WorldWideScience

Sample records for human liver-chimeric mice

  1. Combinatorial RNA Interference Therapy Prevents Selection of Pre-existing HBV Variants in Human Liver Chimeric Mice

    Science.gov (United States)

    Shih, Yao-Ming; Sun, Cheng-Pu; Chou, Hui-Hsien; Wu, Tzu-Hui; Chen, Chun-Chi; Wu, Ping-Yi; Enya Chen, Yu-Chen; Bissig, Karl-Dimiter; Tao, Mi-Hua

    2015-01-01

    Selection of escape mutants with mutations within the target sequence could abolish the antiviral RNA interference activity. Here, we investigated the impact of a pre-existing shRNA-resistant HBV variant on the efficacy of shRNA therapy. We previously identified a highly potent shRNA, S1, which, when delivered by an adeno-associated viral vector, effectively inhibits HBV replication in HBV transgenic mice. We applied the “PICKY” software to systemically screen the HBV genome, then used hydrodynamic transfection and HBV transgenic mice to identify additional six highly potent shRNAs. Human liver chimeric mice were infected with a mixture of wild-type and T472C HBV, a S1-resistant HBV variant, and then treated with a single or combined shRNAs. The presence of T472C mutant compromised the therapeutic efficacy of S1 and resulted in replacement of serum wild-type HBV by T472C HBV. In contrast, combinatorial therapy using S1 and P28, one of six potent shRNAs, markedly reduced titers for both wild-type and T472C HBV. Interestingly, treatment with P28 alone led to the emergence of escape mutants with mutations in the P28 target region. Our results demonstrate that combinatorial RNAi therapy can minimize the escape of resistant viral mutants in chronic HBV patients. PMID:26482836

  2. HBsAg-redirected T cells exhibit antiviral activity in HBV-infected human liver chimeric mice.

    Science.gov (United States)

    Kruse, Robert L; Shum, Thomas; Tashiro, Haruko; Barzi, Mercedes; Yi, Zhongzhen; Whitten-Bauer, Christina; Legras, Xavier; Bissig-Choisat, Beatrice; Garaigorta, Urtzi; Gottschalk, Stephen; Bissig, Karl-Dimiter

    2018-04-06

    Chronic hepatitis B virus (HBV) infection remains incurable. Although HBsAg-specific chimeric antigen receptor (HBsAg-CAR) T cells have been generated, they have not been tested in animal models with authentic HBV infection. We generated a novel CAR targeting HBsAg and evaluated its ability to recognize HBV+ cell lines and HBsAg particles in vitro. In vivo, we tested whether human HBsAg-CAR T cells would have efficacy against HBV-infected hepatocytes in human liver chimeric mice. HBsAg-CAR T cells recognized HBV-positive cell lines and HBsAg particles in vitro as judged by cytokine production. However, HBsAg-CAR T cells did not kill HBV-positive cell lines in cytotoxicity assays. Adoptive transfer of HBsAg-CAR T cells into HBV-infected humanized mice resulted in accumulation within the liver and a significant decrease in plasma HBsAg and HBV-DNA levels compared with control mice. Notably, the fraction of HBV core-positive hepatocytes among total human hepatocytes was greatly reduced after HBsAg-CAR T cell treatment, pointing to noncytopathic viral clearance. In agreement, changes in surrogate human plasma albumin levels were not significantly different between treatment and control groups. HBsAg-CAR T cells have anti-HBV activity in an authentic preclinical HBV infection model. Our results warrant further preclinical exploration of HBsAg-CAR T cells as immunotherapy for HBV. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. Polyclonal immunoglobulins from a chronic hepatitis C virus patient protect human liver-chimeric mice from infection with a homologous hepatitis C virus strain

    DEFF Research Database (Denmark)

    Vanwolleghem, Thomas; Bukh, Jens; Meuleman, Philip

    2008-01-01

    The role of the humoral immune response in the natural course of hepatitis C virus (HCV) infection is widely debated. Most chronically infected patients have immunoglobulin G (IgG) antibodies capable of neutralizing HCV pseudoparticles (HCVpp) in vitro. It is, however, not clear whether these Ig...... were loaded with chronic phase polyclonal IgG and challenged 3 days later with a 100% infectious dose of the acute phase H77C virus, both originating from patient H. Passive immunization induced sterilizing immunity in five of eight challenged animals. In the three nonprotected animals, the HCV...... infection was attenuated, as evidenced by altered viral kinetics in comparison with five control IgG-treated animals. Plasma samples obtained from the mice at viral challenge neutralized H77C-HCVpp at dilutions as high as 1/400. Infection was completely prevented when, before administration to naïve...

  4. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice

    Science.gov (United States)

    Vaughan, Ashley M.; Mikolajczak, Sebastian A.; Wilson, Elizabeth M.; Grompe, Markus; Kaushansky, Alexis; Camargo, Nelly; Bial, John; Ploss, Alexander; Kappe, Stefan H.I.

    2012-01-01

    Plasmodium falciparum, which causes the most lethal form of human malaria, replicates in the host liver during the initial stage of infection. However, in vivo malaria liver-stage (LS) studies in humans are virtually impossible, and in vitro models of LS development do not reconstitute relevant parasite growth conditions. To overcome these obstacles, we have adopted a robust mouse model for the study of P. falciparum LS in vivo: the immunocompromised and fumarylacetoacetate hydrolase–deficient mouse (Fah–/–, Rag2–/–, Il2rg–/–, termed the FRG mouse) engrafted with human hepatocytes (FRG huHep). FRG huHep mice supported vigorous, quantifiable P. falciparum LS development that culminated in complete maturation of LS at approximately 7 days after infection, providing a relevant model for LS development in humans. The infections allowed observations of previously unknown expression of proteins in LS, including P. falciparum translocon of exported proteins 150 (PTEX150) and exported protein-2 (EXP-2), components of a known parasite protein export machinery. LS schizonts exhibited exoerythrocytic merozoite formation and merosome release. Furthermore, FRG mice backcrossed to the NOD background and repopulated with huHeps and human red blood cells supported reproducible transition from LS infection to blood-stage infection. Thus, these mice constitute reliable models to study human LS directly in vivo and demonstrate utility for studies of LS–to–blood-stage transition of a human malaria parasite. PMID:22996664

  5. Hepatitis E virus genotype three infection of human liver chimeric mice as a model for chronic HEV infection

    NARCIS (Netherlands)

    M.D.B. van de Garde (Martijn D.B.); S.D. Pas (Suzan); G. van der Net (Guido); R.A. de Man (Robert); A.D.M.E. Osterhaus (Albert); B.L. Haagmans (Bart); A. Boonstra (Andre); T. Vanwolleghem (Thomas)

    2016-01-01

    textabstractGenotype (gt) 3 hepatitis E virus (HEV) infections are emerging in Western countries. Immunosuppressed patients are at risk of chronic HEV infection and progressive liver damage, but no adequate model system currently mimics this disease course. Here we explore the possibilities of in

  6. Hepatitis E virus (HEV) genotype 3 infection of human liver chimeric mice as a model for chronic HEV infection

    NARCIS (Netherlands)

    M.D.B. van de Garde (Martijn D.B.); S.D. Pas (Suzan); Van Der Net, G. (Guido); R.A. de Man (Robert); A.D.M.E. Osterhaus (Albert); B.L. Haagmans (Bart); P.A. Boonstra (André); T. Vanwolleghem (Thomas)

    2016-01-01

    textabstractGenotype 3 (gt3) hepatitis E virus (HEV) infections are emerging in Western countries. Immunosuppressed patients are at risk of chronic HEV infection and progressive liver damage, but no adequate model system currently mimics this disease course. Here we explore the possibilities of in

  7. Identification and characterization of metabolites of ASP015K, a novel oral Janus kinase inhibitor, in rats, chimeric mice with humanized liver, and humans.

    Science.gov (United States)

    Nakada, Naoyuki; Oda, Kazuo

    2015-01-01

    1. Here, we elucidated the structure of metabolites of novel oral Janus kinase inhibitor ASP015K in rats and humans and evaluated the predictability of human metabolites using chimeric mice with humanized liver (PXB mice). 2. Rat biological samples collected after oral dosing of (14)C-labelled ASP015K were examined using a liquid chromatography-radiometric detector and mass spectrometer (LC-RAD/MS). The molecular weight of metabolites in human and the liver chimeric mouse biological samples collected after oral dosing of non-labelled ASP015K was also investigated via LC-MS. Metabolites were also isolated from rat bile samples and analyzed using nuclear magnetic resonance. 3. Metabolic pathways of ASP015K in rats and humans were found to be glucuronide conjugation, methyl conjugation, sulfate conjugation, glutathione conjugation, hydroxylation of the adamantane ring and N-oxidation of the 1H-pyrrolo[2,3-b]pyridine ring. The main metabolite of ASP015K in rats was the glucuronide conjugate, while the main metabolite in humans was the sulfate conjugate. Given that human metabolites were produced by human hepatocytes in chimeric mice with humanized liver, this human model mouse was believed to be useful in predicting the human metabolic profile of various drug candidates.

  8. Modeling Human Leukemia Immunotherapy in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Jinxing Xia

    2016-08-01

    Full Text Available The currently available human tumor xenograft models permit modeling of human cancers in vivo, but in immunocompromised hosts. Here we report a humanized mouse (hu-mouse model made by transplantation of human fetal thymic tissue plus hematopoietic stem cells transduced with a leukemia-associated fusion gene MLL-AF9. In addition to normal human lymphohematopoietic reconstitution as seen in non-leukemic hu-mice, these hu-mice showed spontaneous development of B-cell acute lymphoblastic leukemia (B-ALL, which was transplantable to secondary recipients with an autologous human immune system. Using this model, we show that lymphopenia markedly improves the antitumor efficacy of recipient leukocyte infusion (RLI, a GVHD-free immunotherapy that induces antitumor responses in association with rejection of donor chimerism in mixed allogeneic chimeras. Our data demonstrate the potential of this leukemic hu-mouse model in modeling leukemia immunotherapy, and suggest that RLI may offer a safe treatment option for leukemia patients with severe lymphopenia.

  9. Hepatitis B virus evasion from cGAS sensing in human hepatocytes.

    Science.gov (United States)

    Verrier, Eloi R; Yim, Seung-Ae; Heydmann, Laura; El Saghire, Houssein; Bach, Charlotte; Turon-Lagot, Vincent; Mailly, Laurent; Durand, Sarah C; Lucifora, Julie; Durantel, David; Pessaux, Patrick; Manel, Nicolas; Hirsch, Ivan; Zeisel, Mirjam B; Pochet, Nathalie; Schuster, Catherine; Baumert, Thomas F

    2018-04-20

    Chronic hepatitis B virus (HBV) infection is a major cause of chronic liver disease and cancer worldwide. The mechanisms of viral genome sensing and the evasion of innate immune responses by HBV infection are still poorly understood. Recently, the cyclic GMP-AMP synthase (cGAS) was identified as a DNA sensor. In this study, we aimed to investigate the functional role of cGAS in sensing of HBV infection and elucidate the mechanisms of viral evasion. We performed functional studies including loss- and gain-of-function experiments combined with cGAS effector gene expression profiling in an infectious cell culture model, primary human hepatocytes and HBV-infected human liver chimeric mice. Here we show that cGAS is expressed in the human liver, primary human hepatocytes and human liver chimeric mice. While naked relaxed-circular HBV DNA is sensed in a cGAS-dependent manner in hepatoma cell lines and primary human hepatocytes, host cell recognition of viral nucleic acids is abolished during HBV infection, suggesting escape from sensing, likely during packaging of the genome into the viral capsid. While the hepatocyte cGAS pathway is functionally active, as shown by reduction of viral cccDNA levels in gain-of-function studies, HBV infection suppressed cGAS expression and function in cell culture models and humanized mice. HBV exploits multiple strategies to evade sensing and antiviral activity of cGAS and its effector pathways. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  10. Nicotinamide pharmacokinetics in humans and mice

    International Nuclear Information System (INIS)

    Horsman, M.R.; Hoyer, M.; Overgaard, J.; Honess, D.J.; Dennis, A.F.

    1993-01-01

    Healthy human volunteers orally ingested escalating doses of up to 6 g nicotinamide in capsule form on an empty stomach. Some side-effects were seen although these were mild and transient. HPLC analysis of blood samples showed peak plasma levels, typically within 45 min after ingestion, which were linearly dependent on dose ingested. The elimination half-life and AUC were also found to increase with drug dose, although these increases were non-linear. Pharmacokinetic studies were also performed to female CDF1 mice with C3H mammary carcinomas grown in the right rear foot. Analysis of blood and tumour samples taken from mice injected i.p. with nicotinamide doses between 100-1000 mg/kg showed similar characteristics as the human data, although the elimination half-lives were not dose-dependent. The average peak plasma concentration of 160 μg/ml measured in humans after taking 6 g of nicotinamide was equivalent to that seen in mice after injecting 171 mg/kg. Using a regrowth delay assay the enhancement of radiation damage by nicotinamide in this mouse tumour was found to be independent of drug dose from 100-1000 mg/kg, resulting in a constant 1.3-fold increase in radiation response. Doses of nicotinamide that can be tolerated clinically should therefore produce adequate enhancements of radiation damage in human tumours. (author)

  11. Humans and mice express similar olfactory preferences.

    Directory of Open Access Journals (Sweden)

    Nathalie Mandairon

    Full Text Available In humans, the pleasantness of odors is a major contributor to social relationships and food intake. Smells evoke attraction and repulsion responses, reflecting the hedonic value of the odorant. While olfactory preferences are known to be strongly modulated by experience and learning, it has been recently suggested that, in humans, the pleasantness of odors may be partly explained by the physicochemical properties of the odorant molecules themselves. If odor hedonic value is indeed predetermined by odorant structure, then it could be hypothesized that other species will show similar odor preferences to humans. Combining behavioral and psychophysical approaches, we here show that odorants rated as pleasant by humans were also those which, behaviorally, mice investigated longer and human subjects sniffed longer, thereby revealing for the first time a component of olfactory hedonic perception conserved across species. Consistent with this, we further show that odor pleasantness rating in humans and investigation time in mice were both correlated with the physicochemical properties of the molecules, suggesting that olfactory preferences are indeed partly engraved in the physicochemical structure of the odorant. That odor preferences are shared between mammal species and are guided by physicochemical features of odorant stimuli strengthens the view that odor preference is partially predetermined. These findings open up new perspectives for the study of the neural mechanisms of hedonic perception.

  12. Human malignant melanomas in nude mice

    International Nuclear Information System (INIS)

    Atlas, S.W.; Braffman, B.H.; Lo Brutto, R.; Elder, D.E.; Herlyn, D.

    1988-01-01

    The purpose of this study was to correlate signal intensities and relaxation times on MR images in malignant melanomas with histopathologic features and electron paramagnetic resonance (EPR) spectra. Cell lines from human malignant melanomas in tissue culture were implanted subcutaneously into nude mice. MR imaging was performed in vivo at 1.9 T to assess 12 separate lesions in ten mice using spin-echo and inversion-recovery techniques. T1,T2, and N(H) were calculated in all cases. Histopathologic examination was performed on specimens resected immediately after imaging, using hematoxylin and eosin, Prussian blue, and Fontan stains to assess for tumor necrosis, iron, and melanin content. EPR spectra were also obtained on four resected specimens. The authors' results indicate that the relaxation behavior of nonhemorrhagic malignant melanomas cannot be explained solely by the presence of necrosis, water content, or iron content. The degree of melanin within these tumors did correlate with T1 relaxation enhancement. T2 relaxation times did not correlate with the sole presence of either iron, melanin, or necrosis. Although the unique relaxation behavior of nonhemorrhagic malignant melanoma seems to have many causes, their data suggest that, contrary to previous investigations, it is influenced by the presence of melanin rather than iron

  13. A DNA Vaccine Protects Human Immune Cells against Zika Virus Infection in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Guohua Yi

    2017-11-01

    Full Text Available A DNA vaccine encoding prM and E protein has been shown to induce protection against Zika virus (ZIKV infection in mice and monkeys. However, its effectiveness in humans remains undefined. Moreover, identification of which immune cell types are specifically infected in humans is unclear. We show that human myeloid cells and B cells are primary targets of ZIKV in humanized mice. We also show that a DNA vaccine encoding full length prM and E protein protects humanized mice from ZIKV infection. Following administration of the DNA vaccine, humanized DRAG mice developed antibodies targeting ZIKV as measured by ELISA and neutralization assays. Moreover, following ZIKV challenge, vaccinated animals presented virtually no detectable virus in human cells and in serum, whereas unvaccinated animals displayed robust infection, as measured by qRT-PCR. Our results utilizing humanized mice show potential efficacy for a targeted DNA vaccine against ZIKV in humans.

  14. Challenge pools of hepatitis C virus genotypes 1-6 prototype strains: replication fitness and pathogenicity in chimpanzees and human liver-chimeric mouse models

    DEFF Research Database (Denmark)

    Bukh, Jens; Meuleman, Philip; Tellier, Raymond

    2010-01-01

    Chimpanzees represent the only animal model for studies of the natural history of hepatitis C virus (HCV). To generate virus stocks of important HCV variants, we infected chimpanzees with HCV strains of genotypes 1-6 and determined the infectivity titer of acute-phase plasma pools in additional a...

  15. Human thrombomodulin knock-in mice reveal differential effects of human thrombomodulin on thrombosis and atherosclerosis.

    Science.gov (United States)

    Raife, Thomas J; Dwyre, Denis M; Stevens, Jeff W; Erger, Rochelle A; Leo, Lorie; Wilson, Katina M; Fernández, Jose A; Wilder, Jennifer; Kim, Hyung-Suk; Griffin, John H; Maeda, Nobuyo; Lentz, Steven R

    2011-11-01

    We sought to develop a murine model to examine the antithrombotic and antiinflammatory functions of human thrombomodulin in vivo. Knock-in mice that express human thrombomodulin from the murine thrombomodulin gene locus were generated. Compared with wild-type mice, human thrombomodulin knock-in mice exhibited decreased protein C activation in the aorta (Pknock-in mice compared with wild-type mice (Pknock-in mice (12±3 minutes) than in wild-type mice (31±6 minutes; Pknock-in and wild-type mice after injection of endotoxin. When crossed with apolipoprotein E-deficient mice and fed a Western diet, knock-in mice had a further decrease in protein C activation but did not exhibit increased atherosclerosis. Expression of human thrombomodulin in place of murine thrombomodulin produces viable mice with a prothrombotic phenotype but unaltered responses to systemic inflammatory or atherogenic stimuli. This humanized animal model will be useful for investigating the function of human thrombomodulin under pathophysiological conditions in vivo.

  16. Modeling cognition and disease using human glial chimeric mice

    DEFF Research Database (Denmark)

    Goldman, Steven A.; Nedergaard, Maiken; Windrem, Martha S.

    2015-01-01

    , oligodendrocytes as well. As a result, the recipient brains may become inexorably humanized with regards to their resident glial populations, yielding human glial chimeric mouse brains. These brains provide us a fundamentally new tool by which to assess the species-specific attributes of glia in modulating human...... for studying the human-specific contributions of glia to psychopathology, as well as to higher cognition. As such, the assessment of human glial chimeric mice may provide us new insight into the species-specific contributions of glia to human cognitive evolution, as well as to the pathogenesis of human...

  17. Endocrine therapy of human breast cancer grown in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Osborne, C K; Spang-Thomsen, M

    1987-01-01

    mice bearing transplanted human breast tumors have been proposed as such a model. This review therefore discusses the use of the athymic nude mouse model of the study of human breast cancer biology, and focuses on four subjects: 1. biological characteristics of heterotransplanted breast tumors; 2...

  18. Aberrant phenotypes of transgenic mice expressing dimeric human erythropoietin

    Directory of Open Access Journals (Sweden)

    Yun Seong-Jo

    2012-01-01

    Full Text Available Abstract Background Dimeric human erythropoietin (dHuEPO peptides are reported to exhibit significantly higher biological activity than the monomeric form of recombinant EPO. The objective of this study was to produce transgenic (tg mice expressing dHuEPO and to investigate the characteristics of these mice. Methods A dHuEPO-expressing vector under the control of the goat beta-casein promoter, which produced a dimer of human EPO molecules linked by a 2-amino acid peptide linker (Asp-Ile, was constructed and injected into 1-cell fertilized embryos by microinjection. Mice were screened using genomic DNA samples obtained from tail biopsies. Blood samples were obtained by heart puncture using heparinized tubes, and hematologic parameters were assessed. Using the microarray analysis tool, we analyzed differences in gene expression in the spleens of tg and control mice. Results A high rate of spontaneous abortion or death of the offspring was observed in the recipients of dHuEPO embryos. We obtained 3 founder lines (#4, #11, and #47 of tg mice expressing the dHuEPO gene. However, only one founder line showed stable germline integration and transmission, subsequently establishing the only transgenic line (#11. We obtained 2 F1 mice and 3 F2 mice from line #11. The dHuEPO protein could not be obtained because of repeated spontaneous abortions in the tg mice. Tg mice exhibited symptoms such as short lifespan and abnormal blood composition. The red blood cell count, white blood cell count, and hematocrit levels in the tg mice were remarkably higher than those in the control mice. The spleens of the tg mice (F1 and F2 females were 11- and -21-fold larger than those of the control mice. Microarray analysis revealed 2,672 spleen-derived candidate genes; more genes were downregulated than upregulated (849/764. Reverse transcriptase-polymerase chain reaction (RT-PCR and quantitative real-time PCR (qRT-PCR were used for validating the results of the microarray

  19. Hepatic steatosis in transgenic mice overexpressing human histone deacetylase 1

    International Nuclear Information System (INIS)

    Wang, Ai-Guo; Seo, Sang-Beom; Moon, Hyung-Bae; Shin, Hye-Jun; Kim, Dong Hoon; Kim, Jin-Man; Lee, Tae-Hoon; Kwon, Ho Jeong; Yu, Dae-Yeul; Lee, Dong-Seok

    2005-01-01

    It is generally thought that histone deacetylases (HDACs) play important roles in the transcriptional regulation of genes. However, little information is available concerning the specific functions of individual HDACs in disease states. In this study, two transgenic mice lines were established which harbored the human HDAC1 gene. Overexpressed HDAC1 was detected in the nuclei of transgenic liver cells, and HDAC1 enzymatic activity was significantly higher in the transgenic mice than in control littermates. The HDAC1 transgenic mice exhibited a high incidence of hepatic steatosis and nuclear pleomorphism. Molecular studies showed that HDAC1 may contribute to nuclear pleomorphism through the p53/p21 signaling pathway

  20. Cyborgs and Smart Mice: How Human can they get?

    DEFF Research Database (Denmark)

    Runehov, Anne Leona Cesarine

    2008-01-01

    There are at least two scientific debates concerning the possibility to offer enhanced lifetime to the human race. One of them derives from the medical sciences and the other from the computer sciences. The former has to do with improving the quality and length of human life by improving...... their biological systems, for example by way of smart pills. The latter concerns possible improvements of the quality and length of human life by correlating high technology with human beings. Medical scientists illustrate their research progressions using smart mice. Computer scientists present advanced robot...... medical sciences regards ethical problems. Keywords: humanity, Cybernetics, artificial intelligence, Neuropharmacology, Cognitive neuroscience, Theology and Philosophy...

  1. Propagating Humanized BLT Mice for the Study of Human Immunology and Immunotherapy.

    Science.gov (United States)

    Smith, Drake J; Lin, Levina J; Moon, Heesung; Pham, Alexander T; Wang, Xi; Liu, Siyuan; Ji, Sunjong; Rezek, Valerie; Shimizu, Saki; Ruiz, Marlene; Lam, Jennifer; Janzen, Deanna M; Memarzadeh, Sanaz; Kohn, Donald B; Zack, Jerome A; Kitchen, Scott G; An, Dong Sung; Yang, Lili

    2016-12-15

    The humanized bone marrow-liver-thymus (BLT) mouse model harbors a nearly complete human immune system, therefore providing a powerful tool to study human immunology and immunotherapy. However, its application is greatly limited by the restricted supply of human CD34 + hematopoietic stem cells and fetal thymus tissues that are needed to generate these mice. The restriction is especially significant for the study of human immune systems with special genetic traits, such as certain human leukocyte antigen (HLA) haplotypes or monogene deficiencies. To circumvent this critical limitation, we have developed a method to quickly propagate established BLT mice. Through secondary transfer of bone marrow cells and human thymus implants from BLT mice into NSG (NOD/SCID/IL-2Rγ -/- ) recipient mice, we were able to expand one primary BLT mouse into a colony of 4-5 proBLT (propagated BLT) mice in 6-8 weeks. These proBLT mice reconstituted human immune cells, including T cells, at levels comparable to those of their primary BLT donor mouse. They also faithfully inherited the human immune cell genetic traits from their donor BLT mouse, such as the HLA-A2 haplotype that is of special interest for studying HLA-A2-restricted human T cell immunotherapies. Moreover, an EGFP reporter gene engineered into the human immune system was stably passed from BLT to proBLT mice, making proBLT mice suitable for studying human immune cell gene therapy. This method provides an opportunity to overcome a critical hurdle to utilizing the BLT humanized mouse model and enables its more widespread use as a valuable preclinical research tool.

  2. Comprehensive evaluation of leukocyte lineage derived from human hematopoietic cells in humanized mice.

    Science.gov (United States)

    Takahashi, Masayuki; Tsujimura, Noriyuki; Otsuka, Kensuke; Yoshino, Tomoko; Mori, Tetsushi; Matsunaga, Tadashi; Nakasono, Satoshi

    2012-04-01

    Recently, humanized animals whereby a part of the animal is biologically engineered using human genes or cells have been utilized to overcome interspecific differences. Herein, we analyzed the detail of the differentiation states of various human leukocyte subpopulations in humanized mouse and evaluated comprehensively the similarity of the leukocyte lineage between humanized mice and humans. Humanized mice were established by transplanting human CD34(+) cord blood cells into irradiated severely immunodeficient NOD/Shi-scid/IL2Rγ(null) (NOG) mice, and the phenotypes of human cells contained in bone marrow, thymus, spleen and peripheral blood from the mice were analyzed at monthly intervals until 4 months after cell transplantation. The analysis revealed that transplanted human hematopoietic stem cells via the caudal vein homed and engrafted themselves successfully at the mouse bone marrow. Subsequently, the differentiated leukocytes migrated to the various tissues. Almost all of the leukocytes within the thymus were human cells. Furthermore, analysis of the differentiation states of human leukocytes in various tissues and organs indicated that it is highly likely that the human-like leukocyte lineage can be developed in mice. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Intestinal Stem Cell Dynamics: A Story of Mice and Humans.

    Science.gov (United States)

    Hodder, Michael C; Flanagan, Dustin J; Sansom, Owen J

    2018-06-01

    Stem cell dynamics define the probability of accumulating mutations within the intestinal epithelium. In this issue of Cell Stem Cell, Nicholson et al. (2018) report that human intestinal stem cell dynamics differ significantly from those of mice and establish that oncogenic mutations are more likely to expand; therefore, "normal" epithelium may carry multiple mutations. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Plaque rupture in humans and mice

    DEFF Research Database (Denmark)

    Schwartz, Stephen M; Galis, Zorina S; Rosenfeld, Michael E

    2007-01-01

    Despite the many studies of murine atherosclerosis, we do not yet know the relevance of the natural history of this model to the final events precipitated by plaque disruption of human atherosclerotic lesions. The literature has become particularly confused because of the common use of terms such...

  5. Polycythemia in transgenic mice expressing the human erythropoietin gene

    International Nuclear Information System (INIS)

    Semenza, G.L.; Traystman, M.D.; Gearhart, J.D.; Antonarakis, S.E.

    1989-01-01

    Erythropoietin is a glycoprotein hormone that regulates mammalian erythropoiesis. To study the expression of the human erythropoietin gene, EPO, 4 kilobases of DNA encompassing the gene with 0.4 kilobase of 5' flanking sequence and 0.7 kilobase of 3' flanking sequence was microinjected into fertilized mouse eggs. Transgenic mice were generated that are polycythemic, with increased erythrocytic indices in peripheral blood, increased numbers of erythroid precursors in hematopoietic tissue, and increased serum erythropoietin levels. Transgenic homozygotes show a greater degree of polycythemia than do heterozygotes as well as striking extramedullary erythropoiesis. Human erythropoietin RNA was found not only in fetal liver, adult liver, and kidney but also in all other transgenic tissues analyzed. Anemia induced increased human erythropoietin RNA levels in liver but not kidney. These transgenic mice represent a unique model of polycythemia due to increased erythropoietin levels

  6. The comparative radiation genetics of humans and mice

    International Nuclear Information System (INIS)

    Neel, J.V.

    1990-01-01

    The attempt by geneticists to predict the genetic consequences for humans of exposure to ionizing radiation has arguably been one of the most serious social responsibilities they have faced in the past half century. Important for its own sake, this issue also serves as a prototype for the effort to evaluate the ultimate genetic impact on ourselves of other human perturbations of the environment in which our species functions. Recently the authors have been developing the thesis that according to the results of studies on the children of survivors of the atomic bombings, humans may not be as sensitive to the genetic effects of radiation as has been projected by various committees on the basis of data from the most commonly employed paradigm, the laboratory mouse. In this paper, the authors attempt as detailed a comparison as space permits of the findings on humans and mice, presenting the data in a fashion that will enable those who at certain critical points in the argument wish to make other assumptions, to do so. The authors argue that a reconsideration that includes all the data now available on mice brings the estimate of the doubling dose for mice into satisfactory agreement with the higher estimate based on humans

  7. Effects of HIV-1 on Cognition in Humanized NSG Mice

    Science.gov (United States)

    Akhter, Sidra Pervez

    Host species specificity of human immunodeficiency virus (HIV) creates a challenge to study the pathology, diagnostic tools, and therapeutic agents. The closely related simian immunodeficiency virus and studies of neurocognitive impairments on transgenic animals expressing partial viral genome have significant limitations. The humanized mice model provides a small animal system in which a human immune system can be engrafted and immunopathobiology of HIV-1 infection can be studied. However, features of HIV-associated neurocognitive disorders (HAND) were not evaluated in this model. Open field activity test was selected to characterize behavior of original strain NOD/scid-IL-2Rgammac null (NSG) mice, effects of engraftment of human CD34+ hematopoietic stem cells (HSCs) and functional human immune system (huNSG), and finally, investigate the behavior changes induced by chronic HIV-1 infection. Long-term infected HuNSG mice showed the loss of working memory and increased anxiety in the open field. Additionally, these animals were utilized for evaluation of central nervous system metabolic and structural changes. Detected behavioral abnormalities are correlated with obtained neuroimaging and histological abnormalities published.

  8. Generation of Human Immunosuppressive Myeloid Cell Populations in Human Interleukin-6 Transgenic NOG Mice

    Directory of Open Access Journals (Sweden)

    Asami Hanazawa

    2018-02-01

    Full Text Available The tumor microenvironment contains unique immune cells, termed myeloid-derived suppressor cells (MDSCs, and tumor-associated macrophages (TAMs that suppress host anti-tumor immunity and promote tumor angiogenesis and metastasis. Although these cells are considered a key target of cancer immune therapy, in vivo animal models allowing differentiation of human immunosuppressive myeloid cells have yet to be established, hampering the development of novel cancer therapies. In this study, we established a novel humanized transgenic (Tg mouse strain, human interleukin (hIL-6-expressing NOG mice (NOG-hIL-6 transgenic mice. After transplantation of human hematopoietic stem cells (HSCs, the HSC-transplanted NOG-hIL-6 Tg mice (HSC-NOG-hIL-6 Tg mice showed enhanced human monocyte/macrophage differentiation. A significant number of human monocytes were negative for HLA-DR expression and resembled immature myeloid cells in the spleen and peripheral blood from HSC-NOG-hIL-6 Tg mice, but not from HSC-NOG non-Tg mice. Engraftment of HSC4 cells, a human head and neck squamous cell carcinoma-derived cell line producing various factors including IL-6, IL-1β, macrophage colony-stimulating factor (M-CSF, and vascular endothelial growth factor (VEGF, into HSC-NOG-hIL-6 Tg mice induced a significant number of TAM-like cells, but few were induced in HSC-NOG non-Tg mice. The tumor-infiltrating macrophages in HSC-NOG-hIL-6 Tg mice expressed a high level of CD163, a marker of immunoregulatory myeloid cells, and produced immunosuppressive molecules such as arginase-1 (Arg-1, IL-10, and VEGF. Such cells from HSC-NOG-hIL-6 Tg mice, but not HSC-NOG non-Tg mice, suppressed human T cell proliferation in response to antigen stimulation in in vitro cultures. These results suggest that functional human TAMs can be developed in NOG-hIL-6 Tg mice. This mouse model will contribute to the development of novel cancer immune therapies targeting immunoregulatory

  9. Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics

    Directory of Open Access Journals (Sweden)

    Nigel G. Kooreman

    2017-08-01

    Full Text Available There is growing interest in using embryonic stem cell (ESC and induced pluripotent stem cell (iPSC derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an “allogenized” mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts.

  10. Current status of prediction of drug disposition and toxicity in humans using chimeric mice with humanized liver.

    Science.gov (United States)

    Kitamura, Shigeyuki; Sugihara, Kazumi

    2014-01-01

    1. Human-chimeric mice with humanized liver have been constructed by transplantation of human hepatocytes into several types of mice having genetic modifications that injure endogenous liver cells. Here, we focus on liver urokinase-type plasminogen activator-transgenic severe combined immunodeficiency (uPA/SCID) mice, which are the most widely used human-chimeric mice. Studies so far indicate that drug metabolism, drug transport, pharmacological effects and toxicological action in these mice are broadly similar to those in humans. 2. Expression of various drug-metabolizing enzymes is known to be different between humans and rodents. However, the expression pattern of cytochrome P450, aldehyde oxidase and phase II enzymes in the liver of human-chimeric mice resembles that in humans, not that in the host mice. 3. Metabolism of various drugs, including S-warfarin, zaleplon, ibuprofen, naproxen, coumarin, troglitazone and midazolam, in human-chimeric mice is mediated by human drug-metabolizing enzymes, not by host mouse enzymes, and thus resembles that in humans. 4. Pharmacological and toxicological effects of various drugs in human-chimeric mice are also similar to those in humans. 5. The current consensus is that chimeric mice with humanized liver are useful to predict drug metabolism catalyzed by cytochrome P450, aldehyde oxidase and phase II enzymes in humans in vivo and in vitro. Some remaining issues are discussed in this review.

  11. Human reconstructed skin xenografts on mice to model skin physiology.

    Science.gov (United States)

    Salgado, Giorgiana; Ng, Yi Zhen; Koh, Li Fang; Goh, Christabelle S M; Common, John E

    Xenograft models to study skin physiology have been popular for scientific use since the 1970s, with various developments and improvements to the techniques over the decades. Xenograft models are particularly useful and sought after due to the lack of clinically relevant animal models in predicting drug effectiveness in humans. Such predictions could in turn boost the process of drug discovery, since novel drug compounds have an estimated 8% chance of FDA approval despite years of rigorous preclinical testing and evaluation, albeit mostly in non-human models. In the case of skin research, the mouse persists as the most popular animal model of choice, despite its well-known anatomical differences with human skin. Differences in skin biology are especially evident when trying to dissect more complex skin conditions, such as psoriasis and eczema, where interactions between the immune system, epidermis and the environment likely occur. While the use of animal models are still considered the gold standard for systemic toxicity studies under controlled environments, there are now alternative models that have been approved for certain applications. To overcome the biological limitations of the mouse model, research efforts have also focused on "humanizing" the mice model to better recapitulate human skin physiology. In this review, we outline the different approaches undertaken thus far to study skin biology using human tissue xenografts in mice and the technical challenges involved. We also describe more recent developments to generate humanized multi-tissue compartment mice that carry both a functioning human immune system and skin xenografts. Such composite animal models provide promising opportunities to study drugs, disease and differentiation with greater clinical relevance. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  12. Are mice pigmentary genes throwing light on humans?

    Directory of Open Access Journals (Sweden)

    Bose S

    1993-01-01

    Full Text Available In this article the rapid advances made in the molecular genetics of inherited disorders of hypo and hyperpigmentation during the past three years are reviewed. The main focus is on studies in mice as compared to homologues in humans. The main hypomelanotic diseases included are, piebaldism (white spotting due to mutations of c-KIT, PDGF and MGF genes; vitiligo (microphathalmia mice mutations of c-Kit and c-fms genes; Waardenburg syndrome (splotch locus mutations of mice PAX-3 or human Hup-2 genes; albinism (mutations of tyrosinase genes, Menkes disease (Mottled mouse, premature graying (mutations in light/brown locus/gp75/ TRP-1; Griscelli disease (mutations in TRP-1 and steel; Prader-willi and Angelman syndromes, tyrosinase-positive oculocutaneous albinism and hypomelanosis of lto (mutations of pink-eyed dilution gene/mapping to human chromosomes 15 q 11.2 - q12; and human platelet storage pool deficiency diseases due to defects in pallidin, an erythrocyte membrane protein (pallid mouse / mapping to 4.2 pallidin gene. The genetic characterization of hypermelanosis includes, neurofibromatosis 1 (Café-au-lait spots and McCune-Albright Syndrome. Rapid evolving knowledge about pigmentary genes will increase further the knowledge about these hypo and hyperpigmentary disorders.

  13. Human hepatocyte depletion in the presence of HIV-1 infection in dual reconstituted humanized mice

    Science.gov (United States)

    Wang, Weimin; Cheng, Yan; Makarov, Edward; Ganesan, Murali; Gebhart, Catherine L.; Gorantla, Santhi; Osna, Natalia

    2018-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection impairs liver function, and liver diseases have become a leading cause of morbidity in infected patients. The immunopathology of liver damage caused by HIV-1 remains unclear. We used chimeric mice dually reconstituted with a human immune system and hepatocytes to address the relevance of the model to pathobiology questions related to human hepatocyte survival in the presence of systemic infection. TK-NOG males were transplanted with mismatched human hematopoietic stem/progenitor cells and hepatocytes, human albumin concentration and the presence of human immune cells in blood were monitored for hepatocytes and immune reconstitution, and mice were infected with HIV-1. HIV-1-infected animals showed a decline in human albumin concentration with a significant reduction in percentage of human hepatocytes compared to uninfected mice. The decrease in human albumin levels correlated with a decline in CD4+ cells in the liver and with an increase in HIV-1 viral load. HIV-1 infection elicited proinflammatory response in the immunological milieu of the liver in HIV-infected mice compared to uninfected animals, as determined by upregulation of IL23, CXCL10 and multiple toll-like receptor expression. The inflammatory reaction associated with HIV-1 infection in vivo could contribute to the depletion and dysfunction of hepatocytes. The dual reconstituted TK-NOG mouse model is a feasible platform to investigate hepatocyte-related HIV-1 immunopathogenesis. This article has an associated First Person interview with the first author of the paper. PMID:29361613

  14. Human hepatocyte depletion in the presence of HIV-1 infection in dual reconstituted humanized mice

    Directory of Open Access Journals (Sweden)

    Raghubendra Singh Dagur

    2018-02-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infection impairs liver function, and liver diseases have become a leading cause of morbidity in infected patients. The immunopathology of liver damage caused by HIV-1 remains unclear. We used chimeric mice dually reconstituted with a human immune system and hepatocytes to address the relevance of the model to pathobiology questions related to human hepatocyte survival in the presence of systemic infection. TK-NOG males were transplanted with mismatched human hematopoietic stem/progenitor cells and hepatocytes, human albumin concentration and the presence of human immune cells in blood were monitored for hepatocytes and immune reconstitution, and mice were infected with HIV-1. HIV-1-infected animals showed a decline in human albumin concentration with a significant reduction in percentage of human hepatocytes compared to uninfected mice. The decrease in human albumin levels correlated with a decline in CD4+ cells in the liver and with an increase in HIV-1 viral load. HIV-1 infection elicited proinflammatory response in the immunological milieu of the liver in HIV-infected mice compared to uninfected animals, as determined by upregulation of IL23, CXCL10 and multiple toll-like receptor expression. The inflammatory reaction associated with HIV-1 infection in vivo could contribute to the depletion and dysfunction of hepatocytes. The dual reconstituted TK-NOG mouse model is a feasible platform to investigate hepatocyte-related HIV-1 immunopathogenesis. This article has an associated First Person interview with the first author of the paper.

  15. Improved Human Erythropoiesis and Platelet Formation in Humanized NSGW41 Mice

    Directory of Open Access Journals (Sweden)

    Susann Rahmig

    2016-10-01

    Full Text Available Human erythro-megakaryopoiesis does not occur in humanized mouse models, preventing the in vivo analysis of human hematopoietic stem cell (HSC differentiation into these lineages in a surrogate host. Here we show that stably engrafted KIT-deficient NOD/SCID Il2rg−/− KitW41/W41 (NSGW41 mice support much improved human erythropoiesis and platelet formation compared with irradiated NSG recipients. Considerable numbers of human erythroblasts and mature thrombocytes are present in the bone marrow and blood, respectively. Morphology, composition, and enucleation capacity of de novo generated human erythroblasts in NSGW41 mice are comparable with those in human bone marrow. Overexpression of human erythropoietin showed no further improvement in human erythrocyte output, but depletion of macrophages led to the appearance of human erythrocytes in the blood. Human erythropoiesis up to normoblasts and platelet formation is fully supported in NSGW41 mice, allowing the analysis of human HSC differentiation into these lineages, the exploration of certain pathophysiologies, and the evaluation of gene therapeutic approaches.

  16. Gold thread implantation promotes hair growth in human and mice

    Science.gov (United States)

    Kim, Jong-Hwan; Cho, Eun-Young; Kwon, Euna; Kim, Woo-Ho; Park, Jin-Sung; Lee, Yong-Soon

    2017-01-01

    Thread-embedding therapy has been widely applied for cosmetic purposes such as wrinkle reduction and skin tightening. Particularly, gold thread was reported to support connective tissue regeneration, but, its role in hair biology remains largely unknown due to lack of investigation. When we implanted gold thread and Happy Lift™ in human patient for facial lifting, we unexpectedly found an increase of hair regrowth in spite of no use of hair growth medications. When embedded into the depilated dorsal skin of mice, gold thread or polyglycolic acid (PGA) thread, similarly to 5% minoxidil, significantly increased the number of hair follicles on day 14 after implantation. And, hair re-growth promotion in the gold threadimplanted mice were significantly higher than that in PGA thread group on day 11 after depilation. In particular, the skin tissue of gold thread-implanted mice showed stronger PCNA staining and higher collagen density compared with control mice. These results indicate that gold thread implantation can be an effective way to promote hair re-growth although further confirmatory study is needed for more information on therapeutic mechanisms and long-term safety. PMID:29399026

  17. Uncovering the mystery of opposite circadian rhythms between mouse and human leukocytes in humanized mice.

    Science.gov (United States)

    Zhao, Yue; Liu, Min; Chan, Xue Ying; Tan, Sue Yee; Subramaniam, Sharrada; Fan, Yong; Loh, Eva; Chang, Kenneth Tou En; Tan, Thiam Chye; Chen, Qingfeng

    2017-11-02

    Many immune parameters show circadian rhythms during the 24-hour day in mammals. The most striking circadian oscillation is the number of circulating immune cells that display an opposite rhythm between humans and mice. The physiological roles and mechanisms of circadian variations in mouse leukocytes are well studied, whereas for humans they remain unclear because of the lack of a proper model. In this study, we found that consistent with their natural host species, mouse and human circulating leukocytes exhibited opposite circadian oscillations in humanized mice. This cyclic pattern of trafficking correlated well with the diurnal expression levels of C-X-C chemokine receptor 4, which were controlled by the intracellular hypoxia-inducible factor 1α/aryl hydrocarbon receptor nuclear translocator-like heterodimer. Furthermore, we also discovered that p38 mitogen-activated protein kinases/mitogen-activated 2 had opposite effects between mice and humans in generating intracellular reactive oxygen species, which subsequently regulated HIF-1α expression. In conclusion, we propose humanized mice as a robust model for human circadian studies and reveal insights on a novel molecular clock network in the human circadian rhythm. © 2017 by The American Society of Hematology.

  18. Application of chimeric mice with humanized liver for study of human-specific drug metabolism.

    Science.gov (United States)

    Bateman, Thomas J; Reddy, Vijay G B; Kakuni, Masakazu; Morikawa, Yoshio; Kumar, Sanjeev

    2014-06-01

    Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.

  19. Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2014-01-01

    Full Text Available Glycosaminoglycans (GAGs are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.

  20. A novel model of human skin pressure ulcers in mice.

    Directory of Open Access Journals (Sweden)

    Andrés A Maldonado

    Full Text Available INTRODUCTION: Pressure ulcers are a prevalent health problem in today's society. The shortage of suitable animal models limits our understanding and our ability to develop new therapies. This study aims to report on the development of a novel and reproducible human skin pressure ulcer model in mice. MATERIAL AND METHODS: Male non-obese, diabetic, severe combined immunodeficiency mice (n = 22 were engrafted with human skin. A full-thickness skin graft was placed onto 4×3 cm wounds created on the dorsal skin of the mice. Two groups with permanent grafts were studied after 60 days. The control group (n = 6 was focused on the process of engraftment. Evaluations were conducted with photographic assessment, histological analysis and fluorescence in situ hybridization (FISH techniques. The pressure ulcer group (n = 12 was created using a compression device. A pressure of 150 mmHg for 8 h, with a total of three cycles of compression-release was exerted. Evaluations were conducted with photographic assessment and histological analysis. RESULTS: Skin grafts in the control group took successfully, as shown by visual assessment, FISH techniques and histological analysis. Pressure ulcers in the second group showed full-thickness skin loss with damage and necrosis of all the epidermal and dermal layers (ulcer stage III in all cases. Complete repair occurred after 40 days. CONCLUSIONS: An inexpensive, reproducible human skin pressure ulcer model has been developed. This novel model will facilitate the development of new clinically relevant therapeutic strategies that can be tested directly on human skin.

  1. Human IgG repertoire of malaria antigen-immunized human immune system (HIS) mice.

    Science.gov (United States)

    Nogueira, Raquel Tayar; Sahi, Vincent; Huang, Jing; Tsuji, Moriya

    2017-08-01

    Humanized mouse models present an important tool for preclinical evaluation of new vaccines and therapeutics. Here we show the human variable repertoire of antibody sequences cloned from a previously described human immune system (HIS) mouse model that possesses functional human CD4+ T cells and B cells, namely HIS-CD4/B mice. We sequenced variable IgG genes from single memory B-cell and plasma-cell sorted from splenocytes or whole blood lymphocytes of HIS-CD4/B mice that were vaccinated with a human plasmodial antigen, a recombinant Plasmodium falciparum circumsporozoite protein (rPfCSP). We demonstrate that rPfCSP immunization triggers a diverse B-cell IgG repertoire composed of various human VH family genes and distinct V(D)J recombinations that constitute diverse CDR3 sequences similar to humans, although low hypermutated sequences were generated. These results demonstrate the substantial genetic diversity of responding human B cells of HIS-CD4/B mice and their capacity to mount human IgG class-switched antibody response upon vaccination. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  2. Adaptation to statins restricts human tumour growth in Nude mice

    International Nuclear Information System (INIS)

    Follet, Julie; Rémy, Lionel; Hesry, Vincent; Simon, Brigitte; Gillet, Danièle; Auvray, Pierrick; Corcos, Laurent; Le Jossic-Corcos, Catherine

    2011-01-01

    Statins have long been used as anti-hypercholesterolemia drugs, but numerous lines of evidence suggest that they may also bear anti-tumour potential. We have recently demonstrated that it was possible to isolate cancer cells adapted to growth in the continuous presence of lovastatin. These cells grew more slowly than the statin-sensitive cells of origin. In the present study, we compared the ability of both statin-sensitive and statin-resistant cells to give rise to tumours in Nude mice. HGT-1 human gastric cancer cells and L50 statin-resistant derivatives were injected subcutaneously into Nude mice and tumour growth was recorded. At the end of the experiment, tumours were recovered and marker proteins were analyzed by western blotting, RT-PCR and immunohistochemistry. L50 tumours grew more slowly, showed a strong decrease in cyclin B1, over-expressed collagen IV, and had reduced laminin 332, VEGF and CD34 levels, which, collectively, may have restricted cell division, cell adhesion and neoangiogenesis. Taken together, these results showed that statin-resistant cells developed into smaller tumours than statin-sensitive cells. This may be reflective of the cancer restricting activity of statins in humans, as suggested from several retrospective studies with subjects undergoing statin therapy for several years

  3. Hyperlipidemia and cutaneous abnormalities in transgenic mice overexpressing human apolipoprotein C1

    NARCIS (Netherlands)

    Jong, M. C.; Gijbels, M. J.; Dahlmans, V. E.; Gorp, P. J.; Koopman, S. J.; Ponec, M.; Hofker, M. H.; Havekes, L. M.

    1998-01-01

    Transgenic mice were generated with different levels of human apolipoprotein C1 (APOC1) expression in liver and skin. At 2 mo of age, serum levels of cholesterol, triglycerides (TG), and FFA were strongly elevated in APOC1 transgenic mice compared with wild-type mice. These elevated levels of serum

  4. Vacuolating encephalitis in mice infected by human coronavirus OC43

    International Nuclear Information System (INIS)

    Jacomy, Helene; Talbot, Pierre J.

    2003-01-01

    Involvement of viruses in human neurodegenerative diseases and the underlying pathologic mechanisms remain generally unclear. Human respiratory coronaviruses (HCoV) can infect neural cells, persist in human brain, and activate myelin-reactive T cells. As a means of understanding the human infection, we characterized in vivo the neurotropic and neuroinvasive properties of HCoV-OC43 through the development of an experimental animal model. Virus inoculation of 21-day postnatal C57BL/6 and BALB/c mice led to a generalized infection of the whole CNS, demonstrating HCoV-OC43 neuroinvasiveness and neurovirulence. This acute infection targeted neurons, which underwent vacuolation and degeneration while infected regions presented strong microglial reactivity and inflammatory reactions. Damage to the CNS was not immunologically mediated and microglial reactivity was instead a consequence of direct virus-mediated neuronal injury. Although this acute encephalitis appears generally similar to that induced by murine coronaviruses, an important difference rests in the prominent spongiform-like degeneration that could trigger neuropathology in surviving animals

  5. NETosis Delays Diabetic Wound Healing in Mice and Humans.

    Science.gov (United States)

    Fadini, Gian Paolo; Menegazzo, Lisa; Rigato, Mauro; Scattolini, Valentina; Poncina, Nicol; Bruttocao, Andrea; Ciciliot, Stefano; Mammano, Fabio; Ciubotaru, Catalin Dacian; Brocco, Enrico; Marescotti, Maria Cristina; Cappellari, Roberta; Arrigoni, Giorgio; Millioni, Renato; Vigili de Kreutzenberg, Saula; Albiero, Mattia; Avogaro, Angelo

    2016-04-01

    Upon activation, neutrophils undergo histone citrullination by protein arginine deiminase (PAD)4, exocytosis of chromatin and enzymes as neutrophil extracellular traps (NETs), and death. In diabetes, neutrophils are primed to release NETs and die by NETosis. Although this process is a defense against infection, NETosis can damage tissue. Therefore, we examined the effect of NETosis on the healing of diabetic foot ulcers (DFUs). Using proteomics, we found that NET components were enriched in nonhealing human DFUs. In an independent validation cohort, a high concentration of neutrophil elastase in the wound was associated with infection and a subsequent worsening of the ulcer. NET components (elastase, histones, neutrophil gelatinase-associated lipocalin, and proteinase-3) were elevated in the blood of patients with DFUs. Circulating elastase and proteinase-3 were associated with infection, and serum elastase predicted delayed healing. Neutrophils isolated from the blood of DFU patients showed an increased spontaneous NETosis but an impaired inducible NETosis. In mice, skin PAD4 activity was increased by diabetes, and FACS detection of histone citrullination, together with intravital microscopy, showed that NETosis occurred in the bed of excisional wounds. PAD4 inhibition by Cl-amidine reduced NETting neutrophils and rescued wound healing in diabetic mice. Cumulatively, these data suggest that NETosis delays DFU healing. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. Induction of farnesoid X receptor signaling in germ-free mice colonized with a human microbiota

    DEFF Research Database (Denmark)

    Wahlström, Annika; Kovatcheva-Datchary, Petia; Ståhlman, Marcus

    2017-01-01

    The gut microbiota influences the development and progression of metabolic diseases partly by metabolism of bile acids (BAs) and modified signaling through the farnesoid X receptor (FXR). In this study, we aimed to determine how the human gut microbiota metabolizes murine BAs and affects FXR...... signaling in colonized mice. We colonized germ-free mice with cecal content from a mouse donor or feces from a human donor and euthanized the mice after short-term (2 weeks) or long-term (15 weeks) colonization. We analyzed the gut microbiota and BA composition and expression of FXR target genes in ileum...... and liver. We found that cecal microbiota composition differed between mice colonized with mouse and human microbiota and was stable over time. Human and mouse microbiota reduced total BA levels similarly, but the humanized mice produced less secondary BAs. The human microbiota was able to reduce the levels...

  7. Neuronal human BACE1 knockin induces systemic diabetes in mice.

    Science.gov (United States)

    Plucińska, Kaja; Dekeryte, Ruta; Koss, David; Shearer, Kirsty; Mody, Nimesh; Whitfield, Phillip D; Doherty, Mary K; Mingarelli, Marco; Welch, Andy; Riedel, Gernot; Delibegovic, Mirela; Platt, Bettina

    2016-07-01

    β-Secretase 1 (BACE1) is a key enzyme in Alzheimer's disease pathogenesis that catalyses the amyloidogenic cleavage of amyloid precursor protein (APP). Recently, global Bace1 deletion was shown to protect against diet-induced obesity and diabetes, suggesting that BACE1 is a potential regulator of glucose homeostasis. Here, we investigated whether increased neuronal BACE1 is sufficient to alter systemic glucose metabolism, using a neuron-specific human BACE1 knockin mouse model (PLB4). Glucose homeostasis and adiposity were determined by glucose tolerance tests and EchoMRI, lipid species were measured by quantitative lipidomics, and biochemical and molecular alterations were assessed by western blotting, quantitative PCR and ELISAs. Glucose uptake in the brain and upper body was measured via (18)FDG-PET imaging. Physiological and molecular analyses demonstrated that centrally expressed human BACE1 induced systemic glucose intolerance in mice from 4 months of age onward, alongside a fatty liver phenotype and impaired hepatic glycogen storage. This diabetic phenotype was associated with hypothalamic pathology, i.e. deregulation of the melanocortin system, and advanced endoplasmic reticulum (ER) stress indicated by elevated central C/EBP homologous protein (CHOP) signalling and hyperphosphorylation of its regulator eukaryotic translation initiation factor 2α (eIF2α). In vivo (18)FDG-PET imaging further confirmed brain glucose hypometabolism in these mice; this corresponded with altered neuronal insulin-related signalling, enhanced protein tyrosine phosphatase 1B (PTP1B) and retinol-binding protein 4 (RBP4) levels, along with upregulation of the ribosomal protein and lipid translation machinery. Increased forebrain and plasma lipid accumulation (i.e. ceramides, triacylglycerols, phospholipids) was identified via lipidomics analysis. Our data reveal that neuronal BACE1 is a key regulator of metabolic homeostasis and provide a potential mechanism for the high

  8. Metabolic profiles of pomalidomide in human plasma simulated with pharmacokinetic data in control and humanized-liver mice.

    Science.gov (United States)

    Shimizu, Makiko; Suemizu, Hiroshi; Mitsui, Marina; Shibata, Norio; Guengerich, F Peter; Yamazaki, Hiroshi

    2017-10-01

    1. Pomalidomide has been shown to be potentially teratogenic in thalidomide-sensitive animal species such as rabbits. Screening for thalidomide analogs devoid of teratogenicity/toxicity - attributable to metabolites formed by cytochrome P450 enzymes - but having immunomodulatory properties is a strategic pathway towards development of new anticancer drugs. 2. In this study, plasma concentrations of pomalidomide, its primary 5-hydroxylated metabolite, and its glucuronide conjugate(s) were investigated in control and humanized-liver mice. Following oral administration of pomalidomide (100 mg/kg), plasma concentrations of 7-hydroxypomalidomide and 5-hydroxypomalidomide glucuronide were slightly higher in humanized-liver mice than in control mice. 3. Simulations of human plasma concentrations of pomalidomide were achieved with simplified physiologically-based pharmacokinetic models in both groups of mice in accordance with reported pomalidomide concentrations after low dose administration in humans. 4. The results indicate that pharmacokinetic profiles of pomalidomide were roughly similar between control mice and humanized-liver mice and that control and humanized-liver mice mediated pomalidomide 5-hydroxylation in vivo. Introducing one aromatic amino group into thalidomide resulted in less species differences in in vivo pharmacokinetics in control and humanized-liver mice.

  9. Development of Murine Cyp3a Knockout Chimeric Mice with Humanized Liver.

    Science.gov (United States)

    Kato, Kota; Ohbuchi, Masato; Hamamura, Satoko; Ohshita, Hiroki; Kazuki, Yasuhiro; Oshimura, Mitsuo; Sato, Koya; Nakada, Naoyuki; Kawamura, Akio; Usui, Takashi; Kamimura, Hidetaka; Tateno, Chise

    2015-08-01

    We developed murine CYP3A knockout ko chimeric mice with humanized liver expressing human P450S similar to those in humans and whose livers and small intestines do not express murine CYP3A this: approach may overcome effects of residual mouse metabolic enzymes like Cyp3a in conventional chimeric mice with humanized liver, such as PXB-mice [urokinase plasminogen activator/severe combined immunodeficiency (uPA/SCID) mice repopulated with over 70% human hepatocytes] to improve the prediction of drug metabolism and pharmacokinetics in humans. After human hepatocytes were transplanted into Cyp3a KO/uPA/SCID host mice, human albumin levels logarithmically increased until approximately 60 days after transplantation, findings similar to those in PXB-mice. Quantitative real-time-polymerase chain reaction analyses showed that hepatic human P450s, UGTs, SULTs, and transporters mRNA expression levels in Cyp3a KO chimeric mice were also similar to those in PXB-mice and confirmed the absence of Cyp3a11 mRNA expression in mouse liver and intestine. Findings for midazolam and triazolam metabolic activities in liver microsomes were comparable between Cyp3a KO chimeric mice and PXB-mice. In contrast, these activities in the intestine of Cyp3a KO chimeric mice were attenuated compared with PXB-mice. Owing to the knockout of murine Cyp3a, hepatic Cyp2b10 and 2c55 mRNA levels in Cyp3a KO/uPA/SCID mice (without hepatocyte transplants) were 8.4- and 61-fold upregulated compared with PXB-mice, respectively. However, human hepatocyte transplantation successfully restored Cyp2b10 level nearly fully and Cyp2c55 level partly (still 13-fold upregulated) compared with those in PXB-mice. Intestinal Cyp2b10 and 2c55 were also repressed by human hepatocyte transplantation in Cyp3a KO chimeric mice. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Generation of Novel Chimeric Mice with Humanized Livers by Using Hemizygous cDNA-uPA/SCID Mice.

    Directory of Open Access Journals (Sweden)

    Chise Tateno

    Full Text Available We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID. We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression-not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and

  11. Generation of Novel Chimeric Mice with Humanized Livers by Using Hemizygous cDNA-uPA/SCID Mice.

    Science.gov (United States)

    Tateno, Chise; Kawase, Yosuke; Tobita, Yoshimi; Hamamura, Satoko; Ohshita, Hiroki; Yokomichi, Hiroshi; Sanada, Harumi; Kakuni, Masakazu; Shiota, Akira; Kojima, Yuha; Ishida, Yuji; Shitara, Hiroshi; Wada, Naoko A; Tateishi, Hiromi; Sudoh, Masayuki; Nagatsuka, Shin-Ichiro; Jishage, Kou-Ichi; Kohara, Michinori

    2015-01-01

    We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID) mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps) replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID). We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression-not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb) levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and useful hosts for

  12. Transgenerational effects of radiation and chemicals in mice and humans

    International Nuclear Information System (INIS)

    Nomura, Taisei

    2006-01-01

    Parental exposure of mice to radiation and chemicals causes a variety of adverse effects (e.g., tumors, congenital malformations and embryonic deaths) in the progeny and the tumor-susceptibility phenotype is transmissible beyond the first post-radiation generation. The induced rates of tumors were 100-fold higher than those known for mouse specific locus mutations. There were clear strain differences in the types of naturally-occurring and induced tumors and most of the latter were malignant. Another important finding was that germ-line exposure elicited very weak tumorigenic responses, but caused persistent hypersensitivity in the offspring for the subsequent development of cancer by the postnatal environment. Activations of oncogenes, ras, mos, abl, etc. and mutations in tumor suppressor genes such as p53 were also detected in specific tumors in cancer-prone descendants. However, the majority of tumors observed in the progeny were those commonly observed in the strains that were used and oncogene activations were rarely observed in these tumors. It can be hypothesized that genetic instability modifies tumor occurrence in a transgenerational manner, but so far no links could be established between chromosomal and molecular changes and transmissible tumor risks. Our data are consistent with the hypothesis that cumulative changes in many normal but cancer-related genes affecting immunological, biochemical and physiological functions may slightly elevate the incidence of tumors or fasten the tumor development. This hypothesis is supported by our GeneChip analyses which showed suppression and/or over-expression of many such genes in the offspring of mice exposed to radiation. In humans, a higher risk of leukemia and birth defects has been reported in the children of fathers who had been exposed to radionuclides in the nuclear reprocessing plants and to diagnostic radiation. These findings have not been supported in the children of atomic bomb survivors in Hiroshima

  13. Chimeric mice transplanted with human hepatocytes as a model for prediction of human drug metabolism and pharmacokinetics.

    Science.gov (United States)

    Sanoh, Seigo; Ohta, Shigeru

    2014-03-01

    Preclinical studies in animal models are used routinely during drug development, but species differences of pharmacokinetics (PK) between animals and humans have to be taken into account in interpreting the results. Human hepatocytes are also widely used to examine metabolic activities mediated by cytochrome P450 (P450) and other enzymes, but such in vitro metabolic studies also have limitations. Recently, chimeric mice with humanized liver (h-chimeric mice), generated by transplantation of human donor hepatocytes, have been developed as a model for the prediction of metabolism and PK in humans, using both in vitro and in vivo approaches. The expression of human-specific metabolic enzymes and metabolic activities was confirmed in humanized liver of h-chimeric mice with high replacement ratios, and several reports indicate that the profiles of P450 and non-P450 metabolism in these mice adequately reflect those in humans. Further, the combined use of h-chimeric mice and r-chimeric mice, in which endogenous hepatocytes are replaced with rat hepatocytes, is a promising approach for evaluation of species differences in drug metabolism. Recent work has shown that data obtained in h-chimeric mice enable the semi-quantitative prediction of not only metabolites, but also PK parameters, such as hepatic clearance, of drug candidates in humans, although some limitations remain because of differences in the metabolic activities, hepatic blood flow and liver structure between humans and mice. In addition, fresh h-hepatocytes can be isolated reproducibly from h-chimeric mice for metabolic studies. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Human glial chimeric mice reveal astrocytic dependence of JC virus infection

    DEFF Research Database (Denmark)

    Kondo, Yoichi; Windrem, Martha S; Zou, Lisa

    2014-01-01

    with humanized white matter by engrafting human glial progenitor cells (GPCs) into neonatal immunodeficient and myelin-deficient mice. Intracerebral delivery of JCV resulted in infection and subsequent demyelination of these chimeric mice. Human GPCs and astrocytes were infected more readily than...... that was chimeric for human astrocytes and GPCs. JCV effectively propagated in these mice, which indicates that astroglial infection is sufficient for JCV spread. Sequencing revealed progressive mutation of the JCV capsid protein VP1 after infection, suggesting that PML may evolve with active infection...

  15. Enhanced normal short-term human myelopoiesis in mice engineered to express human-specific myeloid growth factors.

    Science.gov (United States)

    Miller, Paul H; Cheung, Alice M S; Beer, Philip A; Knapp, David J H F; Dhillon, Kiran; Rabu, Gabrielle; Rostamirad, Shabnam; Humphries, R Keith; Eaves, Connie J

    2013-01-31

    Better methods to characterize normal human hematopoietic cells with short-term repopulating activity cells (STRCs) are needed to facilitate improving recovery rates in transplanted patients.We now show that 5-fold more human myeloid cells are produced in sublethally irradiated NOD/SCID-IL-2Receptor-γchain-null (NSG) mice engineered to constitutively produce human interleukin-3, granulocyte-macrophage colony-stimulating factor and Steel factor (NSG-3GS mice) than in regular NSG mice 3 weeks after an intravenous injection of CD34 human cord blood cells. Importantly, the NSG-3GS mice also show a concomitant and matched increase in circulating mature human neutrophils. Imaging NSG-3GS recipients of lenti-luciferase-transduced cells showed that human cells being produced 3 weeks posttransplant were heterogeneously distributed, validating the blood as a more representative measure of transplanted STRC activity. Limiting dilution transplants further demonstrated that the early increase in human granulopoiesis in NSG-3GS mice reflects an expanded output of differentiated cells per STRC rather than an increase in STRC detection. NSG-3GS mice support enhanced clonal outputs from human short-term repopulating cells (STRCs) without affecting their engrafting efficiency. Increased human STRC clone sizes enable their more precise and efficient measurement by peripheral blood monitoring.

  16. Comparison of predictability for human pharmacokinetics parameters among monkeys, rats, and chimeric mice with humanised liver.

    Science.gov (United States)

    Miyamoto, Maki; Iwasaki, Shinji; Chisaki, Ikumi; Nakagawa, Sayaka; Amano, Nobuyuki; Hirabayashi, Hideki

    2017-12-01

    1. The aim of the present study was to evaluate the usefulness of chimeric mice with humanised liver (PXB mice) for the prediction of clearance (CL t ) and volume of distribution at steady state (Vd ss ), in comparison with monkeys, which have been reported as a reliable model for human pharmacokinetics (PK) prediction, and with rats, as a conventional PK model. 2. CL t and Vd ss values in PXB mice, monkeys and rats were determined following intravenous administration of 30 compounds known to be mainly eliminated in humans via the hepatic metabolism by various drug-metabolising enzymes. Using single-species allometric scaling, human CL t and Vd ss values were predicted from the three animal models. 3. Predicted CL t values from PXB mice exhibited the highest predictability: 25 for PXB mice, 21 for monkeys and 14 for rats were predicted within a three-fold range of actual values among 30 compounds. For predicted human Vd ss values, the number of compounds falling within a three-fold range was 23 for PXB mice, 24 for monkeys, and 16 for rats among 29 compounds. PXB mice indicated a higher predictability for CL t and Vd ss values than the other animal models. 4. These results demonstrate the utility of PXB mice in predicting human PK parameters.

  17. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice.

    Science.gov (United States)

    Soulard, Valérie; Bosson-Vanga, Henriette; Lorthiois, Audrey; Roucher, Clémentine; Franetich, Jean-François; Zanghi, Gigliola; Bordessoulles, Mallaury; Tefit, Maurel; Thellier, Marc; Morosan, Serban; Le Naour, Gilles; Capron, Frédérique; Suemizu, Hiroshi; Snounou, Georges; Moreno-Sabater, Alicia; Mazier, Dominique

    2015-07-24

    Experimental studies of Plasmodium parasites that infect humans are restricted by their host specificity. Humanized mice offer a means to overcome this and further provide the opportunity to observe the parasites in vivo. Here we improve on previous protocols to achieve efficient double engraftment of TK-NOG mice by human primary hepatocytes and red blood cells. Thus, we obtain the complete hepatic development of P. falciparum, the transition to the erythrocytic stages, their subsequent multiplication, and the appearance of mature gametocytes over an extended period of observation. Furthermore, using sporozoites derived from two P. ovale-infected patients, we show that human hepatocytes engrafted in TK-NOG mice sustain maturation of the liver stages, and the presence of late-developing schizonts indicate the eventual activation of quiescent parasites. Thus, TK-NOG mice are highly suited for in vivo observations on the Plasmodium species of humans.

  18. Mice with chimeric livers are an improved model for human lipoprotein metabolism.

    Science.gov (United States)

    Ellis, Ewa C S; Naugler, Willscott Edward; Nauglers, Scott; Parini, Paolo; Mörk, Lisa-Mari; Jorns, Carl; Zemack, Helen; Sandblom, Anita Lövgren; Björkhem, Ingemar; Ericzon, Bo-Göran; Wilson, Elizabeth M; Strom, Stephen C; Grompe, Markus

    2013-01-01

    Rodents are poor model for human hyperlipidemias because total cholesterol and low density lipoprotein levels are very low on a normal diet. Lipoprotein metabolism is primarily regulated by hepatocytes and we therefore assessed whether chimeric mice extensively repopulated with human cells can model human lipid and bile acid metabolism. FRG [ F ah(-/-) R ag2(-/-)Il2r g (-/-)]) mice were repopulated with primary human hepatocytes. Serum lipoprotein lipid composition and distribution (VLDL, LDL, and HDL) was analyzed by size exclusion chromatography. Bile was analyzed by LC-MS or by GC-MS. RNA expression levels were measured by quantitative RT-PCR. Chimeric mice displayed increased LDL and VLDL fractions and a lower HDL fraction compared to wild type, thus significantly shifting the ratio of LDL/HDL towards a human profile. Bile acid analysis revealed a human-like pattern with high amounts of cholic acid and deoxycholic acid (DCA). Control mice had only taurine-conjugated bile acids as expcted, but highly repopulated mice had glycine-conjugated cholic acid as found in human bile. RNA levels of human genes involved in bile acid synthesis including CYP7A1, and CYP27A1 were significantly upregulated as compared to human control liver. However, administration of recombinant hFGF19 restored human CYP7A1 levels to normal. Humanized-liver mice showed a typical human lipoprotein profile with LDL as the predominant lipoprotein fraction even on a normal diet. The bile acid profile confirmed presence of an intact enterohepatic circulation. Although bile acid synthesis was deregulated in this model, this could be fully normalized by FGF19 administration. Taken together these data indicate that chimeric FRG-mice are a useful new model for human lipoprotein and bile-acid metabolism.

  19. Human CD46-transgenic mice in studies involving replication-incompetent adenoviral type 35 vectors

    NARCIS (Netherlands)

    Verhaagh, S.; Jong, E. de; Goudsmit, J.; Lecollinet, S.; Gillissen, G.; Vries, M. de; Leuven, K. van; Que, I.; Ouwehand, K.; Mintardjo, R.; Weverling, G.J.; Radošević, K.; Richardson, J.; Eloit, M.; Lowik, C.; Quax, P.; Havenga, M.

    2006-01-01

    Wild-type strains of mice do not express CD46, a high-affinity receptor for human group B adenoviruses including type 35. Therefore, studies performed to date in mice using replication-incompetent Ad35 (rAd35) vaccine carriers may underestimate potency or result in altered vector distribution. Here,

  20. Endostar, a recombined humanized endostatin, enhances the radioresponse for human nasopharyngeal carcinoma and human lung adenocarcinoma xenografts in mice

    International Nuclear Information System (INIS)

    Wen Qinglian; Meng Maobin; Tu Lingli; Jia Li; Zhou Lin; Xu Yong; Lu You; Yang Bo

    2009-01-01

    The purpose of this paper is to determine the efficacy of combining radiation therapy with endostar, a recombined humanized endostatin, in human nasopharyngeal carcinoma and human lung adenocarcinoma xenografts. Tumor xenografts were established in the hind limb of male athymic nude mice (BALB/c-nu) by subcutaneous transplantation. The tumor-bearing mice were assigned into four treatment groups: sham therapy (control), endostar (20 mg/kg, once daily for 10 days), radiation therapy (6 Gray per day to 30 Gray, once a day for 1 week), and endostar plus radiation therapy (combination). The experiment was repeated and mice were killed at days 3, 6, and 10 after initiation therapy, and the tumor tissues and blood samples were collected to analyze the kinetics of antitumor, antiangiogenesis, and antivascularization responses of different therapies. In human nasopharyngeal carcinoma and human lung adenocarcinoma xenografts, endostar significantly enhanced the effects of tumor growth inhibition, endothelial cell and tumor cell apoptosis induction, and improved tumor cell hypoxia of radiation therapy. Histological analyses demonstrated that endostar plus radiation also induced a significant reduction in microvascular density, microvascular area, and vascular endothelial growth factor and matrix metalloproteinase-2 expression compared with radiation and endostar alone respectively. We concluded that endostar significantly sensitized the function of radiation in antitumor and antiangiogenesis in human nasopharyngeal carcinoma and human lung adenocarcinoma xenografts by increasing the apoptosis of the endothelial cell and tumor cell, improving the hypoxia of the tumor cell, and changing the proangiogenic factors. These data provided a rational basis for clinical practice of this multimodality therapy. (author)

  1. Human T-cell responses to oral streptococci in human PBMC-NOD/SCID mice.

    Science.gov (United States)

    Salam, M A; Nakao, R; Yonezawa, H; Watanabe, H; Senpuku, H

    2006-06-01

    We investigated cellular and humoral immune responses to oral biofilm bacteria, including Streptococcus mutans, Streptococcus anginosus, Streptococcus sobrinus, and Streptococcus sanguinis, in NOD/SCID mice immunized with human peripheral blood mononuclear cells (hu-PBMC-NOD/SCID mice) to explore the pathogenicity of each of those organisms in dental and oral inflammatory diseases. hu-PBMC-NOD/SCID mice were immunized by intraperitoneal injections with the whole cells of the streptococci once a week for 3 weeks. FACS analyses were used to determine the percentages of various hu-T cell types, as well as intracellular cytokine production of interleukin-4 and interferon-gamma. Serum IgG and IgM antibody levels in response to the streptococci were also determined by enzyme-linked immunosorbent assay. S. anginosus induced a significant amount of the proinflammatory cytokine interferon-gamma in CD4(+) and CD8(+) T cells in comparison with the other streptococci. However, there was no significant differences between the streptococci in interleukin-4 production by CD4(+) and CD8(+) T cells after inoculation. Further, S. mutans significantly induced human anti-S. mutans IgG, IgG(1), IgG(2), and IgM antibodies in comparison with the other organisms. In conclusion, S. anginosus up-regulated Th1 and Tc1 cells, and S. mutans led to increasing levels of their antibodies, which was associated with the induction of Th2 cells. These results may contribute to a better understanding of human lymphocyte interactions to biofilm bacteria, along with their impact on dental and mucosal inflammatory diseases, as well as endocarditis.

  2. Human innate responses and adjuvant activity of TLR ligands in vivo in mice reconstituted with a human immune system.

    Science.gov (United States)

    Cheng, Liang; Zhang, Zheng; Li, Guangming; Li, Feng; Wang, Li; Zhang, Liguo; Zurawski, Sandra M; Zurawski, Gerard; Levy, Yves; Su, Lishan

    2017-10-27

    TLR ligands (TLR-Ls) represent a class of novel vaccine adjuvants. However, their immunologic effects in humans remain poorly defined in vivo. Using a humanized mouse model with a functional human immune system, we investigated how different TLR-Ls stimulated human innate immune response in vivo and their applications as vaccine adjuvants for enhancing human cellular immune response. We found that splenocytes from humanized mice showed identical responses to various TLR-Ls as human PBMCs in vitro. To our surprise, various TLR-Ls stimulated human cytokines and chemokines differently in vivo compared to that in vitro. For example, CpG-A was most efficient to induce IFN-α production in vitro. In contrast, CpG-B, R848 and Poly I:C stimulated much more IFN-α than CpG-A in vivo. Importantly, the human innate immune response to specific TLR-Ls in humanized mice was different from that reported in C57BL/6 mice, but similar to that reported in nonhuman primates. Furthermore, we found that different TLR-Ls distinctively activated and mobilized human plasmacytoid dendritic cells (pDCs), myeloid DCs (mDCs) and monocytes in different organs. Finally, we showed that, as adjuvants, CpG-B, R848 and Poly I:C can all enhance antigen specific CD4 + T cell response, while only R848 and Poly I:C induced CD8 + cytotoxic T cells response to a CD40-targeting HIV vaccine in humanized mice, correlated with their ability to activate human mDCs but not pDCs. We conclude that humanized mice serve as a highly relevant model to evaluate and rank the human immunologic effects of novel adjuvants in vivo prior to testing in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Niacin and biosynthesis of PGD₂ by platelet COX-1 in mice and humans

    DEFF Research Database (Denmark)

    Song, Wen-Liang; Stubbe, Jane; Ricciotti, Emanuela

    2012-01-01

    during platelet activation in humans and, although vascular expression of DP1 is conserved between humans and mice, platelet DP1 is not present in mice. Despite this, DP1 deletion in mice augmented aneurysm formation and the hypertensive response to Ang II and accelerated atherogenesis and thrombogenesis....... Furthermore, COX inhibitors in humans, as well as platelet depletion, COX-1 knockdown, and COX-2 deletion in mice, revealed that niacin evoked platelet COX-1-derived PGD₂ biosynthesis. Finally, ADP-induced spreading on fibrinogen was augmented by niacin in washed human platelets, coincident with increased...... thromboxane (Tx) formation. However, in platelet-rich plasma, where formation of both Tx and PGD₂ was increased, spreading was not as pronounced and was inhibited by DP1 activation. Thus, PGD₂, like PGI₂, may function as a homeostatic response to thrombogenic and hypertensive stimuli and may have particular...

  4. Chimeric mice with humanized liver: Application in drug metabolism and pharmacokinetics studies for drug discovery.

    Science.gov (United States)

    Naritomi, Yoichi; Sanoh, Seigo; Ohta, Shigeru

    2018-02-01

    Predicting human drug metabolism and pharmacokinetics (PK) is key to drug discovery. In particular, it is important to predict human PK, metabolite profiles and drug-drug interactions (DDIs). Various methods have been used for such predictions, including in vitro metabolic studies using human biological samples, such as hepatic microsomes and hepatocytes, and in vivo studies using experimental animals. However, prediction studies using these methods are often inconclusive due to discrepancies between in vitro and in vivo results, and interspecies differences in drug metabolism. Further, the prediction methods have changed from qualitative to quantitative to solve these issues. Chimeric mice with humanized liver have been developed, in which mouse liver cells are mostly replaced with human hepatocytes. Since human drug metabolizing enzymes are expressed in the liver of these mice, they are regarded as suitable models for mimicking the drug metabolism and PK observed in humans; therefore, these mice are useful for predicting human drug metabolism and PK. In this review, we discuss the current state, issues, and future directions of predicting human drug metabolism and PK using chimeric mice with humanized liver in drug discovery. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  5. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes.

    Science.gov (United States)

    Alam, Imranul; Reilly, Austin M; Alkhouli, Mohammed; Gerard-O'Riley, Rita L; Kasipathi, Charishma; Oakes, Dana K; Wright, Weston B; Acton, Dena; McQueen, Amie K; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G; Econs, Michael J

    2017-04-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.

  6. Increased Susceptibility of Humanized NSG Mice to Panton-Valentine Leukocidin and Staphylococcus aureus Skin Infection.

    Directory of Open Access Journals (Sweden)

    Ching Wen Tseng

    Full Text Available Staphylococcus aureus is a leading cause of skin and soft-tissue infections worldwide. Mice are the most commonly used animals for modeling human staphylococcal infections. However a supra-physiologic S. aureus inoculum is required to establish gross murine skin pathology. Moreover, many staphylococcal factors, including Panton-Valentine leukocidin (PVL elaborated by community-associated methicillin-resistant S. aureus (CA-MRSA, exhibit selective human tropism and cannot be adequately studied in mice. To overcome these deficiencies, we investigated S. aureus infection in non-obese diabetic (NOD/severe combined immune deficiency (SCID/IL2rγnull (NSG mice engrafted with human CD34+ umbilical cord blood cells. These "humanized" NSG mice require one to two log lower inoculum to induce consistent skin lesions compared with control mice, and exhibit larger cutaneous lesions upon infection with PVL+ versus isogenic PVL- S. aureus. Neutrophils appear important for PVL pathology as adoptive transfer of human neutrophils alone to NSG mice was sufficient to induce dermonecrosis following challenge with PVL+ S. aureus but not PVL- S. aureus. PMX53, a human C5aR inhibitor, blocked PVL-induced cellular cytotoxicity in vitro and reduced the size difference of lesions induced by the PVL+ and PVL- S. aureus, but PMX53 also reduced recruitment of neutrophils and exacerbated the infection. Overall, our findings establish humanized mice as an important translational tool for the study of S. aureus infection and provide strong evidence that PVL is a human virulence factor.

  7. A competitive advantage by neonatally engrafted human glial progenitors yields mice whose brains are chimeric for human glia

    DEFF Research Database (Denmark)

    Windrem, Martha S; Schanz, Steven J; Morrow, Carolyn

    2014-01-01

    Neonatally transplanted human glial progenitor cells (hGPCs) densely engraft and myelinate the hypomyelinated shiverer mouse. We found that, in hGPC-xenografted mice, the human donor cells continue to expand throughout the forebrain, systematically replacing the host murine glia. The differentiat...

  8. Transplanted Human Umbilical Cord Mesenchymal Stem Cells Facilitate Lesion Repair in B6.Fas Mice

    Directory of Open Access Journals (Sweden)

    Guang-ping Ruan

    2014-01-01

    Full Text Available Background. Systemic lupus erythematosus (SLE is a multisystem disease that is characterized by the appearance of serum autoantibodies. No effective treatment for SLE currently exists. Methods. We used human umbilical cord mesenchymal stem cell (H-UC-MSC transplantation to treat B6.Fas mice. Results. After four rounds of cell transplantation, we observed a statistically significant decrease in the levels of mouse anti-nuclear, anti-histone, and anti-double-stranded DNA antibodies in transplanted mice compared with controls. The percentage of CD4+CD25+Foxp3+ T cells in mouse peripheral blood significantly increased after H-UC-MSC transplantation. Conclusions. The results showed that H-UC-MSCs could repair lesions in B6.Fas mice such that all of the relevant disease indicators in B6.Fas mice were restored to the levels observed in normal C57BL/6 mice.

  9. Reconstitution of immunodeficient SCID/beige mice with human cells: Applications in preclinical studies

    International Nuclear Information System (INIS)

    Thomsen, Mogens; Galvani, Sylvain; Canivet, Cindy; Kamar, Nassim; Boehler, Torsten

    2008-01-01

    Experimental studies of the in vivo behaviour of human cells and tissues have become possible with the development of immunodeficient mice strains. Such mice accept readily allogeneic or xenogeneic grafts, including grafts of human cells or tissues, without rejection. In this review we describe different immunodeficient mouse strains that have been used for reconstitution by human immune cells. We subsequently go through the experience that we and others have had with reconstitution, and mention the adverse effects, in particular xenogeneic graft versus host reactions. The use of haematopoietic stem cells avoids such reactions but the immunological reconstitution may take several months. We then report the use of immunodeficient mice for the study of chronic vascular rejection of human mesenteric arteries due to cellular or humoral alloreaction. We have shown that SCID/beige mice grafted with a human artery at the place of the aorta developed a thickening of the intima of the human artery after 5-6 weeks, when they were reconstituted with spleen cells from another human donor. The thickening is mainly due to a proliferation of smooth muscle cells. The same type of lesion developed if they received injection of antibodies towards HLA class I antigens. The arteries of the mouse did not develop any lesion. The arterial lesions closely resembled those seen after clinical organ transplantation. Mice that received spleen cells from the same human donor developed little or no lesions. An important aspect of this experimental transplantation model is the possibility to test drugs that may be used in clinical transplantation. In recent experiments we have shown that novel immunosuppressive drugs can inhibit the hyperproliferation of smooth muscle cells in vitro. Preclinical testing in reconstituted SCID/beige mice grafted with human arteries will permit the evaluation of the potential use of these drugs to prevent chronic vascular rejection. The model also allows

  10. Caloric restriction in C57BL/6J mice mimics therapeutic fasting in humans

    Directory of Open Access Journals (Sweden)

    Denny Christine A

    2006-05-01

    Full Text Available Abstract Background Caloric restriction (CR has long been recognized as a dietary therapy that improves health and increases longevity. Little is known about the persistent effects of CR on plasma biomarkers (glucose, ketone bodies, and lipids following re-feeding in mice. It is also unclear how these biomarker changes in calorically restricted mice relate to those observed previously in calorically restricted humans. Results Three groups of individually housed adult female C57BL/6J (B6 mice (n = 4/group were fed a standard rodent chow diet either: (1 unrestricted (UR; (2 restricted for three weeks to reduce body weight by approximately 15–20% (R; or (3 restricted for three weeks and then re-fed unrestricted (ad libitum for an additional three weeks (R-RF. Body weight and food intake were measured throughout the study, while plasma lipids and levels of glucose and ketone bodies (β-hydroxybutyrate were measured at the termination of the study. Plasma glucose, phosphatidylcholine, cholesterol, and triglycerides were significantly lower in the R mice than in the UR mice. In contrast, plasma fatty acids and β-hydroxybutyrate were significantly higher in the R mice than in the UR mice. CR had no effect on plasma phosphatidylinositol levels. While body weight and plasma lipids of the R-RF mice returned to unrestricted levels upon re-feeding, food intake and glucose levels remained significantly lower than those prior to the initiation of CR. Conclusion CR establishes a new homeostatic state in B6 mice that persists for at least three weeks following ad libitum re-feeding. Moreover, the plasma biomarker changes observed in B6 mice during CR mimic those reported in humans on very low calorie diets or during therapeutic fasting.

  11. Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice.

    Directory of Open Access Journals (Sweden)

    Paul W Denton

    2008-01-01

    Full Text Available Worldwide, vaginal transmission now accounts for more than half of newly acquired HIV-1 infections. Despite the urgency to develop and implement novel approaches capable of preventing HIV transmission, this process has been hindered by the lack of adequate small animal models for preclinical efficacy and safety testing. Given the importance of this route of transmission, we investigated the susceptibility of humanized mice to intravaginal HIV-1 infection.We show that the female reproductive tract of humanized bone marrow-liver-thymus (BLT mice is reconstituted with human CD4+ T and other relevant human cells, rendering these humanized mice susceptible to intravaginal infection by HIV-1. Effects of HIV-1 infection include CD4+ T cell depletion in gut-associated lymphoid tissue (GALT that closely mimics what is observed in HIV-1-infected humans. We also show that pre-exposure prophylaxis with antiretroviral drugs is a highly effective method for preventing vaginal HIV-1 transmission. Whereas 88% (7/8 of BLT mice inoculated vaginally with HIV-1 became infected, none of the animals (0/5 given pre-exposure prophylaxis of emtricitabine (FTC/tenofovir disoproxil fumarate (TDF showed evidence of infection (Chi square = 7.5, df = 1, p = 0.006.The fact that humanized BLT mice are susceptible to intravaginal infection makes this system an excellent candidate for preclinical evaluation of both microbicides and pre-exposure prophylactic regimens. The utility of humanized mice to study intravaginal HIV-1 transmission is particularly highlighted by the demonstration that pre-exposure prophylaxis can prevent intravaginal HIV-1 transmission in the BLT mouse model.

  12. Niacin and biosynthesis of PGD₂by platelet COX-1 in mice and humans.

    Science.gov (United States)

    Song, Wen-Liang; Stubbe, Jane; Ricciotti, Emanuela; Alamuddin, Naji; Ibrahim, Salam; Crichton, Irene; Prempeh, Maxwell; Lawson, John A; Wilensky, Robert L; Rasmussen, Lars Melholt; Puré, Ellen; FitzGerald, Garret A

    2012-04-01

    The clinical use of niacin to treat dyslipidemic conditions is limited by noxious side effects, most commonly facial flushing. In mice, niacin-induced flushing results from COX-1-dependent formation of PGD₂ and PGE₂ followed by COX-2-dependent production of PGE₂. Consistent with this, niacin-induced flushing in humans is attenuated when niacin is combined with an antagonist of the PGD₂ receptor DP1. NSAID-mediated suppression of COX-2-derived PGI₂ has negative cardiovascular consequences, yet little is known about the cardiovascular biology of PGD₂. Here, we show that PGD₂ biosynthesis is augmented during platelet activation in humans and, although vascular expression of DP1 is conserved between humans and mice, platelet DP1 is not present in mice. Despite this, DP1 deletion in mice augmented aneurysm formation and the hypertensive response to Ang II and accelerated atherogenesis and thrombogenesis. Furthermore, COX inhibitors in humans, as well as platelet depletion, COX-1 knockdown, and COX-2 deletion in mice, revealed that niacin evoked platelet COX-1-derived PGD₂ biosynthesis. Finally, ADP-induced spreading on fibrinogen was augmented by niacin in washed human platelets, coincident with increased thromboxane (Tx) formation. However, in platelet-rich plasma, where formation of both Tx and PGD₂ was increased, spreading was not as pronounced and was inhibited by DP1 activation. Thus, PGD₂, like PGI₂, may function as a homeostatic response to thrombogenic and hypertensive stimuli and may have particular relevance as a constraint on platelets during niacin therapy.

  13. A competitive advantage by neonatally engrafted human glial progenitors yields mice whose brains are chimeric for human glia.

    Science.gov (United States)

    Windrem, Martha S; Schanz, Steven J; Morrow, Carolyn; Munir, Jared; Chandler-Militello, Devin; Wang, Su; Goldman, Steven A

    2014-11-26

    Neonatally transplanted human glial progenitor cells (hGPCs) densely engraft and myelinate the hypomyelinated shiverer mouse. We found that, in hGPC-xenografted mice, the human donor cells continue to expand throughout the forebrain, systematically replacing the host murine glia. The differentiation of the donor cells is influenced by the host environment, such that more donor cells differentiated as oligodendrocytes in the hypomyelinated shiverer brain than in myelin wild-types, in which hGPCs were more likely to remain as progenitors. Yet in each recipient, both the number and relative proportion of mouse GPCs fell as a function of time, concomitant with the mitotic expansion and spread of donor hGPCs. By a year after neonatal xenograft, the forebrain GPC populations of implanted mice were largely, and often entirely, of human origin. Thus, neonatally implanted hGPCs outcompeted and ultimately replaced the host population of mouse GPCs, ultimately generating mice with a humanized glial progenitor population. These human glial chimeric mice should permit us to define the specific contributions of glia to a broad variety of neurological disorders, using human cells in vivo. Copyright © 2014 the authors 0270-6474/14/3416153-09$15.00/0.

  14. Rats and mice immunised with chimeric human/mouse proteinase 3 produce autoantibodies to mouse Pr3 and rat granulocytes

    NARCIS (Netherlands)

    van der Geld, Ymke M.; Hellmark, Thomas; Selga, Daina; Heeringa, Peter; Huitema, Minke G.; Limburg, Pieter C.; Kallenberg, Cees G. M.

    2007-01-01

    Aim: In this study, we employed chimeric human/ mouse Proteinase 3 ( PR3) proteins as tools to induce an autoantibody response to PR3 in rats and mice. Method: Rats and mice were immunised with recombinant human PR3 ( HPR3), recombinant murine PR3 ( mPR3), single chimeric human/ mouse PR3 ( HHm,

  15. The pharmacokinetics and metabolism of lumiracoxib in chimeric humanized and murinized FRG mice.

    Science.gov (United States)

    Dickie, A P; Wilson, C E; Schreiter, K; Wehr, R; Wilson, E M; Bial, J; Scheer, N; Wilson, I D; Riley, R J

    2017-07-01

    The pharmacokinetics and metabolism of lumiracoxib were studied, after administration of single 10mg/kg oral doses to chimeric liver-humanized and murinized FRG mice. In the chimeric humanized mice, lumiracoxib reached peak observed concentrations in the blood of 1.10±0.08μg/mL at 0.25-0.5h post-dose with an AUC inf of 1.74±0.52μgh/mL and an effective half-life for the drug of 1.42±0.72h (n=3). In the case of the murinized animals peak observed concentrations in the blood were determined as 1.15±0.08μg/mL at 0.25h post-dose with an AUC inf of 1.94±0.22μgh/mL and an effective half-life of 1.28±0.02h (n=3). Analysis of blood indicated only the presence of unchanged lumiracoxib. Metabolic profiling of urine, bile and faecal extracts revealed a complex pattern of metabolites for both humanized and murinized animals with, in addition to unchanged parent drug, a variety of hydroxylated and conjugated metabolites detected. The profiles obtained in humanized mice were different compared to murinized animals with e.g., a higher proportion of the dose detected in the form of acyl glucuronide metabolites and much reduced amounts of taurine conjugates. Comparison of the metabolic profiles obtained from the present study with previously published data from C57bl/6J mice and humans, revealed a greater though not complete match between chimeric humanized mice and humans, such that the liver-humanized FRG model may represent a useful approach to assessing the biotransformation of such compounds in humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Atypical scrapie prions from sheep and lack of disease in transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Wadsworth, Jonathan D F; Joiner, Susan; Linehan, Jacqueline M; Balkema-Buschmann, Anne; Spiropoulos, John; Simmons, Marion M; Griffiths, Peter C; Groschup, Martin H; Hope, James; Brandner, Sebastian; Asante, Emmanuel A; Collinge, John

    2013-11-01

    Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants.

  17. Study of Engraftment of human cord blood cells to rescue the sublethal radiation damage mice

    International Nuclear Information System (INIS)

    Cao Xiangshan; Zou Zhenghui; Yu Fei; Zhang Zhilin; Lin Baojue

    1997-01-01

    To investigate alternative source of hematopoiesis stem cells to rescue the sublethal radiation damage (SRD) casualties. Human-umbilical cord blood hematopoietic cells were transplanted into SRD mice, the survival rate and the hematopoiesis reconstitution of bone marrow were assessed. The survival rate, in the mice transplanted and the untransplanted, were 90% and 10% respectively. Bone marrow and spleen of survival mice showed human leukocytic antigen CD45 + cells. Presence of multilineage engraftment, including myeloid and erythroid lineages, were found indicating that immature human cells home to the mouse bone marrow. conclusion: engraftment of umbilical cord blood cells is very useful to reconstitute hematopoiesis of SRD casualties. As cord blood has many advantages over bone marrow and peripheral blood, it is important in rescuing radiation accidental casualties

  18. Identification of Metabolism and Excretion Differences of Procymidone between Rats and Humans Using Chimeric Mice: Implications for Differential Developmental Toxicity.

    Science.gov (United States)

    Abe, Jun; Tomigahara, Yoshitaka; Tarui, Hirokazu; Omori, Rie; Kawamura, Satoshi

    2018-02-28

    A metabolite of procymidone, hydroxylated-PCM, causes rat-specific developmental toxicity due to higher exposure to it in rats than in rabbits or monkeys. When procymidone was administered to chimeric mice with rat or human hepatocytes, the plasma level of hydroxylated-PCM was higher than that of procymidone in rat chimeric mice, and the metabolic profile of procymidone in intact rats was well reproduced in rat chimeric mice. In human chimeric mice, the plasma level of hydroxylated-PCM was less, resulting in a much lower exposure. The main excretion route of hydroxylated-PCM-glucuronide was bile (the point that hydroxylated-PCM enters the enterohepatic circulation) in rat chimeric mice, and urine in human chimeric mice. These data suggest that humans, in contrast to rats, extensively form the glucuronide and excrete it in urine, as do rabbits and monkeys. Overall, procymidone's potential for causing teratogenicity in humans must be low compared to that in rats.

  19. Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning.

    Science.gov (United States)

    Staley, Christopher; Kaiser, Thomas; Beura, Lalit K; Hamilton, Matthew J; Weingarden, Alexa R; Bobr, Aleh; Kang, Johnthomas; Masopust, David; Sadowsky, Michael J; Khoruts, Alexander

    2017-08-01

    Human microbiota-associated (HMA) animal models relying on germ-free recipient mice are being used to study the relationship between intestinal microbiota and human disease. However, transfer of microbiota into germ-free animals also triggers global developmental changes in the recipient intestine, which can mask disease-specific attributes of the donor material. Therefore, a simple model of replacing microbiota into a developmentally mature intestinal environment remains highly desirable. Here we report on the development of a sequential, three-course antibiotic conditioning regimen that allows sustained engraftment of intestinal microorganisms following a single oral gavage with human donor microbiota. SourceTracker, a Bayesian, OTU-based algorithm, indicated that 59.3 ± 3.0% of the fecal bacterial communities in treated mice were attributable to the donor source. This overall degree of microbiota engraftment was similar in mice conditioned with antibiotics and germ-free mice. Limited surveys of systemic and mucosal immune sites did not show evidence of immune activation following introduction of human microbiota. The antibiotic treatment protocol described here followed by a single gavage of human microbiota may provide a useful, complimentary HMA model to that established in germ-free facilities. The model has the potential for further in-depth translational investigations of microbiota in a variety of human disease states.

  20. Pharmacokinetics and effects on serum cholinesterase activities of organophosphorus pesticides acephate and chlorpyrifos in chimeric mice transplanted with human hepatocytes.

    Science.gov (United States)

    Suemizu, Hiroshi; Sota, Shigeto; Kuronuma, Miyuki; Shimizu, Makiko; Yamazaki, Hiroshi

    2014-11-01

    Organophosphorus pesticides acephate and chlorpyrifos in foods have potential to impact human health. The aim of the current study was to investigate the pharmacokinetics of acephate and chlorpyrifos orally administered at lowest-observed-adverse-effect-level doses in chimeric mice transplanted with human hepatocytes. Absorbed acephate and its metabolite methamidophos were detected in serum from wild type mice and chimeric mice orally administered 150mg/kg. Approximately 70% inhibition of cholinesterase was evident in plasma of chimeric mice with humanized liver (which have higher serum cholinesterase activities than wild type mice) 1day after oral administrations of acephate. Adjusted animal biomonitoring equivalents from chimeric mice studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Estimated plasma concentrations of acephate and chlorpyrifos in humans were consistent with reported concentrations. Acephate cleared similarly in humans and chimeric mice but accidental/incidental overdose levels of chlorpyrifos cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in mice. The data presented here illustrate how chimeric mice transplanted with human hepatocytes in combination with a simple PBPK model can assist evaluations of toxicological potential of organophosphorus pesticides. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Anti-ghrelin immunoglobulins modulate ghrelin stability and its orexigenic effect in obese mice and humans

    Science.gov (United States)

    Takagi, Kuniko; Legrand, Romain; Asakawa, Akihiro; Amitani, Haruka; François, Marie; Tennoune, Naouel; Coëffier, Moïse; Claeyssens, Sophie; do Rego, Jean-Claude; Déchelotte, Pierre; Inui, Akio; Fetissov, Sergueï O.

    2013-01-01

    Obese individuals often have increased appetite despite normal plasma levels of the main orexigenic hormone ghrelin. Here we show that ghrelin degradation in the plasma is inhibited by ghrelin-reactive IgG immunoglobulins, which display increased binding affinity to ghrelin in obese patients and mice. Co-administration of ghrelin together with IgG from obese individuals, but not with IgG from anorectic or control patients, increases food intake in rats. Similarly, chronic injections of ghrelin together with IgG from ob/ob mice increase food intake, meal frequency and total lean body mass of mice. These data reveal that in both obese humans and mice, IgG with increased affinity for ghrelin enhances ghrelin’s orexigenic effect, which may contribute to increased appetite and overeating. PMID:24158035

  2. Impaired growth of pancreatic exocrine cells in transgenic mice expressing human activin βE subunit

    International Nuclear Information System (INIS)

    Hashimoto, Osamu; Ushiro, Yuuki; Sekiyama, Kazunari; Yamaguchi, Osamu; Yoshioka, Kazuki; Mutoh, Ken-Ichiro; Hasegawa, Yoshihisa

    2006-01-01

    Activins, TGF-β superfamily members, have multiple functions in a variety of cells and tissues. Recently, additional activin β subunit genes, βC and βE, have been identified. To explore the role of activin E, we created transgenic mice overexpressing human activin βE subunit. There were pronounced differences in the pancreata of the transgenic animals as compared with their wild-type counterparts. Pancreatic weight, expressed relative to total body weight, was significantly reduced. Histologically, adipose replacement of acini in the exocrine pancreas was observed. There was a significant decrease in the number of PCNA-positive cells in the acinar cells, indicating reduced proliferation in the exocrine pancreas of the transgenic mice. However, quantitative pancreatic morphometry showed that the total number and mass of the islets of the transgenic mice were comparable with those of the nontransgenic control mice. Our findings suggest a role for activin E in regulating the proliferation of pancreatic exocrine cells

  3. Migration of human antigen-presenting cells in a human skin graft onto nude mice model after contact sensitization

    NARCIS (Netherlands)

    Hoefakker, S.; Balk, H.P.; Boersma, W.J.A.; Joost, T. van; Notten, W.R.F.; Claassen, E.

    1995-01-01

    Fluorescent contact chemical allergens provoke sensitization after application on both syngeneic and allogeneic skin grafts in mice. We attempted to determine whether the functional activity in a contact sensitization response of human skin graft was affected at the level of antigen uptake and

  4. Interleukin 1-induced augmentation of experimental metastases from a human melanoma in nude mice

    International Nuclear Information System (INIS)

    Giavazzi, R.; Garofalo, A.; Bani, M.R.; Abbate, M.; Ghezzi, P.; Boraschi, D.; Mantovani, A.; Dejana, E.

    1990-01-01

    This study has examined the effect of the cytokine interleukin 1 (IL-1) on metastasis formation by the human melanoma A375M in nude mice. We have found that human recombinant IL-1 beta (a single injection greater than 0.01 micrograms per mouse i.v. given before tumor cells) induced an augmentation of experimental lung metastases from the A375M tumor cells in nude mice. This effect was rapidly induced and reversible within 24 h after IL-1 injection. A similar effect was induced by human recombinant IL-1 alpha and human recombinant tumor necrosis factor, but not by human recombinant interleukin 6. 5-[125I]odo-2'-deoxyuridine-radiolabeled A375M tumor cells injected i.v. remained at a higher level in the lungs of nude mice receiving IL-1 than in control mice. In addition, IL-1 injected 1 h, but not 24 h, after tumor cells enhanced lung colonization as well, thus suggesting an effect of IL-1 on the vascular transit of tumor cells. These findings may explain the observation of enhanced secondary localization of tumor cells at inflammatory sites and suggest that modulation of secondary spread should be carefully considered when assessing the ability of this cytokine to complement cytoreductive therapies

  5. Human HMGA2 protein overexpressed in mice induces precursor T-cell lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Efanov, A; Zanesi, N; Coppola, V; Nuovo, G; Bolon, B; Wernicle-Jameson, D; Lagana, A; Hansjuerg, A; Pichiorri, F; Croce, C M

    2014-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a neoplasia of thymocytes characterized by the rapid accumulation of the precursors of T lymphocytes. HMGA2 (high-mobility group AT-hook 2) gene expression is extremely low in normal adult tissues, but it is overexpressed in many tumors. To identify the biological function of HMGA2, we generated transgenic mice carrying the human HMGA2 gene under control of the V H promoter/Eμ enhancer. Approximately 90% of Eμ-HMGA2 transgenic mice became visibly sick between 4 and 8 months due to the onset and progression of a T-ALL-like disease. Characteristic features included severe alopecia (30% of mice); enlarged lymph nodes and spleen; and profound immunological abnormalities (altered cytokine levels, hypoimmunoglobulinemia) leading to reduced immune responsiveness. Immunophenotyping showed accumulation of CD5+CD4+, CD5+CD8+ or CD5+CD8+CD4+ T-cell populations in the spleens and bone marrow of sick animals. These findings show that HMGA2-driven leukemia in mice closely resembles spontaneous human T-ALL, indicating that HMGA2 transgenic mice should serve as an important model for investigating basic mechanisms and potential new therapies of relevance to human T-ALL

  6. Utility of humanized BLT mice for analysis of dengue virus infection and antiviral drug testing.

    Science.gov (United States)

    Frias-Staheli, Natalia; Dorner, Marcus; Marukian, Svetlana; Billerbeck, Eva; Labitt, Rachael N; Rice, Charles M; Ploss, Alexander

    2014-02-01

    Dengue virus (DENV) is the cause of a potentially life-threatening disease that affects millions of people worldwide. The lack of a small animal model that mimics the symptoms of DENV infection in humans has slowed the understanding of viral pathogenesis and the development of therapies and vaccines. Here, we investigated the use of humanized "bone marrow liver thymus" (BLT) mice as a model for immunological studies and assayed their applicability for preclinical testing of antiviral compounds. Human immune system (HIS) BLT-NOD/SCID mice were inoculated intravenously with a low-passage, clinical isolate of DENV-2, and this resulted in sustained viremia and infection of leukocytes in lymphoid and nonlymphoid organs. In addition, DENV infection increased serum cytokine levels and elicited DENV-2-neutralizing human IgM antibodies. Following restimulation with DENV-infected dendritic cells, in vivo-primed T cells became activated and acquired effector function. An adenosine nucleoside inhibitor of DENV decreased the circulating viral RNA when administered simultaneously or 2 days postinfection, simulating a potential treatment protocol for DENV infection in humans. In summary, we demonstrate that BLT mice are susceptible to infection with clinical DENV isolates, mount virus-specific adaptive immune responses, and respond to antiviral drug treatment. Although additional refinements to the model are required, BLT mice are a suitable platform to study aspects of DENV infection and pathogenesis and for preclinical testing of drug and vaccine candidates. IMPORTANCE Infection with dengue virus remains a major medical problem. Progress in our understanding of the disease and development of therapeutics has been hampered by the scarcity of small animal models. Here, we show that humanized mice, i.e., animals engrafted with components of a human immune system, that were infected with a patient-derived dengue virus strain developed clinical symptoms of the disease and mounted

  7. Metabolite analysis of [11C]Ro15-4513 in mice, rats, monkeys and humans

    International Nuclear Information System (INIS)

    Kida, T.; Noguchi, J.; Zhang, M.-R.; Suhara, T.; Suzuki, K.

    2003-01-01

    We performed in vitro and in vivo assays of the metabolism of [ 11 C]Ro15-4513 over time in the plasma of mice, rats, monkeys and humans, using a radio-HPLC equipped with a sensitive positron detector, in order to compare the metabolic rates of the radiopharmaceutical agent among the different animal species and to establish a highly sensitive analytical method for the radiotracer agent. We also examined the metabolism of [ 11 C]Ro15-4513 in the brain tissue of mice and rats. The analytical method used in this study permitted detection of even extremely low levels of radioactivity (approximately 5,000 dpm). In vitro experiments revealed that [ 11 C]Ro15-4513 in the blood was metabolized to hydrolysate [ 11 C]A. The species were classified in descending order of the metabolic rate of the radiotracer in vitro as follows; mice, rats, and monkeys/humans. In the in vitro experiment, the percentage of the unchanged drug in the plasma at 60 minutes postdose was 9% in mice, 70% in rats, 97% in monkeys, and 98% in humans. In vivo metabolite analysis in the blood showed the presence of two radioactive metabolites, consisting of one hydrolysate [ 11 C]A and another unidentified substance. The species were classified in descending order of the metabolic rate of the radiotracer in vivo as follows; mice, rats/humans, and monkeys. The percentage of the unchanged drug in the plasma was 6% in mice, 21% in rats, 26% in humans, and 40% in monkeys. Furthermore, the in vitro and in vivo experiments conducted to analyze the metabolism of [ 11 C]Ro15-4513 in the brain tissue of mice and rats revealed that the radiotracer was metabolized to some extent in the brain tissue of these animals. In the in vivo experiment, the percentage of the unchanged drug at 60 min postdose was 86% in the brain tissue of mice and 88% in the brain tissue of rats, while in the in vitro experiment, the corresponding percentage was 93% in mice, and 91% in rats

  8. Cerebral blood flow reduction in Alzheimer's disease: impact of capillary occlusions on mice and humans

    Science.gov (United States)

    Berg, Maxime; Merlo, Adlan; Peyrounette, Myriam; Doyeux, Vincent; Smith, Amy; Cruz-Hernandez, Jean; Bracko, Oliver; Haft-Javaherian, Mohammad; Nishimura, Nozomi; Schaffer, Chris B.; Davit, Yohan; Quintard, Michel; Lorthois, Sylvie

    2017-11-01

    Alzheimer's disease may be the most common form of dementia, yet a satisfactory diagnosis procedure has still to be found. Recent studies suggest that a significant decrease of cerebral blood flow, probably caused by white blood cells stalling small vessels, may be among the earliest biological markers. To assess this hypothesis we derive a blood flow model, validate it against in vitro controlled experiments and in vivo measurements made on mice. We then investigate the influence of capillary occlusions on regional perfusion (sum of all arteriole flowrates feeding the network) of large mice and humans anatomical networks. Consistent with experiments, we observe no threshold effect, so that even a small percentage of occlusions (2-4%) leads to significant blood flow decrease (5-12%). We show that both species share the same linear dependance, suggesting possible translation from mice to human. ERC BrainMicroFlow GA61510, CALMIP HPC (Grant 2017-1541).

  9. Increased infectivity of anchorless mouse scrapie prions in transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Race, Brent; Phillips, Katie; Meade-White, Kimberly; Striebel, James; Chesebro, Bruce

    2015-06-01

    Prion protein (PrP) is found in all mammals, mostly as a glycoprotein anchored to the plasma membrane by a C-terminal glycosylphosphatidylinositol (GPI) linkage. Following prion infection, host protease-sensitive prion protein (PrPsen or PrPC) is converted into an abnormal, disease-associated, protease-resistant form (PrPres). Biochemical characteristics, such as the PrP amino acid sequence, and posttranslational modifications, such as glycosylation and GPI anchoring, can affect the transmissibility of prions as well as the biochemical properties of the PrPres generated. Previous in vivo studies on the effects of GPI anchoring on prion infectivity have not examined cross-species transmission. In this study, we tested the effect of lack of GPI anchoring on a species barrier model using mice expressing human PrP. In this model, anchorless 22L prions derived from tg44 mice were more infectious than 22L prions derived from C57BL/10 mice when tested in tg66 transgenic mice, which expressed wild-type anchored human PrP at 8- to 16-fold above normal. Thus, the lack of the GPI anchor on the PrPres from tg44 mice appeared to reduce the effect of the mouse-human PrP species barrier. In contrast, neither source of prions induced disease in tgRM transgenic mice, which expressed human PrP at 2- to 4-fold above normal. Prion protein (PrP) is found in all mammals, usually attached to cells by an anchor molecule called GPI. Following prion infection, PrP is converted into a disease-associated form (PrPres). While most prion diseases are species specific, this finding is not consistent, and species barriers differ in strength. The amino acid sequence of PrP varies among species, and this variability affects prion species barriers. However, other PrP modifications, including glycosylation and GPI anchoring, may also influence cross-species infectivity. We studied the effect of PrP GPI anchoring using a mouse-to-human species barrier model. Experiments showed that prions produced by

  10. Mendelian analysis of a metastasis-prone substrain of BALB/c nude mice using a subcutaneously inoculated human tumour

    DEFF Research Database (Denmark)

    Schou, M; Brünner, N; Spang-Thomsen, M

    2006-01-01

    Most nude mice do not allow the formation of metastases after heterotransplantation of human malignant tumours. Here we describe a substrain of BALB/c nude mice (BALB/c/AnNCr) that reproducibly allows some human cancers to metastasize. By Mendelian analysis of hybrids between this substrain and C57...

  11. Some quantitative studies on the transplantation of human tissues into nude mice

    International Nuclear Information System (INIS)

    Zietman, A.; Suit, H.D.; Sedlacek, R.

    1987-01-01

    Quantitative cell transplantation assays (TD/sub 50/) were performed for human tumors xenografted into athymic NCr(nμ/nμ) nude mice. Transplantation assays for FaDu when transplanted into brain and when transplanted into subcutaneous tissues are compared. Effects of immunization are discussed and results are given

  12. Preclinical evaluation of human T lymphocytes in RAG2-/-γc-/- mice

    NARCIS (Netherlands)

    Rijn, R.S. van

    2006-01-01

    This thesis describes the development and application of a new model for the preclinical study of human T cells by transfer of huPBMCs into RAG2-/-γc-/- immunodeficient mice. The ultimate goal of treating patients with a malignancy is to eradicate the malignant cells, while keeping hold of damage to

  13. Toward an animal model for antisocial behavior : parallels between mice and humans

    NARCIS (Netherlands)

    Sluyter, F; Arseneault, L; Moffitt, TE; Veenema, AH; de Boer, S; Koolhaas, JM

    The goal of this article is to examine whether mouse lines genetically selected for short and long attack latencies are good animal models for antisocial behavior in humans. To this end, we compared male Short and Long Attack Latency mice (SAL and LAL, respectively) with the extremes of the Dunedin

  14. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice

    International Nuclear Information System (INIS)

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia

    2016-01-01

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. - Highlights: • This study explore contribution of DNA damage to neurodegeneration in Parkinson's disease mice. • A53T-α-Syn MEF cells show a prolonged DNA damage repair process and senescense phenotype. • DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice. • DNA damage decrease the number of nigrostriatal dopaminergic neurons. • Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages.

  15. Radioimmunoscintigraphy of human pancreatic carcinoma xenografts in nude mice with 131I-labeled monoclonal antibody

    International Nuclear Information System (INIS)

    Tsuda, Takatoshi; Koshiba, H.; Usui, T.; Kubota, M.; Kikuchi, Kokichi; Morita, Kazuo

    1990-01-01

    Encouraged by reports of radioimmunoimaging of colorectal carcinomas and by examining an immunohistochemical report on resected pancreas cancer tissues, we studied the diagnostic potential of radioimmunoimaging with the radioiodinelabeled monoclonal antibody (MoAb; HC-1) to a human pancreas cancer cell line (HGC25) was labeled with radioiodine and injected into athymic nude mice implanted with human pancreas cancer cells. Antibody HC-1 was cleared from the circulation and accumulated significantly in the implanted tumor sites. (author)

  16. Cytogenetic adaptive response induced by pre-exposure in human lymphocytes and marrow cells of mice

    International Nuclear Information System (INIS)

    Zhang Lianzhen; Deng Zhicheng

    1993-01-01

    The cytogenetic adaptive response induced by pre-exposure in human lymphocytes and marrow cells of mice were studied. The results of this study showed that human lymphocytes in vitro and mouse marrow cells in vivo can become adapted to low-level irradiation from 3 H-TdR or exposure to a low dose of X-or γ-irradiation, so that they become less sensitive to the chromosomal damage effects of subsequent exposures. (4 tabs.)

  17. Niacin and biosynthesis of PGD2 by platelet COX-1 in mice and humans

    Science.gov (United States)

    Song, Wen-Liang; Stubbe, Jane; Ricciotti, Emanuela; Alamuddin, Naji; Ibrahim, Salam; Crichton, Irene; Prempeh, Maxwell; Lawson, John A.; Wilensky, Robert L.; Rasmussen, Lars Melholt; Puré, Ellen; FitzGerald, Garret A.

    2012-01-01

    The clinical use of niacin to treat dyslipidemic conditions is limited by noxious side effects, most commonly facial flushing. In mice, niacin-induced flushing results from COX-1–dependent formation of PGD2 and PGE2 followed by COX-2–dependent production of PGE2. Consistent with this, niacin-induced flushing in humans is attenuated when niacin is combined with an antagonist of the PGD2 receptor DP1. NSAID-mediated suppression of COX-2–derived PGI2 has negative cardiovascular consequences, yet little is known about the cardiovascular biology of PGD2. Here, we show that PGD2 biosynthesis is augmented during platelet activation in humans and, although vascular expression of DP1 is conserved between humans and mice, platelet DP1 is not present in mice. Despite this, DP1 deletion in mice augmented aneurysm formation and the hypertensive response to Ang II and accelerated atherogenesis and thrombogenesis. Furthermore, COX inhibitors in humans, as well as platelet depletion, COX-1 knockdown, and COX-2 deletion in mice, revealed that niacin evoked platelet COX-1–derived PGD2 biosynthesis. Finally, ADP-induced spreading on fibrinogen was augmented by niacin in washed human platelets, coincident with increased thromboxane (Tx) formation. However, in platelet-rich plasma, where formation of both Tx and PGD2 was increased, spreading was not as pronounced and was inhibited by DP1 activation. Thus, PGD2, like PGI2, may function as a homeostatic response to thrombogenic and hypertensive stimuli and may have particular relevance as a constraint on platelets during niacin therapy. PMID:22406532

  18. Inhibition of diabetes in NOD mice by human pregnancy factor

    NARCIS (Netherlands)

    Khan, N.A.; Khan, A.; Savelkoul, H.F.J.; Benner, R.

    2001-01-01

    Clinical symptoms of Th1 mediated autoimmune diseases regress in many patients during pregnancy. A prominent feature of pregnancy is the presence of human chorionic gonadotrophin hormone (hCG) in blood and urine. In this report we tested the effect of clinical grade hCG (c-hCG) on the development of

  19. Immune Humanization of Immunodeficient Mice Using Diagnostic Bone Marrow Aspirates from Carcinoma Patients

    Science.gov (United States)

    Werner-Klein, Melanie; Proske, Judith; Werno, Christian; Schneider, Katharina; Hofmann, Hans-Stefan; Rack, Brigitte; Buchholz, Stefan; Ganzer, Roman; Blana, Andreas; Seelbach-Göbel, Birgit; Nitsche, Ulrich

    2014-01-01

    Tumor xenografts in immunodeficient mice, while routinely used in cancer research, preclude studying interactions of immune and cancer cells or, if humanized by allogeneic immune cells, are of limited use for tumor-immunological questions. Here, we explore a novel way to generate cancer models with an autologous humanized immune system. We demonstrate that hematopoietic stem and progenitor cells (HSPCs) from bone marrow aspirates of non-metastasized carcinoma patients, which are taken at specialized centers for diagnostic purposes, can be used to generate a human immune system in NOD-scid IL2rγ(null) (NSG) and HLA-I expressing NSG mice (NSG-HLA-A2/HHD) comprising both, lymphoid and myeloid cell lineages. Using NSG-HLA-A2/HHD mice, we show that responsive and self-tolerant human T cells develop and human antigen presenting cells can activate human T cells. As critical factors we identified the low potential of bone marrow HSPCs to engraft, generally low HSPC numbers in patient-derived bone marrow samples, cryopreservation and routes of cell administration. We provide here an optimized protocol that uses a minimum number of HSPCs, preselects high-quality bone marrow samples defined by the number of initially isolated leukocytes and intra-femoral or intra-venous injection. In conclusion, the use of diagnostic bone marrow aspirates from non-metastasized carcinoma patients for the immunological humanization of immunodeficient mice is feasible and opens the chance for individualized analyses of anti-tumoral T cell responses. PMID:24830425

  20. Immune humanization of immunodeficient mice using diagnostic bone marrow aspirates from carcinoma patients.

    Directory of Open Access Journals (Sweden)

    Melanie Werner-Klein

    Full Text Available Tumor xenografts in immunodeficient mice, while routinely used in cancer research, preclude studying interactions of immune and cancer cells or, if humanized by allogeneic immune cells, are of limited use for tumor-immunological questions. Here, we explore a novel way to generate cancer models with an autologous humanized immune system. We demonstrate that hematopoietic stem and progenitor cells (HSPCs from bone marrow aspirates of non-metastasized carcinoma patients, which are taken at specialized centers for diagnostic purposes, can be used to generate a human immune system in NOD-scid IL2rγ(null (NSG and HLA-I expressing NSG mice (NSG-HLA-A2/HHD comprising both, lymphoid and myeloid cell lineages. Using NSG-HLA-A2/HHD mice, we show that responsive and self-tolerant human T cells develop and human antigen presenting cells can activate human T cells. As critical factors we identified the low potential of bone marrow HSPCs to engraft, generally low HSPC numbers in patient-derived bone marrow samples, cryopreservation and routes of cell administration. We provide here an optimized protocol that uses a minimum number of HSPCs, preselects high-quality bone marrow samples defined by the number of initially isolated leukocytes and intra-femoral or intra-venous injection. In conclusion, the use of diagnostic bone marrow aspirates from non-metastasized carcinoma patients for the immunological humanization of immunodeficient mice is feasible and opens the chance for individualized analyses of anti-tumoral T cell responses.

  1. Mice, humans and haplotypes--the hunt for disease genes in SLE.

    Science.gov (United States)

    Rigby, R J; Fernando, M M A; Vyse, T J

    2006-09-01

    Defining the polymorphisms that contribute to the development of complex genetic disease traits is a challenging, although increasingly tractable problem. Historically, the technical difficulties in conducting association studies across the entire human genome are such that murine models have been used to generate candidate genes for analysis in human complex diseases, such as SLE. In this article we discuss the advantages and disadvantages of this approach and specifically address some assumptions made in the transition from studying one species to another, using lupus as an example. These issues include differences in genetic structure and genetic organisation which are a reflection on the population history. Clearly there are major differences in the histories of the human population and inbred laboratory strains of mice. Both human and murine genomes do exhibit structure at the genetic level. That is to say, they comprise haplotypes which are genomic regions that carry runs of polymorphisms that are not independently inherited. Haplotypes therefore reduce the number of combinations of the polymorphisms in the DNA in that region and facilitate the identification of disease susceptibility genes in both mice and humans. There are now novel means of generating candidate genes in SLE using mutagenesis (with ENU) in mice and identifying mice that generate antinuclear autoimmunity. In addition, murine models still provide a valuable means of exploring the functional consequences of genetic variation. However, advances in technology are such that human geneticists can now screen large fractions of the human genome for disease associations using microchip technologies that provide information on upwards of 100,000 different polymorphisms. These approaches are aimed at identifying haplotypes that carry disease susceptibility mutations and rely less on the generation of candidate genes.

  2. Growth curves of three human malignant tumors transplanted to nude mice

    DEFF Research Database (Denmark)

    Spang-Thomsen, M; Nielsen, A; Visfeldt, J

    1980-01-01

    Experimental growth data for three human malignant tumors transplanted to nude mice of BALB/c origin are analyzed statistically in order to investigate whether they can be described according to the Gompertz function. The aim is to set up unequivocal standards for planned therapeutic experiments...... as a standard, e.g. in therapeutic experiments. The course of tumor growth is independent of the size of the transplant, and whether tumors are transplanted in the right or left or both flanks of the recipient mice. Furthermore, the growth does not vary in a systematic way with the number of passages in nude...

  3. Adenohypophysial changes in mice transgenic for human growth hormone-releasing factor

    DEFF Research Database (Denmark)

    Stefaneanu, L; Kovacs, K; Horvath, E

    1989-01-01

    The effect of protracted GH-releasing factor (GRF) stimulation on adenohypophysial morphology was investigated in six mice transgenic for human GRF (hGRF). All animals had significantly higher plasma levels of GH and GRF and greater body weights than controls. Eight-month-old mice were killed...... of their ultrastructural features, contained secretory granules heavily labeled for GH by immunogold technique; PRL labeling varied from cell to cell, with the predominance of a weak immunostaining and was colocalized with GH in secretory granules. These results indicate that chronic exposure to GRF excess leads...

  4. Gold thread implantation promotes hair growth in human and mice

    OpenAIRE

    Kim, Jong-Hwan; Cho, Eun-Young; Kwon, Euna; Kim, Woo-Ho; Park, Jin-Sung; Lee, Yong-Soon; Yun, Jun-Won; Kang, Byeong-Cheol

    2017-01-01

    Thread-embedding therapy has been widely applied for cosmetic purposes such as wrinkle reduction and skin tightening. Particularly, gold thread was reported to support connective tissue regeneration, but, its role in hair biology remains largely unknown due to lack of investigation. When we implanted gold thread and Happy Lift™ in human patient for facial lifting, we unexpectedly found an increase of hair regrowth in spite of no use of hair growth medications. When embedded into the depilated...

  5. Atherosclerotic Plaque Stability Is Affected by the Chemokine CXCL10 in Both Mice and Humans

    Directory of Open Access Journals (Sweden)

    Dolf Segers

    2011-01-01

    Full Text Available Background. The chemokine CXCL10 is specifically upregulated during experimental development of plaque with an unstable phenotype. In this study we evaluated the functional consequences of these findings in mice and humans. Methods and Results. In ApoE-/- mice, we induced unstable plaque with using a flow-altering device around the carotid artery. From week 1 to 4, mice were injected with a neutralizing CXCL10 antibody. After 9 weeks, CXCL10 inhibition resulted in a more stable plaque phenotype: collagen increased by 58% (P=0.002, smooth muscle cell content increased 2-fold (P=0.03, while macrophage MHC class II expression decreased by 50% (P=0.005. Also, the size of necrotic cores decreased by 41% (P=0.01. In 106 human carotid endarterectomy specimens we found that increasing concentrations of CXCL10 strongly associate with an increase in atheromatous plaque phenotype (ANOVA, P=0.003, with high macrophage, low smooth muscle cell, and low collagen content. Conclusions. In the present study we showed that CXCL10 is associated with the development of vulnerable plaque in human and mice. We conclude that CXCL10 might provide a new lead towards plaque-stabilizing therapy.

  6. Spina Bifida: Pathogenesis, Mechanisms, and Genes in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Siti W. Mohd-Zin

    2017-01-01

    Full Text Available Spina bifida is among the phenotypes of the larger condition known as neural tube defects (NTDs. It is the most common central nervous system malformation compatible with life and the second leading cause of birth defects after congenital heart defects. In this review paper, we define spina bifida and discuss the phenotypes seen in humans as described by both surgeons and embryologists in order to compare and ultimately contrast it to the leading animal model, the mouse. Our understanding of spina bifida is currently limited to the observations we make in mouse models, which reflect complete or targeted knockouts of genes, which perturb the whole gene(s without taking into account the issue of haploinsufficiency, which is most prominent in the human spina bifida condition. We thus conclude that the need to study spina bifida in all its forms, both aperta and occulta, is more indicative of the spina bifida in surviving humans and that the measure of deterioration arising from caudal neural tube defects, more commonly known as spina bifida, must be determined by the level of the lesion both in mouse and in man.

  7. Human Immune System Mice for the Study of Human Immunodeficiency Virus-Type 1 Infection of the Central Nervous System

    Science.gov (United States)

    Evering, Teresa H.; Tsuji, Moriya

    2018-01-01

    Immunodeficient mice transplanted with human cell populations or tissues, also known as human immune system (HIS) mice, have emerged as an important and versatile tool for the in vivo study of human immunodeficiency virus-type 1 (HIV-1) pathogenesis, treatment, and persistence in various biological compartments. Recent work in HIS mice has demonstrated their ability to recapitulate critical aspects of human immune responses to HIV-1 infection, and such studies have informed our knowledge of HIV-1 persistence and latency in the context of combination antiretroviral therapy. The central nervous system (CNS) is a unique, immunologically privileged compartment susceptible to HIV-1 infection, replication, and immune-mediated damage. The unique, neural, and glia-rich cellular composition of this compartment, as well as the important role of infiltrating cells of the myeloid lineage in HIV-1 seeding and replication makes its study of paramount importance, particularly in the context of HIV-1 cure research. Current work on the replication and persistence of HIV-1 in the CNS, as well as cells of the myeloid lineage thought to be important in HIV-1 infection of this compartment, has been aided by the expanded use of these HIS mouse models. In this review, we describe the major HIS mouse models currently in use for the study of HIV-1 neuropathogenesis, recent insights from the field, limitations of the available models, and promising advances in HIS mouse model development. PMID:29670623

  8. Expression of the human growth hormone variant gene in cultured fibroblasts and transgenic mice

    International Nuclear Information System (INIS)

    Selden, R.F.; Wagner, T.E.; Blethen, S.; Yun, J.S.; Rowe, M.E.; Goodman, H.M.

    1988-01-01

    The nucleotide sequence of the human growth hormone variant gene, one of the five members of the growth hormone gene family, predicts that it encodes a growth hormone-like protein. As a first step in determining whether this gene is functional in humans, the authors have expressed a mouse methallothionein I/human growth hormone variant fusion gene in mouse L cells and in transgenic mice. The growth hormone variant protein expressed in transiently transfected L cells is distinct from growth hormone itself with respect to reactivity with anti-growth hormone monoclonal antibodies, behavior during column chromatography, and isoelectric point. Transgenic mice expressing the growth hormone variant protein are 1.4- to 1.9-fold larger than nontransgenic controls, suggesting that the protein has growth-promoting properties

  9. Suppressive effects of chlorphenesin on lymphocyte function in mice and humans.

    Science.gov (United States)

    Stites, D P; Brecher, G; Schmidt, L; Berger, F M

    1979-12-01

    The immunosuppressive action of chlorphenesin was investigated in a wide variety of in vitro assays for cellular immunity in humans and mice. Chlorphenesin, at doses of 20-50 micrograms/ml, inhibited mitogenic responses of both mouse and human B and T cells. These doses did not kill cells exposed to the drug for 72 hr. Mixed lymphocyte reactions in inbred strains of mice and in unrelated humans were also inhibited at concentrations of about 50 micrograms/ml. However, the generation of cytotoxic T cells in cell-mediated lympholysis assays was not inhibited to the same degree as proliferation in mixed lymphocyte reaction and the cytotoxic potential of presensitized mouse T cells for allogeneic targets was totally unaffected. These studies suggest that chlorphenesin may have a broad spectrum of suppressive effects both on T and B cells and that the predominant inhibition of proliferative responses in these cells may reduce the expansion of clones of immunocompetent cells in vivo.

  10. Human cathepsin L rescues the neurodegeneration and lethality incathepsin B/L double deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Sevenich, Lisa; Pennacchio, Len A.; Peters, Christoph; Reinheckel, Thomas

    2006-01-09

    Cathepsin B (CTSB) and cathepsin L (CTSL) are two widelyexpressed cysteine proteases thought to predominantly reside withinlysosomes. Functional analysis of CTSL in humans is complicated by theexistence of two CTSL-like homologues (CTSL and CTSL2), in contrast tomice which contain only one CTSL enzyme. Thus transgenic expression ofhuman CTSL in CTSL deficient mice provides an opportunity to study the invivo functions of this human protease without interference by its highlyrelated homologue. While mice with single gene deficiencies for murineCTSB or CTSL survive without apparent neuromuscular impairment, murineCTSB/CTSL double deficient mice display degeneration of cerebellarPurkinje cells and neurons of the cerebral cortex, resulting in severehypotrophy, motility defects, and lethality during their third to fourthweek of life. Here we show that expression of human CTSL through agenomic transgene results in widespread expression of human CTSL in themouse which is capable of rescuing the lethality found in CTSB/CTSLdouble-deficient animals. Human CTSL is expressed in the brain of thesecompound mutants predominantly in neurons of the cerebral cortex and inPurkinje cells of the cerebellum, where it appears to prevent neuronalcell death.

  11. Immunohistochemical investigations of xenotransplanted human adenocarcinomas on nude mice: Correlation to radioimaging

    International Nuclear Information System (INIS)

    Matejkova, E.

    1987-01-01

    Immunohistochemical investigations of xenotransplanted human adenocarcinomas on nude mice; correlation to radioimaging Human carcinomas were subcutanously grafted to nude mice (Balb/c-nu/nu) and were investigated in four passages by immunohistochemical methods and by the fluorochrome bisbenzimid. In this way there could be observed a successful differentiation between the nourishing murine stroma and the human tumor parenchym. Especially the use of a monoclonal antibody (rat/mouse fusion) directed against human tissue turned out to be a suitable method. Four adenocarcinomas were tested: Colon-, mamma-, stomach- and testicle carcinoma. During the first four passages atypical parts of murine connective tissue and some changes in the human parenchyma could be seen. These results demonstrate that also in nude mice variations of the transplanted tumor material could happen. They could be detected in time with a routine immunohistochemical test. The consequences of tumor morphological variations for the development of therapeutic and diagnostic tools were studied with the help of radioimaging by external scintigraphy. Furthermore the biodistribution, tumoruptake and the whole body counting were studied by means of radionuclid marked monoclonal antibodies. The morphological variations of the passages of mammary, testicle and colon carcinomas were not big enough to influence the results in a certain way. Therefore especially the relation between the activity uptake in the tissue, the size of the tumor and the whole body uptake was studied in view of immunoscintigraphy. (orig./MG) [de

  12. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C. David; Bajt, Mary Lynn [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Sharpe, Matthew R. [Department of Internal Medicine, University of Kansas Hospital, Kansas City, KS (United States); McGill, Mitchell R. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Farhood, Anwar [Department of Pathology, St. David' s North Austin Medical Center, Austin, TX 78756 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2014-03-01

    Following acetaminophen (APAP) overdose there is an inflammatory response triggered by the release of cellular contents from necrotic hepatocytes into the systemic circulation which initiates the recruitment of neutrophils into the liver. It has been demonstrated that neutrophils do not contribute to APAP-induced liver injury, but their role and the role of NADPH oxidase in injury resolution are controversial. C57BL/6 mice were subjected to APAP overdose and neutrophil activation status was determined during liver injury and liver regeneration. Additionally, human APAP overdose patients (ALT: > 800 U/L) had serial blood draws during the injury and recovery phases for the determination of neutrophil activation. Neutrophils in the peripheral blood of mice showed an increasing activation status (CD11b expression and ROS priming) during and after the peak of injury but returned to baseline levels prior to complete injury resolution. Hepatic sequestered neutrophils showed an increased and sustained CD11b expression, but no ROS priming was observed. Confirming that NADPH oxidase is not critical to injury resolution, gp91{sup phox}−/− mice following APAP overdose displayed no alteration in injury resolution. Peripheral blood from APAP overdose patients also showed increased neutrophil activation status after the peak of liver injury and remained elevated until discharge from the hospital. In mice and humans, markers of activation, like ROS priming, were increased and sustained well after active liver injury had subsided. The similar findings between surviving patients and mice indicate that neutrophil activation may be a critical event for host defense or injury resolution following APAP overdose, but not a contributing factor to APAP-induced injury. - Highlights: • Neutrophil (PMN) function increases during liver repair after acetaminophen overdose. • Liver repair after acetaminophen (APAP)-overdose is not dependent on NADPH oxidase. • Human PMNs do not appear

  13. Overexpression of human SOD1 improves survival of mice susceptible to endotoxic shock

    Directory of Open Access Journals (Sweden)

    Charchaflieh J

    2012-07-01

    Full Text Available Jean Charchaflieh,1,2 Georges I Labaze,1 Pulsar Li,1 Holly Van Remmen,3 Haekyung Lee,1 Helen Stutz,1 Arlan Richardson,3 Asher Emanuel,1 Ming Zhang1,41Department of Anesthesiology, State University of New York (SUNY Downstate Medical Center, New York, NY, USA; 2Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA; 3Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; 4Department of Cell Biology, State University of New York (SUNY Downstate Medical Center, New York, NY, USABackground: Protective effects of the antioxidant enzyme Cu-Zn superoxide dismutase (SOD1 against endotoxic shock have not been demonstrated in animal models. We used a murine model to investigate whether overexpression of SOD1 protects against endotoxic shock, and whether the genetic background of SOD1 affects its effective protective effects and susceptibility to endotoxic shock.Methods: Transgenic (tg mice overexpressing human SOD1 and control mice were divided into four groups based on their genetic background: (1 tg mice with mixed genetic background (tg-JAX; (2 wild-type (WT littermates of tg-JAX strain (WT-JAX; (3 tg mice with C57BL/6J background (tg-TX; (4 WT littermates of tg-TX strain (WT-TX. Activity of SOD1 in the intestine, heart, and liver of tg and control mice was confirmed using a polyacrylamide activity gel. Endotoxic shock was induced by intraperitoneal injection of lipopolysaccharide. Survival rates over 120 hours (mean, 95% confidence interval were analyzed using Kaplan–Meier survival curves.Results: Human SOD1 enzymatic activities were significantly higher in the intestine, heart, and liver of both tg strains (tg-JAX and tg-TX compared with their WT littermates (WT-JAX and WT-TX, respectively. Interestingly, the endogenous SOD1 activities in tg-JAX mice were decreased compared with their WT littermates (WT-JAX, but such aberrant changes were not

  14. HIV restriction by APOBEC3 in humanized mice.

    Directory of Open Access Journals (Sweden)

    John F Krisko

    2013-03-01

    Full Text Available Innate immune restriction factors represent important specialized barriers to zoonotic transmission of viruses. Significant consideration has been given to their possible use for therapeutic benefit. The apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3 family of cytidine deaminases are potent immune defense molecules capable of efficiently restricting endogenous retroelements as well as a broad range of viruses including Human Immunodeficiency virus (HIV, Hepatitis B virus (HBV, Human Papilloma virus (HPV, and Human T Cell Leukemia virus (HTLV. The best characterized members of this family are APOBEC3G (A3G and APOBEC3F (A3F and their restriction of HIV. HIV has evolved to counteract these powerful restriction factors by encoding an accessory gene designated viral infectivity factor (vif. Here we demonstrate that APOBEC3 efficiently restricts CCR5-tropic HIV in the absence of Vif. However, our results also show that CXCR4-tropic HIV can escape from APOBEC3 restriction and replicate in vivo independent of Vif. Molecular analysis identified thymocytes as cells with reduced A3G and A3F expression. Direct injection of vif-defective HIV into the thymus resulted in viral replication and dissemination detected by plasma viral load analysis; however, vif-defective viruses remained sensitive to APOBEC3 restriction as extensive G to A mutation was observed in proviral DNA recovered from other organs. Remarkably, HIV replication persisted despite the inability of HIV to develop resistance to APOBEC3 in the absence of Vif. Our results provide novel insight into a highly specific subset of cells that potentially circumvent the action of APOBEC3; however our results also demonstrate the massive inactivation of CCR5-tropic HIV in the absence of Vif.

  15. A potent adjuvant effect of a CD1d-binding NKT cell ligand in human immune system mice.

    Science.gov (United States)

    Li, Xiangming; Huang, Jing; Kaneko, Izumi; Zhang, Min; Iwanaga, Shiroh; Yuda, Masao; Tsuji, Moriya

    2017-01-01

    A CD1d-binding invariant natural killer T (iNKT)-cell stimulatory glycolipid, namely 7DW8-5, is shown to enhance the efficacy of radiation-attenuated sporozoites (RAS)-based malaria vaccine in mice. In the current study, we aim to determine whether 7DW8-5 can display a potent adjuvant effect in human immune system (HIS) mice. HIS-A2/hCD1d mice, which possess both functional human iNKT cells and CD8+ T cells, were generated by the transduction of NSG mice with adeno-associated virus serotype 9 expressing genes that encode human CD1d molecules and HLA-A*0201, followed by the engraftment of human hematopoietic stem cells. The magnitudes of human iNKT-cell response against 7DW8-5 and HLA-A*0201-restricted human CD8+ T-cell response against a human malaria antigen in HIS-A2/hCD1d mice were determined by using human CD1d tetramer and human HLA-A*0201 tetramer, respectively. We found that 7DW8-5 stimulates human iNKT cells in HIS-A2/hCD1d mice, as well as those derived from HIS-A2/hCD1d mice in vitro. We also found that 7DW8-5 significantly increases the level of a human malarial antigen-specific HLA-A*0201-restricted human CD8+ T-cell response in HIS-A2/hCD1d mice. Our study indicates that 7DW8-5 can display a potent adjuvant effect on RAS vaccine-induced anti-malarial immunity by augmenting malaria-specific human CD8+ T-cell response.

  16. PKCδ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans

    DEFF Research Database (Denmark)

    Bezy, Olivier; Tran, Thien T; Pihlajamäki, Jussi

    2011-01-01

    C57BL/6J and 129S6/Sv (B6 and 129) mice differ dramatically in their susceptibility to developing diabetes in response to diet- or genetically induced insulin resistance. A major locus contributing to this difference has been mapped to a region on mouse chromosome 14 that contains the gene encoding...... tolerance, and reduced hepatosteatosis with aging. Conversely, mice with liver-specific overexpression of PKCδ developed hepatic insulin resistance characterized by decreased insulin signaling, enhanced lipogenic gene expression, and hepatosteatosis. Therefore, changes in the expression and regulation...... of PKCδ between strains of mice and in obese humans play an important role in the genetic risk of hepatic insulin resistance, glucose intolerance, and hepatosteatosis; and thus PKCδ may be a potential target in the treatment of metabolic syndrome....

  17. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice.

    Science.gov (United States)

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia

    2016-12-02

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Lycorine reduces mortality of human enterovirus 71-infected mice by inhibiting virus replication

    Directory of Open Access Journals (Sweden)

    Qin Chuan

    2011-10-01

    Full Text Available Abstract Human enterovirus 71 (EV71 infection causes hand, foot and mouth disease in children under 6 years old and this infection occasionally induces severe neurological complications. No vaccines or drugs are clinical available to control EV71 epidemics. In present study, we show that treatment with lycorine reduced the viral cytopathic effect (CPE on rhabdomyosarcoma (RD cells by inhibiting virus replication. Analysis of this inhibitory effect of lycorine on viral proteins synthesis suggests that lycorine blocks the elongation of the viral polyprotein during translation. Lycorine treatment of mice challenged with a lethal dose of EV71 resulted in reduction of mortality, clinical scores and pathological changes in the muscles of mice, which were achieved through inhibition of viral replication. When mice were infected with a moderate dose of EV71, lycorine treatment was able to protect them from paralysis. Lycorine may be a potential drug candidate for the clinical treatment of EV71-infected patients.

  19. HSC extrinsic sex-related and intrinsic autoimmune disease-related human B-cell variation is recapitulated in humanized mice.

    Science.gov (United States)

    Borsotti, Chiara; Danzl, Nichole M; Nauman, Grace; Hölzl, Markus A; French, Clare; Chavez, Estefania; Khosravi-Maharlooei, Mohsen; Glauzy, Salome; Delmotte, Fabien R; Meffre, Eric; Savage, David G; Campbell, Sean R; Goland, Robin; Greenberg, Ellen; Bi, Jing; Satwani, Prakash; Yang, Suxiao; Bathon, Joan; Winchester, Robert; Sykes, Megan

    2017-10-24

    B cells play a major role in antigen presentation and antibody production in the development of autoimmune diseases, and some of these diseases disproportionally occur in females. Moreover, immune responses tend to be stronger in female vs male humans and mice. Because it is challenging to distinguish intrinsic from extrinsic influences on human immune responses, we used a personalized immune (PI) humanized mouse model, in which immune systems were generated de novo from adult human hematopoietic stem cells (HSCs) in immunodeficient mice. We assessed the effect of recipient sex and of donor autoimmune diseases (type 1 diabetes [T1D] and rheumatoid arthritis [RA]) on human B-cell development in PI mice. We observed that human B-cell levels were increased in female recipients regardless of the source of human HSCs or the strain of immunodeficient recipient mice. Moreover, mice injected with T1D- or RA-derived HSCs displayed B-cell abnormalities compared with healthy control HSC-derived mice, including altered B-cell levels, increased proportions of mature B cells and reduced CD19 expression. Our study revealed an HSC-extrinsic effect of recipient sex on human B-cell reconstitution. Moreover, the PI humanized mouse model revealed HSC-intrinsic defects in central B-cell tolerance that recapitulated those in patients with autoimmune diseases. These results demonstrate the utility of humanized mouse models as a tool to better understand human immune cell development and regulation.

  20. IL-2 receptor γ-chain molecule is critical for intestinal T-cell reconstitution in humanized mice.

    Science.gov (United States)

    Denton, P W; Nochi, T; Lim, A; Krisko, J F; Martinez-Torres, F; Choudhary, S K; Wahl, A; Olesen, R; Zou, W; Di Santo, J P; Margolis, D M; Garcia, J V

    2012-09-01

    Intestinal immune cells are important in host defense, yet the determinants for human lymphoid homeostasis in the intestines are poorly understood. In contrast, lymphoid homeostasis has been studied extensively in mice, where the requirement for a functional common γ-chain molecule has been established. We hypothesized that humanized mice could offer insights into human intestinal lymphoid homeostasis if generated in a strain with an intact mouse common γ-chain molecule. To address this hypothesis, we used three mouse strains (non-obese diabetic (NOD)/severe-combined immunodeficient (SCID) (N/S); NOD/SCID γ-chain(-/-) (NSG); and Rag2(-/-) γ-chain(-/-) (DKO)) and two humanization techniques (bone marrow liver thymus (BLT) and human CD34(+) cell bone marrow transplant of newborn mice (hu)) to generate four common types of humanized mice: N/S-BLT, NSG-BLT, NSG-hu, and DKO-hu mice. The highest levels of intestinal human T cells throughout the small and large intestines were observed in N/S-BLT mice, which have an intact common γ-chain molecule. Furthermore, the small intestine lamina propria T-cell populations of N/S-BLT mice exhibit a human intestine-specific surface phenotype. Thus, the extensive intestinal immune reconstitution of N/S-BLT mice was both quantitatively and qualitatively better when compared with the other models tested such that N/S-BLT mice are well suited for the analysis of human intestinal lymphocyte trafficking and human-specific diseases affecting the intestines.

  1. Enhanced motivation to alcohol in transgenic mice expressing human α-synuclein.

    Science.gov (United States)

    Rotermund, Carola; Reolon, Gustavo K; Leixner, Sarah; Boden, Cindy; Bilbao, Ainhoa; Kahle, Philipp J

    2017-11-01

    α-Synuclein (αSYN) is the neuropathological hallmark protein of Parkinson's disease (PD) and related neurodegenerative disorders. Moreover, the gene encoding αSYN (SNCA) is a major genetic contributor to PD. Interestingly, independent genome-wide association studies also identified SNCA as the most important candidate gene for alcoholism. Furthermore, single-nucleotide-polymorphisms have been associated with alcohol-craving behavior and alcohol-craving patients showed augmented αSYN expression in blood. To investigate the effect of αSYN on the addictive properties of chronic alcohol use, we examined consumption, motivation, and seeking responses induced by environmental stimuli and relapse behavior in transgenic mice expressing the human mutant [A30P]αSYN throughout the brain. The primary reinforcing effects of alcohol under operant self-administration conditions were increased, while consumption and the alcohol deprivation effect were not altered in the transgenic mice. The same mice were subjected to immunohistochemical measurements of immediate-early gene inductions in brain regions involved in addiction-related behaviors. Acute ethanol injection enhanced immunostaining for the phosphorylated form of cAMP response element binding protein in both amygdala and nucleus accumbens of αSYN transgenic mice, while in wild-type mice no effect was visible. However, at the same time, levels of cFos remain unchanged in both genotypes. These results provide experimental confirmation of SNCA as a candidate gene for alcoholism in addition to its known link to PD. © 2017 International Society for Neurochemistry.

  2. Therapeutic Efficacy of Vectored PGT121 Gene Delivery in HIV-1-Infected Humanized Mice.

    Science.gov (United States)

    Badamchi-Zadeh, Alexander; Tartaglia, Lawrence J; Abbink, Peter; Bricault, Christine A; Liu, Po-Ting; Boyd, Michael; Kirilova, Marinela; Mercado, Noe B; Nanayakkara, Ovini S; Vrbanac, Vladimir D; Tager, Andrew M; Larocca, Rafael A; Seaman, Michael S; Barouch, Dan H

    2018-04-01

    Broadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies. However, administration of purified bNAbs poses challenges in resource-poor settings, where the HIV-1 disease burden is greatest. In vivo vector-based production of bNAbs represents an alternative strategy. We investigated adenovirus serotype 5 (Ad5) and adeno-associated virus serotype 1 (AAV1) vectors to deliver the HIV-1-specific bNAb PGT121 in wild-type and immunocompromised C57BL/6 mice as well as in HIV-1-infected bone marrow-liver-thymus (BLT) humanized mice. Ad5.PGT121 and AAV1.PGT121 produced functional antibody in vivo Ad5.PGT121 produced PGT121 rapidly within 6 h, whereas AAV1.PGT121 produced detectable PGT121 in serum by 72 h. Serum PGT121 levels were rapidly reduced by the generation of anti-PGT121 antibodies in immunocompetent mice but were durably maintained in immunocompromised mice. In HIV-1-infected BLT humanized mice, Ad5.PGT121 resulted in a greater reduction of viral loads than did AAV1.PGT121. Ad5.PGT121 also led to more-sustained virologic control than purified PGT121 IgG. Ad5.PGT121 afforded more rapid, robust, and durable antiviral efficacy than AAV1.PGT121 and purified PGT121 IgG in HIV-1-infected humanized mice. Further evaluation of vector delivery of HIV-1 bNAbs is warranted, although approaches to prevent the generation of antiantibody responses may also be required. IMPORTANCE Broadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies, but delivery of purified antibodies may prove challenging. We investigated adenovirus serotype 5 (Ad5) and adeno-associated virus serotype 1 (AAV1) vectors to deliver the HIV-1-specific bNAb PGT121. Ad5.PGT121 afforded more rapid, robust, and durable antiviral efficacy than AAV1.PGT121 and purified PGT121 IgG in HIV-1-infected humanized mice. Copyright © 2018 Badamchi-Zadeh et al.

  3. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system.

    Directory of Open Access Journals (Sweden)

    Mark A Little

    Full Text Available Evidence is lacking for direct pathogenicity of human anti-proteinase-3 (PR3 antibodies in development of systemic vasculitis and granulomatosis with polyangiitis (GPA, Wegener's granulomatosis. Progress in study of these antibodies in rodents has been hampered by lack of PR3 expression on murine neutrophils, and by different Fc-receptor affinities for IgG across species. Therefore, we tested whether human anti-PR3 antibodies can induce acute vasculitis in mice with a human immune system. Chimeric mice were generated by injecting human haematopoietic stem cells into irradiated NOD-scid-IL2Rγ⁻/⁻ mice. Matched chimera mice were treated with human IgG from patients with: anti-PR3 positive renal and lung vasculitis; patients with non-vasculitic renal disease; or healthy controls. Six-days later, 39% of anti-PR3 treated mice had haematuria, compared with none of controls. There was punctate bleeding on the surface of lungs of anti-PR3 treated animals, with histological evidence of vasculitis and haemorrhage. Anti-PR3 treated mice had mild pauci-immune proliferative glomerulonephritis, with infiltration of human and mouse leukocytes. In 3 mice (17% more severe glomerular injury was present. There were no glomerular changes in controls. Human IgG from patients with anti-PR3 autoantibodies is therefore pathogenic. This model of anti-PR3 antibody-mediated vasculitis may be useful in dissecting mechanisms of microvascular injury.

  4. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system.

    LENUS (Irish Health Repository)

    Little, Mark A

    2012-01-01

    Evidence is lacking for direct pathogenicity of human anti-proteinase-3 (PR3) antibodies in development of systemic vasculitis and granulomatosis with polyangiitis (GPA, Wegener\\'s granulomatosis). Progress in study of these antibodies in rodents has been hampered by lack of PR3 expression on murine neutrophils, and by different Fc-receptor affinities for IgG across species. Therefore, we tested whether human anti-PR3 antibodies can induce acute vasculitis in mice with a human immune system. Chimeric mice were generated by injecting human haematopoietic stem cells into irradiated NOD-scid-IL2Rγ⁻\\/⁻ mice. Matched chimera mice were treated with human IgG from patients with: anti-PR3 positive renal and lung vasculitis; patients with non-vasculitic renal disease; or healthy controls. Six-days later, 39% of anti-PR3 treated mice had haematuria, compared with none of controls. There was punctate bleeding on the surface of lungs of anti-PR3 treated animals, with histological evidence of vasculitis and haemorrhage. Anti-PR3 treated mice had mild pauci-immune proliferative glomerulonephritis, with infiltration of human and mouse leukocytes. In 3 mice (17%) more severe glomerular injury was present. There were no glomerular changes in controls. Human IgG from patients with anti-PR3 autoantibodies is therefore pathogenic. This model of anti-PR3 antibody-mediated vasculitis may be useful in dissecting mechanisms of microvascular injury.

  5. Gene expression-based classifiers identify Staphylococcus aureus infection in mice and humans.

    Directory of Open Access Journals (Sweden)

    Sun Hee Ahn

    Full Text Available Staphylococcus aureus causes a spectrum of human infection. Diagnostic delays and uncertainty lead to treatment delays and inappropriate antibiotic use. A growing literature suggests the host's inflammatory response to the pathogen represents a potential tool to improve upon current diagnostics. The hypothesis of this study is that the host responds differently to S. aureus than to E. coli infection in a quantifiable way, providing a new diagnostic avenue. This study uses Bayesian sparse factor modeling and penalized binary regression to define peripheral blood gene-expression classifiers of murine and human S. aureus infection. The murine-derived classifier distinguished S. aureus infection from healthy controls and Escherichia coli-infected mice across a range of conditions (mouse and bacterial strain, time post infection and was validated in outbred mice (AUC>0.97. A S. aureus classifier derived from a cohort of 94 human subjects distinguished S. aureus blood stream infection (BSI from healthy subjects (AUC 0.99 and E. coli BSI (AUC 0.84. Murine and human responses to S. aureus infection share common biological pathways, allowing the murine model to classify S. aureus BSI in humans (AUC 0.84. Both murine and human S. aureus classifiers were validated in an independent human cohort (AUC 0.95 and 0.92, respectively. The approach described here lends insight into the conserved and disparate pathways utilized by mice and humans in response to these infections. Furthermore, this study advances our understanding of S. aureus infection; the host response to it; and identifies new diagnostic and therapeutic avenues.

  6. Radioimmunoimaging of nude mice bearing human lung adenocarcinoma xenografts after injecting 131I-McAbs

    International Nuclear Information System (INIS)

    Liu Liang

    1992-01-01

    Monoclonal antibodies (Lc86a-C5, Lc86a-H8) directed against human lung adenocarcinoma cell line LTEP-a-2 and normal BALB/c IgG were labelled with iodine-131 by chloramine T. The 131 I-McAbs and 131 I-IgG were respectively injected into the peritoneal cavities of nude mice bearing transplanted human lung adenocarcinoma cell line LTEP-a-2. After 72 h, the tumor tissue in nude mice injected with 131 I-McAbs was distinguishable from normal tissues as a very clear image obtained during gamma scintigraphy. No difference was found between tumor and normal tissues in the nude mice injected with 131 I-IgG. The tumor: blood ration was 3.1:1 in nude injected with 131 I McAb(H8) and 0.9:1 in nude mice injected with 131 I-IgG respectively. This indicates that the tumor tissue image was the result of specific binding of the 131 I-McAbs, which have high specificity and affinity both in vitro and in vivo, to tumor cells, and these monoclonal antibodies may serve as potential agents in tumor diagnosis and treatment

  7. Correlation of cytotoxicity with elimination of iodine-125 from nude mice inoculated with prelabeled human melanoma cells

    International Nuclear Information System (INIS)

    Lockshin, A.; Giovanella, B.C.; Quian, C.; Mendoza, J.T.; Vardeman, D.M.; Stehlin, J.S. Jr.

    1984-01-01

    BRO human melanoma cells were prelabeled in vitro with [125I]5-iodo-2'-deoxyuridine ([125I]IdUrd) and inoculated into NIH-II nude mice ip, im, sc, or iv. Saline or diphtheria toxin (DT), which is selectively toxic to human cells compared to those of mice, was injected, and the loss of 125I from the animals was monitored daily with a whole-body gamma scintillation detector. For most of the inoculation sites DT accelerated the rate of 125I excretion and in all cases was cytotoxic for the inoculated cells as determined by host survival or measurement of visible tumor growth. Differences between the rates of 125I loss for DT-treated mice compared to untreated mice were most evident for cells inoculated ip or im. These results indicate that [125I]IdUrd prelabeling of human tumor cells inoculated in nude mice offers a rapid method for determination of cytotoxicity in vivo

  8. Scheduled transplantation of human umbilical cord blood to severe combined immunodeficient mice

    International Nuclear Information System (INIS)

    Wu Jianqiu; Yang Yunfang; Jin Zhijun; Cai Jianming; Yang Rujun; Xiang Yingsong

    2000-01-01

    Objective: To explore a new method for developing the efficiency of human umbilical cord blood (UCB) cells engraftment, and further understand the growth characteristic of hematopoietic stem cells (HSC) in vivo. Methods: Sublethally irradiated severe combined immunodeficient (SCID) mice were transplanted i.v. with UCB cells which had been cryo-preserved at -80 degree C. The human cells in recipient mice were detected by flow cytometry and CFU-GM assay. Results: In contrast to the single transplantation, scheduled engraftment of similar numbers of UCB cells resulted in a proportionally obvious increase in the percentages of CD45 + , CD34 + cells produced in SCID mouse bone marrow (BM). When the donor cells were reduced to 20 percent, an identical reconstitution of both hematopoietic and part of immunologic functions was achieved. Conclusion: Scheduled engraftment improves the repopulating ability of HSC, which would provide a novel way for clinical cord blood engraftment in adult objects

  9. Dying and regeneration of human tumor cells after heterotransplantation to athymic mice

    OpenAIRE

    Köpf-Maler, P.

    1986-01-01

    The histologic phenomena occurring immediately after heterotransplantation of two human colon adenocarcinomas to athymic mice have been studied. The tumors differed with respect to velocity of growth and passage age. Three phases were discernible in both cases. (1) During the first phase, most inoculated tumor cells died. (2) The second phase was characterized by removal of the necrotic tumor cells by immigrated inflammatory cells and by penetration of the conn...

  10. A pyrogen derived from human white cells which is active in mice.

    Science.gov (United States)

    Gordon, A. H.; Parker, I. D.

    1980-01-01

    An endogenous pyrogen smaller in molecular size than that previously obtained from human white cells has been found in supernatants of these cells after uptake of zymosan and incubation for 18 h. The new pyrogen after separation from other pyrogens which are produced at the same time has been found to produce fever in mice but not in rabbits. Because it is not formed if cycloheximide is present and is inactivated by leucine aminopeptidase, it is believed to be a peptide. PMID:7448120

  11. A pyrogen derived from human white cells which is active in mice.

    OpenAIRE

    Gordon, A. H.; Parker, I. D.

    1980-01-01

    An endogenous pyrogen smaller in molecular size than that previously obtained from human white cells has been found in supernatants of these cells after uptake of zymosan and incubation for 18 h. The new pyrogen after separation from other pyrogens which are produced at the same time has been found to produce fever in mice but not in rabbits. Because it is not formed if cycloheximide is present and is inactivated by leucine aminopeptidase, it is believed to be a peptide.

  12. Human umbilical cord mesenchymal stem cells ameliorate mice trinitrobenzene sulfonic acid (TNBS)-induced colitis.

    Science.gov (United States)

    Liang, Lu; Dong, Chunlan; Chen, Xiaojun; Fang, Zhihong; Xu, Jie; Liu, Meng; Zhang, Xiaoguang; Gu, Dong Sheng; Wang, Ding; Du, Weiting; Zhu, Delin; Han, Zhong Chao

    2011-01-01

    Mesenchymal stem cells (MSCs), which are poorly immunogenic and have potent immunosuppressive activities, have emerged as a promising candidate for cellular therapeutics for the treatment of disorders caused by abnormal immune responses. In this study we investigated whether human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) could ameliorate colitis in a trinitrobenzene sulfonic acid (TNBS)-induced colitis model. TNBS-treated colitic mice were infused with hUC-MSCs or vehicle control. The mice were sacrificed on day 1, 3, and 5 after infusion, and their clinical and pathological conditions were evaluated by body weight, colon length, and histological analysis. The expression levels of proinflammatory cytokine proteins in colon were examined by ELISA. The homing of hUC-MSCs was studied by live in vivo imaging and immunofluorescent microscopy. hUC-MSCs were found to migrate to the inflamed colon and effectively treated the colitic mice with improved clinical and pathological signs. The levels of IL-17 and IL-23 as well as IFN-γ and IL-6 were significantly lower in the colon tissues of the hUC-MSC-treated mice in comparison with the vehicle-treated mice. Coculture experiments showed that hUC-MSCs not only could inhibit IFN-γ expression but also significantly inhibit IL-17 production by lamina propria mononuclear cells (LPMCs) or splenocytes of the colitic mice or by those isolated from normal animals and stimulated with IL-23. Systemically infused hUC-MSCs could home to the inflamed colon and effectively ameliorate colitis. In addition to the known suppressive effects on Th1-type immune responses, hUC-MSC-mediated modulation of IL-23/IL-17 regulated inflammatory reactions also plays an important role in the amelioration of colitis.

  13. A repeated injection of polyethyleneglycol-conjugated recombinant human butyrylcholinesterase elicits immune response in mice

    International Nuclear Information System (INIS)

    Chilukuri, Nageswararao; Sun Wei; Parikh, Kalpana; Naik, Ramachandra S.; Tang Lin; Doctor, Bhupendra P.; Saxena, Ashima

    2008-01-01

    Human serum butyrylcholinesterase (Hu BChE) serves as an efficacious bioscavenger of highly toxic organophosphorus (OP) compounds. Since there is a concern that the supply of native Hu BChE may be limited, monomeric and tetrameric forms of recombinant Hu BChE (rHu BChE) were evaluated as replacements and found that they lacked sufficient stability in vivo. However, their in vivo stability could be significantly prolonged by conjugation with polyethyleneglycol-20K (PEG) suggesting that monomeric and tetrameric PEG-rHu BChE could function as bioscavengers. Here, the immunogenicity of PEG-rHu BChE was evaluated in mice following two injections given four weeks apart. In addition to pharmacokinetic parameters, such as mean residence time, maximal concentration, time to reach the maximal concentration, elimination half-life and area under the plasma concentration-time curve extrapolated to infinity, the presence of circulating anti-rHu BChE antibodies was also determined. Although the pharmacokinetic parameters were significantly improved for the first injection of monomeric and tetrameric PEG-rHu BChEs, they were much lower for the second injection. Anti-rHu BChE antibodies were detected in the blood of mice following the first and second enzyme injections and their levels were approximately higher by 5-fold and 2-fold in mice injected with monomeric and tetrameric PEG-rHu BChEs as compared to mice injected with unconjugated enzymes. The findings that the rapid clearance of a repeat injection of PEG-rHu BChEs in mice which coincides with the presence of circulating anti-rHu BChE antibodies suggest that PEG conjugation prolonged the circulatory stability of rHu BChE but failed to eliminate its immunogenicity in mice

  14. Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice.

    Directory of Open Access Journals (Sweden)

    Markus M Heimesaat

    Full Text Available BACKGROUND: Postmortem microbiological examinations are performed in forensic and medical pathology for defining uncertain causes of deaths and for screening of deceased tissue donors. Interpretation of bacteriological data, however, is hampered by false-positive results due to agonal spread of microorganisms, postmortem bacterial translocation, and environmental contamination. METHODOLOGY/PRINCIPAL FINDINGS: We performed a kinetic survey of naturally occurring postmortem gut flora changes in the small and large intestines of conventional and gnotobiotic mice associated with a human microbiota (hfa applying cultural and molecular methods. Sacrificed mice were kept under ambient conditions for up to 72 hours postmortem. Intestinal microbiota changes were most pronounced in the ileal lumen where enterobacteria and enterococci increased by 3-5 orders of magnitude in conventional and hfa mice. Interestingly, comparable intestinal overgrowth was shown in acute and chronic intestinal inflammation in mice and men. In hfa mice, ileal overgrowth with enterococci and enterobacteria started 3 and 24 hours postmortem, respectively. Strikingly, intestinal bacteria translocated to extra-intestinal compartments such as mesenteric lymphnodes, spleen, liver, kidney, and cardiac blood as early as 5 min after death. Furthermore, intestinal tissue destruction was characterized by increased numbers of apoptotic cells and neutrophils within 3 hours postmortem, whereas counts of proliferative cells as well as T- and B-lymphocytes and regulatory T-cells decreased between 3 and 12 hours postmortem. CONCLUSIONS/SIGNIFICANCE: We conclude that kinetics of ileal overgrowth with enterobacteria and enterococci in hfa mice can be used as an indicator for compromized intestinal functionality and for more precisely defining the time point of death under defined ambient conditions. The rapid translocation of intestinal bacteria starting within a few minutes after death will help

  15. Antibody repertoires in humanized NOD-scid-IL2Rγ(null mice and human B cells reveals human-like diversification and tolerance checkpoints in the mouse.

    Directory of Open Access Journals (Sweden)

    Gregory C Ippolito

    Full Text Available Immunodeficient mice reconstituted with human hematopoietic stem cells enable the in vivo study of human hematopoiesis. In particular, NOD-scid-IL2Rγ(null engrafted mice have been shown to have reasonable levels of T and B cell repopulation and can mount T-cell dependent responses; however, antigen-specific B-cell responses in this model are generally poor. We explored whether developmental defects in the immunoglobulin gene repertoire might be partly responsible for the low level of antibody responses in this model. Roche 454 sequencing was used to obtain over 685,000 reads from cDNA encoding immunoglobulin heavy (IGH and light (IGK and IGL genes isolated from immature, naïve, or total splenic B cells in engrafted NOD-scid-IL2Rγ(null mice, and compared with over 940,000 reads from peripheral B cells of two healthy volunteers. We find that while naïve B-cell repertoires in humanized mice are chiefly indistinguishable from those in human blood B cells, and display highly correlated patterns of immunoglobulin gene segment use, the complementarity-determining region H3 (CDR-H3 repertoires are nevertheless extremely diverse and are specific for each individual. Despite this diversity, preferential D(H-J(H pairings repeatedly occur within the CDR-H3 interval that are strikingly similar across all repertoires examined, implying a genetic constraint imposed on repertoire generation. Moreover, CDR-H3 length, charged amino-acid content, and hydropathy are indistinguishable between humans and humanized mice, with no evidence of global autoimmune signatures. Importantly, however, a statistically greater usage of the inherently autoreactive IGHV4-34 and IGKV4-1 genes was observed in the newly formed immature B cells relative to naïve B or total splenic B cells in the humanized mice, a finding consistent with the deletion of autoreactive B cells in humans. Overall, our results provide evidence that key features of the primary repertoire are shaped by

  16. Chimeric DNA Vaccines against ErbB2{sup +} Carcinomas: From Mice to Humans

    Energy Technology Data Exchange (ETDEWEB)

    Quaglino, Elena; Riccardo, Federica; Macagno, Marco; Bandini, Silvio; Cojoca, Rodica; Ercole, Elisabetta [Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin (Italy); Amici, Augusto [Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino (Italy); Cavallo, Federica, E-mail: federica.cavallo@unito.it [2 Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino (Italy)

    2011-08-10

    DNA vaccination exploits a relatively simple and flexible technique to generate an immune response against microbial and tumor-associated antigens (TAAs). Its effectiveness is enhanced by the application of an electrical shock in the area of plasmid injection (electroporation). In our studies we exploited a sophisticated electroporation device approved for clinical use (Cliniporator, IGEA, Carpi, Italy). As the target antigen is an additional factor that dramatically modulates the efficacy of a vaccine, we selected ErbB2 receptor as a target since it is an ideal oncoantigen. It is overexpressed on the cell membrane by several carcinomas for which it plays an essential role in driving their progression. Most oncoantigens are self-tolerated molecules. To circumvent immune tolerance we generated two plasmids (RHuT and HuRT) coding for chimeric rat/human ErbB2 proteins. Their immunogenicity was compared in wild type mice naturally tolerant for mouse ErbB2, and in transgenic mice that are also tolerant for rat or human ErbB2. In several of these mice, RHuT and HuRT elicited a stronger anti-tumor response than plasmids coding for fully human or fully rat ErbB2. The ability of heterologous moiety to blunt immune tolerance could be exploited to elicit a significant immune response in patients. A clinical trial to delay the recurrence of ErbB2{sup +} carcinomas of the oral cavity, oropharynx and hypopharynx is awaiting the approval of the Italian authorities.

  17. Transgenic mice expressing human glucocerebrosidase variants: utility for the study of Gaucher disease.

    Science.gov (United States)

    Sanders, Angela; Hemmelgarn, Harmony; Melrose, Heather L; Hein, Leanne; Fuller, Maria; Clarke, Lorne A

    2013-08-01

    Gaucher disease is an autosomal recessively inherited storage disorder caused by deficiency of the lysosomal hydrolase, acid β-glucosidase. The disease manifestations seen in Gaucher patients are highly heterogeneous as is the responsiveness to therapy. The elucidation of the precise factors responsible for this heterogeneity has been challenging as the development of clinically relevant animal models of Gaucher disease has been problematic. Although numerous murine models for Gaucher disease have been described each has limitations in their specific utility. We describe here, transgenic murine models of Gaucher disease that will be particularly useful for the study of pharmacological chaperones. We have produced stable transgenic mouse strains that individually express wild type, N370S and L444P containing human acid β-glucosidase and show that each of these transgenic lines rescues the lethal phenotype characteristic of acid β-glucosidase null mice. Both the N370S and L444P transgenic models show early and progressive elevations of tissue sphingolipids with L444P mice developing progressive splenic Gaucher cell infiltration. We demonstrate the potential utility of these new transgenic models for the study of Gaucher disease pathogenesis. In addition, since these mice produce only human enzyme, they are particularly relevant for the study of pharmacological chaperones that are specifically targeted to human acid β-glucosidase and the common mutations underlying Gaucher disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Apolipoprotein A5: A newly identified gene impacting plasmatriglyceride levels in humans and mice

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Rubin, Edward M.

    2002-09-15

    Apolipoprotein A5 (APOA5) is a newly described member of theapolipoprotein gene family whose initial discovery arose from comparativesequence analysis of the mammalian APOA1/C3/A4 gene cluster. Functionalstudies in mice indicated that alteration in the level of APOA5significantly impacted plasma triglyceride concentrations. Miceover-expressing human APOA5 displayed significantly reducedtriglycerides, while mice lacking apoA5 had a large increase in thislipid parameter. Studies in humans have also suggested an important rolefor APOA5 in determining plasma triglyceride concentrations. In theseexperiments, polymorphisms in the human gene were found to define severalcommon haplotypes that were associated with significant changes intriglyceride concentrations in multiple populations. Several separateclinical studies have provided consistent and strong support for theeffect with 24 percent of Caucasians, 35 percent of African-Americans and53 percent of Hispanics carrying APOA5 haplotypes associated withincreased plasma triglyceride levels. In summary, APOA5 represents anewly discovered gene involved in triglyceride metabolism in both humansand mice whose mechanism of action remains to be deciphered.

  19. Gluten exacerbates IgA nephropathy in humanized mice through gliadin-CD89 interaction.

    Science.gov (United States)

    Papista, Christina; Lechner, Sebastian; Ben Mkaddem, Sanae; LeStang, Marie-Bénédicte; Abbad, Lilia; Bex-Coudrat, Julie; Pillebout, Evangéline; Chemouny, Jonathan M; Jablonski, Mathieu; Flamant, Martin; Daugas, Eric; Vrtovsnik, François; Yiangou, Minas; Berthelot, Laureline; Monteiro, Renato C

    2015-08-01

    IgA1 complexes containing deglycosylated IgA1, IgG autoantibodies, and a soluble form of the IgA receptor (sCD89), are hallmarks of IgA nephropathy (IgAN). Food antigens, notably gluten, are associated with increased mucosal response and IgAN onset, but their implication in the pathology remains unknown. Here, an IgAN mouse model expressing human IgA1 and CD89 was used to examine the role of gluten in IgAN. Mice were given a gluten-free diet for three generations to produce gluten sensitivity, and then challenged for 30 days with a gluten diet. A gluten-free diet resulted in a decrease of mesangial IgA1 deposits, transferrin 1 receptor, and transglutaminase 2 expression, as well as hematuria. Mice on a gluten-free diet lacked IgA1-sCD89 complexes in serum and kidney eluates. Disease severity depended on gluten and CD89, as shown by reappearance of IgAN features in mice on a gluten diet and by direct binding of the gluten-subcomponent gliadin to sCD89. A gluten diet exacerbated intestinal IgA1 secretion, inflammation, and villous atrophy, and increased serum IgA1 anti-gliadin antibodies, which correlated with proteinuria in mice and patients. Moreover, early treatment of humanized mice with a gluten-free diet prevented mesangial IgA1 deposits and hematuria. Thus, gliadin-CD89 interaction may aggravate IgAN development through induction of IgA1-sCD89 complex formation and a mucosal immune response. Hence, early-stage treatment with a gluten-free diet could be beneficial to prevent disease.

  20. Effect of high sugar intake on glucose transporter and weight regulating hormones in mice and humans.

    Directory of Open Access Journals (Sweden)

    Yvonne Ritze

    Full Text Available OBJECTIVE: Sugar consumption has increased dramatically over the last decades in Western societies. Especially the intake of sugar-sweetened beverages seems to be a major risk for the development of obesity. Thus, we compared liquid versus solid high-sugar diets with regard to dietary intake, intestinal uptake and metabolic parameters in mice and partly in humans. METHODS: Five iso-caloric diets, enriched with liquid (in water 30% vol/vol or solid (in diet 65% g/g fructose or sucrose or a control diet were fed for eight weeks to C57bl/6 mice. Sugar, liquid and caloric intake, small intestinal sugar transporters (GLUT2/5 and weight regulating hormone mRNA expression, as well as hepatic fat accumulation were measured. In obese versus lean humans that underwent either bariatric surgery or small bowel resection, we analyzed small intestinal GLUT2, GLUT5, and cholecystokinin expression. RESULTS: In mice, the liquid high-sucrose diet caused an enhancement of total caloric intake compared to the solid high-sucrose diet and the control diet. In addition, the liquid high-sucrose diet increased expression of GLUT2, GLUT5, and cholecystokinin expression in the ileum (P<0.001. Enhanced liver triglyceride accumulation was observed in mice being fed the liquid high-sucrose or -fructose, and the solid high-sucrose diet compared to controls. In obese, GLUT2 and GLUT5 mRNA expression was enhanced in comparison to lean individuals. CONCLUSIONS: We show that the form of sugar intake (liquid versus solid is presumably more important than the type of sugar, with regard to feeding behavior, intestinal sugar uptake and liver fat accumulation in mice. Interestingly, in obese individuals, an intestinal sugar transporter modulation also occurred when compared to lean individuals.

  1. Species differences in drug glucuronidation: Humanized UDP-glucuronosyltransferase 1 mice and their application for predicting drug glucuronidation and drug-induced toxicity in humans.

    Science.gov (United States)

    Fujiwara, Ryoichi; Yoda, Emiko; Tukey, Robert H

    2018-02-01

    More than 20% of clinically used drugs are glucuronidated by a microsomal enzyme UDP-glucuronosyltransferase (UGT). Inhibition or induction of UGT can result in an increase or decrease in blood drug concentration. To avoid drug-drug interactions and adverse drug reactions in individuals, therefore, it is important to understand whether UGTs are involved in metabolism of drugs and drug candidates. While most of glucuronides are inactive metabolites, acyl-glucuronides that are formed from compounds with a carboxylic acid group can be highly toxic. Animals such as mice and rats are widely used to predict drug metabolism and drug-induced toxicity in humans. However, there are marked species differences in the expression and function of drug-metabolizing enzymes including UGTs. To overcome the species differences, mice in which certain drug-metabolizing enzymes are humanized have been recently developed. Humanized UGT1 (hUGT1) mice were created in 2010 by crossing Ugt1-null mice with human UGT1 transgenic mice in a C57BL/6 background. hUGT1 mice can be promising tools to predict human drug glucuronidation and acyl-glucuronide-associated toxicity. In this review article, studies of drug metabolism and toxicity in the hUGT1 mice are summarized. We further discuss research and strategic directions to advance the understanding of drug glucuronidation in humans. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  2. Human plasma metabolic profiles of benzydamine, a flavin-containing monooxygenase probe substrate, simulated with pharmacokinetic data from control and humanized-liver mice.

    Science.gov (United States)

    Yamazaki-Nishioka, Miho; Shimizu, Makiko; Suemizu, Hiroshi; Nishiwaki, Megumi; Mitsui, Marina; Yamazaki, Hiroshi

    2018-02-01

    1. Benzydamine is used clinically as a nonsteroidal anti-inflammatory drug in oral rinses and is employed in preclinical research as a flavin-containing monooxygenase (FMO) probe substrate. In this study, plasma concentrations of benzydamine and its primary N-oxide and N-demethylated metabolites were investigated in control TK-NOG mice, in humanized-liver mice, and in mice whose liver cells had been ablated with ganciclovir. 2. Following oral administration of benzydamine (10 mg/kg) in humanized-liver TK-NOG mice, plasma concentrations of benzydamine N-oxide were slightly higher than those of demethyl benzydamine. In contrast, in control and ganciclovir-treated TK-NOG mice, concentrations of demethyl benzydamine were slightly higher than those of benzydamine N-oxide. 3. Simulations of human plasma concentrations of benzydamine and its N-oxide were achieved using simplified physiologically based pharmacokinetic models based on data from control TK-NOG mice and from reported benzydamine concentrations after low-dose administration in humans. Estimated clearance rates based on data from humanized-liver and ganciclovir-treated TK-NOG mice were two orders magnitude high. 4. The pharmacokinetic profiles of benzydamine were different for control and humanized-liver TK-NOG mice. Humanized-liver mice are generally accepted human models; however, drug oxidation in mouse kidney might need to be considered when probe substrates undergo FMO-dependent drug oxidation in mouse liver and kidney.

  3. Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras

    Science.gov (United States)

    Wheeler, Lee Adam; Trifonova, Radiana; Vrbanac, Vladimir; Basar, Emre; McKernan, Shannon; Xu, Zhan; Seung, Edward; Deruaz, Maud; Dudek, Tim; Einarsson, Jon Ivar; Yang, Linda; Allen, Todd M.; Luster, Andrew D.; Tager, Andrew M.; Dykxhoorn, Derek M.; Lieberman, Judy

    2011-01-01

    The continued spread of the HIV epidemic underscores the need to interrupt transmission. One attractive strategy is a topical vaginal microbicide. Sexual transmission of herpes simplex virus type 2 (HSV-2) in mice can be inhibited by intravaginal siRNA application. To overcome the challenges of knocking down gene expression in immune cells susceptible to HIV infection, we used chimeric RNAs composed of an aptamer fused to an siRNA for targeted gene knockdown in cells bearing an aptamer-binding receptor. Here, we showed that CD4 aptamer-siRNA chimeras (CD4-AsiCs) specifically suppress gene expression in CD4+ T cells and macrophages in vitro, in polarized cervicovaginal tissue explants, and in the female genital tract of humanized mice. CD4-AsiCs do not activate lymphocytes or stimulate innate immunity. CD4-AsiCs that knock down HIV genes and/or CCR5 inhibited HIV infection in vitro and in tissue explants. When applied intravaginally to humanized mice, CD4-AsiCs protected against HIV vaginal transmission. Thus, CD4-AsiCs could be used as the active ingredient of a microbicide to prevent HIV sexual transmission. PMID:21576818

  4. ATP-ase positive cells in human oral mucosa transplanted to nude mice

    DEFF Research Database (Denmark)

    Dabelsteen, E; Kirkeby, S

    1981-01-01

    A model to study the differentiation of human oral epithelium in vivo utilizing transplantation of human tissue to nude mice has been described. Previous studies have described the epithelial cells in this model. In this study we demonstrate that 8 d after transplantation, Langerhans cells, ident......, identified as ATP-ase positive dendritic cells, have almost disappeared from the transplanted epithelium whereas at day 21 after transplantation such cells were abundant. It is suggested that the ATP-ase positive cells which reappear in the transplanted epithelium are of mouse origin....

  5. Inhibitory effect of Dendrobium officinale polysaccharide on human gastric cancer cell xenografts in nude mice

    Directory of Open Access Journals (Sweden)

    Liying ZHANG

    2017-10-01

    Full Text Available Abstract This study investigated the inhibitory effect of Dendrobium officinale polysaccharide (DOPA on human gastric cancer cell SGC-7901 xenografts in nude mice. The nude mice with SGC-7901 xenografts were randomly divided into model, 5-fluorouracil (5-Fu, low-dose DOPA, middle-dose DOPA and high-dose DOPA group. The later four groups were intragastrically administrated with 100, 200 and 400 mg·kg–1·day–1 DOPA, 400 mg·kg–1·day–1 5-Fu and normal saline, respectively. After treatment for 20 days, the tumor inhibition rate of in high-dose DOPA group was basically equivalent to 5-Fu group. Compared with 5-Fu, DOPA had no obvious toxic side effect on spleen or thymus indexes, routine blood indexes or liver and kidney functions of nude mice. Compared with model group, the serum tumor necrosis factor-α and interleukin-2 levels in middle- and high-dose DOPA group were significantly increased (P < 0.05, Bax protein expression was significantly increased (P < 0.05, and Bcl-2 protein expression was significantly decreased (P < 0.05. DOPA can inhibit the growth of SGC-7901 cell xenografts in nude mice. The mechanism may be related to its increase of serum TNF-α and IL-2 levels, up-regulation of Bax protein expression and down-regulation of Bcl-2 protein expression.

  6. Infectious Chikungunya Virus in the Saliva of Mice, Monkeys and Humans.

    Directory of Open Access Journals (Sweden)

    Joy Gardner

    Full Text Available Chikungunya virus (CHIKV is a reemerging, ordinarily mosquito-transmitted, alphavirus that occasionally produces hemorrhagic manifestations, such as nose bleed and bleeding gums, in human patients. Interferon response factor 3 and 7 deficient (IRF3/7-/- mice, which are deficient for interferon α/β responses, reliably develop hemorrhagic manifestations after CHIKV infection. Here we show that infectious virus was present in the oral cavity of CHIKV infected IRF3/7-/- mice, likely due to hemorrhagic lesions in the olfactory epithelium that allow egress of infected blood into the nasal, and subsequently, oral cavities. In addition, IRF3/7-/- mice were more susceptible to infection with CHIKV via intranasal and oral routes, with IRF3/7-/- mice also able to transmit virus mouse-to-mouse without an arthropod vector. Cynomolgus macaques often show bleeding gums after CHIKV infection, and analysis of saliva from several infected monkeys also revealed the presence of viral RNA and infectious virus. Furthermore, saliva samples collected from several acute CHIKV patients with hemorrhagic manifestations were found to contain viral RNA and infectious virus. Oral fluids can therefore be infectious during acute CHIKV infections, likely due to hemorrhagic manifestations in the oral/nasal cavities.

  7. Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies

    Directory of Open Access Journals (Sweden)

    Georges N. Kanaan

    2018-04-01

    Full Text Available Glutaredoxin 2 (GRX2, a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Keywords: Human heart, Mitochondria, Oxidative stress, Redox, Cardiac metabolism, Cardiac hypertrophy

  8. l-Serine Enhances Light-Induced Circadian Phase Resetting in Mice and Humans.

    Science.gov (United States)

    Yasuo, Shinobu; Iwamoto, Ayaka; Lee, Sang-Il; Ochiai, Shotaro; Hitachi, Rina; Shibata, Satomi; Uotsu, Nobuo; Tarumizu, Chie; Matsuoka, Sayuri; Furuse, Mitsuhiro; Higuchi, Shigekazu

    2017-12-01

    Background: The circadian clock is modulated by the timing of ingestion or food composition, but the effects of specific nutrients are poorly understood. Objective: We aimed to identify the amino acids that modulate the circadian clock and reset the light-induced circadian phase in mice and humans. Methods: Male CBA/N mice were orally administered 1 of 20 l-amino acids, and the circadian and light-induced phase shifts of wheel-running activity were analyzed. Antagonists of several neurotransmitter pathways were injected before l-serine administration, and light-induced phase shifts were analyzed. In addition, the effect of l-serine on the light-induced phase advance was investigated in healthy male students (mean ± SD age 22.2 ± 1.8 y) by using dim-light melatonin onset (DLMO) determined by saliva samples as an index of the circadian phase. Results: l-Serine administration enhanced light-induced phase shifts in mice (1.86-fold; P light-dark cycle by 6 h, l-serine administration slightly accelerated re-entrainment to the shifted cycle. In humans, l-serine ingestion before bedtime induced significantly larger phase advances of DLMO after bright-light exposure during the morning (means ± SEMs-l-serine: 25.9 ± 6.6 min; placebo: 12.1 ± 7.0 min; P light-induced phase resetting in mice and humans, and it may be useful for treating circadian disturbances. © 2017 American Society for Nutrition.

  9. Pregnane X Receptor-Humanized Mice Recapitulate Gender Differences in Ethanol Metabolism but Not Hepatotoxicity.

    Science.gov (United States)

    Spruiell, Krisstonia; Gyamfi, Afua A; Yeyeodu, Susan T; Richardson, Ricardo M; Gonzalez, Frank J; Gyamfi, Maxwell A

    2015-09-01

    Both human and rodent females are more susceptible to developing alcoholic liver disease following chronic ethanol (EtOH) ingestion. However, little is known about the relative effects of acute EtOH exposure on hepatotoxicity in female versus male mice. The nuclear receptor pregnane X receptor (PXR; NR1I2) is a broad-specificity sensor with species-specific responses to toxic agents. To examine the effects of the human PXR on acute EtOH toxicity, the responses of male and female PXR-humanized (hPXR) transgenic mice administered oral binge EtOH (4.5 g/kg) were analyzed. Basal differences were observed between hPXR males and females in which females expressed higher levels of two principal enzymes responsible for EtOH metabolism, alcohol dehydrogenase 1 and aldehyde dehydrogenase 2, and two key mediators of hepatocyte replication and repair, cyclin D1 and proliferating cell nuclear antigen. EtOH ingestion upregulated hepatic estrogen receptor α, cyclin D1, and CYP2E1 in both genders, but differentially altered lipid and EtOH metabolism. Consistent with higher basal levels of EtOH-metabolizing enzymes, blood EtOH was more rapidly cleared in hPXR females. These factors combined to provide greater protection against EtOH-induced liver injury in female hPXR mice, as revealed by markers for liver damage, lipid peroxidation, and endoplasmic reticulum stress. These results indicate that female hPXR mice are less susceptible to acute binge EtOH-induced hepatotoxicity than their male counterparts, due at least in part to the relative suppression of cellular stress and enhanced expression of enzymes involved in both EtOH metabolism and hepatocyte proliferation and repair in hPXR females. U.S. Government work not protected by U.S. copyright.

  10. Physiologic and genetic evidence links hemopexin to triglycerides in mice and humans.

    Science.gov (United States)

    Lawson, H A; Zayed, M; Wayhart, J P; Fabbrini, E; Love-Gregory, L; Klein, S; Semenkovich, C F

    2017-04-01

    Elevated triglycerides predict insulin resistance and vascular disease in obesity, but how the inert triglyceride molecule is related to development of metabolic disease is unknown. To pursue novel potential mediators of triglyceride-associated metabolic disease, we used a forward genetics approach involving inbred mice and translated our findings to human subjects. Hemopexin (HPX) was identified as a differentially expressed gene within a quantitative trait locus associated with serum triglycerides in an F 16 advanced intercross between the LG/J and SM/J strains of mice. Hpx expression was evaluated in both the reproductive fat pads and livers of mice representing three strains, LG/J (n=25), SM/J (n=27) and C57Bl/6J (n=19), on high- and low-fat diets. The effect of altered Hpx expression on adipogenesis was studied in 3T3-L1 cells. Circulating HPX protein along with HPX expression were characterized in subcutaneous white adipose tissue samples obtained from a cohort of metabolically abnormal (n=18) and of metabolically normal (n=24) obese human subjects. We further examined the relationship between HPX and triglycerides in human atherosclerotic plaques (n=18). HPX expression in mouse adipose tissue, but not in liver, was regulated by dietary fat regardless of genetic background. HPX increased in concert with adipogenesis in 3T3-L1 cells, and disruption of its expression impaired adipocyte differentiation. RNAseq data from the adipose tissue of obese humans showed differential expression of HPX based on metabolic disease status (Ptriglycerides in these subjects (r=0.33; P=0.03). HPX was also found in an unbiased proteomic screen of human atherosclerotic plaques and shown to display differential abundance based on the extent of disease and triglyceride content (Ptriglycerides and provide a framework for understanding mechanisms underlying lipid metabolism and metabolic disease.

  11. Dosimetric estimation of O-(3-18F-fluoropropyl)-L-tyrosine in human based on mice biodistribution data

    International Nuclear Information System (INIS)

    Tang Ganghua; Wang Mingfang; Luo Lei; Gan Manquan; Tang Xiaolan

    2002-01-01

    Objective: To estimate the radiation absorbed doses in humans due to intravenous administration of O-(3- 18 F-fluoropropyl)-L-tyrosine (FPT) based on mice biodistribution data and appraise the security of FPT in humans. Methods: FPT was injected into mice through a tail vein. At 10, 30, 60, 120 and 180 min after injection, the mice were killed by cervical fracture and biodistribution in mice were determined. Human dosimetric estimation was performed from the biodistribution of FPT in mice and the standard MIRD method using fractional radioactivity-time curves for humans. Results: The bone in human was the organ receiving highest dose of 4.29 x 10 -3 mGy/MBq, the brain received lowest dose of 1.57 x 10 -3 mGy/MBq, and other organs received doses between 1.8 x 10 -3 and 2.4 x 10 -3 mGy/MBq. The effective dose was estimated to be 9.15 x 10 -3 mSv/MBq. These results were comparable to values reported by foreign authors on the radiation dosimetry of O-(2- 18 F-fluoroethyl)-L-tyrosine. Conclusion: Human dosimetric estimation can be performed based on mice biodistribution data. The study provides an important data for clinical safety of FPT

  12. Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Sandberg, Malin K; Al-Doujaily, Huda; Sigurdson, Christina J; Glatzel, Markus; O'Malley, Catherine; Powell, Caroline; Asante, Emmanuel A; Linehan, Jacqueline M; Brandner, Sebastian; Wadsworth, Jonathan D F; Collinge, John

    2010-10-01

    Chronic wasting disease (CWD) is a prion disease that affects free-ranging and captive cervids, including mule deer, white-tailed deer, Rocky Mountain elk and moose. CWD-infected cervids have been reported in 14 USA states, two Canadian provinces and in South Korea. The possibility of a zoonotic transmission of CWD prions via diet is of particular concern in North America where hunting of cervids is a popular sport. To investigate the potential public health risks posed by CWD prions, we have investigated whether intracerebral inoculation of brain and spinal cord from CWD-infected mule deer transmits prion infection to transgenic mice overexpressing human prion protein with methionine or valine at polymorphic residue 129. These transgenic mice have been utilized in extensive transmission studies of human and animal prion disease and are susceptible to BSE and vCJD prions, allowing comparison with CWD. Here, we show that these mice proved entirely resistant to infection with mule deer CWD prions arguing that the transmission barrier associated with this prion strain/host combination is greater than that observed with classical BSE prions. However, it is possible that CWD may be caused by multiple prion strains. Further studies will be required to evaluate the transmission properties of distinct cervid prion strains as they are characterized.

  13. Effects of curcumin on growth of human cervical cancer xenograft in nude mice and underlying mechanism

    Directory of Open Access Journals (Sweden)

    Aixue LIU

    Full Text Available Abstract The present study investigated the effects of curcumin (Cur on growth of human cervical cancer xenograft in nude mice and underlying mechanism. The nude mice modeled with human cervical cancer HeLa cell xenograft were treated with normal saline (control, 3 mg/kg Cisplatin, 50, 100 and 200 mg/kg Cur, respectively. The animal body weight and growth of tumor were measured. The expressions of Bax, Bcl-2, p53, p21, HIF-1α, VEGF and MIF protein in tumor tissue were determined. Results showed that, after treatment for 20 days, the tumor mass and tumor volume in 100 and 200 mg/kg Cur group were significantly lower than control group (P < 0.05. The expressions of Bax, p53 and p21 protein in tumor tissue in 200 mg/kg Cur group were significantly higher than control group (P < 0.05, and the expressions of Bcl-2, HIF-1α, VEGF and MIF protein in tumor tissue in 200 mg/kg Cur group were significantly lower than control group (P < 0.05. Cur can inhibit the growth of HeLa cell xenograft in nude mice. The possible mechanism may be related to its up-regulation of Bax, p53 and p21 protein expression in tumor tissue, and down-regulation of Bcl-2, HIF-1α, VEGF and MIF protein expression.

  14. Human CD4 restores normal T cell development and function in mice deficient in murine CD4

    OpenAIRE

    1994-01-01

    The ability of a human coreceptor to function in mice was investigated by generating human CD4 (hCD4)-expressing transgenic mice on a mouse CD4-deficient (mCD4-/-) background. From developing thymocyte to matured T lymphocyte functions, hCD4 was shown to be physiologically active. By examining the expansion and deletion of specific V beta T cell families in mutated mice with and without hCD4, it was found that hCD4 can participate in positive and negative selection. Mature hCD4 single positiv...

  15. Mechanisms Inducing Low Bone Density in Duchenne Muscular Dystrophy in Mice and Humans

    Science.gov (United States)

    Rufo, Anna; Del Fattore, Andrea; Capulli, Mattia; Carvello, Francesco; De Pasquale, Loredana; Ferrari, Serge; Pierroz, Dominique; Morandi, Lucia; De Simone, Michele; Rucci, Nadia; Bertini, Enrico; Bianchi, Maria Luisa; De Benedetti, Fabrizio; Teti, Anna

    2011-01-01

    Patients affected by Duchenne muscular dystrophy (DMD) and dystrophic MDX mice were investigated in this study for their bone phenotype and systemic regulators of bone turnover. Micro–computed tomographic (µCT) and histomorphometric analyses showed reduced bone mass and higher osteoclast and bone resorption parameters in MDX mice compared with wild-type mice, whereas osteoblast parameters and mineral apposition rate were lower. In a panel of circulating pro-osteoclastogenic cytokines evaluated in the MDX sera, interleukin 6 (IL-6) was increased compared with wild-type mice. Likewise, DMD patients showed low bone mineral density (BMD) Z-scores and high bone-resorption marker and serum IL-6. Human primary osteoblasts from healthy donors incubated with 10% sera from DMD patients showed decreased nodule mineralization. Many osteogenic genes were downregulated in these cultures, including osterix and osteocalcin, by a mechanism blunted by an IL-6-neutralizing antibody. In contrast, the mRNAs of osteoclastogenic cytokines IL6, IL11, inhibin-βA, and TGFβ2 were increased, although only IL-6 was found to be high in the circulation. Consistently, enhancement of osteoclastogenesis was noted in cultures of circulating mononuclear precursors from DMD patients or from healthy donors cultured in the presence of DMD sera or IL-6. Circulating IL-6 also played a dominant role in osteoclast formation because ex vivo wild-type calvarial bones cultured with 10% sera of MDX mice showed increase osteoclast and bone-resorption parameters that were dampen by treatment with an IL-6 antibody. These results point to IL-6 as an important mediator of bone loss in DMD and suggest that targeted anti-IL-6 therapy may have a positive impact on the bone phenotype in these patients. © 2011 American Society for Bone and Mineral Research PMID:21509823

  16. Specific Inflammatory Stimuli Lead to Distinct Platelet Responses in Mice and Humans.

    Directory of Open Access Journals (Sweden)

    Lea M Beaulieu

    Full Text Available Diverse and multi-factorial processes contribute to the progression of cardiovascular disease. These processes affect cells involved in the development of this disease in varying ways, ultimately leading to atherothrombosis. The goal of our study was to compare the differential effects of specific stimuli--two bacterial infections and a Western diet--on platelet responses in ApoE-/- mice, specifically examining inflammatory function and gene expression. Results from murine studies were verified using platelets from participants of the Framingham Heart Study (FHS; n = 1819 participants.Blood and spleen samples were collected at weeks 1 and 9 from ApoE-/- mice infected with Porphyromonas gingivalis or Chlamydia pneumoniae and from mice fed a Western diet for 9 weeks. Transcripts based on data from a Western diet in ApoE-/- mice were measured in platelet samples from FHS using high throughput qRT-PCR.At week 1, both bacterial infections increased circulating platelet-neutrophil aggregates. At week 9, these cells individually localized to the spleen, while Western diet resulted in increased platelet-neutrophil aggregates in the spleen only. Microarray analysis of platelet RNA from infected or Western diet-fed mice at week 1 and 9 showed differential profiles. Genes, such as Serpina1a, Ttr, Fgg, Rpl21, and Alb, were uniquely affected by infection and diet. Results were reinforced in platelets obtained from participants of the FHS.Using both human studies and animal models, results demonstrate that variable sources of inflammatory stimuli have the ability to influence the platelet phenotype in distinct ways, indicative of the diverse function of platelets in thrombosis, hemostasis, and immunity.

  17. TREX1 Knockdown Induces an Interferon Response to HIV that Delays Viral Infection in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Lee Adam Wheeler

    2016-05-01

    Full Text Available Despite their antiviral effect, the in vivo effect of interferons on HIV transmission is difficult to predict, because interferons also activate and recruit HIV-susceptible cells to sites of infection. HIV does not normally induce type I interferons in infected cells, but does if TREX1 is knocked down. Here, we investigated the effect of topical TREX1 knockdown and local interferon production on HIV transmission in human cervicovaginal explants and humanized mice. In explants in which TREX1 was knocked down, HIV induced interferons, which blocked infection. In humanized mice, even though TREX1 knockdown increased infiltrating immune cells, it delayed viral replication for 3–4 weeks. Similarly intravaginal application of type I interferons the day before HIV infection induced interferon responsive genes, reduced inflammation, and decreased viral replication. However, intravenous interferon enhanced inflammation and infection. Thus, in models of human sexual transmission, a localized interferon response inhibits HIV transmission but systemic interferons do not.

  18. Gene expression signatures that predict radiation exposure in mice and humans.

    Directory of Open Access Journals (Sweden)

    Holly K Dressman

    2007-04-01

    Full Text Available The capacity to assess environmental inputs to biological phenotypes is limited by methods that can accurately and quantitatively measure these contributions. One such example can be seen in the context of exposure to ionizing radiation.We have made use of gene expression analysis of peripheral blood (PB mononuclear cells to develop expression profiles that accurately reflect prior radiation exposure. We demonstrate that expression profiles can be developed that not only predict radiation exposure in mice but also distinguish the level of radiation exposure, ranging from 50 cGy to 1,000 cGy. Likewise, a molecular signature of radiation response developed solely from irradiated human patient samples can predict and distinguish irradiated human PB samples from nonirradiated samples with an accuracy of 90%, sensitivity of 85%, and specificity of 94%. We further demonstrate that a radiation profile developed in the mouse can correctly distinguish PB samples from irradiated and nonirradiated human patients with an accuracy of 77%, sensitivity of 82%, and specificity of 75%. Taken together, these data demonstrate that molecular profiles can be generated that are highly predictive of different levels of radiation exposure in mice and humans.We suggest that this approach, with additional refinement, could provide a method to assess the effects of various environmental inputs into biological phenotypes as well as providing a more practical application of a rapid molecular screening test for the diagnosis of radiation exposure.

  19. Expression of Sirtuins in the Retinal Neurons of Mice, Rats, and Humans

    Directory of Open Access Journals (Sweden)

    Hongdou Luo

    2017-11-01

    Full Text Available Sirtuins are a class of histone deacetylases (HDACs that have been shown to regulate a range of pathophysiological processes such as cellular aging, inflammation, metabolism, and cell proliferation. There are seven mammalian Sirtuins (SIRT1-7 that play important roles in stress response, aging, and neurodegenerative diseases. However, the location and function of Sirtuins in neurons are not well defined. This study assessed the retinal expression of Sirtuins in mice, rats, and humans and measured the expression of Sirtuins in aged and injured retinas. Expression of all 7 Sirtuins was confirmed by Western blot and Real-Time PCR analysis in all three species. SIRT1 is highly expressed in mouse, rat, and human retinas, whereas SIRT2-7 expression was relatively lower in human retinas. Immunofluorescence was also used to examine the expression and localization of Sirtuins in rat retinal neurons. Importantly, we demonstrate a marked reduction of SIRT1 expression in aged retinal neurons as well as retinas injured by acute ischemia-reperfusion. On the other hand, none of the other Sirtuins exhibit any significant age-related changes in expression except for SIRT5, which was significantly higher in the retinas of adults compared to both young and aged rats. Our work presents the first composite analysis of Sirtuins in the retinal neurons of mice, rats, and humans, and suggests that increasing the expression and activity of SIRT1 may be beneficial for the treatment of glaucoma and other age-related eye dysfunction.

  20. Radioimmunodetection of human leukemia with anti-interleukin-2 receptor antibody in severe combined immunodeficiency mice

    International Nuclear Information System (INIS)

    Hosono, Makoto; Takaori-Kondo, Akifumi; Zheng-Sheng, Yao; Kobayashi, Hisataka; Hosono, Masako N.; Sakahara, Harumi; Imada, Kazunori; Okuma, Minoru; Uchiyama, Takashi; Konishi, Junji

    1995-01-01

    Anti-Tac monoclonal antibody recognizes human interleukin-2 receptor, which is overexpressed in leukemic cells of most adult T-cell leukemia (ATL) patients. To examine the potency of anti-Tac for targeting of ATL, biodistributions of intravenously administered 125 I- and 111 In-labeled anti-Tac were examined in severe combined immunodeficiency (SCID) mice inoculated with ATL cells. Significant amounts of radiolabeled anti-Tac were found in the spleen and thymus. The trafficking of ATL cells in SCID mice was detected using 111 In-oxine-labeled ATL cells. These results were coincident with the histologically confirmed infiltration of ATL cells. The radiolabeled anti-Tac seemed potent for targeting of ATL

  1. Acute HBV infection in humanized chimeric mice has multiphasic viral kinetics.

    Science.gov (United States)

    Ishida, Yuji; Chung, Tje Lin; Imamura, Michio; Hiraga, Nobuhiko; Sen, Suranjana; Yokomichi, Hiroshi; Tateno, Chise; Canini, Laetitia; Perelson, Alan S; Uprichard, Susan L; Dahari, Harel; Chayama, Kazuaki

    2018-03-23

    Chimeric uPA/SCID mice reconstituted with humanized livers are useful for studying HBV infection in the absence of an adaptive immune response. However, the detailed characterization of HBV infection kinetics necessary to enable in-depth mechanistic studies in this novel in vivo HBV infection model is lacking. To characterize HBV kinetics post-inoculation (p.i.) to steady state, 42 mice were inoculated with HBV. Serum HBV DNA was frequently measured from 1 minute to 63 days p.i. Total intrahepatic HBV DNA, HBV cccDNA, and HBV RNA was measured in a subset of mice at 2, 4, 6, 10, and 13 weeks p.i. HBV half-life (t 1/2 ) was estimated using a linear mixed-effects model. During the first 6 h p.i. serum HBV declined in repopulated uPA/SCID mice with a t 1/2 =62 min [95%CI=59-67min]. Thereafter, viral decline slowed followed by a 2 day lower plateau. Subsequent viral amplification was multiphasic with an initial mean doubling time of t 2 =8±3 h followed by an interim plateau before prolonged amplification (t 2 =2±0.5 days) to a final HBV steady state of 9.3±0.3 log copies/ml. Serum HBV and intrahepatic HBV DNA were positively correlated (R 2 =0.98). HBV infection in uPA/SCID chimeric mice is highly dynamic despite the absence of an adaptive immune response. The serum HBV t 1/2 in humanized uPA/SCID mice was estimated to be ∼1 h regardless of inoculum size. The HBV acute infection kinetics presented here is an important step in characterizing this experimental model system so that it can be effectively used to elucidate the dynamics of the HBV lifecycle and thus possibly reveal effective antiviral drug targets. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  2. Dengue virus infection induces broadly cross-reactive human IgM antibodies that recognize intact virions in humanized BLT-NSG mice.

    Science.gov (United States)

    Jaiswal, Smita; Smith, Kenneth; Ramirez, Alejandro; Woda, Marcia; Pazoles, Pamela; Shultz, Leonard D; Greiner, Dale L; Brehm, Michael A; Mathew, Anuja

    2015-01-01

    The development of small animal models that elicit human immune responses to dengue virus (DENV) is important since prior immunity is a major risk factor for developing severe dengue disease. This study evaluated anti-DENV human antibody (hAb) responses generated from immortalized B cells after DENV-2 infection in NOD-scid IL2rγ(null) mice that were co-transplanted with human fetal thymus and liver tissues (BLT-NSG mice). DENV-specific human antibodies predominantly of the IgM isotype were isolated during acute infection and in convalescence. We found that while a few hAbs recognized the envelope protein produced as a soluble recombinant, a number of hAbs only recognized epitopes on intact virions. The majority of the hAbs isolated during acute infection and in immune mice were serotype-cross-reactive and poorly neutralizing. Viral titers in immune BLT-NSG mice were significantly decreased after challenge with a clinical strain of dengue. DENV-specific hAbs generated in BLT-NSG mice share some of the characteristics of Abs isolated in humans with natural infection. Humanized BLT-NSG mice provide an attractive preclinical platform to assess the immunogenicity of candidate dengue vaccines. © 2014 by the Society for Experimental Biology and Medicine.

  3. Antibody directed against human YKL-40 increases tumor volume in a human melanoma xenograft model in scid mice

    DEFF Research Database (Denmark)

    Salamon, Johannes; Hoffmann, Tatjana; Elies, Eva

    2014-01-01

    were treated with intraperitoneal injections of anti-YKL-40, isoptype control or PBS. Non-YKL-40 expressing human pancreatic carcinoma cell line PaCa 5061 served as additional control. MR imaging was used for evaluation of tumor growth. Two days after the first injections of anti-YKL-40, tumor volume...... had increased significantly compared with controls, whereas no effects were observed for control tumors from PaCa 5061 cells lacking YKL-40 expression. After 18 days, mean tumor size of the mice receiving repeated anti-YKL-40 injections was 1.82 g, >4 times higher than mean tumor size of the controls...

  4. Long-term leukocyte reconstitution in NSG mice transplanted with human cord blood hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Audigé, Annette; Rochat, Mary-Aude; Li, Duo; Ivic, Sandra; Fahrny, Audrey; Muller, Christina K S; Gers-Huber, Gustavo; Myburgh, Renier; Bredl, Simon; Schlaepfer, Erika; Scherrer, Alexandra U; Kuster, Stefan P; Speck, Roberto F

    2017-05-30

    Humanized mice (hu mice) are based on the transplantation of hematopoietic stem and progenitor cells into immunodeficient mice and have become important pre-clinical models for biomedical research. However, data about their hematopoiesis over time are scarce. We therefore characterized leukocyte reconstitution in NSG mice, which were sublethally irradiated and transplanted with human cord blood-derived CD34+ cells at newborn age, longitudinally in peripheral blood and, for more detailed analyses, cross-sectionally in peripheral blood, spleen and bone marrow at different time points. Human cell chimerism and absolute human cell count decreased between week 16 and 24 in the peripheral blood of hu mice, but were stable thereafter as assessed up to 32 weeks. Human cell chimerism in spleen and bone marrow was maintained over time. Notably, human cell chimerism in peripheral blood and spleen as well as bone marrow positively correlated with each other. Percentage of B cells decreased between week 16 and 24, whereas percentage of T cells increased; subsequently, they levelled off with T cells clearly predominating at week 32. Natural killer cells, monocytes and plasmacytoid dendritic cells (DCs) as well as CD1c + and CD141+ myeloid DCs were all present in hu mice. Proliferative responses of splenic T cells to stimulation were preserved over time. Importantly, the percentage of more primitive hematopoietic stem cells (HSCs) in bone marrow was maintained over time. Overall, leukocyte reconstitution was maintained up to 32 weeks post-transplantation in our hu NSG model, possibly explained by the maintenance of HSCs in the bone marrow. Notably, we observed great variation in multi-lineage hematopoietic reconstitution in hu mice that needs to be taken into account for the experimental design with hu mice.

  5. Formation of the accumulative human metabolite and human-specific glutathione conjugate of diclofenac in TK-NOG chimeric mice with humanized livers.

    Science.gov (United States)

    Kamimura, Hidetaka; Ito, Satoshi; Nozawa, Kohei; Nakamura, Shota; Chijiwa, Hiroyuki; Nagatsuka, Shin-ichiro; Kuronuma, Miyuki; Ohnishi, Yasuyuki; Suemizu, Hiroshi; Ninomiya, Shin-ichi

    2015-03-01

    3'-Hydroxy-4'-methoxydiclofenac (VI) is a human-specific metabolite known to accumulate in the plasma of patients after repeated administration of diclofenac sodium. Diclofenac also produces glutathione-conjugated metabolites, some of which are human-specific. In the present study, we investigated whether these metabolites could be generated in humanized chimeric mice produced from TK-NOG mice. After a single oral administration of diclofenac to humanized mice, the unchanged drug in plasma peaked at 0.25 hour and then declined with a half-life (t1/2) of 2.4 hours. 4'-Hydroxydiclofenac (II) and 3'-hydroxydiclofenac also peaked at 0.25 hour and were undetectable within 24 hours. However, VI peaked at 8 hours and declined with a t1/2 of 13 hours. When diclofenac was given once per day, peak and trough levels of VI reached plateau within 3 days. Studies with administration of II suggested VI was generated via II as an intermediate. Among six reported glutathione-conjugated metabolites of diclofenac, M1 (5-hydroxy-4-(glutathion-S-yl)diclofenac) to M6 (2'-(glutathion-S-yl)monoclofenac), we found three dichlorinated conjugates [M1, M2 (4'-hydroxy-3'-(glutathion-S-yl)diclofenac), and M3 (5-hydroxy-6-(glutathion-S-yl)diclofenac)], and a single monochlorinated conjugate [M4 (2'-hydroxy-3'-(glutathion-S-yl)monoclofenac) or M5 (4'-hydroxy-2'-(glutathion-S-yl)monoclofenac)], in the bile of humanized chimeric mice. M4 and M5 are positional isomers and have been previously reported as human-specific in vitro metabolites likely generated via arene oxide and quinone imine-type intermediates, respectively. The biliary monochlorinated metabolite exhibited the same mass spectrum as those of M4 and M5, and we discuss whether this conjugate corresponded to M4 or M5. Overall, humanized TK-NOG chimeric mice were considered to be a functional tool for the study of drug metabolism of diclofenac in humans. Copyright © 2015 by The American Society for Pharmacology and Experimental

  6. Growth kinetics of four human breast carcinomas grown in nude mice

    DEFF Research Database (Denmark)

    Spang-Thomsen, M; Rygaard, K; Hansen, L

    1989-01-01

    with cell generation times of 42 to 60 hours. The three receptor-positive tumors had slower growth rate, larger tumor volume doubling time, and smaller growth fraction and labelling index than the receptor-negative tumor. However, no single proliferation parameter was sufficient to characterize the growth......The immune-deficient nude mouse with human tumor xenografts is an appropriate model system for performing detailed growth kinetic examinations. In the present study one estrogen and progesterone receptor-negative (T60) and three receptor-positive (Br-10, MCF-7, T61) human breast cancer xenografts...... in nude mice were investigated. The proliferative tumor characteristics were examined by growth curves, thymidine labelling technique, and flow cytometric DNA analysis performed on fine-needle aspirations. The results showed that the tumors had growth kinetics comparable to other human tumor types...

  7. Mechanism of recombinant human bone morphogenetic protein-2 in repairing hematopoietic injury in mice exposed to γ-rays

    International Nuclear Information System (INIS)

    Liu Shuibing; Hu Peizhen; Hou Ying; Li Xubo; Tian Qiong; Shi Mei

    2009-01-01

    Objective: To investigate the mechanism of recombinant human bone morphogenetic protein-2 (rhBMP-2) in repairing hematopoietic injury in mice irradiated with γ-ray. To prepare SRY gene probe and study the effect of rhBMP-2 in repairing hematopoietic injury in mice by in situ hybridization. Methods: Twenty-two BALB/c female mice were randomly divided into the irradiated group and BMP treated group, respectively. Bone marrow cells of normal male mice were transplanted into 22 female mice post-irradiation to 8.5 Gy of 60 Co γ rays. The left femurs of the survived female mice were re-irradiated with 9 Gy 14 days later. Mice in BMP treated group were given rhBMP-2 20 mg/kg while those in control group were treated with 0.9% saline by intraperitoneal injection every day for 6 days. These mice were killed 14 days later and paraffin sections of femurs were made. The SRY gene was detected with in situ hybridization. Results: There were more positive blots in the left femurs of the mice in irradiated group than those in BMP treated group (T=155.0, P 0.05). The number of positive blots in the left femurs of the mice in BMPtreated group was significantly less than those in the right femurs of the mice in two groups (T=155.0, 55.0, P<0.05). Conclusions: No donor cell of male mice was detected in the left femurs of BMP treated group, suggesting that rhBMP-2 promoted the restoration of residuary bone marrow cells. Thus, rhBMP-2 promotes the proliferation or differentiation of residuary mesenchymal stem cells, improves hematopoietic microenvironment and accelerates the hematopoietic restoration. (authors)

  8. Increasing Hematopoietic Stem Cell Yield to Develop Mice with Human Immune Systems

    Directory of Open Access Journals (Sweden)

    Juan-Carlos Biancotti

    2013-01-01

    Full Text Available Hematopoietic stem cells (HSCs are unique in their capacity to give rise to all mature cells of the immune system. For years, HSC transplantation has been used for treatment of genetic and neoplastic diseases of the hematopoietic and immune systems. The sourcing of HSCs from human umbilical cord blood has salient advantages over isolation from mobilized peripheral blood. However, poor sample yield has prompted development of methodologies to expand HSCs ex vivo. Cytokines, trophic factors, and small molecules have been variously used to promote survival and proliferation of HSCs in culture, whilst strategies to lower the concentration of inhibitors in the culture media have recently been applied to promote HSC expansion. In this paper, we outline strategies to expand HSCs in vitro, and to improve engraftment and reconstitution of human immune systems in immunocompromised mice. To the extent that these “humanized” mice are representative of the endogenous human immune system, they will be invaluable tools for both basic science and translational medicine.

  9. Experimental and natural infections in MyD88- and IRAK-4-deficient mice and humans

    Science.gov (United States)

    von Bernuth, Horst; Picard, Capucine; Puel, Anne; Casanova, Jean-Laurent

    2013-01-01

    Most Toll-like-receptors (TLRs) and interleukin-1 receptors (IL-1Rs) signal via myeloid differentiation primary response 88 (MyD88) and interleukin-1 receptor-associated kinase 4 (IRAK-4). The combined roles of these two receptor families in the course of experimental infections have been assessed in MyD88- and IRAK-4-deficient mice for almost fifteen years. These animals have been shown to be susceptible to 46 pathogens: 27 bacteria, 8 viruses, 7 parasites, and 4 fungi. Humans with inborn MyD88 or IRAK-4 deficiency were first identified in 2003. They suffer from naturally occurring life-threatening infections caused by a small number of bacterial species, although the incidence and severity of these infections decrease with age. Mouse TLR- and IL-1R-dependent immunity mediated by MyD88 and IRAK-4 seems to be vital to combat a wide array of experimentally administered pathogens at most ages. By contrast, human TLR- and IL-1R-dependent immunity mediated by MyD88 and IRAK-4 seems to be effective in the natural setting against only a few bacteria and is most important in infancy and early childhood. The roles of TLRs and IL-1Rs in protective immunity deduced from studies in mutant mice subjected to experimental infections should therefore be reconsidered in the light of findings for natural infections in humans carrying mutations as discussed in this review. PMID:23255009

  10. Nrf2 Activation Protects against Solar-Simulated Ultraviolet Radiation in Mice and Humans.

    Science.gov (United States)

    Knatko, Elena V; Ibbotson, Sally H; Zhang, Ying; Higgins, Maureen; Fahey, Jed W; Talalay, Paul; Dawe, Robert S; Ferguson, James; Huang, Jeffrey T-J; Clarke, Rosemary; Zheng, Suqing; Saito, Akira; Kalra, Sukirti; Benedict, Andrea L; Honda, Tadashi; Proby, Charlotte M; Dinkova-Kostova, Albena T

    2015-06-01

    The transcription factor Nrf2 determines the ability to adapt and survive under conditions of electrophilic, oxidative, and inflammatory stress by regulating the expression of elaborate networks comprising nearly 500 genes encoding proteins with versatile cytoprotective functions. In mice, disruption of Nrf2 increases susceptibility to carcinogens and accelerates disease pathogenesis. Paradoxically, Nrf2 is upregulated in established human tumors, but whether this upregulation drives carcinogenesis is not known. Here we show that the incidence, multiplicity, and burden of solar-simulated UV radiation-mediated cutaneous tumors that form in SKH-1 hairless mice in which Nrf2 is genetically constitutively activated are lower than those that arise in their wild-type counterparts. Pharmacologic Nrf2 activation by topical biweekly applications of small (40 nmol) quantities of the potent bis(cyano enone) inducer TBE-31 has a similar protective effect against solar-simulated UV radiation in animals receiving long-term treatment with the immunosuppressive agent azathioprine. Genetic or pharmacologic Nrf2 activation lowers the expression of the pro-inflammatory factors IL6 and IL1β, and COX2 after acute exposure of mice to UV radiation. In healthy human subjects, topical applications of extracts delivering the Nrf2 activator sulforaphane reduced the degree of solar-simulated UV radiation-induced skin erythema, a quantifiable surrogate endpoint for cutaneous damage and skin cancer risk. Collectively, these data show that Nrf2 is not a driver for tumorigenesis even upon exposure to a very potent and complete carcinogen and strongly suggest that the frequent activation of Nrf2 in established human tumors is a marker of metabolic adaptation. ©2015 American Association for Cancer Research.

  11. Ultra-Sensitive HIV-1 Latency Viral Outgrowth Assays Using Humanized Mice.

    Science.gov (United States)

    Schmitt, Kimberly; Akkina, Ramesh

    2018-01-01

    In the current quest for a complete cure for HIV/AIDS, highly sensitive HIV-1 latency detection methods are critical to verify full viral eradication. Until now, the in vitro quantitative viral outgrowth assays (qVOA) have been the gold standard for assessing latent HIV-1 viral burden. However, these assays have been inadequate in detecting the presence of ultralow levels of latent virus in a number of patients who were initially thought to have been cured, but eventually showed viral rebound. In this context, new approaches utilizing in vivo mouse-based VOAs are promising. In the murine VOA (mVOA), large numbers of CD4 + T cells or PBMC from aviremic subjects are xenografted into immunodeficient NSG mice, whereas in the humanized mouse-based VOA (hmVOA) patient CD4 + T cell samples are injected into BLT or hu-hematopoetic stem cells (hu-HSC) humanized mice. While latent virus could be recovered in both of these systems, the hmVOA provides higher sensitivity than the mVOA using a fewer number of input cells. In contrast to the mVOA, the hmVOA provides a broader spectrum of highly susceptible HIV-1 target cells and enables newly engrafted cells to home into preformed human lymphoid organs where they can infect cells in situ after viral activation. Hu-mice also allow for both xenograft- and allograft-driven cell expansions with less severe GvH providing a longer time frame for potential viral outgrowth from cells with a delayed latent viral activation. Based on these advantages, the hmVOA has great potential in playing an important role in HIV-1 latency and cure research.

  12. Complement component 5 contributes to poor disease outcome in humans and mice with pneumococcal meningitis

    Science.gov (United States)

    Woehrl, Bianca; Brouwer, Matthijs C.; Murr, Carmen; Heckenberg, Sebastiaan G.B.; Baas, Frank; Pfister, Hans W.; Zwinderman, Aeilko H.; Morgan, B. Paul; Barnum, Scott R.; van der Ende, Arie; Koedel, Uwe; van de Beek, Diederik

    2011-01-01

    Pneumococcal meningitis is the most common and severe form of bacterial meningitis. Fatality rates are substantial, and long-term sequelae develop in about half of survivors. Disease outcome has been related to the severity of the proinflammatory response in the subarachnoid space. The complement system, which mediates key inflammatory processes, has been implicated as a modulator of pneumococcal meningitis disease severity in animal studies. Additionally, SNPs in genes encoding complement pathway proteins have been linked to susceptibility to pneumococcal infection, although no associations with disease severity or outcome have been established. Here, we have performed a robust prospective nationwide genetic association study in patients with bacterial meningitis and found that a common nonsynonymous complement component 5 (C5) SNP (rs17611) is associated with unfavorable disease outcome. C5 fragment levels in cerebrospinal fluid (CSF) of patients with bacterial meningitis correlated with several clinical indicators of poor prognosis. Consistent with these human data, C5a receptor–deficient mice with pneumococcal meningitis had lower CSF wbc counts and decreased brain damage compared with WT mice. Adjuvant treatment with C5-specific monoclonal antibodies prevented death in all mice with pneumococcal meningitis. Thus, our results suggest C5-specific monoclonal antibodies could be a promising new antiinflammatory adjuvant therapy for pneumococcal meningitis. PMID:21926466

  13. Identification of SOX3 as an XX male sex reversal gene in mice and humans.

    Science.gov (United States)

    Sutton, Edwina; Hughes, James; White, Stefan; Sekido, Ryohei; Tan, Jacqueline; Arboleda, Valerie; Rogers, Nicholas; Knower, Kevin; Rowley, Lynn; Eyre, Helen; Rizzoti, Karine; McAninch, Dale; Goncalves, Joao; Slee, Jennie; Turbitt, Erin; Bruno, Damien; Bengtsson, Henrik; Harley, Vincent; Vilain, Eric; Sinclair, Andrew; Lovell-Badge, Robin; Thomas, Paul

    2011-01-01

    Sex in mammals is genetically determined and is defined at the cellular level by sex chromosome complement (XY males and XX females). The Y chromosome-linked gene sex-determining region Y (SRY) is believed to be the master initiator of male sex determination in almost all eutherian and metatherian mammals, functioning to upregulate expression of its direct target gene Sry-related HMG box-containing gene 9 (SOX9). Data suggest that SRY evolved from SOX3, although there is no direct functional evidence to support this hypothesis. Indeed, loss-of-function mutations in SOX3 do not affect sex determination in mice or humans. To further investigate Sox3 function in vivo, we generated transgenic mice overexpressing Sox3. Here, we report that in one of these transgenic lines, Sox3 was ectopically expressed in the bipotential gonad and that this led to frequent complete XX male sex reversal. Further analysis indicated that Sox3 induced testis differentiation in this particular line of mice by upregulating expression of Sox9 via a similar mechanism to Sry. Importantly, we also identified genomic rearrangements within the SOX3 regulatory region in three patients with XX male sex reversal. Together, these data suggest that SOX3 and SRY are functionally interchangeable in sex determination and support the notion that SRY evolved from SOX3 via a regulatory mutation that led to its de novo expression in the early gonad.

  14. Identification of SOX3 as an XX male sex reversal gene in mice and humans

    Science.gov (United States)

    Sutton, Edwina; Hughes, James; White, Stefan; Sekido, Ryohei; Tan, Jacqueline; Arboleda, Valerie; Rogers, Nicholas; Knower, Kevin; Rowley, Lynn; Eyre, Helen; Rizzoti, Karine; McAninch, Dale; Goncalves, Joao; Slee, Jennie; Turbitt, Erin; Bruno, Damien; Bengtsson, Henrik; Harley, Vincent; Vilain, Eric; Sinclair, Andrew; Lovell-Badge, Robin; Thomas, Paul

    2010-01-01

    Sex in mammals is genetically determined and is defined at the cellular level by sex chromosome complement (XY males and XX females). The Y chromosome–linked gene sex-determining region Y (SRY) is believed to be the master initiator of male sex determination in almost all eutherian and metatherian mammals, functioning to upregulate expression of its direct target gene Sry-related HMG box–containing gene 9 (SOX9). Data suggest that SRY evolved from SOX3, although there is no direct functional evidence to support this hypothesis. Indeed, loss-of-function mutations in SOX3 do not affect sex determination in mice or humans. To further investigate Sox3 function in vivo, we generated transgenic mice overexpressing Sox3. Here, we report that in one of these transgenic lines, Sox3 was ectopically expressed in the bipotential gonad and that this led to frequent complete XX male sex reversal. Further analysis indicated that Sox3 induced testis differentiation in this particular line of mice by upregulating expression of Sox9 via a similar mechanism to Sry. Importantly, we also identified genomic rearrangements within the SOX3 regulatory region in three patients with XX male sex reversal. Together, these data suggest that SOX3 and SRY are functionally interchangeable in sex determination and support the notion that SRY evolved from SOX3 via a regulatory mutation that led to its de novo expression in the early gonad. PMID:21183788

  15. Estrogen-related receptor gamma and hearing function: evidence of a role in humans and mice.

    Science.gov (United States)

    Nolan, Lisa S; Maier, Hannes; Hermans-Borgmeyer, Irm; Girotto, Giorgia; Ecob, Russell; Pirastu, Nicola; Cadge, Barbara A; Hübner, Christian; Gasparini, Paolo; Strachan, David P; Davis, Adrian; Dawson, Sally J

    2013-08-01

    Since estrogen is thought to protect pre-menopausal women from age-related hearing loss, we investigated whether variation in estrogen-signalling genes is linked to hearing status in the 1958 British Birth Cohort. This analysis implicated the estrogen-related receptor gamma (ESRRG) gene in determining adult hearing function and was investigated further in a total of 6134 individuals in 3 independent cohorts: (i) the 1958 British Birth Cohort; (ii) a London ARHL case-control cohort; and (iii) a cohort from isolated populations of Italy and Silk Road countries. Evidence of an association between the minor allele of single nucleotide polymorphism (SNP) rs2818964 and hearing status was found in females, but not in males in 2 of these cohorts: p = 0.0058 (London ARHL) and p = 0.0065 (Carlantino, Italy). Furthermore, assessment of hearing in Esrrg knock-out mice revealed a mild 25-dB hearing loss at 5 weeks of age. At 12 weeks, average hearing thresholds in female mice((-/-)) were 15 dB worse than in males((-/-)). Together these data indicate ESRRG plays a role in maintenance of hearing in both humans and mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Radioimmunotherapy of human lymphoma in athymic, nude mice as monitored by 31P nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Adams, D.A.; DeNardo, G.L.; DeNardo, S.J.; Matson, G.B.; Epstein, A.L.; Bradbury, E.M.

    1985-01-01

    Human B cell lymphoma (Raji) growing in athymic, nude mice has been successfully treated with a single pulse dose of 131 I-labeled monoclonal antibody (Lym-1) specific for this tumor. Sequential in vivo measurements of phosphate metabolites in the tumors by 31 P surface coil nuclear magnetic resonance showed a significant initial decrease of phosphocreatine following radioimmunotherapy. Diminution of relative ATP to Pi peak area ratio suggesting tissue damage occurred within 3-4 days. The sequence of alterations of nuclear magnetic resonance spectra from tumors of treated mice were strikingly different from sequential nuclear magnetic resonance spectra obtained from tumors of control mice. These observations lead us to conclude that 31 P surface coil nuclear magnetic resonance is a promising non-invasive method for assessing and predicting the efficacy of radioimmunotherapy. Further spatial discrimination of the region of tissue observed by the surface coil nuclear magnetic resonance experiment is under exploration in an effort to increase the utility of these methods

  17. Beta-catenin accelerates human papilloma virus type-16 mediated cervical carcinogenesis in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gülay Bulut

    Full Text Available Human papilloma virus (HPV is the principal etiological agent of cervical cancer in women, and its DNA is present in virtually all of these tumors. However, exposure to the high-risk HPV types alone is insufficient for tumor development. Identifying specific collaborating factors that will lead to cervical cancer remains an unanswered question, especially because millions of women are exposed to HPV. Our earlier work using an in vitro model indicated that activation of the canonical Wnt pathway in HPV-positive epithelial cells was sufficient to induce anchorage independent growth. We therefore hypothesized that constitutive activation of this pathway might function as the "second hit." To address this possibility, we developed two double-transgenic (DT mouse models, K14-E7/ΔN87βcat and K14-HPV16/ΔN87βcat that express either the proteins encoded by the E7 oncogene or the HPV16 early region along with constitutively active β-catenin, which was expressed by linking it to the keratin-14 (K14 promoter. We initiated tumor formation by treating all groups with estrogen for six months. Invasive cervical cancer was observed in 11% of the K14-ΔN87βcat mice, expressing activated β-catenin and in 50% of the animals expressing the HPV16 E7 oncogene. In double-transgenic mice, coexpression of β-catenin and HPV16 E7 induced invasive cervical cancer at about 7 months in 94% of the cases. We did not observe cervical cancer in any group unless the mice were treated with estrogen. In the second model, K14-HPV16 mice suffered cervical dysplasias, but this phenotype was not augmented in HPV16/ΔN87βcat mice. In summary, the phenotypes of the K14-E7/ΔN87βcat mice support the hypothesis that activation of the Wnt/β-catenin pathway in HPV-associated premalignant lesions plays a functional role in accelerating cervical carcinogenesis.

  18. Radioimaging of human mammary carcinoma xenografts in nude mice with a new monoclonal antibody

    International Nuclear Information System (INIS)

    Senekowitsch, R.; Bode, W.; Kriegel, H.; Reidel, G.; Pabst, H.W.

    1986-01-01

    A female Wistar rat aged 33 days was immunized by repeated intraperitoneal injections of a cell suspension of mammary carcinoma for eight months. Spleen cells of the immunized rat were then fused with X63-Ag8.653, a mouse myeloma line. Hybridoma supernatants were screened by ELISA using cells of mammary carcinoma (MaCa) as target cells. Initially 72 hybridomas showed positive response with MaCa cells, but no cross-reaction with normal mammary tissue was seen. Clone Ma 10-11 was chosen for its stable growth in vitro and in ascitic fluid. Monoclonal antibody obtained from ascitic fluid induced by intraperitoneal injection of 10 7 hybridoma cell into BALB/c-nu/nu mice was separated from albumin and transferrin. After separation only one band positioned at 155000 MW on SDS-PAGE slabs was detected. Radiolabeling with 131 I was achieved with the Iodogen method, the efficiency of labeling was 88%. 1.85 MBq of the intact labeled rat antibody were injected into nude mice xenografted with human mammary carcinoma and scintigrams were obtained every 48 hours p.i. up to 15 days. Scintigraphic images permitted tumor detection at 3 days p.i., but good tumor localization needed 8 days p.i.. The tumor-to-blood ratios calculated after dissection of tumor-bearing mice in groups of 3 increased from 0.97 at day 3 to 3 at day 15 p.i.. No uptake of the antibody in other organs was found. The half-life of the whole body clearance of the rat immunoglobulin was 36 h. This is significantly shorter than the half-life found for mouse immunoglobulin in nude mice. (Author)

  19. In Vivo Imaging of Human Malignant Mesothelioma Grown Orthotopically in the Peritoneal Cavity of Nude Mice

    Directory of Open Access Journals (Sweden)

    Mingqian Feng, Jingli Zhang, Miriam Anver, Raffit Hassan, Mitchell Ho

    2011-01-01

    Full Text Available Malignant mesothelioma (MM causes significant morbidity and mortality in patients. With increasing efforts devoted to developing therapeutics targeting mesothelioma, a xenograft mouse model with in vivo tumor imaging is especially desired for evaluating anti-tumor therapies. In the present study, we fluorescently labeled the NCI-H226 human mesothelioma cell line by a lentiviral vector harboring a luciferase-GFP (Luc/GFP fusion gene driven by the RNA polymerase II promoter. After single-cell cloning by flow cytometry, a clone (named LMB-H226-GL that stably expresses high levels of Luc/GFP was obtained. The in vivo tumorigenicity of Luc/GFP-labeled LMB-H226-GL was determined by using intraperitoneal injections of the cells in nude mice. LMB-H226-GL was found to be able to consistently form solid tumors in the peritoneum of mice. Tumor growth and aggressive progression could be quantitated via in vivo bioluminescence imaging. The model exhibited the pathological hallmarks consistent with the clinical progression of MM in terms of tumor growth and spread inside the peritoneal cavity. To evaluate the in vivo efficacy of drugs targeting mesothelioma, we treated mice with SS1P, a recombinant immunotoxin currently evaluated in Phase II clinical trials for treatment of mesothelioma. All the tumor-bearing mice had a significant response to SS1P treatment. Our results showed that this is a well-suited model for mesothelioma, and may be useful for evaluating other novel agents for mesothelioma treatment in vivo.

  20. Evaluating Human T-Cell Therapy of Cytomegalovirus Organ Disease in HLA-Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Simone Thomas

    2015-07-01

    Full Text Available Reactivation of human cytomegalovirus (HCMV can cause severe disease in recipients of hematopoietic stem cell transplantation. Although preclinical research in murine models as well as clinical trials have provided 'proof of concept' for infection control by pre-emptive CD8 T-cell immunotherapy, there exists no predictive model to experimentally evaluate parameters that determine antiviral efficacy of human T cells in terms of virus control in functional organs, prevention of organ disease, and host survival benefit. We here introduce a novel mouse model for testing HCMV epitope-specific human T cells. The HCMV UL83/pp65-derived NLV-peptide was presented by transgenic HLA-A2.1 in the context of a lethal infection of NOD/SCID/IL-2rg-/- mice with a chimeric murine CMV, mCMV-NLV. Scenarios of HCMV-seropositive and -seronegative human T-cell donors were modeled by testing peptide-restimulated and T-cell receptor-transduced human T cells, respectively. Upon transfer, the T cells infiltrated host tissues in an epitope-specific manner, confining the infection to nodular inflammatory foci. This resulted in a significant reduction of viral load, diminished organ pathology, and prolonged survival. The model has thus proven its potential for a preclinical testing of the protective antiviral efficacy of HCMV epitope-specific human T cells in the evaluation of new approaches to an immunotherapy of CMV disease.

  1. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.

    Directory of Open Access Journals (Sweden)

    Adeline M Hajjar

    Full Text Available Although lipopolysaccharide (LPS stimulation through the Toll-like receptor (TLR-4/MD-2 receptor complex activates host defense against Gram-negative bacterial pathogens, how species-specific differences in LPS recognition impact host defense remains undefined. Herein, we establish how temperature dependent shifts in the lipid A of Yersinia pestis LPS that differentially impact recognition by mouse versus human TLR4/MD-2 dictate infection susceptibility. When grown at 37°C, Y. pestis LPS is hypo-acylated and less stimulatory to human compared with murine TLR4/MD-2. By contrast, when grown at reduced temperatures, Y. pestis LPS is more acylated, and stimulates cells equally via human and mouse TLR4/MD-2. To investigate how these temperature dependent shifts in LPS impact infection susceptibility, transgenic mice expressing human rather than mouse TLR4/MD-2 were generated. We found the increased susceptibility to Y. pestis for "humanized" TLR4/MD-2 mice directly paralleled blunted inflammatory cytokine production in response to stimulation with purified LPS. By contrast, for other Gram-negative pathogens with highly acylated lipid A including Salmonella enterica or Escherichia coli, infection susceptibility and the response after stimulation with LPS were indistinguishable between mice expressing human or mouse TLR4/MD-2. Thus, Y. pestis exploits temperature-dependent shifts in LPS acylation to selectively evade recognition by human TLR4/MD-2 uncovered with "humanized" TLR4/MD-2 transgenic mice.

  2. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.

    Science.gov (United States)

    Hajjar, Adeline M; Ernst, Robert K; Fortuno, Edgardo S; Brasfield, Alicia S; Yam, Cathy S; Newlon, Lindsay A; Kollmann, Tobias R; Miller, Samuel I; Wilson, Christopher B

    2012-01-01

    Although lipopolysaccharide (LPS) stimulation through the Toll-like receptor (TLR)-4/MD-2 receptor complex activates host defense against Gram-negative bacterial pathogens, how species-specific differences in LPS recognition impact host defense remains undefined. Herein, we establish how temperature dependent shifts in the lipid A of Yersinia pestis LPS that differentially impact recognition by mouse versus human TLR4/MD-2 dictate infection susceptibility. When grown at 37°C, Y. pestis LPS is hypo-acylated and less stimulatory to human compared with murine TLR4/MD-2. By contrast, when grown at reduced temperatures, Y. pestis LPS is more acylated, and stimulates cells equally via human and mouse TLR4/MD-2. To investigate how these temperature dependent shifts in LPS impact infection susceptibility, transgenic mice expressing human rather than mouse TLR4/MD-2 were generated. We found the increased susceptibility to Y. pestis for "humanized" TLR4/MD-2 mice directly paralleled blunted inflammatory cytokine production in response to stimulation with purified LPS. By contrast, for other Gram-negative pathogens with highly acylated lipid A including Salmonella enterica or Escherichia coli, infection susceptibility and the response after stimulation with LPS were indistinguishable between mice expressing human or mouse TLR4/MD-2. Thus, Y. pestis exploits temperature-dependent shifts in LPS acylation to selectively evade recognition by human TLR4/MD-2 uncovered with "humanized" TLR4/MD-2 transgenic mice.

  3. Enhanced engraftment of human cells in RAG2/gammac double-knockout mice after treatment with CL2MDP liposomes

    NARCIS (Netherlands)

    Rozemuller, Henk; Knaän-Shanzer, Shosh; Hagenbeek, Anton; van Bloois, Louis; Storm, Gert; Martens, Anton C. M.

    2004-01-01

    OBJECTIVE: The ability of human cells to repopulate the bone marrow of nonobese diabetic immunodeficient mice (NOD/SCID) is commonly used as a standard assay to quantify the primitive human hematopoietic stem cell population. We studied the applicability of the immunodeficient RAG2(-/-)gammac(-/-)

  4. Human Parvovirus B19 NS1 Protein Aggravates Liver Injury in NZB/W F1 Mice

    Science.gov (United States)

    Tsai, Chun-Chou; Chiu, Chun-Ching; Hsu, Jeng-Dong; Hsu, Huai-Sheng; Tzang, Bor-Show; Hsu, Tsai-Ching

    2013-01-01

    Human parvovirus B19 (B19) has been associated with a variety of diseases. However, the influence of B19 viral proteins on hepatic injury in SLE is still obscure. To elucidate the effects of B19 viral proteins on livers in SLE, recombinant B19 NS1, VP1u or VP2 proteins were injected subcutaneously into NZB/W F1 mice, respectively. Significant expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected in NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Markedly hepatocyte disarray and lymphocyte infiltration were observed in livers from NZB/WF 1 mice receiving B19 NS1 as compared to those mice receiving PBS. Additionally, significant increases of Tumor Necrosis Factor –α (TNF-α), TNF-α receptor, IκB kinase –α (IKK-α), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IκB) and nuclear factor-kappa B (NF-κB) were detected in livers from NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Accordingly, significant increases of matrix metalloproteinase-9 (MMP9) and U-plasminogen activator (uPA) were also detected in livers from NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Contrarily, no significant variation on livers from NZB/W F1 mice receiving B19 VP1u or VP2 was observed as compared to those mice receiving PBS. These findings firstly demonstrated the aggravated effects of B19 NS1 but not VP1u or VP2 protein on hepatic injury and provide a clue in understanding the role of B19 NS1 on hepatic injury in SLE. PMID:23555760

  5. Hydrodynamic delivery of plasmid DNA encoding human Fc?R-Ig dimers blocks immune-complex mediated inflammation in mice

    OpenAIRE

    Shashidharamurthy, Rangaiah; Machiah, Deepa; Bozeman, Erica N.; Srivatsan, Sanjay; Patel, Jaina; Cho, Alice; Jacob, Joshy; Selvaraj, Periasamy

    2011-01-01

    Therapeutic use and function of recombinant molecules can be studied by the expression of foreign genes in mice. In this study, we have expressed human Fcgamma receptor ?Ig fusion molecules (Fc?R-Igs) in mice by administering Fc?R-Ig plasmid DNAs hydrodynamically and compared their effectiveness to purified molecules in blocking immune-complex (IC) mediated inflammation in mice. The concentration of hydrodynamically expressed Fc?R-Igs (CD16AF-Ig, CD32AR-Ig and CD32AH-Ig) reached a maximum of ...

  6. Striatal dopamine transmission is subtly modified in human A53Tα-synuclein overexpressing mice.

    Directory of Open Access Journals (Sweden)

    Nicola J Platt

    Full Text Available Mutations in, or elevated dosage of, SNCA, the gene for α-synuclein (α-syn, cause familial Parkinson's disease (PD. Mouse lines overexpressing the mutant human A53Tα-syn may represent a model of early PD. They display progressive motor deficits, abnormal cellular accumulation of α-syn, and deficits in dopamine-dependent corticostriatal plasticity, which, in the absence of overt nigrostriatal degeneration, suggest there are age-related deficits in striatal dopamine (DA signalling. In addition A53Tα-syn overexpression in cultured rodent neurons has been reported to inhibit transmitter release. Therefore here we have characterized for the first time DA release in the striatum of mice overexpressing human A53Tα-syn, and explored whether A53Tα-syn overexpression causes deficits in the release of DA. We used fast-scan cyclic voltammetry to detect DA release at carbon-fibre microelectrodes in acute striatal slices from two different lines of A53Tα-syn-overexpressing mice, at up to 24 months. In A53Tα-syn overexpressors, mean DA release evoked by a single stimulus pulse was not different from wild-types, in either dorsal striatum or nucleus accumbens. However the frequency responsiveness of DA release was slightly modified in A53Tα-syn overexpressors, and in particular showed slight deficiency when the confounding effects of striatal ACh acting at presynaptic nicotinic receptors (nAChRs were antagonized. The re-release of DA was unmodified after single-pulse stimuli, but after prolonged stimulation trains, A53Tα-syn overexpressors showed enhanced recovery of DA release at old age, in keeping with elevated striatal DA content. In summary, A53Tα-syn overexpression in mice causes subtle changes in the regulation of DA release in the striatum. While modest, these modifications may indicate or contribute to striatal dysfunction.

  7. Leucine supplementation attenuates macrophage foam-cell formation: Studies in humans, mice, and cultured macrophages.

    Science.gov (United States)

    Grajeda-Iglesias, Claudia; Rom, Oren; Hamoud, Shadi; Volkova, Nina; Hayek, Tony; Abu-Saleh, Niroz; Aviram, Michael

    2018-02-05

    Whereas atherogenicity of dietary lipids has been largely studied, relatively little is known about the possible contribution of dietary amino acids to macrophage foam-cell formation, a hallmark of early atherogenesis. Recently, we showed that leucine has antiatherogenic properties in the macrophage model system. In this study, an in-depth investigation of the role of leucine in macrophage lipid metabolism was conducted by supplementing humans, mice, or cultured macrophages with leucine. Macrophage incubation with serum obtained from healthy adults supplemented with leucine (5 g/d, 3 weeks) significantly decreased cellular cholesterol mass by inhibiting the rate of cholesterol biosynthesis and increasing cholesterol efflux from macrophages. Similarly, leucine supplementation to C57BL/6 mice (8 weeks) resulted in decreased cholesterol content in their harvested peritoneal macrophages (MPM) in relation with reduced cholesterol biosynthesis rate. Studies in J774A.1 murine macrophages revealed that leucine dose-dependently decreased cellular cholesterol and triglyceride mass. Macrophages treated with leucine (0.2 mM) showed attenuated uptake of very low-density lipoproteins and triglyceride biosynthesis rate, with a concurrent down-regulation of diacylglycerol acyltransferase-1, a key enzyme catalyzing triglyceride biosynthesis in macrophages. Similar effects were observed when macrophages were treated with α-ketoisocaproate, a key leucine metabolite. Finally, both in vivo and in vitro leucine supplementation significantly improved macrophage mitochondrial respiration and ATP production. The above studies, conducted in human, mice, and cultured macrophages, highlight a protective role for leucine attenuating macrophage foam-cell formation by mechanisms related to the metabolism of cholesterol, triglycerides, and energy production. © 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  8. Assessment of benzene-induced hematotoxicity using a human-like hematopoietic lineage in NOD/Shi-scid/IL-2Rγnull mice.

    Directory of Open Access Journals (Sweden)

    Masayuki Takahashi

    Full Text Available Despite recent advancements, it is still difficult to evaluate in vivo responses to toxicants in humans. Development of a system that can mimic the in vivo responses of human cells will enable more accurate health risk assessments. A surrogate human hematopoietic lineage can be established in NOD/Shi-scid/IL-2Rγ(null (NOG mice by transplanting human hematopoietic stem/progenitor cells (Hu-NOG mice. Here, we first evaluated the toxic response of human-like hematopoietic lineage in NOG mice to a representative toxic agent, benzene. Flow cytometric analysis showed that benzene caused a significant decrease in the number of human hematopoietic stem/progenitor cells in the bone marrow and the number of human leukocytes in the peripheral blood and hematopoietic organs. Next, we established chimeric mice by transplanting C57BL/6 mouse-derived bone marrow cells into NOG mice (Mo-NOG mice. A comparison of the degree of benzene-induced hematotoxicity in donor-derived hematopoietic lineage cells within Mo-NOG mice indicated that the toxic response of Hu-NOG mice reflected interspecies differences in susceptibilities to benzene. Responses to the toxic effects of benzene were greater in lymphoid cells than in myeloid cells in Mo-NOG and Hu-NOG mice. These findings suggested that Hu-NOG mice may be a powerful in vivo tool for assessing hematotoxicity in humans, while accounting for interspecies differences.

  9. The utility of the new generation of humanized mice to study HIV-1 infection: transmission, prevention, pathogenesis, and treatment

    Directory of Open Access Journals (Sweden)

    Rowan Mark R

    2011-08-01

    Full Text Available Abstract Substantial improvements have been made in recent years in the ability to engraft human cells and tissues into immunodeficient mice. The use of human hematopoietic stem cells (HSCs leads to multi-lineage human hematopoiesis accompanied by production of a variety of human immune cell types. Population of murine primary and secondary lymphoid organs with human cells occurs, and long-term engraftment has been achieved. Engrafted cells are capable of producing human innate and adaptive immune responses, making these models the most physiologically relevant humanized animal models to date. New models have been successfully infected by a variety of strains of Human Immunodeficiency Virus Type 1 (HIV-1, accompanied by virus replication in lymphoid and non-lymphoid organs, including the gut-associated lymphoid tissue, the male and female reproductive tracts, and the brain. Multiple forms of virus-induced pathogenesis are present, and human T cell and antibody responses to HIV-1 are detected. These humanized mice are susceptible to a high rate of rectal and vaginal transmission of HIV-1 across an intact epithelium, indicating the potential to study vaccines and microbicides. Antiviral drugs, siRNAs, and hematopoietic stem cell gene therapy strategies have all been shown to be effective at reducing viral load and preventing or reversing helper T cell loss in humanized mice, indicating that they will serve as an important preclinical model to study new therapeutic modalities. HIV-1 has also been shown to evolve in response to selective pressures in humanized mice, thus showing that the model will be useful to study and/or predict viral evolution in response to drug or immune pressures. The purpose of this review is to summarize the findings reported to date on all new humanized mouse models (those transplanted with human HSCs in regards to HIV-1 sexual transmission, pathogenesis, anti-HIV-1 immune responses, viral evolution, pre- and post

  10. Reconstitution activity of hypoxic cultured human cord blood CD34-positive cells in NOG mice

    International Nuclear Information System (INIS)

    Shima, Haruko; Takubo, Keiyo; Iwasaki, Hiroko; Yoshihara, Hiroki; Gomei, Yumiko; Hosokawa, Kentaro; Arai, Fumio; Takahashi, Takao; Suda, Toshio

    2009-01-01

    Hematopoietic stem cells (HSCs) reside in hypoxic areas of the bone marrow. However, the role of hypoxia in the maintenance of HSCs has not been fully characterized. We performed xenotransplantation of human cord blood cells cultured in hypoxic or normoxic conditions into adult NOD/SCID/IL-2Rγ null (NOG) mice. Hypoxic culture (1% O 2 ) for 6 days efficiently supported the maintenance of HSCs, although cell proliferation was suppressed compared to the normoxic culture. In contrast, hypoxia did not affect in vitro colony-forming ability. Upregulation of a cell cycle inhibitor, p21, was observed in hypoxic culture. Immunohistochemical analysis of recipient bone marrow revealed that engrafted CD34 + CD38 - cord blood HSCs were hypoxic. Taken together, these results demonstrate the significance of hypoxia in the maintenance of quiescent human cord blood HSCs.

  11. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans.

    Science.gov (United States)

    Efstathiou, S; Minson, A C; Field, H J; Anderson, J R; Wildy, P

    1986-02-01

    Herpes simplex virus-specific DNA sequences have been detected by Southern hybridization analysis in both central and peripheral nervous system tissues of latently infected mice. We have detected virus-specific sequences corresponding to the junction fragment but not the genomic termini, an observation first made by Rock and Fraser (Nature [London] 302:523-525, 1983). This "endless" herpes simplex virus DNA is both qualitatively and quantitatively stable in mouse neural tissue analyzed over a 4-month period. In addition, examination of DNA extracted from human trigeminal ganglia has shown herpes simplex virus DNA to be present in an "endless" form similar to that found in the mouse model system. Further restriction enzyme analysis of latently infected mouse brainstem and human trigeminal DNA has shown that this "endless" herpes simplex virus DNA is present in all four isomeric configurations.

  12. UV-sensitive photoreceptor protein OPN5 in humans and mice.

    Science.gov (United States)

    Kojima, Daisuke; Mori, Suguru; Torii, Masaki; Wada, Akimori; Morishita, Rika; Fukada, Yoshitaka

    2011-01-01

    A variety of animal species utilize the ultraviolet (UV) component of sunlight as their environmental cues, whereas physiological roles of UV photoreception in mammals, especially in human beings, remain open questions. Here we report that mouse neuropsin (OPN5) encoded by the Opn5 gene exhibited an absorption maximum (λmax) at 380 nm when reconstituted with 11-cis-retinal. Upon UV-light illumination, OPN5 was converted to a blue-absorbing photoproduct (λmax 470 nm), which was stable in the dark and reverted to the UV-absorbing state by the subsequent orange light illumination, indicating its bistable nature. Human OPN5 also had an absorption maximum at 380 nm with spectral properties similar to mouse OPN5, revealing that OPN5 is the first and hitherto unknown human opsin with peak sensitivity in the UV region. OPN5 was capable of activating heterotrimeric G protein Gi in a UV-dependent manner. Immuno-blotting analyses of mouse tissue extracts identified the retina, the brain and, unexpectedly, the outer ears as the major sites of OPN5 expression. In the tissue sections of mice, OPN5 immuno-reactivities were detected in a subset of non-rod/non-cone retinal neurons as well as in the epidermal and muscle cells of the outer ears. Most of these OPN5-immuno-reactivities in mice were co-localized with positive signals for the alpha-subunit of Gi. These results demonstrate the first example of UV photoreceptor in human beings and strongly suggest that OPN5 triggers a UV-sensitive Gi-mediated signaling pathway in the mammalian tissues.

  13. Therapeutic effect of recombinant human interleukin-11 and curcumin on jejunal damage in mice after neutron irradiation

    International Nuclear Information System (INIS)

    Chang Gongmin; Peng Ruiyun; Gao Yabing; Wang Shuiming; Li Yang; Xu Xinping; Wang Lifeng; Dong Ji; Zhao Li

    2010-01-01

    Objective: To explore the therapeutic effect of recombinant human interleukin (rhIL-11) and curcumin on jejunal damage in mice after neutron irradiation. Methods: 140 male BALB/c mice were randomly divided into 4 groups: 20 mice in healthy control group, 60 mice in mere irradiation group, 30 mice in IL-11 treatment group and 30 mice in curcumin treatment group. The mere irradiation group mice were wholly exposed to 3 Gy neutron irradiation. The treatment groups mice were imtraperitoneally injected with rhIL-11 at the dosage of 500 μg·kg -1 ·d -1 and ourcumin of 200 mg·kg -1 ·/ -1 through enterocoelia once a day for a d after irradiation. The mortality of the mice were observed. The mice in the control and mere irradiation groups were killed 6 h, 1, 3, and 6 d post-irradiation, respectively, and the mice of the 2 treatment groups were killed 3 and 6 d post-irradiation, respectively and the samples of jujunum were colleted. HE staining, argyrophilic of nucleolar organizer staining, Feulgen staining, and image analysis were used to observe the pathology and levels of argyrophilic proteins and DNA. Results: The mice in the mere irradiation group all died at 5 d post-irradiation, while 2 mice in the IL-11 treatment group and 3 in the curcumin group survived. Large area necrosis and exfoliation were found in the intestinal epithelial mucosa of the mere irradiated group mice since 6 h to 3 d after irradiation. Crypt cell regeneration was seen occasionally found 3 days later and much more 5 days later. Crypt cell regeneration was obviously found in the intestinal epithelial mucosa and lots of new villi were observed 5 d after irradiation in both treatment groups, however, the amounts of crypt cells and new villi of the curcumin treatment group were less than those of the IL-11 treatment group. The contents of AgNOR and DNA in the intestinal epithelial cells 5 days after irradiation of the 2 treatment groups were all significantly higher than those of the mere

  14. Human endometrial regenerative cells alleviate carbon tetrachloride-induced acute liver injury in mice

    Directory of Open Access Journals (Sweden)

    Shanzheng Lu

    2016-10-01

    Full Text Available Abstract Background The endometrial regenerative cell (ERC is a novel type of adult mesenchymal stem cell isolated from menstrual blood. Previous studies demonstrated that ERCs possess unique immunoregulatory properties in vitro and in vivo, as well as the ability to differentiate into functional hepatocyte-like cells. For these reasons, the present study was undertaken to explore the effects of ERCs on carbon tetrachloride (CCl4–induced acute liver injury (ALI. Methods An ALI model in C57BL/6 mice was induced by administration of intraperitoneal injection of CCl4. Transplanted ERCs were intravenously injected (1 million/mouse into mice 30 min after ALI induction. Liver function, pathological and immunohistological changes, cell tracking, immune cell populations and cytokine profiles were assessed 24 h after the CCl4 induction. Results ERC treatment effectively decreased the CCl4-induced elevation of serum alanine aminotransferase (ALT and aspartate aminotransferase (AST activities and improved hepatic histopathological abnormalities compared to the untreated ALI group. Immunohistochemical staining showed that over-expression of lymphocyte antigen 6 complex, locus G (Ly6G was markedly inhibited, whereas expression of proliferating cell nuclear antigen (PCNA was increased after ERC treatment. Furthermore, the frequency of CD4+ and CD8+ T cell populations in the spleen was significantly down-regulated, while the percentage of splenic CD4+CD25+FOXP3+ regulatory T cells (Tregs was obviously up-regulated after ERC treatment. Moreover, splenic dendritic cells in ERC-treated mice exhibited dramatically decreased MHC-II expression. Cell tracking studies showed that transplanted PKH26-labeled ERCs engrafted to lung, spleen and injured liver. Compared to untreated controls, mice treated with ERCs had lower levels of IL-1β, IL-6, and TNF-α but higher level of IL-10 in both serum and liver. Conclusions Human ERCs protect the liver from acute injury

  15. Study on therapy of 188Re labelled stannic sulfur suspension in nude mice bearing human colon tumor

    International Nuclear Information System (INIS)

    Li Huiyuan; Wu Yuanfang; Dong Mo

    2003-01-01

    The effect of therapy, tissue distribution and stability are studied in nude mice bearing human colon tumor after injections of 188 Re labelled stannic sulfur suspension. The tissues are observed with electric microscope. The results show that 188 Re labelled stannic sulfur suspension is stabilized in the tumor and its inhibitive effects on human colon tumor cells are obvious. 188 Re labelled stannic sulfur suspension is a potential radiopharmaceuticals for therapy of human tumor

  16. Human dosimetric estimation of O-(2-18F-fluoroethyl)-L-tyrosine based on mice biodistribution data

    International Nuclear Information System (INIS)

    Tang Ganghua; Wang Mingfang; Luo Lei; Gan Manquan; Tang Xiaolan

    2004-01-01

    To estimate the human radiation absorbed doses of O-(2- 18 F-fluoroethyl)-L-tyrosine (FET), mice are considered as model. FET is injected into mice through a tail vein. At 10, 30, 60, 120 and 180 min after injection, the mice are killed by cervical fracture and the biodistribution in mice are determined. Human dosimetric estimation is performed from the biodistribution of FET in mice and the standard Medical Internal Radiation Dose (MIRD) method using time-fractional radioactivity curves for humans. The bone in human is the organ receiving highest dose of 4.78 pGy/Bq, the brain and the whole body receive the lowest dose of 1.6 pGy/Bq, and other organs receive doses between 1.6 and 3.5 pGy/Bq. The effective dose is estimated to be 9.0 pSv/Bq. The data show that a 370 MBq injection of FET leads to an estimated effective dose of 3.3 mSv, which is in the range of routine nuclear medicine investigations. The potential radiation risks associated with this study are well within accepted limits

  17. Inhibitory effects of 3-bromopyruvate on human gastric cancer implant tumors in nude mice.

    Science.gov (United States)

    Xian, Shu-Lin; Cao, Wei; Zhang, Xiao-Dong; Lu, Yun-Fei

    2014-01-01

    Gastric cancer is a common malignant tumor. Our previous study demonstrated inhibitory effects of 3-bromopyruvate (3-BrPA) on pleural mesothelioma. Moreover, we found that 3-BrPA could inhibit human gastric cancer cell line SGC-7901 proliferation in vitro, but whether similar effects might be exerted in vivo have remained unclear. To investigate the effect of 3-BrPA to human gastric cancer implant tumors in nude mice. Animals were randomly divided into 6 groups: 3-BrPA low, medium and high dose groups, PBS negative control group 1 (PH7.4), control group 2 (PH 6.8-7.8) and positive control group receiving 5-FU. The TUNEL method was used to detect apoptosis, and cell morphology and structural changes of tumor tissue were observed under transmission electron microscopy (TEM). 3-BrPA low, medium, high dose group, and 5-FU group, the tumor volume inhibition rates were 34.5%, 40.2%, 45.1%, 47.3%, tumor volume of experimental group compared with 2 PBS groups (p0.05). TEM showed typical characteristics of apoptosis. TUNEL demonstrated apoptosis indices of 28.7%, 39.7%, 48.7% for the 3-BrPA low, medium, high dose groups, 42.2% for the 5-FU group and 5% and 4.3% for the PBS1 (PH7.4) and PBS2 (PH6.8-7.8) groups. Compared each experimental group with 2 negative control groups, there was significant difference (p0.05), but there was between the 5-FU and high dose groups (p<0.05). This study indicated that 3-BrPA in vivo has strong inhibitory effects on human gastric cancer implant tumors in nude mice .

  18. Quantitative Expression of C-Type Lectin Receptors in Humans and Mice

    Science.gov (United States)

    Lech, Maciej; Susanti, Heni Eka; Römmele, Christoph; Gröbmayr, Regina; Günthner, Roman; Anders, Hans-Joachim

    2012-01-01

    C-type lectin receptors and their adaptor molecules are involved in the recognition of glycosylated self-antigens and pathogens. However, little is known about the species- and organ-specific expression profiles of these molecules. We therefore determined the mRNA expression levels of Dectin-1, MR1, MR2, DC-SIGN, Syk, Card-9, Bcl-10, Malt-1, Src, Dec-205, Galectin-1, Tim-3, Trem-1, and DAP-12 in 11 solid organs of human and mice. Mouse organs revealed lower mRNA levels of most molecules compared to spleen. However, Dec-205 and Galectin-1 in thymus, Src in brain, MR2, Card-9, Bcl-10, Src, and Dec-205 in small intestine, MR2, Bcl-10, Src, Galectin-1 in kidney, and Src and Galectin-1 in muscle were at least 2-fold higher expressed compared to spleen. Human lung, liver and heart expressed higher mRNA levels of most genes compared to spleen. Dectin-1, MR1, Syk and Trem-1 mRNA were strongly up-regulated upon ischemia-reperfusion injury in murine kidney. Tim3, DAP-12, Card-9, DC-SIGN and MR2 were further up-regulated during renal fibrosis. Murine kidney showed higher DAP-12, Syk, Card-9 and Dectin-1 mRNA expression during the progression of lupus nephritis. Thus, the organ-, and species-specific expression of C-type lectin receptors is different between mice and humans which must be considered in the interpretation of related studies. PMID:22949850

  19. In utero transplantation of human bone marrow-derived multipotent mesenchymal stem cells in mice.

    Science.gov (United States)

    Chou, Shiu-Huey; Kuo, Tom K; Liu, Ming; Lee, Oscar K

    2006-03-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can be isolated from human bone marrow and possess the potential to differentiate into progenies of embryonic mesoderm. However, current evidence is based predominantly on in vitro experiments. We used a murine model of in utero transplantation (IUT) to study the engraftment capabilities of human MSCs. MSCs were obtained from bone marrow by negative immunoselection and limiting dilution, and were characterized by flow cytometry and by in vitro differentiation into osteoblasts, chondrocytes, and adipocytes. MSCs were transplanted into fetal mice at a gestational age of 14 days. Engraftment of human MSCs was determined by flow cytometry, polymerase chain reaction, and fluorescence in situ hybridization (FISH). MSCs engrafted into tissues originating from all three germ layers and persisted for up to 4 months or more after delivery, as evidenced by the expression of the human-specific beta-2 microglobulin gene and by FISH for donor-derived cells. Donor-derived CD45+ cells were detectable in the peripheral blood of recipients, suggesting the participation of MSCs in hematopoiesis at the fetal stage. This model can further serve to evaluate possible applications of MSCs. Copyright 2006 Orthopaedic Research Society.

  20. Characterization of the melanoma brain metastatic niche in mice and humans

    International Nuclear Information System (INIS)

    Amit, Moran; Laider-Trejo, Leonor; Shalom, Vardit; Shabtay-Orbach, Ayelet; Krelin, Yakov; Gil, Ziv

    2013-01-01

    Brain metastases occur in 15% of patients with melanoma and are associated with a dismal prognosis. Here, we investigate the architectural phenotype and stromal reaction of melanoma brain metastasis in mice and humans. A syngeneic, green fluorescence protein (GFP)-expressing murine B16-F1 melanoma clone was introduced via intracardiac injection, and was examined in vivo in comparison with human specimens. Immunofluorescence analyses of the brain metastases revealed that F4/80 + macrophages/microglia were most abundant at the tumor front, but rare in its core, where they were found only around blood vessels (P = 0.01). Similar pattern of infiltration was found in CD3 + T cells (P < 0.01). Infiltrating T cells were prominently CD4 + compared with CD8 + T cells (P < 0.001). Blood vessels (CD31 + ) were less abundant at the tumor front than in its center (12 ± 1 vs. 4 ± 0.6 vessels per high-power field [HPF], P < 0.001). In contrast, there were few vessels at the tumor front, but their diameter was significantly larger at the front (8236 μm 2 vs. 4617 μm 2 average cross-sectional area, P < 0.005). This is the first comparative analysis of melanoma brain metastases showing similar stromal reaction in murine models and human specimens. Our results validate the utility of this murine model of melanoma brain metastases for investigating the mechanism of the human disease

  1. Brain neuronal CB2 cannabinoid receptors in drug abuse and depression: from mice to human subjects.

    Directory of Open Access Journals (Sweden)

    Emmanuel S Onaivi

    Full Text Available BACKGROUND: Addiction and major depression are mental health problems associated with stressful events in life with high relapse and reoccurrence even after treatment. Many laboratories were not able to detect the presence of cannabinoid CB2 receptors (CB2-Rs in healthy brains, but there has been demonstration of CB2-R expression in rat microglial cells and other brain associated cells during inflammation. Therefore, neuronal expression of CB2-Rs had been ambiguous and controversial and its role in depression and substance abuse is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study we tested the hypothesis that genetic variants of CB2 gene might be associated with depression in a human population and that alteration in CB2 gene expression may be involved in the effects of abused substances including opiates, cocaine and ethanol in rodents. Here we demonstrate that a high incidence of (Q63R but not (H316Y polymorphism in the CB2 gene was found in Japanese depressed subjects. CB2-Rs and their gene transcripts are expressed in the brains of naïve mice and are modulated following exposure to stressors and administration of abused drugs. Mice that developed alcohol preference had reduced CB2 gene expression and chronic treatment with JWH015 a putative CB2-R agonist, enhanced alcohol consumption in stressed but not in control mice. The direct intracerebroventricular microinjection of CB2 anti-sense oligonucleotide into the mouse brain reduced mouse aversions in the plus-maze test, indicating the functional presence of CB2-Rs in the brain that modifies behavior. We report for the using electron microscopy the sub cellular localization of CB2-Rs that are mainly on post-synaptic elements in rodent brain. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate the functional expression of CB2-Rs in brain that may provide novel targets for the effects of cannabinoids in depression and substance abuse disorders beyond neuro-immunocannabinoid activity.

  2. Skin graft influence in human tissue radiated in nude mice regeneration

    International Nuclear Information System (INIS)

    Miranda, Jurandir Tomaz de

    2016-01-01

    Over the last few years it has increased the interest in the human skin grafts radio sterilized for application mainly in extensive and deep burns. Because these grafts quickly grip and present antigenic lower potential, compared with other treatments used. The purpose of this study was to evaluate the histoarchitecture of human skin grafts irradiated with doses 25 kGy, 50 kGy and non-irradiated during the repair tissue process in nude mice submitted by skin grafting in the dorsal region. Three groups of animals received irradiated human skin grafts (25 kGy and 50 kGy) and non-irradiated and were euthanized on the 3 rd , 7 th and 21 th day after the surgery. Indeed, routine histologic procedures, tissue samples were stained with hematoxylin and eosin (HE) for quantification of keratinocytes, fibroblasts, immune cells and blood vessels and immunofluorescence (IF) was performed to determine the expression human collagen type I and collagen type I and III mouse. Therefore, quantification of both the cells and the collagen types was performed by image analysis using Image-Pro Plus 6.0 software. Histologic results demonstrated at a dose of 25 kGy that human skin irradiation when grafted influences the increase in the number of cells in wound site over time and it provides better dispersion of these cells. In addition, on the 21 st day, three groups of animals with human skin graft were embedded part of the graft in the healing process. On the other hand, the group not irradiated showed greater incorporation of the graft (43 %), but less production of collagen type III mouse (22 %). Since the groups irradiated skin graft showed lower graft incorporation (6 and 15%), but with greater production of collagen type III mice (35 % and 28 % to 25 kGy and 50 kGy, respectively). In conclusion, this study presented that the group irradiated to 25 kGy and it has a higher cell proliferation and vessel formation, and better remodeling of the healing area. (author)

  3. Humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice sustain the complex vertebrate life cycle of Plasmodium falciparum malaria.

    Science.gov (United States)

    Wijayalath, Wathsala; Majji, Sai; Villasante, Eileen F; Brumeanu, Teodor D; Richie, Thomas L; Casares, Sofia

    2014-09-30

    Malaria is a deadly infectious disease affecting millions of people in tropical and sub-tropical countries. Among the five species of Plasmodium parasites that infect humans, Plasmodium falciparum accounts for the highest morbidity and mortality associated with malaria. Since humans are the only natural hosts for P. falciparum, the lack of convenient animal models has hindered the understanding of disease pathogenesis and prompted the need of testing anti-malarial drugs and vaccines directly in human trials. Humanized mice hosting human cells represent new pre-clinical models for infectious diseases that affect only humans. In this study, the ability of human-immune-system humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice to sustain infection with P. falciparum was explored. Four week-old DRAG mice were infused with HLA-matched human haematopoietic stem cells (HSC) and examined for reconstitution of human liver cells and erythrocytes. Upon challenge with infectious P. falciparum sporozoites (NF54 strain) humanized DRAG mice were examined for liver stage infection, blood stage infection, and transmission to Anopheles stephensi mosquitoes. Humanized DRAG mice reconstituted human hepatocytes, Kupffer cells, liver endothelial cells, and erythrocytes. Upon intravenous challenge with P. falciparum sporozoites, DRAG mice sustained liver to blood stage infection (average 3-5 parasites/microlitre blood) and allowed transmission to An. stephensi mosquitoes. Infected DRAG mice elicited antibody and cellular responses to the blood stage parasites and self-cured the infection by day 45 post-challenge. DRAG mice represent the first human-immune-system humanized mouse model that sustains the complex vertebrate life cycle of P. falciparum without the need of exogenous injection of human hepatocytes/erythrocytes or P. falciparum parasite adaptation. The ability of DRAG mice to elicit specific human immune responses to P. falciparum parasites may help deciphering immune correlates

  4. Role of Human Na,K-ATPase alpha 4 in Sperm Function, Derived from Studies in Transgenic Mice

    Science.gov (United States)

    McDermott, Jeffrey; Sánchez, Gladis; Nangia, Ajay K.; Blanco, Gustavo

    2014-01-01

    SUMMARY Most of our knowledge on the biological role of the testis-specific Na,K-ATPase alpha 4 isoform derives from studies performed in non-human species. Here, we studied the function of human Na,K-ATPase alpha 4 after its expression in transgenic mice. Using a bacterial artificial chromosome (BAC) construct, containing the human ATP1A4 gene locus, we obtained expression of the human α4 transgene specifically in mouse sperm, enriched in the sperm flagellum. The expressed, human alpha 4 was active, and compared to wild-type sperm, those from transgenic mice displayed higher Na,K-ATPase alpha 4 activity and greater binding of fluorescently labeled ouabain, which is typical of the alpha 4 isoform. The expression and activity of endogenous alpha 4 and the other Na,K-ATPase alpha isoform present in sperm, alpha 1, remained unchanged. Male mice expressing the human ATP1A4 transgene exhibited similar testis size and morphology, normal sperm number and shape, and no changes in overall fertility compared to wild-type mice. Sperm carrying the human transgene exhibited enhanced total motility and an increase in multiple parameters of sperm movement, including higher sperm hyperactive motility. In contrast, no statistically significant changes in sperm membrane potential, protein tyrosine phosphorylation, or spontaneous acrosome reaction were found between wild-type and transgenic mice. Altogether, these results provide new genetic evidence for an important role of human Na,K-ATPase alpha 4 in sperm motility and hyperactivation, and establishes a new animal model for future studies of this isoform. PMID:25640246

  5. Genome scan identifies a locus affecting gamma-globin expression in human beta-cluster YAC transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.D.; Cooper, P.; Fung, J.; Weier, H.U.G.; Rubin, E.M.

    2000-03-01

    Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression of human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.

  6. Effect of Agaricus blazei Murrill extract on HT-29 human colon cancer cells in SCID mice in vivo.

    Science.gov (United States)

    Wu, Ming-Fang; Chen, Yung-Liang; Lee, Mei-Hui; Shih, Yung-Luen; Hsu, Yu-Ming; Tang, Ming-Chu; Lu, Hsu-Feng; Tang, Nou-Ying; Yang, Su-Tso; Chueh, Fu-Shin; Chung, Jing-Gung

    2011-01-01

    Agaricus blazei Murrill (ABM) popularly known as 'Cogumelo do Sol' in Brazil, or 'Himematsutake' in Japan, is a mushroom native to Brazil and widely cultivated in Japan for its medicinal uses and is now considered one of the most important edible and culinary-medicinal biotechnological species. This study is the first tumor growth model to evaluate the amelioratory effect of ABM extract using HT-29 human colon cancer cells in severe combined immunodeficiency (SCID) mice. Forty SCID mice were inoculated with HT-29 cells to induce tumor formation and were then divided into four groups. All the four groups (control, low, medium and high concentration treatment) of mice were separately orally administered 0 mg, 1.125 mg, 4.5 mg or 45 mg ABM extract daily. After six weeks of treatment, 8 out of the 40 mice had not survived including one mouse which scored +++ (tumor up to 15 mm diameter) and four mice which scored ++++ (tumor over 15 mm diameter) in the control group and three mice which scored ++++ on the low-dose ABM treatment. After high- or medium-dose treatment, all ten mice in each group survived. The oral administration of ABM does not prevent tumor growth, as shown by increased tumor mass, but compared with the control group, the tumor mass seems to grow more slowly depending on the ABM dose.

  7. Disturbed α-Cell Function in Mice with β-Cell Specific Overexpression of Human Islet Amyloid Polypeptide

    Directory of Open Access Journals (Sweden)

    Bo Ahrén

    2008-01-01

    Full Text Available Exogenous administration of islet amyloid polypeptide (IAPP has been shown to inhibit both insulin and glucagon secretion. This study examined α-cell function in mice with β-cell specific overexpression of human IAPP (hIAPP after an oral protein gavage (75 mg whey protein/mouse. Baseline glucagon levels were higher in transgenic mice (41±4.0 pg/mL, n=6 than in wildtype animals (19±5.1 pg/mL, n=5, P=.015. In contrast, the glucagon response to protein was impaired in transgenic animals (21±2.7 pg/mL in transgenic mice versus 38±5.7 pg/mL in wildtype mice at 15 minutes; P=.027. Baseline insulin levels did not differ between the groups, while the insulin response, as the glucagon response, was impaired after protein challenge (P=.018. Glucose levels were not different between the groups and did not change significantly after protein gavage. Acetaminophen was given through gavage to the animals (2 mg/mouse to estimate gastric emptying. The plasma acetaminophen profile was similar in the two groups of mice. We conclude that disturbances in glucagon secretion exist in mice with β-cell specific overexpression of human IAPP, which are not secondary to changes in gastric emptying. The reduced glucagon response to protein challenge may reflect a direct inhibitory influence of hIAPP on glucagon secretion.

  8. Ocular myasthenia gravis induced by human acetylcholine receptor ϵ subunit immunization in HLA DR3 transgenic mice.

    Science.gov (United States)

    Wu, Xiaorong; Tuzun, Erdem; Saini, Shamsher S; Wang, Jun; Li, Jing; Aguilera-Aguirre, Leopoldo; Huda, Ruksana; Christadoss, Premkumar

    2015-12-01

    Extraocular muscles (EOM) are preferentially involved in myasthenia gravis (MG) and acetylcholine receptor (AChR) antibody positive MG patients may occasionally present with isolated ocular symptoms. Although experimental autoimmune myasthenia gravis (EAMG) induced by whole AChR immunization closely mimics clinical and immunopathological aspects of MG, EOM are usually not affected. We have previously developed an EAMG model, which imitates EOM symptoms of MG by immunization of human leukocyte antigen (HLA) transgenic mice with α or γ-subunits of human AChR (H-AChR). To investigate the significance of the ϵ-subunit in ocular MG, we immunized HLA-DR3 and HLA-DQ8 transgenic mice with recombinant H-AChR ϵ-subunit expressed in Escherichia coli. HLA-DR3 transgenic mice showed significantly higher clinical ocular and generalized MG severity scores and lower grip strength values than HLA-DQ8 mice. H-AChR ϵ-subunit-immunized HLA-DR3 transgenic mice had higher serum anti-AChR antibody (IgG, IgG1, IgG2b, IgG2c and IgM) levels, neuromuscular junction IgG and complement deposit percentages than ϵ-subunit-immunized HLA-DQ8 transgenic mice. Control mice immunized with E. coli extract or complete Freund adjuvant (CFA) did not show clinical and immunopathological features of ocular and generalized EAMG. Lymph node cells of ϵ-subunit-immunized HLA-DR3 mice showed significantly higher proliferative responses than those of ϵ-subunit-immunized HLA-DQ8 mice, crude E. coli extract-immunized and CFA-immunized transgenic mice. Our results indicate that the human AChR ϵ-subunit is capable of inducing myasthenic muscle weakness. Diversity of the autoimmune responses displayed by mice expressing different HLA class II molecules suggests that the interplay between HLA class II alleles and AChR subunits might have a profound impact on the clinical course of MG. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  9. Olfactory Dysfunctions and Decreased Nitric Oxide Production in the Brain of Human P301L Tau Transgenic Mice.

    Science.gov (United States)

    Hu, Yang; Ding, Wenting; Zhu, Xiaonan; Chen, Ruzhu; Wang, Xuelan

    2016-04-01

    Different patterns of olfactory dysfunction have been found in both patients and mouse models of Alzheimer's Disease. However, the underlying mechanism of the dysfunction remained unknown. Deficits of nitric oxide production in brain can cause olfactory dysfunction by preventing the formation of olfactory memory. The aim of this study was to investigate the behavioral changes in olfaction and alterations in metabolites of nitric oxide, nitrate/nitrite concentration, in the brain of human P301L tau transgenic mice. The tau mice showed impairments in olfaction and increased abnormal phosphorylation of Tau protein at AT8 in different brain areas, especially in olfactory bulb. We now report that these olfactory deficits and Tau pathological changes were accompanied by decreased nitrate/nitrite concentration in the brain, especially in the olfactory bulb, and reduced expression of nNOS in the brain of tau mice. These findings provided evidence of olfactory dysfunctions correlated with decreased nitric oxide production in the brain of tau mice.

  10. Plasma levels of 27-hydroxycholesterol in humans and mice with monogenic disturbances of high density lipoprotein metabolism

    DEFF Research Database (Denmark)

    Karuna, Ratna; Holleboom, Adriaan G; Motazacker, Mohammad M

    2011-01-01

    Secretion of 27-hydroxycholesterol (27OHC) from macrophages is considered as an alternative to HDL-mediated reverse transport of excess cholesterol. We investigated 27OHC-concentrations in plasma of humans and mice with monogenic disorders of HDL metabolism. As compared to family controls mutations...... activities of LCAT and CETP, respectively, than the formation and transfer of cholesterylesters. 27OHC plasma levels were also decreased in apoA-I-, ABCA1- or LCAT-knockout mice but increased in SR-BI-knockout mice. Transplantation of ABCA1- and/or ABCG1-deficient bone marrow into LDL receptor deficient mice...... decreased plasma levels of 27OHC. In conclusion, mutations or absence of HDL genes lead to distinct alterations in the quantity, esterification or lipoprotein distribution of 27OHC. These findings argue against the earlier suggestion that 27OHC-metabolism in plasma occurs independently of HDL....

  11. Transplantation of human dental pulp-derived stem cells protects against heatstroke in mice.

    Science.gov (United States)

    Tseng, Ling-Shu; Chen, Sheng-Hsien; Lin, Mao-Tsun; Lin, Ying-Chu

    2015-01-01

    Stem cells from human exfoliated deciduous tooth pulp (SHED) is a promising approach for the treatment of stroke and spinal cord injury. In this study, we investigated the therapeutic effects of SHED for the treatment of multiple organ (including brain, particularly hypothalamus) injury in heatstroke mice. ICR male mice were exposed to whole body heating (WBH; 41.2°C, relative humidity 50-55%, for 1 h) and then returned to normal room temperature (26°C). We observed that intravenous administration of SHED immediately post-WBH exhibited the following therapeutic benefits for recovery after heatstroke: (a) inhibition of WBH-induced neurologic and thermoregulatory deficits; (b) reduction of WBH-induced ischemia, hypoxia, and oxidative damage to the brain (particularly the hypothalamus); (c) attenuation of WBH-induced increased plasma levels of systemic inflammatory response molecules, such as tumor necrosis factor-α and intercellular adhesion molecule-1; (d) improvement of WBH-induced hypothalamo-pituitary-adrenocortical (HPA) axis activity (as reflected by enhanced plasma levels of both adrenocorticotrophic hormone and corticosterone); and (e) attenuation of WBH-induced multiple organ apoptosis as well as lethality. In conclusion, post-WBH treatment with SHED reduced induction of proinflammatory cytokines and oxidative radicals, enhanced plasma induction of both adrenocorticotrophic hormone and corticosterone, and improved lethality in mouse heatstroke. The protective effect of SHED may be related to a decreased inflammatory response, decreased oxidative stress, and an increased HPA axis activity following the WBH injury.

  12. SMOC1 is essential for ocular and limb development in humans and mice.

    Science.gov (United States)

    Okada, Ippei; Hamanoue, Haruka; Terada, Koji; Tohma, Takaya; Megarbane, Andre; Chouery, Eliane; Abou-Ghoch, Joelle; Jalkh, Nadine; Cogulu, Ozgur; Ozkinay, Ferda; Horie, Kyoji; Takeda, Junji; Furuichi, Tatsuya; Ikegawa, Shiro; Nishiyama, Kiyomi; Miyatake, Satoko; Nishimura, Akira; Mizuguchi, Takeshi; Niikawa, Norio; Hirahara, Fumiki; Kaname, Tadashi; Yoshiura, Koh-Ichiro; Tsurusaki, Yoshinori; Doi, Hiroshi; Miyake, Noriko; Furukawa, Takahisa; Matsumoto, Naomichi; Saitsu, Hirotomo

    2011-01-07

    Microphthalmia with limb anomalies (MLA) is a rare autosomal-recessive disorder, presenting with anophthalmia or microphthalmia and hand and/or foot malformation. We mapped the MLA locus to 14q24 and successfully identified three homozygous (one nonsense and two splice site) mutations in the SPARC (secreted protein acidic and rich in cysteine)-related modular calcium binding 1 (SMOC1) in three families. Smoc1 is expressed in the developing optic stalk, ventral optic cup, and limbs of mouse embryos. Smoc1 null mice recapitulated MLA phenotypes, including aplasia or hypoplasia of optic nerves, hypoplastic fibula and bowed tibia, and syndactyly in limbs. A thinned and irregular ganglion cell layer and atrophy of the anteroventral part of the retina were also observed. Soft tissue syndactyly, resulting from inhibited apoptosis, was related to disturbed expression of genes involved in BMP signaling in the interdigital mesenchyme. Our findings indicate that SMOC1/Smoc1 is essential for ocular and limb development in both humans and mice.

  13. Localization of 131I-chTNT in a nude mice model with human hepatoma

    International Nuclear Information System (INIS)

    Chen Shaoliang; Sun Xiaoguang; Xiu Yan; Zhong Gaoren; Qiao Weiwei; Xu Lanwen; Li Wenzheng

    1998-01-01

    Purpose: In order to evaluate the targeting activity in the animal model with human hepatoma, the 131 I-chTNT radioimmunoimaging was explored. Methods: Radioimmunoimages were taken on different intervals after injection of 131 I-chTNT 5.55 MBq to the nude mice, and tissue distribution was measured. The results of 131 I-chTNT monoclonal antibody group were compared with that of 131 I control group. Results: The experimental group developed tumor positive images after one day of radio-labelled monoclonal antibodies injection and held on until the end of the experiment. The radioactivity in tumor mass was stable, and the half life of 131 I-chTNT in hepatoma mass was 6.0 +- 1.6 days. there was no special radioactivity accumulation in normal liver tissue in the nude mice and the radioactivity in it disappeared rapidly. Statistics indicated the tumor/liver ratio in 1, 2, 3, 5, 7 days were 1.03, 2.43, 5.71, 7.96, 10.67, respectively. Conclusions: The results suggest that 131 I-chTNT monoclonal antibody has a considerable targeting activity, and provide an evidence for that it can be used as a new radiopharmaceutical agent for the imaging and radio therapy of hepatoma

  14. Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors

    Science.gov (United States)

    Huang, Mi Ni; Yu, Willie; Teoh, Wei Wei; Ardin, Maude; Jusakul, Apinya; Ng, Alvin Wei Tian; Boot, Arnoud; Abedi-Ardekani, Behnoush; Villar, Stephanie; Myint, Swe Swe; Othman, Rashidah; Poon, Song Ling; Heguy, Adriana; Olivier, Magali; Hollstein, Monica; Tan, Patrick; Teh, Bin Tean; Sabapathy, Kanaga; Zavadil, Jiri; Rozen, Steven G.

    2017-01-01

    Aflatoxin B1 (AFB1) is a mutagen and IARC (International Agency for Research on Cancer) Group 1 carcinogen that causes hepatocellular carcinoma (HCC). Here, we present the first whole-genome data on the mutational signatures of AFB1 exposure from a total of >40,000 mutations in four experimental systems: two different human cell lines, in liver tumors in wild-type mice, and in mice that carried a hepatitis B surface antigen transgene—this to model the multiplicative effects of aflatoxin exposure and hepatitis B in causing HCC. AFB1 mutational signatures from all four experimental systems were remarkably similar. We integrated the experimental mutational signatures with data from newly sequenced HCCs from Qidong County, China, a region of well-studied aflatoxin exposure. This indicated that COSMIC mutational signature 24, previously hypothesized to stem from aflatoxin exposure, indeed likely represents AFB1 exposure, possibly combined with other exposures. Among published somatic mutation data, we found evidence of AFB1 exposure in 0.7% of HCCs treated in North America, 1% of HCCs from Japan, but 16% of HCCs from Hong Kong. Thus, aflatoxin exposure apparently remains a substantial public health issue in some areas. This aspect of our study exemplifies the promise of future widespread resequencing of tumor genomes in providing new insights into the contribution of mutagenic exposures to cancer incidence. PMID:28739859

  15. Effects of Genetically Modified Milk Containing Human Beta-Defensin-3 on Gastrointestinal Health of Mice.

    Directory of Open Access Journals (Sweden)

    Xin Chen

    Full Text Available This study was performed to investigate the effects of genetically modified (GM milk containing human beta-defensin-3 (HBD3 on mice by a 90-day feeding study. The examined parameters included the digestibility of GM milk, general physical examination, gastric emptying function, intestinal permeability, intestinal microflora composition of mice, and the possibility of horizontal gene transfer (HGT. The emphasis was placed on the effects on gastrointestinal (GI tract due to the fact that GI tract was the first site contacting with food and played crucial roles in metabolic reactions, nutrition absorption and immunity regulation in the host. However, the traditional methods for analyzing the potential toxicological risk of GM product pay little attention on GI health. In this study, the results showed GM milk was easy to be digested in simulated gastric fluid, and it did not have adverse effects on general and GI health compared to conventional milk. And there is little possibility of HGT. This study may enrich the safety assessment of GM product on GI health.

  16. Key Inflammatory Processes in Human NASH Are Reflected in Ldlr-/-.Leiden Mice: A Translational Gene Profiling Study.

    Science.gov (United States)

    Morrison, Martine C; Kleemann, Robert; van Koppen, Arianne; Hanemaaijer, Roeland; Verschuren, Lars

    2018-01-01

    Introduction: It is generally accepted that metabolic inflammation in the liver is an important driver of disease progression in NASH and associated matrix remodeling/fibrosis. However, the exact molecular inflammatory mechanisms are poorly defined in human studies. Investigation of key pathogenic mechanisms requires the use of pre-clinical models, for instance for time-resolved studies. Such models must reflect molecular disease processes of importance in patients. Herein we characterized inflammation in NASH patients on the molecular level by transcriptomics and investigated whether key human disease pathways can be recapitulated experimentally in Ldlr -/- .Leiden mice, an established pre-clinical model of NASH. Methods: Human molecular inflammatory processes were defined using a publicly available NASH gene expression profiling dataset (GSE48452) allowing the comparison of biopsy-confirmed NASH patients with normal controls. Gene profiling data from high-fat diet (HFD)-fed Ldlr -/- .Leiden mice (GSE109345) were used for assessment of the translational value of these mice. Results: In human NASH livers, we observed regulation of 65 canonical pathways of which the majority was involved in inflammation (32%), lipid metabolism (16%), and extracellular matrix/remodeling (12%). A similar distribution of pathways across these categories, inflammation (36%), lipid metabolism (24%) and extracellular matrix/remodeling (8%) was observed in HFD-fed Ldlr -/- .Leiden mice. Detailed evaluation of these pathways revealed that a substantial proportion (11 out of 13) of human NASH inflammatory pathways was recapitulated in Ldlr -/- .Leiden mice. Furthermore, the activation state of identified master regulators of inflammation (i.e., specific transcription factors, cytokines, and growth factors) in human NASH was largely reflected in Ldlr -/- .Leiden mice, further substantiating its translational value. Conclusion: Human NASH is characterized by upregulation of specific

  17. Key Inflammatory Processes in Human NASH Are Reflected in Ldlr−/−.Leiden Mice: A Translational Gene Profiling Study

    Science.gov (United States)

    Morrison, Martine C.; Kleemann, Robert; van Koppen, Arianne; Hanemaaijer, Roeland; Verschuren, Lars

    2018-01-01

    Introduction: It is generally accepted that metabolic inflammation in the liver is an important driver of disease progression in NASH and associated matrix remodeling/fibrosis. However, the exact molecular inflammatory mechanisms are poorly defined in human studies. Investigation of key pathogenic mechanisms requires the use of pre-clinical models, for instance for time-resolved studies. Such models must reflect molecular disease processes of importance in patients. Herein we characterized inflammation in NASH patients on the molecular level by transcriptomics and investigated whether key human disease pathways can be recapitulated experimentally in Ldlr−/−.Leiden mice, an established pre-clinical model of NASH. Methods: Human molecular inflammatory processes were defined using a publicly available NASH gene expression profiling dataset (GSE48452) allowing the comparison of biopsy-confirmed NASH patients with normal controls. Gene profiling data from high-fat diet (HFD)-fed Ldlr−/−.Leiden mice (GSE109345) were used for assessment of the translational value of these mice. Results: In human NASH livers, we observed regulation of 65 canonical pathways of which the majority was involved in inflammation (32%), lipid metabolism (16%), and extracellular matrix/remodeling (12%). A similar distribution of pathways across these categories, inflammation (36%), lipid metabolism (24%) and extracellular matrix/remodeling (8%) was observed in HFD-fed Ldlr−/−.Leiden mice. Detailed evaluation of these pathways revealed that a substantial proportion (11 out of 13) of human NASH inflammatory pathways was recapitulated in Ldlr−/−.Leiden mice. Furthermore, the activation state of identified master regulators of inflammation (i.e., specific transcription factors, cytokines, and growth factors) in human NASH was largely reflected in Ldlr−/−.Leiden mice, further substantiating its translational value. Conclusion: Human NASH is characterized by upregulation of specific

  18. Radioprotection of the intestinal crypts of mice by recombinant human interleukin-1 alpha

    International Nuclear Information System (INIS)

    Wu, S.G.; Miyamoto, T.

    1990-01-01

    Recombinant human interleukin-1 alpha (rHIL-1 alpha or IL-1) protected the intestinal crypt cells of mice against X-ray-induced damage. The survival of crypt cells measured in terms of their ability to form colonies of regenerating duodenal epithelium in situ was increased when IL-1 was given either before or after irradiation. The maximum degree of radioprotection was seen when the drug was given between 13 and 25 h before irradiation. The IL-1 dose producing maximum protection was about 6.3 micrograms/kg. This is the first report indicating that the cytokine IL-1 has a radioprotective effect in the intestine. The finding suggests that IL-1 may be of potential value in preventing radiation injury to the gut in the clinic

  19. Radiolabeled porphyrin versus gallium-67 citrate for the detection of human melanoma in athymic mice

    International Nuclear Information System (INIS)

    Maric, N.; Chan, S. Ming; Hoffer, P.B.; Duray, P.

    1987-01-01

    We performed the biodistribution and imaging studies of 111 In and 67 Ga labeled tetra(4-N-methylpyridyl) porphine, (T4NMPYP), and compared it to that of 67 Ga citrate in athymic mice bearing a human melanoma xenograft. The biodistribution results of both 111 In and 67 Ga labeled T4NMPYP (3, 6, 24, and 48 hours) were similar but differed from that of 67 Ga citrate (48 hours). The optimum tumor uptake of both radiolabeled porphyrins was at 6 hours postinjection and was lower than the tumor uptake of 67 Ga citrate at 48 hours postinjection. Kidney was the only organ showing higher uptake of radiolabeled porphyrin compared to that of 67 Ga citrate. The imaging studies performed with 111 In T4NMPYP and 67 Ga citrate correspond to the biodistribution results. Osteomyelitis present in one mouse showed good localization of 111 In T4NMPYP. 15 refs., 3 figs., 5 tabs

  20. Biokinetic and therapeutic use of 131I-MIBG in nude mice hosting human neuroblastoma xenografts

    International Nuclear Information System (INIS)

    Laubenbacher, C.; Kriegel, H.; Moellenstaedt, S.; Senekowitsch, R.; Technische Univ. Muenchen

    1988-01-01

    The biological halflife of 131 I-MIBG in nude mice with xenotransplanted human neuroblastoma derived from the SK-N-SH cell line comes to 6 h. The adrenal gland and the neuroblastoma show the highest uptake of MIBG. Based on these datas it could be calculated that 185 MBq would be necessary to get 60 Gy radiation absorbed dose in the tumor. 15-20 days after injection of this activity the tumors could no longer be palpated and they remained missing over the whole observation period. 92.5 MBq weren't enough getting a stable remission. Eleven days p.i. neuroblastoma started growing again. For the first time it could be shown that only high activity of 131 I-MIBG is able to restrain neuroblastoma totally. (orig.)

  1. Brain-Derived Neurotrophic Factor Val66Met Human Polymorphism Impairs the Beneficial Exercise-Induced Neurobiological Changes in Mice

    Science.gov (United States)

    Ieraci, Alessandro; Madaio, Alessandro I; Mallei, Alessandra; Lee, Francis S; Popoli, Maurizio

    2016-01-01

    Several studies have shown that exercise improves cognitive functions and emotional behaviors. Positive effects of exercise have been associated with enhanced brain plasticity, adult hippocampal neurogenesis, and increased levels of brain-derived neurotrophic factor (BDNF). However, a substantial variability of individual response to exercise has been described, which may be accounted for by individual genetic variants. Here, we have assessed whether and how the common human BDNF Val66Met polymorphism influences the neurobiological effects modulated by exercise in BDNF Val66Met knock-in male mice. Wild-type (BDNFVal/Val) and homozygous BDNF Val66Met (BDNFMet/Met) male mice were housed in cages equipped with or without running wheels for 4 weeks. Changes in behavioral phenotype, hippocampal adult neurogenesis, and gene expression were evaluated in exercised and sedentary control mice. We found that exercise reduced the latency to feed in the novelty suppressed feeding and the immobility time in the forced swimming test in BDNFVal/Val but not in BDNFMet/Met mice. Hippocampal neurogenesis was reduced in BDNFMet/Met mice compared with BDNFVal/Val mice. BDNFMet/Met mice had lower basal BDNF protein levels in the hippocampus, which was not recovered following exercise. Moreover, exercise-induced expression of total BDNF, BDNF splice variants 1, 2, 4, 6 and fibronectin type III domain-containing protein 5 (FNDC5) mRNA levels were absent or reduced in the dentate gyrus of BDNFMet/Met mice. Exercise failed to enhance PGC-1α and FNDC5 mRNA levels in the BDNFMet/Met muscle. Overall these results indicate that, in adult male mice, the BDNF Val66Met polymorphism impairs the beneficial behavioral and neuroplasticity effects induced by physical exercise. PMID:27388329

  2. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Adolf, E-mail: ageiger@dreirosen-pharma.com; Walker, Audrey, E-mail: awalker@dreirosen-pharma.com; Nissen, Erwin, E-mail: enissen@dreirosen-pharma.com

    2015-11-13

    Diabetic ulcers represent a substantial societal and healthcare burden worldwide and scarcely respond to current treatment strategies. This study was addressed to evaluate the therapeutic potential of exosomes secreted by human circulating fibrocytes, a population of mesenchymal progenitors involved in normal wound healing via paracrine signaling. The exosomes released from cells sequentially stimulated with platelet-derived growth factor-BB and transforming growth factor-β1, in the presence of fibroblast growth factor 2, did not show potential immunogenicity. These exosomes exhibited in-vitro proangiogenic properties, activated diabetic dermal fibroblasts, induced the migration and proliferation of diabetic keratinocytes, and accelerated wound closure in diabetic mice in vivo. Important components of the exosomal cargo were heat shock protein-90α, total and activated signal transducer and activator of transcription 3, proangiogenic (miR-126, miR-130a, miR-132) and anti-inflammatory (miR124a, miR-125b) microRNAs, and a microRNA regulating collagen deposition (miR-21). This proof-of-concept study demonstrates the feasibility of the use of fibrocytes-derived exosomes for the treatment of diabetic ulcers. - Highlights: • Fibrocytes have shown potent wound healing properties in vitro and in vivo. • Their clinical use is precluded by low numbers and antigen-presenting function. • We isolated exosomes with no immunogenicity potential from human fibrocytes. • Their cargo included microRNAs and proteins that are known healing promoters. • They accelerated wound closure in diabetic mice in a dose-dependent manner.

  3. Human pluripotent stem cell-derived erythropoietin-producing cells ameliorate renal anemia in mice.

    Science.gov (United States)

    Hitomi, Hirofumi; Kasahara, Tomoko; Katagiri, Naoko; Hoshina, Azusa; Mae, Shin-Ichi; Kotaka, Maki; Toyohara, Takafumi; Rahman, Asadur; Nakano, Daisuke; Niwa, Akira; Saito, Megumu K; Nakahata, Tatsutoshi; Nishiyama, Akira; Osafune, Kenji

    2017-09-27

    The production of erythropoietin (EPO) by the kidneys, a principal hormone for the hematopoietic system, is reduced in patients with chronic kidney disease (CKD), eventually resulting in severe anemia. Although recombinant human EPO treatment improves anemia in patients with CKD, returning to full red blood cell production without fluctuations does not always occur. We established a method to generate EPO-producing cells from human induced pluripotent stem cells (hiPSCs) by modifying previously reported hepatic differentiation protocols. These cells showed increased EPO expression and secretion in response to low oxygen conditions, prolyl hydroxylase domain-containing enzyme inhibitors, and insulin-like growth factor 1. The EPO protein secreted from hiPSC-derived EPO-producing (hiPSC-EPO) cells induced the erythropoietic differentiation of human umbilical cord blood progenitor cells in vitro. Furthermore, transplantation of hiPSC-EPO cells into mice with CKD induced by adenine treatment improved renal anemia. Thus, hiPSC-EPO cells may be a useful tool for clarifying the mechanisms of EPO production and may be useful as a therapeutic strategy for treating renal anemia. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Deletion of the App-Runx1 region in mice models human partial monosomy 21

    Directory of Open Access Journals (Sweden)

    Thomas Arbogast

    2015-06-01

    Full Text Available Partial monosomy 21 (PM21 is a rare chromosomal abnormality that is characterized by the loss of a variable segment along human chromosome 21 (Hsa21. The clinical phenotypes of this loss are heterogeneous and range from mild alterations to lethal consequences, depending on the affected region of Hsa21. The most common features include intellectual disabilities, craniofacial dysmorphology, short stature, and muscular and cardiac defects. As a complement to human genetic approaches, our team has developed new monosomic mouse models that carry deletions on Hsa21 syntenic regions in order to identify the dosage-sensitive genes that are responsible for the symptoms. We focus here on the Ms5Yah mouse model, in which a 7.7-Mb region has been deleted from the App to Runx1 genes. Ms5Yah mice display high postnatal lethality, with a few surviving individuals showing growth retardation, motor coordination deficits, and spatial learning and memory impairments. Further studies confirmed a gene dosage effect in the Ms5Yah hippocampus, and pinpointed disruptions of pathways related to cell adhesion (involving App, Cntnap5b, Lgals3bp, Mag, Mcam, Npnt, Pcdhb2, Pcdhb3, Pcdhb4, Pcdhb6, Pcdhb7, Pcdhb8, Pcdhb16 and Vwf. Our PM21 mouse model is the first to display morphological abnormalities and behavioural phenotypes similar to those found in affected humans, and it therefore demonstrates the major contribution that the App-Runx1 region has in the pathophysiology of PM21.

  5. Human CD141+ Dendritic Cell and CD1c+ Dendritic Cell Undergo Concordant Early Genetic Programming after Activation in Humanized Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Yoshihito Minoda

    2017-10-01

    Full Text Available Human immune cell subsets develop in immunodeficient mice following reconstitution with human CD34+ hematopoietic stem cells. These “humanized” mice are useful models to study human immunology and human-tropic infections, autoimmunity, and cancer. However, some human immune cell subsets are unable to fully develop or acquire full functional capacity due to a lack of cross-reactivity of many growth factors and cytokines between species. Conventional dendritic cells (cDCs in mice are categorized into cDC1, which mediate T helper (Th1 and CD8+ T cell responses, and cDC2, which mediate Th2 and Th17 responses. The likely human equivalents are CD141+ DC and CD1c+ DC subsets for mouse cDC1 and cDC2, respectively, but the extent of any interspecies differences is poorly characterized. Here, we exploit the fact that human CD141+ DC and CD1c+ DC develop in humanized mice, to further explore their equivalency in vivo. Global transcriptome analysis of CD141+ DC and CD1c+ DC isolated from humanized mice demonstrated that they closely resemble those in human blood. Activation of DC subsets in vivo, with the TLR3 ligand poly I:C, and the TLR7/8 ligand R848 revealed that a core panel of genes consistent with DC maturation status were upregulated by both subsets. R848 specifically upregulated genes associated with Th17 responses by CD1c+ DC, while poly I:C upregulated IFN-λ genes specifically by CD141+ DC. MYCL expression, known to be essential for CD8+ T cell priming by mouse DC, was specifically induced in CD141+ DC after activation. Concomitantly, CD141+ DC were superior to CD1c+ DC in their ability to prime naïve antigen-specific CD8+ T cells. Thus, CD141+ DC and CD1c+ DC share a similar activation profiles in vivo but also have induce unique signatures that support specialized roles in CD8+ T cell priming and Th17 responses, respectively. In combination, these data demonstrate that humanized mice provide an attractive and tractable model to study

  6. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate.

    Science.gov (United States)

    Bondulich, Marie K; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy; Hanger, Diane P

    2016-08-01

    Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. © The Author (2016). Published by

  7. Virus-neutralizing antibody response of mice to consecutive infection with human and avian influenza A viruses.

    Science.gov (United States)

    Janulíková, J; Stropkovská, A; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-06-01

    In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenza A viruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population.

  8. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate

    Science.gov (United States)

    Bondulich, Marie K.; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C.; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy

    2016-01-01

    Abstract Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. PMID:27297240

  9. The FKBP5 Gene Affects Alcohol Drinking in Knockout Mice and Is Implicated in Alcohol Drinking in Humans

    Directory of Open Access Journals (Sweden)

    Bin Qiu

    2016-08-01

    Full Text Available FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1 Fkbp5 KO and wild-type (WT EtOH consumption was tested using a two-bottle choice paradigm; (2 The EtOH elimination rate was measured after intraperitoneal (IP injection of 2.0 g/kg EtOH; (3 Blood alcohol concentration (BAC was measured after 3 h limited access of alcohol; (4 Brain region expression of Fkbp5 was identified using LacZ staining; (5 Baseline corticosterone (CORT was assessed. Additionally, two SNPs, rs1360780 (C/T and rs3800373 (T/G, were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162 from 21–26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT. Finally, single nucleotide polymorphisms (SNPs in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans.

  10. Connective tissue growth factor and bone morphogenetic protein 2 are induced following myocardial ischemia in mice and humans.

    Science.gov (United States)

    Rutkovskiy, Arkady; Sagave, Julia; Czibik, Gabor; Baysa, Anton; Zihlavnikova Enayati, Katarina; Hillestad, Vigdis; Dahl, Christen Peder; Fiane, Arnt; Gullestad, Lars; Gravning, Jørgen; Ahmed, Shakil; Attramadal, Håvard; Valen, Guro; Vaage, Jarle

    2017-09-01

    We aimed to study the cardiac expression of bone morphogenetic protein 2, its receptor 1 b, and connective tissue growth factor, factors implicated in cardiac embryogenesis, following ischemia/hypoxia, heart failure, and in remodeling hearts from humans and mice. Biopsies from the left ventricle of patients with end-stage heart failure due to dilated cardiomyopathy or coronary artery disease were compared with donor hearts and biopsies from patients with normal heart function undergoing coronary artery bypass grafting. Mouse model of post-infarction remodeling was made by permanent ligation of the left coronary artery. Hearts were analyzed by real-time polymerase chain reaction and Western blotting after 24 hours and after 2 and 4 weeks. Patients with dilated cardiomyopathy and mice post-infarction had increased cardiac expression of connective tissue growth factor. Bone morphogenetic protein 2 was increased in human hearts failing due to coronary artery disease and in mice post-infarction. Gene expression of bone morphogenetic protein receptor 1 beta was reduced in hearts of patients with failure, but increased two weeks following permanent ligation of the left coronary artery in mice. In conclusion, connective tissue growth factor is upregulated in hearts of humans with dilated cardiomyopathy, bone morphogenetic protein 2 is upregulated in remodeling due to myocardial infarction while its receptor 1 b in human failing hearts is downregulated. A potential explanation might be an attempt to engage regenerative processes, which should be addressed by further, mechanistic studies.

  11. Severe hypertriglyceridemia in human APOC1 transgenic mice is caused by apoC-I-induced inhibition of LPL

    NARCIS (Netherlands)

    Berbée, J.F.P.; Hoogt, C.C. van der; Sundararaman, D.; Havekes, L.M.; Rensen, P.C.N.

    2005-01-01

    Studies in humans and mice have shown that increased expression of apolipoprotein C-I (apoC-I) results in combined hyperlipidemia with a more pronounced effect on triglycerides (TGs) compared with total cholesterol (TC). The aim of this study was to elucidate the main reason for this effect using

  12. Conditional E2F1 activation in transgenic mice causes testicular atrophy and dysplasia mimicking human CIS

    DEFF Research Database (Denmark)

    Agger, Karl; Santoni-Rugiu, Eric; Holmberg, Christian

    2005-01-01

    E2F1 is a crucial downstream effector of the retinoblastoma protein (pRB) pathway. To address the consequences of short-term increase in E2F1 activity in adult tissues, we generated transgenic mice expressing the human E2F1 protein fused to the oestrogen receptor (ER) ligand-binding domain...

  13. Ebola Virus Replication and Disease Without Immunopathology in Mice Expressing Transgenes to Support Human Myeloid and Lymphoid Cell Engraftment.

    Science.gov (United States)

    Spengler, Jessica R; Lavender, Kerry J; Martellaro, Cynthia; Carmody, Aaron; Kurth, Andreas; Keck, James G; Saturday, Greg; Scott, Dana P; Nichol, Stuart T; Hasenkrug, Kim J; Spiropoulou, Christina F; Feldmann, Heinz; Prescott, Joseph

    2016-10-15

    The study of Ebola virus (EBOV) pathogenesis in vivo has been limited to nonhuman primate models or use of an adapted virus to cause disease in rodent models. Herein we describe wild-type EBOV (Makona variant) infection of mice engrafted with human hematopoietic CD34 + stem cells (Hu-NSG™-SGM3 mice; hereafter referred to as SGM3 HuMice). SGM3 HuMice support increased development of myeloid immune cells, which are primary EBOV targets. In SGM3 HuMice, EBOV replicated to high levels, and disease was observed following either intraperitoneal or intramuscular inoculation. Despite the high levels of viral antigen and inflammatory cell infiltration in the liver, the characteristic histopathology of Ebola virus disease was not observed, and this absence of severe immunopathology may have contributed to the recovery and survival of some of the animals. Future investigations into the underlying mechanisms of the atypical disease presentation in SGM3 HuMice will provide additional insights into the immunopathogenesis of severe EBOV disease. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. Characterization of human glioblastoma cell lines in vitro and their xenografts in nude mice by DNA fingerprinting

    DEFF Research Database (Denmark)

    Türeci, O; Fischer, H; Lagoda, P

    1990-01-01

    Human gliomas were grown as permanent tissue cultures and xenografts in nude mice. DNA fingerprint patterns from two human gliomas were established using two different hypervariable multilocus probes [( GTG]5 and 33.15). In general the cell lines investigated showed an overall stability in the DNA...... fingerprint pattern. However, differences in the DNA fingerprint patterns were shown to occur depending upon the above mentioned parameters....

  15. Altered depression-related behavior and neurochemical changes in serotonergic neurons in mutant R406W human tau transgenic mice.

    Science.gov (United States)

    Egashira, Nobuaki; Iwasaki, Katsunori; Takashima, Akihiko; Watanabe, Takuya; Kawabe, Hideyuki; Matsuda, Tomomi; Mishima, Kenichi; Chidori, Shozo; Nishimura, Ryoji; Fujiwara, Michihiro

    2005-10-12

    Mutant R406W human tau was originally identified in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and causes a hereditary tauopathy that clinically resembles Alzheimer's disease (AD). In the current study, we examined the performance of R406W transgenic (Tg) mice in the forced swimming test, a test with high predictivity of antidepressant efficacy in human depression, and found an enhancement of the immobility time. In contrast, the motor function and anxiety-related emotional response of R406W Tg mice were normal. Furthermore, a selective serotonin reuptake inhibitor (SSRI), fluvoxamine (100 mg/kg, p.o.), significantly reduced this enhancement of the immobility time, whereas a noradrenaline reuptake inhibitor, desipramine, had no effect. In an in vivo microdialysis study, R406W Tg mice exhibited a significantly decreased extracellular 5-hydroxyindoleacetic acid (5-HIAA) level in the frontal cortex and also exhibited a tendency toward a decreased extracellular 5-hydroxytryptamine (5-HT) level. Moreover, fluvoxamine, which reduced the enhancement of the immobility time, significantly increased the extracellular 5-HT level in R406W Tg mice. These results suggest that R406W Tg mice exhibit changes in depression-related behavior involving serotonergic neurons and provide an animal model for investigating AD with depression.

  16. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Yubin Wang

    2016-06-01

    Full Text Available A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1, which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.

  17. Hyperactivity and learning deficits in transgenic mice bearing a human mutant thyroid hormone beta1 receptor gene.

    Science.gov (United States)

    McDonald, M P; Wong, R; Goldstein, G; Weintraub, B; Cheng, S Y; Crawley, J N

    1998-01-01

    Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor beta (TRbeta) gene on chromosome 3, representing a mutation of the ligand-binding domain of the TRbeta gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity, transgenic mice expressing a mutant TRbeta gene were generated. The present experiment tested RTH transgenic mice from the PV kindred on behavioral tasks relevant to the primary features of ADHD: hyperactivity, sustained attention (vigilance), learning, and impulsivity. Male transgenic mice showed elevated locomotor activity in an open field compared to male wild-type littermate controls. Both male and female transgenic mice exhibited impaired learning of an autoshaping task, compared to wild-type controls. On a vigilance task in an operant chamber, there were no differences between transgenics and controls on the proportion of hits, response latency, or duration of stimulus tolerated. On an operant go/no-go task measuring sustained attention and impulsivity, there were no differences between controls and transgenics. These results indicate that transgenic mice bearing a mutant human TRbeta gene demonstrate several behavioral characteristics of ADHD and may serve a valuable heuristic role in elucidating possible candidate genes in converging pathways for other causes of ADHD.

  18. Hyperactivity and Learning Deficits in Transgenic Mice Bearing a Human Mutant Thyroid Hormone β1 Receptor Gene

    Science.gov (United States)

    McDonald, Michael P.; Wong, Rosemary; Goldstein, Gregory; Weintraub, Bruce; Cheng, Sheue-yann; Crawley, Jacqueline N.

    1998-01-01

    Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor β (TRβ) gene on chromosome 3, representing a mutation of the ligandbinding domain of the TRβ gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity, transgenic mice expressing a mutant TRβ gene were generated. The present experiment tested RTH transgenic mice from the PV kindred on behavioral tasks relevant to the primary features of ADHD: hyperactivity, sustained attention (vigilance), learning, and impulsivity. Male transgenic mice showed elevated locomotor activity in an open field compared to male wild-type littermate controls. Both male and female transgenic mice exhibited impaired learning of an autoshaping task, compared to wild-type controls. On a vigilance task in an operant chamber, there were no differences between transgenics and controls on the proportion of hits, response latency, or duration of stimulus tolerated. On an operant go/no-go task measuring sustained attention and impulsivity, there were no differences between controls and transgenics. These results indicate that transgenic mice bearing a mutant human TRβ gene demonstrate several behavioral characteristics of ADHD and may serve a valuable heuristic role in elucidating possible candidate genes in converging pathways for other causes of ADHD. PMID:10454355

  19. Human anti-plague monoclonal antibodies protect mice from Yersinia pestis in a bubonic plague model.

    Directory of Open Access Journals (Sweden)

    Xiaodong Xiao

    2010-10-01

    Full Text Available Yersinia pestis is the etiologic agent of plague that has killed more than 200 million people throughout the recorded history of mankind. Antibiotics may provide little immediate relief to patients who have a high bacteremia or to patients infected with an antibiotic resistant strain of plague. Two virulent factors of Y. pestis are the capsid F1 protein and the low-calcium response (Lcr V-protein or V-antigen that have been proven to be the targets for both active and passive immunization. There are mouse monoclonal antibodies (mAbs against the F1- and V-antigens that can passively protect mice in a murine model of plague; however, there are no anti-Yersinia pestis monoclonal antibodies available for prophylactic or therapeutic treatment in humans. We identified one anti-F1-specific human mAb (m252 and two anti-V-specific human mAb (m253, m254 by panning a naïve phage-displayed Fab library against the F1- and V-antigens. The Fabs were converted to IgG1s and their binding and protective activities were evaluated. M252 bound weakly to peptides located at the F1 N-terminus where a protective mouse anti-F1 mAb also binds. M253 bound strongly to a V-antigen peptide indicating a linear epitope; m254 did not bind to any peptide from a panel of 53 peptides suggesting that its epitope may be conformational. M252 showed better protection than m253 and m254 against a Y, pestis challenge in a plague mouse model. A synergistic effect was observed when the three antibodies were combined. Incomplete to complete protection was achieved when m252 was given at different times post-challenge. These antibodies can be further studied to determine their potential as therapeutics or prophylactics in Y. pestis infection in humans.

  20. Androgen regulated genes in human prostate xenografts in mice: relation to BPH and prostate cancer.

    Directory of Open Access Journals (Sweden)

    Harold D Love

    2009-12-01

    Full Text Available Benign prostatic hyperplasia (BPH and prostate carcinoma (CaP are linked to aging and the presence of androgens, suggesting that androgen regulated genes play a major role in these common diseases. Androgen regulation of prostate growth and development depends on the presence of intact epithelial-stromal interactions. Further, the prostatic stroma is implicated in BPH. This suggests that epithelial cell lines are inadequate to identify androgen regulated genes that could contribute to BPH and CaP and which could serve as potential clinical biomarkers. In this study, we used a human prostate xenograft model to define a profile of genes regulated in vivo by androgens, with an emphasis on identifying candidate biomarkers. Benign transition zone (TZ human prostate tissue from radical prostatectomies was grafted to the sub-renal capsule site of intact or castrated male immunodeficient mice, followed by the removal or addition of androgens, respectively. Microarray analysis of RNA from these tissues was used to identify genes that were; 1 highly expressed in prostate, 2 had significant expression changes in response to androgens, and, 3 encode extracellular proteins. A total of 95 genes meeting these criteria were selected for analysis and validation of expression in patient prostate tissues using quantitative real-time PCR. Expression levels of these genes were measured in pooled RNAs from human prostate tissues with varying severity of BPH pathologic changes and CaP of varying Gleason score. A number of androgen regulated genes were identified. Additionally, a subset of these genes were over-expressed in RNA from clinical BPH tissues, and the levels of many were found to correlate with disease status. Our results demonstrate the feasibility, and some of the problems, of using a mouse xenograft model to characterize the androgen regulated expression profiles of intact human prostate tissues.

  1. Expression and regulation of the tumor suppressor, SEF, during folliculogenesis in humans and mice.

    Science.gov (United States)

    Lutwak, Ela; Price, Christopher A; Abramovich, Sagit-Sela; Rabinovitz, Shiri; Granot, Irit; Dekel, Nava; Ron, Dina

    2014-11-01

    Similar expression to FGF (Sef or IL17-RD), is a tumor suppressor and an inhibitor of growth factors as well as of pro-inflammatory cytokine signaling. In this study, we examined the regulation of Sef expression by gonadotropins during ovarian folliculogenesis. In sexually immature mice, in situ hybridization (ISH) localized Sef gene expression to early developing oocytes and granulosa cells (GC) but not to theca cells. Sef was also expressed in mouse ovarian endothelial cells, in the fallopian tube epithelium as well as in adipose tissue venules. SEF protein expression, determined by immunohistochemistry (IHC), correlated well with Sef mRNA expression in GC, while differential expression was noticed in oocytes. High Sef mRNA but undetectable SEF protein levels were observed in the oocytes of primary/secondary follicles, while an inverse correlation was found in the oocytes of preantral and small antral follicles. Sef mRNA expression dropped after pregnant mare's serum gonadotropin (PMSG) administration, peaked at 6-8 h after human chorionic gonadotropin (hCG) treatment, and declined by 12 h after this treatment. ISH and IHC localized the changes to oocytes and mural GC following PMSG treatment, whereas Sef expression increased in mural GC and declined in granulosa-lutein cells upon hCG treatment. The ovarian expression of SEF was confirmed using human samples. ISH localized SEF transcripts to human GC of antral follicles but not to corpora lutea. Furthermore, SEF mRNA was detected in human GC recovered from preovulatory follicles. These results are the first to demonstrate SEF expression in a healthy ovary during folliculogenesis. Hormonal regulation of its expression suggests that SEF may be an important factor involved in intra-ovarian control mechanisms. © 2014 Society for Reproduction and Fertility.

  2. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization.

    Directory of Open Access Journals (Sweden)

    Mohun Ramratnam

    Full Text Available Most studies of the mechanisms leading to hereditary dilated cardiomyopathy (DCM have been performed in reconstituted in vitro systems. Genetically engineered murine models offer the opportunity to dissect these mechanisms in vivo. We generated a gene-targeted knock-in murine model of the autosomal dominant Arg141Trp (R141W mutation in Tnnt2, which was first described in a human family with DCM. Mice heterozygous for the mutation (Tnnt2R141W/+ recapitulated the human phenotype, developing left ventricular dilation and reduced contractility. There was a gene dosage effect, so that the phenotype in Tnnt2R141W/+mice was attenuated by transgenic overexpression of wildtype Tnnt2 mRNA transcript. Male mice exhibited poorer survival than females. Biomechanical studies on skinned fibers from Tnnt2R141W/+ hearts showed a significant decrease in pCa50 (-log[Ca2+] required for generation of 50% of maximal force relative to wildtype hearts, indicating Ca2+ desensitization. Optical mapping studies of Langendorff-perfused Tnnt2R141W/+ hearts showed marked increases in diastolic and peak systolic intracellular Ca2+ ([Ca2+]i, and prolonged systolic rise and diastolic fall of [Ca2+]i. Perfused Tnnt2R141W/+ hearts had slower intrinsic rates in sinus rhythm and reduced peak heart rates in response to isoproterenol. Tnnt2R141W/+ hearts exhibited a reduction in phosphorylated phospholamban relative to wildtype mice. However, crossing Tnnt2R141W/+ mice with phospholamban knockout (Pln-/- mice, which exhibit increased Ca2+ transients and contractility, had no effect on the DCM phenotype. We conclude that the Tnnt2 R141W mutation causes a Ca2+ desensitization and mice adapt by increasing Ca2+-transient amplitudes, which impairs Ca2+ handling dynamics, metabolism and responses to β-adrenergic activation.

  3. Study on biodistribution and imaging of radioiodinated antisense oligonucleotides in nude mice bearing human lymphoma

    International Nuclear Information System (INIS)

    Wang, R.F.; Shen, J.; Zhang, C.L.; Liu, M.; Guo, F.Q.

    2005-01-01

    The incidence of sporadic lymphoma has risen due to an increase in immunosuppressed patients, particularly those with human immunodeficiency virus (HIV) infection. Sometimes suspect lymphoma has an undetectable location and we can not get the pathological specimen. Management of lymphoma is also difficult because the persistence of a significant number of residual tumor cells after intensive treatment. These relative failures can be attributed to make us choose this study for opening a new diagnostic and therapeutic field of lymphoma from molecular level. Immunoglobulin (Ig) heavy chain framework region (FR) of V1 family have been verified to be a major determinant of malignant phenotype of V1 family B-cell lymphoma. Most of targets for tumor antisense therapy study are protooncogenes, such as c-myc, bc1-2, which are broad -spectrum tumor imaging agents. The aim of this study was to investigate the possibility of using radioiodine labeled FR antisense oligonucleotides (ASONs) as an imaging agent or antisense therapeutic radiopharmaceutical in lymphoma. A 18-mer partial phosphorothioate oligonucleotide sequence was synthesized and grafted in 5 ' with a tyramine group which was further labeled with 125 I or 131 I using the chloramine T method. Normal CD-1 mice were injected via a tail vein with 148 kBq of 125 I-FR-ASON (2∼3 μ g). Animals were sacrificed at 1, 2, 4 and 24 h and tissue samples were studied. Liposome-mediated 3.33 MBq of 131 I-FR-ASON (7 ∼ 9μ g) was injected intratumorally into tumor-bearing BALB/c mice (6 weeks after inoculation of 10 7 Namalwa cells) meanwhile liposome-mediated 131 I labeled sense oligonucleotides served as controls. Biodistribution was monitored by sequential scintigraphy and organ radioactivity measurement 24 h after injection. The percentage of the injected dose per gram (%ID/g) of tumor and tumor/ non-tumor tissue ratios (T/NT) were calculated for each group of mice and the difference between two groups was assessed. The 5

  4. Long-term expression of human adenosine deaminase in mice transplanted with retrovirus-infected hematopoietic stem cells

    International Nuclear Information System (INIS)

    Lim, B.; Apperley, J.F.; Orkin, S.H.; Williams, D.A.

    1989-01-01

    Long-term stable expression of foreign genetic sequences transferred into hematopoietic stem cells by using retroviral vectors constitutes a relevant model for somatic gene therapy. Such stability of expression may depend on vector design, including the presence or absence of specific sequences within the vector, in combination with the nature and efficiency of infection of the hematopoietic target cells. The authors have previously reported successful transfer of human DNA encoding adenosine deaminase (ADA) into CFU-S (colony-forming unit-spleen) stem cells using simplified recombinant retroviral vectors. Human ADA was expressed in CFU-S-derived spleen colonies at levels near to endogenous enzyme. However, because of the lack of an efficient dominant selectable marker and low recombinant viral titers, stability of long-term expression of human ADA was not examined. They report here the development of an efficient method of infection of hematopoietic stem cells (HSC) without reliance on in vitro selection. Peripheral blood samples of 100% of mice transplanted with HSC infected by this protocol exhibit expression of human ADA 30 days after transplantation. Some mice (6 of 13) continue to express human ADA in all lineages after complete hematopoietic reconstitution (4 months). The use of recombinant retroviral vectors that efficiently transfer human ADA cDNA into HSC leading to stable expression of functional ADA in reconstituted mice, provides an experimental framework for future development of approaches to somatic gene therapy

  5. Autocatalytic caspase-3 driven by human telomerase reverse transcriptase promoter suppresses human ovarian carcinoma growth in vitro and in mice.

    Science.gov (United States)

    Song, Yue; Xia, Zhijun; Shen, Keng; Zhai, Xingyue

    2013-05-01

    To construct recombinant adenoviruses AdHT-rev-casp3 and Ad-rev-casp3, which express autocatalysis caspase-3 driven by human telomerase reverse transcriptase promoter and cytomegalovirus promoter, respectively; and to investigate their antitumor effects on ovarian cancer in vitro and in vivo. Cell viabilities were determined using the cell counting kit 8 and flow cytometry. Reverse transcriptase polymerase chain reaction and immunoblotting assays were used to detect cellular apoptotic activities after treatments. Tumor growth and survival of mice bearing AO cells were studied. AdHT-rev-casp3 significantly suppressed the survival of AO cells in a dose-dependent modality with a viability rate of 60.45% ± 7.8% at an multiplicity of infection (MOI) of 70 and 42.18 ± 5.3% at an MOI of 100, which was somewhat lower than that of the AO cells treated with Ad-rev-casp3 (32.28% ± 5.3% and 21.84% ± 3.4%, respectively). In contrast, AdHT-rev-casp3 induced little human umbilical vein epithelial cell (HUVEC) death with a viability rate of 98.52% ± 6.9% at an MOI of 70, whereas Ad-rev-casp3 induced significant cell death in HUVEC with a viability rate of 27.14% ± 5.4%. Additionally, AdHT-rev-casp3 (MOI = 70) caused significant apoptosis in AO cells with an apoptotic rate of 25.97%, whereas it caused undetectable apoptosis in HUVECs with the rate of only 1.75%. Ad-rev-casp3 (MOI = 70) caused strong apoptosis in both AO and HUVECs, with the rate of 35.82% and 38.12%, respectively. AdHT-rev-casp3 caused markedly higher levels of active caspase-3, causing no detectable active caspase-3 expression in HUVECs. The tumor growth suppression rate of AdHT-rev-casp3 was 54.94%, significantly higher than that of phosphate-buffered saline at the end point of the study. AdHT-rev-casp3 significantly improved the survival of mice receiving intraperitoneal inoculation of AO cells with little liver damage, with the mean survival of 177 ± 12 days. AdHT-rev-casp3 causes effective apoptosis

  6. PDZ domain-binding motif of Tax sustains T-cell proliferation in HTLV-1-infected humanized mice.

    Science.gov (United States)

    Pérès, Eléonore; Blin, Juliana; Ricci, Emiliano P; Artesi, Maria; Hahaut, Vincent; Van den Broeke, Anne; Corbin, Antoine; Gazzolo, Louis; Ratner, Lee; Jalinot, Pierre; Duc Dodon, Madeleine

    2018-03-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive malignant proliferation of activated CD4+ T lymphocytes. The viral Tax oncoprotein is critically involved in both HTLV-1-replication and T-cell proliferation, a prerequisite to the development of ATLL. In this study, we investigated the in vivo contribution of the Tax PDZ domain-binding motif (PBM) to the lymphoproliferative process. To that aim, we examined T-cell proliferation in humanized mice (hu-mice) carrying a human hemato-lymphoid system infected with either a wild type (WT) or a Tax PBM-deleted (ΔPBM) provirus. We observed that the frequency of CD4+ activated T-cells in the peripheral blood and in the spleen was significantly higher in WT than in ΔPBM hu-mice. Likewise, human T-cells collected from WT hu-mice and cultivated in vitro in presence of interleukin-2 were proliferating at a higher level than those from ΔPBM animals. We next examined the association of Tax with the Scribble PDZ protein, a prominent regulator of T-cell polarity, in human T-cells analyzed either after ex vivo isolation or after in vitro culture. We confirmed the interaction of Tax with Scribble only in T-cells from the WT hu-mice. This association correlated with the presence of both proteins in aggregates at the leading edge of the cells and with the formation of long actin filopods. Finally, data from a comparative genome-wide transcriptomic analysis suggested that the PBM-PDZ association is implicated in the expression of genes regulating proliferation, apoptosis and cytoskeletal organization. Collectively, our findings suggest that the Tax PBM is an auxiliary motif that contributes to the sustained growth of HTLV-1 infected T-cells in vivo and in vitro and is essential to T-cell immortalization.

  7. Effect of human milk on blood and bone marrow cells in a malnourished mice model; comparative study with cow milk.

    Science.gov (United States)

    García, Isabel; Salva, Susana; Zelaya, Hortensia; Villena, Julio; Agüero, Graciela

    2013-11-01

    It has been demonstrated that the alterations caused by nutrient deficiency can be reverted by adequate nutritional repletion. To perform comparative studies between human and cow milks in order to evaluate the impact of both milks on the recovery of blood and bone marrow cells affected in malnourished mice. Weaned mice were malnourished after consuming a protein free diet for 21 days. Malnourished mice received cow or human milk (CM or HM) for 7 or 14 consecutive days. During the period of administration of milk, the mice consumed the protein free diet ad libitum. The malnourished control (MNC) group received only protein free diet whereas the wellnourished control (WNC) mice consumed the balanced conventional diet. Both milks normalized serum albumin levels and improved thymus weight. Human milk was less effective than cow milk to increase body weight and serum transferrin levels. In contrast, human milk was more effective than cow milk to increase the number of leukocytes (WNC: 6.90 ± 1.60a; MNC: 2.80 ± 0.90b; CM 7d: 3.74 ± 1.10b; HM 7d: 7.16 ± 1.90a; CM 14d: 4.35 ± 1.20b; HM 14d: 6.75 ± 1.20a (109/L); p milks induced an increment in mitotic pool cells in bone marrow and α-naphthyl butyrate esterase positive cells in peripheral blood. They also normalized phagocytic function in blood neutrophils and oxidative burst in peritoneal cells. Both milks were equally effective to exert favorable effects on the number of the bone marrow cells and the functions of the blood and peritoneal cells involved in immune response. However, only human milk normalized the number of leukocytes and increased the number of neutrophils in peripheral blood. Copyright AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  8. Statins do not alter the incidence of mesothelioma in asbestos exposed mice or humans.

    Directory of Open Access Journals (Sweden)

    Cleo Robinson

    Full Text Available Mesothelioma is principally caused by asbestos and may be preventable because there is a long latent period between exposure and disease development. The most at-risk are a relatively well-defined population who were exposed as a consequence of their occupations. Although preventative agents investigated so far have not been promising, discovery of such an agent would have a significant benefit world-wide on healthcare costs and personal suffering. Statins are widely used for management of hypercholesterolemia and cardiovascular risk; they can induce apoptosis in mesothelioma cells and epidemiological data has linked their use to a lower incidence of cancer. We hypothesised that statins would inhibit the development of asbestos-induced mesothelioma in mice and humans. An autochthonous murine model of asbestos-induced mesothelioma was used to test this by providing atorvastatin daily in the feed at 100 mg/kg, 200 mg/kg and 400 mg/kg. Continuous administration of atorvastatin did not alter the rate of disease development nor increase the length of time that mice survived. Latency to first symptoms of disease and disease progression were also unaffected. In a parallel study, the relationship between the use of statins and development of mesothelioma was investigated in asbestos-exposed humans. In a cohort of 1,738 asbestos exposed people living or working at a crocidolite mine site in Wittenoom, Western Australia, individuals who reported use of statins did not have a lower incidence of mesothelioma (HR = 1.01; 95% CI = 0.44-2.29, p = 0.99. Some individuals reported use of both statins and non-steroidal anti-inflammatory drugs or COX-2 inhibitors, and these people also did not have an altered risk of mesothelioma development (HR = 1.01; 95% CI = 0.61-1.67, p = 0.97. We conclude that statins do not moderate the rate of development of mesothelioma in either a mouse model or a human cohort exposed to asbestos.

  9. 92R Monoclonal Antibody Inhibits Human CCR9+ Leukemia Cells Growth in NSG Mice Xenografts.

    Science.gov (United States)

    Somovilla-Crespo, Beatriz; Martín Monzón, Maria Teresa; Vela, Maria; Corraliza-Gorjón, Isabel; Santamaria, Silvia; Garcia-Sanz, Jose A; Kremer, Leonor

    2018-01-01

    CCR9 is as an interesting target for the treatment of human CCR9 + -T cell acute lymphoblastic leukemia, since its expression is limited to immature cells in the thymus, infiltrating leukocytes in the small intestine and a small fraction of mature circulating T lymphocytes. 92R, a new mouse mAb (IgG2a isotype), was raised using the A-isoform of hCCR9 as immunogen. Its initial characterization demonstrates that binds with high affinity to the CCR9 N-terminal domain, competing with the previously described 91R mAb for receptor binding. 92R inhibits human CCR9 + tumor growth in T and B-cell deficient Rag2 -/- mice. In vitro assays suggested complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity as possible in vivo mechanisms of action. Unexpectedly, 92R strongly inhibited tumor growth also in a model with compromised NK and complement activities, suggesting that other mechanisms, including phagocytosis or apoptosis, might also be playing a role on 92R-mediated tumor elimination. Taken together, these data contribute to strengthen the hypothesis of the immune system's opportunistic nature.

  10. Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans

    Science.gov (United States)

    Ochi, Atsuo; Graffeo, Christopher S.; Zambirinis, Constantinos P.; Rehman, Adeel; Hackman, Michael; Fallon, Nina; Barilla, Rocky M.; Henning, Justin R.; Jamal, Mohsin; Rao, Raghavendra; Greco, Stephanie; Deutsch, Michael; Medina-Zea, Marco V.; Saeed, Usama Bin; Ego-Osuala, Melvin O.; Hajdu, Cristina; Miller, George

    2012-01-01

    Pancreatic ductal adenocarcinoma is an aggressive cancer that interacts with stromal cells to produce a highly inflammatory tumor microenvironment that promotes tumor growth and invasiveness. The precise interplay between tumor and stroma remains poorly understood. TLRs mediate interactions between environmental stimuli and innate immunity and trigger proinflammatory signaling cascades. Our finding that TLR7 expression is upregulated in both epithelial and stromal compartments in human and murine pancreatic cancer led us to postulate that carcinogenesis is dependent on TLR7 signaling. In a mouse model of pancreatic cancer, TLR7 ligation vigorously accelerated tumor progression and induced loss of expression of PTEN, p16, and cyclin D1 and upregulation of p21, p27, p53, c-Myc, SHPTP1, TGF-β, PPARγ, and cyclin B1. Furthermore, TLR7 ligation induced STAT3 activation and interfaced with Notch as well as canonical NF-κB and MAP kinase pathways, but downregulated expression of Notch target genes. Moreover, blockade of TLR7 protected against carcinogenesis. Since pancreatic tumorigenesis requires stromal expansion, we proposed that TLR7 ligation modulates pancreatic cancer by driving stromal inflammation. Accordingly, we found that mice lacking TLR7 exclusively within their inflammatory cells were protected from neoplasia. These data suggest that targeting TLR7 holds promise for treatment of human pancreatic cancer. PMID:23023703

  11. Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo.

    Science.gov (United States)

    Iqbal, Asif J; McNeill, Eileen; Kapellos, Theodore S; Regan-Komito, Daniel; Norman, Sophie; Burd, Sarah; Smart, Nicola; Machemer, Daniel E W; Stylianou, Elena; McShane, Helen; Channon, Keith M; Chawla, Ajay; Greaves, David R

    2014-10-09

    The recruitment of monocytes and their differentiation into macrophages at sites of inflammation are key events in determining the outcome of the inflammatory response and initiating the return to tissue homeostasis. To study monocyte trafficking and macrophage differentiation in vivo, we have generated a novel transgenic reporter mouse expressing a green fluorescent protein (GFP) under the control of the human CD68 promoter. CD68-GFP mice express high levels of GFP in both monocyte and embryo-derived tissue resident macrophages in adult animals. The human CD68 promoter drives GFP expression in all CD115(+) monocytes of adult blood, spleen, and bone marrow; we took advantage of this to directly compare the trafficking of bone marrow-derived CD68-GFP monocytes to that of CX3CR1(GFP) monocytes in vivo using a sterile zymosan peritonitis model. Unlike CX3CR1(GFP) monocytes, which downregulate GFP expression on differentiation into macrophages in this model, CD68-GFP monocytes retain high-level GFP expression for 72 hours after differentiation into macrophages, allowing continued cell tracking during resolution of inflammation. In summary, this novel CD68-GFP transgenic reporter mouse line represents a powerful resource for analyzing monocyte mobilization and monocyte trafficking as well as studying the fate of recruited monocytes in models of acute and chronic inflammation. © 2014 by The American Society of Hematology.

  12. Neural mechanisms of transient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys, and mice

    Science.gov (United States)

    Sherman, Maxwell A.; Lee, Shane; Law, Robert; Haegens, Saskia; Thorn, Catherine A.; Hämäläinen, Matti S.; Moore, Christopher I.; Jones, Stephanie R.

    2016-01-01

    Human neocortical 15–29-Hz beta oscillations are strong predictors of perceptual and motor performance. However, the mechanistic origin of beta in vivo is unknown, hindering understanding of its functional role. Combining human magnetoencephalography (MEG), computational modeling, and laminar recordings in animals, we present a new theory that accounts for the origin of spontaneous neocortical beta. In our MEG data, spontaneous beta activity from somatosensory and frontal cortex emerged as noncontinuous beta events typically lasting drive targeting proximal and distal dendrites of pyramidal neurons, where the defining feature of a beta event was a strong distal drive that lasted one beta period (∼50 ms). This beta mechanism rigorously accounted for the beta event profiles; several other mechanisms did not. The spatial location of synaptic drive in the model to supragranular and infragranular layers was critical to the emergence of beta events and led to the prediction that beta events should be associated with a specific laminar current profile. Laminar recordings in somatosensory neocortex from anesthetized mice and awake monkeys supported these predictions, suggesting this beta mechanism is conserved across species and recording modalities. These findings make several predictions about optimal states for perceptual and motor performance and guide causal interventions to modulate beta for optimal function. PMID:27469163

  13. Gene expression signatures of radiation response are specific, durable and accurate in mice and humans.

    Directory of Open Access Journals (Sweden)

    Sarah K Meadows

    2008-04-01

    Full Text Available Previous work has demonstrated the potential for peripheral blood (PB gene expression profiling for the detection of disease or environmental exposures.We have sought to determine the impact of several variables on the PB gene expression profile of an environmental exposure, ionizing radiation, and to determine the specificity of the PB signature of radiation versus other genotoxic stresses. Neither genotype differences nor the time of PB sampling caused any lessening of the accuracy of PB signatures to predict radiation exposure, but sex difference did influence the accuracy of the prediction of radiation exposure at the lowest level (50 cGy. A PB signature of sepsis was also generated and both the PB signature of radiation and the PB signature of sepsis were found to be 100% specific at distinguishing irradiated from septic animals. We also identified human PB signatures of radiation exposure and chemotherapy treatment which distinguished irradiated patients and chemotherapy-treated individuals within a heterogeneous population with accuracies of 90% and 81%, respectively.We conclude that PB gene expression profiles can be identified in mice and humans that are accurate in predicting medical conditions, are specific to each condition and remain highly accurate over time.

  14. Sex Differences in Maturation of Human Embryonic Stem Cell-Derived β Cells in Mice.

    Science.gov (United States)

    Saber, Nelly; Bruin, Jennifer E; O'Dwyer, Shannon; Schuster, Hellen; Rezania, Alireza; Kieffer, Timothy J

    2018-04-01

    Pancreatic progenitors derived from human embryonic stem cells (hESCs) are now in clinical trials for insulin replacement in patients with type 1 diabetes. Animal studies indicate that pancreatic progenitor cells can mature into a mixed population of endocrine cells, including glucose-responsive β cells several months after implantion. However, it remains unclear how conditions in the recipient may influence the maturation and ultimately the function of these hESC-derived cells. Here, we investigated the effects of (1) pregnancy on the maturation of human stage 4 (S4) pancreatic progenitor cells and (2) the impact of host sex on both S4 cells and more mature stage 7 (S7) pancreatic endocrine cells implanted under the kidney capsule of immunodeficient SCID-beige mice. Pregnancy led to increased proliferation of endogenous pancreatic β cells, but did not appear to affect proliferation or maturation of S4 cells at midgestation. Interestingly, S4 and S7 cells both acquired glucose-stimulated C-peptide secretion in females before males. Moreover, S4 cells lowered fasting blood glucose levels in females sooner than in males, whereas the responses with S7 cells were similar. These data indicate that the host sex may impact the maturation of hESC-derived cells in vivo and that this effect can be minimized by more advanced differentiation of the cells before implantation.

  15. Induced Human Decidual NK-Like Cells Improve Utero-Placental Perfusion in Mice.

    Directory of Open Access Journals (Sweden)

    Ricardo C Cavalli

    Full Text Available Decidual NK (dNK cells, a distinct type of NK cell, are thought to regulate uterine spiral artery remodeling, a process that allows for increased blood delivery to the fetal-placental unit. Impairment of uterine spiral artery remodeling is associated with decreased placental perfusion, increased uterine artery resistance, and obstetric complications such as preeclampsia and intrauterine growth restriction. Ex vivo manipulation of human peripheral blood NK (pNK cells by a combination of hypoxia, TGFß-1 and 5-aza-2'-deoxycytidine yields cells with phenotypic and in vitro functional similarities to dNK cells, called idNK cells. Here, gene expression profiling shows that CD56Bright idNK cells derived ex vivo from human pNK cells, and to a lesser extent CD56Dim idNK cells, are enriched in the gene expression signature that distinguishes dNK cells from pNK cells. When injected into immunocompromised pregnant mice with elevated uterine artery resistance, idNK cells homed to the uterus and reduced the uterine artery resistance index, suggesting improved placental perfusion.

  16. Plasma Dihydroceramides Are Diabetes Susceptibility Biomarker Candidates in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Leonore Wigger

    2017-02-01

    Full Text Available Summary: Plasma metabolite concentrations reflect the activity of tissue metabolic pathways and their quantitative determination may be informative about pathogenic conditions. We searched for plasma lipid species whose concentrations correlate with various parameters of glucose homeostasis and susceptibility to type 2 diabetes (T2D. Shotgun lipidomic analysis of the plasma of mice from different genetic backgrounds, which develop a pre-diabetic state at different rates when metabolically stressed, led to the identification of a group of sphingolipids correlated with glucose tolerance and insulin secretion. Quantitative analysis of these and closely related lipids in the plasma of individuals from two population-based prospective cohorts revealed that specific long-chain fatty-acid-containing dihydroceramides were significantly elevated in the plasma of individuals who will progress to diabetes up to 9 years before disease onset. These lipids may serve as early biomarkers of, and help identify, metabolic deregulation in the pathogenesis of T2D. : Wigger et al. find that several sphingolipids in mouse plasma correlate with glucose tolerance and insulin secretion. Quantitative analysis of these and closely related lipids in human plasma from two cohorts reveal that dihydroceramides are significantly elevated in individuals progressing to diabetes, up to 9 years before disease onset. Keywords: diabetes, T2D, ceramides, dihydroceramides, biomarkers, lipidomics, prognostic, mouse, human, high-fat diet, metabolic challenge, glucose intolerance, insulin sensitivity, prospective cohort

  17. Dietary tocopherols inhibit PhIP-induced prostate carcinogenesis in CYP1A-humanized mice.

    Science.gov (United States)

    Chen, Jayson X; Li, Guangxun; Wang, Hong; Liu, Anna; Lee, Mao-Jung; Reuhl, Kenneth; Suh, Nanjoo; Bosland, Maarten C; Yang, Chung S

    2016-02-01

    Tocopherols, the major forms of vitamin E, exist as alpha-tocopherol (α-T), β-T, γ-T and δ-T. The cancer preventive activity of vitamin E is suggested by epidemiological studies, but recent large-scale cancer prevention trials with high dose of α-T yielded disappointing results. Our hypothesis that other forms of tocopherols have higher cancer preventive activities than α-T was tested, herein, in a novel prostate carcinogenesis model induced by 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), a dietary carcinogen, in the CYP1A-humanized (hCYP1A) mice. Treatment of hCYP1A mice with PhIP (200 mg/kg b.w., i.g.) induced high percentages of mouse prostatic intraepithelial neoplasia (mPIN), mainly in the dorsolateral glands. Supplementation with a γ-T-rich mixture of tocopherols (γ-TmT, 0.3% in diet) significantly inhibited the development of mPIN lesions and reduced PhIP-induced elevation of 8-oxo-deoxyguanosine, COX-2, nitrotyrosine, Ki-67 and p-AKT, and the loss of PTEN and Nrf2. Further studies with purified δ-T, γ-T or α-T (0.2% in diet) showed that δ-T was more effective than γ-T or α-T in preventing mPIN formations and p-AKT elevation. These results indicate that γ-TmT and δ-T could be effective preventive agents of prostate cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Experimental study of 32P-CP-PLLA microparticle on human pancreatic carcinoma in nude mice

    International Nuclear Information System (INIS)

    Wang Lizhen; Yang Min; Xu Yuping; Pan Donghui; Huang Peilin; Liu Lu; Shao Guoqiang

    2011-01-01

    Objective: To study the therapeutic and toxic effects of 32 P-chromic phosphate-poly (L-lactic) acid ( 32 P-CP-PLLA) microparticle intratumoral administration into BALB/c nude mice bearing BxPc-3 human pancreatic carcinoma. Methods: Twenty four nude mice bearing tumors were injected with 0, 9.3, 18.5 and 37.0 M Bq 32 P-CP-PLLA microparticle, respectively. The relative tumor growth rates were observed every day, and white blood cells, platelets and body weight were measured. At 14 d after administration, the tumors were removed, histological examination and immunohistochemical analysis were performed. Results: The relative tumor growth rates of each treatment group was lower than 40%. Histological examination showed the degenerative necrosis at the site nearby the microparticle. Immunohistochemical analysis showed that the Microvessel density (MVD) and the expression of Bcl-2 in treated group were lower than those in control group.In contrast, the expression of bax in treated group were higher than those in control group. The ratio of Bcl-2/Bax protein significantly decreased in the treatment group,which were 3.83 ± 0.43, 0.47 ± 0.13, 1.10 ± 0.32, 2.19 ± 0.57 for 0, 9.3, 18.5 and 37.0 MBq 32 P-CP-PLLA microparticle, respectively (t=2.36-2.77, P<0.05). MVD were 31.2 ± 2.3, 23.8 ± 1.5, 14.8 ±0.8, 11.0 ± 1.2, respectively. Dose dependence was observed in both HE and IHC staining after 14 d treatment (t=2.30-2.57, P<0.05). Conclusions: Intratumoral injection of 32 P-CP-PLLA microparticle might be a safe, easy and effective radionuclide interventional therapy for pancreatic carcinoma. (authors)

  19. Anti-human tissue factor antibody ameliorated intestinal ischemia reperfusion-induced acute lung injury in human tissue factor knock-in mice.

    Directory of Open Access Journals (Sweden)

    Xiaolin He

    Full Text Available BACKGROUND: Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS. Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: Human tissue factor knock-in (hTF-KI transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859 were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v. attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. CONCLUSIONS: This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies.

  20. Production of factor VIII by human liver sinusoidal endothelial cells transplanted in immunodeficient uPA mice.

    Directory of Open Access Journals (Sweden)

    Marina E Fomin

    Full Text Available Liver sinusoidal endothelial cells (LSECs form a semi-permeable barrier between parenchymal hepatocytes and the blood. LSECs participate in liver metabolism, clearance of pathological agents, immunological responses, architectural maintenance of the liver and synthesis of growth factors and cytokines. LSECs also play an important role in coagulation through the synthesis of Factor VIII (FVIII. Herein, we phenotypically define human LSECs isolated from fetal liver using flow cytometry and immunofluorescence microscopy. Isolated LSECs were cultured and shown to express endothelial markers and markers specific for the LSEC lineage. LSECs were also shown to engraft the liver when human fetal liver cells were transplanted into immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA transgene (uPA-NOG mice. Engrafted cells expressed human Factor VIII at levels approaching those found in human plasma. We also demonstrate engraftment of adult LSECs, as well as hepatocytes, transplanted into uPA-NOG mice. We propose that overexpression of uPA provides beneficial conditions for LSEC engraftment due to elevated expression of the angiogenic cytokine, vascular endothelial growth factor. This work provides a detailed characterization of human midgestation LSECs, thereby providing the means for their purification and culture based on their expression of CD14 and CD32 as well as a lack of CD45 expression. The uPA-NOG mouse is shown to be a permissive host for human LSECs and adult hepatocytes, but not fetal hepatoblasts. Thus, these mice provide a useful model system to study these cell types in vivo. Demonstration of human FVIII production by transplanted LSECs encourages further pursuit of LSEC transplantation as a cellular therapy for the treatment of hemophilia A.

  1. Gastrointestinal absorption of plutonium and uranium in fed and fasted adult baboons and mice: application to humans

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.; Larsen, R.P.; Oldham, R.D.; Cohen, N.; Ralston, L.G.; Moretti, E.S.; Ayres, L.

    1989-01-01

    Gastrointestinal (GI) absorption values of plutonium and uranium were determined in fed and fasted adult baboons and mice. For both baboons and mice, the GI absorptions of plutonium and uranium were 10 to 20 times higher in 24 h fasted animals than in fed ones. For plutonium, GI absorption values in baboons were almost identical to those in mice for both fed and fasted conditions, and values for fed animals agreed with estimates for humans. For uranium, GI absorption values in fed and fasted baboons were 6 to 7 times higher than those in mice, and agreed well with those fed and fasted humans. For one baboon that was not given its morning meal, plutonium absorption 2 h after the start of the active phase was the same as that in the 24 h fasted animals. In contrast, for baboons that received a morning meal, plutonium absorption did not rise to the value of 24 h fasted baboons even 8 h after the meal. We conclude that GI absorption values for plutonium and uranium in adult baboons are good estimates of the values in humans and that the values for the fasted condition should be used to set standards for oral exposure of persons in the workplace. (author)

  2. Rasd2 Modulates Prefronto-Striatal Phenotypes in Humans and 'Schizophrenia-Like Behaviors' in Mice.

    Science.gov (United States)

    Vitucci, Daniela; Di Giorgio, Annabella; Napolitano, Francesco; Pelosi, Barbara; Blasi, Giuseppe; Errico, Francesco; Attrotto, Maria Teresa; Gelao, Barbara; Fazio, Leonardo; Taurisano, Paolo; Di Maio, Anna; Marsili, Valentina; Pasqualetti, Massimo; Bertolino, Alessandro; Usiello, Alessandro

    2016-02-01

    Rasd2 is a thyroid hormone target gene, which encodes for a GTP-binding protein enriched in the striatum where, among other functions, it modulates dopaminergic neurotransmission. Here we report that human RASD2 mRNA is abundant in putamen, but it also occurs in the cerebral cortex, with a distinctive expression pattern that differs from that present in rodents. Consistent with its localization, we found that a genetic variation in RASD2 (rs6518956) affects postmortem prefrontal mRNA expression in healthy humans and is associated with phenotypes of relevance to schizophrenia, including prefrontal and striatal grey matter volume and physiology during working memory, as measured with magnetic resonance imaging. Interestingly, quantitative real-time PCR analysis indicated that RASD2 mRNA is slightly reduced in postmortem prefrontal cortex of patients with schizophrenia. In the attempt to uncover the neurobiological substrates associated with Rasd2 activity, we used knockout mice to analyze the in vivo influence of this G-protein on the prepulse inhibition of the startle response and psychotomimetic drug-related behavioral response. Data showed that Rasd2 mutants display deficits in basal prepulse inhibition that, in turn, exacerbate gating disruption under psychotomimetic drug challenge. Furthermore, we documented that lack of Rasd2 strikingly enhances the behavioral sensitivity to motor stimulation elicited by amphetamine and phencyclidine. Based on animal model data, along with the finding that RASD2 influences prefronto-striatal phenotypes in healthy humans, we suggest that genetic mutation or reduced levels of this G-protein might have a role in cerebral circuitry dysfunction underpinning exaggerated psychotomimetic drugs responses and development of specific biological phenotypes linked to schizophrenia.

  3. Deletion of the App-Runx1 region in mice models human partial monosomy 21.

    Science.gov (United States)

    Arbogast, Thomas; Raveau, Matthieu; Chevalier, Claire; Nalesso, Valérie; Dembele, Doulaye; Jacobs, Hugues; Wendling, Olivia; Roux, Michel; Duchon, Arnaud; Herault, Yann

    2015-06-01

    Partial monosomy 21 (PM21) is a rare chromosomal abnormality that is characterized by the loss of a variable segment along human chromosome 21 (Hsa21). The clinical phenotypes of this loss are heterogeneous and range from mild alterations to lethal consequences, depending on the affected region of Hsa21. The most common features include intellectual disabilities, craniofacial dysmorphology, short stature, and muscular and cardiac defects. As a complement to human genetic approaches, our team has developed new monosomic mouse models that carry deletions on Hsa21 syntenic regions in order to identify the dosage-sensitive genes that are responsible for the symptoms. We focus here on the Ms5Yah mouse model, in which a 7.7-Mb region has been deleted from the App to Runx1 genes. Ms5Yah mice display high postnatal lethality, with a few surviving individuals showing growth retardation, motor coordination deficits, and spatial learning and memory impairments. Further studies confirmed a gene dosage effect in the Ms5Yah hippocampus, and pinpointed disruptions of pathways related to cell adhesion (involving App, Cntnap5b, Lgals3bp, Mag, Mcam, Npnt, Pcdhb2, Pcdhb3, Pcdhb4, Pcdhb6, Pcdhb7, Pcdhb8, Pcdhb16 and Vwf). Our PM21 mouse model is the first to display morphological abnormalities and behavioural phenotypes similar to those found in affected humans, and it therefore demonstrates the major contribution that the App-Runx1 region has in the pathophysiology of PM21. © 2015. Published by The Company of Biologists Ltd.

  4. Survival of human mesenchymal stromal cells from bone marrow and adipose tissue after xenogenic transplantation in immunocompetent mice

    DEFF Research Database (Denmark)

    Niemeyer, P; Vohrer, J; Schmal, H

    2008-01-01

    of the current paper was to evaluate the survival of undifferentiated and osteogenically induced human MSC from different origins after transplantation in immunocompetent mice. METHODS: Human MSC were isolated from bone marrow (BMSC) and adipose tissue (ASC). After cultivation on mineralized collagen, MSC were......INTRODUCTION: Mesenchymal stromal cells (MSC) represent an attractive cell population for tissue engineering purposes. As MSC are described as immunoprivileged, non-autologous applications seem possible. A basic requirement is the survival of MSC after transplantation in the host. The purpose...... transplanted subcutaneously into immunocompetent mice (n=12). Undifferentiated MSC (group A) were compared with osteogenic-induced MSC (group B). Human-specific in situ hybridization and anti-vimentin staining was used to follow MSC after transplantation. Quantitative evaluation of lymphocytes and macrophages...

  5. Human β-globin locus control region: Analysis of the 5' DNase I hypersensitive site HS 2 in transgenic mice

    International Nuclear Information System (INIS)

    Caterina, J.J.; Ryan, T.M.; Pawlik, K.M.; Townes, T.M.; Brinster, R.L.; Behringer, R.R.; Palmiter, R.D.

    1991-01-01

    The human β-globin locus control region (LCR) is essential for high-level expression of human var-epsilon-, γ-, and β-globin genes. Developmentally stable DNase I hypersensitive sites (designated HS) mark sequences within this region that are important for LCR activity. A 1.9-kilobase (kb) fragment containing the 5' HS 2 site enhances human β-globin gene expression 100-fold in transgenic mice and also confers position-independent expression. To further define important sequences within this region, deletion mutations of the 1.9-kb fragment were introduced upstream of the human β-globin gene, and the constructs were tested for activity in transgenic mice. Although enhancer activity was gradually lost with deletion of both 5' and 3' sequences, a 373-base-pair (BP) fragment retained the ability to confer relative position-independent expression. Three prominent DNase I footprints were observed in this region with extracts from the human erythroleukemia cell line K-562, one of which contained duplicated binding sites for transcription factor AP-1 (activator protein 1). When the 1.9-kb fragment containing an 19-bp deletion of the AP-1 binding sites was tested in transgenic mice, enhancer activity decreased 20-fold but position-independent expression was retained

  6. Visualization of the human CD4+ T-cell response in humanized HLA-DR4-expressing NOD/Shi-scid/γcnull (NOG) mice by retrogenic expression of the human TCR gene

    International Nuclear Information System (INIS)

    Takahashi, Takeshi; Katano, Ikumi; Ito, Ryoji; Ito, Mamoru

    2015-01-01

    Highlights: • β-Lactoglobulin (BLG) specific TCR genes were introduced to human HSC by retrovirus. • Human HSC with BLG-specific TCR were transplanted into NOG-HLA-DR4 I-A −/− mice. • BLG-specific TCR induced positive selection of thymocytes. • BLG-specific TCR positive CD4 + T cells mediated immune responses in humanized mice. - Abstract: The development of severe immunodeficient mouse strains containing various human genes, including cytokines or HLA, has enabled the reconstitution of functional human immune systems after transplantation of human hematopoietic stem cells (HSC). Accumulating evidence has suggested that HLA-restricted antigen-specific human T-cell responses can be generated in these humanized mice. To directly monitor immune responses of human CD4 + T cells, we introduced β-lactoglobulin (BLG)-specific T cell receptor (TCR) genes derived from CD4 + T-cell clones of cow-milk allergy patients into HSCs, and subsequently transplanted them into NOG-HLA-DR4 transgenic/I-Aβ deficient mice (NOG-DR4/I-A o ). In the thymus, thymocytes with BLG-specific TCR preferentially differentiated into CD4 + CD8 − single-positive cells. Adoptive transfer of mature CD4 + T cells expressing the TCR into recipient NOG-DR4/I-A o mice demonstrated that human CD4 + T cells proliferated in response to antigenic stimulation and produced IFN-γ in vivo, suggesting that functional T-cell reactions (especially Th1-skewed responses) were induced in humanized mice

  7. Visualization of the human CD4{sup +} T-cell response in humanized HLA-DR4-expressing NOD/Shi-scid/γc{sup null} (NOG) mice by retrogenic expression of the human TCR gene

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takeshi, E-mail: takeshi-takahashi@ciea.or.jp; Katano, Ikumi; Ito, Ryoji; Ito, Mamoru

    2015-01-02

    Highlights: • β-Lactoglobulin (BLG) specific TCR genes were introduced to human HSC by retrovirus. • Human HSC with BLG-specific TCR were transplanted into NOG-HLA-DR4 I-A{sup −/−} mice. • BLG-specific TCR induced positive selection of thymocytes. • BLG-specific TCR positive CD4{sup +} T cells mediated immune responses in humanized mice. - Abstract: The development of severe immunodeficient mouse strains containing various human genes, including cytokines or HLA, has enabled the reconstitution of functional human immune systems after transplantation of human hematopoietic stem cells (HSC). Accumulating evidence has suggested that HLA-restricted antigen-specific human T-cell responses can be generated in these humanized mice. To directly monitor immune responses of human CD4{sup +} T cells, we introduced β-lactoglobulin (BLG)-specific T cell receptor (TCR) genes derived from CD4{sup +} T-cell clones of cow-milk allergy patients into HSCs, and subsequently transplanted them into NOG-HLA-DR4 transgenic/I-Aβ deficient mice (NOG-DR4/I-A{sup o}). In the thymus, thymocytes with BLG-specific TCR preferentially differentiated into CD4{sup +}CD8{sup −} single-positive cells. Adoptive transfer of mature CD4{sup +} T cells expressing the TCR into recipient NOG-DR4/I-A{sup o} mice demonstrated that human CD4{sup +} T cells proliferated in response to antigenic stimulation and produced IFN-γ in vivo, suggesting that functional T-cell reactions (especially Th1-skewed responses) were induced in humanized mice.

  8. Micro-Computed Tomography Evaluation of Human Fat Grafts in Nude Mice

    Science.gov (United States)

    Chung, Michael T.; Hyun, Jeong S.; Lo, David D.; Montoro, Daniel T.; Hasegawa, Masakazu; Levi, Benjamin; Januszyk, Michael; Longaker, Michael T.

    2013-01-01

    Background Although autologous fat grafting has revolutionized the field of soft tissue reconstruction and augmentation, long-term maintenance of fat grafts is unpredictable. Recent studies have reported survival rates of fat grafts to vary anywhere between 10% and 80% over time. The present study evaluated the long-term viability of human fat grafts in a murine model using a novel imaging technique allowing for in vivo volumetric analysis. Methods Human fat grafts were prepared from lipoaspirate samples using the Coleman technique. Fat was injected subcutaneously into the scalp of 10 adult Crl:NU-Foxn1nu CD-1 male mice. Micro-computed tomography (CT) was performed immediately following injection and then weekly thereafter. Fat volume was rendered by reconstructing a three-dimensional (3D) surface through cubic-spline interpolation. Specimens were also harvested at various time points and sections were prepared and stained with hematoxylin and eosin (H&E), for macrophages using CD68 and for the cannabinoid receptor 1 (CB1). Finally, samples were explanted at 8- and 12-week time points to validate calculated micro-CT volumes. Results Weekly CT scanning demonstrated progressive volume loss over the time course. However, volumetric analysis at the 8- and 12-week time points stabilized, showing an average of 62.2% and 60.9% survival, respectively. Gross analysis showed the fat graft to be healthy and vascularized. H&E analysis and staining for CD68 showed minimal inflammatory reaction with viable adipocytes. Immunohistochemical staining with anti-human CB1 antibodies confirmed human origin of the adipocytes. Conclusions Studies assessing the fate of autologous fat grafts in animals have focused on nonimaging modalities, including histological and biochemical analyses, which require euthanasia of the animals. In this study, we have demonstrated the ability to employ micro-CT for 3D reconstruction and volumetric analysis of human fat grafts in a mouse model. Importantly

  9. Expression of HLA Class II Molecules in Humanized NOD.Rag1KO.IL2RgcKO Mice is Critical for Development and Function of Human T and B Cells

    Science.gov (United States)

    2011-05-17

    class switch was preserved in DRAG mice. The human identity of Ig heavy and Figure 4. Human T cells developed by DRAG mice are functional. At 6 months...HSC-infused DRAG and control mice were immunized with 1 flocculation unit of TT vaccine (Sanofi Pasteur ) by the intramuscular route, and the titers...and CD8 T cells with preserved integrity of both TCR and non-TCR signaling pathways. It has been suggested that low frequency and functional

  10. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production.

    Science.gov (United States)

    Bhattarai, Yogesh; Schmidt, Bradley A; Linden, David R; Larson, Eric D; Grover, Madhusudan; Beyder, Arthur; Farrugia, Gianrico; Kashyap, Purna C

    2017-07-01

    Serotonin [5-hydroxytryptamine (5-HT)], an important neurotransmitter and a paracrine messenger in the gastrointestinal tract, regulates intestinal secretion by its action primarily on 5-HT 3 and 5-HT 4 receptors. Recent studies highlight the role of gut microbiota in 5-HT biosynthesis. In this study, we determine whether human-derived gut microbiota affects host secretory response to 5-HT and 5-HT receptor expression. We used proximal colonic mucosa-submucosa preparation from age-matched Swiss Webster germ-free (GF) and humanized (HM; ex-GF colonized with human gut microbiota) mice. 5-HT evoked a significantly greater increase in short-circuit current (Δ I sc ) in GF compared with HM mice. Additionally, 5-HT 3 receptor mRNA and protein expression was significantly higher in GF compared with HM mice. Ondansetron, a 5-HT 3 receptor antagonist, inhibited 5-HT-evoked Δ I sc in GF mice but not in HM mice. Furthermore, a 5-HT 3 receptor-selective agonist, 2-methyl-5-hydroxytryptamine hydrochloride, evoked a significantly higher Δ I sc in GF compared with HM mice. Immunohistochemistry in 5-HT 3A -green fluorescent protein mice localized 5-HT 3 receptor expression to enterochromaffin cells in addition to nerve fibers. The significant difference in 5-HT-evoked Δ I sc between GF and HM mice persisted in the presence of tetrodotoxin (TTX) but was lost after ondansetron application in the presence of TTX. Application of acetate (10 mM) significantly lowered 5-HT 3 receptor mRNA in GF mouse colonoids. We conclude that host secretory response to 5-HT may be modulated by gut microbiota regulation of 5-HT 3 receptor expression via acetate production. Epithelial 5-HT 3 receptor may function as a mediator of gut microbiota-driven change in intestinal secretion. NEW & NOTEWORTHY We found that gut microbiota alters serotonin (5-HT)-evoked intestinal secretion in a 5-HT 3 receptor-dependent mechanism and gut microbiota metabolite acetate alters 5-HT 3 receptor expression in

  11. Trehalose Liposomes Suppress the Growth of Tumors on Human Lung Carcinoma-bearing Mice by Induction of Apoptosis In Vivo.

    Science.gov (United States)

    Ichihara, Hideaki; Kuwabara, Keiji; Matsumoto, Yoko

    2017-11-01

    Previous evidence demonstrates that trehalose liposomes (DMTreC14) composed of L-α-dimyristoylphosphatidylcholine (DMPC) and α-D-glycopyranosyl-α-D-glucopyranoside monomyristate (TreC14) inhibit proliferation and invasion on lung carcinoma (A549 cells) in vitro. Here, we aimed to investigate suppressive effects of DMTreC14 on the growth of tumor on human lung carcinoma bearing mice. DMTreC14 composed of 30 mol% DMPC and 70 mol% TreC14 were prepared by the sonication method. Anti-tumor activities of DMTreC14 using the subcutaneous and orthotopic graft-bearing mice of A549 cells were investigated in vivo. The remarkable reduction of volume and weight in subcutaneous tumors on subcutaneous lung carcinoma-bearing mice topically administrated with DMTreC14 were obtained. Apoptotic-positive cells in the subcutaneous tumor slice of subcutaneous lung carcinoma-bearing mice topically administrated with DMTreC14 were observed using TUNEL staining. Lung weights on the orthotopic graft-bearing mice of lung carcinoma intravenously administrated with DMTreC14 were markedly decreased compared to those of the control group. Remarkable decrease in dimensions of tumor area of lung on the orthotopic graft-bearing mice of lung carcinoma intravenously administrated with DMTreC14 was obtained in histological analysis using the hematoxylin and eosin staining. Remarkably high anti-tumor activities of DMTreC14 for the subcutaneous and orthotopic graft-bearing mice of lung carcinoma accompanied with apoptosis were revealed for the first time in vivo. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Biodistribution and SPECT imaging of 99Tcm labeling NGR peptide in nude mice bearing human HePG2 hepatoma

    International Nuclear Information System (INIS)

    Ma Wenhui; Wang Jing; Yang Weidong; Li Guiyu; Ma Xiaowei; Wang Zhe

    2012-01-01

    A peptide containing the Asn-Gly-Arg (NGR) sequence was radiolabeled by 99 Tc m and its radiochemical characteristics, biodistribution and SPECT imaging in nude mice bearing human HePG2 hepatoma were evaluated. 99 Tc m -NGR was prepared directly with a labeling yield higher than 90%, and the radiochemical purity (RCP) higher than 95%. Nude mice bearing human HePG2 hepatoma were randomly divided into 6 groups with 3 mice in each group. The control group mice were blocked by injecting 100 μg unlabeled NGR 0.5 h before 99 Tc m -NGR injection. The mice were sacrificed at 1, 2, 4, 8, 12 h after caudal intravenous injection of 7.4 MBq 99 Tc m -NGR. The uptakes of kidney and liver were very high. Tumor uptake was (2.52±0.62)% ID/g at 1 h, with the highest uptake of (7.26±2.71) %ID/g. At 12 h, the uptake was still (3.93±1.93) %ID/g. In comparison, the uptake of the blocked control group was (1.29±0.85) %ID/g. The SPECT static images of 3 mice and the tumor/muscle (T/NT) value were obtained. The highest T/NT value was 3.25 at 4 h. The xenografted tumor became visible at 1 h and the clearest image of the tumor was observed at 12 h. Results from this work shows that 99 Tc m -NGR can be efficiently prepared, can favorably target tumor angiogenesis, and should be a potential probe in tumor therapy. (authors)

  13. Human recombinant factor VIIa may improve heat intolerance in mice by attenuating hypothalamic neuronal apoptosis and damage.

    Science.gov (United States)

    Hsu, Chuan-Chih; Chen, Sheng-Hsien; Lin, Cheng-Hsien; Yung, Ming-Chi

    2014-10-01

    Intolerance to heat exposure is believed to be associated with hypothalamo-pituitary-adrenocortical (HPA) axis impairment [reflected by decreases in blood concentrations of both adrenocorticotrophic-hormone (ACTH) and corticosterone]. The purpose of this study was to determine the effect of human recombinant factor VIIa (rfVIIa) on heat intolerance, HPA axis impairment, and hypothalamic inflammation, ischemic and oxidative damage, and apoptosis in mice under heat stress. Immediately after heat stress (41.2 °C for 1 h), mice were treated with vehicle (1 mL/kg of body weight) or rfVIIa (65-270 µg/kg of body weight) and then returned to room temperature (26 °C). Mice still alive on day 4 of heat exposure were considered survivors. Cellular ischemia markers (e.g., glutamate, lactate-to-pyruvate ratio), oxidative damage markers (e.g., nitric oxide metabolite, hydroxyl radials), and pro-inflammatory cytokines (e.g., interleukin-6, interleukin-1β, tumor necrosis factor-α) in hypothalamus were determined. In addition, blood concentrations of both ACTH and corticosterone were measured. Hypothalamic cell damage was assessed by determing the neuronal damage scores, whereas the hypothalamic cell apoptosis was determined by assessing the numbers of cells stained with terminal deoxynucleotidyl transferase-mediated αUTP nick-end labeling, caspase-3-positive cells, and platelet endothelial cell adhesion molecula-1-positive cells in hypothalamus. Compared with vehicle-treated heated mice, rfVIIa-treated heated mice had significantly higher fractional survival (8/10 vs 1/10), lesser thermoregulatory deficit (34.1 vs 24.8 °C), lesser extents of ischemic, oxidative, and inflammatory markers in hypothalamus, lesser neuronal damage scores and apoptosis in hypothalamus, and lesser HPA axis impairment. Human recombinant factor VIIa appears to exert a protective effect against heatstroke by attenuating hypothalamic cell apoptosis (due to ischemic, inflammatory, and oxidative damage

  14. A novel model to study neonatal Escherichia coli sepsis and the effect of treatment on the human immune system using humanized mice.

    Science.gov (United States)

    Schlieckau, Florian; Schulz, Daniela; Fill Malfertheiner, Sara; Entleutner, Kathrin; Seelbach-Goebel, Birgit; Ernst, Wolfgang

    2018-04-19

    Neonatal sepsis is a serious threat especially for preterm infants. As existing in vitro and in vivo models have limitations, we generated a novel neonatal sepsis model using humanized mice and tested the effect of Betamethasone and Indomethacin which are used in the clinic in case of premature birth. Humanized mice were infected with Escherichia coli (E. coli). Subsequently, the effect of the infection itself, and treatment with Betamethasone and Indomethacin on survival, recovery, bacterial burden, leukocyte populations, and cytokine production, was analyzed. The human immune system in the animals responded with leukocyte trafficking to the site of infection and granulopoiesis in the bone marrow. Treatment with Indomethacin had no pronounced effect on the immune system or bacterial burden. Betamethasone induced a decline of splenocytes. The human immune system in humanized mice responds to the infection, making them a suitable model to study neonatal E. coli sepsis and the immune response of the neonatal immune system. Treatment with Betamethasone could have potential negative long-term effects for the immune system of the child. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Effects of low dose rate irradiation on life span prolongation of human premature-aging syndrome model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2006-01-01

    We previously showed that Type II diabetes model mice prolonged of their life span by life long low dose rate irradiation. We also found that antioxidant function in variety tissues of some strain of mice were enhancement after low dose/low dose rate irradiation. The prolongation of life span might depend on certain damaged level of reactive oxygen species. We thought the effect of the prolongation was due to the enhancement of the antioxidant activities after irradiation. We investigated whether the enhancement of antioxidant activities after low dose rate irradiation had an effect on life span prolongation. Four-week-old female human premature-aging syndrome model mice, kl/kl (klotho) mice, which the life span of this model mouse is about 65 days, were irradiated with gamma rays at 0.35, 0.70 or 1.2 mGy/hr. The 0.70 mGy/hr-irradiated group remarkably effected on the prolongation of their life span. Some mice of the group were extremely survived for about and more 100 days. Antioxidant activities in the irradiated groups were enhancement by low dose rate irradiation, however the dependence of the dose rates were not clearly difference. These results suggest that the antioxidant activities in this model mouse were enhanced by the low dose rate irradiation, and may make it possible to prolong the life span of this mouse. (author)

  16. Exacerbating effects of human parvovirus B19 NS1 on liver fibrosis in NZB/W F1 mice.

    Directory of Open Access Journals (Sweden)

    Tsai-Ching Hsu

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disorder with unknown etiology that impacts various organs including liver. Recently, human parvovirus B19 (B19 is recognized to exacerbate SLE. However, the effects of B19 on liver in SLE are still unclear. Herein we aimed to investigate the effects of B19 on liver in NZB/W F1 mice by injecting subcutaneously with PBS, recombinant B19 NS1, VP1u or VP2, respectively. Our experimental results revealed that B19 NS1 protein significantly enhanced the TGF-β/Smad fibrotic signaling by increasing the expressions of TGF-β, Smad2/3, phosphorylated Smad2/3, Smad4 and Sp1. The consequent fibrosis-related proteins, PAI-1 and α-SMA, were also significantly induced in livers of NZB/W F1 mice receiving B19 NS1 protein. Accordingly, markedly increased collagen deposition was also observed in livers of NZB/W F1 mice receiving B19 NS1 protein. However, no significant difference was observed in livers of NZB/W F1 mice receiving B19 VP1u or VP2 as compared to the controls. These findings indicate that B19 NS1 plays a crucial role in exacerbating liver fibrosis in NZB/W F1 mice through enhancing the TGF-â/Smad fibrotic signaling.

  17. Exacerbating Effects of Human Parvovirus B19 NS1 on Liver Fibrosis in NZB/W F1 Mice

    Science.gov (United States)

    Hsu, Tsai-Ching; Tsai, Chun-Chou; Chiu, Chun-Ching; Hsu, Jeng-Dong; Tzang, Bor-Show

    2013-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder with unknown etiology that impacts various organs including liver. Recently, human parvovirus B19 (B19) is recognized to exacerbate SLE. However, the effects of B19 on liver in SLE are still unclear. Herein we aimed to investigate the effects of B19 on liver in NZB/W F1 mice by injecting subcutaneously with PBS, recombinant B19 NS1, VP1u or VP2, respectively. Our experimental results revealed that B19 NS1 protein significantly enhanced the TGF-β/Smad fibrotic signaling by increasing the expressions of TGF-β, Smad2/3, phosphorylated Smad2/3, Smad4 and Sp1. The consequent fibrosis-related proteins, PAI-1 and α-SMA, were also significantly induced in livers of NZB/W F1 mice receiving B19 NS1 protein. Accordingly, markedly increased collagen deposition was also observed in livers of NZB/W F1 mice receiving B19 NS1 protein. However, no significant difference was observed in livers of NZB/W F1 mice receiving B19 VP1u or VP2 as compared to the controls. These findings indicate that B19 NS1 plays a crucial role in exacerbating liver fibrosis in NZB/W F1 mice through enhancing the TGF-â/Smad fibrotic signaling. PMID:23840852

  18. Intratracheal injection of adenovirus containing the human MNSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis

    International Nuclear Information System (INIS)

    Epperly, Michael W.; Bray, Jenifer A.; Krager, Stephen; Berry, Luann M.; Gooding, William; Engelhardt, John F.; Zwacka, Ralf; Travis, Elizabeth L.; Greenberger, Joel S.

    1999-01-01

    Purpose: A dose and volume limiting factor in radiation treatment of thoracic cancer is the development of fibrosis in normal lung. The goal of the present study was to determine whether expression prior to irradiation of a transgene for human manganese superoxide dismutase (MnSOD) or human copper/zinc superoxide dismutase (Cu/ZnSOD) protects against irradiation-induced lung damage in mice. Methods and Materials: Athymic Nude (Nu/J) mice were intratracheally injected with 10 9 plaque-forming units (PFU) of a replication-incompetent mutant adenovirus construct containing the gene for either human MnSOD, human copper/zinc superoxide dismutase (Cu/ZnSOD) or LacZ. Four days later the mice were irradiated to the pulmonary cavity to doses of 850, 900, or 950 cGy. To demonstrate adenoviral infection, nested reverse transcriptase-polymerase chain reaction (RT-PCR) was carried out with primers specific for either human MnSOD or Cu/ZnSOD transgene on freshly explanted lung, trachea, or alveolar type II cells, and immunohistochemistry was used to measure LacZ expression. RNA was extracted on day 0, 1, 4, or 7 after 850 cGy of irradiation from lungs of mice that had previously received adenovirus or had no treatment. Slot blot analysis was performed to quantitate RNA expression for IL-1, tumor necrosis factor (TNF)-α, TGF-β, MnSOD, or Cu/ZnSOD. Lung tissue was explanted and tested for biochemical activity of MnSOD or Cu/ZnSOD after adenovirus injection. Other mice were sacrificed 132 days after irradiation, lungs excised, frozen in OCT, (polyvinyl alcohol, polyethylene glycol mixture) sectioned, H and E stained, and evaluated for percent of the lung demonstrating organizing alveolitis. Results: Mice injected intratracheally with adenovirus containing the gene for human MnSOD had significantly reduced chronic lung irradiation damage following 950 cGy, compared to control mice or mice injected with adenovirus containing the gene for human Cu/ZnSOD or LacZ. Immunohistochemistry

  19. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans.

    Science.gov (United States)

    Subramaniam, Selvakumar; Ozdener, Mehmet Hakan; Abdoul-Azize, Souleymane; Saito, Katsuyoshi; Malik, Bilal; Maquart, Guillaume; Hashimoto, Toshihiro; Marambaud, Philippe; Aribi, Mourad; Tordoff, Michael G; Besnard, Philippe; Khan, Naim Akhtar

    2016-10-01

    Obesity is a major public health problem. An in-depth knowledge of the molecular mechanisms of oro-sensory detection of dietary lipids may help fight it. Humans and rodents can detect fatty acids via lipido-receptors, such as CD36 and GPR120. We studied the implication of the MAPK pathways, in particular, ERK1/2, in the gustatory detection of fatty acids. Linoleic acid, a dietary fatty acid, induced via CD36 the phosphorylation of MEK1/2-ERK1/2-ETS-like transcription factor-1 cascade, which requires Fyn-Src kinase and lipid rafts in human taste bud cells (TBCs). ERK1/2 cascade was activated by Ca 2+ signaling via opening of the calcium-homeostasis modulator-1 (CALHM1) channel. Furthermore, fatty acid-evoked Ca 2+ signaling and ERK1/2 phosphorylation were decreased in both human TBCs after small interfering RNA knockdown of CALHM1 channel and in TBCs from Calhm1 -/- mice. Targeted knockdown of ERK1/2 by small interfering RNA or PD0325901 (MEK1/2 inhibitor) in the tongue and genetic ablation of Erk1 or Calhm1 genes impaired preference for dietary fat in mice. Lingual inhibition of ERK1/2 in healthy volunteers also decreased orogustatory sensitivity for linoleic acid. Our data demonstrate that ERK1/2-MAPK cascade is regulated by the opening of CALHM1 Ca 2+ channel in TBCs to modulate orogustatory detection of dietary lipids in mice and humans.-Subramaniam, S., Ozdener, M. H., Abdoul-Azize, S., Saito, K., Malik, B., Maquart, G., Hashimoto, T., Marambaud, P., Aribi, M., Tordoff, M. G., Besnard, P., Khan, N. A. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. © FASEB.

  20. Enhanced humoral and HLA-A2-restricted dengue virus-specific T-cell responses in humanized BLT NSG mice

    Science.gov (United States)

    Jaiswal, Smita; Pazoles, Pamela; Woda, Marcia; Shultz, Leonard D; Greiner, Dale L; Brehm, Michael A; Mathew, Anuja

    2012-01-01

    Dengue is a mosquito-borne viral disease of humans, and animal models that recapitulate human immune responses or dengue pathogenesis are needed to understand the pathogenesis of the disease. We recently described an animal model for dengue virus (DENV) infection using humanized NOD-scid IL2rγnull mice (NSG) engrafted with cord blood haematopoietic stem cells. We sought to further improve this model by co-transplantation of human fetal thymus and liver tissues into NSG (BLT-NSG) mice. Enhanced DENV-specific antibody titres were found in the sera of BLT-NSG mice compared with human cord blood haematopoietic stem cell-engrafted NSG mice. Furthermore, B cells generated during the acute phase and in memory from splenocytes of immunized BLT-NSG mice secreted DENV-specific IgM antibodies with neutralizing activity. Human T cells in engrafted BLT-NSG mice secreted interferon-γ in response to overlapping DENV peptide pools and HLA-A2 restricted peptides. The BLT-NSG mice will allow assessment of human immune responses to DENV vaccines and the effects of previous immunity on subsequent DENV infections. PMID:22384859

  1. Experimental sheep BSE prions generate the vCJD phenotype when serially passaged in transgenic mice expressing human prion protein.

    Science.gov (United States)

    Joiner, Susan; Asante, Emmanuel A; Linehan, Jacqueline M; Brock, Lara; Brandner, Sebastian; Bellworthy, Susan J; Simmons, Marion M; Hope, James; Collinge, John; Wadsworth, Jonathan D F

    2018-03-15

    The epizootic prion disease of cattle, bovine spongiform encephalopathy (BSE), causes variant Creutzfeldt-Jakob disease (vCJD) in humans following dietary exposure. While it is assumed that all cases of vCJD attributed to a dietary aetiology are related to cattle BSE, sheep and goats are susceptible to experimental oral challenge with cattle BSE prions and farmed animals in the UK were undoubtedly exposed to BSE-contaminated meat and bone meal during the late 1980s and early 1990s. Although no natural field cases of sheep BSE have been identified, it cannot be excluded that some BSE-infected sheep might have entered the European human food chain. Evaluation of the zoonotic potential of sheep BSE prions has been addressed by examining the transmission properties of experimental brain isolates in transgenic mice that express human prion protein, however to-date there have been relatively few studies. Here we report that serial passage of experimental sheep BSE prions in transgenic mice expressing human prion protein with methionine at residue 129 produces the vCJD phenotype that mirrors that seen when the same mice are challenged with vCJD prions from patient brain. These findings are congruent with those reported previously by another laboratory, and thereby strongly reinforce the view that sheep BSE prions could have acted as a causal agent of vCJD within Europe. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Compensatory mechanisms in genetic models of neurodegeneration: are the mice better than humans?

    Directory of Open Access Journals (Sweden)

    Grzegorz eKreiner

    2015-03-01

    Full Text Available Neurodegenerative diseases are one of the main causes of mental and physical disabilities. Neurodegeneration has been estimated to begin many years before the first clinical symptoms manifest, and even a prompt diagnosis at this stage provides very little advantage for a more effective treatment as the currently available pharmacotherapies are based on disease symptomatology. The etiology of the majority of neurodegenerative diseases remains unknown, and even for those diseases caused by identified genetic mutations, the direct pathways from gene alteration to final cell death have not yet been fully elucidated. Advancements in genetic engineering have provided many transgenic mice that are used as an alternative to pharmacological models of neurodegenerative diseases. Surprisingly, even the models reiterating the same causative mutations do not fully recapitulate the inevitable neuronal loss, and some fail to even show phenotypic alterations, which suggests the possible existence of compensatory mechanisms. A better evaluation of these mechanisms may not only help us to explain why neurodegenerative diseases are mostly late-onset disorders in humans but may also provide new markers and targets for novel strategies designed to extend neuronal function and survival. The aim of this mini-review is to draw attention to this under-explored field in which investigations may reasonably contribute to unveiling hidden reserves in the organism.

  3. Enhanced human papillomavirus type 8 oncogene expression levels are crucial for skin tumorigenesis in transgenic mice

    International Nuclear Information System (INIS)

    Hufbauer, M.; Lazic, D.; Akguel, B.; Brandsma, J.L.; Pfister, H.; Weissenborn, S.J.

    2010-01-01

    Human papillomavirus 8 (HPV8) is involved in skin cancer development in epidermodysplasia verruciformis patients. Transgenic mice expressing HPV8 early genes (HPV8-CER) developed papillomas, dysplasias and squamous cell carcinomas. UVA/B-irradiation and mechanical wounding of HPV8-CER mouse skin led to prompt papilloma induction in about 3 weeks. The aim of this study was to analyze the kinetics and level of transgene expression in response to skin irritations. Transgene expression was already enhanced 1 to 2 days after UVA/B-irradiation or tape-stripping and maintained during papilloma development. The enhanced transgene expression could be assigned to UVB and not to UVA. Papilloma development was thus always paralleled by an increased transgene expression irrespective of the type of skin irritation. A knock-down of E6 mRNA by tattooing HPV8-E6-specific siRNA led to a delay and a lower incidence of papilloma development. This indicates that the early increase of viral oncogene expression is crucial for induction of papillomatosis.

  4. Tandem bispecific neutralizing antibody eliminates HIV-1 infection in humanized mice.

    Science.gov (United States)

    Wu, Xilin; Guo, Jia; Niu, Mengyue; An, Minghui; Liu, Li; Wang, Hui; Jin, Xia; Zhang, Qi; Lam, Ka Shing; Wu, Tongjin; Wang, Hua; Wang, Qian; Du, Yanhua; Li, Jingjing; Cheng, Lin; Tang, Hang Ying; Shang, Hong; Zhang, Linqi; Zhou, Paul; Chen, Zhiwei

    2018-04-23

    The discovery of an HIV-1 cure remains a medical challenge because the virus rebounds quickly after the cessation of combination antiretroviral therapy (cART). Here, we investigate the potential of an engineered tandem bispecific broadly neutralizing antibody (bs-bnAb) as an innovative product for HIV-1 prophylactic and therapeutic interventions. We discovered that by preserving 2 single-chain variable fragment (scFv) binding domains of each parental bnAb, a single gene-encoded tandem bs-bnAb, BiIA-SG, displayed substantially improved breadth and potency. BiIA-SG neutralized all 124 HIV-1-pseudotyped viruses tested, including global subtypes/recombinant forms, transmitted/founder viruses, variants not susceptible to parental bnAbs and to many other bnAbs with an average IC50 value of 0.073 μg/ml (range HIV-1 stains. Moreover, whereas BiIA-SG delayed viral rebound in a short-term therapeutic setting when combined with cART, a single injection of adeno-associated virus-transferred (AAV-transferred) BiIA-SG gene resulted dose-dependently in prolonged in vivo expression of BiIA-SG, which was associated with complete viremia control and subsequent elimination of infected cells in humanized mice. These results warrant the clinical development of BiIA-SG as a promising bs-bnAb-based biomedical intervention for the prevention and treatment of HIV-1 infection.

  5. Effect of combined misonidazole and accelerated neon ions on a human melanoma transplanted into nude mice

    International Nuclear Information System (INIS)

    Guichard, M.; Tenforde, T.; Curtis, S.; Malaise, E.P.

    1982-01-01

    The response to accelerated neon ions of human Nall melanomas growing in nude mice was measured by an in vitro colony-forming assay following in situ tumor irradiation in the midposition of a 10-cm extended-peak ionization region. Values of the relative biological effectiveness (RBE) for peak neon ions compared with 60 Coγ radiation were 3.2 and 3.4, respectively, at the 1% and 10% survival levels. Following irradiation with peak neon ions, the repair of potentially lethal damage (PLD) was comparable to that observed after γ irradiation. When misonidazole (1 mg/g intraperitoneal dose) was administered in combination with extended-peak neon ions, the drug enhancement ratio (ER) at the 1% survival level was 1.5 if the tumors were removed and plated in vitro immediately following irradiation, and 1.9 if tumor excision and plating were delayed for greater than or equal to 6 hours. Administration of misonidazole completely inhibited PLD repair following either γ irradiation or extended peak neon-ion irradiation

  6. Immunoproteasome overexpression underlies the pathogenesis of thyroid oncocytes and primary hypothyroidism: studies in humans and mice.

    Directory of Open Access Journals (Sweden)

    Hiroaki J Kimura

    2009-11-01

    Full Text Available Oncocytes of the thyroid gland (Hürthle cells are found in tumors and autoimmune diseases. They have a unique appearance characterized by abundant granular eosinophilic cytoplasm and hyperchromatic nucleus. Their pathogenesis has remained, thus far, unknown.Using transgenic mice chronically expressing IFNgamma in thyroid gland, we showed changes in the thyroid follicular epithelium reminiscent of the human oncocyte. Transcriptome analysis comparing transgenic to wild type thyrocytes revealed increased levels of immunoproteasome subunits like LMP2 in transgenics, suggesting an important role of the immunoproteasome in oncocyte pathogenesis. Pharmacologic blockade of the proteasome, in fact, ameliorated the oncocytic phenotype. Genetic deletion of LMP2 subunit prevented the development of the oncocytic phenotype and primary hypothyroidism. LMP2 was also found expressed in oncocytes from patients with Hashimoto thyroiditis and Hürthle cell tumors.In summary, we report that oncocytes are the result of an increased immunoproteasome expression secondary to a chronic inflammatory milieu, and suggest LMP2 as a novel therapeutic target for the treatment of oncocytic lesions and autoimmune hypothyroidism.

  7. Neisseria gonorrhoeae co-infection exacerbates vaginal HIV shedding without affecting systemic viral loads in human CD34+ engrafted mice.

    Directory of Open Access Journals (Sweden)

    Stacey X Xu

    Full Text Available HIV synergy with sexually transmitted co-infections is well-documented in the clinic. Co-infection with Neisseria gonorrhoeae in particular, increases genital HIV shedding and mucosal transmission. However, no animal model of co-infection currently exists to directly explore this relationship or to bridge the gap in understanding between clinical and in vitro studies of this interaction. This study aims to test the feasibility of using a humanized mouse model to overcome this barrier. Combining recent in vivo modelling advancements in both HIV and gonococcal research, we developed a co-infection model by engrafting immunodeficient NSG mice with human CD34+ hematopoietic stem cells to generate humanized mice that permit both systemic HIV infection and genital N. gonorrhoeae infection. Systemic plasma and vaginal lavage titres of HIV were measured in order to assess the impact of gonococcal challenge on viral plasma titres and genital shedding. Engrafted mice showed human CD45+ leukocyte repopulation in blood and mucosal tissues. Systemic HIV challenge resulted in 104-105 copies/mL of viral RNA in blood by week 4 post-infection, as well as vaginal shedding of virus. Subsequent gonococcal challenge resulted in unchanged plasma HIV levels but higher viral shedding in the genital tract, which reflects published clinical observations. Thus, human CD34+ stem cell-transplanted NSG mice represent an experimentally tractable animal model in which to study HIV shedding during gonococcal co-infection, allowing dissection of molecular and immunological interactions between these pathogens, and providing a platform to assess future therapeutics aimed at reducing HIV transmission.

  8. Neisseria gonorrhoeae co-infection exacerbates vaginal HIV shedding without affecting systemic viral loads in human CD34+ engrafted mice.

    Science.gov (United States)

    Xu, Stacey X; Leontyev, Danila; Kaul, Rupert; Gray-Owen, Scott D

    2018-01-01

    HIV synergy with sexually transmitted co-infections is well-documented in the clinic. Co-infection with Neisseria gonorrhoeae in particular, increases genital HIV shedding and mucosal transmission. However, no animal model of co-infection currently exists to directly explore this relationship or to bridge the gap in understanding between clinical and in vitro studies of this interaction. This study aims to test the feasibility of using a humanized mouse model to overcome this barrier. Combining recent in vivo modelling advancements in both HIV and gonococcal research, we developed a co-infection model by engrafting immunodeficient NSG mice with human CD34+ hematopoietic stem cells to generate humanized mice that permit both systemic HIV infection and genital N. gonorrhoeae infection. Systemic plasma and vaginal lavage titres of HIV were measured in order to assess the impact of gonococcal challenge on viral plasma titres and genital shedding. Engrafted mice showed human CD45+ leukocyte repopulation in blood and mucosal tissues. Systemic HIV challenge resulted in 104-105 copies/mL of viral RNA in blood by week 4 post-infection, as well as vaginal shedding of virus. Subsequent gonococcal challenge resulted in unchanged plasma HIV levels but higher viral shedding in the genital tract, which reflects published clinical observations. Thus, human CD34+ stem cell-transplanted NSG mice represent an experimentally tractable animal model in which to study HIV shedding during gonococcal co-infection, allowing dissection of molecular and immunological interactions between these pathogens, and providing a platform to assess future therapeutics aimed at reducing HIV transmission.

  9. Sex-specific differences in hyperoxic lung injury in mice: Implications for acute and chronic lung disease in humans

    Energy Technology Data Exchange (ETDEWEB)

    Lingappan, Krithika, E-mail: lingappa@bcm.edu [Department of Pediatrics, Section of Neonatology, Texas Children' s Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030 (United States); Jiang, Weiwu; Wang, Lihua; Couroucli, Xanthi I. [Department of Pediatrics, Section of Neonatology, Texas Children' s Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030 (United States); Barrios, Roberto [Department of Pathology and Genomic Medicine, The Methodist Hospital Physician Organization, 6565 Fannin Street, Suite M227, Houston, TX 77030 (United States); Moorthy, Bhagavatula [Department of Pediatrics, Section of Neonatology, Texas Children' s Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030 (United States)

    2013-10-15

    Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO{sub 2} > 0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F{sub 2} alpha (8-iso-PGF 2α) (LC–MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F > M) and VEGF (M > F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. - Highlights: • Male mice were more susceptible to hyperoxic lung injury than females. • Sex differences in inflammatory markers were observed. • CYP1A expression was higher in females after hyperoxia exposure.

  10. Sex-specific differences in hyperoxic lung injury in mice: Implications for acute and chronic lung disease in humans

    International Nuclear Information System (INIS)

    Lingappan, Krithika; Jiang, Weiwu; Wang, Lihua; Couroucli, Xanthi I.; Barrios, Roberto; Moorthy, Bhagavatula

    2013-01-01

    Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO 2 > 0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F 2 alpha (8-iso-PGF 2α) (LC–MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F > M) and VEGF (M > F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. - Highlights: • Male mice were more susceptible to hyperoxic lung injury than females. • Sex differences in inflammatory markers were observed. • CYP1A expression was higher in females after hyperoxia exposure

  11. Resistance to organophosphorus agent toxicity in transgenic mice expressing the G117H mutant of human butyrylcholinesterase

    International Nuclear Information System (INIS)

    Wang Yuxia; Ticu Boeck, Andreea; Duysen, Ellen G.; Van Keuren, Margaret; Saunders, Thomas L.; Lockridge, Oksana

    2004-01-01

    Organophosphorus toxicants (OP) include chemical nerve agents and pesticides. The goal of this work was to find out whether an animal could be made resistant to OP toxicity by genetic engineering. The human butyrylcholinesterase (BChE) mutant G117H was chosen for study because it has the unusual ability to hydrolyze OP as well as acetylcholine, and it is resistant to inhibition by OP. Human G117H BChE, under the control of the ROSA26 promoter, was expressed in all tissues of transgenic mice. A stable transgenic mouse line expressed 0.5 μg/ml of human G117H BChE in plasma as well as 2 μg/ml of wild-type mouse BChE. Intestine, kidneys, stomach, lungs, heart, spleen, liver, brain, and muscle expressed 0.6-0.15 μg/g of G117H BChE. Transgenic mice were normal in behavior and fertility. The LD50 dose of echothiophate for wild-type mice was 0.1 mg/kg sc. This dose caused severe cholinergic signs of toxicity and lethality in wild-type mice, but caused no deaths and only mild toxicity in transgenic animals. The mechanism of protection was investigated by measuring acetylcholinesterase (AChE) and BChE activity. It was found that AChE and endogenous BChE were inhibited to the same extent in echothiophate-treated wild type and transgenic mice. This led to the hypothesis that protection against echothiophate toxicity was not explained by hydrolysis of echothiophate. In conclusion, the transgenic G117H BChE mouse demonstrates the factors required to achieve protection from OP toxicity in a vertebrate animal

  12. PNPLA1 Deficiency in Mice and Humans Leads to a Defect in the Synthesis of Omega-O-Acylceramides

    Science.gov (United States)

    Grond, Susanne; Eichmann, Thomas O.; Dubrac, Sandrine; Kolb, Dagmar; Schmuth, Matthias; Fischer, Judith; Crumrine, Debra; Elias, Peter M.; Haemmerle, Guenter; Zechner, Rudolf; Lass, Achim; Radner, Franz P.W.

    2017-01-01

    Mutations in PNPLA1 have been identified as causative for autosomal recessive congenital ichthyosis in humans and dogs. So far, the underlying molecular mechanisms are unknown. In this study, we generated and characterized PNPLA1-deficient mice and found that PNPLA1 is crucial for epidermal sphingolipid synthesis. The absence of functional PNPLA1 in mice impaired the formation of omega-O-acylceramides and led to an accumulation of nonesterified omega-hydroxy-ceramides. As a consequence, PNPLA1-deficient mice lacked a functional corneocyte-bound lipid envelope leading to a severe skin barrier defect and premature death of newborn animals. Functional analyses of differentiated keratinocytes from a patient with mutated PNPLA1 demonstrated an identical defect in omega-O-acylceramide synthesis in human cells, indicating that PNPLA1 function is conserved among mammals and indispensable for normal skin physiology. Notably, topical application of epidermal lipids from wild-type onto Pnpla1-mutant mice promoted rebuilding of the corneocyte-bound lipid envelope, indicating that supplementation of ichthyotic skin with omega-O-acylceramides might be a therapeutic approach for the treatment of skin symptoms in individuals affected by omega-O-acylceramide deficiency. PMID:27751867

  13. Improved function and proliferation of adult human beta cells engrafted in diabetic immunodeficient NOD-scid IL2rγnull mice treated with alogliptin

    Directory of Open Access Journals (Sweden)

    Jurczyk A

    2013-12-01

    Full Text Available Agata Jurczyk,1 Philip diIorio,1 Dean Brostowin,1 Linda Leehy,1 Chaoxing Yang,1 Fumihiko Urano,2 David M Harlan,3 Leonard D Shultz,4 Dale L Greiner,1 Rita Bortell1 1Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 2Department of Medicine, Washington University School of Medicine, St Louis, MO, 3Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 4The Jackson Laboratory, Bar Harbor, ME, USA Purpose: Dipeptidyl-peptidase-4 (DPP-4 inhibitors are known to increase insulin secretion and beta cell proliferation in rodents. To investigate the effects on human beta cells in vivo, we utilize immunodeficient mice transplanted with human islets. The study goal was to determine the efficacy of alogliptin, a DPP-4 inhibitor, to enhance human beta cell function and proliferation in an in vivo context using diabetic immunodeficient mice engrafted with human pancreatic islets. Methods: Streptozotocin-induced diabetic NOD-scid IL2rγnull (NSG mice were transplanted with adult human islets in three separate trials. Transplanted mice were treated daily by gavage with alogliptin (30 mg/kg/day or vehicle control. Islet graft function was compared using glucose tolerance tests and non-fasting plasma levels of human insulin and C-peptide; beta cell proliferation was determined by bromodeoxyuridine (BrdU incorporation. Results: Glucose tolerance tests were significantly improved by alogliptin treatment for mice transplanted with islets from two of the three human islet donors. Islet-engrafted mice treated with alogliptin also had significantly higher plasma levels of human insulin and C-peptide compared to vehicle controls. The percentage of insulin+BrdU+ cells in human islet grafts from alogliptin-treated mice was approximately 10-fold more than from vehicle control mice, consistent with a significant increase in human beta cell proliferation. Conclusion: Human islet-engrafted immunodeficient mice

  14. Bone loss and aggravated autoimmune arthritis in HLA-DRβ1-bearing humanized mice following oral challenge with Porphyromonas gingivalis.

    Science.gov (United States)

    Sandal, Indra; Karydis, Anastasios; Luo, Jiwen; Prislovsky, Amanda; Whittington, Karen B; Rosloniec, Edward F; Dong, Chen; Novack, Deborah V; Mydel, Piotr; Zheng, Song Guo; Radic, Marko Z; Brand, David D

    2016-10-26

    The linkage between periodontal disease and rheumatoid arthritis is well established. Commonalities among the two are that both are chronic inflammatory diseases characterized by bone loss, an association with the shared epitope susceptibility allele, and anti-citrullinated protein antibodies. To explore immune mechanisms that may connect the two seemingly disparate disorders, we measured host immune responses including T-cell phenotype and anti-citrullinated protein antibody production in human leukocyte antigen (HLA)-DR1 humanized C57BL/6 mice following exposure to the Gram-negative anaerobic periodontal disease pathogen Porphyromonas gingivalis. We measured autoimmune arthritis disease expression in mice exposed to P. gingivalis, and also in arthritis-resistant mice by flow cytometry and multiplex cytokine-linked and enzyme-linked immunosorbent assays. We also measured femoral bone density by microcomputed tomography and systemic cytokine production. Exposure of the gingiva of DR1 mice to P. gingivalis results in a transient increase in the percentage of Th17 cells, both in peripheral blood and cervical lymph nodes, a burst of systemic cytokine activity, a loss in femoral bone density, and the generation of anti-citrullinated protein antibodies. Importantly, these antibodies are not produced in response to P. gingivalis treatment of wild-type C57BL/6 mice, and P. gingivalis exposure triggered expression of arthritis in arthritis-resistant mice. Exposure of gingival tissues to P. gingivalis has systemic effects that can result in disease pathology in tissues that are spatially removed from the initial site of infection, providing evidence for systemic effects of this periodontal pathogen. The elicitation of anti-citrullinated protein antibodies in an HLA-DR1-restricted fashion by mice exposed to P. gingivalis provides support for the role of the shared epitope in both periodontal disease and rheumatoid arthritis. The ability of P. gingivalis to induce disease

  15. Human adipose stromal cells expanded in human serum promote engraftment of human peripheral blood hematopoietic stem cells in NOD/SCID mice

    International Nuclear Information System (INIS)

    Kim, Su Jin; Cho, Hyun Hwa; Kim, Yeon Jeong; Seo, Su Yeong; Kim, Han Na; Lee, Jae Bong; Kim, Jae Ho; Chung, Joo Seop; Jung, Jin Sup

    2005-01-01

    Human mesenchymal stem cells (hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles, and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle, and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum (FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. In this study, we cultured human adipose stromal cells (hADSC) and bone marrow stroma cells (HBMSC) in human serum (HS) during their isolation and expansion, and demonstrated that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34(+) cells mobilized from bone marrow in NOD/SCID mice. Our results indicate that hADSC and hBMSC cultured in HS can be used for clinical trials of cell and gene therapies, including promotion of engraftment after allogeneic HSC transplantation

  16. Characterization of casein kinase II in human colonic carcinomas after heterotransplantation into nude mice

    DEFF Research Database (Denmark)

    Seitz, G; Münstermann, U; Schneider, H R

    1989-01-01

    Casein kinase II (CKII) activity in colorectal tumours was compared before and after heterotransplantation onto nude mice. The test revealed that the enzyme activity was about two-fold enhanced in the tumours isolated from the nude mice when compared to the respective primary tumours from which...

  17. Meningococcal factor H-binding protein vaccines with decreased binding to human complement factor H have enhanced immunogenicity in human factor H transgenic mice.

    Science.gov (United States)

    Rossi, Raffaella; Granoff, Dan M; Beernink, Peter T

    2013-11-04

    Factor H-binding protein (fHbp) is a component of a meningococcal vaccine recently licensed in Europe for prevention of serogroup B disease, and a second vaccine in clinical development. The protein specifically binds human factor H (fH), which down-regulates complement activation and enhances resistance to bactericidal activity. There are conflicting data from studies in human fH transgenic mice on whether binding of human fH to fHbp vaccines decreases immunogenicity, and whether mutant fHbp vaccines with decreased fH binding have enhanced immunogenicity. fHbp can be classified into two sub-families based on sequence divergence and immunologic cross-reactivity. Previous studies of mutant fHbp vaccines with low fH binding were from sub-family B, which account for approximately 60% of serogroup B case isolates. In the present study, we evaluated the immunogenicity of two mutant sub-family A fHbp vaccines containing single substitutions, T221A or D211A, which resulted in 15- or 30-fold lower affinity for human fH, respectively, than the corresponding control wild-type fHbp vaccine. In transgenic mice with high serum concentrations of human fH, both mutant vaccines elicited significantly higher IgG titers and higher serum bactericidal antibody responses than the control fHbp vaccine that bound human fH. Thus, mutations introduced into a sub-family A fHbp antigen to decrease fH binding can increase protective antibody responses in human fH transgenic mice. Collectively the data suggest that mutant fHbp antigens with decreased fH binding will result in superior vaccines in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A developmental stage-specific switch from DAZL to BOLL occurs during fetal oogenesis in humans, but not mice.

    Directory of Open Access Journals (Sweden)

    Jing He

    Full Text Available The Deleted in Azoospermia gene family encodes three germ cell-specific RNA-binding proteins (DAZ, DAZL and BOLL that are essential for gametogenesis in diverse species. Targeted disruption of Boll in mice causes male-specific spermiogenic defects, but females are apparently fertile. Overexpression of human BOLL promotes the derivation of germ cell-like cells from genetically female (XX, but not male (XY human ES cells however, suggesting a functional role for BOLL in regulating female gametogenesis in humans. Whether BOLL is expressed during oogenesis in mammals also remains unclear. We have therefore investigated the expression of BOLL during fetal oogenesis in humans and mice. We demonstrate that BOLL protein is expressed in the germ cells of the human fetal ovary, at a later developmental stage than, and almost mutually-exclusive to, the expression of DAZL. Strikingly, BOLL is downregulated, and DAZL re-expressed, as primordial follicles form, revealing BOLL expression to be restricted to a narrow window during fetal oogenesis. By quantifying the extent of co-expression of DAZL and BOLL with markers of meiosis, we show that this window likely corresponds to the later stages of meiotic prophase I. Finally, we demonstrate that Boll is also transiently expressed during oogenesis in the fetal mouse ovary, but is simultaneously co-expressed within the same germ cells as Dazl. These data reveal significant similarities and differences between the expression of BOLL homologues during oogenesis in humans and mice, and raise questions as to the validity of the Boll(-/- mouse as a model for understanding BOLL function during human oogenesis.

  19. An implantable vascularized protein gel construct that supports human fetal hepatoblast survival and infection by hepatitis C virus in mice.

    Directory of Open Access Journals (Sweden)

    Martha J Harding

    2010-04-01

    Full Text Available Widely accessible small animal models suitable for the study of hepatitis C virus (HCV in vivo are lacking, primarily because rodent hepatocytes cannot be productively infected and because human hepatocytes are not easily engrafted in immunodeficient mice.We report here on a novel approach for human hepatocyte engraftment that involves subcutaneous implantation of primary human fetal hepatoblasts (HFH within a vascularized rat collagen type I/human fibronectin (rCI/hFN gel containing Bcl-2-transduced human umbilical vein endothelial cells (Bcl-2-HUVEC in severe combined immunodeficient X beige (SCID/bg mice. Maturing hepatic epithelial cells in HFH/Bcl-2-HUVEC co-implants displayed endocytotic activity at the basolateral surface, canalicular microvilli and apical tight junctions between adjacent cells assessed by transmission electron microscopy. Some primary HFH, but not Huh-7.5 hepatoma cells, appeared to differentiate towards a cholangiocyte lineage within the gels, based on histological appearance and cytokeratin 7 (CK7 mRNA and protein expression. Levels of human albumin and hepatic nuclear factor 4alpha (HNF4alpha mRNA expression in gel implants and plasma human albumin levels in mice engrafted with HFH and Bcl-2-HUVEC were somewhat enhanced by including murine liver-like basement membrane (mLBM components and/or hepatocyte growth factor (HGF-HUVEC within the gel matrix. Following ex vivo viral adsorption, both HFH/Bcl-2-HUVEC and Huh-7.5/Bcl-2-HUVEC co-implants sustained HCV Jc1 infection for at least 2 weeks in vivo, based on qRT-PCR and immunoelectron microscopic (IEM analyses of gel tissue.The system described here thus provides the basis for a simple and robust small animal model of HFH engraftment that is applicable to the study of HCV infections in vivo.

  20. Environmental spread of microbes impacts the development of metabolic phenotypes in mice transplanted with microbial communities from humans

    DEFF Research Database (Denmark)

    Zhang, Li; Bahl, Martin Iain; Roager, Henrik Munch

    2017-01-01

    Microbiota transplantation to germ-free animals is a powerful method to study involvement of gut microbes in the aetiology of metabolic syndrome. Owing to large interpersonal variability in gut microbiota, studies with broad coverage of donors are needed to elucidate the establishment of human......, thereby allowing us to explore the extent of microbial spread between cages in a well-controlled environment. Despite high group-wise similarity between obese and control human microbiotas, transplanted mice in the four isolators developed distinct gut bacterial composition and activity, body mass gain......, and insulin resistance. Spread of microbes between cages within isolators interacted with establishment of the transplanted microbiotas in mice, and contributed to the transmission of metabolic phenotypes. Our findings highlight the impact of donor variability and reveal that inter-individual spread...

  1. Human tumour xenografts established and serially transplanted in mice immunologically deprived by thymectomy, cytosine arabinoside and whole-body irradiation

    International Nuclear Information System (INIS)

    Selby, P.J.; Thomas, J.M.; Peckham, M.J.

    1980-01-01

    Mice immunologically deprived by thymectomy, cytosine arabinoside treatment and whole-body irradiation were used to study the growth of human tumours as xenografts. 10/16 melanoma biopsies, 4/13 ovarian carcinoma biopsies and 3/6 uterine cancer biopsies grew as serially transplantable xenograft lines. The tumour lines were studied through serial passages by histology, histo-chemistry, electron microscopy, chromosome analysis, immune fluorescence, growth rate measurement and mitotic counts. They retained the characteristics of the tumours of origin, with the exception of loss of pigmentation in two melanomas, histological dedifferentiation in the uterine carcinomas, and increased mitotic frequency and growth rate in some melanomas. It was concluded that this type of animal preparation is as useful as alternative methods of immunological deprivation, or as athymic nude mice, for the growth of human tumour xenografts, at least for some experimental purposes. (author)

  2. MRI of Mouse Models for Gliomas Shows Similarities to Humans and Can Be Used to Identify Mice for Preclinical Trials

    Directory of Open Access Journals (Sweden)

    Jason A. Koutcher

    2002-01-01

    Full Text Available Magnetic resonance imaging (MRI has been utilized for screening and detecting brain tumors in mice based upon their imaging characteristics appearance and their pattern of enhancement. Imaging of these tumors reveals many similarities to those observed in humans with identical pathology. Specifically, high-grade murine gliomas have histologic characteristics of glioblastoma multiforme (GBM with contrast enhancement after intravenous administration of gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA, implying disruption of the blood-brain barrier in these tumors. In contrast, low-grade murine oligodendrogliomas do not reveal contrast enhancement, similar to human tumors. MRI can be used to identify mice with brain neoplasms as inclusion criteria in preclinical trials.

  3. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    International Nuclear Information System (INIS)

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W.

    2009-01-01

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1 C YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+) s evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.

  4. Differential Muscle Involvement in Mice and Humans Affected by McArdle Disease

    DEFF Research Database (Denmark)

    Krag, Thomas O; Pinós, Tomàs; Nielsen, Tue L

    2016-01-01

    McArdle disease (muscle glycogenosis type V) is caused by myophosphorylase deficiency, which leads to impaired glycogen breakdown. We investigated how myophosphorylase deficiency affects muscle physiology, morphology, and glucose metabolism in 20-week-old McArdle mice and compared the findings...... to those in McArdle disease patients. Muscle contractions in the McArdle mice were affected by structural degeneration due to glycogen accumulation, and glycolytic muscles fatigued prematurely, as occurs in the muscles of McArdle disease patients. Homozygous McArdle mice showed muscle fiber disarray...... no substitution for the missing muscle isoform. In the mice, the tibialis anterior (TA) muscles were invariably more damaged than the quadriceps muscles. This may relate to a 7-fold higher level of myophosphorylase in TA compared to quadriceps in wild-type mice and suggests higher glucose turnover in the TA. Thus...

  5. Differential Secondary Reconstitution of In Vivo-Selected Human SCID-Repopulating Cells in NOD/SCID versus NOD/SCID/γ chainnull Mice

    Directory of Open Access Journals (Sweden)

    Shanbao Cai

    2011-01-01

    Full Text Available Humanized bone-marrow xenograft models that can monitor the long-term impact of gene-therapy strategies will help facilitate evaluation of clinical utility. The ability of the murine bone-marrow microenvironment in NOD/SCID versus NOD/SCID/γ chainnull mice to support long-term engraftment of MGMTP140K-transduced human-hematopoietic cells following alkylator-mediated in vivo selection was investigated. Mice were transplanted with MGMTP140K-transduced CD34+ cells and transduced cells selected in vivo. At 4 months after transplantation, levels of human-cell engraftment, and MGMTP140K-transduced cells in the bone marrow of NOD/SCID versus NSG mice varied slightly in vehicle- and drug-treated mice. In secondary transplants, although equal numbers of MGMTP140K-transduced human cells were transplanted, engraftment was significantly higher in NOD/SCID/γ chainnull mice compared to NOD/SCID mice at 2 months after transplantation. These data indicate that reconstitution of NOD/SCID/γ chainnull mice with human-hematopoietic cells represents a more promising model in which to test for genotoxicity and efficacy of strategies that focus on manipulation of long-term repopulating cells of human origin.

  6. Combined therapeutic effect and molecular mechanisms of metformin and cisplatin in human lung cancer xenografts in nude mice

    OpenAIRE

    Yu-Qin Chen; Gang Chen

    2015-01-01

    Objective: This work was aimed at studying the inhibitory activity of metformin combined with the commonly used chemotherapy drug cisplatin in human lung cancer xenografts in nude mice. We also examined the combined effects of these drugs on the molecular expression of survivin, matrix metalloproteinase-2 (MMP-2), vascular endothelial growth factor-C (VEGF-C), and vascular endothelial growth factorreceptor-3 (VEGFR-3) to determine the mechanism of action and to explore the potential applicati...

  7. Endocrine sensitivity of the receptor-positive T61 human breast carcinoma serially grown in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Spang-Thomsen, M; Skovgaard Poulsen, H

    1985-01-01

    A study was made on the effect of ovariectomy, 17 beta-oestradiol, and tamoxifen on the oestrogen and progesterone receptor-positive T61 human breast carcinoma grown in nude mice. The effect of the treatment was evaluated by the specific growth delay calculated on the basis of Gompertz growth cur...... but is not a sufficiently clear marker to allow prediction of the endocrine sensitivity of individual breast tumours....

  8. Susceptibility of Mice to Trypanosoma evansi Treated with Human Plasma Containing Different Concentrations of Apolipoprotein L-1

    Science.gov (United States)

    Fanfa, Vinicius R.; Otto, Mateus A.; Gressler, Lucas T.; Tavares, Kaio C.S.; Lazzarotto, Cícera R.; Tonin, Alexandre A.; Miletti, Luiz C.; Duarte, Marta M.M.F.; Monteiro, Silvia G.

    2011-01-01

    The aim of this study was to test the susceptibility of mice to Trypanosoma evansi treated with human plasma containing different concentrations of apolipoprotein L-1 (APOL1). For this experiment, a strain of T. evansi and human plasma (plasmas 1, 2, and 3) from 3 adult males clinically healthy were used. In vivo test used 50 mice divided in 5 groups (A to E) with 10 animals in each group. Animals of groups B to E were infected, and then treated with 0.2 ml of human plasma in the following outline: negative control (A), positive control (B), treatment with plasma 1 (C), treatment with plasma 2 (D), and treatment with plasma 3 (E). Mice treated with human plasma showed an increase in longevity of 40.9±0.3 (C), 20±9.0 (D) and 35.6±9.3 (E) days compared to the control group (B) which was 4.3±0.5 days. The number of surviving mice and free of the parasite (blood smear and PCR negative) at the end of the experiment was 90%, 0%, and 60% for groups C, D, and E, respectively. The quantification of APOL1 was performed due to the large difference in the treatments that differed in the source plasma. In plasmas 1, 2, and 3 was detected the concentration of 194, 99, and 115 mg/dl of APOL1, respectively. However, we believe that this difference in the treatment efficiency is related to the level of APOL1 in plasmas. PMID:22355213

  9. Characterization of amyloid beta peptides from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein.

    Science.gov (United States)

    Pype, Stefan; Moechars, Dieder; Dillen, Lieve; Mercken, Marc

    2003-02-01

    Alzheimer's disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid beta peptides (Abeta) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme-linked immunosorbant assays (ELISAs) specific for either human or rodent Abeta, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Abeta1-42/1-40 were in the order of 2-3 for human and 8-9 for mouse peptides, indicating preferential deposition of Abeta42. We also determined the identity and relative levels of other Abeta variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl- or the amino-terminus were Abeta1-38 and Abeta11-42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP-London transgenic mice consist of aggregates of multiple human and mouse Abeta variants, and the human variants that we identified were previously detected in brain extracts of AD patients.

  10. Fialuridine induces acute liver failure in chimeric TK-NOG mice: a model for detecting hepatic drug toxicity prior to human testing.

    Directory of Open Access Journals (Sweden)

    Dan Xu

    2014-04-01

    Full Text Available Seven of 15 clinical trial participants treated with a nucleoside analogue (fialuridine [FIAU] developed acute liver failure. Five treated participants died, and two required a liver transplant. Preclinical toxicology studies in mice, rats, dogs, and primates did not provide any indication that FIAU would be hepatotoxic in humans. Therefore, we investigated whether FIAU-induced liver toxicity could be detected in chimeric TK-NOG mice with humanized livers.Control and chimeric TK-NOG mice with humanized livers were treated orally with FIAU 400, 100, 25, or 2.5 mg/kg/d. The response to drug treatment was evaluated by measuring plasma lactate and liver enzymes, by assessing liver histology, and by electron microscopy. After treatment with FIAU 400 mg/kg/d for 4 d, chimeric mice developed clinical and serologic evidence of liver failure and lactic acidosis. Analysis of liver tissue revealed steatosis in regions with human, but not mouse, hepatocytes. Electron micrographs revealed lipid and mitochondrial abnormalities in the human hepatocytes in FIAU-treated chimeric mice. Dose-dependent liver toxicity was detected in chimeric mice treated with FIAU 100, 25, or 2.5 mg/kg/d for 14 d. Liver toxicity did not develop in control mice that were treated with the same FIAU doses for 14 d. In contrast, treatment with another nucleotide analogue (sofosbuvir 440 or 44 mg/kg/d po for 14 d, which did not cause liver toxicity in human trial participants, did not cause liver toxicity in mice with humanized livers.FIAU-induced liver toxicity could be readily detected using chimeric TK-NOG mice with humanized livers, even when the mice were treated with a FIAU dose that was only 10-fold above the dose used in human participants. The clinical features, laboratory abnormalities, liver histology, and ultra-structural changes observed in FIAU-treated chimeric mice mirrored those of FIAU-treated human participants. The use of chimeric mice in preclinical toxicology

  11. Fialuridine induces acute liver failure in chimeric TK-NOG mice: a model for detecting hepatic drug toxicity prior to human testing.

    Science.gov (United States)

    Xu, Dan; Nishimura, Toshi; Nishimura, Sachiko; Zhang, Haili; Zheng, Ming; Guo, Ying-Ying; Masek, Marylin; Michie, Sara A; Glenn, Jeffrey; Peltz, Gary

    2014-04-01

    Seven of 15 clinical trial participants treated with a nucleoside analogue (fialuridine [FIAU]) developed acute liver failure. Five treated participants died, and two required a liver transplant. Preclinical toxicology studies in mice, rats, dogs, and primates did not provide any indication that FIAU would be hepatotoxic in humans. Therefore, we investigated whether FIAU-induced liver toxicity could be detected in chimeric TK-NOG mice with humanized livers. Control and chimeric TK-NOG mice with humanized livers were treated orally with FIAU 400, 100, 25, or 2.5 mg/kg/d. The response to drug treatment was evaluated by measuring plasma lactate and liver enzymes, by assessing liver histology, and by electron microscopy. After treatment with FIAU 400 mg/kg/d for 4 d, chimeric mice developed clinical and serologic evidence of liver failure and lactic acidosis. Analysis of liver tissue revealed steatosis in regions with human, but not mouse, hepatocytes. Electron micrographs revealed lipid and mitochondrial abnormalities in the human hepatocytes in FIAU-treated chimeric mice. Dose-dependent liver toxicity was detected in chimeric mice treated with FIAU 100, 25, or 2.5 mg/kg/d for 14 d. Liver toxicity did not develop in control mice that were treated with the same FIAU doses for 14 d. In contrast, treatment with another nucleotide analogue (sofosbuvir 440 or 44 mg/kg/d po) for 14 d, which did not cause liver toxicity in human trial participants, did not cause liver toxicity in mice with humanized livers. FIAU-induced liver toxicity could be readily detected using chimeric TK-NOG mice with humanized livers, even when the mice were treated with a FIAU dose that was only 10-fold above the dose used in human participants. The clinical features, laboratory abnormalities, liver histology, and ultra-structural changes observed in FIAU-treated chimeric mice mirrored those of FIAU-treated human participants. The use of chimeric mice in preclinical toxicology studies could improve

  12. TFH cells accumulate in mucosal tissues of humanized-DRAG mice and are highly permissive to HIV-1

    Science.gov (United States)

    Allam, Atef; Majji, Sai; Peachman, Kristina; Jagodzinski, Linda; Kim, Jiae; Ratto-Kim, Silvia; Wijayalath, Wathsala; Merbah, Melanie; Kim, Jerome H.; Michael, Nelson L.; Alving, Carl R.; Casares, Sofia; Rao, Mangala

    2015-01-01

    CD4+ T follicular helper cells (TFH) in germinal centers are required for maturation of B-cells. While the role of TFH-cells has been studied in blood and lymph nodes of HIV-1 infected individuals, its role in the mucosal tissues has not been investigated. We show that the gut and female reproductive tract (FRT) of humanized DRAG mice have a high level of human lymphocytes and a high frequency of TFH (CXCR5+PD-1++) and precursor-TFH (CXCR5+PD-1+) cells. The majority of TFH-cells expressed CCR5 and CXCR3 and are the most permissive to HIV-1 infection. A single low-dose intravaginal HIV-1 challenge of humanized DRAG mice results in 100% infectivity with accumulation of TFH-cells mainly in the Peyer’s patches and FRT. The novel finding of TFH-cells in the FRT may contribute to the high susceptibility of DRAG mice to HIV-1 infection. This mouse model thus provides new opportunities to study TFH-cells and to evaluate HIV-1 vaccines. PMID:26034905

  13. Acylcarnitine Profiles in Plasma and Tissues of Hyperglycemic NZO Mice Correlate with Metabolite Changes of Human Diabetes

    Directory of Open Access Journals (Sweden)

    Anna Weiser

    2018-01-01

    Full Text Available The New Zealand obese (NZO mouse is a polygenic model for obesity and diabetes with obese females and obese, diabetes-prone males, used to study traits of the metabolic syndrome like type 2 diabetes mellitus (T2DM, obesity, and dyslipidaemia. By using LC-MS/MS, we here examine the suitability of this model to mirror tissue-specific changes in acylcarnitine (AC and amino acid (AA species preceding T2DM which may reflect patterns investigated in human metabolism. We observed high concentrations of fatty acid-derived ACs in 11 female mice, high abundance of branched-chain amino acid- (BCAA- derived ACs in 6 male mice, and slight increases in BCAA-derived ACs in the remaining 6 males. Principal component analysis (PCA including all ACs and AAs confirmed our hypothesis especially in plasma samples by clustering females, males with high BCAA-derived ACs, and males with slight increases in BCAA-derived ACs. Concentrations of insulin, blood glucose, NEFAs, and triacylglycerols (TAGs further supported the hypothesis of high BCAA-derived ACs being able to mirror the onset of diabetic traits in male individuals. In conclusion, alterations in AC and AA profiles overlap with observations from human studies indicating the suitability of NZO mice to study metabolic changes preceding human T2DM.

  14. Pretargeting vs. direct targeting of human betalox5 islet cells subcutaneously implanted in mice using an anti-human islet cell antibody

    International Nuclear Information System (INIS)

    Liu Guozheng; Dou Shuping; Akalin, Ali; Rusckowski, Mary; Streeter, Philip R.; Shultz, Leonard D.; Greiner, Dale L.

    2012-01-01

    Introduction: We previously demonstrated MORF/cMORF pretargeting of human islets and betalox 5 cells (a human beta cell line) transplanted subcutaneously in mice with the anti-human islet antibody, HPi1. We now compare pretargeting with direct targeting in the beta cell transplant model to evaluate the degree to which target/non-target (T/NT) ratios may be improved by pretargeting. Methods: Specific binding of an anti-human islet antibody HPi1 to the beta cells transplanted subcutaneously in mice was examined against a negative control antibody. We then compared pretargeting by MORF-HPi1 plus 111 In-labeled cMORF to direct targeting by 111 In-labeled HPi1. Results: HPi1 binding to betalox5 human cells in the transplant was shown by immunofluorescence. Normal organ 111 In backgrounds by pretargeting were always lower, although target accumulations were similar. More importantly, the transplant to pancreas and liver ratios was, respectively, 26 and 10 by pretargeting as compared to 9 and 0.6 by direct targeting. Conclusions: Pretargeting greatly improves the T/NT ratios, and based on the estimated endocrine to exocrine ratio within a pancreas, pretargeting may be approaching the sensitivity required for successful imaging of human islets within this organ.

  15. TFH cells accumulate in mucosal tissues of humanized-DRAG mice and are highly permissive to HIV-1

    OpenAIRE

    Allam, Atef; Majji, Sai; Peachman, Kristina; Jagodzinski, Linda; Kim, Jiae; Ratto-Kim, Silvia; Wijayalath, Wathsala; Merbah, Melanie; Kim, Jerome H.; Michael, Nelson L.; Alving, Carl R.; Casares, Sofia; Rao, Mangala

    2015-01-01

    CD4+ T follicular helper cells (TFH) in germinal centers are required for maturation of B-cells. While the role of TFH-cells has been studied in blood and lymph nodes of HIV-1 infected individuals, its role in the mucosal tissues has not been investigated. We show that the gut and female reproductive tract (FRT) of humanized DRAG mice have a high level of human lymphocytes and a high frequency of TFH (CXCR5+PD-1++) and precursor-TFH (CXCR5+PD-1+) cells. The majority of TFH-cells expressed CCR...

  16. Stable Skin-specific Overexpression of Human CTLA4-Ig in Transgenic Mice through Seven Generations

    Institute of Scientific and Technical Information of China (English)

    Yong WANG; Yong NI; Hong WEI; Feng-Chao WANG; Liang-Peng GE; Xiang GAO

    2006-01-01

    Skin graft rejection is a typical cellular immune response, mainly mediated by T cells. Cytotoxic T lymphocyte associated antigen 4-immunoglobin (CTLA4-Ig) extends graft survival by blocking the T cell co-stimulation pathway and inhibiting T cell activation. To investigate the efficacy of CTLA4-Ig in prolonging skin graft survival, human CTLA4-Ig (hCTLA4-Ig) was engineered to overexpress in mouse skin by transgenesis using the K14 promoter. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay indicated that the expression of CTLA4-Ig remained skin-specific and relatively constant compared to the internal control protein, AKT, through seven generations. The presence and concentration of the hCTLA4-Ig protein in transgenic mouse sera was determined by enzyme-linked immunosorbent assay (ELISA), and the results indicated that the serum CTLA4-Ig concentration also remained constant through generations. Survival of transgenic mouse skins grafted onto rat wounds was remarkably prolonged compared to that of wild-type skins from the same mouse strain, and remained comparable among all seven generations. This suggested that the bioactive hCTLA4-Ig protein was stably expressed in transgenical mice through at least seven generations, which was consistent with the stable skin-specific CTLA4-Ig expression.The results demonstrated that the transgenic expression of hCTLA4-Ig in skin driven by the K14 promoter remained constant through generations, and a transgenic line can be established to provide transgenic skin with extended survival reproducibly.

  17. A Novel Ras Inhibitor (MDC-1016 Reduces Human Pancreatic Tumor Growth in Mice

    Directory of Open Access Journals (Sweden)

    Gerardo G Mackenzie

    2013-10-01

    Full Text Available Pancreatic cancer has one of the poorest prognoses among all cancers partly because of its persistent resistance to chemotherapy. The currently limited treatment options for pancreatic cancer underscore the need for more efficient agents. Because activating Kras mutations initiate and maintain pancreatic cancer, inhibition of this pathway should have a major therapeutic impact. We synthesized phospho-farnesylthiosalicylic acid (PFTS; MDC-1016 and evaluated its efficacy, safety, and metabolism in preclinical models of pancreatic cancer. PFTS inhibited the growth of human pancreatic cancer cells in culture in a concentration- and time-dependent manner. In an MIA PaCa-2 xenograft mouse model, PFTS at a dose of 50 and 100 mg/kg significantly reduced tumor growth by 62% and 65% (P < .05 vs vehicle control. Furthermore, PFTS prevented pancreatitis-accelerated acinar-to-ductal metaplasia in mice with activated Kras. PFTS appeared to be safe, with the animals showing no signs of toxicity during treatment. Following oral administration, PFTS was rapidly absorbed, metabolized to FTS and FTS glucuronide, and distributed through the blood to body organs. Mechanistically, PFTS inhibited Ras-GTP, the active form of Ras, both in vitro and in vivo, leading to the inhibition of downstream effector pathways c-RAF/mitogen-activated protein-extracellular signal-regulated kinase (ERK kinase (MEK/ERK1/2 kinase and phosphatidylinositol 3-kinase/AKT. In addition, PFTS proved to be a strong combination partner with phospho-valproic acid, a novel signal transducer and activator of transcription 3 (STAT3 inhibitor, displaying synergy in the inhibition of pancreatic cancer growth. In conclusion, PFTS, a direct Ras inhibitor, is an efficacious agent for the treatment of pancreatic cancer in preclinical models, deserving further evaluation.

  18. Human papillomavirus (HPV) type 16 E7 protein bodies cause tumour regression in mice

    International Nuclear Information System (INIS)

    Whitehead, Mark; Öhlschläger, Peter; Almajhdi, Fahad N; Alloza, Leonor; Marzábal, Pablo; Meyers, Ann E; Hitzeroth, Inga I; Rybicki, Edward P

    2014-01-01

    Human papillomaviruses (HPV) are the causative agents of cervical cancer in women, which results in over 250 000 deaths per year. Presently there are two prophylactic vaccines on the market, protecting against the two most common high-risk HPV types 16 and 18. These vaccines remain very expensive and are not generally affordable in developing countries where they are needed most. Additionally, there remains a need to treat women that are already infected with HPV, and who have high-grade lesions or cervical cancer. In this paper, we characterize the immunogenicity of a therapeutic vaccine that targets the E7 protein of the most prevalent high-risk HPV - type 16 – the gene which has previously been shown to be effective in DNA vaccine trials in mice. The synthetic shuffled HPV-16 E7 (16E7SH) has lost its transforming properties but retains all naturally-occurring CTL epitopes. This was genetically fused to Zera®, a self-assembly domain of the maize γ-zein able to induce the accumulation of recombinant proteins into protein bodies (PBs), within the endoplasmic reticulum in a number of expression systems. High-level expression of the HPV 16E7SH protein fused to Zera® in plants was achieved, and the protein bodies could be easily and cost-effectively purified. Immune responses comparable to the 16E7SH DNA vaccine were demonstrated in the murine model, with the protein vaccine successfully inducing a specific humoral as well as cell mediated immune response, and mediating tumour regression. The fusion of 16E7SH to the Zera® peptide was found to enhance the immune responses, presumably by means of a more efficient antigen presentation via the protein bodies. Interestingly, simply mixing the free PBs and 16E7SH also enhanced immune responses, indicating an adjuvant activity for the Zera® PBs

  19. Functional polymorphism of IL-1 alpha and its potential role in obesity in humans and mice.

    Directory of Open Access Journals (Sweden)

    Jae-Young Um

    Full Text Available Proinflammatory cytokines secreted from adipose tissue contribute to the morbidity associated with obesity. IL-1α is one of the proinflammatory cytokines; however, it has not been clarified whether IL-1α may also cause obesity. In this study, we investigated whether polymorphisms in IL-1α contribute to human obesity. A total of 260 obese subjects were genotyped for IL-1α C-889T (rs1800587 and IL-1α G+4845T (rs17561. Analyses of genotype distributions revealed that both IL-1α polymorphisms C-889T (rs1800587 and G+4845T (rs17561 were associated with an increase in body mass index in obese healthy women. In addition, the effect of rs1800587 on the transcriptional activity of IL-1α was explored in pre-adipocyte 3T3-L1 cells. Significant difference was found between the rs1800587 polymorphism in the regulatory region of the IL-1α gene and transcriptional activity. We extended these observations in vivo to a high-fat diet-induced obese mouse model and in vitro to pre-adipocyte 3T3-L1 cells. IL-1α levels were dramatically augmented in obese mice, and triglyceride was increased 12 hours after IL-1α injection. Taken together, IL-1α treatment regulated the differentiation of preadipocytes. IL-1α C-889T (rs1800587 is a functional polymorphism of IL-1α associated with obesity. IL-1α may have a critical function in the development of obesity.

  20. Pharmacokinetics and tissue distribution of recombinant human tumor necrosis factor-alpha in mice

    International Nuclear Information System (INIS)

    Ferraiolo, B.L.; Moore, J.A.; Crase, D.; Gribling, P.; Wilking, H.; Baughman, R.A.

    1988-01-01

    The serum pharmacokinetics and the major organs of accumulation of recombinant human tumor necrosis factor-alpha (rHuTNF) were determined in BDF1 mice after intravenous and intramuscular administration. Serum concentrations of immunoreactive protein were determined by enzyme-linked immunosorbent assay, and radioactivity was quantitated by beta and gamma scintigraphy. The serum pharmacokinetics of labeled and unlabeled rHuTNF were identical when administered by the intravenous route. After intravenous doses of 165 to 320 micrograms/kg, the clearance was 2.9-3.6 ml/hr, the initial volume of distribution was 1.4-1.6 ml (70-80 ml/kg), and the half-life was 18.5-19.2 min. Intramuscular administration of 320 micrograms/kg resulted in a peak serum concentration of 112 ng/ml. The time of the peak concentration was 1 hr, and the bioavailability of the intramuscular dose was 12%. The data suggest that the disposition of this protein may be biexponential. If this is the case, the terminal phase would appear to account for less than 1% of the total AUC. Since serum concentrations in the terminal phase are at the sensitivity limit of the assay, a single half-life is reported. 125I-Labeled and metabolically labeled 3H-rHuTNF were used to examine tissue distribution. After intravenous 125I-rHuTNF administration, the rank order of accumulation of the 125I-radiolabel in the major organs (per cent dose per organ over 1440 min) was: liver greater than kidney greater than lung greater than heart greater than spleen. This rank order of accumulation was confirmed by intravenous 3H-rHuTNF administration

  1. Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to COX2.

    Science.gov (United States)

    Kim, Hyung-Sik; Shin, Tae-Hoon; Lee, Byung-Chul; Yu, Kyung-Rok; Seo, Yoojin; Lee, Seunghee; Seo, Min-Soo; Hong, In-Sun; Choi, Soon Won; Seo, Kwang-Won; Núñez, Gabriel; Park, Jong-Hwan; Kang, Kyung-Sun

    2013-12-01

    Decreased levels or function of nucleotide-binding oligomerization domain 2 (NOD2) are associated with Crohn's disease. NOD2 regulates intestinal inflammation, and also is expressed by human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs), to regulate their differentiation. We investigated whether NOD2 is required for the anti-inflammatory activities of MSCs in mice with colitis. Colitis was induced in mice by administration of dextran sulfate sodium or trinitrobenzene sulfonic acid. Mice then were given intraperitoneal injections of NOD2-activated hUCB-MSCs; colon tissues and mesenteric lymph nodes were collected for histologic analyses. A bromodeoxyuridine assay was used to determine the ability of hUCB-MSCs to inhibit proliferation of human mononuclear cells in culture. Administration of hUCB-MSCs reduced the severity of colitis in mice. The anti-inflammatory effects of hUCB-MSCs were greatly increased by activation of NOD2 by its ligand, muramyl dipeptide (MDP). Administration of NOD2-activated hUCB-MSCs increased anti-inflammatory responses in colons of mice, such as production of interleukin (IL)-10 and infiltration by T regulatory cells, and reduced production of inflammatory cytokines. Proliferation of mononuclear cells was inhibited significantly by co-culture with hUCB-MSCs that had been stimulated with MDP. MDP induced prolonged production of prostaglandin (PG)E2 in hUCB-MSCs via the NOD2-RIP2 pathway, which suppressed proliferation of mononuclear cells derived from hUCB. PGE2 produced by hUCB-MSCs in response to MDP increased production of IL-10 and T regulatory cells. In mice, production of PGE2 by MSCs and subsequent production of IL-10 were required to reduce the severity of colitis. Activation of NOD2 is required for the ability of hUCB-MSCs to reduce the severity of colitis in mice. NOD2 signaling increases the ability of these cells to suppress mononuclear cell proliferation by inducing production of PGE2. Copyright © 2013 AGA

  2. Increased ethanol consumption despite taste aversion in mice with a human tryptophan hydroxylase 2 loss of function mutation.

    Science.gov (United States)

    Lemay, Francis; Doré, François Y; Beaulieu, Jean-Martin

    2015-11-16

    Polymorphisms in the gene encoding the brain serotonin synthesis enzyme Tph2 have been identified in mental illnesses, with co-morbidity of substance use disorder. However, little is known about the impact of Tph2 gene variants on addiction. Mice expressing a human Tph2 loss of function variant were used to investigate consequences of aversive conditions on ethanol intake. Mice were familiarized either with ethanol or a solution containing both ethanol and the bittering agent quinine. Effect of familiarization to ethanol or an ethanol-quinine solution was then evaluated using a two-bottles preference test in Tph2-KI and control littermates. Mice from both genotypes displayed similar levels of ethanol consumption and quinine avoidance when habituated to ethanol alone. In contrast, addition of quinine to ethanol during the familiarization period resulted in a reduction of avoidance for the quinine-ethanol solution only in mutant mice. These results indicate that loss of function mutation in Tph2 results in greater motivation for ethanol consumption under aversive conditions and may confer enhanced sensitivity to alcohol use disorder. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. PDZ domain-binding motif of Tax sustains T-cell proliferation in HTLV-1-infected humanized mice

    Science.gov (United States)

    Artesi, Maria; Jalinot, Pierre

    2018-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive malignant proliferation of activated CD4+ T lymphocytes. The viral Tax oncoprotein is critically involved in both HTLV-1-replication and T-cell proliferation, a prerequisite to the development of ATLL. In this study, we investigated the in vivo contribution of the Tax PDZ domain-binding motif (PBM) to the lymphoproliferative process. To that aim, we examined T-cell proliferation in humanized mice (hu-mice) carrying a human hemato-lymphoid system infected with either a wild type (WT) or a Tax PBM-deleted (ΔPBM) provirus. We observed that the frequency of CD4+ activated T-cells in the peripheral blood and in the spleen was significantly higher in WT than in ΔPBM hu-mice. Likewise, human T-cells collected from WT hu-mice and cultivated in vitro in presence of interleukin-2 were proliferating at a higher level than those from ΔPBM animals. We next examined the association of Tax with the Scribble PDZ protein, a prominent regulator of T-cell polarity, in human T-cells analyzed either after ex vivo isolation or after in vitro culture. We confirmed the interaction of Tax with Scribble only in T-cells from the WT hu-mice. This association correlated with the presence of both proteins in aggregates at the leading edge of the cells and with the formation of long actin filopods. Finally, data from a comparative genome-wide transcriptomic analysis suggested that the PBM-PDZ association is implicated in the expression of genes regulating proliferation, apoptosis and cytoskeletal organization. Collectively, our findings suggest that the Tax PBM is an auxiliary motif that contributes to the sustained growth of HTLV-1 infected T-cells in vivo and in vitro and is essential to T-cell immortalization. PMID:29566098

  4. Immunoscintigraphy of human pancreatic carcinoma in nude mice with I-131-F(ab')/sub 2/-fragments of monoclonal antibodies

    International Nuclear Information System (INIS)

    Senekowitsch, R.; Maul, F.D.; Wenisch, H.J.C.; Kriegel, H.; Hor, G.

    1985-01-01

    In the present study radioiodinated F(ab')/sub 2/-fragments of CA19-9 and antibody that reacts specifically with human gastrointestinal cancer were examined for their ability to detect human pancreatic carcinoma hosted in nude mice. Tumor-bearing mice received 80μCi of I-131-F(ab')/sub 2/ with a specific activity of 1.8μCi/μg. All mice were imaged after the injection and every 24hr up to 6 days. The retained radioactivity was also registered with a whole-body counter immediately after imaging. As a control F(ab's)/sub 2/ of a nonspecific antibody were administered in parallel to another group of animals bearing the same tumor. Three animals of each group were killed at 1,2,4 and 8 days for determination of the distribution of both labeled antibody-fragments. On scintigraphic images obtained with the CA19-9-F(ab')/sub 2/ the tumors could be visualized 24hr after injection, the best dilineation however was achieved 96hr p.i.. The biodistribution data exhibited a more rapid blood clearance for the specific fragments compared to that for the unspecific ones. Tumors showed an increase in uptake up to 48hr reaching 1.7% of the injected dose per gram, declining to values of 0.08%/g at day 6 p.i.. The highest tumor-to-blood ratios were found after 96h. They were 7 for the CA19-9-fragments compared to 1.5 for the unspecific fragments. The whole body counting revealed a more rapid excretion for the fragments of the specific monoclonal antibodies than for the unspecific ones. In summary the authors were able to show that CA19-9-F(ab')/sub 2/-fragments can be used for immunodetection of human pancreatic carcinoma hosted in nude mice

  5. Altered methanol embryopathies in embryo culture with mutant catalase-deficient mice and transgenic mice expressing human catalase

    International Nuclear Information System (INIS)

    Miller, Lutfiya; Wells, Peter G.

    2011-01-01

    The mechanisms underlying the teratogenicity of methanol (MeOH) in rodents, unlike its acute toxicity in humans, are unclear, but may involve reactive oxygen species (ROS). Embryonic catalase, although expressed at about 5% of maternal activity, may protect the embryo by detoxifying ROS. This hypothesis was investigated in whole embryo culture to remove confounding maternal factors, including metabolism of MeOH by maternal catalase. C57BL/6 (C57) mouse embryos expressing human catalase (hCat) or their wild-type (C57 WT) controls, and C3Ga.Cg-Catb/J acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 4 mg/ml MeOH or vehicle, and evaluated for functional and morphological changes. hCat and C57 WT vehicle-exposed embryos developed normally. MeOH was embryopathic in C57 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed and turning, whereas hCat embryos were protected. Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to C3H WT controls, suggesting that endogenous ROS are embryopathic. MeOH was more embryopathic in aCat embryos than WT controls, with reduced anterior neuropore closure and head length only in catalase-deficient embryos. These data suggest that ROS may be involved in the embryopathic mechanism of methanol, and that embryonic catalase activity may be a determinant of teratological risk.

  6. Human plasma phospholipid transfer protein increases the antiatherogenic potential of high density lipoproteins in transgenic mice

    NARCIS (Netherlands)

    M.J. van Haperen (Rien); A. van Tol (Arie); P. Vermeulen; M. Jauhiainen; T. van Gent (Teus); P.M. van den Berg (Paul); S. Ehnholm (Sonja); A.W.M. van der Kamp (Arthur); M.P.G. de Crom (Rini); F.G. Grosveld (Frank)

    2000-01-01

    textabstractPlasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoprotein particles and alters high density lipoprotein (HDL) subfraction patterns in vitro, but its physiological function is poorly understood. Transgenic mice that overexpress

  7. Pharmacokinetic Analysis of 64Cu-ATSM Dynamic PET in Human Xenograft Tumors in Mice

    DEFF Research Database (Denmark)

    Li, Fan; Jørgensen, Jesper Tranekjær; Madsen, Jacob

    2015-01-01

    The aim of this study was to evaluate the feasibility to perform voxel-wise kinetic modeling on datasets obtained from tumor-bearing mice that underwent dynamic PET scans with 64Cu-ATSM and extract useful physiological parameters.METHODS: Tumor-bearing mice underwent 90-min dynamic PET scans...... relevant parameters from voxel-wise pharmacokinetic analysis to be used for preclinical validation of 64Cu-ATSM as a hypoxia-specific PET tracer....

  8. GFP-Mutant Human Tau Transgenic Mice Develop Tauopathy Following CNS Injections of Alzheimer's Brain-Derived Pathological Tau or Synthetic Mutant Human Tau Fibrils.

    Science.gov (United States)

    Gibbons, Garrett S; Banks, Rachel A; Kim, Bumjin; Xu, Hong; Changolkar, Lakshmi; Leight, Susan N; Riddle, Dawn M; Li, Chi; Gathagan, Ronald J; Brown, Hannah J; Zhang, Bin; Trojanowski, John Q; Lee, Virginia M-Y

    2017-11-22

    Neurodegenerative proteinopathies characterized by intracellular aggregates of tau proteins, termed tauopathies, include Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) with tau pathology (FTLD-tau), and related disorders. Pathological tau proteins derived from human AD brains (AD-tau) act as proteopathic seeds that initiate the templated aggregation of soluble tau upon intracerebral injection into tau transgenic (Tg) and wild-type mice, thereby modeling human tau pathology. In this study, we found that aged Tg mice of both sexes expressing human tau proteins harboring a pathogenic P301L MAPT mutation labeled with green fluorescent protein (T40PL-GFP Tg mouse line) exhibited hyperphosphorylated tau mislocalized to the somatodentritic domain of neurons, but these mice did not develop de novo insoluble tau aggregates, which are characteristic of human AD and related tauopathies. However, intracerebral injections of either T40PL preformed fibrils (PFFs) or AD-tau seeds into T40PL-GFP mice induced abundant intraneuronal pathological inclusions of hyperphosphorylated T40PL-GFP. These injections of pathological tau resulted in the propagation of tau pathology from the injection site to neuroanatomically connected brain regions, and these tau inclusions consisted of both T40PL-GFP and WT endogenous mouse tau. Primary neurons cultured from the brains of neonatal T40PL-GFP mice provided an informative in vitro model for examining the uptake and localization of tau PFFs. These findings demonstrate the seeded aggregation of T40PL-GFP in vivo by synthetic PFFs and human AD-tau and the utility of this system to study the neuropathological spread of tau aggregates. SIGNIFICANCE STATEMENT The stereotypical spread of pathological tau protein aggregates have recently been attributed to the transmission of proteopathic seeds. Despite the extensive use of transgenic mouse models to investigate the propagation of tau pathology in vivo , details of the aggregation

  9. A Foxp2 mutation implicated in human speech deficits alters sequencing of ultrasonic vocalizations in adult male mice

    Directory of Open Access Journals (Sweden)

    Jonathan Chabout

    2016-10-01

    Full Text Available Development of proficient spoken language skills is disrupted by mutations of the FOXP2 transcription factor. A heterozygous missense mutation in the KE family causes speech apraxia, involving difficulty producing words with complex learned sequences of syllables. Manipulations in songbirds have helped to elucidate the role of this gene in vocal learning, but findings in non-human mammals have been limited or inconclusive. Here we performed a systematic study of ultrasonic vocalizations (USVs of adult male mice carrying the KE family mutation. Using novel statistical tools, we found that Foxp2 heterozygous mice did not have detectable changes in USV syllable acoustic structure, but produced shorter sequences and did not shift to more complex syntax in social contexts where wildtype animals did. Heterozygous mice also displayed a shift in the position of their rudimentary laryngeal motor cortex layer-5 neurons. Our findings indicate that although mouse USVs are mostly innate, the underlying contributions of FoxP2 to sequencing of vocalizations are conserved with humans.

  10. Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms.

    Science.gov (United States)

    Li, Zhi Gang; Mathew, Paul; Yang, Jun; Starbuck, Michael W; Zurita, Amado J; Liu, Jie; Sikes, Charles; Multani, Asha S; Efstathiou, Eleni; Lopez, Adriana; Wang, Jing; Fanning, Tina V; Prieto, Victor G; Kundra, Vikas; Vazquez, Elba S; Troncoso, Patricia; Raymond, Austin K; Logothetis, Christopher J; Lin, Sue-Hwa; Maity, Sankar; Navone, Nora M

    2008-08-01

    In prostate cancer, androgen blockade strategies are commonly used to treat osteoblastic bone metastases. However, responses to these therapies are typically brief, and the mechanism underlying androgen-independent progression is not clear. Here, we established what we believe to be the first human androgen receptor-negative prostate cancer xenografts whose cells induced an osteoblastic reaction in bone and in the subcutis of immunodeficient mice. Accordingly, these cells grew in castrated as well as intact male mice. We identified FGF9 as being overexpressed in the xenografts relative to other bone-derived prostate cancer cells and discovered that FGF9 induced osteoblast proliferation and new bone formation in a bone organ assay. Mice treated with FGF9-neutralizing antibody developed smaller bone tumors and reduced bone formation. Finally, we found positive FGF9 immunostaining in prostate cancer cells in 24 of 56 primary tumors derived from human organ-confined prostate cancer and in 25 of 25 bone metastasis cases studied. Collectively, these results suggest that FGF9 contributes to prostate cancer-induced new bone formation and may participate in the osteoblastic progression of prostate cancer in bone. Androgen receptor-null cells may contribute to the castration-resistant osteoblastic progression of prostate cancer cells in bone and provide a preclinical model for studying therapies that target these cells.

  11. Human Neural Stem Cell Transplantation Rescues Functional Deficits in R6/2 and Q140 Huntington's Disease Mice

    Directory of Open Access Journals (Sweden)

    Jack C. Reidling

    2018-01-01

    Full Text Available Huntington's disease (HD is an inherited neurodegenerative disorder with no disease-modifying treatment. Expansion of the glutamine-encoding repeat in the Huntingtin (HTT gene causes broad effects that are a challenge for single treatment strategies. Strategies based on human stem cells offer a promising option. We evaluated efficacy of transplanting a good manufacturing practice (GMP-grade human embryonic stem cell-derived neural stem cell (hNSC line into striatum of HD modeled mice. In HD fragment model R6/2 mice, transplants improve motor deficits, rescue synaptic alterations, and are contacted by nerve terminals from mouse cells. Furthermore, implanted hNSCs are electrophysiologically active. hNSCs also improved motor and late-stage cognitive impairment in a second HD model, Q140 knockin mice. Disease-modifying activity is suggested by the reduction of aberrant accumulation of mutant HTT protein and expression of brain-derived neurotrophic factor (BDNF in both models. These findings hold promise for future development of stem cell-based therapies.

  12. Lansoprazole enhances the antidiabetic effect of sitagliptin in mice with diet-induced obesity and healthy human subjects.

    Science.gov (United States)

    Hao, ShaoJun; Sun, JianHua; Tian, XiKui; Sun, Xu; Zhang, ZhenXing; Gao, Yuan

    2014-08-01

    Proton pump inhibitors as adjunctive therapy would improve diabetes control and could enhance the hypoglycaemic activity of DPP-4 inhibitors. The aim of the study was to investigate the short-term effects of lansoprazole (LPZ), sitagliptin (SITA) and their combination therapy on glucose regulation and gut peptide secretion. Glucose and gut peptide were determined and compared after short-term administration of LPZ or SITA, or in combination to mice with diet-induced obesity (DIO) and to healthy human subjects (n = 16) in a 75 g oral glucose tolerance test (OGTT) by a crossover design. In DIO mice, LPZ significantly improve glucose metabolism, increase plasma C-peptide and insulin compared with vehicle treatment. Furthermore, the combination of LPZ and SITA improved glucose tolerance additively, with higher plasma insulin and C-peptide levels compared with SITA-treated mice. Similarly, in human in the OGTT, the combination showed significant improvement in glucose-lowering and insulin increase vs SITA-treated group. However, no significant differences in area under curve (AUC) of insulin, glucose and C-peptide between the LPZ-treated group and baseline, except that mean AUCgastrin was significantly increased by LPZ. LPZ and SITA combination therapy appears to have complementary mechanisms of action and additive antidiabetic effect. © 2014 Royal Pharmaceutical Society.

  13. Tumorigenicity and Validity of Fluorescence Labelled Mesenchymal and Epithelial Human Oral Cancer Cell Lines in Nude Mice

    Directory of Open Access Journals (Sweden)

    Wei Xin Cai

    2016-01-01

    Full Text Available Tumorigenicity and metastatic activity can be visually monitored in cancer cells that were labelled with stable fluorescence. The aim was to establish and validate local and distant spread of subcutaneously previously injected fluorescence transduced human tongue cancer cell lines of epithelial and mesenchymal phenotype in nude mice. A total of 32 four-week-old male athymic Balb/c nude mice were randomly allocated into 4 groups (n=8. A single dose of 0.3 mL PBS containing 1 × 107 of four different cancer cell-lines (UM1, UM1-GFP, UM2, and UM2-RFP was injected subcutaneously into the right side of their posterolateral back. Validity assessment of the labelled cancer cells’ tumorigenicity was assessed by physical examination, imaging, and histology four weeks after the injection. The tumor take rate of cancer cells was similar in animals injected with either parental or transduced cancer cells. Transduced cancer cells in mice were easily detectable in vivo and after cryosection using fluorescent imaging. UM1 cells showed increased tumor take rate and mean tumor volume, presenting with disorganized histopathological patterns. Fluorescence labelled epithelial and mesenchymal human tongue cancer cell lines do not change in tumorigenicity or cell phenotype after injection in vivo.

  14. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture.

    Science.gov (United States)

    Miller-Pinsler, Lutfiya; Wells, Peter G

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat(b)/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug=GD 1), exposed for 24h to 2 or 4mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (pcatalase (PEG-cat) 8h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (pcatalase is a determinant of risk for EtOH embryopathies. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A role for the epidermal growth factor receptor signaling in development of intestinal serrated polyps in mice and humans.

    Science.gov (United States)

    Bongers, Gerold; Muniz, Luciana R; Pacer, Michelle E; Iuga, Alina C; Thirunarayanan, Nanthakumar; Slinger, Erik; Smit, Martine J; Reddy, E Premkumar; Mayer, Lloyd; Furtado, Glaucia C; Harpaz, Noam; Lira, Sergio A

    2012-09-01

    Epithelial cancers can be initiated by activating mutations in components of the mitogen-activated protein kinase signaling pathway such as v-raf murine sarcoma viral oncogene homolog B1 (BRAF), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), or epidermal growth factor receptor (EGFR). Human intestinal serrated polyps are a heterogeneous group of benign lesions, but some progress to colorectal cancer. Tumors that arise from these polyps frequently contain activating mutations in BRAF or KRAS, but little is known about the role of EGFR activation in their development. Polyp samples were obtained from adults during screening colonoscopies at Mount Sinai Hospital in New York. We measured levels of EGFR protein and phosphorylation in human serrated polyps by immunohistochemical and immunoblot analyses. We generated transgenic mice that express the ligand for EGFR, Heparin-binding EGF-like growth factor (HB-EGF), in the intestine. EGFR and the extracellular-regulated kinases (ERK)1/2 were phosphorylated in serrated areas of human hyperplastic polyps (HPPs), sessile serrated adenomas, and traditional serrated adenomas. EGFR and ERK1/2 were phosphorylated in the absence of KRAS or BRAF activating mutations in a subset of HPP. Transgenic expression of the EGFR ligand HB-EGF in the intestines of mice promoted development of small cecal serrated polyps. Mice that expressed a combination of HB-EGF and US28 (a constitutively active, G-protein-coupled receptor that increases processing of HB-EGF from the membrane) rapidly developed large cecal serrated polyps. These polyps were similar to HPPs and had increased phosphorylation of EGFR and ERK1/2 within the serrated epithelium. Administration of pharmacologic inhibitors of EGFR or MAPK to these transgenic mice significantly reduced polyp development. Activation of EGFR signaling in the intestine of mice promotes development of serrated polyps. EGFR signaling also is activated in human HPPs, sessile serrated adenomas

  16. Radioimmunotherapy of Nude Mice Bearing Human Colon Carcinoma with I-131 Labeled Anti-carcinoembryonic Antigen

    International Nuclear Information System (INIS)

    Kim, Byung Tae; Lee, Kyung Han; Kim, Sang Eun; Choi, Yong; Chi, Dae Yoon; Chung, June Key; Lee, Myung Chul; Koh, Chang Soon; Chung, Hong Keun

    1995-01-01

    This study was designed to evaluate the effects of various factors on the therapeutic effect of the I-l3l labeled anti-carcinoembryonic antigen monoclonal antibody(anti-CEA antibody). Tetrazolium-based colorimetric assay (MTT) was used to compare in vitro cytotoxicity of 3 Korean colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5) for selection of proper 2 cell lines in this study. The changes of the size of tumor which was xenografted to nude mice (balb/c nu/nu) were compared in 4 groups (group treated I-131 labeled anti-CEA antibody, group treated with non-radiolabeled anti-CEA antibody, group treated with I-131. labeled anti-human chorionic gonadotropin monoclonal antibody (anti-hCG antibody) as nonspecific antibody, and group injected with normal saline as a control). Immunohistochemical staining and in vivo autoradiography were performed after excision of the xenografted tumor. The results were as below mentioned. The in vitro cytotoxic effect of I-131 labeled anti-CEA antibody is most prominent in SNU-C5 cell line between 3 cancer cell lines. The changes of xenografted tumor size in both SNU-C4 and SNU-C5 cell tumors at the thirteenth day after injection of the antibodies were smallest in the group treated with I-131 labeled anti-CEA antibody (SNU-C4/SNU-C5; 324/342%) comparing with other groups, group treated with anti-CEA antibody (622/660%), group treated with I-131 anti-hCG antibody (538/546%), and control group(1030/724%) (p<0.02 in SNU-C4 and p<0.1in SNU-C5 at the 13th day after injection of antibodies). On the thirteenth day after injection of the antibodies nude mice were sacreficed to count the radiouptake of tumor and to check the changes of tumor size. Correlations between radiouptake and change of tumor size were calculated in each groups and significant negative correlation was only obtained in the group treated with I-131 anti-CEA antibody (p<0.05). There were no correlations between antigenic expression of carcinoembryonic antigen and

  17. Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice.

    Science.gov (United States)

    Allers, Carolina; Sierralta, Walter D; Neubauer, Sonia; Rivera, Francisco; Minguell, José J; Conget, Paulette A

    2004-08-27

    The use of mesenchymal stem cells (MSC) for cell therapy relies on their capacity to engraft and survive long-term in the appropriate target tissue(s). Animal models have demonstrated that the syngeneic or xenogeneic transplantation of MSC results in donor engraftment into the bone marrow and other tissues of conditioned recipients. However, there are no reliable data showing the fate of human MSC infused into conditioned or unconditioned adult recipients. In the present study, the authors investigated, by using imaging, polymerase chain reaction (PCR), and in situ hybridization, the biodistribution of human bone marrow-derived MSC after intravenous infusion into unconditioned adult nude mice. As assessed by imaging (gamma camera), PCR, and in situ hybridization analysis, the authors' results demonstrate the presence of human MSC in bone marrow, spleen, and mesenchymal tissues of recipient mice. These results suggest that human MSC transplantation into unconditioned recipients represents an option for providing cellular therapy and avoids the complications associated with drugs or radiation conditioning.

  18. Motor coordination and balance measurements reveal differential pathogenicity of currently spreading enterovirus 71 strains in human SCARB2 transgenic mice.

    Science.gov (United States)

    Chen, Mei-Feng; Shih, Shin-Ru

    2016-12-01

    Enterovirus 71 (EV71) has caused large-scale epidemics with neurological complications in the Asia-Pacific region. The C4a and B5 strains are the two major genotypes circulating in many countries recently. This study used a new protocol, a motor coordination task, to assess the differential pathogenicity of C4a and B5 strains in human SCARB2 transgenic mice. We found that the pathogenicity of C4a viruses was more severe than that of B5 viruses. Moreover, we discovered that an increased level of monocyte chemoattractant protein-1 was positively correlated with severely deficient motor function. This study provides a new method for evaluating EV71 infection in mice and distinguishing the severity of the symptoms caused by different clinical strains, which would contribute to studies of pathogenesis and development of vaccines and antivirals in EV71 infections.

  19. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture

    International Nuclear Information System (INIS)

    Miller-Pinsler, Lutfiya; Wells, Peter G.

    2015-01-01

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat b /J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 2 or 4 mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p < 0.001). Maternal pretreatment of C57BL/6 WT dams with 50 kU/kg PEG-catalase (PEG-cat) 8 h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p < 0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p < 0.01), and trends for reduced anterior neuropore closure, turning and crown–rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p < 0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. - Highlights: • Ethanol (EtOH) exposure causes structural embryopathies in embryo culture. • Genetically enhanced catalase (hCat) protects against EtOH embryopathies. • Genetically deficient catalase (aCat) exacerbates EtOH embryopathies. • Embryonic catalase is developmentally important. • EtOH developmental

  20. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture

    Energy Technology Data Exchange (ETDEWEB)

    Miller-Pinsler, Lutfiya [Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Wells, Peter G., E-mail: pg.wells@utoronto.ca [Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario (Canada); Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada)

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat{sup b}/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 2 or 4 mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p < 0.001). Maternal pretreatment of C57BL/6 WT dams with 50 kU/kg PEG-catalase (PEG-cat) 8 h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p < 0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p < 0.01), and trends for reduced anterior neuropore closure, turning and crown–rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p < 0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. - Highlights: • Ethanol (EtOH) exposure causes structural embryopathies in embryo culture. • Genetically enhanced catalase (hCat) protects against EtOH embryopathies. • Genetically deficient catalase (aCat) exacerbates EtOH embryopathies. • Embryonic catalase is developmentally important. • Et

  1. Peripheral erythrocytes decrease upon specific respiratory challenge with grass pollen allergen in sensitized mice and in human subjects.

    Directory of Open Access Journals (Sweden)

    Galateja Jordakieva

    Full Text Available BACKGROUND AND AIMS: Specific hyper-responsiveness towards an allergen and non-specific airway hyperreactivity both impair quality of life in patients with respiratory allergic diseases. We aimed to investigate cellular responses following specific and non-specific airway challenges locally and systemically in i sensitized BALB/c mice challenged with grass pollen allergen Phl p 5, and in ii grass pollen sensitized allergic rhinitis subjects undergoing specific airway challenge in the Vienna Challenge Chamber (VCC. METHODS AND RESULTS: BALB/c mice (n = 20 were intraperitoneally immunized with grass pollen allergen Phl p 5 and afterwards aerosol challenged with either the specific allergen Phl p 5 (n = 10 or the non-specific antigen ovalbumin (OVA (n = 10. A protocol for inducing allergic asthma as well as allergic rhinitis, according to the united airway concept, was used. Both groups of exposed mice showed significantly reduced physical activity after airway challenge. Specific airway challenge further resulted in goblet cell hyperplasia, enhanced mucous secretion, intrapulmonary leukocyte infiltration and lymphoid follicle formation, associated with significant expression of IL-4, IL-5 and IL-13 in splenocytes and also partially in lung tissue. Concerning circulating blood cell dynamics, we observed a significant drop of erythrocyte counts, hemoglobin and hematocrit levels in both mouse groups, challenged with allergen or OVA. A significant decrease in circulating erythrocytes and hematocrit levels after airway challenges with grass pollen allergen was also found in grass pollen sensitized human rhinitis subjects (n = 42 at the VCC. The effects on peripheral leukocyte counts in mice and humans however were opposed, possibly due to the different primary inflammation sites. CONCLUSION: Our data revealed that, besides significant leukocyte dynamics, particularly erythrocytes are involved in acute hypersensitivity reactions to respiratory allergens

  2. Nogo-receptor gene activity: cellular localization and developmental regulation of mRNA in mice and humans.

    Science.gov (United States)

    Josephson, Anna; Trifunovski, Alexandra; Widmer, Hans Ruedi; Widenfalk, Johan; Olson, Lars; Spenger, Christian

    2002-11-18

    Nogo (reticulon-4) is a myelin-associated protein that is expressed in three different splice variants, Nogo-A, Nogo-B, and Nogo-C. Nogo-A inhibits neurite regeneration in the central nervous system. Messenger RNA encoding Nogo is expressed in oligodendrocytes and central and peripheral neurons, but not in astrocytes or Schwann cells. Nogo is a transmembraneous protein; the extracellular domain is termed Nogo-66, and a Nogo-66-receptor (Nogo-R) has been identified. We performed in situ hybridization in human and mouse nervous tissues to map the cellular distribution of Nogo-R gene activity patterns in fetal and adult human spinal cord and sensory ganglia, adult human brain, and the nervous systems of developing and adult mice. In the human fetus Nogo-R was transcribed in the ventral horn of the spinal cord and in dorsal root ganglia. In adult human tissues Nogo-R gene activity was found in neocortex, hippocampus, amygdala, and a subset of large and medium-sized neurons of the dorsal root ganglia. Nogo-R mRNA was not expressed in the adult human spinal cord at detectable levels. In the fetal mouse, Nogo-R was diffusely expressed in brain, brainstem, trigeminal ganglion, spinal cord, and dorsal root ganglia at all stages. In the adult mouse strong Nogo-R mRNA expression was found in neurons in neocortex, hippocampus, amygdala, habenula, thalamic nuclei, brainstem, the granular cell layer of cerebellum, and the mitral cell layer of the olfactory bulb. Neurons in the adult mouse striatum, the medial septal nucleus, and spinal cord did not express Nogo-R mRNA at detectable levels. In summary, Nogo-66-R mRNA expression in humans and mice was observed in neurons of the developing nervous system Expression was downregulated in the adult spinal cord of both species, and specific expression patterns were seen in the adult brain. Copyright 2002 Wiley-Liss, Inc.

  3. Mechanism of lipid lowering in mice expressing human apolipoprotein A5

    Energy Technology Data Exchange (ETDEWEB)

    Fruchart-Najib, Jamila; Bauge, Eric; Niculescu, Loredan-Stefan; Pham, Tatiana; Thomas, Benoit; Rommens, Corinne; Majd, Zouher; Brewer, Bryan; Rubin, Edward M.; Pennacchio, Len A.; Fruchart, Jean-Charles

    2004-01-15

    Recently, we reported that apoAV plays key role in triglycerides lowering. Here, we attempted to determine the mechanism underlying this hypotriglyceridemic effect. We showed that triglyceride turnover is faster in hAPOA5 transgenic compared to wild type mice. Moreover, both apoB and apoCIII are decreased and LPL activity is increased in postheparin plasma of hAPOA5 transgenic mice. These data suggest a decrease in size and number of VLDL. To further investigate the mechanism of hAPOA5 in hyperlipidemic background, we intercrossed hAPOA5 and hAPOC3 transgenic mice. The effect resulted in a marked decreased of VLDL triglyceride, cholesterol, apolipoproteins B and CIII. In postprandial state, the triglyceride response is abolished in hAPOA5 transgenic mice. We demonstrated that in response to the fat load in hAPOA5XhAPOC3 mice, apoAV shifted from HDL to VLDL, probably to limit the elevation of triglycerides. In vitro, apoAV activates lipoprotein lipase. However, apoAV does not interact with LPL but interacts physically with apoCIII. This interaction does not seem to displace apoCIII from VLDL but may induce conformational change in apoCIII and consequently change in its function leading the activation of lipoprotein lipase.

  4. The experimental study on the radioimmunotherapy of the hepatoma in nude mice model with intratumoral injection of 131I-human anti-HBsAg Fab

    International Nuclear Information System (INIS)

    Luo Rongcheng; Wu Guichen; Han Huanxing; You Changxuan; Ding Xuemei; Li Aimin; Wang Chuanbin; Zhang Mingjiang

    2001-01-01

    Objective: To study the therapeutic efficacy of radioimmunotherapy of 131 I-human anti-HBsAg Fab via different routes of administration. Methods: The human hepatoma bearing nude mice we reinjected with 131 I-human anti-HBsAg Fab intra-tumor (IT) and intra-peritoneum (IP). Biodistribution was measured on the 5th day. The tumor growth inhibition rate was determined by measurement of tumor volume. Results: In the IT-treated mice, tumor uptake of 131 I-human anti-HBsAg Fab was four-fold greater than in the IP-treated mice, and normal organ uptake was half of that in the IP-treated mice. At the 3rd week after the infusion, the tumor growth inhibition rate in IT-treated mice was higher than that in the IP-treated mice. Conclusions: Intratumoral administration of 131 I-human anti-HBsAg Fab makes high level of radioactivity retained in tumor with significantly lower radioactivity retained in normal tissues, and provides a more effective regional therapy

  5. Delivery of Human EV71 Receptors by Adeno-Associated Virus Increases EV71 Infection-Induced Local Inflammation in Adult Mice

    Directory of Open Access Journals (Sweden)

    Hung-Bo Hsiao

    2014-01-01

    Full Text Available Enterovirus71 (EV71 is now recognized as an emerging neurotropic virus in Asia and one major causative agent of hand-foot-mouth diseases (HFMD. However potential animal models for vaccine development are limited to young mice. In this study, we used an adeno-associated virus (AAV vector to introduce the human EV71 receptors P-selectin glycoprotein ligand-1 (hPSGL1 or a scavenger receptor class-B member-2 (hSCARB2 into adult ICR mice to change their susceptibility to EV71 infection. Mice were administered AAV-hSCARB2 or AAV-hPSGL1 through intravenous and oral routes. After three weeks, expression of human SCARB2 and PSGL1 was detected in various organs. After infection with EV71, we found that the EV71 viral load in AAV-hSCARB2- or AAV-hPSGL1-transduced mice was higher than that of the control mice in both the brain and intestines. The presence of EV71 viral particles in tissues was confirmed using immunohistochemistry analysis. Moreover, inflammatory cytokines were induced in the brain and intestines of AAV-hSCARB2- or AAV-hPSGL1-transduced mice after EV71 infection but not in wild-type mice. However, neurological disease was not observed in these animals. Taken together, we successfully infected adult mice with live EV71 and induced local inflammation using an AAV delivery system.

  6. Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    2018-05-01

    Full Text Available Exposure to (bisulfite (HSO3– and sulfite (SO32– has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bisulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3–, peroxymonosulfate (–O3SOO., and especially the sulfate (SO4. – anion radicals. One such peroxidase in neutrophils is myeloperoxidase (MPO, which has been shown to form protein radicals. Although formation of (bisulfite-derived protein radicals is documented in isolated neutrophils, its involvement and role in in vivo inflammatory processes, has not been demonstrated. Therefore, we aimed to investigate (bisulfite-derived protein radical formation and its mechanism in LPS aerosol-challenged mice, a model of non-atopic asthma. Using immuno-spin trapping to detect protein radical formation, we show that, in the presence of (bisulfite, neutrophils present in bronchoalveolar lavage and in the lung parenchyma exhibit, MPO-catalyzed oxidation of MPO to a protein radical. The absence of radical formation in LPS-challenged MPO- or NADPH oxidase-knockout mice indicates that sulfite-derived radical formation is dependent on both MPO and NADPH oxidase activity. In addition to its oxidation by the MPO-catalyzed pathway, (bisulfite is efficiently detoxified to sulfate by the sulfite oxidase (SOX pathway, which forms sulfate in a two-electron oxidation reaction. Since SOX activity in rodents is much higher than in humans, to better model sulfite toxicity in humans, we induced SOX deficiency in mice by feeding them a low molybdenum diet with tungstate. We found that mice treated with the SOX deficiency diet prior to exposure to (bisulfite had much higher protein radical formation than mice with normal SOX activity. Altogether, these results demonstrate the role of MPO and NADPH oxidase in (bisulfite-derived protein radical formation and show the involvement of

  7. Differential glucose metabolism in mice and humans affected by McArdle disease

    DEFF Research Database (Denmark)

    Krag, Thomas O; Pinós, Tomàs; Nielsen, Tue L

    2016-01-01

    McArdle disease (muscle glycogenosis type V) is a disease caused by myophosphorylase deficiency leading to "blocked" glycogen breakdown. A significant but varying glycogen accumulation in especially distal hind limb muscles of mice affected by McArdle disease has recently been demonstrated......, which could lead to lower glycogen accumulation. In comparison, tibialis anterior, extensor digitorum longus, and soleus had massive glycogen accumulation, but few, if any, changes or adaptations in glucose metabolism compared with wild-type mice. The findings suggest plasticity in glycogen metabolism....... In this study, we investigated how myophosphorylase deficiency affects glucose metabolism in hind limb muscle of 20-wk-old McArdle mice and vastus lateralis muscles from patients with McArdle disease. Western blot analysis and activity assay demonstrated that glycogen synthase was inhibited in glycolytic muscle...

  8. Radiolabeling of anti-human prostatic specific membrane antigen antibody with 99Tcm and its biodistribution in nude mice bearing human prostate cancer

    International Nuclear Information System (INIS)

    Tu Shaohua; Shen Jiangfan; Tao Rong; Ji Xiaowen; Wang Yancheng

    2012-01-01

    Objective: To study the binding affinity of 99 Tc m labeled anti-human prostatic specific membrane antigen (PSMA) monoclonal antibody (McAb) J591 to prostate cancer cells and the biodistribution of 99 Tc m -J591 in nude mice bearing human prostate cancer. Methods: The McAb J591 was labeled with vTcm by improved Schwarz method and the labeled McAb was purified by Sephadex G-50. The binding affinity of J591 with prostate cancer cells was measured by Flow Cytometry. The nude mice bearing PSMA-positive C4-2 prostate carcinoma xenografts were served as experiment groups, mice with PSMA-negative pc3 tumors served as controls. The biodistribution of 99 Tc m -J591 were carried out in both model nude mice. Results: The radiolabeling efficiency of 99 Tc m -J591 was 78.9±6.2%, and radiochemical purity was more than 90% after purification. The 99 Tc m -J591 showed a good combination with PSMA-positive C4-2 cells and no combination with PSMA-negative PC3 cells in vitro. The biodistribution results showed that 99 Tcm-J591 was accumulated in tumor tissue during the 2-24 hours after injection in experiment groups, and no significant uptake in control group. The uptake of 99 Tcm-J591 in tumor tissue reached a maximum 15.91±5.16 % ID/g in experimental group at 12h post-injection. There was a significant difference compared with controls (P 0.05). Conclusion: The monoclonal antibody J591 exhibits an excellent immuno-reactivity and tumor targeting property, and it may be used in diagnosis and target therapy of prostate cancer. (authors)

  9. The effect of combining recombinant human tumor necrosis factor-alpha with local radiation on tumor control probability of a human glioblastoma multiforme xenograft in nude mice

    International Nuclear Information System (INIS)

    Huang, Peigen; Allam, Ayman; Perez, Luis A.; Taghian, Alphonse; Freeman, Jill; Suit, Herman D.

    1995-01-01

    Purpose: To evaluate the antitumor activity of recombinant human tumor necrosis factor-alpha (rHuTNF-α) on a human glioblastoma multiforme (U87) xenograft in nude mice, and to study the effect of combining rHuTNF-α with local radiation on the tumor control probability of this tumor model. Methods and Materials: U87 xenograft was transplanted SC into the right hindleg of NCr/Sed nude mice (7-8 weeks old, male). When tumors reached a volume of about 110 mm 3 , mice were randomly assigned to treatment: rHuTNF-α alone compared with normal saline control; or local radiation plus rHuTNF-α vs. local radiation plus normal saline. Parameters of growth delay, volume doubling time, percentage of necrosis, and cell loss factor were used to assess the antitumor effects of rHuTNF-α on this tumor. The TCD 50 (tumor control dose 50%) was used as an endpoint to determine the effect of combining rHuTNF-α with local radiation. Results: Tumor growth in mice treated with a dose of 150 μg/kg body weight rHuTNF-α, IP injection daily for 7 consecutive days, was delayed about 8 days compared to that in controls. Tumors in the treatment group had a significantly longer volume doubling time, and were smaller in volume and more necrotic than matched tumors in control group. rHuTNF-α also induced a 2.3 times increase of cell loss factor. The administration of the above-mentioned dose of rHuTNF-α starting 24 h after single doses of localized irradiation under hypoxic condition, resulted in a significant reduction in TCD 50 from the control value of 60.9 Gy to 50.5 Gy (p 50 value in the treatment vs. the control groups

  10. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice.

    Science.gov (United States)

    Xu, Bing; Jiang, Mingzuo; Chu, Yi; Wang, Weijie; Chen, Di; Li, Xiaowei; Zhang, Zhao; Zhang, Di; Fan, Daiming; Nie, Yongzhan; Shao, Feng; Wu, Kaichun; Liang, Jie

    2017-12-20

    Gasdermin D (GSDMD)-executed programmed necrosis is involved in inflammation and controls interleukin (IL)-1β release. However, the role of GSDMD in non-alcoholic steatohepatitis (NASH) remains unclear. We investigated the role of GSDMD in the pathogenesis of steatohepatitis. Human liver tissues from patients with non-alcoholic fatty liver disease (NAFLD) and control individuals were obtained to evaluate GSDMD expression. Gsdmd knockout (Gsdmd -/- ) mice, obese db/db mice and their wild-type (WT) littermates were fed with methionine-choline deficient (MCD) or control diet to induce steatohepatitis. The Gsdmd -/- and WT mice were also used in a high-fat diet (HFD)-induced NAFLD model. In addition, Alb-Cre mice were administered an adeno-associated virus (AAV) vector that expressed the gasdermin-N domain (AAV9-FLEX-GSDMD-N) and were fed with either MCD or control diet for 10 days. GSDMD and its pyroptosis-inducing fragment GSDMD-N were upregulated in liver tissues of human NAFLD/NASH. Importantly, hepatic GSDMD-N protein levels were significantly higher in human NASH and correlated with the NAFLD activity score and fibrosis. GSDMD-N remained a potential biomarker for the diagnosis of NASH. MCD-fed Gsdmd -/- mice exhibit decreased severity of steatosis and inflammation compared with WT littermates. GSDMD was associated with the secretion of pro-inflammatory cytokines (IL-1β, TNF-α, and MCP-1 [CCL2]) and persistent activation of the NF-ĸB signaling pathway. Gsdmd -/- mice showed lower steatosis, mainly because of reduced expression of the lipogenic gene Srebp1c (Srebf1) and upregulated expression of lipolytic genes, including Pparα, Aco [Klk15], Lcad [Acadl], Cyp4a10 and Cyp4a14. Alb-Cre mice administered with AAV9-FLEX-GSDMD-N showed significantly aggravated steatohepatitis when fed with MCD diet. As an executor of pyroptosis, GSDMD plays a key role in the pathogenesis of steatohepatitis, by controlling cytokine secretion, NF-ĸB activation, and lipogenesis

  11. Transcription factor fos-related antigen-2 induces progressive peripheral vasculopathy in mice closely resembling human systemic sclerosis.

    Science.gov (United States)

    Maurer, Britta; Busch, Nicole; Jüngel, Astrid; Pileckyte, Margarita; Gay, Renate E; Michel, Beat A; Schett, Georg; Gay, Steffen; Distler, Jörg; Distler, Oliver

    2009-12-08

    Microvascular damage is one of the first pathological changes in systemic sclerosis. In this study, we investigated the role of Fos-related antigen-2 (Fra-2), a transcription factor of the activator protein-1 family, in the peripheral vasculopathy of systemic sclerosis and examined the underlying mechanisms. Expression of Fra-2 protein was significantly increased in skin biopsies of systemic sclerosis patients compared with healthy controls, especially in endothelial and vascular smooth muscle cells. Fra-2 transgenic mice developed a severe loss of small blood vessels in the skin that was paralleled by progressive skin fibrosis at 12 weeks of age. The reduction in capillary density was preceded by a significant increase in apoptosis in endothelial cells at week 9 as detected by immunohistochemistry. Similarly, suppression of Fra-2 by small interfering RNA prevented human microvascular endothelial cells from staurosporine-induced apoptosis and improved both the number of tubes and the cumulative tube lengths in the tube formation assay. In addition, cell migration in the scratch assay and vascular endothelial growth factor-dependent chemotaxis in a modified Boyden chamber assay were increased after transfection of human microvascular endothelial cells with Fra-2 small interfering RNA, whereas proliferation was not affected. Fra-2 is present in human systemic sclerosis and may contribute to the development of microvasculopathy by inducing endothelial cell apoptosis and by reducing endothelial cell migration and chemotaxis. Fra-2 transgenic mice are a promising preclinical model to study the mechanisms and therapeutic approaches of the peripheral vasculopathy in systemic sclerosis.

  12. Immunoscintigraphy of human tumors transplanted in nude mice with radiolabeled anti-ras p21 monoclonal antibodies

    International Nuclear Information System (INIS)

    Katoh, Y.; Nakata, K.; Kohno, K.; Shima, M.; Satoh, A.; Kusumoto, Y.; Ishii, N.; Kohji, T.; Shiku, H.; Nagataki, S.

    1990-01-01

    Anti-ras p21 monoclonal antibody (RASK-3) was used for immunoscintigraphy of human cancer cell lines in nude mice. Iodine-125-labeled RASK-3 was injected into nude mice with either human colon cancers (FCC-1 or BM-314) or lung cancer (KNS-62). Clear images were obtained in all three cancers 7 days after the injection of antibody. No localization of 125 I-labeled control monoclonal antibody was observed. The ratio of tissue/blood radioactivity and % ID/g in the tumor were significantly higher than other organs by Day 8. The specific localization index examined by 131 I-RASK-3 and 125 I-control monoclonal antibody was also higher in the tumor than in other tissues. In the in vitro study, binding of RASK-3 to tumor cells increased significantly by treatment of cells with either lysolecithin or periodate-lysine-paraformaldehyde, which confirmed the intracellular localization of ras p21. The mechanism by which anti-ras p21 antibodies accumulate in tumor sites could be the necrotic changes in tumor cells or changes in membrane permeability of non-necrotic cells. These results provide a strong rationale for the utilization of ras p21 as a target antigen in the imaging of a variety of human cancers

  13. Radio-sensitivity of the cells from amyotrophic lateral sclerosis model mice transfected with human mutant SOD1

    International Nuclear Information System (INIS)

    Wate, Reika; Ito, Hidefumi; Kusaka, Hirofumi; Takahashi, Sentaro; Kubota, Yoshihisa; Suetomi, Katsutoshi; Sato, Hiroshi; Okayasu, Ryuichi

    2005-01-01

    In order to clarify the possible involvement of oxidative damage induced by ionizing radiation in the onset and/or progression of familial amyotrophic lateral sclerosis (ALS), we studied radio-sensitivity in primary cells derived from ALS model mice expressing human mutant Cu/Zn superoxide dismutase (SOD1). The primary mouse cells expressed both mouse and the mutant human SOD1. The cell survival of the transgenic mice (with mutant SOD1), determined by counting cell numbers at a scheduled time after X-irradiation, is very similar to that of cells from wild type animals. The induction and repair of DNA damage in the transgenic cells, measured by single cell gel electrophoresis and pulsed field gel electrophoresis, are also similar to those of wild type cells. These results indicate that the human mutant SOD1 gene does not seem to contribute to the alteration of radio-sensitivity, at least in the fibroblastic cells used here. Although it is necessary to consider the difference in cell types between fibroblastic and neuronal cells, the present results may suggest that ionizing radiation is not primarily responsible for the onset of familial ALS with the SOD1 mutation, and that the excess risks are probably not a concern for radiation diagnosis and therapy in familial ALS patients. (author)

  14. [Cytogenetic effect of cyclophosphamide in a culture of human lymphocytes following its activation in the bodies of mice].

    Science.gov (United States)

    Chebotarev, A N; Telegin, L I; Derzhavets, E M

    1976-01-01

    Cytogenetic effect of cyclophosphamide in cultured human lymphocytes after its activation in C57BL/6 mice in vivo was investigated. Cyclophosphamide was injected intraperitoneally in mice for 30 min. at doses of 200, 400, 600, 800 and 1000 mg/kg. Blood serum with activated metabolites of cyclophosphamide was added to human lymphocyte culture. The dependence of the part of aberrant metaphases on the concentration of cyclophosphamide after the activation can be presented as equation rho==1-e-(KC+alpha)2 and the total number of breaks as X=e(KC+alpha)2-1, where rho is a part of aberrant metaphases, X is a number of breaks of chromosomes per cell, C is the concentration, K and alpha are coefficients. The part of chromatid breaks from the total number of chromosome damages is constant for all concentrations and the comprises on the average 79,11%. Only the chromatid type of exchanges are observed. Distribution of chromosome breaks in cells corresponds to geometrical, but not to Poisson's distribution. Cyclophosphamide belongs to the group of one-sited mutagens in its cytogenetic chatacteristics. The alkylating activity of cyclophosphamide metabolites, estimated by means of NBP test, increases up to the dose 400 mg/kg and then remains constant for the strain of mice studied, cytogenetic activity increasing. Cyclophosphamide does not produce cytogenetic activity without activation. To test chemical substances for mutagenic activity, it is suggested to activate them in the mouse organism with the following administrating blood serum of these animals with the metabolites of tested (or with primary) substances in the study of their mutagenic activity on human lymphocyte culture.

  15. Multi-Organ Damage in Human Dipeptidyl Peptidase 4 Transgenic Mice Infected with Middle East Respiratory Syndrome-Coronavirus.

    Directory of Open Access Journals (Sweden)

    Guangyu Zhao

    Full Text Available The Middle East Respiratory Syndrome Coronavirus (MERS-CoV causes severe acute respiratory failure and considerable extrapumonary organ dysfuction with substantial high mortality. For the limited number of autopsy reports, small animal models are urgently needed to study the mechanisms of MERS-CoV infection and pathogenesis of the disease and to evaluate the efficacy of therapeutics against MERS-CoV infection. In this study, we developed a transgenic mouse model globally expressing codon-optimized human dipeptidyl peptidase 4 (hDPP4, the receptor for MERS-CoV. After intranasal inoculation with MERS-CoV, the mice rapidly developed severe pneumonia and multi-organ damage, with viral replication being detected in the lungs on day 5 and in the lungs, kidneys and brains on day 9 post-infection. In addition, the mice exhibited systemic inflammation with mild to severe pneumonia accompanied by the injury of liver, kidney and spleen with neutrophil and macrophage infiltration. Importantly, the mice exhibited symptoms of paralysis with high viral burden and viral positive neurons on day 9. Taken together, this study characterizes the tropism of MERS-CoV upon infection. Importantly, this hDPP4-expressing transgenic mouse model will be applicable for studying the pathogenesis of MERS-CoV infection and investigating the efficacy of vaccines and antiviral agents designed to combat MERS-CoV infection.

  16. Comparative Effects of Human Neural Stem Cells and Oligodendrocyte Progenitor Cells on the Neurobehavioral Disorders of Experimental Autoimmune Encephalomyelitis Mice

    Directory of Open Access Journals (Sweden)

    Dae-Kwon Bae

    2016-01-01

    Full Text Available Since multiple sclerosis (MS is featured with widespread demyelination caused by autoimmune response, we investigated the recovery effects of F3.olig2 progenitors, established by transducing human neural stem cells (F3 NSCs with Olig2 transcription factor, in myelin oligodendrocyte glycoprotein- (MOG- induced experimental autoimmune encephalomyelitis (EAE model mice. Six days after EAE induction, F3 or F3.olig2 cells (1 × 106/mouse were intravenously transplanted. MOG-injected mice displayed severe neurobehavioral deficits which were remarkably attenuated and restored by cell transplantation, in which F3.olig2 cells were superior to its parental F3 cells. Transplanted cells migrated to the injured spinal cord, matured to oligodendrocytes, and produced myelin basic proteins (MBP. The F3.olig2 cells expressed growth and neurotrophic factors including brain-derived neurotrophic factor (BDNF, nerve growth factor (NGF, ciliary neurotrophic factor (CNTF, and leukemia inhibitory factor (LIF. In addition, the transplanted cells markedly attenuated inflammatory cell infiltration, reduced cytokine levels in the spinal cord and lymph nodes, and protected host myelins. The results indicate that F3.olig2 cells restore neurobehavioral symptoms of EAE mice by regulating autoimmune inflammatory responses as well as by stimulating remyelination and that F3.olig2 progenitors could be a candidate for the cell therapy of demyelinating diseases including MS.

  17. Pharmacokinetics and Pharmacodynamics of a 13-mer LNA-inhibitor-miR-221 in Mice and Non-human Primates

    Directory of Open Access Journals (Sweden)

    Maria Eugenia Gallo Cantafio

    2016-01-01

    Full Text Available Locked nucleic acid (LNA oligonucleotides have been successfully used to efficiently inhibit endogenous small noncoding RNAs in vitro and in vivo. We previously demonstrated that the direct miR-221 inhibition by the novel 13-mer LNA-i-miR-221 induces significant antimyeloma activity and upregulates canonical miR-221 targets in vitro and in vivo. To evaluate the LNA-i-miR-221 pharmacokinetics and pharmacodynamics, novel assays for oligonucleotides quantification in NOD.SCID mice and Cynomolgus monkeys (Macaca fascicularis plasma, urine and tissues were developed. To this aim, a liquid chromatography/mass spectrometry method, after solid-phase extraction, was used for the detection of LNA-i-miR-221 in plasma and urine, while a specific in situ hybridization assay for tissue uptake analysis was designed. Our analysis revealed short half-life, optimal tissue biovailability and minimal urine excretion of LNA-i-miR-221 in mice and monkeys. Up to 3 weeks, LNA-i-miR-221 was still detectable in mice vital organs and in xenografted tumors, together with p27 target upregulation. Importantly, no toxicity in the pilot monkey study was observed. Overall, our findings indicate the suitability of LNA-i-miR-221 for clinical use and we provide here pilot data for safety analysis and further development of LNA-miRNA-based therapeutics for human cancer.

  18. Sex-dependent regulation of hypoxic ventilation in mice and humans is mediated by erythropoietin

    DEFF Research Database (Denmark)

    Soliz, Jorge; Thomsen, Jonas Juhl; Soulage, Christophe

    2009-01-01

    increased in women. We conclude that Epo exerts a sex-dependent impact on hypoxic ventilation improving the response in female mice and in women that most probably involves sexual hormones. Our data provides an explanation as to why women are less susceptible to hypoxia-associated syndromes than men....

  19. Protection from obesity and insulin resistance in mice overexpressing human apolipoprotein C1

    NARCIS (Netherlands)

    Jong, M. C.; Voshol, P. J.; Muurling, M.; Dahlmans, V. E.; Romijn, J. A.; Pijl, H.; Havekes, L. M.

    2001-01-01

    Apolipoprotein (APO) C1 is a 6.6-kDa protein present in plasma and associated with lipoproteins. Using hyperinsulinemic-euglycemic clamp tests, we previously found that in APOC1 transgenic mice, the whole-body insulin-mediated glucose uptake is increased concomitant with a decreased fatty acid

  20. RhD Specific Antibodies Are Not Detectable in HLA-DRB11501* Mice Challenged with Human RhD Positive Erythrocytes

    Directory of Open Access Journals (Sweden)

    Lidice Bernardo

    2014-01-01

    Full Text Available The ability to study the immune response to the RhD antigen in the prevention of hemolytic disease of the fetus and newborn has been hampered by the lack of a mouse model of RhD immunization. However, the ability of transgenic mice expressing human HLA DRB11501* to respond to immunization with purified RhD has allowed this question to be revisited. In this work we aimed at inducing anti-RhD antibodies by administering human RhD+ RBCs to mice transgenic for the human HLA DRB11501* as well as to several standard inbred and outbred laboratory strains including C57BL/6, DBA1/J, CFW(SW, CD1(ICR, and NSA(CF-1. DRB11501* mice were additionally immunized with putative extracellular immunogenic RhD peptides. DRB11501* mice immunized with RhD+ erythrocytes developed an erythrocyte-reactive antibody response. Antibodies specific for RhD could not however be detected by flow cytometry. Despite this, DRB11501* mice were capable of recognizing immunogenic sequences of Rh as injection with Rh peptides induced antibodies reactive with RhD sequences, consistent with the presence of B cell repertoires capable of recognizing RhD. We conclude that while HLA DRB11501* transgenic mice may have the capability of responding to immunogenic sequences within RhD, an immune response to human RBC expressing RhD is not directly observed.

  1. Response of mouse skin to tattooing: use of SKH-1 mice as a surrogate model for human tattooing

    International Nuclear Information System (INIS)

    Gopee, Neera V.; Cui, Yanyan; Olson, Greg; Warbritton, Alan R.; Miller, Barbara J.; Couch, Letha H.; Wamer, Wayne G.; Howard, Paul C.

    2005-01-01

    Tattooing is a popular cosmetic practice involving more than 45 million US citizens. Since the toxicology of tattoo inks and pigments used to formulate tattoo inks has not been reported, we studied the immunological impact of tattooing and determined recovery time from this trauma. SKH-1 hairless mice were tattooed using commercial tattoo inks or suspensions of titanium dioxide, cadmium sulfide, or iron oxide, and sacrificed at 0.5, 1, 3, 4, 7, or 14 days post-tattooing. Histological evaluation revealed dermal hemorrhage at 0.5 and 1 day. Acute inflammation and epidermal necrosis were initiated at 0.5 day decreasing in incidence by day 14. Dermal necrosis and epidermal hyperplasia were prominent by day 3, reducing in severity by day 14. Chronic active inflammation persisted in all tattooed mice from day 3 to 14 post-tattooing. Inguinal and axillary lymph nodes were pigmented, the inguinal being most reactive as evidenced by lymphoid hyperplasia and polymorphonuclear infiltration. Cutaneous nuclear protein concentrations of nuclear factor-kappa B were elevated between 0.5 and 4 days. Inflammatory and proliferative biomarkers, cyclooxygenase-1, cyclooxygenase-2, and ornithine decarboxylase protein levels were elevated between 0.5 and 4 days in the skin and decreased to control levels by day 14. Interleukin-1 beta and interleukin-10 were elevated in the lymph nodes but suppressed in the tattooed skin, with maximal suppression occurring between days 0.5 and 4. These data demonstrate that mice substantially recover from the tattooing insult by 14 days, leaving behind pigment in the dermis and the regional lymph nodes. The response seen in mice is similar to acute injury seen in humans, suggesting that the murine model might be a suitable surrogate for investigating the toxicological and phototoxicological properties of ingredients used in tattooing

  2. The human gastric pathogen Helicobacter pylori has a potential acetone carboxylase that enhances its ability to colonize mice

    Directory of Open Access Journals (Sweden)

    Weinberg Michael V

    2008-01-01

    Full Text Available Abstract Background Helicobacter pylori colonizes the human stomach and is the etiological agent of peptic ulcer disease. All three H. pylori strains that have been sequenced to date contain a potential operon whose products share homology with the subunits of acetone carboxylase (encoded by acxABC from Xanthobacter autotrophicus strain Py2 and Rhodobacter capsulatus strain B10. Acetone carboxylase catalyzes the conversion of acetone to acetoacetate. Genes upstream of the putative acxABC operon encode enzymes that convert acetoacetate to acetoacetyl-CoA, which is metabolized further to generate two molecules of acetyl-CoA. Results To determine if the H. pylori acxABC operon has a role in host colonization the acxB homolog in the mouse-adapted H. pylori SS1 strain was inactivated with a chloramphenicol-resistance (cat cassette. In mouse colonization studies the numbers of H. pylori recovered from mice inoculated with the acxB:cat mutant were generally one to two orders of magnitude lower than those recovered from mice inoculated with the parental strain. A statistical analysis of the data using a Wilcoxin Rank test indicated the differences in the numbers of H. pylori isolated from mice inoculated with the two strains were significant at the 99% confidence level. Levels of acetone associated with gastric tissue removed from uninfected mice were measured and found to range from 10–110 μmols per gram wet weight tissue. Conclusion The colonization defect of the acxB:cat mutant suggests a role for the acxABC operon in survival of the bacterium in the stomach. Products of the H. pylori acxABC operon may function primarily in acetone utilization or may catalyze a related reaction that is important for survival or growth in the host. H. pylori encounters significant levels of acetone in the stomach which it could use as a potential electron donor for microaerobic respiration.

  3. TRIP-Br2 promotes oncogenesis in nude mice and is frequently overexpressed in multiple human tumors.

    Science.gov (United States)

    Cheong, Jit Kong; Gunaratnam, Lakshman; Zang, Zhi Jiang; Yang, Christopher M; Sun, Xiaoming; Nasr, Susan L; Sim, Khe Guan; Peh, Bee Keow; Rashid, Suhaimi Bin Abdul; Bonventre, Joseph V; Salto-Tellez, Manuel; Hsu, Stephen I

    2009-01-20

    Members of the TRIP-Br/SERTAD family of mammalian transcriptional coregulators have recently been implicated in E2F-mediated cell cycle progression and tumorigenesis. We, herein, focus on the detailed functional characterization of the least understood member of the TRIP-Br/SERTAD protein family, TRIP-Br2 (SERTAD2). Oncogenic potential of TRIP-Br2 was demonstrated by (1) inoculation of NIH3T3 fibroblasts, which were engineered to stably overexpress ectopic TRIP-Br2, into athymic nude mice for tumor induction and (2) comprehensive immunohistochemical high-throughput screening of TRIP-Br2 protein expression in multiple human tumor cell lines and human tumor tissue microarrays (TMAs). Clinicopathologic analysis was conducted to assess the potential of TRIP-Br2 as a novel prognostic marker of human cancer. RNA interference of TRIP-Br2 expression in HCT-116 colorectal carcinoma cells was performed to determine the potential of TRIP-Br2 as a novel chemotherapeutic drug target. Overexpression of TRIP-Br2 is sufficient to transform murine fibroblasts and promotes tumorigenesis in nude mice. The transformed phenotype is characterized by deregulation of the E2F/DP-transcriptional pathway through upregulation of the key E2F-responsive genes CYCLIN E, CYCLIN A2, CDC6 and DHFR. TRIP-Br2 is frequently overexpressed in both cancer cell lines and multiple human tumors. Clinicopathologic correlation indicates that overexpression of TRIP-Br2 in hepatocellular carcinoma is associated with a worse clinical outcome by Kaplan-Meier survival analysis. Small interfering RNA-mediated (siRNA) knockdown of TRIP-Br2 was sufficient to inhibit cell-autonomous growth of HCT-116 cells in vitro. This study identifies TRIP-Br2 as a bona-fide protooncogene and supports the potential for TRIP-Br2 as a novel prognostic marker and a chemotherapeutic drug target in human cancer.

  4. Effectiveness of anticancer drugs determined in nude mice inoculated with [125I]5-iodo-2'-deoxyuridine-prelabeled human melanoma cells

    International Nuclear Information System (INIS)

    Lockshin, A.; Giovanella, B.C.; Vardeman, D.M.; Mendoza, J.T.; Quian, C.; Kozielski, T.; Stehlin, J.S. Jr.

    1985-01-01

    Anticancer drugs were tested on NIH-2 nude mice inoculated ip with BRO human melanoma cells, which are rapidly lethal for these hosts. Criteria for drug activity were a) increased host survival and b) an increased rate of radioactivity loss from mice bearing BRO cells prelabeled with [ 125 I]5-iodo-2'-deoxyuridine. Diphtheria toxin, which is selectively toxic to human cells compared to mouse cells, prolonged host survival and accelerated 125 I elimination in a dose-dependent manner. Drugs that increased the rate of 125 I loss compared to the rate of untreated mice also prolonged the lives of treated mice. With one exception, drugs that did not accelerate 125 I elimination had little or no effect on the length of survival

  5. Collagen VII deficient mice show morphologic and histologic corneal changes that phenotypically mimic human dystrophic epidermolysis bullosa of the eye.

    Science.gov (United States)

    Chen, Vicki M; Shelke, Rajani; Nyström, Alexander; Laver, Nora; Sampson, James F; Zhiyi, Cao; Bhat, Najma; Panjwani, Noorjahan

    2018-06-16

    Absence of collagen VII causes blistering of the skin, eyes and many other tissues. This disease is termed dystrophic epidermolysis bullosa (DEB). Corneal fibrosis occurs in up to 41% and vision loss in up to 64% of patients. Standard treatments are supportive and there is no cure. The immune-histologic and morphologic changes in the corneas of the mouse model for this disease have not been described in the literature. Our purpose is to characterize the eyes of these mice to determine if this is an appropriate model for study of human therapeutics. Western blot analysis (WB) and immunohistochemistry (IHC) were performed to assess the relative collagen VII protein levels and its location within the cornea. Additional IHC for inflammatory and fibrotic biomarkers alpha-smooth muscle actin (α-SMA), transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), proteinase 3, tenascin C and collagen III were performed. Clinical photographs documenting opacification of the corneas of animals of differing ages were assessed and scored independently by 2 examiners. Histology was then used to investigate morphologic changes. IHC and WB confirmed that these mice are deficient in collagen VII production at the level of the basement membrane when compared with wild-types. IHC showed anomalous deposition of collagen III throughout the stroma. Of the 5 biomarkers tested, TGF-β showed the strongest and most consistently staining. Photographs documented corneal opacities only in mice older than 10 weeks, opacities were not seen in younger animals. Histology showed multiple abnormalities, including epithelial hyperplasia, ulceration, fibrosis, edema, dysplasia, neovascularization and bullae formation. The collagen VII hypomorphic mouse shows reduced collagen VII production at the level of the corneal basement membrane. Corneal changes are similar to pathology seen in humans with this disease. The presence of anomalous stromal collagen III and TGF-β appear to be

  6. The effect of combining recombinant human tumor necrosis factor-alpha with local radiation on tumor control probability of a human glioblastoma multiforme xenograft in nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Peigen; Allam, Ayman; Perez, Luis A; Taghian, Alphonse; Freeman, Jill; Suit, Herman D

    1995-04-30

    Purpose: To evaluate the antitumor activity of recombinant human tumor necrosis factor-alpha (rHuTNF-{alpha}) on a human glioblastoma multiforme (U87) xenograft in nude mice, and to study the effect of combining rHuTNF-{alpha} with local radiation on the tumor control probability of this tumor model. Methods and Materials: U87 xenograft was transplanted SC into the right hindleg of NCr/Sed nude mice (7-8 weeks old, male). When tumors reached a volume of about 110 mm{sup 3}, mice were randomly assigned to treatment: rHuTNF-{alpha} alone compared with normal saline control; or local radiation plus rHuTNF-{alpha} vs. local radiation plus normal saline. Parameters of growth delay, volume doubling time, percentage of necrosis, and cell loss factor were used to assess the antitumor effects of rHuTNF-{alpha} on this tumor. The TCD{sub 50} (tumor control dose 50%) was used as an endpoint to determine the effect of combining rHuTNF-{alpha} with local radiation. Results: Tumor growth in mice treated with a dose of 150 {mu}g/kg body weight rHuTNF-{alpha}, IP injection daily for 7 consecutive days, was delayed about 8 days compared to that in controls. Tumors in the treatment group had a significantly longer volume doubling time, and were smaller in volume and more necrotic than matched tumors in control group. rHuTNF-{alpha} also induced a 2.3 times increase of cell loss factor. The administration of the above-mentioned dose of rHuTNF-{alpha} starting 24 h after single doses of localized irradiation under hypoxic condition, resulted in a significant reduction in TCD{sub 50} from the control value of 60.9 Gy to 50.5 Gy (p < 0.01). Conclusion: rHuTNF-{alpha} exhibits an antitumor effect against U87 xenograft in nude mice, as evidenced by an increased delay in tumor growth as well as cell loss factor. Also, there was an augmentation of tumor curability when given in combination with radiotherapy, resulting in a significantly lower TCD{sub 50} value in the treatment vs. the

  7. Effects of recombinant human interleukin-8 (rhIL-8) on the bone marrow cells of normal BALB/c mice

    International Nuclear Information System (INIS)

    Liu Yulong; Zhou Jianying; Wang Guoquan; Dai Hong; Duan Yingying; Guo Xiaokui

    2001-01-01

    Objective: To observe the colony formation ability of recombinant human interleukin-8 (rhIL-8) on bone marrow cells (BMCs) of normal mice in vivo. Methods: By means of cells culture and flow cytometry (FCM), the colony-stimulating activity of rhIL-8 on BMCs of normal mice was studied. Results: The experimental studies in vivo demonstrated that rhIL-8 could not changed the counts of CFU-GM and distribution of cell cycle in BMCs. Conclusion: rhIL-8 has no colony-stimulating activity to BMCs of normal mice

  8. Insulin resistance is associated with MCP1-mediated macrophage accumulation in skeletal muscle in mice and humans.

    Directory of Open Access Journals (Sweden)

    David Patsouris

    Full Text Available Inflammation is now recognized as a major factor contributing to type 2 diabetes (T2D. However, while the mechanisms and consequences associated with white adipose tissue inflammation are well described, very little is known concerning the situation in skeletal muscle. The aim of this study was to investigate, in vitro and in vivo, how skeletal muscle inflammation develops and how in turn it modulates local and systemic insulin sensitivity in different mice models of T2D and in humans, focusing on the role of the chemokine MCP1. Here, we found that skeletal muscle inflammation and macrophage markers are increased and associated with insulin resistance in mice models and humans. In addition, we demonstrated that intra-muscular TNFα expression is exclusively restricted to the population of intramuscular leukocytes and that the chemokine MCP1 was associated with skeletal muscle inflammatory markers in these models. Furthermore, we demonstrated that exposure of C2C12 myotubes to palmitate elevated the production of the chemokine MCP1 and that the muscle-specific overexpression of MCP1 in transgenic mice induced the local recruitment of macrophages and altered local insulin sensitivity. Overall our study demonstrates that skeletal muscle inflammation is clearly increased in the context of T2D in each one of the models we investigated, which is likely consecutive to the lipotoxic environment generated by peripheral insulin resistance, further increasing MCP1 expression in muscle. Consequently, our results suggest that MCP1-mediated skeletal muscle macrophages recruitment plays a role in the etiology of T2D.

  9. Human parvovirus B19 VP1u Protein as inflammatory mediators induces liver injury in naïve mice.

    Science.gov (United States)

    Hsu, Tsai-Ching; Chiu, Chun-Ching; Chang, Shun-Chih; Chan, Hsu-Chin; Shi, Ya-Fang; Chen, Tzy-Yen; Tzang, Bor-Show

    2016-01-01

    Human parvovirus B19 (B19V) is a human pathogen known to be associated with many non-erythroid diseases, including hepatitis. Although B19V VP1-unique region (B19-VP1u) has crucial roles in the pathogenesis of B19V infection, the influence of B19-VP1u proteins on hepatic injury is still obscure. This study investigated the effect and possible inflammatory signaling of B19-VP1u in livers from BALB/c mice that were subcutaneously inoculated with VP1u-expressing COS-7 cells. The in vivo effects of B19-VP1u were analyzed by using live animal imaging system (IVIS), Haematoxylin-Eosin staining, gel zymography, and immunoblotting after inoculation. Markedly hepatocyte disarray and lymphocyte infiltration, enhanced matrix metalloproteinase (MMP)-9 activity and increased phosphorylation of p38, ERK, IKK-α, IκB and NF-κB (p-p65) proteins were observed in livers from BALB/c mice receiving COS-7 cells expressing B19-VP1u as well as the significantly increased CRP, IL-1β and IL-6. Notably, IFN-γ and phosphorylated STAT1, but not STAT3, were also significantly increased in the livers of BALB/c mice that were subcutaneously inoculated with VP1u-expressing COS-7 cells. These findings revealed the effects of B19-VP1u on liver injury and suggested that B19-VP1u may have a role as mediators of inflammation in B19V infection.

  10. Middle-aged human apoE4 targeted-replacement mice show retention deficits on a wide range of spatial memory tasks.

    Science.gov (United States)

    Bour, Alexandra; Grootendorst, Jeannette; Vogel, Elise; Kelche, Christian; Dodart, Jean-Cosme; Bales, Kelly; Moreau, Pierre-Henri; Sullivan, Patrick M; Mathis, Chantal

    2008-11-21

    Apolipoprotein (apo) E4, one of three human apoE (h-apoE) isoforms, has been identified as a major genetic risk factor for Alzheimer's disease and for cognitive deficits associated with aging. However, the biological mechanisms involving apoE in learning and memory processes are unclear. A potential isoform-dependent role of apoE in cognitive processes was studied in human apoE targeted-replacement (TR) mice. These mice express either the human apoE3 or apoE4 gene under the control of endogenous murine apoE regulatory sequences, resulting in physiological expression of h-apoE in both a temporal and spatial pattern similar to humans. Male and female apoE3-TR, apoE4-TR, apoE-knockout and C57BL/6J mice (15-18 months) were tested with spatial memory and avoidance conditioning tasks. Compared to apoE3-TR mice, spatial memory in female apoE4-TR mice was impaired based on their poor performances in; (i) the probe test of the water-maze reference memory task, (ii) the water-maze working memory task and (iii) an active avoidance Y-maze task. Retention performance on a passive avoidance task was also impaired in apoE4-TR mice, but not in other genotypes. These deficits in both spatial and avoidance memory tasks may be related to the anatomical and functional abnormalities previously reported in the hippocampus and the amygdala of apoE4-TR mice. We conclude that the apoE4-TR mice provide an excellent model for understanding the mechanisms underlying apoE4-dependent susceptibility to cognitive decline.

  11. Mechanisms of anaphylaxis in human low-affinity IgG receptor locus knock-in mice.

    Science.gov (United States)

    Gillis, Caitlin M; Jönsson, Friederike; Mancardi, David A; Tu, Naxin; Beutier, Héloïse; Van Rooijen, Nico; Macdonald, Lynn E; Murphy, Andrew J; Bruhns, Pierre

    2017-04-01

    Anaphylaxis can proceed through distinct IgE- or IgG-dependent pathways, which have been investigated in various mouse models. We developed a novel mouse strain in which the human low-affinity IgG receptor locus, comprising both activating (hFcγRIIA, hFcγRIIIA, and hFcγRIIIB) and inhibitory (hFcγRIIB) hFcγR genes, has been inserted into the equivalent murine locus, corresponding to a locus swap. We sought to determine the capabilities of hFcγRs to induce systemic anaphylaxis and identify the cell types and mediators involved. hFcγR expression on mouse and human cells was compared to validate the model. Passive systemic anaphylaxis was induced by injection of heat-aggregated human intravenous immunoglobulin and active systemic anaphylaxis after immunization and challenge. Anaphylaxis severity was evaluated based on hypothermia and mortality. The contribution of receptors, mediators, or cell types was assessed based on receptor blockade or depletion. The human-to-mouse low-affinity FcγR locus swap engendered hFcγRIIA/IIB/IIIA/IIIB expression in mice comparable with that seen in human subjects. Knock-in mice were susceptible to passive and active anaphylaxis, accompanied by downregulation of both activating and inhibitory hFcγR expression on specific myeloid cells. The contribution of hFcγRIIA was predominant. Depletion of neutrophils protected against hypothermia and mortality. Basophils contributed to a lesser extent. Anaphylaxis was inhibited by platelet-activating factor receptor or histamine receptor 1 blockade. Low-affinity FcγR locus-switched mice represent an unprecedented model of cognate hFcγR expression. Importantly, IgG-related anaphylaxis proceeds within a native context of activating and inhibitory hFcγRs, indicating that, despite robust hFcγRIIB expression, activating signals can dominate to initiate a severe anaphylactic reaction. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights

  12. A murine model of falciparum-malaria by in vivo selection of competent strains in non-myelodepleted mice engrafted with human erythrocytes.

    Directory of Open Access Journals (Sweden)

    Iñigo Angulo-Barturen

    Full Text Available To counter the global threat caused by Plasmodium falciparum malaria, new drugs and vaccines are urgently needed. However, there are no practical animal models because P. falciparum infects human erythrocytes almost exclusively. Here we describe a reliable falciparum murine model of malaria by generating strains of P. falciparum in vivo that can infect immunodeficient mice engrafted with human erythrocytes. We infected NOD(scid/beta2m-/- mice engrafted with human erythrocytes with P. falciparum obtained from in vitro cultures. After apparent clearance, we obtained isolates of P. falciparum able to grow in peripheral blood of engrafted NOD(scid/beta2m-/- mice. Of the isolates obtained, we expanded in vivo and established the isolate Pf3D7(0087/N9 as a reference strain for model development. Pf3D7(0087/N9 caused productive persistent infections in 100% of engrafted mice infected intravenously. The infection caused a relative anemia due to selective elimination of human erythrocytes by a mechanism dependent on parasite density in peripheral blood. Using this model, we implemented and validated a reproducible assay of antimalarial activity useful for drug discovery. Thus, our results demonstrate that P. falciparum contains clones able to grow reproducibly in mice engrafted with human erythrocytes without the use of myeloablative methods.

  13. The cGAS/STING Pathway Detects Streptococcus pneumoniae but Appears Dispensable for Antipneumococcal Defense in Mice and Humans.

    Science.gov (United States)

    Ruiz-Moreno, Juan Sebastian; Hamann, Lutz; Jin, Lei; Sander, Leif E; Puzianowska-Kuznicka, Monika; Cambier, John; Witzenrath, Martin; Schumann, Ralf R; Suttorp, Norbert; Opitz, Bastian

    2018-03-01

    Streptococcus pneumoniae is a frequent colonizer of the upper respiratory tract and a leading cause of bacterial pneumonia. The innate immune system senses pneumococcal cell wall components, toxin, and nucleic acids, which leads to production of inflammatory mediators to initiate and control antibacterial defense. Here, we show that the cGAS (cyclic GMP-AMP [cGAMP] synthase)-STING pathway mediates detection of pneumococcal DNA in mouse macrophages to primarily stimulate type I interferon (IFN) responses. Cells of human individuals carrying HAQ TMEM173 , which encodes a common hypomorphic variant of STING, were largely or partly defective in inducing type I IFNs and proinflammatory cytokines upon infection. Subsequent analyses, however, revealed that STING was dispensable for restricting S. pneumoniae during acute pneumonia in mice. Moreover, explorative analyses did not find differences in the allele frequency of HAQ TMEM173 in nonvaccinated pneumococcal pneumonia patients and healthy controls or an association of HAQ TMEM173 carriage with disease severity. Together, our results indicate that the cGAS/STING pathway senses S. pneumoniae but plays no major role in antipneumococcal immunity in mice and humans. Copyright © 2018 American Society for Microbiology.

  14. Enhanced M1 macrophage polarization in human helicobacter pylori-associated atrophic gastritis and in vaccinated mice.

    Directory of Open Access Journals (Sweden)

    Marianne Quiding-Järbrink

    Full Text Available BACKGROUND: Infection with Helicobacter pylori triggers a chronic gastric inflammation that can progress to atrophy and gastric adenocarcinoma. Polarization of macrophages is a characteristic of both cancer and infection, and may promote progression or resolution of disease. However, the role of macrophages and their polarization during H. pylori infection has not been well defined. METHODOLOGY/PRINCIPAL FINDINGS: By using a mouse model of infection and gastric biopsies from 29 individuals, we have analyzed macrophage recruitment and polarization during H. pylori infection by flow cytometry and real-time PCR. We found a sequential recruitment of neutrophils, eosinophils and macrophages to the gastric mucosa of infected mice. Gene expression analysis of stomach tissue and sorted macrophages revealed that gastric macrophages were polarized to M1 after H. pylori infection, and this process was substantially accelerated by prior vaccination. Human H. pylori infection was characterized by a mixed M1/M2 polarization of macrophages. However, in H. pylori-associated atrophic gastritis, the expression of inducible nitric oxide synthase was markedly increased compared to uncomplicated gastritis, indicative of an enhanced M1 macrophage polarization in this pre-malignant lesion. CONCLUSIONS/SIGNIFICANCE: These results show that vaccination of mice against H. pylori amplifies M1 polarization of gastric macrophages, and that a similar enhanced M1 polarization is present in human H. pylori-induced atrophic gastritis.

  15. Detection of a local staphylococcal infection in mice with technetium-99m-labeled polyclonal human immunoglobulin

    International Nuclear Information System (INIS)

    Calame, W.; Feitsma, H.I.; Ensing, G.J.; Goedemans, W.T.; Camps, J.A.; van Furth, R.; Pauwels, E.K.

    1991-01-01

    The purpose of this study was to investigate both the ability of 99mTc-labeled polyclonal human immunoglobulin (HIG) to localize an infection and the modes of action involved in this process. Mice, infected with Staphylococcus aureus ATCC 25923 in a thigh muscle, received HIG intravenously. Scintigrams were made 1, 4, and 24 hr later; subsequently the mice were killed and the activity in several organs and thighs was determined. The radiopharmaceutical demonstrated a time-dependent accumulation at the site of infection. It was found that vascular permeability or Fc binding alone could not account for the mode of action of HIG. Neither the origin of Ig (human versus murine) nor the total amount of protein (0.01-1.0 mg Ig per mouse) affected the target-to-background (T/B) ratios. Ratios were not different for leukocytopenic animals. A correlation (p less than 0.001) was demonstrated between the number of bacteria at the site of infection and the T/B ratio. This was also found after antibiotic treatment (p less than 0.02)

  16. Disposition and Pharmacology of a GalNAc3-conjugated ASO Targeting Human Lipoprotein (a in Mice

    Directory of Open Access Journals (Sweden)

    Rosie Z Yu

    2016-01-01

    Full Text Available Triantennary N-acetyl galactosamine (GalNAc3-conjugated antisense oligonucleotides (ASOs have greatly improved potency via receptor-mediated uptake. In the present study, the in vivo pharmacology of a 2′-O-(2-methoxyethyl-modified ASO conjugated with GalNAc3 (ISIS 681257 together with its unmodified congener (ISIS 494372 targeting human apolipoprotein (a (apo(a, were studied in human LPA transgenic mice. Further, the disposition kinetics of ISIS 681257 was studied in CD-1 mice. ISIS 681257 demonstrated over 20-fold improvement in potency over ISIS 494372 as measured by liver apo(a mRNA and plasma apo(a protein levels. Following subcutaneous (SC dosing, ISIS 681257 cleared rapidly from plasma and distributed to tissues. Intact ISIS 681257 was the major full-length oligonucleotide species in plasma. In tissues, however, GalNAc sugar moiety was rapidly metabolized and unconjugated ISIS 681257 accounted > 97% of the total exposure, which was then cleared slowly from tissues with a half-life of 7–8 days, similar to the half-life in plasma. ISIS 681257 is highly bound to plasma proteins (> 94% bound, which limited its urinary excretion. This study confirmed dose-dependent exposure to the parent drug ISIS 681257 in plasma and rapid conversion to unconjugated ASO in tissues. Safety data and the extended half-life support its further development and weekly dosing in phase 1 clinical studies.

  17. Spontaneous lung metastasis formation of human Merkel cell carcinoma cell lines transplanted into scid mice.

    Science.gov (United States)

    Knips, Jill; Czech-Sioli, Manja; Spohn, Michael; Heiland, Max; Moll, Ingrid; Grundhoff, Adam; Schumacher, Udo; Fischer, Nicole

    2017-07-01

    Merkel cell carcinoma (MCC) is an aggressive skin cancer entity that frequently leads to rapid death due to its high propensity to metastasize. The etiology of most MCC cases is linked to Merkel cell polyomavirus (MCPyV), a virus which is monoclonally integrated in up to 95% of tumors. While there are presently no animal models to study the role of authentic MCPyV infection on transformation, tumorigenesis or metastasis formation, xenograft mouse models employing engrafted MCC-derived cell lines (MCCL) represent a promising approach to study certain aspects of MCC pathogenesis. Here, the two MCPyV-positive MCC cell lines WaGa and MKL-1 were subcutaneously engrafted in scid mice. Engraftment of both MCC cell lines resulted in the appearance of circulating tumor cells and metastasis formation, with WaGa-engrafted mice showing a significantly shorter survival time as well as increased numbers of spontaneous lung metastases compared to MKL-1 mice. Interestingly, explanted tumors compared to parental cell lines exhibit an upregulation of MCPyV sT-Antigen expression in all tumors, with WaGa tumors showing significantly higher sT-Antigen expression than MKL-1 tumors. RNA-Seq analysis of explanted tumors and parental cell lines furthermore revealed that in the more aggressive WaGa tumors, genes involved in inflammatory response, growth factor activity and Wnt signalling pathway are significantly upregulated, suggesting that sT-Antigen is the driver of the observed differences in metastasis formation. © 2017 UICC.

  18. Disruption of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Contributes to Muscle Insulin Resistance in Mice and Humans.

    Science.gov (United States)

    Tubbs, Emily; Chanon, Stéphanie; Robert, Maud; Bendridi, Nadia; Bidaux, Gabriel; Chauvin, Marie-Agnès; Ji-Cao, Jingwei; Durand, Christine; Gauvrit-Ramette, Daphné; Vidal, Hubert; Lefai, Etienne; Rieusset, Jennifer

    2018-04-01

    Modifications of the interactions between endoplasmic reticulum (ER) and mitochondria, defined as mitochondria-associated membranes (MAMs), were recently shown to be involved in the control of hepatic insulin action and glucose homeostasis, but with conflicting results. Whereas skeletal muscle is the primary site of insulin-mediated glucose uptake and the main target for alterations in insulin-resistant states, the relevance of MAM integrity in muscle insulin resistance is unknown. Deciphering the importance of MAMs on muscle insulin signaling could help to clarify this controversy. Here, we show in skeletal muscle of different mice models of obesity and type 2 diabetes (T2D) a marked disruption of ER-mitochondria interactions as an early event preceding mitochondrial dysfunction and insulin resistance. Furthermore, in human myotubes, palmitate-induced insulin resistance is associated with a reduction of structural and functional ER-mitochondria interactions. Importantly, experimental increase of ER-mitochondria contacts in human myotubes prevents palmitate-induced alterations of insulin signaling and action, whereas disruption of MAM integrity alters the action of the hormone. Lastly, we found an association between altered insulin signaling and ER-mitochondria interactions in human myotubes from obese subjects with or without T2D compared with healthy lean subjects. Collectively, our data reveal a new role of MAM integrity in insulin action of skeletal muscle and highlight MAM disruption as an essential subcellular alteration associated with muscle insulin resistance in mice and humans. Therefore, reduced ER-mitochondria coupling could be a common alteration of several insulin-sensitive tissues playing a key role in altered glucose homeostasis in the context of obesity and T2D. © 2018 by the American Diabetes Association.

  19. The influence of chronic stress on anxiety-like behavior and cognitive function in different human GFAP-ApoE transgenic adult male mice.

    Science.gov (United States)

    Meng, Fan-Tao; Zhao, Jun; Fang, Hui; Liu, Ya-Jing

    2015-01-01

    The apolipoprotein E (ApoE) ɛ4 allele (ApoE4) is an important genetic risk factor for the pathogenesis of Alzheimer's disease (AD). In addition to genetic factors, environmental factors such as stress may play a critical role in AD pathogenesis. This study was designed to investigate the anxiety-like behavioral and cognitive changes in different human glial fibrillary acidic protein (GFAP)-ApoE transgenic adult male mice under chronic stress conditions. On the open field test, anxiety-like behavior was increased in the non-stressed GFAP-ApoE4 transgenic mice relative to the corresponding GFAP-ApoE3 (ApoE ɛ3 allele) mice. Anxiety-like behavior was increased in the stressed GFAP-ApoE3 mice relative to non-stressed GFAP-ApoE3 mice, but was unexpectedly decreased in the stressed GFAP-ApoE4 mice relative to non-stressed GFAP-ApoE4 mice. On the novel object recognition task, both GFAP-ApoE4 and GFAP-ApoE3 mice exhibited long-term non-spatial memory impairment after chronic stress. Interestingly, short-term non-spatial memory impairment (based on the novel object recognition task) was observed only in the stressed GFAP-ApoE4 male mice relative to non-stressed GFAP-ApoE4 transgenic mice. In addition, short-term spatial memory impairment was observed in the stressed GFAP-ApoE3 transgenic male mice relative to non-stressed GFAP-ApoE3 transgenic male mice; however, short-term spatial memory performance of GFAP-ApoE4 transgenic male mice was not reduced compared to non-stressed control mice based on the Y-maze task. In conclusion, our findings suggested that chronic stress affects anxiety-like behavior and spatial and non-spatial memory in GFAP-ApoE transgenic mice in an ApoE isoform-dependent manner.

  20. Truncated recombinant human SP-D attenuates emphysema and type II cell changes in SP-D deficient mice

    Directory of Open Access Journals (Sweden)

    Mühlfeld Christian

    2007-10-01

    Full Text Available Abstract Background Surfactant protein D (SP-D deficient mice develop emphysema-like pathology associated with focal accumulations of foamy alveolar macrophages, an excess of surfactant phospholipids in the alveolar space and both hypertrophy and hyperplasia of alveolar type II cells. These findings are associated with a chronic inflammatory state. Treatment of SP-D deficient mice with a truncated recombinant fragment of human SP-D (rfhSP-D has been shown to decrease the lipidosis and alveolar macrophage accumulation as well as production of proinflammatory chemokines. The aim of this study was to investigate if rfhSP-D treatment reduces the structural abnormalities in parenchymal architecture and type II cells characteristic of SP-D deficiency. Methods SP-D knock-out mice, aged 3 weeks, 6 weeks and 9 weeks were treated with rfhSP-D for 9, 6 and 3 weeks, respectively. All mice were sacrificed at age 12 weeks and compared to both PBS treated SP-D deficient and wild-type groups. Lung structure was quantified by design-based stereology at the light and electron microscopic level. Emphasis was put on quantification of emphysema, type II cell changes and intracellular surfactant. Data were analysed with two sided non-parametric Mann-Whitney U-test. Main Results After 3 weeks of treatment, alveolar number was higher and mean alveolar size was smaller compared to saline-treated SP-D knock-out controls. There was no significant difference concerning these indices of pulmonary emphysema within rfhSP-D treated groups. Type II cell number and size were smaller as a consequence of treatment. The total volume of lamellar bodies per type II cell and per lung was smaller after 6 weeks of treatment. Conclusion Treatment of SP-D deficient mice with rfhSP-D leads to a reduction in the degree of emphysema and a correction of type II cell hyperplasia and hypertrophy. This supports the concept that rfhSP-D might become a therapeutic option in diseases that are

  1. Chronic wasting disease and atypical forms of bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein.

    Science.gov (United States)

    Wilson, Rona; Plinston, Chris; Hunter, Nora; Casalone, Cristina; Corona, Cristiano; Tagliavini, Fabrizio; Suardi, Silvia; Ruggerone, Margherita; Moda, Fabio; Graziano, Silvia; Sbriccoli, Marco; Cardone, Franco; Pocchiari, Maurizio; Ingrosso, Loredana; Baron, Thierry; Richt, Juergen; Andreoletti, Olivier; Simmons, Marion; Lockey, Richard; Manson, Jean C; Barron, Rona M

    2012-07-01

    The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans.

  2. Characterization of Variant Creutzfeldt-Jakob Disease Prions in Prion Protein-humanized Mice Carrying Distinct Codon 129 Genotypes*

    Science.gov (United States)

    Takeuchi, Atsuko; Kobayashi, Atsushi; Ironside, James W.; Mohri, Shirou; Kitamoto, Tetsuyuki

    2013-01-01

    To date, all clinical variant Creutzfeldt-Jakob disease (vCJD) patients are homozygous for methionine at polymorphic codon 129 (129M/M) of the prion protein (PrP) gene. However, the appearance of asymptomatic secondary vCJD infection in individuals with a PRNP codon 129 genotype other than M/M and transmission studies using animal models have raised the concern that all humans might be susceptible to vCJD prions, especially via secondary infection. To reevaluate this possibility and to analyze in detail the transmission properties of vCJD prions to transgenic animals carrying distinct codon 129 genotype, we performed intracerebral inoculation of vCJD prions to humanized knock-in mice carrying all possible codon 129 genotypes (129M/M, 129M/V, or 129V/V). All humanized knock-in mouse lines were susceptible to vCJD infection, although the attack rate gradually decreased from 129M/M to 129M/V and to 129V/V. The amount of PrP deposition including florid/amyloid plaques in the brain also gradually decreased from 129M/M to 129M/V and to 129V/V. The biochemical properties of protease-resistant abnormal PrP in the brain and transmissibility of these humanized mouse-passaged vCJD prions upon subpassage into knock-in mice expressing bovine PrP were not affected by the codon 129 genotype. These results indicate that individuals with the 129V/V genotype may be more susceptible to secondary vCJD infection than expected and may lack the neuropathological characteristics observed in vCJD patients with the 129M/M genotype. Besides the molecular typing of protease-resistant PrP in the brain, transmission studies using knock-in mice carrying bovine PrP may aid the differential diagnosis of secondary vCJD infection, especially in individuals with the 129V/V genotype. PMID:23792955

  3. Characterization of variant Creutzfeldt-Jakob disease prions in prion protein-humanized mice carrying distinct codon 129 genotypes.

    Science.gov (United States)

    Takeuchi, Atsuko; Kobayashi, Atsushi; Ironside, James W; Mohri, Shirou; Kitamoto, Tetsuyuki

    2013-07-26

    To date, all clinical variant Creutzfeldt-Jakob disease (vCJD) patients are homozygous for methionine at polymorphic codon 129 (129M/M) of the prion protein (PrP) gene. However, the appearance of asymptomatic secondary vCJD infection in individuals with a PRNP codon 129 genotype other than M/M and transmission studies using animal models have raised the concern that all humans might be susceptible to vCJD prions, especially via secondary infection. To reevaluate this possibility and to analyze in detail the transmission properties of vCJD prions to transgenic animals carrying distinct codon 129 genotype, we performed intracerebral inoculation of vCJD prions to humanized knock-in mice carrying all possible codon 129 genotypes (129M/M, 129M/V, or 129V/V). All humanized knock-in mouse lines were susceptible to vCJD infection, although the attack rate gradually decreased from 129M/M to 129M/V and to 129V/V. The amount of PrP deposition including florid/amyloid plaques in the brain also gradually decreased from 129M/M to 129M/V and to 129V/V. The biochemical properties of protease-resistant abnormal PrP in the brain and transmissibility of these humanized mouse-passaged vCJD prions upon subpassage into knock-in mice expressing bovine PrP were not affected by the codon 129 genotype. These results indicate that individuals with the 129V/V genotype may be more susceptible to secondary vCJD infection than expected and may lack the neuropathological characteristics observed in vCJD patients with the 129M/M genotype. Besides the molecular typing of protease-resistant PrP in the brain, transmission studies using knock-in mice carrying bovine PrP may aid the differential diagnosis of secondary vCJD infection, especially in individuals with the 129V/V genotype.

  4. The hypoxic cytotoxin SR 4233 increases the effectiveness of radioimmunotherapy in mice with human non-Hodgkin's lymphoma xenografts.

    Science.gov (United States)

    Wilder, R B; McGann, J K; Sutherland, W R; Waller, E K; Minchinton, A I; Goris, M L; Knox, S J

    1994-01-01

    To determine if either the hypoxic cell radiosensitizer etanidazole (SR 2508) or the hypoxic cytotoxin SR 4233 could improve the effectiveness of radioimmunotherapy. LC4 (an IgG1 monoclonal antibody directed toward malignant T cells) and MB-1 (an irrelevant isotype-matched control antibody) were injected intraperitoneally into severe combined immunodeficient phenotype mice with human cutaneous T cell lymphoma xenografts in order to determine the distribution of the antibodies in the tumors and normal tissues as a function of time. Computerized-pO2-histography was used to measure the median oxygen tension in the tumors. Tumor-bearing mice were treated with: (a) LC4; (b) 90Y-LC4; (c) 90Y-MB-1; (d) whole body irradiation delivered via an external 137Cs source; (e) etanidazole and 90Y-LC4; (f) SR 4233 and 90Y-LC4; (g) etanidazole; and (h) SR 4233. An additional group of mice received no treatment and served as controls. A tumor growth delay assay was used to assess the effectiveness of the different treatment regimens. LC4 accumulated in the tumors to a significantly greater extent than MB-1 (p LC4 by itself was able to produce a minor decrease in tumor size (control vs. LC4; p = 0.001). 90Y-LC4 produced greater tumor growth delay than LC4 alone (LC4 vs. 90Y-LC4; p = 0.01); however, the Yttrium-90 caused neutropenia and weight loss. The 90Y-labeled tumor-specific and non-specific antibodies both exerted greater tumor growth delay than externally delivered whole body irradiation (p LC4 (90Y-LC4 vs etanidazole and 90Y-LC4, p = 0.13). SR 4233, on the other hand, did enhance the tumor growth delay produced by 90Y-LC4 (90Y-LC4 vs. SR 4233 and 90Y-LC4, p = 0.046). The neutropenia and weight loss caused by 90Y-LC4 were exacerbated slightly (< 10%) by the administration of SR 4233. A first generation hypoxic cytotoxin, SR 4233, was able to enhance the tumor growth delay produced by radioimmunotherapy in severe combined immunodeficient phenotype mice with human cutaneous T cell

  5. Human monoclonal antibodies against glucagon receptor improve glucose homeostasis by suppression of hepatic glucose output in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Wook-Dong Kim

    Full Text Available AIM: Glucagon is an essential regulator of hepatic glucose production (HGP, which provides an alternative therapeutic target for managing type 2 diabetes with glucagon antagonists. We studied the effect of a novel human monoclonal antibody against glucagon receptor (GCGR, NPB112, on glucose homeostasis in diet-induced obese (DIO mice. METHODS: The glucose-lowering efficacy and safety of NPB112 were investigated in DIO mice with human GCGR for 11 weeks, and a hyperinsulinemic-euglycemic clamp study was conducted to measure HGP. RESULTS: Single intraperitoneal injection of NPB112 with 5 mg/kg effectively decreased blood glucose levels in DIO mice for 5 days. A significant reduction in blood glucose was observed in DIO mice treated with NPB112 at a dose ≥5 mg/kg for 6 weeks, and its glucose-lowering effect was dose-dependent. Long-term administration of NPB112 also caused a mild 29% elevation in glucagon level, which was returned to the normal range after discontinuation of treatment. The clamp study showed that DIO mice injected with NPB112 at 5 mg/kg were more insulin sensitive than control mice, indicating amelioration of insulin resistance by treatment with NPB112. DIO mice treated with NPB112 showed a significant improvement in the ability of insulin to suppress HGP, showing a 33% suppression (from 8.3 mg/kg/min to 5.6 mg/kg/min compared to the 2% suppression (from 9.8 mg/kg/min to 9.6 mg/kg/min in control mice. In addition, no hypoglycemia or adverse effect was observed during the treatment. CONCLUSIONS: A novel human monoclonal GCGR antibody, NPB112, effectively lowered the glucose level in diabetic animal models with mild and reversible hyperglucagonemia. Suppression of excess HGP with NPB112 may be a promising therapeutic modality for the treatment of type 2 diabetes.

  6. Derivation of mouse embryonic stem cell lines from tyrosine hydroxylase reporter mice crossed with a human SNCA transgenic mouse model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Margarita Chumarina

    2017-03-01

    Full Text Available Mouse embryonic stem cell (mESC lines were derived by crossing heterozygous transgenic (tg mice expressing green fluorescent protein (GFP under the control of the rat tyrosine hydroxylase (TH promoter, with homozygous alpha-synuclein (aSYN mice expressing human mutant SNCAA53T under the control of the mouse Prion promoter (MoPrP, or wildtype (WT mice. The expression of GFP and human aSYN was validated by immunocytochemistry in midbrain neuron cultures upon differentiation of mESC lines using stromal cell-derived inducing activity. These mESC lines can help to study the impact of human aSYN expression in neurons and oligodendrocytes, and also trace GFP-expressing midbrain neurons.

  7. OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice

    DEFF Research Database (Denmark)

    Barrow, Alexander David; Raynal, Nicolas; Levin Andersen, Thomas

    2011-01-01

    by preosteoclasts in vitro, but OSCAR lacks a cognate ligand and its role in vivo has been unclear. Using samples from mice and patients deficient in various ITAM signaling pathways, we show here that OSCAR costimulates one of the major FcRγ-associated pathways required for osteoclastogenesis in vivo. Furthermore...... to signaling that increased numbers of osteoclasts in culture. Thus, our results suggest that ITAM-containing receptors can respond to exposed ligands in collagen, leading to the functional differentiation of leukocytes, which provides what we believe to be a new concept for ITAM regulation of cytokine...

  8. Adeno-associated virus-mediated doxycycline-regulatable TRAIL expression suppresses growth of human breast carcinoma in nude mice

    International Nuclear Information System (INIS)

    Zheng, Liu; Weilun, Zhang; Minghong, Jiang; Yaxi, Zhang; Shilian, Liu; Yanxin, Liu; Dexian, Zheng

    2012-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) functions as a cytokine to selectively kill various cancer cells without toxicity to most normal cells. Numerous studies have demonstrated the potential use of recombinant soluble TRAIL as a cancer therapeutic agent. We have showed previous administration of a recombinant adeno-associated virus (rAAV) vector expressing soluble TRAIL results in an efficient suppression of human tumor growth in nude mice. In the present study, we introduced Tet-On gene expression system into the rAAV vector to control the soluble TRAIL expression and evaluate the efficiency of the system in cancer gene therapy. Controllability of the Tet-On system was determined by luciferase activity assay, and Western blotting and enzyme-linked immunoabsorbent assay. Cell viability was determined by MTT assay. The breast cancer xenograft animal model was established and recombinant virus was administrated through tail vein injection to evaluate the tumoricidal activity. The expression of soluble TRAIL could be strictly controlled by the Tet-On system in both normal and cancer cells. Transduction of human cancer cell lines with rAAV-TRE-TRAIL&rAAV-Tet-On under the presence of inducer doxycycline resulted in a considerable cell death by apoptosis. Intravenous injection of the recombinant virus efficiently suppressed the growth of human breast carcinoma in nude mice when activated by doxycycline. These data suggest that rAAV-mediated soluble TRAIL expression under the control of the Tet-On system is a promising strategy for breast cancer therapy

  9. Adeno-associated virus-mediated doxycycline-regulatable TRAIL expression suppresses growth of human breast carcinoma in nude mice

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    2012-04-01

    Full Text Available Abstract Background Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL functions as a cytokine to selectively kill various cancer cells without toxicity to most normal cells. Numerous studies have demonstrated the potential use of recombinant soluble TRAIL as a cancer therapeutic agent. We have showed previous administration of a recombinant adeno-associated virus (rAAV vector expressing soluble TRAIL results in an efficient suppression of human tumor growth in nude mice. In the present study, we introduced Tet-On gene expression system into the rAAV vector to control the soluble TRAIL expression and evaluate the efficiency of the system in cancer gene therapy. Methods Controllability of the Tet-On system was determined by luciferase activity assay, and Western blotting and enzyme-linked immunoabsorbent assay. Cell viability was determined by MTT assay. The breast cancer xenograft animal model was established and recombinant virus was administrated through tail vein injection to evaluate the tumoricidal activity. Results The expression of soluble TRAIL could be strictly controlled by the Tet-On system in both normal and cancer cells. Transduction of human cancer cell lines with rAAV-TRE-TRAIL&rAAV-Tet-On under the presence of inducer doxycycline resulted in a considerable cell death by apoptosis. Intravenous injection of the recombinant virus efficiently suppressed the growth of human breast carcinoma in nude mice when activated by doxycycline. Conclusion These data suggest that rAAV-mediated soluble TRAIL expression under the control of the Tet-On system is a promising strategy for breast cancer therapy.

  10. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Vikash Chandra

    Full Text Available BACKGROUND: Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs to differentiate into functional islet like cell aggregates (ICAs. Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17 and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3-4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach. CONCLUSIONS: h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.

  11. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells

    Science.gov (United States)

    Zalzman, Michal; Gupta, Sanjeev; Giri, Ranjit K.; Berkovich, Irina; Sappal, Baljit S.; Karnieli, Ohad; Zern, Mark A.; Fleischer, Norman; Efrat, Shimon

    2003-06-01

    Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes.

  12. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice

    International Nuclear Information System (INIS)

    Pierce, Anson; Wei, Rochelle; Halade, Dipti; Yoo, Si-Eun; Ran, Qitao; Richardson, Arlan

    2010-01-01

    Research highlights: → Development of mouse overexpressing native human HSF1 in all tissues including CNS. → HSF1 overexpression enhances heat shock response at whole-animal and cellular level. → HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. → HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1 +/0 ) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1 +/0 mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1 +/0 cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1 +/0 cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.

  13. The ε3 and ε4 alleles of human APOE differentially affect tau phosphorylation in hyperinsulinemic and pioglitazone treated mice.

    Directory of Open Access Journals (Sweden)

    Alvina W M To

    2011-02-01

    Full Text Available Impaired insulin signalling is increasingly thought to contribute to Alzheimer's disease (AD. The ε4 isoform of the APOE gene is the greatest genetic risk factor for sporadic, late onset AD, and is also associated with risk for type 2 diabetes mellitus (T2DM. Neuropathological studies reported the highest number of AD lesions in brain tissue of ε4 diabetic patients. However other studies assessing AD pathology amongst the diabetic population have produced conflicting reports and have failed to show an increase in AD-related pathology in diabetic brain. The thiazolidinediones (TZDs, peroxisome proliferator-activated receptor gamma agonists, are peripheral insulin sensitisers used to treat T2DM. The TZD, pioglitazone, improved memory and cognitive functions in mild to moderate AD patients. Since it is not yet clear how apoE isoforms influence the development of T2DM and its progression to AD, we investigated amyloid beta and tau pathology in APOE knockout mice, carrying human APOEε3 or ε4 transgenes after diet-induced insulin resistance with and without pioglitazone treatment.Male APOE knockout, APOEε3-transgenic and APOEε4-transgenic mice, together with background strain C57BL6 mice were kept on a high fat diet (HFD or low fat diet (LFD for 32 weeks, or were all fed HFD for 32 weeks and during the final 3 weeks animals were treated with pioglitazone or vehicle.All HFD animals developed hyperglycaemia with elevated plasma insulin. Tau phosphorylation was reduced at 3 epitopes (Ser396, Ser202/Thr205 and Thr231 in all HFD, compared to LFD, animals independent of APOE genotype. The introduction of pioglitazone to HFD animals led to a significant reduction in tau phosphorylation at the Ser202/Thr205 epitope in APOEε3 animals only. We found no changes in APP processing however the levels of soluble amyloid beta 40 was reduced in APOE knockout animals treated with pioglitazone.

  14. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice.

    Science.gov (United States)

    Bruin, Jennifer E; Rezania, Alireza; Xu, Jean; Narayan, Kavitha; Fox, Jessica K; O'Neil, John J; Kieffer, Timothy J

    2013-09-01

    Islet transplantation is a promising cell therapy for patients with diabetes, but it is currently limited by the reliance upon cadaveric donor tissue. We previously demonstrated that human embryonic stem cell (hESC)-derived pancreatic progenitor cells matured under the kidney capsule in a mouse model of diabetes into glucose-responsive insulin-secreting cells capable of reversing diabetes. However, the formation of cells resembling bone and cartilage was a major limitation of that study. Therefore, we developed an improved differentiation protocol that aimed to prevent the formation of off-target mesoderm tissue following transplantation. We also examined how variation within the complex host environment influenced the development of pancreatic progenitors in vivo. The hESCs were differentiated for 14 days into pancreatic progenitor cells and transplanted either under the kidney capsule or within Theracyte (TheraCyte, Laguna Hills, CA, USA) devices into diabetic mice. Our revised differentiation protocol successfully eliminated the formation of non-endodermal cell populations in 99% of transplanted mice and generated grafts containing >80% endocrine cells. Progenitor cells developed efficiently into pancreatic endocrine tissue within macroencapsulation devices, despite lacking direct contact with the host environment, and reversed diabetes within 3 months. The preparation of cell aggregates pre-transplant was critical for the formation of insulin-producing cells in vivo and endocrine cell development was accelerated within a diabetic host environment compared with healthy mice. Neither insulin nor exendin-4 therapy post-transplant affected the maturation of macroencapsulated cells. Efficient differentiation of hESC-derived pancreatic endocrine cells can occur in a macroencapsulation device, yielding glucose-responsive insulin-producing cells capable of reversing diabetes.

  15. In vivo effects of human adipose-derived stem cells reseeding on acellular bovine pericardium in nude mice.

    Science.gov (United States)

    Wu, Qingkai; Dai, Miao; Xu, Peirong; Hou, Min; Teng, Yincheng; Feng, Jie

    2016-01-01

    Tissue-engineered biologic products may be a viable option in the reconstruction of pelvic organ prolapse (POP). This study was based on the hypothesis that human adipose-derived stem cells (hASCs) are viable in acellular bovine pericardium (ABP), when reseeded by two different techniques, and thus, aid in the reconstruction. To investigate the reseeding of hASCs on ABP grafts by using non-invasive bioluminescence imaging (BLI), and to identify the effective hASCs-scaffold combinations that enabled regeneration. Thirty female athymic nude mice were randomly divided into three groups: In the VIVO group, ABPs were implanted in the subcutaneous pockets and enhanced green fluorescent protein luciferase (eGFP·Luc)-hASCs (1 × 10(6) cells/50 µL) were injected on the ABP at the same time. In the VITRO group, the mice were implanted with grafts that ABP were co-cultured with eGFP·Luc-hASCs in vitro. The BLANK group mice were implanted with ABP only. The eGFP·Luc-hASCs reseeded on ABP were analyzed by BLI, histology, and immunohistochemistry. The eGFP·Luc-hASCs reseeded on ABP could be visualized at 12 weeks in vivo. Histology revealed that the VIVO group displayed the highest cell ingrowths, small vessels, and percent of collagen content per unit area. Desmin and α-smooth muscle actin were positive at the same site in the VIVO group cells. However, few smooth muscles were observed in the VITRO and BLANK groups. These results suggest that hASCs reseeded on ABP in vivo during surgery may further enhance the properties of ABP and may promote regeneration at the recipient site, resulting in a promising treatment option for POP. © 2016 by the Society for Experimental Biology and Medicine.

  16. Combined therapeutic effect and molecular mechanisms of metformin and cisplatin in human lung cancer xenografts in nude mice

    Directory of Open Access Journals (Sweden)

    Yu-Qin Chen

    2015-01-01

    Full Text Available Objective: This work was aimed at studying the inhibitory activity of metformin combined with the commonly used chemotherapy drug cisplatin in human lung cancer xenografts in nude mice. We also examined the combined effects of these drugs on the molecular expression of survivin, matrix metalloproteinase-2 (MMP-2, vascular endothelial growth factor-C (VEGF-C, and vascular endothelial growth factorreceptor-3 (VEGFR-3 to determine the mechanism of action and to explore the potential applications of the new effective drug therapy in lung cancer. Materials and Methods: The nude mice model of lung cancer xenografts was established, and mice were randomly divided into the metformin group, the cisplatin group, the metformin + cisplatin group, and the control group. The animals were killed 42 days after drug administration, and the tumor tissues were then sampled to detect the messenger ribonucleic acid (mRNA and protein expression levels of survivin, MMP-2, VEGF-C, and VEGFR-3 by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR. Results: The protein and mRNA expression levels of survivin, MMP-2, VEGF-C, and VEGFR-3 in the cisplatin group and the combined treatment group were lower than that in the control group (P < 0.05. In the metformin group, the expression of MMP-2 protein and mRNA was lower than that in the control group (P < 0.05. The protein and mRNA expression levels of survivin, MMP-2, VEGF-C, and VEGFR-3 in the combined treatment group were lower than that in the cisplatin group and the metformin group (P < 0.05. Conclusions: Metformin inhibited the expression of MMP-2, cisplatin and the combined treatment inhibited the expression of survivin, MMP-2, VEGF-C, and VEGFR-3, and the combined treatment of metformin with cisplatin resulted in enhanced anti-tumor efficacy.

  17. Systemic administration of antiretrovirals prior to exposure prevents rectal and intravenous HIV-1 transmission in humanized BLT mice.

    Directory of Open Access Journals (Sweden)

    Paul W Denton

    2010-01-01

    Full Text Available Successful antiretroviral pre-exposure prophylaxis (PrEP for mucosal and intravenous HIV-1 transmission could reduce new infections among targeted high-risk populations including discordant couples, injection drug users, high-risk women and men who have sex with men. Targeted antiretroviral PrEP could be particularly effective at slowing the spread of HIV-1 if a single antiretroviral combination were found to be broadly protective across multiple routes of transmission. Therefore, we designed our in vivo preclinical study to systematically investigate whether rectal and intravenous HIV-1 transmission can be blocked by antiretrovirals administered systemically prior to HIV-1 exposure. We performed these studies using a highly relevant in vivo model of mucosal HIV-1 transmission, humanized Bone marrow/Liver/Thymus mice (BLT. BLT mice are susceptible to HIV-1 infection via three major physiological routes of viral transmission: vaginal, rectal and intravenous. Our results show that BLT mice given systemic antiretroviral PrEP are efficiently protected from HIV-1 infection regardless of the route of exposure. Specifically, systemic antiretroviral PrEP with emtricitabine and tenofovir disoproxil fumarate prevented both rectal (Chi square = 8.6, df = 1, p = 0.003 and intravenous (Chi square = 13, df = 1, p = 0.0003 HIV-1 transmission. Our results indicate that antiretroviral PrEP has the potential to be broadly effective at preventing new rectal or intravenous HIV transmissions in targeted high risk individuals. These in vivo preclinical findings provide strong experimental evidence supporting the potential clinical implementation of antiretroviral based pre-exposure prophylactic measures to prevent the spread of HIV/AIDS.

  18. Expression of human adenosine deaminase in mice reconstituted with retrovirus-transduced hematopoietic stem cells

    International Nuclear Information System (INIS)

    Wilson, J.M.; Danos, O.; Grossman, M.; Raulet, D.H.; Mulligan, R.C.

    1990-01-01

    Recombinant retroviruses encoding human adenosine deaminase have been used to infect murine hematopoietic stem cells. In bone marrow transplant recipients reconstituted with the genetically modified cells, human ADA was detected in peripheral blood mononuclear cells of the recipients for at least 6 months after transplantation. In animals analyzed in detail 4 months after transplantation, human ADA and proviral sequences were detected in all hematopoietic lineages; in several cases, human ADA activity exceeded the endogenous activity. These studies demonstrate the feasibility of introducing a functional human ADA gene into hematopoietic stem cells and obtaining expression in multiple hematopoietic lineages long after transplantation. This approach should be helpful in designing effective gene therapies for severe combined immunodeficiency syndromes in humans

  19. Assessment of human MAPCs for stem cell transplantation and cardiac regeneration after myocardial infarction in SCID mice.

    Science.gov (United States)

    Dimomeletis, Ilias; Deindl, Elisabeth; Zaruba, Marc; Groebner, Michael; Zahler, Stefan; Laslo, Saskia M; David, Robert; Kostin, Sawa; Deutsch, Markus A; Assmann, Gerd; Mueller-Hoecker, Josef; Feuring-Buske, Michaela; Franz, Wolfgang M

    2010-11-01

    Clinical studies suggest that transplantation of total bone marrow (BM) after myocardial infarction (MI) is feasible and potentially effective. However, focusing on a defined BM-derived stem cell type may enable a more specific and optimized treatment. Multilineage differentiation potential makes BM-derived multipotent adult progenitor cells (MAPCs) a promising stem cell pool for regenerative purposes. We analyzed the cardioregenerative potential of human MAPCs in a murine model of myocardial infarction. Human MAPCs were selected by negative depletion of CD45(+)/glycophorin(+) BM cells and plated on fibronectin-coated dishes. In vitro, stem cells were analyzed by reverse transcription polymerase chain reaction. In vivo, we transplanted human MAPCs (5 × 10(5)) by intramyocardial injection after MI in severe combined immunodeficient (SCID) beige mice. Six and 30 days after the surgical procedure, pressure-volume relationships were investigated in vivo. Heart tissues were analyzed immunohistochemically. Reverse transcription polymerase chain reaction experiments on early human MAPC passages evidenced an expression of Oct-4, a stem cell marker indicating pluripotency. In later passages, cardiac markers (Nkx2.5, GATA4, MLC-2v, MLC-2a, ANP, cTnT, cTnI,) and smooth muscle cell markers (SMA, SM22α) were expressed. Transplantation of human MAPCs into the ischemic border zone after MI resulted in an improved cardiac function at day 6 (ejection fraction, 26% vs 20%) and day 30 (ejection fraction, 30% vs 23%). Confirmation of human MAPC marker vimentin in immunohistochemistry demonstrated that human MAPC integrated in the peri-infarct region. The proliferation marker Ki67 was absent in immunohistochemistry and teratoma formation was not found, indicating no tumorous potential of transplanted human MAPCs in the tumor-sensitive SCID model. Transplantation of human MAPCs after MI ameliorates myocardial function, which may be explained by trophic effects of human MAPCs. Lack of

  20. nm23 regulates decidualization through the PI3K-Akt-mTOR signaling pathways in mice and humans.

    Science.gov (United States)

    Zhang, Xue; Fu, Li-Juan; Liu, Xue-Qing; Hu, Zhuo-Ying; Jiang, Yu; Gao, Ru-Fei; Feng, Qian; Lan, Xi; Geng, Yan-Qing; Chen, Xue-Mei; He, Jun-Lin; Wang, Ying-Xiong; Ding, Yu-Bin

    2016-10-01

    Does nm23 have functional significance in decidualization in mice and humans? nm23 affects decidualization via the phosphoinositide 3 kinase/mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathways in mouse endometrial stromal cells (ESCs; mESCs) and human ESCs. The function of nm23 in suppressing metastasis has been demonstrated in a variety of cancer types. nm23 also participates in the control of DNA replication and cell proliferation and differentiation. We first analyzed the expression profile of nm23 in mice during early pregnancy (n = 6/group), pseudopregnancy (n = 6/group) and artificial decidualization (n = 6/group) and in humans during the menstrual cycle phases and the first trimester. We then used primary cultured mESCs and a human ESC line, T-HESC, to explore the hormonal regulation of nm23 and the roles of nm23 in in vitro decidualization, and as a possible mediator of downstream PI3K-Akt-mTOR signaling pathways. We evaluated the dynamic expression of nm23 in mice and humans using immunohistochemistry, western blot and real-time quantitative RT-PCR (RT-qPCR). Regulation of nm23 by steroid hormones was investigated in isolated primary mESCs and T-HESCs by western blot. The effect of nm23 knockdown (using siRNA) on ESC proliferation was analyzed by 5-ethynyl-2'-deoxyuridine staining (EdU) and proliferating cell nuclear antigen protein (PCNA) expression. The influence of nm23 expression on the differentiation of ESCs was determined by RT-qPCR using the mouse differentiation markers decidual/trophoblast PRL-related protein (dtprp, also named prl8a2) and prolactin family 3 subfamily c member 1 (prl3c1) and the human differentiation markers insulin-like growth factor binding protein 1 (IGFBP1) and prolactin (PRL). The effects of nm23 siRNA (si-nm23) and the PI3K inhibitor LY294002 on the downstream effects of nm23 on the PI3K-Akt-mTOR signaling pathway were estimated by western blot. NM23-M1 was specifically expressed in the decidual zone

  1. 3-Bromopyruvate inhibits human gastric cancer tumor growth in nude mice via the inhibition of glycolysis.

    Science.gov (United States)

    Xian, Shu-Lin; Cao, Wei; Zhang, Xiao-Dong; Lu, Yun-Fei

    2015-02-01

    Tumor cells primarily depend upon glycolysis in order to gain energy. Therefore, the inhibition of glycolysis may inhibit tumor growth. Our previous study demonstrated that 3-bromopyruvate (3-BrPA) inhibited gastric cancer cell proliferation in vitro . However, the ability of 3-BrPA to suppress tumor growth in vivo, and its underlying mechanism, have yet to be elucidated. The aim of the present study was to investigate the inhibitory effect of 3-BrPA in an animal model of gastric cancer. It was identified that 3-BrPA exhibited strong inhibitory effects upon xenograft tumor growth in nude mice. In addition, the antitumor function of 3-BrPA exhibited a dose-effect association, which was similar to that of the chemotherapeutic agent, 5-fluorouracil. Furthermore, 3-BrPA exhibited low toxicity in the blood, liver and kidneys of the nude mice. The present study hypothesized that the inhibitory effect of 3-BrPA is achieved through the inhibition of hexokinase activity, which leads to the downregulation of B-cell lymphoma 2 (Bcl-2) expression, the upregulation of Bcl-2-associated X protein expression and the subsequent activation of caspase-3. These data suggest that 3-BrPA may be a novel therapy for the treatment of gastric cancer.

  2. Bone cancer from radium: canine dose response explains data for mice and humans

    International Nuclear Information System (INIS)

    Raabe, O.G.; Book, S.A.; Parks, N.J.

    1980-01-01

    Analysis of lifetime studies of 243 beagles with skeletal burdens of radium-226 shows that the distribution of bone cancers clusters about a linear function of the logarithms of radiation dose rate to the skeleton and time from exposure until death. Similar relations displaced by species-dependent response ratios also provide satisfactory descriptions of the reported data on deaths from primary bone cancers in people and mice exposed to radium-226. The median cumulative doses (or times) leading to death from bone tumors are 2.9 times larger for dogs than for mice and 3.6 times larger for people than for dogs. These response ratios are well correlated with the normal life expectancies. The cumulative radiation dose required to give significant risk of bone cancer is found to be much less at lower dose rates than at higher rates, but the time required for the tumors to be manifested is longer. At low dose rates, this time exceeds the normal life-span and appears as a practical threshold, which for bone cancer is estimated to occur at an average cumulative radiation dose to the skeleton of about 50 to 110 rads for the three species

  3. Trypanocidal activity of human plasma on Trypanosoma evansi in mice Atividade tripanocida do plasma humano sobre Trypanosoma evansi em camundongos

    Directory of Open Access Journals (Sweden)

    Aleksandro Schafer Da Silva

    2012-03-01

    Full Text Available This study aimed to test an alternative protocol with human plasma to control Trypanosoma evansi infection in mice. Plasma from an apparently 27-year-old healthy male, blood type A+, was used in the study. A concentration of 100 mg.dL-1 apolipoprotein L1 (APOL1 was detected in the plasma. Forty mice were divided into four groups with 10 animals each. Group A comprised uninfected animals. Mice from groups B, C and D were inoculated with a T. evansi isolate. Group B was used as a positive control. At three days post-infection (DPI, the mice were administered intraperitoneally with human plasma. A single dose of 0.2 mL plasma was given to those in group C. The mice from group D were administered five doses of 0.2 mL plasma with a 24 hours interval between the doses. Group B showed high increasing parasitemia that led to their death within 5 DPI. Both treatments eliminated parasites from the blood and increased the longevity of animals. An efficacy of 50 (group C and 80% (group D of human plasma trypanocidal activity was found using PCR. This therapeutic success was likely achieved in the group D due to their higher levels of APOL1 compared with group C.Este estudo teve como objetivo testar um protocolo alternativo com plasma humano para controlar a infecção por Trypanosoma evansi em camundongos. O plasma foi oriundo de um homem aparentemente saudável, com idade entre 27 anos e tipo de sangue A+. Foi detectada uma concentração de 100 mg.dL -1 de apolipoproteína L1 (APOL1 no plasma. Quarenta camundongos foram divididos em quatro grupos, contendo dez animais cada. Grupo A, composto de animais não infectados. Os roedores dos grupos B, C e D foram inoculados intraperitonealmente com um isolado de T. evansi. O Grupo B foi usado como um controle positivo. Três dias pós-infecção (DPI, os camundongos foram tratados com plasma humano. Uma dose única de 0,2 mL de plasma foi administrada nos roedores do grupo C. Os ratos do grupo D receberam cinco

  4. Establishment of a humanized APL model via the transplantation of PML-RARA-transduced human common myeloid progenitors into immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Hiromichi Matsushita

    Full Text Available Recent advances in cancer biology have revealed that many malignancies possess a hierarchal system, and leukemic stem cells (LSC or leukemia-initiating cells (LIC appear to be obligatory for disease progression. Acute promyelocytic leukemia (APL, a subtype of acute myeloid leukemia characterized by the formation of a PML-RARα fusion protein, leads to the accumulation of abnormal promyelocytes. In order to understand the precise mechanisms involved in human APL leukemogenesis, we established a humanized in vivo APL model involving retroviral transduction of PML-RARA into CD34(+ hematopoietic cells from human cord blood and transplantation of these cells into immunodeficient mice. The leukemia well recapitulated human APL, consisting of leukemic cells with abundant azurophilic abnormal granules in the cytoplasm, which expressed CD13, CD33 and CD117, but not HLA-DR and CD34, were clustered in the same category as human APL samples in the gene expression analysis, and demonstrated sensitivity to ATRA. As seen in human APL, the induced APL cells showed a low transplantation efficiency in the secondary recipients, which was also exhibited in the transplantations that were carried out using the sorted CD34- fraction. In order to analyze the mechanisms underlying APL initiation and development, fractionated human cord blood was transduced with PML-RARA. Common myeloid progenitors (CMP from CD34(+/CD38(+ cells developed APL. These findings demonstrate that CMP are a target fraction for PML-RARA in APL, whereas the resultant CD34(- APL cells may share the ability to maintain the tumor.

  5. Induction of a systemic lupus erythematosus-like disease in mice by a common human anti-DNA idiotype

    International Nuclear Information System (INIS)

    Mendlovic, S.; Brocke, S.; Meshorer, A.; Mozes, E.; Shoenfeld, Y.; Bakimer, R.; Ben-Bassat, M.

    1988-01-01

    Systemic lupus erythematosus (SLE) is considered to be the quintessential autoimmune disease. It has not been possible to induce SLE in animal models by DNA immunization or by challenge with anti-DNA antibodies. The authors report a murine model of SLE-like disease induced by immunization of C3H.SW female mice with a common human monoclonal anti-DNA idiotype (16/6 idiotype). Following a booster injection with the 16/6 idiotype, high levels of murine anti-16/6 and anti-anti-16/6 antibodies (associated with anti-DNA activity) were detected in the sera of the immunized mice. Elevated titers of autoantibodies reacting with DNA, poly(I), poly(dT), ribonucleoprotein, autoantigens [Sm, SS-A (Ro), and SS-B (La)], and cardiolipin were noted. The serological findings were associated with increased erythrocyte sedimentation rate, leukopenia, proteinuria, immune complex deposition in the glomerular mesangium, and sclerosis of the glomeruli. The immune complexes in the kidneys were shown to contain the 16/6 idiotype. This experimental SLE-like model may be used to elucidate the mechanisms underlying SLE

  6. Morphofunctional evaluation of human skin preserved in glycerol and exposed to gamma radiation: a study in athymic mice

    International Nuclear Information System (INIS)

    Bringel, Fabiana de Andrade

    2011-01-01

    Extensive skin lesions expose the body to damaging agents, which makes spontaneous regeneration difficult and, in many cases, leads patient to death. In such cases, if there are no donating areas for autograft, allografts can be used. In this type of graft, tissue is processed in tissue banks, where it can be subjected to radiosterilization. According to in vitro studies, gamma radiation, in doses higher than 25 kGy, induces alterations in skin preserved in glycerol at 85%, reducing the tensile strength of irradiated tissue. Clinical observation also suggests faster integration of such graft with the receptors tissue. In order to assess if the alterations observed in vitro, would compromise in vivo use, transplants of human tissue, irradiated or not, were performed in Nude mice. The skin of the mice was subjected to macroscopic analysis, optical coherence tomography imaging, histological and biomechanical assays. It was possible to conclude that grafts irradiated with 25 kGy promoted greater initial contraction, without alteration of the final dimensions of the repair area, also displaying a faster closing of the wound. Moreover, the use of irradiated grafts (25 and 50 kGy) enabled the formation of a more organized healing process without significant effects on biomechanical properties. (author)

  7. Human umbilical-cord-blood mononucleated cells enhance the survival of lethally irradiated mice. Dosage and the window of time

    International Nuclear Information System (INIS)

    Kovalenko, Olga A.; Ende, Norman; Azzam, Edouard I.

    2013-01-01

    The purpose of this study was to evaluate the window of time and dose of human umbilical-cord-blood (HUCB) mononucleated cells necessary for successful treatment of radiation injury in mice. Female A/J mice (27-30 weeks old) were exposed to an absorbed dose of 9-10 Gy of 137 Cs γ-rays delivered acutely to the whole body. They were treated either with 1 × 10 8 or 2 × 10 8 HUCB mononucleated cells at 24-52 h after the irradiation. The antibiotic Levaquin was applied 4 h postirradiation. The increased dose of cord-blood cells resulted in enhanced survival. The enhancement of survival in animals that received 2 × 10 8 HUCB mononucleated cells relative to irradiated but untreated animals was highly significant (P < 0.01). Compared with earlier studies, the increased dose of HUCB mononucleated cells, coupled with early use of an antibiotic, extended the window of time for effective treatment of severe radiation injury from 4 to 24-52 h after exposure. (author)

  8. Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice.

    Directory of Open Access Journals (Sweden)

    Olga Antsiferova

    2014-08-01

    Full Text Available Epstein Barr virus (EBV infection expands CD8+ T cells specific for lytic antigens to high frequencies during symptomatic primary infection, and maintains these at significant numbers during persistence. Despite this, the protective function of these lytic EBV antigen-specific cytotoxic CD8+ T cells remains unclear. Here we demonstrate that lytic EBV replication does not significantly contribute to virus-induced B cell proliferation in vitro and in vivo in a mouse model with reconstituted human immune system components (huNSG mice. However, we report a trend to reduction of EBV-induced lymphoproliferation outside of lymphoid organs upon diminished lytic replication. Moreover, we could demonstrate that CD8+ T cells against the lytic EBV antigen BMLF1 can eliminate lytically replicating EBV-transformed B cells from lymphoblastoid cell lines (LCLs and in vivo, thereby transiently controlling high viremia after adoptive transfer into EBV infected huNSG mice. These findings suggest a protective function for lytic EBV antigen-specific CD8+ T cells against EBV infection and against virus-associated tumors in extra-lymphoid organs. These specificities should be explored for EBV-specific vaccine development.

  9. Effects of thyroid hormone status on metabolic pathways of arachidonic acid in mice and humans: A targeted metabolomic approach.

    Science.gov (United States)

    Yao, Xuan; Sa, Rina; Ye, Cheng; Zhang, Duo; Zhang, Shengjie; Xia, Hongfeng; Wang, Yu-cheng; Jiang, Jingjing; Yin, Huiyong; Ying, Hao

    2015-01-01

    Symptoms of cardiovascular diseases are frequently found in patients with hypothyroidism and hyperthyroidism. However, it is unknown whether arachidonic acid metabolites, the potent mediators in cardiovascular system, are involved in cardiovascular disorders caused by hyperthyroidism and hypothyroidism. To answer this question, serum levels of arachidonic acid metabolites in human subjects with hypothyroidism, hyperthyroidism and mice with hypothyroidism or thyroid hormone treatment were determined by a mass spectrometry-based method. Over ten arachidonic acid metabolites belonging to three catalytic pathways: cyclooxygenases, lipoxygenases, and cytochrome P450, were quantified simultaneously and displayed characteristic profiles under different thyroid hormone status. The level of 20-hydroxyeicosatetraenoic acid, a cytochrome P450 metabolite, was positively correlated with thyroid hormone level and possibly contributed to the elevated blood pressured in hyperthyroidism. The increased prostanoid (PG) I2 and decreased PGE2 levels in hypothyroid patients might serve to alleviate atherosclerosis associated with dyslipidemia. The elevated level of thromboxane (TX) A2, as indicated by TXB2, in hyperthyroid patients and mice treated with thyroid hormone might bring about pulmonary hypertension frequently found in hyperthyroid patients. In conclusion, our prospective study revealed that arachidonic acid metabolites were differentially affected by thyroid hormone status. Certain metabolites may be involved in cardiovascular disorders associated with thyroid diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Long-term high-level expression of human beta-globin occurs following transplantation of transgenic marrow into irradiated mice.

    Science.gov (United States)

    Himelstein, A; Ward, M; Podda, S; de la Flor Weiss, E; Costantini, F; Bank, A

    1993-03-01

    When the human beta-globin gene is transferred into the bone marrow cells of live mice, its expression is very low. To investigate the reason for this, we transferred the bone marrow of transgenic mice containing and expressing the human beta-globin into irradiated recipients. We demonstrate that long-term high level expression of the human beta-globin gene can be maintained in the marrow and blood of irradiated recipients following transplantation. Although expression decreased over time in most animals because of host marrow reconstitution, the ratio of human beta-globin transgene expression to endogenous mouse beta-globin gene expression in donor-derived erythroid cells remained constant over time. We conclude that there is no inherent limitation to efficient expression of an exogenous human beta-globin gene in mouse bone marrow cells following marrow transplantation.

  11. Regression of established renal cell carcinoma in nude mice using lentivirus-transduced human T cells expressing a human anti-CAIX chimeric antigen receptor

    Directory of Open Access Journals (Sweden)

    Agnes Shuk-Yee Lo

    2014-01-01

    Full Text Available Carbonic anhydrase IX (CAIX is a tumor-associated antigen and marker of hypoxia that is overexpressed on > 90% of clear-cell type renal cell carcinoma (RCC but not on neighboring normal kidney tissue. Here, we report on the construction of two chimeric antigen receptors (CARs that utilize a carbonic anhydrase (CA domain mapped, human single chain antibody (scFv G36 as a targeting moiety but differ in their capacity to provide costimulatory signaling for optimal T cell proliferation and tumor cell killing. The resulting anti-CAIX CARs were expressed on human primary T cells via lentivirus transduction. CAR-transduced T cells (CART cells expressing second-generation G36-CD28-TCRζ exhibited more potent in vitro antitumor effects on CAIX+ RCC cells than first-generation G36-CD8-TCRζ including cytotoxicity, cytokine secretion, proliferation, and clonal expansion. Adoptive G36-CD28-TCRζ CART cell therapy combined with high-dose interleukin (IL-2 injection also lead to superior regression of established RCC in nude mice with evidence of tumor cell apoptosis and tissue necrosis. These results suggest that the fully human G36-CD28-TCRζ CARs should provide substantial improvements over first-generation mouse anti-CAIX CARs in clinical use through reduced human anti-mouse antibody responses against the targeting scFv and administration of lower doses of T cells during CART cell therapy of CAIX+ RCC.

  12. Ex Vivo Expanded Human Non-Cytotoxic CD8+CD45RClow/− Tregs Efficiently Delay Skin Graft Rejection and GVHD in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Séverine Bézie

    2018-01-01

    Full Text Available Both CD4+ and CD8+ Tregs play a critical role in the control of immune responses and immune tolerance; however, our understanding of CD8+ Tregs is limited while they are particularly promising for therapeutic application. We report here existence of highly suppressive human CD8+CD45RClow/− Tregs expressing Foxp3 and producing IFNγ, IL-10, IL-34, and TGFβ to mediate their suppressive activity. We demonstrate that total CD8+CD45RClow/− Tregs can be efficiently expanded in the presence of anti-CD3/28 mAbs, high-dose IL-2 and IL-15 and that such expanded Tregs efficiently delay GVHD and human skin transplantation rejection in immune humanized mice. Robustly expanded CD8+ Tregs displayed a specific gene signature, upregulated cytokines and expansion in the presence of rapamycin greatly improved proliferation and suppression. We show that CD8+CD45RClow/− Tregs are equivalent to canonical CD4+CD25highCD127low/− Tregs for suppression of allogeneic immune responses in vitro. Altogether, our results open new perspectives to tolerogenic strategies in human solid organ transplantation and GVHD.

  13. Cloning Mice and Men: Prohibiting the Use of iPS Cells for Human Reproductive Cloning

    OpenAIRE

    Lo, Bernard; Parham, Lindsay; Alvarez-Buylla, Arturo; Cedars, Marcelle; Conklin, Bruce; Fisher, Susan; Gates, Elena; Giudice, Linda; Halme, Dina Gould; Hershon, William; Kriegstein, Arnold; Kwok, Pui-Yan; Wagner, Richard

    2010-01-01

    The use of iPSCs and tetraploid complementation for human reproductive cloning would raise profound ethical objections. Professional standards and laws that ban human reproductive cloning by somatic cell nuclear transfer should be revised to also forbid it by other methods, such as iPSCs via tetraploid complementation.

  14. Cloning mice and men: prohibiting the use of iPS cells for human reproductive cloning.

    Science.gov (United States)

    Lo, Bernard; Parham, Lindsay; Alvarez-Buylla, Arturo; Cedars, Marcelle; Conklin, Bruce; Fisher, Susan; Gates, Elena; Giudice, Linda; Halme, Dina Gould; Hershon, William; Kriegstein, Arnold; Kwok, Pui-Yan; Wagner, Richard

    2010-01-08

    The use of iPSCs and tetraploid complementation for human reproductive cloning would raise profound ethical objections. Professional standards and laws that ban human reproductive cloning by somatic cell nuclear transfer should be revised to also forbid it by other methods, such as iPSCs via tetraploid complementation. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Effect of 5'-flanking sequence deletions on expression of the human insulin gene in transgenic mice

    DEFF Research Database (Denmark)

    Fromont-Racine, M; Bucchini, D; Madsen, O

    1990-01-01

    Expression of the human insulin gene was examined in transgenic mouse lines carrying the gene with various lengths of DNA sequences 5' to the transcription start site (+1). Expression of the transgene was demonstrated by 1) the presence of human C-peptide in urine, 2) the presence of specific...... of the transgene was observed in cell types other than beta-islet cells....

  16. Species-related exposure of phase II metabolite gemfibrozil 1-O-β-glucuronide between human and mice: A net induction of mouse P450 activity was revealed.

    Science.gov (United States)

    Luo, Min; Dai, Manyun; Lin, Hante; Xie, Minzhu; Lin, Jiao; Liu, Aiming; Yang, Julin

    2017-12-01

    Gemfibrozil is a fibrate drug used widely for dyslipidemia associated with atherosclerosis. Clinically, both gemfibrozil and its phase II metabolite gemfibrozil 1-O-β-glucuronide (gem-glu) are involved in drug-drug interaction (DDI). But the DDI risk caused by gem-glu between human and mice has not been compared. In this study, six volunteers were recruited and took a therapeutic dose of gemfibrozil for 3 days for examination of the gemfibrozil and gem-glu level in human. Male mice were fed a gemfibrozil diet (0.75%) for 7 days, following which a cocktail-based inhibitory DDI experiment was performed. Plasma samples and liver tissues from mice were collected for determination of gemfibrozil, gem-glu concentration and cytochrome p450 enzyme (P450) induction analysis. In human, the molar ratio of gem-glu/gemfibrozil was 15% and 10% at the trough concentration and the concentration at 1.5 h after the 6th dose. In contrast, this molar ratio at steady state in mice was 91%, demonstrating a 6- to 9-fold difference compared with that in human. Interestingly, a net induction of P450 activity and in vivo inductive DDI potential in mice was revealed. The P450 activity was not inhibited although the gem-glu concentration was high. These data suggested species difference of relative gem-glu exposure between human and mice, as well as a net inductive DDI potential of gemfibrozil in mouse model. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Assessment of chimeric mice with humanized livers in new drug development: generation of pharmacokinetics, metabolism and toxicity data for selecting the final candidate compound.

    Science.gov (United States)

    Kamimura, Hidetaka; Ito, Satoshi

    2016-01-01

    1. Chimeric mice with humanized livers are expected to be a novel tool for new drug development. This review discusses four applications where these animals can be used efficiently to collect supportive data for selecting the best compound in the final stage of drug discovery. 2. The first application is selection of the final compound based on estimated pharmacokinetic parameters in humans. Since chimeric mouse livers are highly repopulated with human hepatocytes, hepatic clearance values in vivo could be used preferentially to estimate pharmacokinetic profiles for humans. 3. The second is prediction of human-specific or disproportionate metabolites. Chimeric mice reproduce human-specific metabolites of drugs under development to conform to ICH guidance M3(R2), except for compounds that were extensively eliminated by co-existing mouse hepatocytes. 4. The third is identifying metabolites with distinct pharmacokinetic profiles in humans. Slow metabolite elimination specifically in humans increases its exposure level, but if its elimination is faster in laboratory animals, the animal exposure level might not satisfy ICH guidance M3(R2). 5. Finally, two examples of reproducing acute liver toxicity in chimeric mice are introduced. Integrated pharmacokinetics, metabolism and toxicity information are expected to assist pharmaceutical scientists in selecting the best candidate compound in new drug development.

  18. Mechanisms of dietary response in mice and primates: a role for EGR1 in regulating the reaction to human-specific nutritional content.

    Directory of Open Access Journals (Sweden)

    Kai Weng

    Full Text Available Humans have a widely different diet from other primate species, and are dependent on its high nutritional content. The molecular mechanisms responsible for adaptation to the human diet are currently unknown. Here, we addressed this question by investigating whether the gene expression response observed in mice fed human and chimpanzee diets involves the same regulatory mechanisms as expression differences between humans and chimpanzees.Using mouse and primate transcriptomic data, we identified the transcription factor EGR1 (early growth response 1 as a putative regulator of diet-related differential gene expression between human and chimpanzee livers. Specifically, we predict that EGR1 regulates the response to the high caloric content of human diets. However, we also show that close to 90% of the dietary response to the primate diet found in mice, is not observed in primates. This might be explained by changes in tissue-specific gene expression between taxa.Our results suggest that the gene expression response to the nutritionally rich human diet is partially mediated by the transcription factor EGR1. While this EGR1-driven response is conserved between mice and primates, the bulk of the mouse response to human and chimpanzee dietary differences is not observed in primates. This result highlights the rapid evolution of diet-related expression regulation and underscores potential limitations of mouse models in dietary studies.

  19. Non-invasive tracking of human haemopoietic CD34{sup +} stem cells in vivo in immunodeficient mice by using magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Niemeyer, Markus; Jacobs, Volker R.; Timmer, Sebastian; Kiechle, Marion [Technische Universitaet Muenchen, Department of Gynaecology, Klinikum rechts der Isar, Munich (Germany); Oostendorp, Robert A.J.; Hippauf, Sandra; Bekker-Ruz, Viktoria [Technische Universitaet Muenchen, Department of Oncology, Klinikum rechts der Isar, Munich (Germany); Kremer, Markus [Technische Universitaet Muenchen, Department of Pathology, Klinikum rechts der Isar, Munich (Germany); Baurecht, Hansjoerg [Technische Universitaet Muenchen, Department of Statistics, Klinikum rechts der Isar, Institute for Medical Statistics and Epidemiology, Munich (Germany); Ludwig, Georg; Rummeny, Ernst J. [Technische Universitaet Muenchen, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Piontek, Guido [Technische Universitaet Muenchen, Department of Neuropathology, Munich (Germany); Beer, Ambros J. [Technische Universitaet Muenchen, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany)

    2010-09-15

    To assess migration of CD34{sup +} human stem cells to the bone marrow of athymic mice by using magnetic resonance (MR) imaging and Resovist, a contrast agent containing superparamagnetic iron oxide (SPIO) particles. All animal and human procedures were approved by our institution's ethics committee, and women had given consent to donate umbilical cord blood (UCB). Balb/c-AnN Foxn1{sup nu}/Crl mice received intravenous injection of 1 x 10{sup 6} (n = 3), 5 x 10{sup 6} (n = 3) or 1 x 10{sup 7} (n = 3) human Resovist-labelled CD34{sup +} cells; control mice received Resovist (n = 3). MR imaging was performed before, 2 and 24 h after transplantation. Signal intensities of liver, muscle and bone marrow were measured and analysed by ANOVA and post hoc Student's t tests. MR imaging data were verified by histological and immunological detection of both human cell surface markers and carboxydextran-coating of the contrast agent. CD34{sup +} cells were efficiently labelled by Resovist without impairment of functionality. Twenty-four hours after administration of labelled cells, MR imaging revealed a significant signal decline in the bone marrow, and histological and immunological analyses confirmed the presence of transplanted human CD34{sup +} cells. Intravenously administered Resovist-labelled CD34{sup +} cells home to bone marrow of mice. Homing can be tracked in vivo by using clinical 1.5-T MR imaging technology. (orig.)

  20. TRIP-Br2 promotes oncogenesis in nude mice and is frequently overexpressed in multiple human tumors

    Directory of Open Access Journals (Sweden)

    Peh Bee

    2009-01-01

    Full Text Available Abstract Background Members of the TRIP-Br/SERTAD family of mammalian transcriptional coregulators have recently been implicated in E2F-mediated cell cycle progression and tumorigenesis. We, herein, focus on the detailed functional characterization of the least understood member of the TRIP-Br/SERTAD protein family, TRIP-Br2 (SERTAD2. Methods Oncogenic potential of TRIP-Br2 was demonstrated by (1 inoculation of NIH3T3 fibroblasts, which were engineered to stably overexpress ectopic TRIP-Br2, into athymic nude mice for tumor induction and (2 comprehensive immunohistochemical high-throughput screening of TRIP-Br2 protein expression in multiple human tumor cell lines and human tumor tissue microarrays (TMAs. Clinicopathologic analysis was conducted to assess the potential of TRIP-Br2 as a novel prognostic marker of human cancer. RNA interference of TRIP-Br2 expression in HCT-116 colorectal carcinoma cells was performed to determine the potential of TRIP-Br2 as a novel chemotherapeutic drug target. Results Overexpression of TRIP-Br2 is sufficient to transform murine fibroblasts and promotes tumorigenesis in nude mice. The transformed phenotype is characterized by deregulation of the E2F/DP-transcriptional pathway through upregulation of the key E2F-responsive genes CYCLIN E, CYCLIN A2, CDC6 and DHFR. TRIP-Br2 is frequently overexpressed in both cancer cell lines and multiple human tumors. Clinicopathologic correlation indicates that overexpression of TRIP-Br2 in hepatocellular carcinoma is associated with a worse clinical outcome by Kaplan-Meier survival analysis. Small interfering RNA-mediated (siRNA knockdown of TRIP-Br2 was sufficient to inhibit cell-autonomous growth of HCT-116 cells in vitro. Conclusion This study identifies TRIP-Br2 as a bona-fide protooncogene and supports the potential for TRIP-Br2 as a novel prognostic marker and a chemotherapeutic drug target in human cancer.

  1. Neurobeachin, a Regulator of Synaptic Protein Targeting, Is Associated with Body Fat Mass and Feeding Behavior in Mice and Body-Mass Index in Humans

    Science.gov (United States)

    Olszewski, Pawel K.; Rozman, Jan; Jacobsson, Josefin A.; Rathkolb, Birgit; Strömberg, Siv; Hans, Wolfgang; Klockars, Anica; Alsiö, Johan; Risérus, Ulf; Becker, Lore; Hölter, Sabine M.; Elvert, Ralf; Ehrhardt, Nicole; Gailus-Durner, Valérie; Fuchs, Helmut; Fredriksson, Robert; Wolf, Eckhard; Klopstock, Thomas; Wurst, Wolfgang; Levine, Allen S.; Marcus, Claude; Hrabě de Angelis, Martin; Klingenspor, Martin; Schiöth, Helgi B.; Kilimann, Manfred W.

    2012-01-01

    Neurobeachin (Nbea) regulates neuronal membrane protein trafficking and is required for the development and functioning of central and neuromuscular synapses. In homozygous knockout (KO) mice, Nbea deficiency causes perinatal death. Here, we report that heterozygous KO mice haploinsufficient for Nbea have higher body weight due to increased adipose tissue mass. In several feeding paradigms, heterozygous KO mice consumed more food than wild-type (WT) controls, and this consumption was primarily driven by calories rather than palatability. Expression analysis of feeding-related genes in the hypothalamus and brainstem with real-time PCR showed differential expression of a subset of neuropeptide or neuropeptide receptor mRNAs between WT and Nbea+/− mice in the sated state and in response to food deprivation, but not to feeding reward. In humans, we identified two intronic NBEA single-nucleotide polymorphisms (SNPs) that are significantly associated with body-mass index (BMI) in adult and juvenile cohorts. Overall, data obtained in mice and humans suggest that variation of Nbea abundance or activity critically affects body weight, presumably by influencing the activity of feeding-related neural circuits. Our study emphasizes the importance of neural mechanisms in body weight control and points out NBEA as a potential risk gene in human obesity. PMID:22438821

  2. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment

    International Nuclear Information System (INIS)

    Iso, Yoshitaka; Spees, Jeffrey L.; Serrano, Claudia; Bakondi, Benjamin; Pochampally, Radhika; Song, Yao-Hua; Sobel, Burton E.; Delafontaine, Patrick; Prockop, Darwin J.

    2007-01-01

    The aim of this study was to determine whether intravenously administered multipotent stromal cells from human bone marrow (hMSCs) can improve cardiac function after myocardial infarction (MI) without long-term engraftment and therefore whether transitory paracrine effects or secreted factors are responsible for the benefit conferred. hMSCs were injected systemically into immunodeficient mice with acute MI. Cardiac function and fibrosis after MI in the hMSC-treated group were significantly improved compared with controls. However, despite the cardiac improvement, there was no evident hMSC engraftment in the heart 3 weeks after MI. Microarray assays and ELISAs demonstrated that multiple protective factors were expressed and secreted from the hMSCs in culture. Factors secreted by hMSCs prevented cell death of cultured cardiomyocytes and endothelial cells under conditions that mimicked tissue ischemia. The favorable effects of hMSCs appear to reflect the impact of secreted factors rather than engraftment, differentiation, or cell fusion

  3. STING agonists enable antiviral cross-talk between human cells and confer protection against genital herpes in mice

    DEFF Research Database (Denmark)

    Skouboe, Morten K; Knudsen, Alice; Reinert, Line S

    2018-01-01

    In recent years, there has been an increasing interest in immunomodulatory therapy as a means to treat various conditions, including infectious diseases. For instance, Toll-like receptor (TLR) agonists have been evaluated for treatment of genital herpes. However, although the TLR7 agonist imiquimod...... herpes simplex virus (HSV) 2 replication and improved the clinical outcome of infection. More importantly, local application of CDNs at the genital epithelial surface gave rise to local IFN activity, but only limited systemic responses, and this treatment conferred total protection against disease...... to TLRs, STING is expressed broadly, including in epithelial cells. Here we report that natural and non-natural STING agonists strongly induce type I IFNs in human cells and in mice in vivo, without stimulating significant inflammatory gene expression. Systemic treatment with 2'3'-cGAMP reduced genital...

  4. Ablation of human colon carcinoma in nude mice by 131I-labeled monoclonal anti-carcinoembryonic antigen antibody F(ab')2 fragments

    International Nuclear Information System (INIS)

    Buchegger, F.; Pfister, C.; Fournier, K.; Prevel, F.; Schreyer, M.; Carrel, S.; Mach, J.P.

    1989-01-01

    Pooled F(ab')2 fragments of three MAbs against distinct epitopes of carcinoembryonic antigen (CEA) were used for radioimmunotherapy of nude mice bearing a subcutaneous human colon carcinoma xenograft. 9-10 d after transplantation when tumor nodules were in exponential growth, 36 mice were treated by intravenous injection of different amounts of 131 I-labeled MAb F(ab')2. All 14 mice injected with a single dose of 2,200 (n = 10) or 2,800 microCi (n = 4) showed complete tumor remission. 8 of the 10 mice treated with 2,200 microCi survived in good health for 1 yr when they were killed and shown to be tumor free. Four of nine other mice treated with four fractionated doses of 400 microCi showed no tumor relapse for more than 9 mo. In contrast, all 15 mice injected with 1,600-3,000 microCi 131 I-control IgG F(ab')2 showed tumor growth retardation of only 1-4 wk, and 15 of 16 mice injected with unlabeled anti-CEA MAb F(ab')2 showed unmodified tumor progression as compared with untreated mice. From tissue radioactivity distributions it was calculated that by an injection of 2,200 microCi 131 I-MAb F(ab')2 a mean dose of 8,335 rad was selectively delivered to the tumor, while the tissue-absorbed radiation doses for the normal organs were: peripheral blood, 2,093; stomach, 1,668; kidney, 1,289; lung, 1,185; liver, 617; spleen, 501; small intestine, 427; large intestine, 367; bone, 337; and muscle, 198. These treatments were well tolerated since out of 19 mice with complete tumor remission only 4 required bone marrow transplantation and 17 were in good health for 6-12 mo of observation

  5. Interaction of extremophilic archaeal viruses with human and mouse complement system and viral biodistribution in mice

    DEFF Research Database (Denmark)

    Wu, Linping; Uldahl, Kristine Buch; Chen, Fangfang

    2017-01-01

    -dependent manner, but C3 deficiency has no overall effect on viral clearance by organs of the reticuloendothelial system on intravenous injection. However, splenic deposition was significantly higher in C3 knockout animals compared with the corresponding wild type mice. We discuss the potential application......Archaeal viruses offer exceptional biophysical properties for modification and exploration of their potential in bionanotechnology, bioengineering and nanotherapeutic developments. However, the interaction of archaeal viruses with elements of the innate immune system has not been explored, which...... surface, but factor H deposition is purely C3-dependent. This suggests that unlike some virulent pathogens Sulfolobus monocaudavirus 1 does not acquire factor H for protection. Complement activation with Sulfolobus monocaudavirus 1 also proceeds in murine sera through MBL-A/C as well as factor D...

  6. Establishment and characterization of human uveal malignant melanoma xenografts in nude mice

    DEFF Research Database (Denmark)

    Heegaard, S; Spang-Thomsen, M; Prause, J U

    2003-01-01

    the characteristic properties of malignant melanoma. However, the transplanted cells demonstrated vimentin reactivity, whereas the primary tumour cells were negative for vimentin. It can be concluded that a new experimental model of malignant uveal melanoma with tumours that were easy to observe and access...... model. Tumour tissue blocks (2 x 2 x 2 mm) from enucleated eyes with choroidal malignant melanoma were transplanted subcutaneously into the flanks of nude mice. The growing tumours were measured and serially transplanted. The tumour samples were investigated by histology, immunohistochemistry....... The transplanted tumour cells were epithelioid and slightly larger than the primary tumour cells and had prominent nucleoli. However, the transplanted tumour retained a morphological appearance similar to that of the primary tumour. Immunohistochemical examinations demonstrated that the cells preserved...

  7. Effect of all-trans retinoic acid combined with trichostatin A on the nude mice bearing human follicular thyroid carcinoma

    International Nuclear Information System (INIS)

    Yu Libo; Yuan Gengbiao

    2011-01-01

    Objective: To study the changes of iodine uptake of the follicular thyroid carcinoma cell line (FTC-133) and nude mice bearing human follicular thyroid carcinoma after the induction with all-trans retinoic acid (ATRA), trichostatin A (TSA) or ATRA combined with TSA. Methods: After the induction with ATRA, TSA, or ATRA combined with TSA in different concentrations for 96 h, the iodine uptake of FTC-133 cells was observed. The concentrations for different groups were as follows: ATRA 1.0 ×10 -6 mol/L(A low group), ATRA 1.0 × 10 -4 mol/L (A high group), TSA 1.65 ×10 -7 mol/L (T group), A low + T group, A high + T group and ethanol (control group). Cell quantities and morphology were observed by HE staining. FTC-133 cells were subcutaneously injected into nude mice. Twelve nude mice were randomly divided into 4 groups after tumor formation: ATRA group (2 mg/kg, intragastric administration), TSA group (10 mg/kg, intraperitoneal injection), combined therapy group (ATRA + TSA, the same doses as above) and saline control group (10 ml/kg, intragastric and intraperitoneal administration, respectively). Drugs were administered to the tumor-bearing mice according to the mouse body mass daily. At the 22nd day, the tumor-bearing mice were injected with 37 MBq 131 I intraperitoneally. The biodistribution of 131 I and gamma imaging were performed at 4, 6, 12 and 24 h after the injection respectively. Histopathological examinations of the tumor samples were taken after imaging completion. The results were analyzed by analysis of variance (ANOVA) with SPSS 13.0. Results: The cellular iodine uptake were (23 885 ± 616.0) and (13 849 ±728.2) counts · min -1 · 10 -6 cells in the A low + T group and A high + T group respectively, and the data were (985 ± 84.2) - (17 600 ± 782.7) counts · min -1 · 10 -6 in the other groups (F=600.879, P<0.001). The % ID/g of tumor at 6 h was 6.17 ±0.46 in the combined group and it increased to 9.34 ±0.61 at 12 h and 11.19 ± 0.98 at 24 h. The

  8. Maternal Vitamin D Deficiency and Fetal Programming - Lessons Learned from Humans and Mice

    Directory of Open Access Journals (Sweden)

    Christoph Reichetzeder

    2014-09-01

    Full Text Available Background/Aims: Cardiovascular disease partially originates from poor environmental and nutritional conditions in early life. Lack of micronutrients like 25 hydroxy vitamin D3 (25OHD during pregnancy may be an important treatable causal factor. The present study explored the effect of maternal 25OHD deficiency on the offspring. Methods: We performed a prospective observational study analyzing the association of maternal 25OHD deficiency during pregnancy with birth outcomes considering confounding. To show that vitamin D deficiency may be causally involved in the observed associations, mice were set on either 25OHD sufficient or insufficient diets before and during pregnancy. Growth, glucose tolerance and mortality was analyzed in the F1 generation. Results: The clinical study showed that severe 25OHD deficiency was associated with low birth weight and low gestational age. ANCOVA models indicated that established confounding factors such as offspring sex, smoking during pregnancy and maternal BMI did not influence the impact of 25OHD on birth weight. However, there was a significant interaction between 25OHD and gestational age. Maternal 25OHD deficiency was also independently associated with low APGAR scores 5 minutes postpartum. The offspring of 25OHD deficient mice grew slower after birth, had an impaired glucose tolerance shortly after birth and an increased mortality during follow-up. Conclusions: Our study demonstrates an association between maternal 25OHD and offspring birth weight. The effect of 25OHD on birth weight seems to be mediated by vitamin D controlling gestational age. Results from an animal experiment suggest that gestational 25OHD insufficiency is causally linked to adverse pregnancy outcomes. Since birth weight and prematurity are associated with an adverse cardiovascular outcome in later life, this study emphasizes the need for novel monitoring and treatment guidelines of vitamin D deficiency during pregnancy.

  9. Heterozygous mutations of FREM1 are associated with an increased risk of isolated metopic craniosynostosis in humans and mice.

    Directory of Open Access Journals (Sweden)

    Lisenka E L M Vissers

    2011-09-01

    Full Text Available The premature fusion of the paired frontal bones results in metopic craniosynostosis (MC and gives rise to the clinical phenotype of trigonocephaly. Deletions of chromosome 9p22.3 are well described as a cause of MC with variably penetrant midface hypoplasia. In order to identify the gene responsible for the trigonocephaly component of the 9p22.3 syndrome, a cohort of 109 patients were assessed by high-resolution arrays and MLPA for copy number variations (CNVs involving 9p22. Five CNVs involving FREM1, all of which were de novo variants, were identified by array-based analyses. The remaining 104 patients with MC were then subjected to targeted FREM1 gene re-sequencing, which identified 3 further mutant alleles, one of which was de novo. Consistent with a pathogenic role, mouse Frem1 mRNA and protein expression was demonstrated in the metopic suture as well as in the pericranium and dura mater. Micro-computed tomography based analyses of the mouse posterior frontal (PF suture, the human metopic suture equivalent, revealed advanced fusion in all mice homozygous for either of two different Frem1 mutant alleles, while heterozygotes exhibited variably penetrant PF suture anomalies. Gene dosage-related penetrance of midfacial hypoplasia was also evident in the Frem1 mutants. These data suggest that CNVs and mutations involving FREM1 can be identified in a significant percentage of people with MC with or without midface hypoplasia. Furthermore, we present Frem1 mutant mice as the first bona fide mouse model of human metopic craniosynostosis and a new model for midfacial hypoplasia.

  10. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.; Bruno, M.D.; Daugherty, C.C.; McNeish, J.D.; Stock, J.L.; Potter, S.S.; Whitsett, J.A. (Cincinnati College of Medicine, OH (USA))

    1990-08-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to express diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.

  11. A mature macrophage is a principal HIV-1 cellular reservoir in humanized mice after treatment with long acting antiretroviral therapy.

    Science.gov (United States)

    Araínga, Mariluz; Edagwa, Benson; Mosley, R Lee; Poluektova, Larisa Y; Gorantla, Santhi; Gendelman, Howard E

    2017-03-09

    Despite improved clinical outcomes seen following antiretroviral therapy (ART), resting CD4+ T cells continue to harbor latent human immunodeficiency virus type one (HIV-1). However, such cells are not likely the solitary viral reservoir and as such defining where and how others harbor virus is imperative for eradication measures. To such ends, we used HIV-1 ADA -infected NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ mice reconstituted with a human immune system to explore two long-acting ART regimens investigating their abilities to affect viral cell infection and latency. At 6 weeks of infection animals were divided into four groups. One received long-acting (LA) cabotegravir (CAB) and rilpivirine (RVP) (2ART), a second received LA CAB, lamivudine, abacavir and RVP (4ART), a third were left untreated and a fourth served as an uninfected control. After 4 weeks of LA ART treatment, blood, spleen and bone marrow (BM) cells were collected then phenotypically characterized. CD4+ T cell subsets, macrophages and hematopoietic progenitor cells were analyzed for HIV-1 nucleic acids by droplet digital PCR. Plasma viral loads were reduced by two log 10 or to undetectable levels in the 2 and 4ART regimens, respectively. Numbers and distributions of CD4+ memory and regulatory T cells, macrophages and hematopoietic progenitor cells were significantly altered by HIV-1 infection and by both ART regimens. ART reduced viral DNA and RNA in all cell and tissue compartments. While memory cells were the dominant T cell reservoir, integrated HIV-1 DNA was also detected in the BM and spleen macrophages in both regimen-treated mice. Despite vigorous ART regimens, HIV-1 DNA and RNA were easily detected in mature macrophages supporting their potential role as an infectious viral reservoir.

  12. Multistage cancer models of bone cancer induction in beagles and mice by radium and plutonium, compared to humans

    Energy Technology Data Exchange (ETDEWEB)

    Bijwaard, H.; Brugmans, M. [RIVM-National Inst. for Public Health and the Environment, Lab. for Radiation Research, MA Bilthoven (Netherlands)

    2005-07-01

    Two-mutation carcinogenesis models of mice injected with Pu-239 and Ra-226 have been derived as an extension of previous modellings of beagle dogs injected with Pu-239 and Ra-226 and dial painters that ingested radium. In all cases the data could be fitted adequately using no more than five free model parameters. Apart from three parameters for the background, these include two dose-related parameters: a linear mutation coefficient that is equal in both mutational steps and a usually non-zero cell-killing coefficient in the second mutational step. After a simple scaling the animal models compare reasonably well with each other and with the model for the radium dial painters. From the toxicity ratio of beagle models for Pu-239 and Ra-226, together with the human model for Ra-226, an approximate model for the exposure of humans to Pu-239 has been constructed. Relative risk calculations with this approximate model are in good agreement with epidemiological findings for the plutonium-exposed Mayak workers. This promising result may indicate new possibilities for estimating risks for humans from animal experiments. (orig.)

  13. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.