describe the first cultivated SAFV type 3 (SAFV-3 isolate, its growth characteristics, full-length sequence, and epidemiology. Unlike the previously isolated SAFV-1 and -2 viruses, SAFV-3 showed efficient growth in several cell lines with a clear cytopathic effect. The latter allowed us to conduct a large-scale serological survey by a virus-neutralization assay. This survey showed that infection by SAFV-3 occurs early in life (>75% positive at 24 months and that the seroprevalence reaches >90% in older children and adults. Neutralizing antibodies were found in serum samples collected in several countries in Europe, Africa, and Asia. In conclusion, this study describes the first cultivated SAFV-3 isolate, its full-length sequence, and epidemiology. SAFV-3 is a highly common and widespread human virus causing infection in early childhood. This finding has important implications for understanding the impact of these ubiquitous viruses and their possible

  6. Multi-platform ’Omics Analysis of Human Ebola Virus Disease Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Eisfeld, Amie J.; Halfmann, Peter J.; Wendler, Jason P.; Kyle, Jennifer E.; Burnum-Johnson, Kristin E.; Peralta, Zuleyma; Maemura, Tadashi; Walters, Kevin B.; Watanabe, Tokiko; Fukuyama, Satoshi; Yamashita, Makoto; Jacobs, Jon M.; Kim, Young-Mo; Casey, Cameron P.; Stratton, Kelly G.; Webb-Robertson, Bobbie-Jo M.; Gritsenko, Marina A.; Monroe, Matthew E.; Weitz, Karl K.; Shukla, Anil K.; Tian, Mingyuan; Neumann, Gabriele; Reed, Jennifer L.; van Bakel, Harm; Metz, Thomas O.; Smith, Richard D.; Waters, Katrina M.; N' jai, Alhaji; Sahr, Foday; Kawaoka, Yoshihiro

    2017-12-01

    The pathogenesis of human Ebola virus disease (EVD) is complex. EVD is characterized by high levels of virus replication and dissemination, dysregulated immune responses, extensive virus- and host-mediated tissue damage, and disordered coagulation. To clarify how host responses contribute to EVD pathophysiology, we performed multi-platform ’omics analysis of peripheral blood mononuclear cells and plasma from EVD patients. Our results indicate that EVD molecular signatures overlap with those of sepsis, imply that pancreatic enzymes contribute to tissue damage in fatal EVD, and suggest that Ebola virus infection may induce aberrant neutrophils whose activity could explain hallmarks of fatal EVD. Moreover, integrated biomarker prediction identified putative biomarkers from different data platforms that differentiated survivors and fatalities early after infection. This work reveals insight into EVD pathogenesis, suggests an effective approach for biomarker identification, and provides an important community resource for further analysis of human EVD severity.

  7. In vivo evasion of MxA by avian influenza viruses requires human signature in the viral nucleoprotein.

    Science.gov (United States)

    Deeg, Christoph M; Hassan, Ebrahim; Mutz, Pascal; Rheinemann, Lara; Götz, Veronika; Magar, Linda; Schilling, Mirjam; Kallfass, Carsten; Nürnberger, Cindy; Soubies, Sébastien; Kochs, Georg; Haller, Otto; Schwemmle, Martin; Staeheli, Peter

    2017-05-01

    Zoonotic transmission of influenza A viruses can give rise to devastating pandemics, but currently it is impossible to predict the pandemic potential of circulating avian influenza viruses. Here, we describe a new mouse model suitable for such risk assessment, based on the observation that the innate restriction factor MxA represents an effective species barrier that must be overcome by zoonotic viruses. Our mouse lacks functional endogenous Mx genes but instead carries the human MX1 locus as a transgene. Such transgenic mice were largely resistant to highly pathogenic avian H5 and H7 influenza A viruses, but were almost as susceptible to infection with influenza viruses of human origin as nontransgenic littermates. Influenza A viruses that successfully established stable lineages in humans have acquired adaptive mutations which allow partial MxA escape. Accordingly, an engineered avian H7N7 influenza virus carrying a nucleoprotein with signature mutations typically found in human virus isolates was more virulent in transgenic mice than parental virus, demonstrating that a few amino acid changes in the viral target protein can mediate escape from MxA restriction in vivo. Similar mutations probably need to be acquired by emerging influenza A viruses before they can spread in the human population. © 2017 Deeg et al.

  8. Reassortment and evolution of current human influenza A and B viruses.

    Science.gov (United States)

    Xu, Xiyan; Lindstrom, Stephen E; Shaw, Michael W; Smith, Catherine B; Hall, Henrietta E; Mungall, Bruce A; Subbarao, Kanta; Cox, Nancy J; Klimov, Alexander

    2004-07-01

    During the 2001-2002 influenza season, human influenza A (H1N2) reassortant viruses were detected globally. The hemagglutinin (HA) of these H1N2 viruses was similar to that of the A/New Caledonia/20/99 (H1N1) vaccine strain both antigenically and genetically, while their neuraminidase (NA) was antigenically and genetically related to that of recent human influenza H3N2 reference viruses such as A/Moscow/10/99. All six internal genes of the H1N2 reassortants originated from an H3N2 virus. After being detected only in eastern Asia during the past 10 years, Influenza B/Victoria/2/87 lineage viruses reappeared in many countries outside of Asia in 2001. Additionally, reassortant influenza B viruses possessing an HA similar to that of B/Shandong/7/97, a recent B/Victoria/2/87 lineage reference strain, and an NA closely related to that of B/Sichuan/379/99, a recent B/Yamagata/16/88 lineage reference strain, were isolated globally and became the predominant influenza B epidemic strain. The current influenza vaccine is expected to provide good protection against H1N2 viruses because it contains A/New Caledonia/20/99 (H1N1) and A/Panama/2007/99 (H3N2) like viruses whose H1 HA or N2 NA are antigenically similar to those of recent circulating H1N2 viruses. On the other hand, widespread circulation of influenza B Victoria lineage viruses required inclusion of a strain from this lineage in influenza vaccines for the 2002-2003 season.

  9. Comparative periodontal status of human immunodeficiency virus ...

    African Journals Online (AJOL)

    Background: There are diverse reports on the prevalence and severity of chronic periodontitis in human immunodeficiency virus (HIV) positive persons. Few studies have been carried out in developing countries in Sub.Saharan Africa. This study was aimed at comparing the prevalence and severity of chronic periodontitis of ...

  10. Evidence of infection with avian, human, and swine influenza viruses in pigs in Cairo, Egypt.

    Science.gov (United States)

    Gomaa, Mokhtar R; Kandeil, Ahmed; El-Shesheny, Rabeh; Shehata, Mahmoud M; McKenzie, Pamela P; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2018-02-01

    The majority of the Egyptian swine population was culled in the aftermath of the 2009 H1N1 pandemic, but small-scale growing remains. We sampled pigs from piggeries and an abattoir in Cairo. We found virological evidence of infection with avian H9N2 and H5N1 viruses as well as human pandemic H1N1 influenza virus. Serological evidence suggested previous exposure to avian H5N1 and H9N2, human pandemic H1N1, and swine avian-like and human-like viruses. This raises concern about potential reassortment of influenza viruses in pigs and highlights the need for better control and prevention of influenza virus infection in pigs.

  11. Detection Rate and Clinical Impact of Respiratory Viruses in Children with Kawasaki Disease

    Directory of Open Access Journals (Sweden)

    Ja Hye Kim

    2012-12-01

    Full Text Available &lt;B&gt;Purpose:&lt;/B&gt; The purpose of this prospective case-control study was to survey the detection rate of respiratory viruses in children with Kawasaki disease (KD by using multiplex reverse transcriptasepolymerase chain reaction (RT-PCR, and to investigate the clinical implications of the prevalence of respiratory viruses during the acute phase of KD. &lt;B&gt;Methods:&lt;/B&gt; RT-PCR assays were carried out to screen for the presence of respiratory syncytial virus A and B, adenovirus, rhinovirus, parainfluenza viruses 1 to 4, influenza virus A and B, metapneumovirus, bocavirus, coronavirus OC43/229E and NL63, and enterovirus in nasopharyngeal secretions of 55 KD patients and 78 control subjects. &lt;B&gt;Results:&lt;/B&gt; Virus detection rates in KD patients and control subjects were 32.7% and 30.8%, respectively (P=0.811. However, there was no significant association between the presence of any of the 15 viruses and the incidence of KD. Comparisons between the 18 patients with positive RT-PCR results and the other 37 KD patients revealed no significant differences in terms of clinical findings (including the prevalence of incomplete presentation of the disease and coronary artery diameter. &lt;B&gt;Conclusion:&lt;/B&gt; A positive RT-PCR for currently epidemic respiratory viruses should not be used as an evidence against the diagnosis of KD. These viruses were not associated with the incomplete presentation of KD and coronary artery dilatation.

  12. Molecular and Serological Survey of Selected Viruses in Free-Ranging Wild Ruminants in Iran.

    Directory of Open Access Journals (Sweden)

    Farhid Hemmatzadeh

    Full Text Available A molecular and serological survey of selected viruses in free-ranging wild ruminants was conducted in 13 different districts in Iran. Samples were collected from 64 small wild ruminants belonging to four different species including 25 Mouflon (Ovis orientalis, 22 wild goat (Capra aegagrus, nine Indian gazelle (Gazella bennettii and eight Goitered gazelle (Gazella subgutturosa during the national survey for wildlife diseases in Iran. Serum samples were evaluated using serologic antibody tests for Peste de petits ruminants virus (PPRV, Pestiviruses [Border Disease virus (BVD and Bovine Viral Diarrhoea virus (BVDV], Bluetongue virus (BTV, Bovine herpesvirus type 1 (BHV-1, and Parainfluenza type 3 (PI3. Sera were also ELISA tested for Pestivirus antigen. Tissue samples including spleen, liver, lung, tonsils, mesenteric and mediastinal lymph nodes and white blood cells (WBCs were tested using polymerase chain reaction (PCR for PPRV, Foot and Mouth Disease virus (FMDV, Pestivirus, BTV, Ovine herpesvirus type 2 (OvHV-2 and BHV-1. Serologic tests were positive for antibodies against PPRV (17%, Pestiviruses (2% and BTV (2%. No antibodies were detected for BHV-1 or PI3, and no Pestivirus antigen was detected. PCR results were positive for PPRV (7.8%, FMDV (11%, BTV (3%, OvHV-2 (31% and BHV-1 (1.5%. None of the samples were positive for Pestiviruses.

  13. [Clinical aspects of human infection by the avian influenza virus].

    Science.gov (United States)

    Goubau, P

    2009-01-01

    The species barrier is not perfect for Influenza A and numerous transmissions of the virus from pigs or poultry to humans have been described these years. Appearing in 1997 and becoming epidemic in 2003, influenza A/H5N1 provoked many deadly enzootics in poultry batteries (highly pathogenic avian influenza of HPAI). Starting in Asia, many countries throughout Africa and Europe were affected. Sporadic human cases were described in direct contact with diseased chicken or other poultry. Half of the cases are lethal, but human to human transmission occurs with difficulty. From January 2003 to August 11th 2009, 438 cases were declared worldwide with 262 deaths. Many countries declared cases, but recently most cases occurred in Egypt. Measures in hospital were taken which were copied from the measures for SARS (Severe Acute Respiratory Syndrome), but these were probably excessive in this case, considering the low rate of secondary cases with A/H5N1. In many human infections, signs of severe respiratory distress develop and multi organ failure. It was feared that this deadly virus could become easily transmitted between humans, leading to a new pandemic. This was not the case up to now. The strong pathogenicity of the virus is still not completely explained, but the deep location of infection in the lungs and the deregulation of cytokine production by the target cells, particularly macrophages, may be part of the explanation.

  14. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    Science.gov (United States)

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-04-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.

  15. Long-term Therapy With Tenofovir Is Effective for Patients Co-Infected With Human Immunodeficiency Virus and Hepatitis B Virus

    NARCIS (Netherlands)

    de Vries-Sluijs, Theodora E. M. S.; Reijnders, Jurriën G. P.; Hansen, Bettina E.; Zaaijer, Hans L.; Prins, Jan M.; Pas, Suzan D.; Schutten, Martin; Hoepelman, Andy I. M.; Richter, Clemens; Mulder, Jan W.; de Man, Rob A.; Janssen, Harry L. A.; van der Ende, Marchina E.

    2010-01-01

    BACKGROUND & AIMS: We investigated the long-term efficacy and renal safety of tenofovir disoproxil fumarate (TDF), administered to patients co-infected with human immunodeficiency virus and hepatitis B virus (HBV) as part of an antiretroviral therapy. METHODS: We performed a multicenter, prospective

  16. IS SYSTEMATIC VACCINATION OF GIRLS-ADOLESCENTS AGAINST HUMAN PAPILLOMA VIRUS NECESSARY?

    Directory of Open Access Journals (Sweden)

    G. N. Minkina

    2011-01-01

    Full Text Available World Health Organization and European Center of Prophylaxis and Control over Morbidity recommend inclusion of systematic vaccination against human papilloma virus in girls-adolescents in national immunization programs. The article makes a review of vaccination reasonability as in countries with developed programs of neck of uterus cancer, as in societies with absence of adequate screening. Author discusses the age of vaccination and presents a foreign experience of vaccine against human papilloma virus inclusion into National Immunization Programs.

  17. Epidemiological patterns of human immunodeficiency virus and ...

    African Journals Online (AJOL)

    There is no doubt that the greatest health problem threatening the human race these times is the HIV/AIDS pandemic. The greatest burden of this scourge is in sub-saharan African. This has undoubtedly increased the incidence of opportunistic infection like herpes simplex virus infection. This study investigated the ...

  18. A Physical Interaction Network of Dengue Virus and Human Proteins*

    Science.gov (United States)

    Khadka, Sudip; Vangeloff, Abbey D.; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S.; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J.; Perera, Rushika; LaCount, Douglas J.

    2011-01-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection. PMID:21911577

  19. A physical interaction network of dengue virus and human proteins.

    Science.gov (United States)

    Khadka, Sudip; Vangeloff, Abbey D; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J; Perera, Rushika; LaCount, Douglas J

    2011-12-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection.

  20. Viral infections and bovine mastitis: a review

    NARCIS (Netherlands)

    Wellenberg, G.J.; Poel, van der W.H.M.; Oirschot, van J.T.

    2002-01-01

    This review deals with the role of viruses in the aetiology of bovine mastitis. Bovine herpesvirus 1, bovine herpesvirus 4, foot-and-mouth disease virus, and parainfluenza 3 virus have been isolated from milk from cows with clinical mastitis. Intramammary inoculations of bovine herpesvirus 1 or

  1. Does human bocavirus infection depend on helper viruses? A challenging case report

    Directory of Open Access Journals (Sweden)

    Brockmann Michael

    2011-08-01

    Full Text Available Abstract A case of severe diarrhoea associated with synergistic human bocavirus type 1 (HBoV and human herpes virus type 6 (HHV6 is reported. The case supports the hypotheses that HBoV infection under clinical conditions may depend on helper viruses, or that HBoV replicates by a mechanism that is atypical for parvoviruses, or that HBoV infection can be specifically treated with cidofovir.

  2. Prevalence and control of H7 avian influenza viruses in birds and humans.

    Science.gov (United States)

    Abdelwhab, E M; Veits, J; Mettenleiter, T C

    2014-05-01

    The H7 subtype HA gene has been found in combination with all nine NA subtype genes. Most exhibit low pathogenicity and only rarely high pathogenicity in poultry (and humans). During the past few years infections of poultry and humans with H7 subtypes have increased markedly. This review summarizes the emergence of avian influenza virus H7 subtypes in birds and humans, and the possibilities of its control in poultry. All H7Nx combinations were reported from wild birds, the natural reservoir of the virus. Geographically, the most prevalent subtype is H7N7, which is endemic in wild birds in Europe and was frequently reported in domestic poultry, whereas subtype H7N3 is mostly isolated from the Americas. In humans, mild to fatal infections were caused by subtypes H7N2, H7N3, H7N7 and H7N9. While infections of humans have been associated mostly with exposure to domestic poultry, infections of poultry have been linked to wild birds or live-bird markets. Generally, depopulation of infected poultry was the main control tool; however, inactivated vaccines were also used. In contrast to recent cases caused by subtype H7N9, human infections were usually self-limiting and rarely required antiviral medication. Close genetic and antigenic relatedness of H7 viruses of different origins may be helpful in development of universal vaccines and diagnostics for both animals and humans. Due to the wide spread of H7 viruses and their zoonotic importance more research is required to better understand the epidemiology, pathobiology and virulence determinants of these viruses and to develop improved control tools.

  3. Detection of Human Herpes Virus 8 in Kaposi's sarcoma tissues at ...

    African Journals Online (AJOL)

    Introduction: Human herpes virus-8, a γ2-herpes virus, is the aetiological agent of Kaposi sarcoma. Recently, Kaposi's sarcoma cases have increased in Zambia. However, the diagnosis of this disease is based on morphological appearance of affected tissues using histological techniques, and the association with its ...

  4. Susceptibility and response of human blood monocyte subsets to primary dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Kok Loon Wong

    Full Text Available Human blood monocytes play a central role in dengue infections and form the majority of virus infected cells in the blood. Human blood monocytes are heterogeneous and divided into CD16(- and CD16(+ subsets. Monocyte subsets play distinct roles during disease, but it is not currently known if monocyte subsets differentially contribute to dengue protection and pathogenesis. Here, we compared the susceptibility and response of the human CD16(- and CD16(+ blood monocyte subsets to primary dengue virus in vitro. We found that both monocyte subsets were equally susceptible to dengue virus (DENV2 NGC, and capable of supporting the initial production of new infective virus particles. Both monocyte subsets produced anti-viral factors, including IFN-α, CXCL10 and TRAIL. However, CD16(+ monocytes were the major producers of inflammatory cytokines and chemokines in response to dengue virus, including IL-1β, TNF-α, IL-6, CCL2, 3 and 4. The susceptibility of both monocyte subsets to infection was increased after IL-4 treatment, but this increase was more profound for the CD16(+ monocyte subset, particularly at early time points after virus exposure. These findings reveal the differential role that monocyte subsets might play during dengue disease.

  5. Human leukocyte antigen-e alleles are associated with hepatitis c virus, torque teno virus, and toxoplasma co-infections but are not associated with hepatitis b virus, hepatitis d virus, and GB virus c co-infections in human immunodeficiency virus patients

    Directory of Open Access Journals (Sweden)

    Afiono Agung Prasetyo

    2016-01-01

    Full Text Available Context: Data regarding the distribution of Human Leukocyte Antigen (HLA-E alleles and their association with blood-borne pathogen infections/co-infections are limited for many populations, including Indonesia. Aims: The aim of this study was to analyze the association between HLA-E allelic variants and infection with blood-borne pathogens such as hepatitis B virus (HBV, hepatitis C virus (HCV, hepatitis D virus (HDV, torque teno virus (TTV, GB virus C (GBV-C, and Toxoplasma gondii (T. gondii in Indonesian Javanese human immunodeficiency virus (HIV patients. Settings and Design: A total of 320 anti-HIV-positive blood samples were analyzed for HBV, HCV, HDV, TTV, GBV-C, and T. gondii infection status and its association with HLA-E allelic variants. Materials and Methods: Nucleic acid was extracted from plasma samples and used for the molecular detection of HBV DNA, HCV RNA, HDV RNA, TTV DNA, and GBV-C RNA, whereas hepatitis B surface antigen, anti-HCV, immunoglobulin M and G (IgM and IgG anti-T. gondii were detected through serological testing. The blood samples were genotyped for HLA-E loci using a sequence-specific primer-polymerase chain reaction. Statistical Analysis Used: Either the Chi-square or Fisher′s exact test was performed to analyze the frequency of HLA-E alleles and blood-borne pathogen infections in the population. Odds ratios (ORs were calculated to measure the association between the antibodies found and the participants′ possible risk behaviors. A logistic regression analysis was used to assess the associations. Results: HLA-EFNx010101/0101 was associated with HCV/TTV co-infection (adjusted OR [aOR]: 3.5; 95% confidence interval [CI]: 1.156-10.734; P = 0.027 and IgM/IgG anti-Toxo positivity (aOR: 27.0; 95% CI: 3.626-200.472; P = 0.001. HLA-EFNx010103/0103 was associated with TTV co-infection (aOR: 2.7; 95% CI: 1.509-4.796; P = 0.001. Conclusions: HLA-E alleles in Indonesian Javanese HIV patients were found to be associated

  6. Influenza A H5N1 clade 2.3.4 virus with a different antiviral susceptibility profile replaced clade 1 virus in humans in northern Vietnam

    NARCIS (Netherlands)

    Le, Mai T. Q.; Wertheim, Heiman F. L.; Nguyen, Hien D.; Taylor, Walter; Hoang, Phuong V. M.; Vuong, Cuong D.; Nguyen, Hang L. K.; Nguyen, Ha H.; Nguyen, Thai Q.; Nguyen, Trung V.; van, Trang D.; Ngoc, Bich T.; Bui, Thinh N.; Nguyen, Binh G.; Nguyen, Liem T.; Luong, San T.; Phan, Phuc H.; Pham, Hung V.; Nguyen, Tung; Fox, Annette; Nguyen, Cam V.; Do, Ha Q.; Crusat, Martin; Farrar, Jeremy; Nguyen, Hien T.; de Jong, Menno D.; Horby, Peter

    2008-01-01

    BACKGROUND: Prior to 2007, highly pathogenic avian influenza (HPAI) H5N1 viruses isolated from poultry and humans in Vietnam were consistently reported to be clade 1 viruses, susceptible to oseltamivir but resistant to amantadine. Here we describe the re-emergence of human HPAI H5N1 virus infections

  7. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus

    International Nuclear Information System (INIS)

    Schlehofer, J.R.; Ehrbar, M.; zur Hausen, H.

    1986-01-01

    The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. As reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells

  8. Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus*

    Science.gov (United States)

    Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J.; King, Sarah L.; Vakhrushev, Sergey Y.; Olofsson, Sigvard; Wandall, Hans H.

    2016-01-01

    Herpesviruses are among the most complex and widespread viruses, infection and propagation of which depend on envelope proteins. These proteins serve as mediators of cell entry as well as modulators of the immune response and are attractive vaccine targets. Although envelope proteins are known to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a “bottom up” mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members of the herpesvirus family: varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus. We identified a large number of O-glycosites distributed on most envelope proteins in all viruses and further demonstrated conserved patterns of O-glycans on distinct homologous proteins. Because glycosylation is highly dependent on the host cell, we tested varicella zoster virus-infected cell lysates and clinically isolated virus and found evidence of consistent O-glycosites. These results present a comprehensive view of herpesvirus O-glycosylation and point to the widespread occurrence of O-glycans in regions of envelope proteins important for virus entry, formation, and recognition by the host immune system. This knowledge enables dissection of specific functional roles of individual glycosites and, moreover, provides a framework for design of glycoprotein vaccines with representative glycosylation. PMID:27129252

  9. Grape seed extract for control of human enteric viruses.

    Science.gov (United States)

    Su, Xiaowei; D'Souza, Doris H

    2011-06-01

    Grape seed extract (GSE) is reported to have many pharmacological benefits, including antioxidant, anti-inflammatory, anticarcinogenic, and antimicrobial properties. However, the effect of this inexpensive rich source of natural phenolic compounds on human enteric viruses has not been well documented. In the present study, the effect of commercial GSE, Gravinol-S, on the infectivity of human enteric virus surrogates (feline calicivirus, FCV-F9; murine norovirus, MNV-1; and bacteriophage MS2) and hepatitis A virus (HAV; strain HM175) was evaluated. GSE at concentrations of 0.5, 1, and 2 mg/ml was individually mixed with equal volumes of each virus at titers of ∼7 log(10) PFU/ml or ∼5 log(10) PFU/ml and incubated for 2 h at room temperature or 37°C. The infectivity of the recovered viruses after triplicate treatments was evaluated by standardized plaque assays. At high titers (∼7 log(10) PFU/ml), FCV-F9 was significantly reduced by 3.64, 4.10, and 4.61 log(10) PFU/ml; MNV-1 by 0.82, 1.35, and 1.73 log(10) PFU/ml; MS2 by 1.13, 1.43, and 1.60 log(10) PFU/ml; and HAV by 1.81, 2.66, and 3.20 log(10) PFU/ml after treatment at 37°C with 0.25, 0.50, and 1 mg/ml GSE, respectively (P PFU/ml) at 37°C also showed viral reductions. Room-temperature treatments with GSE caused significant reduction of the four viruses, with higher reduction for low-titer FCV-F9, MNV-1, and HAV compared to high titers. Our results indicate that GSE shows promise for application in the food industry as an inexpensive novel natural alternative to reduce viral contamination and enhance food safety.

  10. A human lung xenograft mouse model of Nipah virus infection.

    Directory of Open Access Journals (Sweden)

    Gustavo Valbuena

    2014-04-01

    Full Text Available Nipah virus (NiV is a member of the genus Henipavirus (family Paramyxoviridae that causes severe and often lethal respiratory illness and encephalitis in humans with high mortality rates (up to 92%. NiV can cause Acute Lung Injury (ALI in humans, and human-to-human transmission has been observed in recent outbreaks of NiV. While the exact route of transmission to humans is not known, we have previously shown that NiV can efficiently infect human respiratory epithelial cells. The molecular mechanisms of NiV-associated ALI in the human respiratory tract are unknown. Thus, there is an urgent need for models of henipavirus infection of the human respiratory tract to study the pathogenesis and understand the host responses. Here, we describe a novel human lung xenograft model in mice to study the pathogenesis of NiV. Following transplantation, human fetal lung xenografts rapidly graft and develop mature structures of adult lungs including cartilage, vascular vessels, ciliated pseudostratified columnar epithelium, and primitive "air" spaces filled with mucus and lined by cuboidal to flat epithelium. Following infection, NiV grows to high titers (10(7 TCID50/gram lung tissue as early as 3 days post infection (pi. NiV targets both the endothelium as well as respiratory epithelium in the human lung tissues, and results in syncytia formation. NiV infection in the human lung results in the production of several cytokines and chemokines including IL-6, IP-10, eotaxin, G-CSF and GM-CSF on days 5 and 7 pi. In conclusion, this study demonstrates that NiV can replicate to high titers in a novel in vivo model of the human respiratory tract, resulting in a robust inflammatory response, which is known to be associated with ALI. This model will facilitate progress in the fundamental understanding of henipavirus pathogenesis and virus-host interactions; it will also provide biologically relevant models for other respiratory viruses.

  11. Spread of human T-cell leukemia virus (HTLV-I) in the Dutch homosexual community

    NARCIS (Netherlands)

    Goudsmit, J.; de Wolf, F.; van de Wiel, B.; Smit, L.; Bakker, M.; Albrecht-van Lent, N.; Coutinho, R. A.

    1987-01-01

    Sequential sera of 697 homosexual men, participating in a prospective study (1984-1986) of the risk to acquire human immunodeficiency virus (HIV) or AIDS, were tested for antibodies to human T-cell leukaemia virus (HTLV-I) by particle agglutination and immunoblotting. No intravenous drug users were

  12. Construction and characterisation of a recombinant fowlpox virus that expresses the human papilloma virus L1 protein

    Directory of Open Access Journals (Sweden)

    Zanotto Carlo

    2011-11-01

    Full Text Available Abstract Background Human papilloma virus (HPV-16 is the most prevalent high-risk mucosal genotype. Virus-like-particle (VLP-based immunogens developed recently have proven to be successful as prophylactic HPV vaccines, but are still too expensive for developing countries. Although vaccinia viruses expressing the HPV-16 L1 protein (HPV-L1 have been studied, fowlpox-based recombinants represent efficient and safer vectors for immunocompromised hosts due to their ability to elicit a complete immune response and their natural host-range restriction to avian species. Methods A new fowlpox virus recombinant encoding HPV-L1 (FPL1 was engineered and evaluated for the correct expression of HPV-L1 in vitro, using RT-PCR, immunoprecipitation, Western blotting, electron microscopy, immunofluorescence, and real-time PCR assays. Results The FPL1 recombinant correctly expresses HPV-L1 in mammalian cells, which are non-permissive for the replication of this vector. Conclusion This FPL1 recombinant represents an appropriate immunogen for expression of HPV-L1 in human cells. The final aim is to develop a safe, immunogenic, and less expensive prophylactic vaccine against HPV.

  13. [THE COMPARATIVE ANALYSIS OF RESULTS OF DETECTION OF CARCINOGENIC TYPES OF HUMAN PAPILLOMA VIRUS BY QUALITATIVE AND QUANTITATIVE TESTS].

    Science.gov (United States)

    Kuzmenko, E T; Labigina, A V; Leshenko, O Ya; Rusanov, D N; Kuzmenko, V V; Fedko, L P; Pak, I P

    2015-05-01

    The analysis of results of screening (n = 3208; sexually active citizen aged from 18 to 59 years) was carried out to detect oncogene types of human papilloma virus in using qualitative (1150 females and 720 males) and quantitative (polymerase chain reaction in real-time (843 females and 115 males) techniques. The human papilloma virus of high oncogene type was detected in 65% and 68.4% of females and in 48.6% and 53% of males correspondingly. Among 12 types of human papilloma virus the most frequently diagnosed was human papilloma virus 16 independently of gender of examined and technique of analysis. In females, under application of qualitative tests rate of human papilloma virus 16 made up to 18.3% (n = 280) and under application of quantitative tests Rte of human papilloma virus made up to 14.9% (n = 126; p ≤ 0.05). Under examination of males using qualitative tests rate of human papilloma virus 16 made up to 8.3% (n = 60) and under application of qualitative tests made up to 12.2% (n = 14; p ≥ 0.05). Under application of qualitative tests rate of detection on the rest ofoncogene types of human papilloma virus varied in females from 3.4% to 8.4% and in males from 1.8% to 5.9%. Under application of qualitative tests to females rate of human papilloma virus with high viral load made up to 68.4%, with medium viral load - 2.85% (n = 24) and with low viral load -0.24% (n = 2). Under application of quantitative tests in males rate of detection of types of human papilloma virus made up to 53% and at that in all high viral load was established. In females, the most of oncogene types of human papilloma virus (except for 31, 39, 59) are detected significantly more often than in males.

  14. Influenza A H5N1 clade 2.3.4 virus with a different antiviral susceptibility profile replaced clade 1 virus in humans in northern Vietnam.

    Directory of Open Access Journals (Sweden)

    Mai T Q Le

    2008-10-01

    Full Text Available Prior to 2007, highly pathogenic avian influenza (HPAI H5N1 viruses isolated from poultry and humans in Vietnam were consistently reported to be clade 1 viruses, susceptible to oseltamivir but resistant to amantadine. Here we describe the re-emergence of human HPAI H5N1 virus infections in Vietnam in 2007 and the characteristics of the isolated viruses.Respiratory specimens from patients suspected to be infected with avian influenza in 2007 were screened by influenza and H5 subtype specific polymerase chain reaction. Isolated H5N1 strains were further characterized by genome sequencing and drug susceptibility testing. Eleven poultry outbreak isolates from 2007 were included in the sequence analysis. Eight patients, all of them from northern Vietnam, were diagnosed with H5N1 in 2007 and five of them died. Phylogenetic analysis of H5N1 viruses isolated from humans and poultry in 2007 showed that clade 2.3.4 H5N1 viruses replaced clade 1 viruses in northern Vietnam. Four human H5N1 strains had eight-fold reduced in-vitro susceptibility to oseltamivir as compared to clade 1 viruses. In two poultry isolates the I117V mutation was found in the neuraminidase gene, which is associated with reduced susceptibility to oseltamivir. No mutations in the M2 gene conferring amantadine resistance were found.In 2007, H5N1 clade 2.3.4 viruses replaced clade 1 viruses in northern Vietnam and were susceptible to amantadine but showed reduced susceptibility to oseltamivir. Combination antiviral therapy with oseltamivir and amantadine for human cases in Vietnam is recommended.

  15. Human Immunodeficiency Virus (HIV) Seropositivity In African ...

    African Journals Online (AJOL)

    A seroprevalence study of Human immunodeficiency virus (HIV) infection in new patients attending the eye clinic of LAUTECH Teaching Hospital in Osogbo, Osun State, Nigeria showed that twenty-nine patients 2.7%) were positive to HIV1. No patient was positive to HIV 2. There were 21 males (72.4%) and 8 females ...

  16. Microfluidic PCR Amplification and MiSeq Amplicon Sequencing Techniques for High-Throughput Detection and Genotyping of Human Pathogenic RNA Viruses in Human Feces, Sewage, and Oysters

    Directory of Open Access Journals (Sweden)

    Mamoru Oshiki

    2018-04-01

    Full Text Available Detection and genotyping of pathogenic RNA viruses in human and environmental samples are useful for monitoring the circulation and prevalence of these pathogens, whereas a conventional PCR assay followed by Sanger sequencing is time-consuming and laborious. The present study aimed to develop a high-throughput detection-and-genotyping tool for 11 human RNA viruses [Aichi virus; astrovirus; enterovirus; norovirus genogroup I (GI, GII, and GIV; hepatitis A virus; hepatitis E virus; rotavirus; sapovirus; and human parechovirus] using a microfluidic device and next-generation sequencer. Microfluidic nested PCR was carried out on a 48.48 Access Array chip, and the amplicons were recovered and used for MiSeq sequencing (Illumina, Tokyo, Japan; genotyping was conducted by homology searching and phylogenetic analysis of the obtained sequence reads. The detection limit of the 11 tested viruses ranged from 100 to 103 copies/μL in cDNA sample, corresponding to 101–104 copies/mL-sewage, 105–108 copies/g-human feces, and 102–105 copies/g-digestive tissues of oyster. The developed assay was successfully applied for simultaneous detection and genotyping of RNA viruses to samples of human feces, sewage, and artificially contaminated oysters. Microfluidic nested PCR followed by MiSeq sequencing enables efficient tracking of the fate of multiple RNA viruses in various environments, which is essential for a better understanding of the circulation of human pathogenic RNA viruses in the human population.

  17. The Viral Transcription Group Determines the HLA Class I Cellular Immune Response Against Human Respiratory Syncytial Virus*

    Science.gov (United States)

    Johnstone, Carolina; Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Infantes, Susana; Lemonnier, François A.; David, Chella S.; Admon, Arie; López, Daniel

    2015-01-01

    The cytotoxic T-lymphocyte-mediated killing of virus-infected cells requires previous recognition of short viral antigenic peptides bound to human leukocyte antigen class I molecules that are exposed on the surface of infected cells. The cytotoxic T-lymphocyte response is critical for the clearance of human respiratory syncytial virus infection. In this study, naturally processed viral human leukocyte antigen class I ligands were identified with mass spectrometry analysis of complex human leukocyte antigen-bound peptide pools isolated from large amounts of human respiratory syncytial virus-infected cells. Acute antiviral T-cell response characterization showed that viral transcription determines both the immunoprevalence and immunodominance of the human leukocyte antigen class I response to human respiratory syncytial virus. These findings have clear implications for antiviral vaccine design. PMID:25635267

  18. Animal models of human respiratory syncytial virus disease

    NARCIS (Netherlands)

    Bem, Reinout A.; Domachowske, Joseph B.; Rosenberg, Helene F.

    2011-01-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for

  19. Immunological Control of Viral Infections in Bats and the Emergence of Viruses Highly Pathogenic to Humans

    Directory of Open Access Journals (Sweden)

    Tony Schountz

    2017-09-01

    Full Text Available Bats are reservoir hosts of many important viruses that cause substantial disease in humans, including coronaviruses, filoviruses, lyssaviruses, and henipaviruses. Other than the lyssaviruses, they do not appear to cause disease in the reservoir bats, thus an explanation for the dichotomous outcomes of infections of humans and bat reservoirs remains to be determined. Bats appear to have a few unusual features that may account for these differences, including evidence of constitutive interferon (IFN activation and greater combinatorial diversity in immunoglobulin genes that do not undergo substantial affinity maturation. We propose these features may, in part, account for why bats can host these viruses without disease and how they may contribute to the highly pathogenic nature of bat-borne viruses after spillover into humans. Because of the constitutive IFN activity, bat-borne viruses may be shed at low levels from bat cells. With large naive antibody repertoires, bats may control the limited virus replication without the need for rapid affinity maturation, and this may explain why bats typically have low antibody titers to viruses. However, because bat viruses have evolved in high IFN environments, they have enhanced countermeasures against the IFN response. Thus, upon infection of human cells, where the IFN response is not constitutive, the viruses overwhelm the IFN response, leading to abundant virus replication and pathology.

  20. Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase.

    Science.gov (United States)

    Zhang, Yu; Wei, Yongwei; Zhang, Xiaodong; Cai, Hui; Niewiesk, Stefan; Li, Jianrong

    2014-10-01

    The paramyxoviruses human respiratory syncytial virus (hRSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (hPIV3) are responsible for the majority of pediatric respiratory diseases and inflict significant economic loss, health care costs, and emotional burdens. Despite major efforts, there are no vaccines available for these viruses. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at positions guanine N-7 (G-N-7) and ribose 2'-O. In this study, we generated a panel of recombinant hMPVs carrying mutations in the S-adenosylmethionine (SAM) binding site in CR VI of L protein. These recombinant viruses were specifically defective in ribose 2'-O methylation but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of cotton rats. Importantly, vaccination of cotton rats with these recombinant hMPVs (rhMPVs) with defective MTases triggered a high level of neutralizing antibody, and the rats were completely protected from challenge with wild-type rhMPV. Collectively, our results indicate that (i) amino acid residues in the SAM binding site in the hMPV L protein are essential for 2'-O methylation and (ii) inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for hMPV and perhaps other paramyxoviruses, such as hRSV and hPIV3. Human paramyxoviruses, including hRSV, hMPV, and hPIV3, cause the majority of acute upper and lower respiratory tract infections in humans, particularly in infants, children, the elderly, and immunocompromised individuals. Currently, there is no licensed vaccine available. A formalin-inactivated vaccine is not suitable for these viruses because it causes enhanced lung damage upon reinfection with the same virus. A live attenuated vaccine is the most promising

  1. Acceptability of human papilloma virus vaccine and cervical cancer ...

    African Journals Online (AJOL)

    2012-07-14

    Jul 14, 2012 ... names in a prepared sampling frame of each group of workers, and thereafter ... Following individual counseling of eligible participants, .... Stanley M. Human Papilloma Virus Vaccines versus cervical cancer screening.

  2. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model

    International Nuclear Information System (INIS)

    Perna, J.J.; Mannix, M.L.; Rooney, J.F.; Notkins, A.L.; Straus, S.E.

    1987-01-01

    Infection with herpes simplex virus often results in a latent infection of local sensory ganglia and a disease characterized by periodic viral reactivation and mucocutaneous lesions. The factors that trigger reactivation in humans are still poorly defined. In our study, five patients with documented histories of recurrent herpes simplex virus infection on the buttocks or sacrum were exposed to three times their minimal erythema dose of ultraviolet light. Site-specific cutaneous herpes simplex virus infection occurred at 4.4 +/- 0.4 days after exposure to ultraviolet light in 8 of 13 attempts at reactivation. We conclude that ultraviolet light can reactivate herpes simplex virus under experimentally defined conditions. This model in humans should prove useful in evaluating the pathophysiology and prevention of viral reactivation

  3. Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines

    International Nuclear Information System (INIS)

    Offerdahl, Danielle K.; Dorward, David W.; Hansen, Bryan T.; Bloom, Marshall E.

    2017-01-01

    The Zika virus (ZIKV) pandemic is a global concern due to its role in the development of congenital anomalies of the central nervous system. This mosquito-borne flavivirus alternates between mammalian and mosquito hosts, but information about the biogenesis of ZIKV is limited. Using a human neuroblastoma cell line (SK-N-SH) and an Aedes albopictus mosquito cell line (C6/36), we characterized ZIKV infection by immunofluorescence, transmission electron microscopy (TEM), and electron tomography (ET) to better understand infection in these disparate host cells. ZIKV replicated well in both cell lines, but infected SK-N-SH cells suffered a lytic crisis. Flaviviruses scavenge host cell membranes to serve as replication platforms and ZIKV showed the hallmarks of this process. Via TEM, we identified virus particles and 60–100 nm spherular vesicles. ET revealed these vesicular replication compartments contain smaller 20–30 nm spherular structures. Our studies indicate that SK-N-SH and C6/36 cells are relevant models for viral cytoarchitecture study. - Highlights: •First electron tomography of Zika virus cytoarchitecture. •Comparison of Zika virus infection in human neuroblastoma and mosquito cells. •Ultrastructure of Zika virus infection in human neuroblastoma and mosquito cells.

  4. Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Offerdahl, Danielle K. [Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT (United States); Dorward, David W.; Hansen, Bryan T. [Microscopy Unit, Research Technology Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT (United States); Bloom, Marshall E., E-mail: mbloom@nih.gov [Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT (United States)

    2017-01-15

    The Zika virus (ZIKV) pandemic is a global concern due to its role in the development of congenital anomalies of the central nervous system. This mosquito-borne flavivirus alternates between mammalian and mosquito hosts, but information about the biogenesis of ZIKV is limited. Using a human neuroblastoma cell line (SK-N-SH) and an Aedes albopictus mosquito cell line (C6/36), we characterized ZIKV infection by immunofluorescence, transmission electron microscopy (TEM), and electron tomography (ET) to better understand infection in these disparate host cells. ZIKV replicated well in both cell lines, but infected SK-N-SH cells suffered a lytic crisis. Flaviviruses scavenge host cell membranes to serve as replication platforms and ZIKV showed the hallmarks of this process. Via TEM, we identified virus particles and 60–100 nm spherular vesicles. ET revealed these vesicular replication compartments contain smaller 20–30 nm spherular structures. Our studies indicate that SK-N-SH and C6/36 cells are relevant models for viral cytoarchitecture study. - Highlights: •First electron tomography of Zika virus cytoarchitecture. •Comparison of Zika virus infection in human neuroblastoma and mosquito cells. •Ultrastructure of Zika virus infection in human neuroblastoma and mosquito cells.

  5. MUC1 in human milk blocks transmission of human immunodeficiency virus from dendritic cells to T cells

    NARCIS (Netherlands)

    Saeland, E.; Jong, de M.A.W.P.; Nabatov, A.; Kalay, H.; Kooijk, van Y.; Geijtenbeek, T.B.H.

    2009-01-01

    Mother-to-child transmission of human immunodeficiency virus-1 (HIV-1) occurs frequently via breast-feeding. HIV-1 targets DC-SIGN+ dendritic cells (DCs) in mucosal areas that allow efficient transmission of the virus to T cells. Here, we demonstrate that the epithelial mucin MUC1, abundant in milk,

  6. Influenza A Viruses of Human Origin in Swine, Brazil.

    Science.gov (United States)

    Nelson, Martha I; Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-08-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil's swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009-2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance.

  7. Virus del Papiloma humano Human Papilloma virus (HPV

    Directory of Open Access Journals (Sweden)

    José G Sanabria Negrín

    2009-12-01

    Full Text Available Con el objetivo de actualizar la información existente sobre el Virus del Papiloma Humano (VPH se realizó una revisión bibliográfica de artículos basados en la evidencia de nivel I-II. Fundamentalmente fueron revisados los publicados en la biblioteca Cochrane, Dynamed, Evidence-Based Medicine Updates, New England Journal of Medicine, J Clinical Oncology, Medscape, PubMed, artículos de la Agencia Internacional del Cáncer de Francia, y HPV Today, en inglés, francés, portugués o español, de los últimos 5 años, y se hace referencia a artículos originales de importancia de años anteriores. Se revisaron los siguientes aspectos: Definiciones, epidemiología, etiología: Virus del Papiloma Humano, factores de riesgo, clínica de la infección por el VPH, implicación clínica, pesquisaje de masas, tratamiento, prevención primaria y secundaria; y problemas sociales derivados. La infección por el VPH es sexualmente transmitida, por lo tanto es prevenible, y puede ser curable. Es un virus ADN que necesita de un epitelio para su replicación y completar su ciclo vital. La expresión de sus genes constituyentes varía dentro del epitelio, y de una parte del epitelio a otra, dependiendo del tipo de lesión. Se ha detectado la infección desde la infancia, aún sin relaciones sexuales, para llegar a un clímax alrededor de los 30 años, para luego decrecer. Las alternativas actuales son la prevención primaria mediante el uso de anticonceptivos de barrera, el uso de las vacunas profilácticas, y después que está instaurada la infección las vacunas terapéuticas que se están desarrollando. En todos los aspectos se pueden detectar problemas sociales, desde el diagnóstico con el peso de ansiedad, la carga social que proporciona la infección y las consecuencias que de ella derivan.Aimed at updating the current information on Human Papillomavirus (HPV evidence-based articles and papers about levels I-II were reviewed. The articles and papers

  8. Human Papilloma Virus Vaccine: Determinants of Acceptability by ...

    African Journals Online (AJOL)

    Vaccination of adolescent females against Human Papilloma Virus (HPV), the causative agent for cervical cancer has recently become available. As minors, parental acceptance of the vaccines for adolescent daughters requires exploration. This was a cross-sectional survey of 201 mothers attending the gynaecology clinic ...

  9. Prevalence of Anaemia Among Human Immunodeficiency Virus (HIV)

    African Journals Online (AJOL)

    Background: Anaemia is the most commonly encountered haematological abnormality in human immunodeficiency virus (HIV) positive patients with estimates climbing as high as 95% depending on clinical settings. The twin effects of HIV infection and anaemia in pregnancy is associated with adverse maternal and ...

  10. The Prevalence of Human Immunodeficiency Virus Infection among ...

    African Journals Online (AJOL)

    AJRH Managing Editor

    Agboghoroma et al. HIV Infection Diagnosed in Women in Labour. African Journal of Reproductive Health September 2015; 19 (3):137. ORIGINAL RESEARCH ARTICLE. The Prevalence of Human Immunodeficiency Virus Infection among. Pregnant Women in Labour with Unknown Status and those with. Negative status ...

  11. Awareness of Human Immunodeficiency Virus (HIV) infection among ...

    African Journals Online (AJOL)

    Objective: To determine the level of awareness of Human Immunodeficiency Virus (HIV) infection among antenatal clients in Nnewi Nigeria. Subjects and Methods: A cross sectional descriptive study of six hundred consecutive antenatal clients attending the Nnamdi Azikiwe University Teaching Hospital and five private ...

  12. A new laboratory-based surveillance system (Respiratory DataMart System) for influenza and other respiratory viruses in England: results and experience from 2009 to 2012.

    Science.gov (United States)

    Zhao, H; Green, H; Lackenby, A; Donati, M; Ellis, J; Thompson, C; Bermingham, A; Field, J; Sebastianpillai, P; Zambon, M; Watson, Jm; Pebody, R

    2014-01-23

    During the 2009 influenza A(H1N1) pandemic, a new laboratory-based virological sentinel surveillance system, the Respiratory DataMart System (RDMS), was established in a network of 14 Health Protection Agency (now Public Health England (PHE)) and National Health Service (NHS) laboratories in England. Laboratory results (both positive and negative) were systematically collected from all routinely tested clinical respiratory samples for a range of respiratory viruses including influenza, respiratory syncytial virus (RSV), rhinovirus, parainfluenza virus, adenovirus and human metapneumovirus (hMPV). The RDMS also monitored the occurrence of antiviral resistance of influenza viruses. Data from the RDMS for the 2009–2012 period showed that the 2009 pandemic influenza virus caused three waves of activity with different intensities during the pandemic and post pandemic periods. Peaks in influenza A(H1N1)pdm09 positivity (defined as number of positive samples per total number of samples tested) were seen in summer and autumn in 2009, with slightly higher peak positivity observed in the first post-pandemic season in 2010/2011. The influenza A(H1N1)pdm09 virus strain almost completely disappeared in the second postpandemic season in 2011/2012. The RDMS findings are consistent with other existing community-based virological and clinical surveillance systems. With a large sample size, this new system provides a robust supplementary mechanism, through the collection of routinely available laboratory data at minimum extra cost, to monitor influenza as well as other respiratory virus activity. A near real-time, daily reporting mechanism in the RDMS was established during the London 2012 Olympic and Paralympic Games. Furthermore, this system can be quickly adapted and used to monitor future influenza pandemics and other major outbreaks of respiratory infectious disease, including novel pathogens.

  13. Prevalence of herpes simplex, Epstein Barr and human papilloma viruses in oral lichen planus

    OpenAIRE

    Yildirim, Benay; Sengüven, Burcu; Demir, Cem

    2011-01-01

    Objectives: The aim of the present study was to assess the prevalence of Herpes Simplex virus, Epstein Barr virus and Human Papilloma virus -16 in oral lichen planus cases and to evaluate whether any clinical variant, histopathological or demographic feature correlates with these viruses. Study Design: The study was conducted on 65 cases. Viruses were detected immunohistochemically. We evaluated the histopathological and demographic features and statistically analysed correlation of these...

  14. Comparison of neutralizing and hemagglutination-inhibiting antibody responses to influenza A virus vaccination of human immunodeficiency virus-infected individuals

    NARCIS (Netherlands)

    Benne, CA; Harmsen, M; Tavares, L; Kraaijeveld, CA; De Jong, JC

    A neutralization enzyme immunoassay (N-EIA) was used to determine the neutralizing serum antibody titers to influenza A/Taiwan/1/86 (H1N1) and Beijing/353/89 (H3N2) viruses after vaccination of 51 human immunodeficiency virus (HIV) type 1-infected individuals and 10 healthy noninfected controls

  15. Prevalence of Human Papilloma Virus in Sinonasal Papilloma in Southern Iranian Population

    OpenAIRE

    Valibeigi, Behnaz; Ashraf, Mohamad Javad; Kerdegari, Narges; Safai, Akbar; Abedi, Elham; Khademi, Bijan; Azarpira, Negar

    2017-01-01

    Statement of the Problem: Sinonasal papilloma (SNP) is a rare benign lesion characterized by high recurrence rate and malignant transformation. Purpose: This study aimed to investigate the prevalence of human papilloma virus (HPV) infection in these lesions in South of Iran. Materials and Method: In this cross sectional retrospective study, a total of 41 patients, 38 SNP and 3 SNP/Squamous cell carcinoma cases, from 2007 to 2014 were studied. Human papilloma virus (HPV) DNA detection w...

  16. Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology

    Directory of Open Access Journals (Sweden)

    Jessica M Hogestyn

    2018-01-01

    Full Text Available Human herpesviruses (HVs have developed ingenious mechanisms that enable them to traverse the defenses of the central nervous system (CNS. The ability of HVs to enter a state of latency, a defining characteristic of this viral family, allows them to persist in the human host indefinitely. As such, HVs represent the most frequently detected pathogens in the brain. Under constant immune pressure, these infections are largely asymptomatic in healthy hosts. However, many neurotropic HVs have been directly connected with CNS pathology in the context of other stressors and genetic risk factors. In this review, we discuss the potential mechanisms by which neurotropic HVs contribute to neurodegenerative disease (NDD pathology by highlighting two prominent members of the HV family, herpes simplex virus 1 (HSV-1 and human herpesvirus 6 (HHV-6. We (i introduce the infectious pathways and replicative cycles of HSV-1 and HHV-6 and then (ii review the clinical evidence supporting associations between these viruses and the NDDs Alzheimer's disease (AD and multiple sclerosis (MS, respectively. We then (iii highlight and discuss potential mechanisms by which these viruses exert negative effects on neurons and glia. Finally, we (iv discuss how these viruses could interact with other disease-modifying factors to contribute to the initiation and/or progression of NDDs.

  17. The viral transcription group determines the HLA class I cellular immune response against human respiratory syncytial virus.

    Science.gov (United States)

    Johnstone, Carolina; Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Infantes, Susana; Lemonnier, François A; David, Chella S; Admon, Arie; López, Daniel

    2015-04-01

    The cytotoxic T-lymphocyte-mediated killing of virus-infected cells requires previous recognition of short viral antigenic peptides bound to human leukocyte antigen class I molecules that are exposed on the surface of infected cells. The cytotoxic T-lymphocyte response is critical for the clearance of human respiratory syncytial virus infection. In this study, naturally processed viral human leukocyte antigen class I ligands were identified with mass spectrometry analysis of complex human leukocyte antigen-bound peptide pools isolated from large amounts of human respiratory syncytial virus-infected cells. Acute antiviral T-cell response characterization showed that viral transcription determines both the immunoprevalence and immunodominance of the human leukocyte antigen class I response to human respiratory syncytial virus. These findings have clear implications for antiviral vaccine design. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Knowledge of the Human Papilloma Virus vaccines, and opinions

    African Journals Online (AJOL)

    AJRH Managing Editor

    Keywords: Human papilloma Virus Vaccine, HPV, Knowledge, Perception, Nigeria .... of the opinion that HPV vaccine should be paid for ... relationships between gender, marital status, grade ... various stages suggest that there is a critical gap.

  19. Sampling methods for recovery of human enteric viruses from environmental surfaces.

    Science.gov (United States)

    Turnage, Nicole L; Gibson, Kristen E

    2017-10-01

    Acute gastroenteritis causes the second highest infectious disease burden worldwide. Human enteric viruses have been identified as leading causative agents of acute gastroenteritis as well as foodborne illnesses in the U.S. and are generally transmitted by fecal-oral contamination. There is growing evidence of transmission occurring via contaminated fomite including food contact surfaces. Additionally, human enteric viruses have been shown to remain infectious on fomites over prolonged periods of time. To better understand viral persistence, there is a need for more studies to investigate this phenomenon. Therefore, optimization of surface sampling methods is essential to aid in understanding environmental contamination to ensure proper preventative measures are being applied. In general, surface sampling studies are limited and highly variable among recovery efficiencies and research parameters used (e.g., virus type/density, surface type, elution buffers, tools). This review aims to discuss the various factors impacting surface sampling of viruses from fomites and to explore how researchers could move towards a more sensitive and standard sampling method. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Novel Polymerase Gene Mutations for Human Adaptation in Clinical Isolates of Avian H5N1 Influenza Viruses.

    Directory of Open Access Journals (Sweden)

    Yasuha Arai

    2016-04-01

    Full Text Available A major determinant in the change of the avian influenza virus host range to humans is the E627K substitution in the PB2 polymerase protein. However, the polymerase activity of avian influenza viruses with a single PB2-E627K mutation is still lower than that of seasonal human influenza viruses, implying that avian viruses require polymerase mutations in addition to PB2-627K for human adaptation. Here, we used a database search of H5N1 clade 2.2.1 virus sequences with the PB2-627K mutation to identify other polymerase adaptation mutations that have been selected in infected patients. Several of the mutations identified acted cooperatively with PB2-627K to increase viral growth in human airway epithelial cells and mouse lungs. These mutations were in multiple domains of the polymerase complex other than the PB2-627 domain, highlighting a complicated avian-to-human adaptation pathway of avian influenza viruses. Thus, H5N1 viruses could rapidly acquire multiple polymerase mutations that function cooperatively with PB2-627K in infected patients for optimal human adaptation.

  1. El Bocavirus humano: un nuevo virus respiratorio Human bocavirus: a new respiratory virus

    Directory of Open Access Journals (Sweden)

    Carlos Aguirre Muñoz

    2006-01-01

    Full Text Available Las infecciones respiratorias agudas son una causa muy importante de morbilidad y mortalidad, especialmente en los niños y en los países en desarrollo. Con los métodos de laboratorio actuales, aproximadamente una tercera parte de estas infecciones se queda sin diagnóstico etiológico. Se acepta que los virus juegan un papel cardinal y que más de 200 virus, pertenecientes a seis familias virales están implicados en la génesis de este problema. La familia Parvoviridae se conoce desde mediados del siglo XX. El Parvovirus humano B19, identificado en 1980 y causante de enfermedades febriles y exantemáticas, fue considerado por muchos años como el único miembro de esta familia capaz de afectar a la especie humana. Sin embargo, un grupo de investigadores suecos comandado por Tobías Allander informó en agosto de 2005 el hallazgo de un nuevo Parvovirus, denominado provisionalmente Bocavirus humano, relacionado con infección respiratoria aguda en niños. En este artículo se resumen las características de este nuevo agente, se resalta la importancia de su hallazgo y de la técnica de investigación empleada. Respiratory tract infections are a leading cause of morbidity and mortality, mainly in children and also in developing countries. The aethiology of approximately 30% of these infections remains obscure, using current laboratory methods. It has been accepted that viruses play an important role and more than 200 viruses, belonging to 6 viral families are implied in the pathogenesis of this problem. Parvoviridae family has been known since the middle of the XX century. Human Parvovirus B19 was identified in 1980; it causes rashes and febrile diseases and it was considered for many years as the only member of this family able to affect humans. However, Dr. Tobias Allander and colleagues, at Karolinska Institut, have discovered a previously unknown parvovirus, called Human Bocavirus, that has been found to affect children, causing lower

  2. Hepatitis B and C virus co-infections in human immunodeficiency virus positive North Indian patients

    Science.gov (United States)

    Gupta, Swati; Singh, Sarman

    2006-01-01

    AIM: To determine the prevalence of hepatitis B and C virus infections in human immunodeficiency virus (HIV) -positive patients at a tertiary care hospital in New Delhi, India. METHODS: Serum samples from 451 HIV positive patients were analyzed for HBsAg and HCV antibodies during three years (Jan 2003-Dec 2005). The control group comprised of apparently healthy bone-marrow and renal donors. RESULTS: The study population comprised essentially of heterosexually transmitted HIV infection. The prevalence rate of HBsAg in this population was 5.3% as compared to 1.4% in apparently healthy donors (P < 0.001). Though prevalence of HCV co-infection (2.43%) was lower than HBV in this group of HIV positive patients, the prevalence was significantly higher (P < 0.05) than controls (0.7%). Triple infection of HIV, HBV and HCV was not detected in any patient. CONCLUSION: Our study shows a significantly high prevalence of hepatitis virus infections in HIV infected patients. Hepatitis viruses in HIV may lead to faster progression to liver cirrhosis and a higher risk of antiretroviral therapy induced hepatotoxicity. Therefore, it would be advisable to detect hepatitis virus co-infections in these patients at the earliest. PMID:17106941

  3. Ammonia disinfection of hatchery waste for elimination of single-stranded RNA viruses.

    Science.gov (United States)

    Emmoth, Eva; Ottoson, Jakob; Albihn, Ann; Belák, Sándor; Vinnerås, Björn

    2011-06-01

    Hatchery waste, an animal by-product of the poultry industry, needs sanitation treatment before further use as fertilizer or as a substrate in biogas or composting plants, owing to the potential presence of opportunistic pathogens, including zoonotic viruses. Effective sanitation is also important in viral epizootic outbreaks and as a routine, ensuring high hygiene standards on farms. This study examined the use of ammonia at different concentrations and temperatures to disinfect hatchery waste. Inactivation kinetics of high-pathogenic avian influenza virus H7N1 and low-pathogenic avian influenza virus H5N3, as representatives of notifiable avian viral diseases, were determined in spiked hatchery waste. Bovine parainfluenza virus type 3, feline coronavirus, and feline calicivirus were used as models for other important avian pathogens, such as Newcastle disease virus, infectious bronchitis virus, and avian hepatitis E virus. Bacteriophage MS2 was also monitored as a stable indicator. Coronavirus was the most sensitive virus, with decimal reduction (D) values of 1.2 and 0.63 h after addition of 0.5% (wt/wt) ammonia at 14 and 25°C, respectively. Under similar conditions, high-pathogenic avian influenza H7N1 was the most resistant, with D values of 3.0 and 1.4 h. MS2 was more resistant than the viruses to all treatments and proved to be a suitable indicator of viral inactivation. The results indicate that ammonia treatment of hatchery waste is efficient in inactivating enveloped and naked single-stranded RNA viruses. Based on the D values and confidence intervals obtained, guidelines for treatment were proposed, and one was successfully validated at full scale at a hatchery, with MS2 added to hatchery waste.

  4. Awareness and Uptake of Human Papilloma Virus Vaccination and ...

    African Journals Online (AJOL)

    Awareness and Uptake of Human Papilloma Virus Vaccination and Cervical ... Multistage sampling was used to select 400 female undergraduate students that ... None of the respondents knew that sexual exposure to HPV could result in ...

  5. Human Papilloma Virus Vaccination for Control of Cervical Cancer ...

    African Journals Online (AJOL)

    Human Papilloma Virus Vaccination for Control of Cervical Cancer: A ... Primary HPV prevention may be the key to reducing incidence and burden of cervical cancer ... Other resources included locally-published articles and additional internet ...

  6. Research on human immunodeficiency virus (HIV) in Malawi: the ...

    African Journals Online (AJOL)

    Research on human immunodeficiency virus (HIV) in Malawi: the Johns Hopkins University- Ministry of Health (JHU-MOH) project. TE Taha, JK Canner, AM Wangel, JD Chiphangwi, NG Liomba, PG Miotti, GA Dallabetta, AJ Saah ...

  7. Human immunodeficiency virus (HIV) seropositivity and hepatitis B ...

    African Journals Online (AJOL)

    Method: A total of 130 donors comprising 120 commercial donors and 10 voluntary donors were tested for antibodies to human immunodeficiency virus and hepatitis B surface antigen in Benin city using Immunocomb HIV - 1 and 2 Biospot kit and Quimica Clinica Aplicada direct latex agglutination method respectively.

  8. Respiratory viruses involved in influenza-like illness in a Greek pediatric population during the winter period of the years 2005-2008.

    Science.gov (United States)

    Pogka, Vasiliki; Kossivakis, Athanasios; Kalliaropoulos, Antonios; Moutousi, Afroditi; Sgouras, Dionyssios; Panagiotopoulos, Takis; Chrousos, George P; Theodoridou, Maria; Syriopoulou, Vassiliki P; Mentis, Andreas F

    2011-10-01

    Viruses are the major cause of pediatric respiratory tract infection and yet many suspected cases of illness remain uncharacterized. This study aimed to determine the distribution of several respiratory viruses in children diagnosed as having influenza-like illness, over the winter period of 2005-2008. Molecular assays including conventional and real time PCR protocols, were employed to screen respiratory specimens, collected by clinicians of the Influenza sentinel system and of outpatient pediatric clinics, for identification of several respiratory viruses. Of 1,272 specimens tested, 814 (64%) were positive for at least one virus and included 387 influenza viruses, 160 rhinoviruses, 155 respiratory syncytial viruses, 95 adenoviruses, 81 bocaviruses, 47 parainfluenza viruses, 44 metapneumoviruses, and 30 coronaviruses. Simultaneous presence of two or three viruses was observed in 173 of the above positive cases, 21% of which included influenza virus and rhinovirus. The majority of positive cases occurred during January and February. Influenza virus predominated in children older than 1 year old, with type B being the dominant type for the first season and subtypes A/H3N2 and A/H1N1 the following two winter seasons, respectively. Respiratory syncytial virus prevailed in children younger than 2 years old, with subtypes A and B alternating from year to year. This is the most comprehensive study of the epidemiology of respiratory viruses in Greece, indicating influenza, rhinovirus and respiratory syncytial virus as major contributors to influenza-like illness in children. Copyright © 2011 Wiley-Liss, Inc.

  9. In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity

    DEFF Research Database (Denmark)

    Chen, Li-Mei; Blixt, Klas Ola; Stevens, James

    2012-01-01

    Acquisition of a2-6 sialoside receptor specificity by a2-3 specific highly-pathogenic avian influenza viruses (H5N1) is thought to be a prerequisite for efficient transmission in humans. By in vitro selection for binding a2-6 sialosides, we identified four variant viruses with amino acid....... Unlike the wild type H5N1, this mutant virus was transmitted by direct contact in the ferret model although not by airborne respiratory droplets. However, a reassortant virus with the mutant hemagglutinin, a human N2 neuraminidase and internal genes from an H5N1 virus was partially transmitted via...... respiratory droplets. The complex changes required for airborne transmissibility in ferrets suggest that extensive evolution is needed for H5N1 transmissibility in humans....

  10. The V protein of canine distemper virus is required for virus replication in human epithelial cells.

    Directory of Open Access Journals (Sweden)

    Noriyuki Otsuki

    Full Text Available Canine distemper virus (CDV becomes able to use human receptors through a single amino acid substitution in the H protein. In addition, CDV strains possessing an intact C protein replicate well in human epithelial H358 cells. The present study showed that CDV strain 007Lm, which was isolated from lymph node tissue of a dog with distemper, failed to replicate in H358 cells, although it possessed an intact C protein. Sequence analyses suggested that a cysteine-to-tyrosine substitution at position 267 of the V protein caused this growth defect. Analyses using H358 cells constitutively expressing the CDV V protein showed that the V protein with a cysteine, but not that with a tyrosine, at this position effectively blocked the interferon-stimulated signal transduction pathway, and supported virus replication of 007Lm in H358 cells. Thus, the V protein as well as the C protein appears to be functional and essential for CDV replication in human epithelial cells.

  11. Capturing public interest toward new tools for controlling human immunodeficiency virus (HIV) infection exploiting data from Google Trends.

    Science.gov (United States)

    Mahroum, Naim; Bragazzi, Nicola Luigi; Brigo, Francesco; Waknin, Roy; Sharif, Kassem; Mahagna, Hussein; Amital, Howard; Watad, Abdulla

    2018-04-01

    Human immunodeficiency virus vaccination and pre-exposure prophylaxis represent two different emerging preventive tools. Google Trends was used to assess the public interest toward these tools in terms of digital activities. Worldwide web searches concerning the human immunodeficiency virus vaccine represented 0.34 percent, 0.03 percent, and 46.97 percent of human immunodeficiency virus, acquired immune deficiency syndrome, and human immunodeficiency virus/acquired immune deficiency syndrome treatment-related Google Trends queries, respectively. Concerning temporal trends, digital activities were shown to increase from 0 percent as of 1 January 2004 percent to 46 percent as of 8 October 2017 with two spikes observed in May and July 2012, coinciding with the US Food and Drug Administration approval. Bursts in search number and volume were recorded as human immunodeficiency virus vaccine trials emerged. This search topic has decreased in the past decade in parallel to the increase in Truvada-related topics. Concentrated searches were noticed among African countries with high human immunodeficiency virus/acquired immune deficiency syndrome prevalence. Stakeholders should take advantage of public interest especially in preventive medicine in high disease burden countries.

  12. Avian influenza A (H7N9) virus infection in humans: epidemiology, evolution, and pathogenesis.

    Science.gov (United States)

    Husain, Matloob

    2014-12-01

    New human influenza A virus strains regularly emerge causing seasonal epidemics and occasional pandemics. Lately, several zoonotic avian influenza A strains have been reported to directly infect humans. In early 2013, a novel avian influenza A virus (H7N9) strain was discovered in China to cause severe respiratory disease in humans. Since then, over 450 human cases of H7N9 infection have been discovered and 165 of them have died. Multiple epidemiological, phylogenetic, in vivo, and in vitro studies have been done to determine the origin and pathogenesis of novel H7N9 strain. This article reviews the literature related to the epidemiology, evolution, and pathogenesis of the H7N9 strain since its discovery in February 2013 till August 2014. The data available so far indicate that H7N9 was originated by a two-step reassortment process in birds and transmitted to humans through direct contact with live-bird markets. H7N9 is a low-pathogenic avian virus and contains several molecular signatures for adaptation in mammals. The severity of the respiratory disease caused by novel H7N9 virus in humans can be partly attributed to the age, sex, and underlying medical conditions of the patients. A universal influenza vaccine is not available, though several strain-specific H7N9 candidate vaccine viruses have been developed. Further, novel H7N9 virus is resistant to antiviral drug amantadine and some H7N9 isolates have acquired the resistance to neuraminidase-inhibitors. Therefore, constant surveillance and prompt control measures combined with novel research approaches to develop alternative and effective anti-influenza strategies are needed to overcome influenza A virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Introduction of lymphadenopathy associated virus or human T lymphotropic virus (LAV/HTLV-III) into the male homosexual community in Amsterdam

    NARCIS (Netherlands)

    Coutinho, R. A.; Krone, W. J.; Smit, L.; Albrecht-van Lent, P.; van der Noordaa, J.; Schaesberg, W.; Goudsmit, J.

    1986-01-01

    To establish when lymphadenopathy associated virus or human T lymphotropic virus (LAV/HTLV-III) was introduced into the Netherlands, we studied a cohort of homosexual men who participated in a hepatitis B vaccine efficacy study between 1980 and 1982. On entry into the study (November 1980 to

  14. Immune reconstitution syndrome in a human immunodeficiency virus infected child due to giardiasis leading to shock

    Directory of Open Access Journals (Sweden)

    Sneha Nandy

    2015-01-01

    Full Text Available Human immunodeficiency virus (HIV-associated immune reconstitution inflammatory syndrome has been reported in association with tuberculosis, herpes zoster (shingles, Cryptococcus neoformans, Kaposi′s sarcoma, Pneumocystis pneumonia, hepatitis B virus, hepatitis C virus, herpes simplex virus, Histoplasma capsulatum, human papillomavirus, and Cytomegalovirus. However, it has never been documented with giardiasis. We present a 7-year-old HIV infected girl who developed diarrhea and shock following the initiation of antiretroviral therapy, and her stool showed the presence of giardiasis.

  15. Itaya virus, a Novel Orthobunyavirus Associated with Human Febrile Illness, Peru

    Science.gov (United States)

    Hontz, Robert D.; Guevara, Carolina; Halsey, Eric S.; Silvas, Jesus; Santiago, Felix W.; Widen, Steven G.; Wood, Thomas G.; Casanova, Wilma; Vasilakis, Nikos; Watts, Douglas M.; Kochel, Tadeusz J.; Ebihara, Hideki

    2015-01-01

    Our genetic analyses of uncharacterized bunyaviruses isolated in Peru identified a possible reassortant virus containing small and large gene segment sequences closely related to the Caraparu virus and a medium gene segment sequence potentially derived from an unidentified group C orthobunyavirus. Neutralization tests confirmed serologic distinction among the newly identified virus and the prototype and Caraparu strains. This virus, named Itaya, was isolated in 1999 and 2006 from febrile patients in the cities of Iquitos and Yurimaguas in Peru. The geographic distance between the 2 cases suggests that the Itaya virus could be widely distributed throughout the Amazon basin in northeastern Peru. Identification of a new Orthobunyavirus species that causes febrile disease in humans reinforces the need to expand viral disease surveillance in tropical regions of South America. PMID:25898901

  16. Itaya virus, a Novel Orthobunyavirus Associated with Human Febrile Illness, Peru.

    Science.gov (United States)

    Hontz, Robert D; Guevara, Carolina; Halsey, Eric S; Silvas, Jesus; Santiago, Felix W; Widen, Steven G; Wood, Thomas G; Casanova, Wilma; Vasilakis, Nikos; Watts, Douglas M; Kochel, Tadeusz J; Ebihara, Hideki; Aguilar, Patricia V

    2015-05-01

    Our genetic analyses of uncharacterized bunyaviruses isolated in Peru identified a possible reassortant virus containing small and large gene segment sequences closely related to the Caraparu virus and a medium gene segment sequence potentially derived from an unidentified group C orthobunyavirus. Neutralization tests confirmed serologic distinction among the newly identified virus and the prototype and Caraparu strains. This virus, named Itaya, was isolated in 1999 and 2006 from febrile patients in the cities of Iquitos and Yurimaguas in Peru. The geographic distance between the 2 cases suggests that the Itaya virus could be widely distributed throughout the Amazon basin in northeastern Peru. Identification of a new Orthobunyavirus species that causes febrile disease in humans reinforces the need to expand viral disease surveillance in tropical regions of South America.

  17. Bile salt-stimulated lipase from human milk binds DC-SIGN and inhibits human immunodeficiency virus type 1 transfer to CD4+ T cells

    NARCIS (Netherlands)

    Naarding, Marloes A.; Dirac, Annette M.; Ludwig, Irene S.; Speijer, Dave; Lindquist, Susanne; Vestman, Eva-Lotta; Stax, Martijn J.; Geijtenbeek, Teunis B. H.; Pollakis, Georgios; Hernell, Olle; Paxton, William A.

    2006-01-01

    A wide range of pathogens, including human immunodeficiency virus type 1 (HIV-1), hepatitis C virus, Ebola virus, cytomegalovirus, dengue virus, Mycobacterium, Leishmania, and Helicobacter pylori, can interact with dendritic cell (DC)-specific ICAM3-grabbing nonintegrin (DC-SIGN), expressed on DCs

  18. Serological Evidence of Human Infection with Avian Influenza A H7virus in Egyptian Poultry Growers.

    Science.gov (United States)

    Gomaa, Mokhtar R; Kandeil, Ahmed; Kayed, Ahmed S; Elabd, Mona A; Zaki, Shaimaa A; Abu Zeid, Dina; El Rifay, Amira S; Mousa, Adel A; Farag, Mohamed M; McKenzie, Pamela P; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2016-01-01

    Avian influenza viruses circulate widely in birds, with occasional human infections. Poultry-exposed individuals are considered to be at high risk of infection with avian influenza viruses due to frequent exposure to poultry. Some avian H7 viruses have occasionally been found to infect humans. Seroprevalence of neutralizing antibodies against influenza A/H7N7 virus among poultry-exposed and unexposed individuals in Egypt were assessed during a three-years prospective cohort study. The seroprevalence of antibodies (titer, ≥80) among exposed individuals was 0%, 1.9%, and 2.1% annually while the seroprevalence among the control group remained 0% as measured by virus microneutralization assay. We then confirmed our results using western blot and immunofluorescence assays. Although human infection with H7 in Egypt has not been reported yet, our results suggested that Egyptian poultry growers are exposed to avian H7 viruses. These findings highlight the need for surveillance in the people exposed to poultry to monitor the risk of zoonotic transmission of avian influenza viruses.

  19. Serological Evidence of Human Infection with Avian Influenza A H7virus in Egyptian Poultry Growers.

    Directory of Open Access Journals (Sweden)

    Mokhtar R Gomaa

    Full Text Available Avian influenza viruses circulate widely in birds, with occasional human infections. Poultry-exposed individuals are considered to be at high risk of infection with avian influenza viruses due to frequent exposure to poultry. Some avian H7 viruses have occasionally been found to infect humans. Seroprevalence of neutralizing antibodies against influenza A/H7N7 virus among poultry-exposed and unexposed individuals in Egypt were assessed during a three-years prospective cohort study. The seroprevalence of antibodies (titer, ≥80 among exposed individuals was 0%, 1.9%, and 2.1% annually while the seroprevalence among the control group remained 0% as measured by virus microneutralization assay. We then confirmed our results using western blot and immunofluorescence assays. Although human infection with H7 in Egypt has not been reported yet, our results suggested that Egyptian poultry growers are exposed to avian H7 viruses. These findings highlight the need for surveillance in the people exposed to poultry to monitor the risk of zoonotic transmission of avian influenza viruses.

  20. Genomic heterogeneity among human and nonhuman strains of hepatitis A virus

    International Nuclear Information System (INIS)

    Lemon, S.M.; Chao, S.F.; Jansen, R.W.; Binn, L.N.; LeDuc, J.W.

    1987-01-01

    Cloned cDNA probes derived from the P1 and P2 regions of the genome of HM175 virus, a reference strain of human hepatitis A virus (HAV), failed to hybridize under standard stringency criteria with RNA from PA21 and PA33 viruses, two epizootiologically related HAV strains recovered from naturally infected New World owl monkeys. Hybridization of these probes to PA21 RNA was only evident under reduced stringency conditions. However, cDNA representing the 5' nontranslated region of the MH175 genome hybridized equally to HM175 and PA21 RNA under standard stringency conditions, while a probe derived from the 3', 1400 bases of the genome yielded a reduced hybridization signal with PA21 RNA. In contrast, no differences could be discerned between HM175 virus and three other HAV strains of human origin (GR8, LV374, and MS1) in any region of the genome, unless increased stringency conditions were used. These results suggest that PA21 and PA33 are unique among HAV isolates and may represent a virus native to the owl monkey. Despite extremely poor homology within the P1 region, which encodes capsid polypeptides, monoclonal antibody analysis confirmed that the immunodominant neutralization epitopes of HAV were highly conserved between HM175 and PA21 viruses. These data provide molecular evidence for the existence of HAV strains unique to nonhuman species and indicate that strict conservation of antigenic function may accompany substantial genetic divergence in HAV

  1. Significant rising antibody titres to influenza A are associated with an acute reduction in milk yield in cattle.

    Science.gov (United States)

    Crawshaw, Timothy R; Brown, Ian H; Essen, Steve C; Young, Stuart C L

    2008-10-01

    Sporadic cases of an acute fall in milk production, "milk drop", were investigated in a Holstein Friesian dairy herd in Devon. The investigation was a case control study with two controls per case. Paired blood samples demonstrated that rising antibody titres to human influenza A/England/333/80 (H1N1) and human influenza A/Eng/427/88 (H3N2) were associated with an acute fall in milk production. Rising titres to bovine respiratory syncytial virus (BRSV), bovine virus diarrhoea virus (BVD), infectious bovine rhinotracheitis (IBR) and parainfluenza virus 3 (PI3) were not associated with an acute fall in milk production. Cases with rises in antibody to influenza A had significantly higher respiratory scores and rectal temperatures than their controls. The mean loss of milk production for the cases with rises in antibody to influenza A compared to their controls was 159.9L. This study provides further evidence that influenza A persists in cattle and causes clinical disease.

  2. Human papilloma virus in oral cancer

    OpenAIRE

    Kim, Soung Min

    2016-01-01

    Cervical cancer is the second most prevalent cancer among women, and it arises from cells that originate in the cervix uteri. Among several causes of cervical malignancies, infection with some types of human papilloma virus (HPV) is well known to be the greatest cervical cancer risk factor. Over 150 subtypes of HPV have been identified; more than 40 types of HPVs are typically transmitted through sexual contact and infect the anogenital region and oral cavity. The recently introduced vaccine ...

  3. Highly Pathogenic Avian Influenza A(H5N1) Viruses at the Animal-Human Interface in Vietnam, 2003-2010.

    Science.gov (United States)

    Creanga, Adrian; Hang, Nguyen Le Khanh; Cuong, Vuong Duc; Nguyen, Ha T; Phuong, Hoang Vu Mai; Thanh, Le Thi; Thach, Nguyen Co; Hien, Pham Thi; Tung, Nguyen; Jang, Yunho; Balish, Amanda; Dang, Nguyen Hoang; Duong, Mai Thuy; Huong, Ngo Thu; Hoa, Do Ngoc; Tho, Nguyen Dang; Klimov, Alexander; Kapella, Bryan K; Gubareva, Larisa; Kile, James C; Hien, Nguyen Tran; Mai, Le Quynh; Davis, C Todd

    2017-09-15

    Mutation and reassortment of highly pathogenic avian influenza A(H5N1) viruses at the animal-human interface remain a major concern for emergence of viruses with pandemic potential. To understand the relationship of H5N1 viruses circulating in poultry and those isolated from humans, comprehensive phylogenetic and molecular analyses of viruses collected from both hosts in Vietnam between 2003 and 2010 were performed. We examined the temporal and spatial distribution of human cases relative to H5N1 poultry outbreaks and characterized the genetic lineages and amino acid substitutions in each gene segment identified in humans relative to closely related viruses from avian hosts. Six hemagglutinin clades and 8 genotypes were identified in humans, all of which were initially identified in poultry. Several amino acid mutations throughout the genomes of viruses isolated from humans were identified, indicating the potential for poultry viruses infecting humans to rapidly acquire molecular markers associated with mammalian adaptation and antiviral resistance. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  4. The potential application of a transcriptionally regulated oncolytic herpes simplex virus for human cancer therapy

    Science.gov (United States)

    Miao, L; Fraefel, C; Sia, K C; Newman, J P; Mohamed-Bashir, S A; Ng, W H; Lam, P Y P

    2014-01-01

    Background: Emerging studies have shown the potential benefit of arming oncolytic viruses with therapeutic genes. However, most of these therapeutic genes are placed under the regulation of ubiquitous viral promoters. Our goal is to generate a safer yet potent oncolytic herpes simplex virus type-1 (HSV-1) for cancer therapy. Methods: Using bacterial artificial chromosome (BAC) recombineering, a cell cycle-regulatable luciferase transgene cassette was replaced with the infected cell protein 6 (ICP6) coding region (encoded for UL39 or large subunit of ribonucleotide reductase) of the HSV-1 genome. These recombinant viruses, YE-PC8, were further tested for its proliferation-dependent luciferase gene expression. Results: The ability of YE-PC8 to confer proliferation-dependent transgene expression was demonstrated by injecting similar amount of viruses into the tumour-bearing region of the brain and the contralateral normal brain parenchyma of the same mouse. The results showed enhanced levels of luciferase activities in the tumour region but not in the normal brain parenchyma. Similar findings were observed in YE-PC8-infected short-term human brain patient-derived glioma cells compared with normal human astrocytes. intratumoural injection of YE-PC8 viruses resulted in 77% and 80% of tumour regression in human glioma and human hepatocellular carcinoma xenografts, respectively. Conclusion: YE-PC8 viruses confer tumour selectivity in proliferating cells and may be developed further as a feasible approach to treat human cancers. PMID:24196790

  5. Epidemiology and pathogesis of human immunodifiency virus(HIV ...

    African Journals Online (AJOL)

    Epidemiology and pathogesis of human immunodifiency virus(HIV) related heart disease: A review. MU Sani, BN Okeahialam. Abstract. No Abstract. Nigerian Journal of Medicine Vol. 14(3) 2005: 255-260. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African ...

  6. Management of human immunodeficiency virus (HIV) infection in ...

    African Journals Online (AJOL)

    Management of human immunodeficiency virus (HIV) infection in adults in resource-limited countries: Challenges and prospects in Nigeria. AG Habib. Abstract. No Abstract. Annals of Ibadan Postgraduate Medicine Vol. 3 (1) 2005: pp. 26-32. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL ...

  7. Avian and human influenza virus compatible sialic acid receptors in little brown bats.

    Science.gov (United States)

    Chothe, Shubhada K; Bhushan, Gitanjali; Nissly, Ruth H; Yeh, Yin-Ting; Brown, Justin; Turner, Gregory; Fisher, Jenny; Sewall, Brent J; Reeder, DeeAnn M; Terrones, Mauricio; Jayarao, Bhushan M; Kuchipudi, Suresh V

    2017-04-06

    Influenza A viruses (IAVs) continue to threaten animal and human health globally. Bats are asymptomatic reservoirs for many zoonotic viruses. Recent reports of two novel IAVs in fruit bats and serological evidence of avian influenza virus (AIV) H9 infection in frugivorous bats raise questions about the role of bats in IAV epidemiology. IAVs bind to sialic acid (SA) receptors on host cells, and it is widely believed that hosts expressing both SA α2,3-Gal and SA α2,6-Gal receptors could facilitate genetic reassortment of avian and human IAVs. We found abundant co-expression of both avian (SA α2,3-Gal) and human (SA α2,6-Gal) type SA receptors in little brown bats (LBBs) that were compatible with avian and human IAV binding. This first ever study of IAV receptors in a bat species suggest that LBBs, a widely-distributed bat species in North America, could potentially be co-infected with avian and human IAVs, facilitating the emergence of zoonotic strains.

  8. Human keratinocytes restrict chikungunya virus replication at a post-fusion step

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Eric [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Hamel, Rodolphe [Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle, UMR 5290 CNRS/IRD/UM1, Montpellier (France); Neyret, Aymeric [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Ekchariyawat, Peeraya [Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle, UMR 5290 CNRS/IRD/UM1, Montpellier (France); Molès, Jean-Pierre [INSERM U1058, UM1, CHU Montpellier (France); Simmons, Graham [Blood Systems Research Institute, San Francisco, CA 94118 (United States); Chazal, Nathalie [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Desprès, Philippe [Unité Interactions Moléculaires Flavivirus-Hôtes, Institut Pasteur, Paris (France); and others

    2015-02-15

    Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses. - Highlights: • Human keratinocytes support endocytosis of CHIKV and fusion of viral membranes. • CHIKV replication is blocked at a post entry step in these cells. • Infection upregulates type-I, –II and –III IFN genes expression. • Keratinocytes behave as immune sentinels against CHIKV.

  9. Human keratinocytes restrict chikungunya virus replication at a post-fusion step

    International Nuclear Information System (INIS)

    Bernard, Eric; Hamel, Rodolphe; Neyret, Aymeric; Ekchariyawat, Peeraya; Molès, Jean-Pierre; Simmons, Graham; Chazal, Nathalie; Desprès, Philippe

    2015-01-01

    Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses. - Highlights: • Human keratinocytes support endocytosis of CHIKV and fusion of viral membranes. • CHIKV replication is blocked at a post entry step in these cells. • Infection upregulates type-I, –II and –III IFN genes expression. • Keratinocytes behave as immune sentinels against CHIKV

  10. A Review of the Antiviral Susceptibility of Human and Avian Influenza Viruses over the Last Decade

    Science.gov (United States)

    Oh, Ding Yuan; Hurt, Aeron C.

    2014-01-01

    Antivirals play an important role in the prevention and treatment of influenza infections, particularly in high-risk or severely ill patients. Two classes of influenza antivirals have been available in many countries over the last decade (2004–2013), the adamantanes and the neuraminidase inhibitors (NAIs). During this period, widespread adamantane resistance has developed in circulating influenza viruses rendering these drugs useless, resulting in the reliance on the most widely available NAI, oseltamivir. However, the emergence of oseltamivir-resistant seasonal A(H1N1) viruses in 2008 demonstrated that NAI-resistant viruses could also emerge and spread globally in a similar manner to that seen for adamantane-resistant viruses. Previously, it was believed that NAI-resistant viruses had compromised replication and/or transmission. Fortunately, in 2013, the majority of circulating human influenza viruses remain sensitive to all of the NAIs, but significant work by our laboratory and others is now underway to understand what enables NAI-resistant viruses to retain the capacity to replicate and transmit. In this review, we describe how the susceptibility of circulating human and avian influenza viruses has changed over the last ten years and describe some research studies that aim to understand how NAI-resistant human and avian influenza viruses may emerge in the future. PMID:24800107

  11. Founder virus population related to route of virus transmission: a determinant of intrahost human immunodeficiency virus type 1 evolution?

    NARCIS (Netherlands)

    Lukashov, V. V.; Goudsmit, J.

    1997-01-01

    We and others have shown that in individual human immunodeficiency virus type 1 (HIV-1) infection, the adaptive evolution of HIV-1 is influenced by host immune competence. In this study, we tested the hypothesis that in addition to selective forces operating within the host, transmission bottlenecks

  12. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution

    Directory of Open Access Journals (Sweden)

    Nauwynck Hans J

    2010-02-01

    Full Text Available Abstract Background Throughout the history of human influenza pandemics, pigs have been considered the most likely "mixing vessel" for reassortment between human and avian influenza viruses (AIVs. However, the replication efficiencies of influenza viruses from various hosts, as well as the expression of sialic acid (Sia receptor variants in the entire porcine respiratory tract have never been studied in detail. Therefore, we established porcine nasal, tracheal, bronchial and lung explants, which cover the entire porcine respiratory tract with maximal similarity to the in vivo situation. Subsequently, we assessed virus yields of three porcine, two human and six AIVs in these explants. Since our results on virus replication were in disagreement with the previously reported presence of putative avian virus receptors in the trachea, we additionally studied the distribution of sialic acid receptors by means of lectin histochemistry. Human (Siaα2-6Gal and avian virus receptors (Siaα2-3Gal were identified with Sambucus Nigra and Maackia amurensis lectins respectively. Results Compared to swine and human influenza viruses, replication of the AIVs was limited in all cultures but most strikingly in nasal and tracheal explants. Results of virus titrations were confirmed by quantification of infected cells using immunohistochemistry. By lectin histochemistry we found moderate to abundant expression of the human-like virus receptors in all explant systems but minimal binding of the lectins that identify avian-like receptors, especially in the nasal, tracheal and bronchial epithelium. Conclusions The species barrier that restricts the transmission of influenza viruses from one host to another remains preserved in our porcine respiratory explants. Therefore this system offers a valuable alternative to study virus and/or host properties required for adaptation or reassortment of influenza viruses. Our results indicate that, based on the expression of Sia

  13. Long-term survival outcomes in patients with surgically treated oropharyngeal cancer and defined human papilloma virus status.

    Science.gov (United States)

    Dale, O T; Sood, S; Shah, K A; Han, C; Rapozo, D; Mehanna, H; Winter, S C

    2016-11-01

    This study investigated long-term survival outcomes in surgically treated oropharyngeal cancer patients with known human papilloma virus status. A case note review was performed of all patients undergoing primary surgery for oropharyngeal cancer in a single centre over a 10-year period. Human papilloma virus status was determined via dual modality testing. Associations between clinicopathological variables and survival were identified using a log-rank test. Of the 107 cases in the study, 40 per cent (n = 41) were human papilloma virus positive. The positive and negative predictive values of p16 immunohistochemistry for human papilloma virus status were 57 per cent and 100 per cent, respectively. At a mean follow up of 59.5 months, 5-year overall and disease-specific survival estimates were 78 per cent and 69 per cent, respectively. Human papilloma virus status (p = 0.014), smoking status (p = 0.021) and tumour stage (p = 0.03) were significant prognostic indicators. The long-term survival rates in surgically treated oropharyngeal cancer patients were comparable to other studies. Variables including human papilloma virus status and tumour stage were associated with survival in patients treated with primary surgery; however, nodal stage and presence of extracapsular spread were non-prognostic.

  14. Influenza A Virus with a Human-Like N2 Gene Is Circulating in Pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2013-01-01

    A novel reassortant influenza A virus, H1avN2hu, has been found in Danish swine. The virus contains an H1 gene similar to the hemagglutinin (HA) gene of H1N1 avian-like swine viruses and an N2 gene most closely related to the neuraminidase (NA) gene of human H3N2 viruses from the mid-1990s....

  15. Influenza A Viruses of Human Origin in Swine, Brazil

    Science.gov (United States)

    Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-01-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil’s swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009–2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance. PMID:26196759

  16. Seroprevalence of viral and bacterial diseases among the bovines in Himachal Pradesh, India

    Directory of Open Access Journals (Sweden)

    Shailja Katoch

    2017-12-01

    Full Text Available Aim: The study was designed to measure the seroprevalence of viral and bacterial diseases: Infectious bovine rhinotracheitis, bovine viral diarrhea, bovine leukemia, bovine parainfluenza, bovine respiratory syncytial disease, brucellosis, and paratuberculosis among bovine of Himachal Pradesh during the year 2013-2015. Materials and Methods: The serum samples were collected from seven districts of state, namely, Bilaspur, Kangra, Kinnaur, Lahul and Spiti, Mandi, Sirmour, and Solan. The samples were screened using indirect ELISA kits to measure the seroprevalence of viral and bacterial diseases. Results: The overall seroprevalence of infectious bovine rhinotracheitis was 24.24%, bovine viral diarrhea 1.52%, bovine leukemia 9.09%, bovine parainfluenza 57.58%, bovine respiratory syncytial disease 50%, brucellosis 19.69%, and paratuberculosis 9.09% in Himachal Pradesh. The seroprevalence of bovine rhinotracheitis, bovine leukemia, bovine parainfluenza, bovine respiratory syncytial disease, and paratuberculosis in the state varied significantly (p0.01. Multiple seropositivity has been observed in this study. Bovine parainfluenza virus 3 was observed commonly in mixed infection with almost all viruses and bacteria under study. Conclusion: The viral and bacterial diseases are prevalent in the seven districts of Himachal Pradesh investigated in the study. Therefore, appropriate management practices and routine vaccination programs should be adopted to reduce the prevalence of these diseases.

  17. Effect of compounds with antibacterial activities in human milk on respiratory syncytial virus and cytomegalovirus in vitro.

    Science.gov (United States)

    Portelli, J; Gordon, A; May, J T

    1998-11-01

    The effect of some antibacterial compounds present in human milk were tested for antiviral activity against respiratory syncytial virus, Semliki Forest virus and cytomegalovirus. These included the gangliosides GM1, GM2 and GM3, sialyl-lactose, lactoferrin and chondroitin sulphate A, B and C, which were all tested for their ability to inhibit the viruses in cell culture. Of the compounds tested, only the ganglioside GM2, chondroitin sulphate B and lactoferrin inhibited the absorption and growth of respiratory syncytial virus in cell culture, and none inhibited the growth of Semliki Forest virus, indicating that lipid antiviral activity was not associated with any of the gangliosides. While the concentrations of these two compounds required to inhibit respiratory syncytial virus were in excess of those present in human milk, sialyl-lactose concentrations similar to those present in human milk increased the growth of cytomegalovirus. Lactoferrin was confirmed as inhibiting both respiratory syncytial virus and cytomegalovirus growth in culture even when used at lower concentrations than those present in human milk. The antiviral activities of GM2, chondroitin sulphate B and lactoferrin were tested when added to an infant formula. Lactoferrin continued to have antiviral activity against cytomegalovirus, but a lower activity against respiratory syncytial virus; ganglioside GM2 and chondroitin sulphate B still maintained antiviral activity against respiratory syncytial virus.

  18. Suppression of chikungunya virus replication and differential innate responses of human peripheral blood mononuclear cells during co-infection with dengue virus

    NARCIS (Netherlands)

    Silva, Mariana Ruiz; Briseno, Jose A. Aguilar; Upasani, Vinit; van der Ende-Metselaar, Heidi; Smit, Jolanda M.; Rodenhuis-Zybert, Izabela A.

    2017-01-01

    Dengue and chikungunya are viral diseases transmitted to humans by infected Aedes spp. mosquitoes. With an estimated 390 million infected people per year dengue virus (DENV) currently causes the most prevalent arboviral disease. During the last decade chikungunya virus (CHIKV) has caused large

  19. Surgical excision for recurrent herpes simplex virus 2 (HSV-2) anogenital infection in a patient with human immunodeficiency virus (HIV).

    Science.gov (United States)

    Arinze, Folasade; Shaver, Aaron; Raffanti, Stephen

    2017-10-01

    Recurrent anogenital herpes simplex virus infections are common in patients with human immunodeficiency virus (HIV), of whom approximately 5% develop resistance to acyclovir. We present a case of a 49-year-old man with HIV who had an 8-year history of recurrent left inguinal herpes simplex virus type 2 ulcerations. He initially responded to oral acyclovir, but developed resistance to acyclovir and eventually foscarnet. The lesion progressed to a large hypertrophic mass that required surgical excision, which led to resolution without recurrences. Our case highlights the importance of surgical excision as a treatment option in refractory herpes simplex virus anogenital infections.

  20. Radiomic analysis in prediction of Human Papilloma Virus status.

    Science.gov (United States)

    Yu, Kaixian; Zhang, Youyi; Yu, Yang; Huang, Chao; Liu, Rongjie; Li, Tengfei; Yang, Liuqing; Morris, Jeffrey S; Baladandayuthapani, Veerabhadran; Zhu, Hongtu

    2017-12-01

    Human Papilloma Virus (HPV) has been associated with oropharyngeal cancer prognosis. Traditionally the HPV status is tested through invasive lab test. Recently, the rapid development of statistical image analysis techniques has enabled precise quantitative analysis of medical images. The quantitative analysis of Computed Tomography (CT) provides a non-invasive way to assess HPV status for oropharynx cancer patients. We designed a statistical radiomics approach analyzing CT images to predict HPV status. Various radiomics features were extracted from CT scans, and analyzed using statistical feature selection and prediction methods. Our approach ranked the highest in the 2016 Medical Image Computing and Computer Assisted Intervention (MICCAI) grand challenge: Oropharynx Cancer (OPC) Radiomics Challenge, Human Papilloma Virus (HPV) Status Prediction. Further analysis on the most relevant radiomic features distinguishing HPV positive and negative subjects suggested that HPV positive patients usually have smaller and simpler tumors.

  1. Caveolin-1 influences human influenza A virus (H1N1 multiplication in cell culture

    Directory of Open Access Journals (Sweden)

    Hemgård Gun-Viol

    2010-05-01

    Full Text Available Abstract Background The threat of recurring influenza pandemics caused by new viral strains and the occurrence of escape mutants necessitate the search for potent therapeutic targets. The dependence of viruses on cellular factors provides a weak-spot in the viral multiplication strategy and a means to interfere with viral multiplication. Results Using a motif-based search strategy for antiviral targets we identified caveolin-1 (Cav-1 as a putative cellular interaction partner of human influenza A viruses, including the pandemic influenza A virus (H1N1 strains of swine origin circulating from spring 2009 on. The influence of Cav-1 on human influenza A/PR/8/34 (H1N1 virus replication was determined in inhibition and competition experiments. RNAi-mediated Cav-1 knock-down as well as transfection of a dominant-negative Cav-1 mutant results in a decrease in virus titre in infected Madin-Darby canine kidney cells (MDCK, a cell line commonly used in basic influenza research as well as in virus vaccine production. To understand the molecular basis of the phenomenon we focussed on the putative caveolin-1 binding domain (CBD located in the lumenal, juxtamembranal portion of the M2 matrix protein which has been identified in the motif-based search. Pull-down assays and co-immunoprecipitation experiments showed that caveolin-1 binds to M2. The data suggest, that Cav-1 modulates influenza virus A replication presumably based on M2/Cav-1 interaction. Conclusion As Cav-1 is involved in the human influenza A virus life cycle, the multifunctional protein and its interaction with M2 protein of human influenza A viruses represent a promising starting point for the search for antiviral agents.

  2. Epstein–Barr Virus-Induced Metabolic Rearrangements in Human B-Cell Lymphomas

    Directory of Open Access Journals (Sweden)

    Pier P. Piccaluga

    2018-06-01

    Full Text Available Tumor metabolism has been the object of several studies in the past, leading to the pivotal observation of a consistent shift toward aerobic glycolysis (so-called Warburg effect. More recently, several additional investigations proved that tumor metabolism is profoundly affected during tumorigenesis, including glucose, lipid and amino-acid metabolism. It is noticeable that metabolic reprogramming can represent a suitable therapeutic target in many cancer types. Epstein–Barr virus (EBV was the first virus linked with cancer in humans when Burkitt lymphoma (BL was described. Besides other well-known effects, it was recently demonstrated that EBV can induce significant modification in cell metabolism, which may lead or contribute to neoplastic transformation of human cells. Similarly, virus-induced tumorigenesis is characterized by relevant metabolic abnormalities directly induced by the oncoviruses. In this article, the authors critically review the most recent literature concerning EBV-induced metabolism alterations in lymphomas.

  3. Wipes coated with a singlet-oxygen-producing photosensitizer are effective against human influenza virus but not against norovirus

    NARCIS (Netherlands)

    Verhaelen, Katharina; Bouwknegt, Martijn; Rutjes, Saskia; de Roda Husman, Ana Maria; Duizer, Erwin

    2014-01-01

    Transmission of enteric and respiratory viruses, including human norovirus (hNoV) and human influenza virus, may involve surfaces. In food preparation and health care settings, surfaces are cleaned with wipes; however, wiping may not efficiently reduce contamination or may even spread viruses,

  4. Human Papilloma Virus vaccination: knowledge, attitude and uptake ...

    African Journals Online (AJOL)

    Human Papilloma Virus vaccination: knowledge, attitude and uptake among female medical and dental students in a tertiary institution in Benin-City, Nigeria. ... Age (p = 0.001), faculty (p = 0.014) and level of study (p = 0.014) was observed to be significant determinants of knowledge. A higher proportion of respondents ...

  5. Respiratory viruses in children hospitalized for acute lower respiratory tract infection in Ghana.

    Science.gov (United States)

    Kwofie, Theophilus B; Anane, Yaw A; Nkrumah, Bernard; Annan, Augustina; Nguah, Samuel B; Owusu, Michael

    2012-04-10

    Acute respiratory tract infections are one of the major causes of morbidity and mortality among young children in developing countries. Information on the viral aetiology of acute respiratory infections in developing countries is very limited. The study was done to identify viruses associated with acute lower respiratory tract infection among children less than 5 years. Nasopharyngeal samples and blood cultures were collected from children less than 5 years who have been hospitalized for acute lower respiratory tract infection. Viruses and bacteria were identified using Reverse Transcriptase Real-Time Polymerase Chain Reaction and conventional biochemical techniques. Out of 128 patients recruited, 33(25.88%%, 95%CI: 18.5% to 34.2%) were positive for one or more viruses. Respiratory Syncytial Virus (RSV) was detected in 18(14.1%, 95%CI: 8.5% to 21.3%) patients followed by Adenoviruses (AdV) in 13(10.2%, 95%CI: 5.5% to 16.7%), Parainfluenza (PIV type: 1, 2, 3) in 4(3.1%, 95%CI: 0.9% to 7.8%) and influenza B viruses in 1(0.8%, 95%CI: 0.0 to 4.3). Concomitant viral and bacterial co-infection occurred in two patients. There were no detectable significant differences in the clinical signs, symptoms and severity for the various pathogens isolated. A total of 61.1% (22/36) of positive viruses were detected during the rainy season and Respiratory Syncytial Virus was the most predominant. The study has demonstrated an important burden of respiratory viruses as major causes of childhood acute respiratory infection in a tertiary health institution in Ghana. The data addresses a need for more studies on viral associated respiratory tract infection.

  6. Human influenza viruses and CD8(+) T cell responses.

    Science.gov (United States)

    Grant, Emma J; Quiñones-Parra, Sergio M; Clemens, E Bridie; Kedzierska, Katherine

    2016-02-01

    Influenza A viruses (IAVs) cause significant morbidity and mortality worldwide, despite new strain-specific vaccines being available annually. As IAV-specific CD8(+) T cells promote viral control in the absence of neutralizing antibodies, and can mediate cross-reactive immunity toward distinct IAVs to drive rapid recovery from both mild and severe influenza disease, there is great interest in developing a universal T cell vaccine. However, despite detailed studies in mouse models of influenza virus infection, there is still a paucity of data on human epitope-specific CD8(+) T cell responses to IAVs. This review focuses on our current understanding of human CD8(+) T cell immunity against distinct IAVs and discusses the possibility of achieving a CD8(+) T cell mediated-vaccine that protects against multiple, distinct IAV strains across diverse human populations. We also review the importance of CD8(+) T cell immunity in individuals highly susceptible to severe influenza infection, including those hospitalised with influenza, the elderly and Indigenous populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Detection methods for human enteric viruses in representative foods.

    Science.gov (United States)

    Leggitt, P R; Jaykus, L A

    2000-12-01

    Although viral foodborne disease is a significant problem, foods are rarely tested for viral contamination, and when done, testing is limited to shellfish commodities. In this work, we report a method to extract and detect human enteric viruses from alternative food commodities using an elution-concentration approach followed by detection using reverse transcription-polymerase chain reaction (RT-PCR). Fifty-gram lettuce or hamburger samples were artificially inoculated with poliovirus type 1 (PV1), hepatitis A virus (HAV), or the Norwalk virus and processed by the sequential steps of homogenization, filtration, Freon extraction (hamburger), and polyethylene glycol (PEG) precipitation. To reduce volumes further and remove RT-PCR inhibitors, a secondary PEG precipitation was necessary, resulting in an overall 10- to 20-fold sample size reduction from 50 g to 3 to 5 ml. Virus recoveries in secondary PEG concentrates ranged from 10 to 70% for PV1 and 2 to 4% for HAV as evaluated by mammalian cell culture infectivity assay. Total RNA from PEG concentrates was extracted to a small volume (30 to 40 microl) and subjected to RT-PCR amplification of viral RNA sequences. Detection limit studies indicated that viral RNA was consistently detected by RT-PCR at initial inoculum levels > or =102 PFU/50-g food sample for PV1 and > or =10(3) PFU/50-g food sample for HAV. In similar studies with the Norwalk virus, detection at inoculum levels > or =1.5 X 10(3) PCR-amplifiable units/50-g sample for both food products was possible. All RT-PCR amplicons were confirmed by subsequent Southern hybridization. The procedure reported represents progress toward the development of methods to detect human enteric viral contamination in foods other than shellfish.

  8. A reverse genetic analysis of human Influenza A virus H1N2

    OpenAIRE

    Anton, Aline

    2010-01-01

    Reassortment between influenza A viruses of different subtypes rarely appears. Even in a community where H1N1 and H3N2 viruses co-circulate, reassortment to produce persistent viruses of mixed gene segments does not readily occur. H1N2 viruses, that circulated between 2001-2003 were considered to have arisen through the reassortment of the two human influenza subtypes H1N1 and H3N2. Due to the fact they make such a rare appearance, H1N2 viruses used to have new characteristics compared to the...

  9. Metapneumovirus humano (hMPV asociado con exacerbación de asma aguda bronquial severa Human Metapneumovirus (hMPV associated to severe bronchial asthmatic crisis

    Directory of Open Access Journals (Sweden)

    M. A. López

    2006-09-01

    Full Text Available El metapneumovirus humano (hMPV es un nuevo agente causal de infección aguda del tracto respiratorio, recientemente reportado tras su hallazgo en niños, jóvenes, adultos y ancianos. Las manifestaciones clínicas producidas por el hMPV son indistinguibles de aquellas provocadas por los virus respiratorios clásicamente conocidos, y varían desde infección asintomática hasta neumonía complicada. Por otro lado, se han descrito casos de exacerbación de asma bronquial asociados a la infección con hMPV. En este trabajo se describe el caso de un niño hospitalizado que presentó una crisis asmática bronquial severa con sospecha de una infección viral asociada. Por el test de inmunofluorescencia indirecta no se detectaron virus sincicial respiratorio (VSR, adenovirus, virus influenza a - b ni virus parainfluenza 1, 2 y 3. En un intento por detectar la presencia de hMPV, se realizó una RT-PCR para la amplificación de los genes N y F con resultado positivo. Conforme a nuestro conocimiento, esta sería la primera descripción de un caso de exacerbación de asma asociado a hMPV en nuestra región. Los resultados de este estudio serían similares a los reportados por otros autores, quienes postulan que, a semejanza de lo que ocurre con el VSR, una infección por hMPV puede gatillar una enfermedad respiratoria crónica, como el asma.Human Metapneumovirus (hMPV is a recently reported agent of acute infection in the respiratory tract. It has been found in children as well as in young adults and elders. The clinical manifestations produced by hMPV are indistinguishable from those by common respiratory virus, and can evolve from asymptomatic infection into severe pneumonia. On the other hand, some authors have described cases of bronchial asthma exacerbation associated with hMPV infection. In this work we report a case of a child who presented a severe bronchial asthmatic crisis with a suspected viral associated infection. Immunofluorescence tests

  10. Published sequences do not support transfer of oseltamivir resistance mutations from avian to human influenza A virus strains.

    Science.gov (United States)

    Norberg, Peter; Lindh, Magnus; Olofsson, Sigvard

    2015-03-28

    Tamiflu (oseltamivir phosphate ester, OE) is a widely used antiviral active against influenza A virus. Its active metabolite, oseltamivir carboxylate (OC), is chemically stable and secreted into wastewater treatment plants. OC contamination of natural habitats of waterfowl might induce OC resistance in influenza viruses persistently infecting waterfowl, and lead to transfer of OC-resistance from avian to human influenza. The aim of this study was to evaluate whether such has occurred. A genomics approach including phylogenetic analysis and probability calculations for homologous recombination was applied on altogether 19,755 neuraminidase (N1 and N2) genes from virus sampled in humans and birds, with and without resistance mutations. No evidence for transfer of OE resistance mutations from avian to human N genes was obtained, and events suggesting recombination between human and avian influenza virus variants could not be traced in the sequence material studied. The results indicate that resistance in influenza viruses infecting humans is due to the selection pressure posed by the global OE administration in humans rather than transfer from avian influenza A virus strains carrying mutations induced by environmental exposure to OC.

  11. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  12. Compatibility of a bivalent modified-live vaccine against Bordetella bronchiseptica and CPiV, and a trivalent modified-live vaccine against CPV, CDV and CAV-2.

    Science.gov (United States)

    Jacobs, A A C; Bergman, J G H E; Theelen, R P H; Jaspers, R; Helps, J M; Horspool, L J I; Paul, G

    2007-01-13

    Eight puppies (group 1) were vaccinated once with a bivalent modified-live vaccine against infectious tracheobronchitis by the intranasal route and at the same time with an injectable trivalent vaccine against canine parvovirus, canine distemper virus and canine adenovirus; a second group of eight puppies (group 2) was vaccinated only with the intranasal bivalent vaccine, and a further eight puppies (group 3) were vaccinated only with the injectable trivalent vaccine. Three weeks later they were all challenged with wildtype Bordetella bronchiseptica and canine parainfluenza virus by the aerosol route, and their antibody responses to the five vaccine organisms were determined. Oronasal swabs were taken regularly before and after the challenge for the isolation of bacteria and viruses, and the puppies were observed for clinical signs for three weeks after the challenge. There were no significant differences in the puppies' titres against canine parvovirus, canine distemper virus and canine adenovirus type 2 between the groups vaccinated with or without the bivalent intranasal vaccine. After the challenge the mean clinical scores of the two groups vaccinated with the intranasal vaccine were nearly 90 per cent lower (P=0.001) than the mean score of the group vaccinated with only the trivalent injectable vaccine, and the puppies in this group all became culture-positive for B bronchiseptica and canine parainfluenza virus. There were only small differences between the rates of isolation of B bronchiseptica from groups 1, 2 and 3, but significantly lower yields of canine parainfluenza virus were isolated from groups 1 and 2 than from group 3.

  13. No evidence for infection of UK prostate cancer patients with XMRV, BK virus, Trichomonas vaginalis or human papilloma viruses.

    Science.gov (United States)

    Groom, Harriet C T; Warren, Anne Y; Neal, David E; Bishop, Kate N

    2012-01-01

    The prevalence of specific infections in UK prostate cancer patients was investigated. Serum from 84 patients and 62 controls was tested for neutralisation of xenotropic murine leukaemia virus-related virus (XMRV) Envelope. No reactivity was found in the patient samples. In addition, a further 100 prostate DNA samples were tested for XMRV, BK virus, Trichomonas vaginalis and human papilloma viruses by nucleic acid detection techniques. Despite demonstrating DNA integrity and assay sensitivity, we failed to detect the presence of any of these agents in DNA samples, bar one sample that was weakly positive for HPV16. Therefore we conclude that these infections are absent in this typical cohort of men with prostate cancer.

  14. No evidence for infection of UK prostate cancer patients with XMRV, BK virus, Trichomonas vaginalis or human papilloma viruses.

    Directory of Open Access Journals (Sweden)

    Harriet C T Groom

    Full Text Available The prevalence of specific infections in UK prostate cancer patients was investigated. Serum from 84 patients and 62 controls was tested for neutralisation of xenotropic murine leukaemia virus-related virus (XMRV Envelope. No reactivity was found in the patient samples. In addition, a further 100 prostate DNA samples were tested for XMRV, BK virus, Trichomonas vaginalis and human papilloma viruses by nucleic acid detection techniques. Despite demonstrating DNA integrity and assay sensitivity, we failed to detect the presence of any of these agents in DNA samples, bar one sample that was weakly positive for HPV16. Therefore we conclude that these infections are absent in this typical cohort of men with prostate cancer.

  15. Dengue virus receptor

    OpenAIRE

    Hidari, Kazuya I.P.J.; Suzuki, Takashi

    2011-01-01

    Dengue virus is an arthropod-borne virus transmitted by Aedes mosquitoes. Dengue virus causes fever and hemorrhagic disorders in humans and non-human primates. Direct interaction of the virus introduced by a mosquito bite with host receptor molecule(s) is crucial for virus propagation and the pathological progression of dengue diseases. Therefore, elucidation of the molecular mechanisms underlying the interaction between dengue virus and its receptor(s) in both humans and mosquitoes is essent...

  16. SEROPREVALENCE OF HUMAN HERPES VIRUS 8 (HHV8 ...

    African Journals Online (AJOL)

    Praise

    SEROPREVALENCE OF HUMAN HERPES VIRUS 8 (HHV8) INFECTION. AMONG COMMERCIAL SEX WORKERS IN JOS. Zakari1, H., Nimzing2, L., Agabi1, Y. A., Amagam3, P. and Dashen,1 M. M.. 1Department of Microbiology, Faculty of Natural Sciences, University o f Jos, Nigeria. 2Department of Medical Microbiology, ...

  17. Cell and molecular biology of simian virus 40: implications for human infections and disease

    Science.gov (United States)

    Butel, J. S.; Lednicky, J. A.

    1999-01-01

    Simian virus 40 (SV40), a polyomavirus of rhesus macaque origin, was discovered in 1960 as a contaminant of polio vaccines that were distributed to millions of people from 1955 through early 1963. SV40 is a potent DNA tumor virus that induces tumors in rodents and transforms many types of cells in culture, including those of human origin. This virus has been a favored laboratory model for mechanistic studies of molecular processes in eukaryotic cells and of cellular transformation. The viral replication protein, named large T antigen (T-ag), is also the viral oncoprotein. There is a single serotype of SV40, but multiple strains of virus exist that are distinguishable by nucleotide differences in the regulatory region of the viral genome and in the part of the T-ag gene that encodes the protein's carboxyl terminus. Natural infections in monkeys by SV40 are usually benign but may become pathogenic in immunocompromised animals, and multiple tissues can be infected. SV40 can replicate in certain types of simian and human cells. SV40-neutralizing antibodies have been detected in individuals not exposed to contaminated polio vaccines. SV40 DNA has been identified in some normal human tissues, and there are accumulating reports of detection of SV40 DNA and/or T-ag in a variety of human tumors. This review presents aspects of replication and cell transformation by SV40 and considers their implications for human infections and disease pathogenesis by the virus. Critical assessment of virologic and epidemiologic data suggests a probable causative role for SV40 in certain human cancers, but additional studies are necessary to prove etiology.

  18. A novel H6N1 virus-like particle vaccine induces long-lasting cross-clade antibody immunity against human and avian H6N1 viruses.

    Science.gov (United States)

    Yang, Ji-Rong; Chen, Chih-Yuan; Kuo, Chuan-Yi; Cheng, Chieh-Yu; Lee, Min-Shiuh; Cheng, Ming-Chu; Yang, Yu-Chih; Wu, Chia-Ying; Wu, Ho-Sheng; Liu, Ming-Tsan; Hsiao, Pei-Wen

    2016-02-01

    Avian influenza A(H6N1) virus is one of the most common viruses isolated from migrating birds and domestic poultry in many countries. The first and only known case of human infection by H6N1 virus in the world was reported in Taiwan in 2013. This led to concern that H6N1 virus may cause a threat to public health. In this study, we engineered a recombinant H6N1 virus-like particle (VLP) and investigated its vaccine effectiveness compared to the traditional egg-based whole inactivated virus (WIV) vaccine. The H6N1-VLPs exhibited similar morphology and functional characteristics to influenza viruses. Prime-boost intramuscular immunization in mice with unadjuvanted H6N1-VLPs were highly immunogenic and induced long-lasting antibody immunity. The functional activity of the VLP-elicited IgG antibodies was proved by in vitro seroprotective hemagglutination inhibition and microneutralization titers against the homologous human H6N1 virus, as well as in vivo viral challenge analyses which showed H6N1-VLP immunization significantly reduced viral load in the lung, and protected against human H6N1 virus infection. Of particular note, the H6N1-VLPs but not the H6N1-WIVs were able to confer cross-reactive humoral immunity; antibodies induced by H6N1-VLP vaccine robustly inhibited the hemagglutination activities and in vitro replication of distantly-related heterologous avian H6N1 viruses. Furthermore, the H6N1-VLPs were found to elicit significantly greater anti-HA2 antibody responses in immunized mice than H6N1-WIVs. Collectively, we demonstrated for the first time a novel H6N1-VLP vaccine that effectively provides broadly protective immunity against both human and avian H6N1 viruses. These results, which uncover the underlying mechanisms for induction of wide-range immunity against influenza viruses, may be useful for future influenza vaccine development. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells

    DEFF Research Database (Denmark)

    Hölzer, Martin; Krähling, Verena; Amman, Fabian

    2016-01-01

    The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result...... expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine...

  20. Hepatitis C virus infection in the human immunodeficiency virus infected patient.

    Science.gov (United States)

    Clausen, Louise Nygaard; Lundbo, Lene Fogt; Benfield, Thomas

    2014-09-14

    Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) share the same transmission routes; therefore, coinfection is frequent. An estimated 5-10 million individuals alone in the western world are infected with both viruses. The majority of people acquire HCV by injection drug use and, to a lesser extent, through blood transfusion and blood products. Recently, there has been an increase in HCV infections among men who have sex with men. In the context of effective antiretroviral treatment, liver-related deaths are now more common than Acquired Immune Deficiency Syndrome-related deaths among HIV-HCV coinfected individuals. Morbidity and mortality rates from chronic HCV infection will increase because the infection incidence peaked in the mid-1980s and because liver disease progresses slowly and is clinically silent to cirrhosis and end-stage-liver disease over a 15-20 year time period for 15%-20% of chronically infected individuals. HCV treatment has rapidly changed with the development of new direct-acting antiviral agents; therefore, cure rates have greatly improved because the new treatment regimens target different parts of the HCV life cycle. In this review, we focus on the epidemiology, diagnosis and the natural course of HCV as well as current and future strategies for HCV therapy in the context of HIV-HCV coinfection in the western world.

  1. Quantification of Human T-lymphotropic virus type I (HTLV-I) provirus load in a rural West African population: no enhancement of human immunodeficiency virus type 2 pathogenesis, but HTLV-I provirus load relates to mortality

    NARCIS (Netherlands)

    Ariyoshi, Koya; Berry, Neil; Cham, Fatim; Jaffar, Shabbar; Schim van der Loeff, Maarten; Jobe, Ousman; N'Gom, Pa Tamba; Larsen, Olav; Andersson, Sören; Aaby, Peter; Whittle, Hilton

    2003-01-01

    Human T-lymphotropic virus type I (HTLV-I) provirus load was examined in a cohort of a population in Guinea-Bissau among whom human immunodeficiency virus (HIV) type 2 is endemic. Geometric mean of HIV-2 RNA load among HTLV-I-coinfected subjects was significantly lower than that in subjects infected

  2. PCR as a diagnostic test method for deduction of H. somni on trans-tracheal aspirated bronchoalveolar fluid from clinically normal calves and calves with pneumonia

    DEFF Research Database (Denmark)

    Enemark, J. M. D.; Angen, Øystein; Thomsen, J.

    2004-01-01

    collected in 6 different herds during September and November 2002. All 92 aspirations were analysed for Bovine Respiratory Syncytial virus (BRSV), Parainfluenza-3 virus, Bovine Coronavirus by antigen ELISA. Bacteria were detected by cultivation and H. somni additionally also by PCR. The results showed...

  3. Development of a sensitive real-time PCR for simultaneous detection and subtyping of influenza A and B viruses

    Directory of Open Access Journals (Sweden)

    Daniela Amicizia

    2005-03-01

    Full Text Available

    A new real-time PCR assay, using melting curve analysis, was developed for the rapid and reliable detection and sub-typing of influenza A and B.

    In order to evaluate it’s specificity, cell culture surnatants positive for Respiratory Syncytial Virus, Parainfluenza Viruses 1, 2 and 3, Measles Virus, Influenza A (to evaluate Influenza B primer and B (to evaluate Influenza A primer were tested and all of the results were negative.

    A series of Influenza A and B cell culture-grown viruses were diluted in virus transport medium, titrated and tested to determine the analytical sensibility which equated to 0.64, 0.026, 0.64, 0.62 PFU for A/H1N1, A/H3N2, Victoria-like and Yamagata-like B viruses, respectively. Twenty-five specimens, collected during the 2001/02 and 2002/03 seasons, which were positive for A/H1N1 (n = 7, A/H3N2 (n = 10, B Victoria-lineage (n = 5 and B Yamagata-lineage (n = 3, were tested in order to evaluate the assay’s clinical sensitivity, all of the results were positive.

    The new real-time PCR appears to be a suitable tool for virological surveillance and the diagnosis of respiratory infections.

  4. Simian virus 40 infection in humans and association with human diseases: results and hypotheses

    International Nuclear Information System (INIS)

    Barbanti-Brodano, Giuseppe; Sabbioni, Silvia; Martini, Fernanda; Negrini, Massimo; Corallini, Alfredo; Tognon, Mauro

    2004-01-01

    Simian virus 40 (SV40) is a monkey virus that was introduced in the human population by contaminated poliovaccines, produced in SV40-infected monkey cells, between 1955 and 1963. Epidemiological evidence now suggests that SV40 may be contagiously transmitted in humans by horizontal infection, independent of the earlier administration of SV40-contaminated poliovaccines. This evidence includes detection of SV40 DNA sequences in human tissues and of SV40 antibodies in human sera, as well as rescue of infectious SV40 from a human tumor. Detection of SV40 DNA sequences in blood and sperm and of SV40 virions in sewage points to the hematic, sexual, and orofecal routes as means of virus transmission in humans. The site of latent infection in humans is not known, but the presence of SV40 in urine suggests the kidney as a possible site of latency, as it occurs in the natural monkey host. SV40 in humans is associated with inflammatory kidney diseases and with specific tumor types: mesothelioma, lymphoma, brain, and bone. These human tumors correspond to the neoplasms that are induced by SV40 experimental inoculation in rodents and by generation of transgenic mice with the SV40 early region gene directed by its own early promoter-enhancer. The mechanisms of SV40 tumorigenesis in humans are related to the properties of the two viral oncoproteins, the large T antigen (Tag) and the small t antigen (tag). Tag acts mainly by blocking the functions of p53 and RB tumor suppressor proteins, as well as by inducing chromosomal aberrations in the host cell. These chromosome alterations may hit genes important in oncogenesis and generate genetic instability in tumor cells. The clastogenic activity of Tag, which fixes the chromosome damage in the infected cells, may explain the low viral load in SV40-positive human tumors and the observation that Tag is expressed only in a fraction of tumor cells. 'Hit and run' seems the most plausible mechanism to support this situation. The small tag

  5. Genetic analysis and antigenic characterization of swine origin influenza viruses isolated from humans in the United States, 1990-2010.

    Science.gov (United States)

    Shu, Bo; Garten, Rebecca; Emery, Shannon; Balish, Amanda; Cooper, Lynn; Sessions, Wendy; Deyde, Varough; Smith, Catherine; Berman, LaShondra; Klimov, Alexander; Lindstrom, Stephen; Xu, Xiyan

    2012-01-05

    Swine influenza viruses (SIV) have been recognized as important pathogens for pigs and occasional human infections with swine origin influenza viruses (SOIV) have been reported. Between 1990 and 2010, a total of twenty seven human cases of SOIV infections have been identified in the United States. Six viruses isolated from 1990 to 1995 were recognized as classical SOIV (cSOIV) A(H1N1). After 1998, twenty-one SOIV recovered from human cases were characterized as triple reassortant (tr_SOIV) inheriting genes from classical swine, avian and human influenza viruses. Of those twenty-one tr_SOIV, thirteen were of A(H1N1), one of A(H1N2), and seven of A(H3N2) subtype. SOIV characterized were antigenically and genetically closely related to the subtypes of influenza viruses circulating in pigs but distinct from contemporary influenza viruses circulating in humans. The diversity of subtypes and genetic lineages in SOIV cases highlights the importance of continued surveillance at the animal-human interface. Copyright © 2011. Published by Elsevier Inc.

  6. Novel rabies virus-neutralizing epitope recognized by human monoclonal antibody: Fine mapping and escape mutant analysis

    NARCIS (Netherlands)

    Marissen, W.E.; Kramer, R.A.; Rice, A.; Weldon, W.C.; Niezgoda, M.; Faber, M.; Slootstra, J.W.; Meloen, R.H.; Clijsters-van der Horst, M.; Visser, T.J.; Jongeneelen, M.; Thijsse, S.; Throsby, M.; Kruif, de J.; Rupprecht, C.E.; Dietzschold, B.; Goudsmit, J.; Bakker, A.B.H.

    2005-01-01

    Anti-rabies virus immunoglobulin combined with rabies vaccine protects humans from lethal rabies infections. For cost and safety reasons, replacement of the human or equine polyclonal immunoglobulin is advocated, and the use of rabies virus-specific monoclonal antibodies (MAbs) is recommended. We

  7. Novel rabies virus-neutralizing epitope recognized by human monoclonal antibody: fine mapping and escape mutant analysis

    NARCIS (Netherlands)

    Marissen, Wilfred E.; Kramer, R. Arjen; Rice, Amy; Weldon, William C.; Niezgoda, Michael; Faber, Milosz; Slootstra, Jerry W.; Meloen, Rob H.; Clijsters-van der Horst, Marieke; Visser, Therese J.; Jongeneelen, Mandy; Thijsse, Sandra; Throsby, Mark; de Kruif, John; Rupprecht, Charles E.; Dietzschold, Bernhard; Goudsmit, Jaap; Bakker, Alexander B. H.

    2005-01-01

    Anti-rabies virus immunoglobulin combined with rabies vaccine protects humans from lethal rabies infections. For cost and safety reasons, replacement of the human or equine polyclonal immunoglobulin is advocated, and the use of rabies virus-specific monoclonal antibodies (MAbs) is recommended. We

  8. Association of Human Papilloma Virus Infection and Oral Squamous Cell Carcinoma in Bangladesh

    OpenAIRE

    Akhter, Mahmuda; Ali, Liaquat; Hassan, Zahid; Khan, Imran

    2013-01-01

    Oral squamous cell carcinoma is the sixth most common malignancy worldwide. In Bangladesh, it comprises 20% of the whole body malignancies. Several studies found that 15% to 25% of oropharyngeal cancer cases are associated with human papilloma virus (HPV). This study is done to find the association of human papilloma virus subtypes, particularly HPV type 16 and HPV type 18, with the oral squamous cell carcinoma in Bangladeshi patients. In total, 34 diagnosed patients of oral squamous cell car...

  9. Neurologic manifestations of human immunodeficiency virus infection in children

    NARCIS (Netherlands)

    Epstein, L. G.; Sharer, L. R.; Oleske, J. M.; Connor, E. M.; Goudsmit, J.; Bagdon, L.; Robert-Guroff, M.; Koenigsberger, M. R.

    1986-01-01

    This report describes the neurologic manifestations of 36 children with human immunodeficiency virus (HIV) infection. In this cohort, in 16 of 21 children with acquired immunodeficiency syndrome (AIDS), three of 12 children with AIDS-related complex, and one of three asymptomatic seropositive

  10. [EVALUATION OF THE HUMAN SENSITIVITY TO SMALLPOX VIRUS BY THE PRIMARY CULTURES OF THE MONOCYTE-MACROPHAGES].

    Science.gov (United States)

    Zamedyanskaya, A S; Titova, K A; Sergeev, Al A; Kabanov, A S; Bulychev, L E; Sergeev, Ar A; Galakhova, D O; Nesterov, A E; Nosareva, O V; Shishkina, L N; Taranov, O S; Omigov, V V; Agafonov, A P; Sergeev, A N

    2016-01-01

    Studies of the primary cultures of granulocytes, mononuclear, and monocyte-macrophage cells derived from human blood were performed using variola virus (VARV) in the doses of 0.001-0.021 PFU/cell (plaques-forming units per cell). Positive dynamics of the virus accumulation was observed only in the monocyte-macrophages with maximum values of virus concentration (5.0-5.5 Ig PFU/ml) mainly within six days after the infection. The fact of VARV replication in the monocyte-macrophages was confirmed by the data of electron microscopy. At the same time, virus vaccines when tested in doses 3.3 and 4.2 Ig PFU/ml did not show the ability to reproduce in these human cells. The people sensitivity to VARV as assessed from the data obtained on human monocyte-macrophages corresponded to -1 PFU (taking into account the smooth interaction of the virus in the body to the cells of this type), which is consistent to previously found theoretical data on the virus sensitivity. The human susceptibility to VARV assessed experimentally can be used to predict the adequacy of developed smallpox models (in vivo) based on susceptible animals. This is necessary for reliable assessment of the efficiency of development of drugs for treatment and prophylaxis of the smallpox.

  11. Contemporary North American influenza H7 viruses possess human receptor specificity: Implications for virus transmissibility

    DEFF Research Database (Denmark)

    Belser, Jessica A; Blixt, Ola; Chen, Li-Mei

    2008-01-01

    Avian H7 influenza viruses from both the Eurasian and North American lineage have caused outbreaks in poultry since 2002, with confirmed human infection occurring during outbreaks in The Netherlands, British Columbia, and the United Kingdom. The majority of H7 infections have resulted in self-lim...

  12. Targeted induction of interferon-λ in humanized chimeric mouse liver abrogates hepatotropic virus infection.

    Science.gov (United States)

    Nakagawa, Shin-ichiro; Hirata, Yuichi; Kameyama, Takeshi; Tokunaga, Yuko; Nishito, Yasumasa; Hirabayashi, Kazuko; Yano, Junichi; Ochiya, Takahiro; Tateno, Chise; Tanaka, Yasuhito; Mizokami, Masashi; Tsukiyama-Kohara, Kyoko; Inoue, Kazuaki; Yoshiba, Makoto; Takaoka, Akinori; Kohara, Michinori

    2013-01-01

    The interferon (IFN) system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV) and hepatitis B virus (HBV). This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC). Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs) in the livers and sera of these humanized chimeric mice. Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level) of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic) tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1), suggesting dual recognition of LIC-pIC by both sensor adaptor pathways. These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection.

  13. Search for infective mammalian type-C virus-related genes in the DNA of human sarcomas and leukemias.

    Science.gov (United States)

    Nicolson, M O; Gilden, R V; Charman, H; Rice, N; Heberling, R; McAllister, R M

    1978-06-15

    DNA was extracted from two human sarcoma cell lines, TE-32 and TE-418, and the leukemic cells from five children with acute myelocytic leukemia, three children with acute lymphocytic leukemia and four adults with acute myelocytic leukemia. The DNAs, assayed for infectivity by transfection techniques, induced no measurable virus by methods which would detect known mammalian C-type antigens or RNA-directed DNA polymerase in TE-32, D-17 dog cells and other indicator cells, nor did they recombine with or rescue endogenous human or exogenous murine or baboon type-C virus. Model systems used as controls were human sarcoma cells, TE-32 and HT-1080, and human lymphoma cells TE-543, experimentally infected with KiMuLV, GaLV or baboon type-C virus, all of which released infectious virus and whose DNAs were infectious for TE-32 and D-17 dog cells. Other model systems included two baboon placentas and one embryonic cell strain spontaneously releasing infectious endogenous baboon virus and yielding DNAs infectious for D-17 dog cells but not for TE-32 cells. Four other baboon embryonic tissues and two embryonic cell strains, releasing either low levels of virus or no virus, did not yield infectious DNA.

  14. Human Immunodeficiency Virus Proteins Mimic Human T Cell Receptors Inducing Cross-Reactive Antibodies

    Directory of Open Access Journals (Sweden)

    Robert Root-Bernstein

    2017-10-01

    Full Text Available Human immunodeficiency virus (HIV hides from the immune system in part by mimicking host antigens, including human leukocyte antigens. It is demonstrated here that HIV also mimics the V-β-D-J-β of approximately seventy percent of about 600 randomly selected human T cell receptors (TCR. This degree of mimicry is greater than any other human pathogen, commensal or symbiotic organism studied. These data suggest that HIV may be evolving into a commensal organism just as simian immunodeficiency virus has done in some types of monkeys. The gp120 envelope protein, Nef protein and Pol protein are particularly similar to host TCR, camouflaging HIV from the immune system and creating serious barriers to the development of safe HIV vaccines. One consequence of HIV mimicry of host TCR is that antibodies against HIV proteins have a significant probability of recognizing the corresponding TCR as antigenic targets, explaining the widespread observation of lymphocytotoxic autoantibodies in acquired immunodeficiency syndrome (AIDS. Quantitative enzyme-linked immunoadsorption assays (ELISA demonstrated that every HIV antibody tested recognized at least one of twelve TCR, and as many as seven, with a binding constant in the 10−8 to 10−9 m range. HIV immunity also affects microbiome tolerance in ways that correlate with susceptibility to specific opportunistic infections.

  15. Concept Analysis: Health-Promoting Behaviors Related to Human Papilloma Virus (HPV) Infection.

    Science.gov (United States)

    McCutcheon, Tonna; Schaar, Gina; Parker, Karen L

    2015-01-01

    The concept of health-promoting behaviors incorporates ideas presented in the Ottawa Charter of Public Health and the nursing-based Health Promotion Model. Despite the fact that the concept of health-promoting behaviors has a nursing influence, literature suggests nursing has inadequately developed and used this concept within nursing practice. A further review of literature regarding health promotion behaviors and the human papilloma virus suggest a distinct gap in nursing literature. This article presents a concept analysis of health-promoting behaviors related to the human papilloma virus in order to encourage the application of the concept into nursing practice, promote continued nursing research regarding this concept, and further expand the application of health-promoting behaviors to other situations and populations within the nursing discipline. Attributes of health-promoting behaviors are presented and include empowerment, participation, community, and a positive concept of health. Antecedents, consequences, and empirical referents are also presented, as are model, borderline, and contrary cases to help clarify the concept. Recommendations for human papilloma virus health-promoting behaviors within the nursing practice are also provided. © 2014 Wiley Periodicals, Inc.

  16. An overview of the recent outbreaks of the avian-origin influenza A (H7N9 virus in the human

    Directory of Open Access Journals (Sweden)

    Ren-Bin Tang

    2013-05-01

    Full Text Available Since the first human infection with influenza A (H7N9 viruses have been identified in Shanghai on March 31, 2013, the latest variant of the avian flu virus has spread across four Chinese provinces recently. Human infections with avian influenza are rare and this is the first time that human infection with a low pathogenic avian influenza A virus has been associated with fatal outcome. To date (May 5th, 2013, China had reported 128 confirmed H7N9 infections in human, among 27 died. Most reported cases have severe respiratory illness resulting in severe pneumonia and in some cases have died. No evidence of sustained human-to -humans at this time, however, there is one family cluster with two confirmed cases for which human-to-human transmission cannot be ruled out. Recent evidence showed that the gene sequences of this novel H7N9 virus is primarily zoonotic and may be better adapted than other avian influenza viruses to infect human. Effective global infection control is urgently needed, and further surveillance and analyses should be undertaken to identify the source and mode of transmission of these viruses.

  17. Characterization of Chemokine Receptor Utilization of Viruses in the Latent Reservoir for Human Immunodeficiency Virus Type 1

    Science.gov (United States)

    Pierson, Theodore; Hoffman, Trevor L.; Blankson, Joel; Finzi, Diana; Chadwick, Karen; Margolick, Joseph B.; Buck, Christopher; Siliciano, Janet D.; Doms, Robert W.; Siliciano, Robert F.

    2000-01-01

    Latently infected resting CD4+ T cells provide a long-term reservoir for human immunodeficiency virus type 1 (HIV-1) and are likely to represent the major barrier to virus eradication in patients on combination antiretroviral therapy. The mechanisms by which viruses enter the latent reservoir and the nature of the chemokine receptors involved have not been determined. To evaluate the phenotype of the virus in this compartment with respect to chemokine receptor utilization, full-length HIV-1 env genes were cloned from latently infected cells and assayed functionally. We demonstrate that the majority of the viruses in the latent reservoir utilize CCR5 during entry, although utilization of several other receptors, including CXCR4, was observed. No alternative coreceptors were shown to be involved in a systematic fashion. Although R5 viruses are present in the latent reservoir, CCR5 was not expressed at high levels on resting CD4+ T cells. To understand the mechanism by which R5 viruses enter latent reservoir, the ability of an R5 virus, HIV-1 Ba-L, to infect highly purified resting CD4+ T lymphocytes from uninfected donors was evaluated. Entry of Ba-L could be observed when virus was applied at a multiplicity approaching 1. However, infection was limited to a subset of cells expressing low levels of CCR5 and markers of immunologic memory. Naive cells could not be infected by an R5 virus even when challenged with a large inoculum. Direct cell fractionation studies showed that latent virus is present predominantly in resting memory cells but also at lower levels in resting naive cells. Taken together, these findings provide support for the hypothesis that the direct infection of naive T cells is not the major mechanism by which the latent infection of resting T cells is established. PMID:10933689

  18. Human immunodeficiency virus infection presenting as a fatal case ...

    African Journals Online (AJOL)

    MJP

    2015-06-25

    Jun 25, 2015 ... original work is properly cited. Human immunodeficiency virus infection presenting as a fatal ... of neurological symptoms by an infection (upper respiratory tract infection or diarrhea), in a smaller proportion of .... cerebrospinal fluid findings of albumino-cytology dissociation.[6]. However, albumino-cytology.

  19. Human immunodeficiency virus endocrinopathy

    Directory of Open Access Journals (Sweden)

    Uma Sinha

    2011-01-01

    Full Text Available Human immunodeficiency virus (HIV endocrinopathy encompasses a broad spectrum of disorders. Almost all the endocrine organs are virtually affected by HIV infection. HIV can directly alter glandular function. More commonly secondary endocrine dysfunction occurs due to opportunistic infections and neoplasms in immunocompromised state. The complex interaction between HIV infection and endocrine system may be manifested as subtle biochemical and hormonal perturbation to overt glandular failure. Antiretroviral therapy as well as other essential medications often result in adverse endocrinal consequences. Apart from adrenal insufficiency, hypogonadism, diabetes and bone loss, AIDS wasting syndrome and HIV lipodystrophy need special reference. Endocrinal evaluation should proceed as in other patients with suspected endocrine dysfunction. Available treatment options have been shown to improve quality of life and long-term mortality in AIDS patients.

  20. Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates.

    Science.gov (United States)

    Saunders, Kevin O; Santra, Sampa; Parks, Robert; Yates, Nicole L; Sutherland, Laura L; Scearce, Richard M; Balachandran, Harikrishnan; Bradley, Todd; Goodman, Derrick; Eaton, Amanda; Stanfield-Oakley, Sherry A; Tartaglia, James; Phogat, Sanjay; Pantaleo, Giuseppe; Esteban, Mariano; Gomez, Carmen E; Perdiguero, Beatriz; Jacobs, Bertram; Kibler, Karen; Korber, Bette; Montefiori, David C; Ferrari, Guido; Vandergrift, Nathan; Liao, Hua-Xin; Tomaras, Georgia D; Haynes, Barton F

    2018-04-15

    A preventive human immunodeficiency virus type 1 (HIV-1) vaccine is an essential part of the strategy to eradicate AIDS. A critical question is whether antibodies that do not neutralize primary isolate (tier 2) HIV-1 strains can protect from infection. In this study, we investigated the ability of an attenuated poxvirus vector (NYVAC) prime-envelope gp120 boost to elicit potentially protective antibody responses in a rhesus macaque model of mucosal simian-human immunodeficiency virus (SHIV) infection. NYVAC vector delivery of a group M consensus envelope, trivalent mosaic envelopes, or a natural clade B isolate B.1059 envelope elicited antibodies that mediated neutralization of tier 1 viruses, cellular cytotoxicity, and phagocytosis. None of the macaques made neutralizing antibodies against the tier 2 SHIV SF162P3 used for mucosal challenge. Significant protection from infection was not observed for the three groups of vaccinated macaques compared to unvaccinated macaques, although binding antibody to HIV-1 Env correlated with decreased viremia after challenge. Thus, NYVAC Env prime-gp120 boost vaccination elicited polyfunctional, nonneutralizing antibody responses with minimal protective activity against tier 2 SHIV mucosal challenge. IMPORTANCE The antibody responses that confer protection against HIV-1 infection remain unknown. Polyfunctional antibody responses correlated with time to infection in previous macaque studies. Determining the ability of vaccines to induce these types of responses is critical for understanding how to improve upon the one efficacious human HIV-1 vaccine trial completed thus far. We characterized the antibody responses induced by a NYVAC-protein vaccine and determined the protective capacity of polyfunctional antibody responses in an R5, tier 2 mucosal SHIV infection model. Copyright © 2018 American Society for Microbiology.

  1. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China

    OpenAIRE

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and...

  2. Endobiont viruses sensed by the human host - beyond conventional antiparasitic therapy.

    Directory of Open Access Journals (Sweden)

    Raina N Fichorova

    Full Text Available Wide-spread protozoan parasites carry endosymbiotic dsRNA viruses with uncharted implications to the human host. Among them, Trichomonas vaginalis, a parasite adapted to the human genitourinary tract, infects globally ∼250 million each year rendering them more susceptible to devastating pregnancy complications (especially preterm birth, HIV infection and HPV-related cancer. While first-line antibiotic treatment (metronidazole commonly kills the protozoan pathogen, it fails to improve reproductive outcome. We show that endosymbiotic Trichomonasvirus, highly prevalent in T. vaginalis clinical isolates, is sensed by the human epithelial cells via Toll-like receptor 3, triggering Interferon Regulating Factor -3, interferon type I and proinflammatory cascades previously implicated in preterm birth and HIV-1 susceptibility. Metronidazole treatment amplified these proinflammatory responses. Thus, a new paradigm targeting the protozoan viruses along with the protozoan host may prevent trichomoniasis-attributable inflammatory sequelae.

  3. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans.

    Science.gov (United States)

    Efstathiou, S; Minson, A C; Field, H J; Anderson, J R; Wildy, P

    1986-02-01

    Herpes simplex virus-specific DNA sequences have been detected by Southern hybridization analysis in both central and peripheral nervous system tissues of latently infected mice. We have detected virus-specific sequences corresponding to the junction fragment but not the genomic termini, an observation first made by Rock and Fraser (Nature [London] 302:523-525, 1983). This "endless" herpes simplex virus DNA is both qualitatively and quantitatively stable in mouse neural tissue analyzed over a 4-month period. In addition, examination of DNA extracted from human trigeminal ganglia has shown herpes simplex virus DNA to be present in an "endless" form similar to that found in the mouse model system. Further restriction enzyme analysis of latently infected mouse brainstem and human trigeminal DNA has shown that this "endless" herpes simplex virus DNA is present in all four isomeric configurations.

  4. Current Ebola vaccines

    Science.gov (United States)

    Hoenen, Thomas; Groseth, Allison; Feldmann, Heinz

    2012-01-01

    Introduction Ebolaviruses cause severe viral hemorrhagic fever in humans and non-human primates, with case fatality rates of up to 90%. Currently, neither a specific treatment nor a vaccine licensed for use in humans is available. However, a number of vaccine candidates have been developed in the last decade that are highly protective in non-human primates, the gold standard animal model for Ebola hemorrhagic fever. Areas covered This review analyzes a number of scenarios for the use of ebolavirus vaccines, discusses the requirements for ebolavirus vaccines in these scenarios, and describes current ebolavirus vaccines. Among these vaccines are recombinant Adenoviruses, recombinant Vesicular Stomatitis viruses, recombinant Human Parainfluenza viruses and virus-like particles. Interestingly, one of these vaccine platforms, based on recombinant Vesicular Stomatitis viruses, has also demonstrated post-exposure protection in non-human primates. Expert opinion The most pressing remaining challenge is now to move these vaccine candidates forward into human trials and towards licensure. In order to achieve this, it will be necessary to establish the mechanisms and correlates of protection for these vaccines, and to continue to demonstrate their safety, particularly in potentially immunocompromised populations. However, already now there is sufficient evidence that, from a scientific perspective, a vaccine protective against ebolaviruses is possible. PMID:22559078

  5. [Use of polymeric suspensions as a viral sorbent to detect cattle serum antibodies].

    Science.gov (United States)

    Stanishevskiĭ, Ia M; Lobova, T P; Gritskova, I A; Belousova, R V; Prokopov, N I; Tret'iakova, I V; Tkalia, E E

    2006-01-01

    The paper shows it possible to use stained polymeric microspheres, 1.7 microm in diameter, that contain viruses onto the surface, in the latex agglutination test to detect antibodies to the bovine serum viruses of infective rhinotracheitis, parainfluenza-3, viral diarrhea, respiratory syncytial infection, and adenoviral infection.

  6. Identification of Human H1N2 and Human-Swine Reassortant H1N2 and H1N1 Influenza A Viruses among Pigs in Ontario, Canada (2003 to 2005)†

    OpenAIRE

    Karasin, Alexander I.; Carman, Suzanne; Olsen, Christopher W.

    2006-01-01

    Since 2003, three novel genotypes of H1 influenza viruses have been recovered from Canadian pigs, including a wholly human H1N2 virus and human-swine reassortants. These isolates demonstrate that human-lineage H1N2 viruses are infectious for pigs and that viruses with a human PB1/swine PA/swine PB2 polymerase complex can replicate in pigs.

  7. A comparison of human immunodeficiency virus, hepatitis C virus, hepatitis B virus, and human T-lymphotropic virus marker rates for directed versus volunteer blood donations to the American Red Cross during 2005 to 2010.

    Science.gov (United States)

    Dorsey, Kerri A; Moritz, Erin D; Steele, Whitney R; Eder, Anne F; Stramer, Susan L

    2013-06-01

    At most US blood centers, patients may still opt to choose specific donors to give blood for their anticipated transfusion needs. However, there is little evidence of improved safety with directed donation when compared to volunteer donation. The percentage of directed donations made to the American Red Cross (ARC) from 1995 to 2010 was determined. Infectious disease marker rates for human immunodeficiency virus (HIV), hepatitis C virus (HCV), hepatitis B virus (HBV), and human T-lymphotropic virus (HTLV) were calculated for volunteer and directed donations made from 2005 to 2010. Odds ratios (ORs) were calculated to compare marker-positive rates of directed donations to volunteer donations. The percentage of donations from directed donors declined from 1.6% in 1995 to 0.12% in 2010. From 2005 to 2010, the ARC collected 38,894,782 volunteer and 69,869 directed donations. Rates of HIV, HCV, HBV, and HTLV for volunteer donations were 2.9, 32.2, 12.4, and 2.5 per 100,000 donations, respectively; for directed, the rates were 7.2, 93.0, 40.1, and 18.6 per 100,000. After demographics and first-time or repeat status were adjusted for, corresponding ORs of viral marker positivity in directed versus volunteer donations were not significant for HIV, HBV, or HTLV and significant for HCV (OR, 0.7; 95% confidence interval, 0.50-0.90). Directed donations have declined by 92% at the ARC since 1995, but have higher viral marker rates than volunteer donations. The difference can be explained in part by the effects of first-time or repeat status of the donors. Patients considering directed donation should be appropriately counseled about the potential risks. © 2012 American Association of Blood Banks.

  8. Confronting human papilloma virus/oropharyngeal cancer: a model for interprofessional collaboration.

    Science.gov (United States)

    Fried, Jacquelyn L

    2014-06-01

    A collaborative practice model related to Human Papilloma Virus (HPV) associated oropharyngeal cancer highlights the role of the dental hygienist in addressing this condition. The incidence of HPV associated head and neck cancer is rising. Multiple professionals including the dental hygienist can work collaboratively to confront this growing public health concern. A critical review applies the growth and utilization of interprofessional education (IPE) and interprofessional collaboration (IPC) to multi-disciplinary models addressing the human papilloma virus and oropharyngeal cancers. A model related to HPV associated oropharyngeal cancer addresses an oral systemic condition that supports the inclusion of a dental hygienist on collaborative teams addressing prevention, detection, treatment and cure of OPC. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  10. Respiratory viruses among children with non-severe community-acquired pneumonia: A prospective cohort study.

    Science.gov (United States)

    Nascimento-Carvalho, Amanda C; Vilas-Boas, Ana-Luisa; Fontoura, Maria-Socorro H; Vuorinen, Tytti; Nascimento-Carvalho, Cristiana M

    2018-06-06

    Community-acquired pneumonia (CAP) causes a major burden to the health care system among children under-5 years worldwide. Information on respiratory viruses in non-severe CAP cases is scarce. To estimate the frequency of respiratory viruses among non-severe CAP cases. Prospective study conducted in Salvador, Brazil. Out of 820 children aged 2-59 months with non-severe CAP diagnosed by pediatricians (respiratory complaints and radiographic pulmonary infiltrate/consolidation), recruited in a clinical trial (ClinicalTrials.gov Identifier NCT01200706), nasopharyngeal aspirate samples were obtained from 774 (94.4%) patients and tested for 16 respiratory viruses by PCRs. Viruses were detected in 708 (91.5%; 95%CI: 89.3-93.3) cases, out of which 491 (69.4%; 95%CI: 65.9-72.7) harbored multiple viruses. Rhinovirus (46.1%; 95%CI: 42.6-49.6), adenovirus (38.4%; 95%CI: 35.0-41.8), and enterovirus (26.5%; 95%CI: 23.5-29.7) were the most commonly found viruses. The most frequent combination comprised rhinovirus plus adenovirus. No difference was found in the frequency of RSVA (16.1% vs. 14.6%; P = 0.6), RSVB (10.9% vs. 13.2%; P = 0.4) influenza (Flu) A (6.3% vs. 5.1%; P = 0.5), FluB (4.5% vs. 1.8%; P = 0.09), parainfluenza virus (PIV) 1 (5.1% vs. 2.8%; P = 0.2), or PIV4 (7.7% vs. 4.1%; P = 0.08), when children with multiple or sole virus detection were compared. Conversely, rhinovirus, adenovirus, enterovirus, bocavirus, PIV2, PIV3, metapneumovirus, coronavirus OC43, NL63, 229E were significantly more frequent among cases with multiple virus detection. Respiratory viruses were detected in over 90% of the cases, out of which 70% had multiple viruses. Several viruses are more commonly found in multiple virus detection whereas other viruses are similarly found in sole and in multiple virus detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Human immunodeficiency virus type 1 neutralization epitope with conserved architecture elicits early type-specific antibodies in experimentally infected chimpanzees

    NARCIS (Netherlands)

    Goudsmit, J.; Debouck, C.; Meloen, R. H.; Smit, L.; Bakker, M.; Asher, D. M.; Wolff, A. V.; Gibbs, C. J.; Gajdusek, D. C.

    1988-01-01

    Chimpanzees are susceptible to infection by divergent strains of human immunodeficiency virus type 1 (HIV-1), none of which cause clinical or immunological abnormalities. Chimpanzees were inoculated with one of four strains of HIV-1: human T-lymphotropic virus (HTLV) type IIIB, lymphadenopathy virus

  12. Pneumothorax in human immunodeficiency virus infection

    Directory of Open Access Journals (Sweden)

    Sibes Kumar Das

    2015-01-01

    Full Text Available Pneumothorax occurs more frequently in people with Human immunodeficiency virus infection in comparison with the general population. In most cases it is secondary the underlying pulmonary disorder, especially pulmonary infections. Though Pneumocystis jiroveci pneumonia is most common pulmonary infection associated with pneumothorax, other infections, non-infective etiology and iatrogenic causes are also encountered. Pneumothorax in these patients are associated with persistent bronchopleural fistula, prolonged hospital stay, poor success with intercostal tube drain, frequent requirement of surgical intervention and increased mortality. Optimal therapeutic approach in these patients is still not well-defined.

  13. Malignant syphilis with human immunodeficiency virus infection

    Directory of Open Access Journals (Sweden)

    Jiby Rajan

    2011-01-01

    Full Text Available Malignant syphilis or Lues maligna, commonly reported in the pre-antibiotic era, has now seen a resurgence with the advent of human immunodeficiency virus (HIV. Immunosuppression and sexual promiscuity set the stage for this deadly association of HIV and Treponema pallidum that can manifest atypically and can prove to cause diagnostic problems. We report one such case in a 30-year-old female who responded favorably to treatment with penicillin.

  14. OCCURRENCE OF SMALL HOMOLOGOUS AND COMPLEMENTARY FRAGMENTS IN HUMAN VIRUS GENOMES AND THEIR POSSIBLE ROLE

    Directory of Open Access Journals (Sweden)

    E. P. Kharchenko

    2017-01-01

    Full Text Available With computer analysis occurrence of small homologous and complementary fragments (21 nucleotides in length has been studied in genomes of 14 human viruses causing most dangerous infections. The sample includes viruses with (+ and (– single stranded RNA and DNA-containing hepatitis A virus. Analysis of occurrence of homologous sequences has shown the existence two extreme situations. On the one hand, the same virus contains homologous sequences to almost all other viruses (for example, Ebola virus, severe acute respiratory syndrome-related coronavirus, and mumps virus, and numerous homologous sequences to the same other virus (especially in severe acute respiratory syndrome-related coronavirus to Dengue virus and in Ebola virus to poliovirus. On the other hand, there are rare occurrence and not numerous homologous sequences in genomes of other viruses (rubella virus, hepatitis A virus, and hepatitis B virus. Similar situation exists for occurrence of complementary sequences. Rubella virus, the genome of which has the high content of guanine and cytosine, has no complementary sequences to almost all other viruses. Most viruses have moderate level of occurrence for homologous and complementary sequences. Autocomplementary sequences are numerous in most viruses and one may suggest that the genome of single stranded RNA viruses has branched secondary structure. In addition to possible role in recombination among strains autocomplementary sequences could be regulators of translation rate of virus proteins and determine its optimal proportion in virion assembly with genome and mRNA folding. Occurrence of small homologous and complementary sequences in RNA- and DNA-containing viruses may be the result of multiple recombinations in the past and the present and determine their adaptation and variability. Recombination may take place in coinfection of human and/or common hosts. Inclusion of homologous and complementary sequences into genome could not

  15. Local Risk Factors in Genital Human Papilloma Virus Infection in ...

    African Journals Online (AJOL)

    Keywords: Genital human papilloma virus, Pap smear, Risk factors. Access this article online .... their Pap smears taken and questionnaires on sexual attitudes, .... the high‑risk types, which mediate the response of the enhancer to steroid ...

  16. Multicenter evaluation of the new Abbott Realtime assays for quantitative detection of human immunodeficiency virus type 1 and hepatitis C virus RNA

    NARCIS (Netherlands)

    M. Schutten (Martin); D. Peters (D.); N. Back (Nicole); A.W. van den Beld (Annewieke); B. Beuselinck (B.); V. Foulongne (V.); A.M. Geretti (Anna Maria); L. Pandiani (L.); M. Tiemann; H.G.M. Niesters (Bert)

    2007-01-01

    textabstractThe analytical performances of the new Abbott RealTime hepatitis C virus (HCV) and human immunodeficiency virus type 1 viral load assays were compared at nine laboratories with different competitor assays. These included the Abbott LcX, Bayer Versant bDNA, Roche COBAS Amplicor, and Roche

  17. Sexual Transmission of Hepatitis C Virus in Human Immunodeficiency Virus-Negative Men Who Have Sex With Men: A Series of Case Reports

    NARCIS (Netherlands)

    van de Laar, Thijs J. W.; Paxton, William A.; Zorgdrager, Fokla; Cornelissen, Marion; de Vries, Henry J. C.

    2011-01-01

    Hepatitis C Virus (HCV) has recently emerged as sexual transmitted infection among (human immunodeficiency virus) HIV-positive but not HIV-negative men who have sex with men (MSM). We present 4 case reports showing that HIV-infection is not an absolute prerequisite for sexual HCV transmission in

  18. Binding of human papilloma virus L1 virus-like particles to dendritic cells is mediated through heparan sulfates and induces immune activation

    NARCIS (Netherlands)

    de Witte, Lot; Zoughlami, Younes; Aengeneyndt, Birgit; David, Guido; van Kooyk, Yvette; Gissmann, Lutz; Geijtenbeek, Teunis B. H.

    2007-01-01

    Immunization using human papilloma virus (HPV)-L1 virus-like particles (VLPs) induces a robust and effective immune response, which has recently resulted in the implementation of the HPV-L1 VLP vaccination in health programs. However, during infection, HPV can escape immune surveillance leading to

  19. Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

    International Nuclear Information System (INIS)

    Noisakran, Sansanee; Sengsai, Suchada; Thongboonkerd, Visith; Kanlaya, Rattiyaporn; Sinchaikul, Supachok; Chen, Shui-Tein; Puttikhunt, Chunya

    2008-01-01

    Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells

  20. Ultrastructural localization of human papilloma virus by nonradioactive in situ hybridization on tissue of human cervical intraepithelial neoplasia

    DEFF Research Database (Denmark)

    Multhaupt, H A; Rafferty, P A; Warhol, M J

    1992-01-01

    BACKGROUND: A nonradioactive in situ hybridization was developed to localize human papilloma virus (HPV) at the ultrastructural level. EXPERIMENTAL DESIGN: Cervical biopsies from human uterine cervices clinically suspicious of condyloma were embedded in Lowicryl K4M at low temperature...

  1. Factors in enhancing blood safety by nucleic acid technology testing for human immunodeficiency virus, hepatitis C virus and hepatitis B virus.

    Science.gov (United States)

    Shyamala, Venkatakrishna

    2014-01-01

    In the last few decades through an awareness of transfusion transmitted infections (TTI), a majority of countries have mandated serology based blood screening assays for Human immunodeficiency virus (HIV), Hepatitis C virus (HCV), and Hepatitis B virus (HBV). However, despite improved serology assays, the transfusion transmission of HIV, HCV, and HBV continues, primarily due to release of serology negative units that are infectious because of the window period (WP) and occult HBV infections (OBI). Effective mode of nucleic acid technology (NAT) testing of the viruses can be used to minimize the risk of TTIs. This review compiles the examples of NAT testing failures for all three viruses; analyzes the causes for failure, and the suggestions from retrospective studies to minimize such failures. The results suggest the safest path to be individual donation testing (ID) format for highest sensitivity, and detection of multiple regions for rapidly mutating and recombining viruses. The role of blood screening in the context of the donation and transfusion practices in India, the donor population, and the epidemiology is also discussed. World wide, as the public awareness of TTIs increases, as the recipient rights for safe blood are legally upheld, as the possibility to manage diseases such as hepatitis through expensive and prolonged treatment becomes accessible, and the societal responsibility to shoulder the health costs as in the case for HIV becomes routine, there is much to gain by preventing infections than treating diseases.

  2. Factors in enhancing blood safety by nucleic acid technology testing for human immunodeficiency virus, hepatitis C virus and hepatitis B virus

    Directory of Open Access Journals (Sweden)

    Venkatakrishna Shyamala

    2014-01-01

    Full Text Available In the last few decades through an awareness of transfusion transmitted infections (TTI, a majority of countries have mandated serology based blood screening assays for Human immunodeficiency virus (HIV, Hepatitis C virus (HCV, and Hepatitis B virus (HBV. However, despite improved serology assays, the transfusion transmission of HIV, HCV, and HBV continues, primarily due to release of serology negative units that are infectious because of the window period (WP and occult HBV infections (OBI. Effective mode of nucleic acid technology (NAT testing of the viruses can be used to minimize the risk of TTIs. This review compiles the examples of NAT testing failures for all three viruses; analyzes the causes for failure, and the suggestions from retrospective studies to minimize such failures. The results suggest the safest path to be individual donation testing (ID format for highest sensitivity, and detection of multiple regions for rapidly mutating and recombining viruses. The role of blood screening in the context of the donation and transfusion practices in India, the donor population, and the epidemiology is also discussed. World wide, as the public awareness of TTIs increases, as the recipient rights for safe blood are legally upheld, as the possibility to manage diseases such as hepatitis through expensive and prolonged treatment becomes accessible, and the societal responsibility to shoulder the health costs as in the case for HIV becomes routine, there is much to gain by preventing infections than treating diseases.

  3. An overview of the recent outbreaks of the avian-origin influenza A (H7N9) virus in the human.

    Science.gov (United States)

    Tang, Ren-Bin; Chen, Hui-Lan

    2013-05-01

    Since the first human infection with influenza A (H7N9) viruses have been identified in Shanghai on March 31, 2013, the latest variant of the avian flu virus has spread across four Chinese provinces recently. Human infections with avian influenza are rare and this is the first time that human infection with a low pathogenic avian influenza A virus has been associated with fatal outcome. To date (May 5(th), 2013), China had reported 128 confirmed H7N9 infections in human, among 27 died. Most reported cases have severe respiratory illness resulting in severe pneumonia and in some cases have died. No evidence of sustained human-to -humans at this time, however, there is one family cluster with two confirmed cases for which human-to-human transmission cannot be ruled out. Recent evidence showed that the gene sequences of this novel H7N9 virus is primarily zoonotic and may be better adapted than other avian influenza viruses to infect human. Effective global infection control is urgently needed, and further surveillance and analyses should be undertaken to identify the source and mode of transmission of these viruses. Copyright © 2013. Published by Elsevier B.V.

  4. Receptor-binding properties of modern human influenza viruses primarily isolated in Vero and MDCK cells and chicken embryonated eggs

    International Nuclear Information System (INIS)

    Mochalova, Larisa; Gambaryan, Alexandra; Romanova, Julia; Tuzikov, Alexander; Chinarev, Alexander; Katinger, Dietmar; Katinger, Herman; Egorov, Andrej; Bovin, Nicolai

    2003-01-01

    To study the receptor specificity of modern human influenza H1N1 and H3N2 viruses, the analogs of natural receptors, namely sialyloligosaccharides conjugated with high molecular weight (about 1500 kDa) polyacrylamide as biotinylated and label-free probes, have been used. Viruses isolated from clinical specimens were grown in African green monkey kidney (Vero) or Madin-Darby canine kidney (MDCK) cells and chicken embryonated eggs. All Vero-derived viruses had hemagglutinin (HA) sequences indistinguishable from original viruses present in clinical samples, but HAs of three of seven tested MDCK-derived isolates had one or two amino acid substitutions. Despite these host-dependent mutations and differences in the structure of HA molecules of individual strains, all studied Vero- and MDCK-isolated viruses bound to Neu5Ac α2-6Galβ1-4GlcNAc (6'SLN) essentially stronger than to Neu5Acα2-6Galβ1-4Glc (6'SL). Such receptor-binding specificity has been typical for earlier isolated H1N1 human influenza viruses, but there is a new property of H3N2 viruses that has been circulating in the human population during recent years. Propagation of human viruses in chicken embryonated eggs resulted in a selection of variants with amino acid substitutions near the HA receptor-binding site, namely Gln226Arg or Asp225Gly for H1N1 viruses and Leu194Ile and Arg220Ser for H3N2 viruses. These HA mutations disturb the observed strict 6'SLN specificity of recent human influenza viruses

  5. Respiratory viruses in children hospitalized for acute lower respiratory tract infection in Ghana

    Directory of Open Access Journals (Sweden)

    Kwofie Theophilus B

    2012-04-01

    Full Text Available Abstract Background Acute respiratory tract infections are one of the major causes of morbidity and mortality among young children in developing countries. Information on the viral aetiology of acute respiratory infections in developing countries is very limited. The study was done to identify viruses associated with acute lower respiratory tract infection among children less than 5 years. Method Nasopharyngeal samples and blood cultures were collected from children less than 5 years who have been hospitalized for acute lower respiratory tract infection. Viruses and bacteria were identified using Reverse Transcriptase Real-Time Polymerase Chain Reaction and conventional biochemical techniques. Results Out of 128 patients recruited, 33(25.88%%, 95%CI: 18.5% to 34.2% were positive for one or more viruses. Respiratory Syncytial Virus (RSV was detected in 18(14.1%, 95%CI: 8.5% to 21.3% patients followed by Adenoviruses (AdV in 13(10.2%, 95%CI: 5.5% to 16.7%, Parainfluenza (PIV type: 1, 2, 3 in 4(3.1%, 95%CI: 0.9% to 7.8% and influenza B viruses in 1(0.8%, 95%CI: 0.0 to 4.3. Concomitant viral and bacterial co-infection occurred in two patients. There were no detectable significant differences in the clinical signs, symptoms and severity for the various pathogens isolated. A total of 61.1% (22/36 of positive viruses were detected during the rainy season and Respiratory Syncytial Virus was the most predominant. Conclusion The study has demonstrated an important burden of respiratory viruses as major causes of childhood acute respiratory infection in a tertiary health institution in Ghana. The data addresses a need for more studies on viral associated respiratory tract infection.

  6. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses

    International Nuclear Information System (INIS)

    Pan, Yang; Sasaki, Tadahiro; Kubota-Koketsu, Ritsuko; Inoue, Yuji; Yasugi, Mayo; Yamashita, Akifumi; Ramadhany, Ririn; Arai, Yasuha; Du, Anariwa; Boonsathorn, Naphatsawan; Ibrahim, Madiha S.

    2014-01-01

    Highlights: • Influenza infection can elicit heterosubtypic antibodies to group 1 influenza virus. • Three human monoclonal antibodies were generated from an H1N1-infected patient. • The antibodies predominantly recognized α-helical stem of viral hemagglutinin (HA). • The antibodies inhibited HA structural activation during the fusion process. • The antibodies are potential candidates for future antibody therapy to influenza. - Abstract: Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize a diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses

  7. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yang [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Sasaki, Tadahiro [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Kubota-Koketsu, Ritsuko [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Inoue, Yuji [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Yasugi, Mayo [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Yamashita, Akifumi; Ramadhany, Ririn; Arai, Yasuha [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Du, Anariwa [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Boonsathorn, Naphatsawan [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Ibrahim, Madiha S. [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Damanhour University, Damanhour (Egypt); and others

    2014-07-18

    Highlights: • Influenza infection can elicit heterosubtypic antibodies to group 1 influenza virus. • Three human monoclonal antibodies were generated from an H1N1-infected patient. • The antibodies predominantly recognized α-helical stem of viral hemagglutinin (HA). • The antibodies inhibited HA structural activation during the fusion process. • The antibodies are potential candidates for future antibody therapy to influenza. - Abstract: Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize a diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses.

  8. Comparisons of clustered regularly interspaced short palindromic repeats and viromes in human saliva reveal bacterial adaptations to salivary viruses.

    Science.gov (United States)

    Pride, David T; Salzman, Julia; Relman, David A

    2012-09-01

    Explorations of human microbiota have provided substantial insight into microbial community composition; however, little is known about interactions between various microbial components in human ecosystems. In response to the powerful impact of viral predation, bacteria have acquired potent defences, including an adaptive immune response based on the clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas system. To improve our understanding of the interactions between bacteria and their viruses in humans, we analysed 13 977 streptococcal CRISPR sequences and compared them with 2 588 172 virome reads in the saliva of four human subjects over 17 months. We found a diverse array of viruses and CRISPR spacers, many of which were specific to each subject and time point. There were numerous viral sequences matching CRISPR spacers; these matches were highly specific for salivary viruses. We determined that spacers and viruses coexist at the same time, which suggests that streptococcal CRISPR/Cas systems are under constant pressure from salivary viruses. CRISPRs in some subjects were just as likely to match viral sequences from other subjects as they were to match viruses from the same subject. Because interactions between bacteria and viruses help to determine the structure of bacterial communities, CRISPR-virus analyses are likely to provide insight into the forces shaping the human microbiome. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  9. Detection and Characterization of Homologues of Human Hepatitis Viruses and Pegiviruses in Rodents and Bats in Vietnam.

    Science.gov (United States)

    Van Nguyen, Dung; Van Nguyen, Cuong; Bonsall, David; Ngo, Tue Tri; Carrique-Mas, Juan; Pham, Anh Hong; Bryant, Juliet E; Thwaites, Guy; Baker, Stephen; Woolhouse, Mark; Simmonds, Peter

    2018-02-28

    Rodents and bats are now widely recognised as important sources of zoonotic virus infections in other mammals, including humans. Numerous surveys have expanded our knowledge of diverse viruses in a range of rodent and bat species, including their origins, evolution, and range of hosts. In this study of pegivirus and human hepatitis-related viruses, liver and serum samples from Vietnamese rodents and bats were examined by PCR and sequencing. Nucleic acids homologous to human hepatitis B, C, E viruses were detected in liver samples of 2 (1.3%) of 157 bats, 38 (8.1%), and 14 (3%) of 470 rodents, respectively. Hepacivirus-like viruses were frequently detected (42.7%) in the bamboo rat, Rhizomys pruinosus , while pegivirus RNA was only evident in 2 (0.3%) of 638 rodent serum samples. Complete or near-complete genome sequences of HBV, HEV and pegivirus homologues closely resembled those previously reported from rodents and bats. However, complete coding region sequences of the rodent hepacivirus-like viruses substantially diverged from all of the currently classified variants and potentially represent a new species in the Hepacivirus genus. Of the viruses identified, their routes of transmission and potential to establish zoonoses remain to be determined.

  10. Prevalence And Risk Factors For Human Pappiloma Virus Infection ...

    African Journals Online (AJOL)

    Human Pappiloma Virus (HPV) infection is a disease of global public health importance, culminating into a high risk of cervical cancer. Most of the risk factors are modifiable, thus making HPV itself preventable. Efforts towards community HPV prevention and vaccination have not yielded the desired results, most especially ...

  11. Human Immunodeficiency Virus Infection in a rural community of ...

    African Journals Online (AJOL)

    Human Immunodeficiency Virus Infection in a rural community of Plateau State: effective control measures still a nightmare? GTA Jombo, DZ Egah, EB Banwat. Abstract. No Abstract. Nigerian Journal of Medicine Vol. 15(1) 2006: 49-52. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD ...

  12. Mechanical Barriers Restrict Invasion of Herpes Simplex Virus 1 into Human Oral Mucosa.

    Science.gov (United States)

    Thier, Katharina; Petermann, Philipp; Rahn, Elena; Rothamel, Daniel; Bloch, Wilhelm; Knebel-Mörsdorf, Dagmar

    2017-11-15

    Oral mucosa is one of the main target tissues of the human pathogen herpes simplex virus 1 (HSV-1). How the virus overcomes the protective epithelial barriers and penetrates the tissue to reach its receptors and initiate infection is still unclear. Here, we established an ex vivo infection assay with human oral mucosa that allows viral entry studies in a natural target tissue. The focus was on the susceptibility of keratinocytes in the epithelium and the characterization of cellular receptors that mediate viral entry. Upon ex vivo infection of gingiva or vestibular mucosa, we observed that intact human mucosa samples were protected from viral invasion. In contrast, the basal layer of the oral epithelium was efficiently invaded once the connective tissue and the basement membrane were removed. Later during infection, HSV-1 spread from basal keratinocytes to upper layers, demonstrating the susceptibility of the stratified squamous epithelium to HSV-1. The analysis of potential receptors revealed nectin-1 on most mucosal keratinocytes, whereas herpesvirus entry mediator (HVEM) was found only on a subpopulation of cells, suggesting that nectin-1 acts as primary receptor for HSV-1 in human oral mucosa. To mimic the supposed entry route of HSV-1 via microlesions in vivo , we mechanically wounded the mucosa prior to infection. While we observed a limited number of infected keratinocytes in some wounded mucosa samples, other samples showed no infected cells. Thus, we conclude that mechanical wounding of mucosa is insufficient for the virus to efficiently overcome epithelial barriers and to make entry-mediating receptors accessible. IMPORTANCE To invade the target tissue of its human host during primary infection, herpes simplex virus (HSV) must overcome the epithelial barriers of mucosa, skin, or cornea. For most viruses, the mechanisms underlying the invasion into the target tissues of their host organism are still open. Here, we established an ex vivo infection model of

  13. Interaction of Epstein-Barr virus (EBV) with human B-lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Klein, George, E-mail: Georg.Klein@ki.se [Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Box 280, S171 77 Stockholm (Sweden); Klein, Eva; Kashuba, Elena [Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Box 280, S171 77 Stockholm (Sweden)

    2010-05-21

    Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis. Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore as a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions. The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program. In this short review we touch upon aspects which are the subject of our present work. We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells. The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma

  14. Interaction of Epstein-Barr virus (EBV) with human B-lymphocytes

    International Nuclear Information System (INIS)

    Klein, George; Klein, Eva; Kashuba, Elena

    2010-01-01

    Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis. Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore as a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions. The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program. In this short review we touch upon aspects which are the subject of our present work. We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells. The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma

  15. Prevalence of Polyoma BK Virus (BKPyV), Epstein-Barr Virus (EBV) and Human Papilloma Virus (HPV) in Oropharyngeal Cancer.

    Science.gov (United States)

    Polz-Gruszka, Dorota; Morshed, Kamal; Jarzyński, Adrian; Polz-Dacewicz, Małgorzata

    2015-01-01

    The aim of this study was to analyze the prevalence of BK virus, Human Papillomavirus and Epstein-Barr virus in oropharyngeal cancer, and to test our hypothesis that BKV/HPV/EBV co-infection plays a role in oropharyngeal squamous cell carcinoma. The correlation between viral infection, OSCC, anatomic location, pre-treatment staging, evidence of metastases to lymph nodes, and grading was also investigated. The examination samples were collected from 62 patients from paraffin tissue blocks. Males (90.3%) with, smoking (83.9%) and alcohol abuse (67.7%) problems prevailed in the studied group. G2 histological type was recognized in 80.6% cases. T4 (77.4%) and N2 (56.5%) traits occurred in the majority of patients. No cases of metastasis were observed (M0 100%). HPV - 24.2%, EBV - 27.4% and BKV 17.7% were detected in the studied samples. We observed co-infection EBV/BKV in 8% of cases, HPV/BKV in 4.8%, and HPV/EBV in 9% cases. Only in two cases co-infection of all three viruses was found.

  16. Block to influenza virus replication in cells preirradiated with ultraviolet light

    International Nuclear Information System (INIS)

    Mahy, B.W.J.; Carroll, A.R.; Brownson, J.M.T.; McGeoch, D.J.

    1977-01-01

    Ultraviolet (uv) irradiation of CEF cells immediately before infection with influenza A (fowl plague) virus inhibited virus growth; no inhibition of the growth of a parainfluenza virus (Newcastle disease virus) could be detected in irradiated cells. The kinetics of inhibition after various doses of uv irradiation were multihit, with an extrapolation number of two. When irradiated cells were allowed to photoreactivate by exposure to visible light for 16 hr their capacity to support influenza virus replication was largely restored; this process was sensitive to caffeine, suggesting that it required DNA repair. In CEF cells exposed to 360 ergs/mm 2 of uv radiation the rate of synthesis of host cellular RNA was reduced by more than 90%, and that of host cellular protein by 40 to 50%, as judged by incorporation of precursor molecules into an acid-insoluble form. When such irradiated cells were infected with influenza virus all the genome RNA segments were transcribed, but the overall concentration of virus-specific poly(A)-containing cRNA was reduced about 50-fold. Within this population of cRNA molecules, the RNAs coding for late proteins (HA, NA, and M) were reduced in amount relative to the other segments. The rates of synthesis of the M and HA proteins were specifically reduced in uv-irradiated cells, but the rates of synthesis of the P, NP, and NS proteins were only slightly reduced compared to normal cells. Immunofluorescent studies showed that, in uv-irradiated cells, NP migrated into the nucleus early after infection and later migrated out into the cytoplasm, as in normal cells. In contrast to normal cells, no specific immunofluorescence associated with M protein could be observed in uv-irradiated cells. It is concluded that uv-induced damage to host cellular DNA alters the pattern of RNA transcription in CEF cells infected with influenza virus, and that this results in a block to late protein synthesis which stops virus production

  17. CLINICAL AND VIROLOGIC FOUNDATION FOR PATHOGENETIC THERAPY OF HUMAN HERPES VIRUS TYPE 6 INFECTION IN CHILDREN

    Directory of Open Access Journals (Sweden)

    N.A. Myukke

    2006-01-01

    Full Text Available Information about an infection caused by human herpes virus type 6, its' epidemiology, pathogenesis and clinical variants, is reviewed. Clinical cases, diagnosed at a time of study, are briefly reviewed.Key words: human herpes virus type 6, exanthema subitum (roseola infantum, fever of unknown origin, mononucleosis like syndrome, meningoencephalitis, children.

  18. Poultry farms as a source of avian influenza A (H7N9) virus reassortment and human infection

    OpenAIRE

    Wu, Donglin; Zou, Shumei; Bai, Tian; Li, Jing; Zhao, Xiang; Yang, Lei; Liu, Hongmin; Li, Xiaodan; Yang, Xianda; Xin, Li; Xu, Shuang; Zou, Xiaohui; Li, Xiyan; Wang, Ao; Guo, Junfeng

    2015-01-01

    Live poultry markets are a source of human infection with avian influenza A (H7N9) virus. On February 21, 2014, a poultry farmer infected with H7N9 virus was identified in Jilin, China, and H7N9 and H9N2 viruses were isolated from the patient's farm. Reassortment between these subtype viruses generated five genotypes, one of which caused the human infection. The date of H7N9 virus introduction to the farm is estimated to be between August 21, 2013 (95% confidence interval [CI] June 6, 2013-Oc...

  19. Fate of human viruses in groundwater recharge systems

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.M.; Landry, E.F.

    1980-03-01

    The overall objective of this research program was to determine the ability of a well-managed tertiary effluent-recharge system to return virologically acceptable water to the groundwater aquifer. The study assessed the quality of waters renovated by indigenous recharge operations and investigated a number of virus-soil interrelationships. The elucidation of the interactions led to the establishment of basin operating criteria for optimizing virus removal. Raw influents, chlorinated tertiary effluents, and renovated wastewater from the aquifer directly beneath a uniquely designed recharge test basin were assayed on a weekly basis for the presence of human enteroviruses and coliform bacteria. High concentrations of viruses were routinely isolated from influents but were isolated only on four occasions from tertiary-treated sewage effluents. In spite of the high quality effluent being recharged, viruses were isolated from the groundwater observation well, indicating their ability to penetrate the unsaturated zone. Results of poliovirus seeding experiments carried out in the test basin clearly indicated the need to operate recharge basins at low (e.g. 1 cm/h) infiltration rates in areas having soil types similar to those found at the study site. The method selected for reducing the test basin infiltration rate involved clogging the basin surface with settled organic material from highly turbid effluent. Alternative methods for slowing infiltration rates are discussed in the text.

  20. Bidirectional enhancing activities between human T cell leukemia-lymphoma virus type I and human cytomegalovirus in human term syncytiotrophoblast cells cultured in vitro.

    Science.gov (United States)

    Tóth, F D; Aboagye-Mathiesen, G; Szabó, J; Liu, X; Mosborg-Petersen, P; Kiss, J; Hager, H; Zdravkovic, M; Andirkó, I; Aranyosi, J

    1995-12-01

    The syncytiotrophoblast layer of the human placenta has an important role in limiting transplacental viral spread from mother to fetus. Human cytomegalovirus (HCMV) is capable of establishing a latent infection in syncytiotrophoblast cells, with restriction of gene expression to immediate-early and early proteins. We analyzed the extent of replication of human T cell leukemia-lymphoma virus type I (HTLV-I) in human term syncytiotrophoblasts infected with HTLV-I alone or coinfected with HTLV-I and HCMV. Although syncytiotrophoblasts could be infected with cell-free HTLV-I, no viral protein expression was found in the singly infected cells. On the contrary, coinfection of the cells with HTLV-I and HCMV resulted in simultaneous replication of both viruses. Bidirectional enhancing activities between HTLV-I and HCMV were mediated primarily by the Tax and immediate-early proteins, respectively. The stimulatory effect of HTLV-I Tax on HCMV replication appeared to be mediated partly by tumor necrosis factor beta and transforming growth factor beta-1. We observed formation of pseudotypes with HTLV-I nucleocapsids within HCMV envelopes, whereas HCMV was not pseudotyped by HTLV-I envelopes in dually infected syncytiotrophoblast cells. Our data suggest that in vivo dual infection of syncytiotrophoblast cells with HTLV-I and HCMV may facilitate the transplacental transmission of both viruses.

  1. Human enteric viruses in groundwater indicate offshore transport of human sewage to coral reefs of the Upper Florida Keys

    Science.gov (United States)

    Futch, J. Carrie; Griffin, Dale W.; Lipp, Erin K.

    2010-01-01

    To address the issue of human sewage reaching corals along the main reef of the Florida Keys, samples were collected from surface water, groundwater and coral [surface mucopolysaccharide layers (SML)] along a 10 km transect near Key Largo, FL. Samples were collected semi-annually between July 2003 and September 2005 and processed for faecal indicator bacteria (faecal coliform bacteria, enterococci and Clostridium perfringens) and human-specific enteric viruses (enterovirus RNA and adenovirus DNA) by (RT)-nested polymerase chain reaction. Faecal indicator bacteria concentrations were generally higher nearshore and in the coral SML. Enteric viruses were evenly distributed across the transect stations. Adenoviruses were detected in 37 of 75 samples collected (49.3%) whereas enteroviruses were only found in 8 of 75 samples (10.7%). Both viruses were detected twice as frequently in coral compared with surface water or groundwater. Offshore, viruses were most likely to be found in groundwater, especially during the wet summer season. These data suggest that polluted groundwater may be moving to the outer reef environment in the Florida Keys.

  2. Antiviral Goes Viral: Harnessing CRISPR/Cas9 to Combat Viruses in Humans.

    Science.gov (United States)

    Soppe, Jasper Adriaan; Lebbink, Robert Jan

    2017-10-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems are RNA-guided sequence-specific prokaryotic antiviral immune systems. In prokaryotes, small RNA molecules guide Cas effector endonucleases to invading foreign genetic elements in a sequence-dependent manner, resulting in DNA cleavage by the endonuclease upon target binding. A rewired CRISPR/Cas9 system can be used for targeted and precise genome editing in eukaryotic cells. CRISPR/Cas has also been harnessed to target human pathogenic viruses as a potential new antiviral strategy. Here, we review recent CRISPR/Cas9-based approaches to combat specific human viruses in humans and discuss challenges that need to be overcome before CRISPR/Cas9 may be used in the clinic as an antiviral strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells.

    Science.gov (United States)

    Yuen, Kit-San; Chan, Chi-Ping; Wong, Nok-Hei Mickey; Ho, Chau-Ha; Ho, Ting-Hin; Lei, Ting; Deng, Wen; Tsao, Sai Wah; Chen, Honglin; Kok, Kin-Hang; Jin, Dong-Yan

    2015-03-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated 9) system is a highly efficient and powerful tool for RNA-guided editing of the cellular genome. Whether CRISPR/Cas9 can also cleave the genome of DNA viruses such as Epstein-Barr virus (EBV), which undergo episomal replication in human cells, remains to be established. Here, we reported on CRISPR/Cas9-mediated editing of the EBV genome in human cells. Two guide RNAs (gRNAs) were used to direct a targeted deletion of 558 bp in the promoter region of BART (BamHI A rightward transcript) which encodes viral microRNAs (miRNAs). Targeted editing was achieved in several human epithelial cell lines latently infected with EBV, including nasopharyngeal carcinoma C666-1 cells. CRISPR/Cas9-mediated editing of the EBV genome was efficient. A recombinant virus with the desired deletion was obtained after puromycin selection of cells expressing Cas9 and gRNAs. No off-target cleavage was found by deep sequencing. The loss of BART miRNA expression and activity was verified, supporting the BART promoter as the major promoter of BART RNA. Although CRISPR/Cas9-mediated editing of the multicopy episome of EBV in infected HEK293 cells was mostly incomplete, viruses could be recovered and introduced into other cells at low m.o.i. Recombinant viruses with an edited genome could be further isolated through single-cell sorting. Finally, a DsRed selectable marker was successfully introduced into the EBV genome during the course of CRISPR/Cas9-mediated editing. Taken together, our work provided not only the first genetic evidence that the BART promoter drives the expression of the BART transcript, but also a new and efficient method for targeted editing of EBV genome in human cells. © 2015 The Authors.

  4. Targeted induction of interferon-λ in humanized chimeric mouse liver abrogates hepatotropic virus infection.

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Nakagawa

    Full Text Available BACKGROUND & AIMS: The interferon (IFN system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV and hepatitis B virus (HBV. METHODS: This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC. Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs in the livers and sera of these humanized chimeric mice. RESULTS: Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1, suggesting dual recognition of LIC-pIC by both sensor adaptor pathways. CONCLUSIONS: These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection.

  5. Structure and receptor binding preferences of recombinant hemagglutinins from avian and human H6 and H10 influenza A virus subtypes.

    Science.gov (United States)

    Yang, Hua; Carney, Paul J; Chang, Jessie C; Villanueva, Julie M; Stevens, James

    2015-04-01

    During 2013, three new avian influenza A virus subtypes, A(H7N9), A(H6N1), and A(H10N8), resulted in human infections. While the A(H7N9) virus resulted in a significant epidemic in China across 19 provinces and municipalities, both A(H6N1) and A(H10N8) viruses resulted in only a few human infections. This study focuses on the major surface glycoprotein hemagglutinins from both of these novel human viruses. The detailed structural and glycan microarray analyses presented here highlight the idea that both A(H6N1) and A(H10N8) virus hemagglutinins retain a strong avian receptor binding preference and thus currently pose a low risk for sustained human infections. Human infections with zoonotic influenza virus subtypes continue to be a great public health concern. We report detailed structural analysis and glycan microarray data for recombinant hemagglutinins from A(H6N1) and A(H10N8) viruses, isolated from human infections in 2013, and compare them with hemagglutinins of avian origin. This is the first structural report of an H6 hemagglutinin, and our results should further the understanding of these viruses and provide useful information to aid in the continuous surveillance of these zoonotic influenza viruses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. [The awareness and attitude of population of Kazakhstan to inoculation against human papilloma virus].

    Science.gov (United States)

    Nasritdinova, N Yu; Reznik, V L; Kuatbaieva, A M; Kairbaiev, M R

    2016-01-01

    The vaccines against human papilloma virus are a potential tool for prevention of cervix cancer and particular other types of cancer. The high inclusion of target group in applied vaccination program is economically effective and successful activity depending in many instances on reliable knowledge and positive attitude of population to inoculation. The cross-sectional study was carried out using previously developed anonymous questionnaires for various groups of population in four pilot regions of Kazakhstan where national ministry of health proposes for inoculation of girls aged 9-13 years two vaccines against human papilloma virus (four- and two-valence) The data base was organized using software Microsoft Access. The materials were integrated and processed using variation statistics techniques in software IBM SPSS Statistics 19 and applying Student criterion and calculating correlation dependences. Out of all respondents, 66% were aware about existence of human papilloma virus/ the main portion of parents 'female adolescents learned about vaccination against human papilloma virus from Internet and medical workers. The most significant factor preventing implementation of vaccination and the proper perception by respondents was absence of confidence in safety of vaccine. About 54% of parents of female adolescents and 75% of teachers consider vaccine as unsafe. And only 72% of medical workers consider vaccine as safe. Despite known effectiveness of vaccination against human papilloma virus, number of problems exist related to implementation of program. The level of awareness and understanding of different groups of population concerning the role of vaccination in development of oncologic pathology and possibility of prevention of cancer at the expense of vaccination. The intersectoral relationships are to be developed between medicine and education system. The significance of information activities of medical control organs and organizations is to be enhanced.

  7. IDENTIFICATION OF INFLUENZA VIRUSES IN HUMAN AND POULTRY IN THE AREA OF LARANGAN WET MARKET SIDOARJO-EAST JAVA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Edith Frederika

    2013-10-01

    Full Text Available Background: Influenza is a viral infection that attacks the respiratory system (nose, throat, and lungs that commonly known as “flu”. There are 3 types ofinfluenza viruses, such as type A, type B, and type C. Influenza virus type A is the type ofvirus that can infect both human and animals, virus type B are normally found only in human, and Influenza virus type C can cause mild illness in human and not causing any epidemics or pandemics. Among these 3 types of influenza viruses, only influenza A viruses infect birds, particularly wild bird that are the natural host for all subtypes ofinfluenza A virus. Generally, those wild birds do not get sick when they are infected with influenza virus, unlike chickens or ducks which may die from avian influenza. Aim: In this study, we are identifying the influenza viruses among poultry in Larangan wet market. Method: Around 500 kinds ofpoultry were examined from cloacal swab. Result: Those samples were restrained with symptoms ofsuspected H5. The people who worked as the poultry-traders intact with the animal everyday were also examined, by taking nasopharyngeal swab and blood serum. Conclusion: Identification of influenza viruses was obtained to define the type and subtype ofinfluenza virus by PCR.

  8. Olive baboons: a non-human primate model for testing dengue virus type 2 replication.

    Science.gov (United States)

    Valdés, Iris; Gil, Lázaro; Castro, Jorge; Odoyo, Damián; Hitler, Rikoi; Munene, Elephas; Romero, Yaremis; Ochola, Lucy; Cosme, Karelia; Kariuki, Thomas; Guillén, Gerardo; Hermida, Lisset

    2013-12-01

    This study evaluated the use of a non-human primate, the olive baboon (Papio anubis), as a model of dengue infection. Olive baboons closely resemble humans genetically and physiologically and have been used extensively for assessing novel vaccine formulations. Two doses of dengue virus type 2 (DENV-2) were tested in baboons: 10(3) and 10(4) pfu. Similarly, African green monkeys received the same quantity of virus and acted as positive controls. Following exposure, high levels of viremia were detected in both animal species. There was a trend to detect more days of viremia and more homogeneous viral titers in animals receiving the low viral dose. In addition, baboons infected with the virus generally exhibited positive virus isolation 1 day later than African green monkeys. Humoral responses consisting of antiviral and neutralizing antibodies were detected in all animals after infection. We conclude that baboons provide an alternative non-human primate species for experimental DENV-2 infection and we recommend their use for further tests of vaccines, administering the lowest dose assayed: 10(3) pfu. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  9. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute nipah virus infection.

    Directory of Open Access Journals (Sweden)

    Katharine N Bossart

    2009-10-01

    Full Text Available Nipah virus is a broadly tropic and highly pathogenic zoonotic paramyxovirus in the genus Henipavirus whose natural reservoirs are several species of Pteropus fruit bats. Nipah virus has repeatedly caused outbreaks over the past decade associated with a severe and often fatal disease in humans and animals. Here, a new ferret model of Nipah virus pathogenesis is described where both respiratory and neurological disease are present in infected animals. Severe disease occurs with viral doses as low as 500 TCID(50 within 6 to 10 days following infection. The underlying pathology seen in the ferret closely resembles that seen in Nipah virus infected humans, characterized as a widespread multisystemic vasculitis, with virus replicating in highly vascular tissues including lung, spleen and brain, with recoverable virus from a variety of tissues. Using this ferret model a cross-reactive neutralizing human monoclonal antibody, m102.4, targeting the henipavirus G glycoprotein was evaluated in vivo as a potential therapeutic agent. All ferrets that received m102.4 ten hours following a high dose oral-nasal Nipah virus challenge were protected from disease while all controls died. This study is the first successful post-exposure passive antibody therapy for Nipah virus using a human monoclonal antibody.

  10. Microarray multiplex assay for the simultaneous detection and discrimination of hepatitis B, hepatitis C, and human immunodeficiency type-1 viruses in human blood samples

    International Nuclear Information System (INIS)

    Hsia, Chu Chieh; Chizhikov, Vladimir E.; Yang, Amy X.; Selvapandiyan, Angamuthu; Hewlett, Indira; Duncan, Robert; Puri, Raj K.; Nakhasi, Hira L.; Kaplan, Gerardo G.

    2007-01-01

    Hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus type-1 (HIV-1) are transfusion-transmitted human pathogens that have a major impact on blood safety and public health worldwide. We developed a microarray multiplex assay for the simultaneous detection and discrimination of these three viruses. The microarray consists of 16 oligonucleotide probes, immobilized on a silylated glass slide. Amplicons from multiplex PCR were labeled with Cy-5 and hybridized to the microarray. The assay detected 1 International Unit (IU), 10 IU, 20 IU of HBV, HCV, and HIV-1, respectively, in a single multiplex reaction. The assay also detected and discriminated the presence of two or three of these viruses in a single sample. Our data represent a proof-of-concept for the possible use of highly sensitive multiplex microarray assay to screen and confirm the presence of these viruses in blood donors and patients

  11. High pressure treatment of human norovirus virus-like particles: factors affecting destruction efficacy

    Science.gov (United States)

    Human norovirus (NoV) accounts for more than 90% of nonbacterial gastroenteritis. To date, the efficacy of human NoV inactivation interventions cannot be accurately evaluated because the virus is nonculturable. In this study, we aimed to estimate inactivation of human NoV by high pressure processing...

  12. Absolute level of Epstein-Barr virus DNA in human immunodeficiency virus type 1 infection is not predictive of AIDS-related non-Hodgkin lymphoma

    NARCIS (Netherlands)

    van Baarle, Debbie; Wolthers, Katja C.; Hovenkamp, Egbert; Niesters, Hubert G. M.; Osterhaus, Albert D. M. E.; Miedema, Frank; van Oers, Marinus H. J.

    2002-01-01

    To study whether Epstein-Barr virus (EBV) load can be used to predict the occurrence of acquired immunodeficiency syndrome-related non-Hodgkin lymphoma (AIDS-NHL), we determined EBV load longitudinally for individuals infected with human immunodeficiency virus type 1. EBV load in peripheral blood

  13. Detection and Characterization of Clade 1 Reassortant H5N1 Viruses Isolated from Human Cases in Vietnam during 2013.

    Directory of Open Access Journals (Sweden)

    Sharmi W Thor

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 is endemic in Vietnamese poultry and has caused sporadic human infection in Vietnam since 2003. Human infections with HPAI H5N1 are of concern due to a high mortality rate and the potential for the emergence of pandemic viruses with sustained human-to-human transmission. Viruses isolated from humans in southern Vietnam have been classified as clade 1 with a single genome constellation (VN3 since their earliest detection in 2003. This is consistent with detection of this clade/genotype in poultry viruses endemic to the Mekong River Delta and surrounding regions. Comparison of H5N1 viruses detected in humans from southern Vietnamese provinces during 2012 and 2013 revealed the emergence of a 2013 reassortant virus with clade 1.1.2 hemagglutinin (HA and neuraminidase (NA surface protein genes but internal genes derived from clade 2.3.2.1a viruses (A/Hubei/1/2010-like; VN12. Closer analysis revealed mutations in multiple genes of this novel genotype (referred to as VN49 previously associated with increased virulence in animal models and other markers of adaptation to mammalian hosts. Despite the changes identified between the 2012 and 2013 genotypes analyzed, their virulence in a ferret model was similar. Antigenically, the 2013 viruses were less cross-reactive with ferret antiserum produced to the clade 1 progenitor virus, A/Vietnam/1203/2004, but reacted with antiserum produced against a new clade 1.1.2 WHO candidate vaccine virus (A/Cambodia/W0526301/2012 with comparable hemagglutination inhibition titers as the homologous antigen. Together, these results indicate changes to both surface and internal protein genes of H5N1 viruses circulating in southern Vietnam compared to 2012 and earlier viruses.

  14. H5N1 Influenza A Virus PB1-F2 Relieves HAX-1-Mediated Restriction of Avian Virus Polymerase PA in Human Lung Cells.

    Science.gov (United States)

    Mazel-Sanchez, B; Boal-Carvalho, I; Silva, F; Dijkman, R; Schmolke, M

    2018-06-01

    Highly pathogenic influenza A viruses (IAV) from avian hosts were first reported to directly infect humans 20 years ago. However, such infections are rare events, and our understanding of factors promoting or restricting zoonotic transmission is still limited. One accessory protein of IAV, PB1-F2, was associated with pathogenicity of pandemic and zoonotic IAV. This short (90-amino-acid) peptide does not harbor an enzymatic function. We thus identified host factors interacting with H5N1 PB1-F2, which could explain its importance for virulence. PB1-F2 binds to HCLS1-associated protein X1 (HAX-1), a recently identified host restriction factor of the PA subunit of IAV polymerase complexes. We demonstrate that the PA of a mammal-adapted H1N1 IAV is resistant to HAX-1 imposed restriction, while the PA of an avian-origin H5N1 IAV remains sensitive. We also showed HAX-1 sensitivity for PAs of A/Brevig Mission/1/1918 (H1N1) and A/Shanghai/1/2013 (H7N9), two avian-origin zoonotic IAV. Inhibition of H5N1 polymerase by HAX-1 can be alleviated by its PB1-F2 through direct competition. Accordingly, replication of PB1-F2-deficient H5N1 IAV is attenuated in the presence of large amounts of HAX-1. Mammal-adapted H1N1 and H3N2 viruses do not display this dependence on PB1-F2 for efficient replication in the presence of HAX-1. We propose that PB1-F2 plays a key role in zoonotic transmission of avian H5N1 IAV into humans. IMPORTANCE Aquatic and shore birds are the natural reservoir of influenza A viruses from which the virus can jump into a variety of bird and mammal host species, including humans. H5N1 influenza viruses are a good model for this process. They pose an ongoing threat to human and animal health due to their high mortality rates. However, it is currently unclear what restricts these interspecies jumps on the host side or what promotes them on the virus side. Here we show that a short viral peptide, PB1-F2, helps H5N1 bird influenza viruses to overcome a human restriction

  15. Evaluation of Human Enteric Viruses in Surface Water and Drinking Water Resources in Southern Ghana

    Science.gov (United States)

    Gibson, Kristen E.; Opryszko, Melissa C.; Schissler, James T.; Guo, Yayi; Schwab, Kellogg J.

    2011-01-01

    An estimated 884 million people worldwide do not have access to an improved drinking water source, and the microbial quality of these sources is often unknown. In this study, a combined tangential flow, hollow fiber ultrafiltration (UF), and real-time PCR method was applied to large volume (100 L) groundwater (N = 4), surface water (N = 9), and finished (i.e., receiving treatment) drinking water (N = 6) samples for the evaluation of human enteric viruses and bacterial indicators. Human enteric viruses including norovirus GI and GII, adenovirus, and polyomavirus were detected in five different samples including one groundwater, three surface water, and one drinking water sample. Total coliforms and Escherichia coli assessed for each sample before and after UF revealed a lack of correlation between bacterial indicators and the presence of human enteric viruses. PMID:21212196

  16. Predominant CD4 T-lymphocyte tropism of human herpesvirus 6-related virus.

    OpenAIRE

    Takahashi, K; Sonoda, S; Higashi, K; Kondo, T; Takahashi, H; Takahashi, M; Yamanishi, K

    1989-01-01

    Human herpesvirus 6 (HHV-6)-related virus was isolated from CD4+ CD8- and CD3+ CD4+ mature T lymphocytes but could not be isolated from CD4- CD8+, CD4- CD8-, and CD3- T cells in the peripheral blood of exanthem subitum patients. HHV-6-related virus predominantly infected CD4+ CD8+, CD4+ CD8-, and CD3+ CD4+ cells with mature phenotypes and rarely infected CD4- CD8+ cells from cord blood mononuclear cells, which suggested predominant CD4 mature T-lymphocyte tropism of HHV-6-related virus.

  17. CROSSREACTIVE ANTIBODIES AND MEMORY T CELLS TO HUMAN AND ZOONOTIC INFLUENZA A VIRUSES IN VOLUNTEERS

    Directory of Open Access Journals (Sweden)

    I. V. Losev

    2015-01-01

    Full Text Available There exists a real hazard of transferring zoonotic influenza A viruses, either swine, or avian, into human population. In such case, severity of such pandemics depends on the pathogen-specific immunity in the population. Virtual absence of such immunity in humans was declared in the literature. In this work, we assessed systemic, local, and T-cell immunity to potentially pandemic H3N2sw, H5N1, H5N2, H7N3, H7N9 and H2N2 influenza A viruses in a group of healthy adults of different age. Our results indicate that these subjects develop the following immune reactions: (i local (i.e., nasal IgA and cellular (CD4+ and CD8v memory T cells heterosubtypic immunity, in absence of detectable virus-specific serum antibodies to avian influenza A viruses; (ii Local immune responses (as nasal IgA to human A (H2N2 virus which circulated in 1957-1968 were detected both in subjects who could be primed at that time, but also in subjects born after 1968; (iii full-scale systemic and local immunity to potentially pandemic А (H3N2sw swine virus was found in the group. Conclusion. In order of proper epidemiological forecasts and planning appropriate preventive measures for potentially pandemic Influenza A viruses, a regular monitoring of collective immunity should be performed using different adaptive markers. In this respect, any conclusion based on molecular analysis only could lead to considerable mistakes, and should be accomplished by the mentioned immunological studies.

  18. Human airway epithelial cell cultures for modeling respiratory syncytial virus infection.

    Science.gov (United States)

    Pickles, Raymond J

    2013-01-01

    Respiratory syncytial virus (RSV) is an important human respiratory pathogen with narrow species tropism. Limited availability of human pathologic specimens during early RSV-induced lung disease and ethical restrictions for RSV challenge studies in the lower airways of human volunteers has slowed our understanding of how RSV causes airway disease and greatly limited the development of therapeutic strategies for reducing RSV disease burden. Our current knowledge of RSV infection and pathology is largely based on in vitro studies using nonpolarized epithelial cell-lines grown on plastic or in vivo studies using animal models semipermissive for RSV infection. Although these models have revealed important aspects of RSV infection, replication, and associated inflammatory responses, these models do not broadly recapitulate the early interactions and potential consequences of RSV infection of the human columnar airway epithelium in vivo. In this chapter, the pro et contra of in vitro models of human columnar airway epithelium and their usefulness in respiratory virus pathogenesis and vaccine development studies will be discussed. The use of such culture models to predict characteristics of RSV infection and the correlation of these findings to the human in vivo situation will likely accelerate our understanding of RSV pathogenesis potentially identifying novel strategies for limiting the severity of RSV-associated airway disease.

  19. Health Disparity in Human Papilloma Virus Related Infections | Poku ...

    African Journals Online (AJOL)

    In spite of the volume of information of Human Papilloma Virus (HPV) and the HPV vaccines, there are racial and gender differences in the knowledge and awareness of HPV among Guyanese. The study aimed to assess the knowledge and attitude towards HPV infection, cervical cancer and HPV vaccines. The study was ...

  20. Phenotype Variation in Human Immunodeficiency virus Type 1 Transmission and Disease Progression

    Directory of Open Access Journals (Sweden)

    Mariangela Cavarelli

    2009-01-01

    Full Text Available Human immunodeficiency virus type I (HIV-1 infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly CCR5 and CXCR4. Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. Thus, R5 and X4 virus use respectively CCR5 and CXCR4, whereas R5X4 virus can use either CCR5 or CXCR4. This review describes the central role played by co-receptor expression and usage for HIV-1 cell tropism, transmission and pathogenesis. We discuss various hypotheses proposed to explain the preferential transmission of R5 viruses and the mechanisms driving the change of HIV-1 co-receptor usage in the course of infection. Recent insights in the intrinsic variability of R5 viruses and their role in influencing disease progression in both adults and children are also discussed.