WorldWideScience

Sample records for human leukemic cells

  1. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration

    Science.gov (United States)

    Dias, Sergio; Hattori, Koichi; Zhu, Zhenping; Heissig, Beate; Choy, Margaret; Lane, William; Wu, Yan; Chadburn, Amy; Hyjek, Elizabeth; Gill, Muhammad; Hicklin, Daniel J.; Witte, Larry; Moore, M.A.S.; Rafii, Shahin

    2000-01-01

    Emerging data suggest that VEGF receptors are expressed by endothelial cells as well as hematopoietic stem cells. Therefore, we hypothesized that functional VEGF receptors may also be expressed in malignant counterparts of hematopoietic stem cells such as leukemias. We demonstrate that certain leukemias not only produce VEGF but also express functional VEGFR-2 in vivo and in vitro, resulting in the generation of an autocrine loop that may support leukemic cell survival and proliferation. Approximately 50% of freshly isolated leukemias expressed mRNA and protein for VEGFR-2. VEGF165 induced phosphorylation of VEGFR-2 and increased proliferation of leukemic cells, demonstrating these receptors were functional. VEGF165 also induced the expression of MMP-9 by leukemic cells and promoted their migration through reconstituted basement membrane. The neutralizing mAb IMC-1C11, specific to human VEGFR-2, inhibited leukemic cell survival in vitro and blocked VEGF165-mediated proliferation of leukemic cells and VEGF-induced leukemic cell migration. Xenotransplantation of primary leukemias and leukemic cell lines into immunocompromised nonobese diabetic mice resulted in significant elevation of human, but not murine, VEGF in plasma and death of inoculated mice within 3 weeks. Injection of IMC-1C11 inhibited proliferation of xenotransplanted human leukemias and significantly increased the survival of inoculated mice. Interruption of signaling by VEGFRs, particularly VEGFR-2, may provide a novel strategy for inhibiting leukemic cell proliferation. PMID:10953026

  2. The in-vitro study of human blood leukemic cells by pulsed NMR

    International Nuclear Information System (INIS)

    Zulkarnaen, M.; Munawir; Wibowo, Tono; Suyitno, Gogot

    1983-01-01

    The diagram of leukemic cells in human blood has been studied by using the NMR longitudinal relaxation technique. The observation was treated in whole blood, serum and blood cell. Every result was compared with previous observation and show that the values of the proton longitudinal relaxation in the leukemic whole blood almost twice or more that of normal blood, while in the serum and the blood cell, the values are nearly the same. (author)

  3. Clonal evolution of pre-leukemic hematopoietic stem cells precedes human acute myeloid leukemia.

    Science.gov (United States)

    Majeti, Ravindra

    2014-01-01

    Massively parallel DNA sequencing has uncovered recurrent mutations in many human cancers. In acute myeloid leukemia (AML), cancer genome/exome resequencing has identified numerous recurrently mutated genes with an average of 5 mutations in each case of de novo AML. In order for these multiple mutations to accumulate in a single lineage of cells, they are serially acquired in clones of self-renewing hematopoietic stem cells (HSC), termed pre-leukemic HSC. Isolation and characterization of pre-leukemic HSC have shown that their mutations are enriched in genes involved in regulating DNA methylation, chromatin modifications, and the cohesin complex. On the other hand, genes involved in regulating activated signaling are generally absent. Pre-leukemic HSC have been found to persist in clinical remission and may ultimately give rise to relapsed disease through the acquisition of novel mutations. Thus, pre-leukemic HSC may constitute a key cellular reservoir that must be eradicated for long-term cures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Leukemic cell labeling with indium-111-oxine

    International Nuclear Information System (INIS)

    Uchida, T.; Takagi, Y.; Matsuda, S.; Yui, T.; Ishibashi, T.; Kimura, H.; Kariyone, S.

    1984-01-01

    Leukemic cells were labeled with In-111-oxine in patients with acute leukemia. In vitro labeling studies revealed that labeling efficiency reached maximum 80.8 +- 3.6% (mean +- 1SD) by 2 times washes after 20 minutes incubation time. Cell viability was assessed by trypan blue exclusion test and in vitro culture of leukemic cells, which showed no cellular damage during labeling procedure. Elution of In-111 from the labeled cells was 10.0 +- 1.2% at 12 hours after labeling. For in vivo leukemic cell kinetic studies, more than 10/sup 8/ leukemic cells separated from Ficoll-Hypacque sedimentation were labeled by 30 minutes of In-111-oxine incubation and two times washes at 37 0 C. In vivo studies were performed in 7 patients with acute myeloblastic, lymphoblastic leukemia and blastic crisis of chronic myelocytic leukemia. Labeled leukemic cells disappeared in single exponential fashion with half life of 9.6 to 31.8 hours. Total leukemic cell pool in peripheral circulation was calculated, which correlated well with peripheral leukemic cell counts (r=0.99). No relationship was observed between total leukemic cell pool and leukemic cell turnover rate. Migration patterns of labeled leukemic cells showed that pulmonary uptake was evident within 15 minutes after the infusion and returned to base-line. Splenic and hepatic uptake showed gradual increase up to 24 hours. Bone marrow accumulation was shown only in 2 cases. Presently, there are no suitable radionuclides for leukemic cell labeling. In-111-oxine labeled leukemic cells would overcome this difficulty

  5. Human TM9SF4 Is a New Gene Down-Regulated by Hypoxia and Involved in Cell Adhesion of Leukemic Cells.

    Directory of Open Access Journals (Sweden)

    Rosa Paolillo

    Full Text Available The transmembrane 9 superfamily protein member 4, TM9SF4, belongs to the TM9SF family of proteins highly conserved through evolution. TM9SF4 homologs, previously identified in many different species, were mainly involved in cellular adhesion, innate immunity and phagocytosis. In human, the function and biological significance of TM9SF4 are currently under investigation. However, TM9SF4 was found overexpressed in human metastatic melanoma and in a small subset of acute myeloid leukemia (AMLs and myelodysplastic syndromes, consistent with an oncogenic function of this gene.In this study, we first analyzed the expression and regulation of TM9SF4 in normal and leukemic cells and identified TM9SF4 as a gene highly expressed in human quiescent CD34+ hematopoietic progenitor cells (HPCs, regulated during monocytic and granulocytic differentiation of HPCs, both lineages giving rise to mature myeloid cells involved in adhesion, phagocytosis and immunity. Then, we found that TM9SF4 is markedly overexpressed in leukemic cells and in AMLs, particularly in M2, M3 and M4 AMLs (i.e., in AMLs characterized by the presence of a more or less differentiated granulocytic progeny, as compared to normal CD34+ HPCs. Proliferation and differentiation of HPCs occurs in hypoxia, a physiological condition in bone marrow, but also a crucial component of cancer microenvironment. Here, we investigated the impact of hypoxia on TM9SF4 expression in leukemic cells and identified TM9SF4 as a direct target of HIF-1α, downregulated in these cells by hypoxia. Then, we found that the hypoxia-mediated downregulation of TM9SF4 expression is associated with a decrease of cell adhesion of leukemic cells to fibronectin, thus demonstrating that human TM9SF4 is a new molecule involved in leukemic cell adhesion.Altogether, our study reports for the first time the expression of TM9SF4 at the level of normal and leukemic hematopoietic cells and its marked expression at the level of AMLs

  6. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    International Nuclear Information System (INIS)

    Ristic, Biljana; Bosnjak, Mihajlo; Arsikin, Katarina; Mircic, Aleksandar; Suzin-Zivkovic, Violeta; Bogdanovic, Andrija; Perovic, Vladimir; Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2014-01-01

    Autophagy is involved in idarubicin-induced apoptotic death of leukemic cells. • Idarubicin does not induce cytotoxic autophagy in normal human leukocytes

  7. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, Biljana [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Bosnjak, Mihajlo [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Arsikin, Katarina [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Mircic, Aleksandar; Suzin-Zivkovic, Violeta [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Bogdanovic, Andrija [Clinic for Hematology, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade (Serbia); Perovic, Vladimir [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Trajkovic, Vladimir, E-mail: vtrajkovic@med.bg.ac.rs [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Harhaji-Trajkovic, Ljubica, E-mail: buajk@yahoo.com [Institute for Biological Research, University of Belgrade, Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade (Serbia)

    2014-08-01

    Autophagy is involved in idarubicin-induced apoptotic death of leukemic cells. • Idarubicin does not induce cytotoxic autophagy in normal human leukocytes.

  8. NKp46 identifies an NKT cell subset susceptible to leukemic transformation in mouse and human

    Science.gov (United States)

    Yu, Jianhua; Mitsui, Takeki; Wei, Min; Mao, Hsiaoyin; Butchar, Jonathan P.; Shah, Mithun Vinod; Zhang, Jianying; Mishra, Anjali; Alvarez-Breckenridge, Christopher; Liu, Xingluo; Liu, Shujun; Yokohama, Akihiko; Trotta, Rossana; Marcucci, Guido; Benson, Don M.; Loughran, Thomas P.; Tridandapani, Susheela; Caligiuri, Michael A.

    2011-01-01

    IL-15 may have a role in the development of T cell large granular lymphocyte (T-LGL) or NKT leukemias. However, the mechanisms of action and the identity of the cell subset that undergoes leukemic transformation remain elusive. Here we show that in both mice and humans, NKp46 expression marks a minute population of WT NKT cells with higher activity and potency to become leukemic. Virtually 100% of T-LGL leukemias in IL-15 transgenic mice expressed NKp46, as did a majority of human T-LGL leukemias. The minute NKp46+ NKT population, but not the NKp46– NKT population, was selectively expanded by overexpression of endogenous IL-15. Importantly, IL-15 transgenic NKp46– NKT cells did not become NKp46+ in vivo, suggesting that NKp46+ T-LGL leukemia cells were the malignant counterpart of the minute WT NKp46+ NKT population. Mechanistically, NKp46+ NKT cells possessed higher responsiveness to IL-15 in vitro and in vivo compared with that of their NKp46– NKT counterparts. Furthermore, interruption of IL-15 signaling using a neutralizing antibody could prevent LGL leukemia in IL-15 transgenic mice. Collectively, our data demonstrate that NKp46 identifies a functionally distinct NKT subset in mice and humans that appears to be directly susceptible to leukemic transformation when IL-15 is overexpressed. Thus, IL-15 signaling and NKp46 may be useful targets in the treatment of patients with T-LGL or NKT leukemia. PMID:21364281

  9. Altered expression of asparagine synthetase mRNA in human leukemic and carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, L.O.; Guzowski, D.E.; Millan, C.A. [North Shore Univ. Hospital/Cornell Univ. Medical College, Manhasset, NY (United States)] [and others

    1994-09-01

    Asparagine synthetase (AS) is the enzyme responsible for the ATP-dependant conversion of aspartic acid to asparagine. The AS gene is expressed constitutively in most mammalian cells, including cells of the lymphoid lineage, as a 2 kb mRNA. In some leukemic phenotypes, AS expression is abrogated, resulting in no detectable enzyme activity. These cells are rendered sensitive to killing by L-asparaginase, which destroys extracellular asparagine. Prolonged treatment of leukemic cells with this agent can lead to resistance and the reappearance of AS activity, suggesting derepression of the AS gene, which has been shown to be regulated by intracellular levels of asparagine. Modulation of AS expression by asparagine employs cis and trans-acting elements involved in transcriptional and translational regulation. We have cloned and sequenced the human AS gene and surrounding sequence elements as well as the full-length cDNA. Using probes specific to the third and fourth exons of AS, we have identified an additional higher molecular weight mRNA (2.7 kb) in Northern blots derived from a chronic myelogenous leukemia and a colon carcinoma but not in normal lymphocytic or other human cell lines. We speculate that elements present in the cancer-derived mRNAs may be involved in the derepression of AS activity. This hypothesis is being evaluated by RNase protection assays using RNA isolated from a variety of human cell lines to characterize and elucidate the nature of this additional AS encoded message.

  10. Anti-leukemic therapies induce cytogenetic changes of human bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Yeh, Su-Peng; Lo, Wen-Jyi; Lin, Chiao-Lin; Liao, Yu-Min; Lin, Chen-Yuan; Bai, Li-Yuan; Liang, Ji-An; Chiu, Chang-Fang

    2012-02-01

    Both bone marrow hematopoietic cells (BM-HCs) and mesenchymal stem cells (BM-MSCs) may have cytogenetic aberrations in leukemic patients, and anti-leukemic therapy may induce cytogenetic remission of BM-HCs. The impact of anti-leukemic therapy on BM-MSCs remains unknown. Cytogenetic studies of BM-MSCs from 15 leukemic patients with documented cytogenetic abnormalities of BM-HCs were investigated. To see the influence of anti-leukemic therapy on BM-MSCs, cytogenetic studies were carried out in seven of them after the completion of anti-leukemic therapy, including anthracycline/Ara-C-based chemotherapy in two patients, high-dose busulfan/cyclophosphamide-based allogeneic transplantation in two patients, and total body irradiation (TBI)-based allogeneic transplantation in three patients. To simulate the effect of TBI in vitro, three BM-MSCs from one leukemic patient and two normal adults were irradiated using the same dosage and dosing schedule of TBI and cytogenetics were re-examined after irradiation. At the diagnosis of leukemia, two BM-MSCs had cytogenetic aberration, which were completely different to their BM-HCs counterpart. After the completion of anti-leukemic therapy, cytogenetic aberration was no longer detectable in one patient. Unexpectedly, BM-MSCs from three patients receiving TBI-based allogeneic transplantation acquired new, clonal cytogenetic abnormalities after transplantation. Similarly, complex cytogenetic abnormalities were found in all the three BM-MSCs exposed to in vitro irradiation. In conclusion, anti-leukemic treatments induce not only "cytogenetic remission" but also new cytogenetic abnormalities of BM-MSCs. TBI especially exerts detrimental effect on the chromosomal integrity of BM-MSCs and highlights the equal importance of investigating long-term adverse effect of anti-leukemic therapy on BM-MSCs as opposed to beneficial effect on BM-HCs.

  11. Ex vivo assays to study self-renewal, long-term expansion, and leukemic transformation of genetically modified human hematopoietic and patient-derived leukemic stem cells

    NARCIS (Netherlands)

    Sontakke, Pallavi; Carretta, Marco; Capala, Marta; Schepers, Hein; Schuringa, Jan Jacob

    2014-01-01

    With the emergence of the concept of the leukemic stem cell (LSC), assays to study them remain pivotal in understanding (leukemic) stem cell biology. Although the in vivo NOD-SCID or NSG xenotransplantation model is currently still the favored assay of choice in most cases, this system has some

  12. Nature of leukemic stem cells in murine myelogenous leukemia

    International Nuclear Information System (INIS)

    Yoshida, K.; Nemoto, K.; Nishimura, M.; Hayata, I.; Inoue, T.; Seki, M.

    1986-01-01

    We investigated the nature of myelogenous leukemic stem cells in mice. L-8057, a megakaryoblastic leukemia cell line used in this study, produces in vivo and in vitro colonies. By means of typical chromosomal aberrations in L-8057, one can conveniently detect the origin of the cells in each colony derived from a leukemic stem cell. Direct evidence of whether cells from each colony had leukemogenicity in recipient mice was successfully obtained by the colony transplantation assay. Both leukemic colony-forming unit-spleen (L-CFU-s) and leukemic colony-forming unit-culture (L-CFU-c) in L-8057 may have belonged to the same differentiating stage in the stem cells because of their similar radiosensitivity, although some parts of the L-CFU of L-8057 seemed to have lost their capability to regenerate L-CFU-s when the cells were plated in dishes. This leukemic stem cell preserves high self-renewal ability in vitro after 10 passages. In addition, in vitro colony formation by this leukemic cell during the above course of serial passages did not require any additional exogenous stimulators. The same sort of trials have been made on other types of leukemias. Leukemic stem cells showed remarkable variety in their response to stimulating factors and in their self-renewal activity, which suggests that they may have consisted of heterogeneous populations

  13. An evidence for adhesion-mediated acquisition of acute myeloid leukemic stem cell-like immaturities

    International Nuclear Information System (INIS)

    Funayama, Keiji; Shimane, Miyuki; Nomura, Hitoshi; Asano, Shigetaka

    2010-01-01

    For long-term survival in vitro and in vivo of acute myeloid leukemia cells, their adhesion to bone marrow stromal cells is indispensable. However, it is still unknown if these events are uniquely induced by the leukemic stem cells. Here we show that TF-1 human leukemia cells, once they have formed a cobblestone area by adhering to mouse bone marrow-derived MS-5 cells, can acquire some leukemic stem cell like properties in association with a change in the CD44 isoform-expression pattern and with an increase in a set of related microRNAs. These findings strongly suggest that at least some leukemia cells can acquire leukemic stem cell like properties in an adhesion-mediated stochastic fashion.

  14. An evidence for adhesion-mediated acquisition of acute myeloid leukemic stem cell-like immaturities

    Energy Technology Data Exchange (ETDEWEB)

    Funayama, Keiji; Shimane, Miyuki; Nomura, Hitoshi [Department of Integrative Bioscience and Biomedical Engineering, Waseda University, 4-3-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Asano, Shigetaka, E-mail: asgtkmd@waseda.jp [Department of Integrative Bioscience and Biomedical Engineering, Waseda University, 4-3-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2010-02-12

    For long-term survival in vitro and in vivo of acute myeloid leukemia cells, their adhesion to bone marrow stromal cells is indispensable. However, it is still unknown if these events are uniquely induced by the leukemic stem cells. Here we show that TF-1 human leukemia cells, once they have formed a cobblestone area by adhering to mouse bone marrow-derived MS-5 cells, can acquire some leukemic stem cell like properties in association with a change in the CD44 isoform-expression pattern and with an increase in a set of related microRNAs. These findings strongly suggest that at least some leukemia cells can acquire leukemic stem cell like properties in an adhesion-mediated stochastic fashion.

  15. Effect of dioxin on normal and leukemic human hematopoietic cells

    Energy Technology Data Exchange (ETDEWEB)

    Lambertenghi-Deliliers, G.; Soligo, D. [Univ. degli Studi, Milan (Italy). Dipt. die Ematologia, Ospedale Maggiore Policlinico IRCCS; Fracchiolla, N.S. [Ospedale Maggiore Policlinico IRCCS, Milan (Italy). Dipt. di Ematologia; Servida, F. [Fondazione Matarelli, Milan (Italy); Bertazzi, P.A. [Istituti Clinici di Perfezionamento, Milan (Italy). Dipt. di Medicina del Lavoro

    2004-09-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) arises from chlorination of phenolic substrates or from partial combustion of organic materials in the presence of chlorine sources. TCDD has a large number of biological effects such as long-lasting skin disease, cardiovascular disease, diabete and cancer. TCDD is the prototypical agonist of the aryl hydrocarbon receptor (AhR), a member of the erb-A family that also includes the receptors for steroids, thyroid hormones, peroxisome proliferators and retinoids. When bound to dioxin, the AhR can bind to DNA and alter the expression of some genes including cytokines and growth factors. In this study, we analyzed the effect of escalating doses of TCDD on human CD34{sup +} progenitor cells from the leukapheresis of normal donors stimulated with G-CSF as well as the human myeloid leukemic cell lines HL60 (promyelocytic leukemia) and K562 (chronic myelogenous leukemia). The possible specific modulation of gene expression induced by the TCDD exposure was then tested by means of microarray analyses.

  16. Analysis of the surface membrane of iodinated leukemic cells by SDS-polyacrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    Ishitani, Kunihiko; Ikeda, Akira; Tamura, Minoru; Takeuchi, Hidekazu; Ihara, Koji

    1980-01-01

    Surface proteins of human leukemic cells were labeled selectively by lactoperoxydase catalysed-iodination and examined by SDS-polyacrylamide gel electrophoresis. The electrophoretic pattern of the surface membranes of cells from a patients with chronic mylogeneous leukemia in blast crisis was of B cell type and showed Ia like antigen. Leukemic cells from a patient with hairly cell leukemia also expressed the pattern of B cell type when tested by this method the technique of iodinating cell surface with lactoperoxidase is useful in characterization of leukemia cells for diagnosis and monitoring of clinical course. (author)

  17. TRIM32 promotes retinoic acid receptor α-mediated differentiation in human promyelogenous leukemic cell line HL60

    International Nuclear Information System (INIS)

    Sato, Tomonobu; Okumura, Fumihiko; Iguchi, Akihiro; Ariga, Tadashi; Hatakeyama, Shigetsugu

    2012-01-01

    Highlights: ► TRIM32 enhanced RARα-mediated transcriptional activity even in the absence of RA. ► TRIM32 stabilized RARα in the human promyelogenous leukemic cell line HL60. ► Overexpression of TRIM32 in HL60 cells induced granulocytic differentiation. ► TRIM32 may function as a coactivator for RARα-mediated transcription in APL cells. -- Abstract: Ubiquitination, one of the posttranslational modifications, appears to be involved in the transcriptional activity of nuclear receptors including retinoic acid receptor α (RARα). We previously reported that an E3 ubiquitin ligase, TRIM32, interacts with several important proteins including RARα and enhances transcriptional activity of RARα in mouse neuroblastoma cells and embryonal carcinoma cells. Retinoic acid (RA), which acts as a ligand to nuclear receptors including RARα, plays crucial roles in development, differentiation, cell cycles and apoptosis. In this study, we found that TRIM32 enhances RARα-mediated transcriptional activity even in the absence of RA and stabilizes RARα in the human promyelogenous leukemic cell line HL60. Moreover, we found that overexpression of TRIM32 in HL60 cells suppresses cellular proliferation and induces granulocytic differentiation even in the absence of RA. These findings suggest that TRIM32 functions as one of the coactivators for RARα-mediated transcription in acute promyelogenous leukemia (APL) cells, and thus TRIM32 may become a potentially therapeutic target for APL.

  18. Identification of hepatic niche harboring human acute lymphoblastic leukemic cells via the SDF-1/CXCR4 axis.

    Directory of Open Access Journals (Sweden)

    Itaru Kato

    Full Text Available In acute lymphoblastic leukemia (ALL patients, the bone marrow niche is widely known to be an important element of treatment response and relapse. Furthermore, a characteristic liver pathology observed in ALL patients implies that the hepatic microenvironment provides an extramedullary niche for leukemic cells. However, it remains unclear whether the liver actually provides a specific niche. The mechanism underlying this pathology is also poorly understood. Here, to answer these questions, we reconstituted the histopathology of leukemic liver by using patients-derived primary ALL cells into NOD/SCID/Yc (null mice. The liver pathology in this model was similar to that observed in the patients. By using this model, we clearly demonstrated that bile duct epithelial cells form a hepatic niche that supports infiltration and proliferation of ALL cells in the liver. Furthermore, we showed that functions of the niche are maintained by the SDF-1/CXCR4 axis, proposing a novel therapeutic approach targeting the extramedullary niche by inhibition of the SDF-1/CXCR4 axis. In conclusion, we demonstrated that the liver dissemination of leukemia is not due to nonselective infiltration, but rather systematic invasion and proliferation of leukemic cells in hepatic niche. Although the contribution of SDF-1/CXCR4 axis is reported in some cancer cells or leukemic niches such as bone marrow, we demonstrated that this axis works even in the extramedullary niche of leukemic cells. Our findings form the basis for therapeutic approaches that target the extramedullary niche by inhibiting the SDF-1/CXCR4 axis.

  19. Loss of quiescence and self-renewal capacity of hematopoietic stem cell in an in vitro leukemic niche.

    Science.gov (United States)

    Vanegas, Natalia-Del Pilar; Vernot, Jean-Paul

    2017-01-01

    Leukemic and mesenchymal stem cells interact in the leukemic microenvironment and affect each other differently. This interplay has also important implications for the hematopoietic stem cell (HSC) biology and function. This study evaluated human HSC self-renewal potential and quiescence in an in vitro leukemic niche without leukemic cells. A leukemic niche was established by co-culturing mesenchymal stem cells with a fresh conditioned medium obtained from a leukemic (REH) cell line. After 3 days, the REH-conditioned medium was removed and freshly isolated CD34+ at a density of up to 100,000 cells/ml were added to the leukemic niche. CD34+ cell evaluations (cell cycle, self-renewal gene expression and migration capacity) were performed after 3 further days of co-culture. Additionally, we preliminary investigated the soluble factors present in the leukemic niche and their effect on the mesenchymal stem cells. Statistical significance was assessed by Student's t test or the nonparametric test Kolmogorov-Smirnov. By co-culturing normal mesenchymal stem cells with the REH-conditioned medium we showed that hematopoietic stem cells, normally in a quiescent state, enter cell cycle and proliferate. This loss of quiescence was accompanied by an increased expression of Ki-67 and c-Myc, two well-known cell proliferation-associated markers. Two central regulators of quiescence GATA2 and p53 were also down regulated. Importantly, two genes involved in HSC self-renewal, Klf4 and the histone-lysine N -methyltransferase enzyme Ezh2, were severely affected. On the contrary, c-Kit expression, the stem cell factor receptor, was upregulated in hematopoietic stem cells when compared to the normal niche. Interestingly, mesenchymal stem cells incubated with the REH-conditioned medium stopped growing, showed a flattened morphology with the appearance of small vacuoles, and importantly, became positive for the senescence-associated beta-galactosidase activity. Evaluation of the leukemic

  20. Transfer RNA species in human lymphocytes stimulated by mitogens and in leukemic cells. [/sup 3/H, /sup 14/C, /sup 32/P tracer techniques

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, G.D.; Yang, W.K.; Novelli, G.D.

    1976-01-01

    Transfer ribonucleic acid (tRNA) profiles in human lymphocytes stimulated by various mitogens have been compared with profiles from nonstimulated cells and from leukemic cells using reversed-phase chromatography. Comparisons of (/sup 3/H)- or (/sup 11/C)uridine- or (/sup 32/P)phosphate-labeled tRNAs showed that the greatest changes in tRNA composition upon phytohemagglutinin (PHA) stimulation occurred in the first 8 h after mitogen addition. Stimulation of lymphocytes by pokeweed mitogen, anti-human immunoglobulin, or bacterial lipopolysaccharide resulted in tRNA species which showed distinct differences from each other and also from the tRNAs produced by phytohemagglutinin stimulation. Leukemic lymphocyte tRNAs showed the most extensive differences in profile when compared with chromatograms from non-neoplastic cells stimulated by a variety of mitogens. Specific isoaccepting species of tyrosyl-, aspartyl-, and phenylalanyl-tRNAs were also compared in PHA-stimulated and resting lymphocytes and no differences were found. When these same species were studied in leukemic cells, tyrosyl-tRNA profiles were shifted to elute at a lower salt concentration, while the aspartyl-tRNA profile showed a new peak not present in noncancerous cells.

  1. Differential Activity of Voltage- and Ca2+-Dependent Potassium Channels in Leukemic T Cell Lines: Jurkat Cells Represent an Exceptional Case

    Directory of Open Access Journals (Sweden)

    Salvador Valle-Reyes

    2018-05-01

    Full Text Available Activation of resting T cells relies on sustained Ca2+ influx across the plasma membrane, which in turn depends on the functional expression of potassium channels, whose activity repolarizes the membrane potential. Depending on the T-cells subset, upon activation the expression of Ca2+- or voltage-activated K+ channels, KCa or Kv, is up-regulated. In this study, by means of patch-clamp technique in the whole cell mode, we have studied in detail the characteristics of Kv and KCa currents in resting and activated human T cells, the only well explored human T-leukemic cell line Jurkat, and two additional human leukemic T cell lines, CEM and MOLT-3. Voltage dependence of activation and inactivation of Kv1.3 current were shifted up to by 15 mV to more negative potentials upon a prolonged incubation in the whole cell mode and displayed little difference at a stable state in all cell lines but CEM, where the activation curve was biphasic, with a high and low potential components. In Jurkat, KCa currents were dominated by apamine-sensitive KCa2.2 channels, whereas only KCa3.1 current was detected in healthy T and leukemic CEM and MOLT-3 cells. Despite a high proliferation potential of Jurkat cells, Kv and KCa currents were unexpectedly small, more than 10-fold lesser as compared to activated healthy human T cells, CEM and MOLT-3, which displayed characteristic Kv1.3high:KCa3.1high phenotype. Our results suggest that Jurkat cells represent perhaps a singular case and call for more extensive studies on primary leukemic T cell lines as well as a verification of the therapeutic potential of specific KCa3.1 blockers to combat acute lymphoblastic T leukemias.

  2. An antigen shared by human granulocytes, monocytes, marrow granulocyte precursors and leukemic blasts.

    Science.gov (United States)

    Shumak, K H; Rachkewich, R A

    1983-01-01

    An antibody to human granulocytes was raised in rabbits by immunization with granulocytes pretreated with rabbit antibody to contaminating antigens. The antibody reacted not only with granulocytes but also with monocytes and bone marrow granulocyte precursors including colony-forming units in culture (CFU-C). In tests with leukemic cells, the antibody reacted with blasts from most (8 of 9) patients with acute myelomonoblastic leukemia and from some patients with acute myeloblastic leukemia, morphologically undifferentiated acute leukemia and chronic myelogenous leukemia in blast crisis. The antibody did not react with blasts from patients with acute lymphoblastic leukemia nor with leukemic cells from patients with chronic lymphocytic leukemia.

  3. Exploiting mitochondrial dysfunction for effective elimination of imatinib-resistant leukemic cells.

    Directory of Open Access Journals (Sweden)

    Jérome Kluza

    Full Text Available Challenges today concern chronic myeloid leukemia (CML patients resistant to imatinib. There is growing evidence that imatinib-resistant leukemic cells present abnormal glucose metabolism but the impact on mitochondria has been neglected. Our work aimed to better understand and exploit the metabolic alterations of imatinib-resistant leukemic cells. Imatinib-resistant cells presented high glycolysis as compared to sensitive cells. Consistently, expression of key glycolytic enzymes, at least partly mediated by HIF-1α, was modified in imatinib-resistant cells suggesting that imatinib-resistant cells uncouple glycolytic flux from pyruvate oxidation. Interestingly, mitochondria of imatinib-resistant cells exhibited accumulation of TCA cycle intermediates, increased NADH and low oxygen consumption. These mitochondrial alterations due to the partial failure of ETC were further confirmed in leukemic cells isolated from some imatinib-resistant CML patients. As a consequence, mitochondria generated more ROS than those of imatinib-sensitive cells. This, in turn, resulted in increased death of imatinib-resistant leukemic cells following in vitro or in vivo treatment with the pro-oxidants, PEITC and Trisenox, in a syngeneic mouse tumor model. Conversely, inhibition of glycolysis caused derepression of respiration leading to lower cellular ROS. In conclusion, these findings indicate that imatinib-resistant leukemic cells have an unexpected mitochondrial dysfunction that could be exploited for selective therapeutic intervention.

  4. Proteinase-Activated Receptor 1 (PAR1 regulates leukemic stem cell functions.

    Directory of Open Access Journals (Sweden)

    Nicole Bäumer

    Full Text Available External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1-/- hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1-/- leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance.

  5. Proteinase-Activated Receptor 1 (PAR1) regulates leukemic stem cell functions.

    Science.gov (United States)

    Bäumer, Nicole; Krause, Annika; Köhler, Gabriele; Lettermann, Stephanie; Evers, Georg; Hascher, Antje; Bäumer, Sebastian; Berdel, Wolfgang E; Müller-Tidow, Carsten; Tickenbrock, Lara

    2014-01-01

    External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1-/- hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1-/- leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance.

  6. Differential Effects of Tea Extracts on Growth and Cytokine Production by Normal and Leukemic Human Leukocytes

    Directory of Open Access Journals (Sweden)

    Diana Bayer

    2012-04-01

    Full Text Available Background: Tea is one of the world’s most highly consumed beverages, second only to water. It is affordable and abundant and thus has great potential for improving health of those in both developed and developing areas. Green, oolong, and black teas differ in the extent of fermentation and types of bioactive polyphenols produced. Green tea and its major polyphenol decrease growth of some cancer cells and effect production of immune system cytokines. This study compares the effects of different types of tea extracts on viability and cytokine production by normal and leukemic human T lymphocytes. Generation of the toxic reactive oxygen species H2O2 by extracts was also examined.Methods: The Jurkat T lymphoblastic leukemia cells and mitogen-stimulated normal human peripheral blood mononuclear cells were used in this study. Cell viability was determined by (3-4,5-dimethylthiamizol-2-yl-diphenyltetrazolium bromide assay and production of interleukin-2 by Enzyme-Linked ImmunoSorbent Assay. Levels of H2O2 generated by tea extracts were determined using the xylenol-orange method.Results: We found that green, oolong, and black tea extracts differentially effect the growth and viability of T lymphoblastic leukemia cells and normal peripheral blood mononuclear cells, substantially decreasing both growth and viability of leukemic T lymphocytes and having much lesser effects on their normal counterparts. Tea extracts also had differential effects on the production of the T lymphocyte growth factor interleukin-2, significantly decreasing production by leukemic cells while having only minor effects on normal cells. All three extracts induced H2O2 generation, with green and oolong tea extracts having the greatest effect. Leukemic cells were much more susceptible to growth inhibition and killing by H2O2 than normal lymphocytes.Functional Foods in Health and Disease 2012, 2(4:72-85 Conclusions: The three tea extracts studied altered leukemic T lymphocyte

  7. Transferrin-polycation-mediated introduction of DNA into human leukemic cells: Stimulation by agents that affect the survival of transfected DNA or modulate transferrin receptor levels

    International Nuclear Information System (INIS)

    Cotten, M.; Laengle-Rouault, F.; Kirlappos, H.; Wagner, E.; Mechtler, K.; Zenke, M.; Beug, H.; Birnstiel, M.L.

    1990-01-01

    The authors have subverted a receptor-mediated endocytosis event to transport genes into human leukemic cells. By coupling the natural iron-delivery protein transferrin to the DNA-binding polycations polylysine or protamine, they have created protein conjugates that bind nucleic acids and carry them into the cell during the normal transferrin cycle. They demonstrate here that this procedure is useful for a human leukemic cell line. They enhanced the rate of gene delivery by (i) increasing the transferrin receptor density through treatment of the cells with the cell permeable iron chelator desferrioxamine, (ii) interfering with the synthesis of heme with succinyl acetone treatment, or (iii) stimulating the degradation of heme with cobalt chloride treatment. Consistent with gene delivery as an endocytosis event, they show that the subsequent expression in K-562 cells of a gene included in the transported DNA depends upon the cellular presence of the lysosomotropic agent chloroquine. By contrast, monensin blocks transferrinfection, as does incubation of the cells at 18 degree C

  8. In vitro proliferation of normal and leukemic human leukocytes controlled by an inhibitory endopeptide. [/sup 3/H-TdR incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, A; Mann, J; Takacsi-Nagy, L; Zimonyi, I; Molnar, A; Klupp, T [Inst. of Experimental Medicine, Budapest (Hungary); Istvan Municipal Hospital, Budapest (Hungary); Heim Pal Children' s Hospital Budapest, (Hungary))

    1983-01-01

    GI-3, an endogenous inhibitory fraction isolated from leukocytes, selectively inhibits the proliferation of granuloid precursor cells in a non-toxic manner. Its active principle is an acidic chlor-tolidine positive decapeptide. The in vitro effect on normal and acute leukemic human bone marrow and blood cells was examined. A dose dependent inhibition by GI-3 of /sup 3/H-TdR incorporation into myeloid cells of normal bone marrow was found, the sensitivity of human cells being higher than that of rat cells. The proliferation of the target leukemic bone marrow and blood cells was also decreased by the endogenous inhibitor in a dose-dependent manner in untreated subjects as well as in patients in remission or relapse. The rate of inhibition of leukemic cell proliferation in the short-term suspension system examined almost coincided with the action of well-known cytostatics applied for comparison. Beyond its direct cytostatic effect, GI-3 could be used in the differential diagnosis of blastic leukemias, complementing the routine cytochemical methods.

  9. Identification of residual leukemic cells by flow cytometry in childhood B-cell precursor acute lymphoblastic leukemia: verification of leukemic state by flow-sorting and molecular/cytogenetic methods

    DEFF Research Database (Denmark)

    Obro, Nina F; Ryder, Lars P; Madsen, Hans O

    2012-01-01

    Reduction in minimal residual disease, measured by real-time quantitative PCR or flow cytometry, predicts prognosis in childhood B-cell precursor acute lymphoblastic leukemia. We explored whether cells reported as minimal residual disease by flow cytometry represent the malignant clone harboring...... clone-specific genomic markers (53 follow-up bone marrow samples from 28 children with B-cell precursor acute lymphoblastic leukemia). Cell populations (presumed leukemic and non-leukemic) were flow-sorted during standard flow cytometry-based minimal residual disease monitoring and explored by PCR and....../or fluorescence in situ hybridization. We found good concordance between flow cytometry and genomic analyses in the individual flow-sorted leukemic (93% true positive) and normal (93% true negative) cell populations. Four cases with discrepant results had plausible explanations (e.g. partly informative...

  10. Apoptosis induction in MV4-11 and K562 human leukemic cells by Pereskia sacharosa (Cactaceae) leaf crude extract.

    Science.gov (United States)

    Asmaa, Mat Jusoh Siti; Al-Jamal, Hamid Ali Nagi; Ang, Cheng Yong; Asan, Jamaruddin Mat; Seeni, Azman; Johan, Muhammad Farid

    2014-01-01

    Pereskia sacharosa is a genus of cacti widely used in folk medicine for cancer-related treatment. Anti-proliferative effects have been studied in recent years against colon, breast, cervical and lung cancer cell lines, with promising results. We here extended study of anti-proliferative effects to a blood malignancy, leukemia. Two leukemic cell lines, MV4-11 (acute myeloid leukemia) and K562 (chronic myeloid leukemia), were studied. IC50 concentrations were determined and apoptosis and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell-cycle related regulatory proteins was assessed by Western blotting. P sacharosa inhibited growth of MV4-11 and K562 cells in a dose-dependent manner. The mode of cell death was via induction of intrinsic apoptotic pathways and cell cycle arrest. There was profound up-regulation of cytochrome c, caspases, p21 and p53 expression and repression of Akt and Bcl-2 expression in treated cells. These results suggest that P sacharosa induces leukemic cell death via apoptosis induction and changes in cell cycle checkpoint, thus deserves further study for anti-leukemic potential.

  11. Co-culture with podoplanin+ cells protects leukemic blast cells with leukemia-associated antigens in the tumor microenvironment.

    Science.gov (United States)

    Lee, Ji Yoon; Han, A-Reum; Lee, Sung-Eun; Min, Woo-Sung; Kim, Hee-Je

    2016-05-01

    Podoplanin+ cells are indispensable in the tumor microenvironment. Increasing evidence suggests that podoplanin may support the growth and metastasis of solid tumors; however, to the best of our knowledge no studies have determined whether or not podoplanin serves a supportive role in acute myeloid leukemia (AML). The effects of co‑culture with podoplanin+ cells on the cellular activities of the leukemic cells, such as apoptosis and cell proliferation, in addition to the expression of podoplanin in leukemic cells, were investigated. Due to the fact that genetic abnormalities are the primary cause of leukemogenesis, the overexpression of the fibromyalgia‑like tyrosine kinase‑3 gene in colony forming units was also examined following cell sorting. Podoplanin+ cells were found to play a protective role against apoptosis in leukemic cells and to promote cell proliferation. Tumor‑associated antigens, including Wilms' tumor gene 1 and survivin, were increased when leukemic cells were co‑cultured with podoplanin+ cells. In combination, the present results also suggest that podoplanin+ cells can function as stromal cells for blast cell retention in the AML tumor microenvironment.

  12. Fundamental studies of leukemic cell labeling with 111 In-oxine and their applications to cell kinetics in patients with acute leukemia

    International Nuclear Information System (INIS)

    Takagi, Yuhkoh; Matsuda, Shin; Uchida, Tatsumi; Kariyone, Shigeo

    1984-01-01

    Fundamental studies of leukemic cell labeling with 111 In-oxine and their applications to leukemic cell kinetics in five patients with acute myeloblastic leukemia (AML) were examined. Labeling efficiency of leukemic cells was 80.3 +- 3.6% for more than 1 x 10 8 cells at room temperature for 20 minutes of incubation followed by two times washes. Cell viability determined by means of trypanblue exclusion test was 95.3 +- 2.6%. In vitro elution rate of 111 In from the labeled cells during 12 hours was 10.0 +- 1.2%. The disappearance curves of labeled leukemic cells in AMLs followed a single exponential fashion, and the half time of disappearance (T 1/2) ranged from 9.6 to 31.8 hours. Total blood leukemic cell pool (TBLCP) calculated with the dilution principles of radioisotopes correlated significantly with the leukemic cell counts (LC) in the peripheral blood (Y = 0.32 + 1.94X, r = 0.99). In the studies of organ distribution which were observed and analized with gamma camera and computer, labeled leukemic cells passed through lungs within 15 minutes. Radioactivity in the spleen increased rapidly for 30 - 60 minutes, then reached a plateau. Hepatic radioactivity showed a temporary decrease during 10 - 60 minutes following the moderate accumulation in initial 10 minutes. In two cases, bone marrow was visualized 24 hours after the injection. Radioactivity of the leukemic cells isolated from the bone marrow at 22 hours after the injection in one case was one third of the radioactivity in leukemic cells obtained from the peripheral blood at the same time. (author)

  13. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches.

    Science.gov (United States)

    Hira, Vashendriya V V; Van Noorden, Cornelis J F; Carraway, Hetty E; Maciejewski, Jaroslaw P; Molenaar, Remco J

    2017-08-01

    Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Fundamental studies of leukemic cell labeling with /sup 111/In-oxine and their applications to cell kinetics in patients with acute leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Yuhkoh; Matsuda, Shin; Uchida, Tatsumi; Kariyone, Shigeo [Fukushima Medical Coll. (Japan)

    1984-04-01

    Fundamental studies of leukemic cell labeling with /sup 111/In-oxine and their applications to leukemic cell kinetics in five patients with acute myeloblastic leukemia (AML) were examined. Labeling efficiency of leukemic cells was 80.3 +- 3.6% for more than 1 x 10/sup 8/ cells at room temperature for 20 minutes of incubation followed by two times washes. Cell viability determined by means of trypanblue exclusion test was 95.3 +- 2.6%. In vitro elution rate of /sup 111/In from the labeled cells during 12 hours was 10.0 +- 1.2%. The disappearance curves of labeled leukemic cells in AMLs followed a single exponential fashion, and the half time of disappearance (T 1/2) ranged from 9.6 to 31.8 hours. Total blood leukemic cell pool (TBLCP) calculated with the dilution principles of radioisotopes correlated significantly with the leukemic cell counts (LC) in the peripheral blood (Y = 0.32 + 1.94X, r = 0.99). In the studies of organ distribution which were observed and analyzed with gamma camera and computer, labeled leukemic cells passed through lungs within 15 minutes. Radioactivity in the spleen increased rapidly for 30 - 60 minutes, then reached a plateau. Hepatic radioactivity showed a temporary decrease during 10 - 60 minutes following the moderate accumulation in initial 10 minutes. In two cases, bone marrow was visualized 24 hours after the injection. Radioactivity of the leukemic cells isolated from the bone marrow at 22 hours after the injection in one case was one third of the radioactivity in leukemic cells obtained from the peripheral blood at the same time.

  15. Molecular dynamics study of lipid bilayers modeling the plasma membranes of normal murine thymocytes and leukemic GRSL cells.

    Science.gov (United States)

    Andoh, Yoshimichi; Okazaki, Susumu; Ueoka, Ryuichi

    2013-04-01

    Molecular dynamics (MD) calculations for the plasma membranes of normal murine thymocytes and thymus-derived leukemic GRSL cells in water have been performed under physiological isothermal-isobaric conditions (310.15K and 1 atm) to investigate changes in membrane properties induced by canceration. The model membranes used in our calculations for normal and leukemic thymocytes comprised 23 and 25 kinds of lipids, respectively, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. The mole fractions of the lipids adopted here were based on previously published experimental values. Our calculations clearly showed that the membrane area was increased in leukemic cells, and that the isothermal area compressibility of the leukemic plasma membranes was double that of normal cells. The calculated membranes of leukemic cells were thus considerably bulkier and softer in the lateral direction compared with those of normal cells. The tilt angle of the cholesterol and the conformation of the phospholipid fatty acid tails both showed a lower level of order in leukemic cell membranes compared with normal cell membranes. The lateral radial distribution function of the lipids also showed a more disordered structure in leukemic cell membranes than in normal cell membranes. These observations all show that, for the present thymocytes, the lateral structure of the membrane is considerably disordered by canceration. Furthermore, the calculated lateral self-diffusion coefficient of the lipid molecules in leukemic cell membranes was almost double that in normal cell membranes. The calculated rotational and wobbling autocorrelation functions also indicated that the molecular motion of the lipids was enhanced in leukemic cell membranes. Thus, here we have demonstrated that the membranes of thymocyte leukemic cells are more disordered and more fluid than normal cell membranes. Copyright © 2013

  16. Identification of residual leukemic cells by flow cytometry in childhood B-cell precursor acute lymphoblastic leukemia: verification of leukemic state by flow-sorting and molecular/cytogenetic methods.

    Science.gov (United States)

    Øbro, Nina F; Ryder, Lars P; Madsen, Hans O; Andersen, Mette K; Lausen, Birgitte; Hasle, Henrik; Schmiegelow, Kjeld; Marquart, Hanne V

    2012-01-01

    Reduction in minimal residual disease, measured by real-time quantitative PCR or flow cytometry, predicts prognosis in childhood B-cell precursor acute lymphoblastic leukemia. We explored whether cells reported as minimal residual disease by flow cytometry represent the malignant clone harboring clone-specific genomic markers (53 follow-up bone marrow samples from 28 children with B-cell precursor acute lymphoblastic leukemia). Cell populations (presumed leukemic and non-leukemic) were flow-sorted during standard flow cytometry-based minimal residual disease monitoring and explored by PCR and/or fluorescence in situ hybridization. We found good concordance between flow cytometry and genomic analyses in the individual flow-sorted leukemic (93% true positive) and normal (93% true negative) cell populations. Four cases with discrepant results had plausible explanations (e.g. partly informative immunophenotype and antigen modulation) that highlight important methodological pitfalls. These findings demonstrate that with sufficient experience, flow cytometry is reliable for minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia, although rare cases require supplementary PCR-based monitoring.

  17. Human surfactant protein D alters oxidative stress and HMGA1 expression to induce p53 apoptotic pathway in eosinophil leukemic cell line.

    Directory of Open Access Journals (Sweden)

    Lakshna Mahajan

    Full Text Available Surfactant protein D (SP-D, an innate immune molecule, has an indispensable role in host defense and regulation of inflammation. Immune related functions regulated by SP-D include agglutination of pathogens, phagocytosis, oxidative burst, antigen presentation, T lymphocyte proliferation, cytokine secretion, induction of apoptosis and clearance of apoptotic cells. The present study unravels a novel ability of SP-D to reduce the viability of leukemic cells (eosinophilic leukemic cell line, AML14.3D10; acute myeloid leukemia cell line, THP-1; acute lymphoid leukemia cell lines, Jurkat, Raji; and human breast epithelial cell line, MCF-7, and explains the underlying mechanisms. SP-D and a recombinant fragment of human SP-D (rhSP-D induced G2/M phase cell cycle arrest, and dose and time-dependent apoptosis in the AML14.3D10 eosinophilic leukemia cell line. Levels of various apoptotic markers viz. activated p53, cleaved caspase-9 and PARP, along with G2/M checkpoints (p21 and Tyr15 phosphorylation of cdc2 showed significant increase in these cells. We further attempted to elucidate the underlying mechanisms of rhSP-D induced apoptosis using proteomic analysis. This approach identified large scale molecular changes initiated by SP-D in a human cell for the first time. Among others, the proteomics analysis highlighted a decreased expression of survival related proteins such as HMGA1, overexpression of proteins to protect the cells from oxidative burst, while a drastic decrease in mitochondrial antioxidant defense system. rhSP-D mediated enhanced oxidative burst in AML14.3D10 cells was confirmed, while antioxidant, N-acetyl-L-cysteine, abrogated the rhSP-D induced apoptosis. The rhSP-D mediated reduced viability was specific to the cancer cell lines and viability of human PBMCs from healthy controls was not affected. The study suggests involvement of SP-D in host's immunosurveillance and therapeutic potential of rhSP-D in the eosinophilic leukemia and

  18. NF-κB in T-cell Acute Lymphoblastic Leukemia: Oncogenic Functions in Leukemic and in Microenvironmental Cells

    International Nuclear Information System (INIS)

    Santos, Nuno R. dos; Ghezzo, Marinella N.; Silva, Ricardo C. da; Fernandes, Mónica T.

    2010-01-01

    Two main NF-κB signaling pathways, canonical and noncanonical, performing distinct functions in organisms have been characterized. Identification of mutations in genes encoding components of these NF-κB signaling pathways in lymphoid malignancies confirmed their key role in leukemogenesis. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes that despite significant therapeutic advances can still be fatal. Although mutations in NF-κB genes have not been reported in T-ALL, NF-κB constitutive activation in human T-ALL and in acute T-cell leukemia mouse models has been observed. Although these studies revealed activation of members of both canonical and noncanonical NF-κB pathways in acute T-cell leukemia, only inhibition of canonical NF-κB signaling was shown to impair leukemic T cell growth. Besides playing an important pro-oncogenic role in leukemic T cells, NF-κB signaling also appears to modulate T-cell leukemogenesis through its action in microenvironmental stromal cells. This article reviews recent data on the role of these transcription factors in T-ALL and pinpoints further research crucial to determine the value of NF-κB inhibition as a means to treat T-ALL

  19. NF-κB in T-cell Acute Lymphoblastic Leukemia: Oncogenic Functions in Leukemic and in Microenvironmental Cells

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Nuno R. dos, E-mail: nrsantos@ualg.pt; Ghezzo, Marinella N.; Silva, Ricardo C. da; Fernandes, Mónica T. [IBB-Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-11-05

    Two main NF-κB signaling pathways, canonical and noncanonical, performing distinct functions in organisms have been characterized. Identification of mutations in genes encoding components of these NF-κB signaling pathways in lymphoid malignancies confirmed their key role in leukemogenesis. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes that despite significant therapeutic advances can still be fatal. Although mutations in NF-κB genes have not been reported in T-ALL, NF-κB constitutive activation in human T-ALL and in acute T-cell leukemia mouse models has been observed. Although these studies revealed activation of members of both canonical and noncanonical NF-κB pathways in acute T-cell leukemia, only inhibition of canonical NF-κB signaling was shown to impair leukemic T cell growth. Besides playing an important pro-oncogenic role in leukemic T cells, NF-κB signaling also appears to modulate T-cell leukemogenesis through its action in microenvironmental stromal cells. This article reviews recent data on the role of these transcription factors in T-ALL and pinpoints further research crucial to determine the value of NF-κB inhibition as a means to treat T-ALL.

  20. Leukemic blast cell colony formation in semisolid culture with erythropoietin: a case report of acute poorly differentiated erythroid leukemia.

    Science.gov (United States)

    Tomonaga, M; Jinnai, I; Tagawa, M; Amenomori, T; Nishino, K; Yao, E; Nonaka, H; Kuriyama, K; Yoshida, Y; Matsuo, T

    1987-02-01

    The bone marrow of a patient with acute undifferentiated leukemia developed unique colonies after a 14-day culture in erythropoietin (EPO)-containing methylcellulose. The colonies consisted of 20 to 200 nonhemoglobinized large blast cells. Cytogenetic analysis of single colonies revealed hypotetraploid karyotypes with several marker chromosomes that were identical to those found in directly sampled bone marrow. The concurrently formed erythroid bursts showed only normal karyotypes. No leukemic colony formation was observed in other culture systems with either colony-stimulating activity (CSA) or phytohemagglutinin-stimulated leukocyte-conditioned medium (PHA-LCM). The leukemic colonies exhibited a complete EPO-dose dependency similar to that of the patient's normal BFU-E. Although cytochemical and immunologic marker studies of the bone marrow cells failed to clarify the cell lineage of the leukemic cells with extraordinarily large cell size, ultrastructural study revealed erythroid differentiation such as siderosome formation in the cytoplasm and ferritin particles in the rhophecytosis invaginations. These findings indicate that the patient had poorly differentiated erythroid leukemia and that some of the clonogenic cells might respond to EPO in vitro. Corresponding to this biological feature, the leukemic cells were markedly decreased in number in response to repeated RBC transfusions, and partial remission was obtained. These observations suggest that erythroid leukemia distinct from erythroleukemia (M6) with a myeloblastic component, can develop as a minor entity of human acute leukemia.

  1. Oxidative damage of U937 human leukemic cells caused by hydroxyl radical results in singlet oxygen formation.

    Directory of Open Access Journals (Sweden)

    Marek Rác

    Full Text Available The exposure of human cells to oxidative stress leads to the oxidation of biomolecules such as lipids, proteins and nuclei acids. In this study, the oxidation of lipids, proteins and DNA was studied after the addition of hydrogen peroxide and Fenton reagent to cell suspension containing human leukemic monocyte lymphoma cell line U937. EPR spin-trapping data showed that the addition of hydrogen peroxide to the cell suspension formed hydroxyl radical via Fenton reaction mediated by endogenous metals. The malondialdehyde HPLC analysis showed no lipid peroxidation after the addition of hydrogen peroxide, whereas the Fenton reagent caused significant lipid peroxidation. The formation of protein carbonyls monitored by dot blot immunoassay and the DNA fragmentation measured by comet assay occurred after the addition of both hydrogen peroxide and Fenton reagent. Oxidative damage of biomolecules leads to the formation of singlet oxygen as conformed by EPR spin-trapping spectroscopy and the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. It is proposed here that singlet oxygen is formed by the decomposition of high-energy intermediates such as dioxetane or tetroxide formed by oxidative damage of biomolecules.

  2. Interaction between the immune system and acute myeloid leukemia: A model incorporating promotion of regulatory T cell expansion by leukemic cells.

    Science.gov (United States)

    Nishiyama, Yoshiaki; Saikawa, Yutaka; Nishiyama, Nobuaki

    2018-03-01

    Population dynamics of regulatory T cells (Treg) are crucial for the underlying interplay between leukemic and immune cells in progression of acute myeloid leukemia (AML). The goal of this work is to elucidate the dynamics of a model that includes Treg, which can be qualitatively assessed by accumulating clinical findings on the impact of activated immune cell infusion after selective Treg depletion. We constructed an ordinary differential equation model to describe the dynamics of three components in AML: leukemic blast cells, mature regulatory T cells (Treg), and mature effective T cells (Teff), including cytotoxic T lymphocytes. The model includes promotion of Treg expansion by leukemic blast cells, leukemic stem cell and progenitor cell targeting by Teff, and Treg-mediated Teff suppression, and exhibits two coexisting, stable steady states, corresponding to high leukemic cell load at diagnosis or relapse, and to long-term complete remission. Our model is capable of explaining the clinical findings that the survival of patients with AML after allogeneic stem cell transplantation is influenced by the duration of complete remission, and that cut-off minimal residual disease thresholds associated with a 100% relapse rate are identified in AML. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Indoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells.

    Science.gov (United States)

    Curti, Antonio; Trabanelli, Sara; Onofri, Chiara; Aluigi, Michela; Salvestrini, Valentina; Ocadlikova, Darina; Evangelisti, Cecilia; Rutella, Sergio; De Cristofaro, Raimondo; Ottaviani, Emanuela; Baccarani, Michele; Lemoli, Roberto M

    2010-12-01

    The immunoregulatory enzyme indoleamine 2,3-dioxygenase, which catalyzes the conversion of tryptophan into kynurenine, is expressed in a significant subset of patients with acute myeloid leukemia, resulting in the inhibition of T-cell proliferation and the induction of regulatory T cells. Acute myeloid leukemia cells can be differentiated into dendritic cells, which have increased immunogenicity and have been proposed as vaccines against leukemia. Leukemic dendritic cells were generated from acute myeloid leukemia cells and used as stimulators in functional assays, including the induction of regulatory T cells. Indoleamine 2,3-dioxygenase expression in leukemic dendritic cells was evaluated at molecular, protein and enzymatic levels. We demonstrate that, after differentiation into dendritic cells, both indoleamine 2,3-dioxygenase-negative and indoleamine 2,3-dioxygenase-positive acute myeloid leukemia samples show induction and up-regulation of indoleamine 2,3-dioxygenase gene and protein, respectively. Indoleamine 2,3-dioxygenase-positive acute myeloid leukemia dendritic cells catabolize tryptophan into kynurenine metabolite and inhibit T-cell proliferation through an indoleamine 2,3-dioxygenase-dependent mechanism. Moreover, indoleamine 2,3-dioxygenase-positive leukemic dendritic cells increase the number of allogeneic and autologous CD4(+)CD25(+) Foxp3(+) T cells and this effect is completely abrogated by the indoleamine 2,3-dioxygenase-inhibitor, 1-methyl tryptophan. Purified CD4(+)CD25(+) T cells obtained from co-culture with indoleamine 2,3-dioxygenase-positive leukemic dendritic cells act as regulatory T cells as they inhibit naive T-cell proliferation and impair the complete maturation of normal dendritic cells. Importantly, leukemic dendritic cell-induced regulatory T cells are capable of in vitro suppression of a leukemia-specific T cell-mediated immune response, directed against the leukemia-associated antigen, Wilms' tumor protein. These data identify

  4. NO-donating aspirin inhibits the growth of leukemic Jurkat cells and modulates β-catenin expression

    International Nuclear Information System (INIS)

    Nath, Niharika; Labaze, Georges; Rigas, Basil; Kashfi, Khosrow

    2004-01-01

    β-Catenin has been implicated in leukemic cell proliferation. We compared the effects of aspirin (ASA) and the ortho, meta, and para positional isomers of NO-donating aspirin (NO-ASA) on cell growth and β-catenin expression in human Jurkat T leukemic cells. Cell growth inhibition was strong: IC 50 for p-, o-, and m- were 20 ± 1.6 (mean ± SEM), 15 ± 1.5, and 200 ± 12 μM, respectively, in contrast to that of ASA (3200 ± 375 μM). The para isomer of NO-ASA degraded β-catenin in a dose- and time-dependent manner coinciding with increasing expression of activated caspase-3. The caspase inhibitor ZVAD blocked β-catenin cleavage by p-NO-ASA and partially reversed cell growth inhibition by p-NO-ASA but not that by ASA. A denitrated analog of p-NO-ASA did not degrade β-catenin indicating the importance of the NO-donating moiety. Our findings suggest that NO-ASA merits further study as an agent against leukemia

  5. Effects of vinegar–egg on growth inhibition, differentiation human leukemic U937 cells and its immunomodulatory activity

    Directory of Open Access Journals (Sweden)

    Shiu-Yu Wang

    2018-04-01

    Full Text Available Vinegar and eggs have rich nutrients. In this study, the mixed form of both derived products, vinegar–egg solution and its products (vinegar–egg concentrate and vinegar–egg condensate were chosen for an assessment of their biological activity. To further our understanding regarding the anticancer and immunomodulatory effects of vinegar–egg, we investigated its effects on the proliferation and differentiation of U937 cells. Vinegar–egg was treated using spray drying, freeze drying and vacuum concentration and used to stimulate human mononuclear cells. The conditioned media obtained from these cultures by filtration were used to treat U937 cells. Three conditioned media inhibited U937 cell growth by 22.1–67.25% more effectively than PHA-treated control (22.53%. CD11b and CD14 expression on the treated U937 cells were 29.1–45.4% and 31.6–47.2%, respectively. High levels of cytokines IL-1β, IFN-γ and TNF-α were detected in the three conditioned media. Vinegar–egg stimulates human mononuclear cells to secrete cytokines, which inhibit the growth of U937 cells and induce their differentiation. Keywords: Cytokines, Differentiation, Immunomodulatory activity, Leukemic U937 cells, Vinegar–egg

  6. Human Leukemic Cells performing Oxidative Phosphorylation (OXPHOS Generate an Antioxidant Response Independently of Reactive Oxygen species (ROS Production

    Directory of Open Access Journals (Sweden)

    Abrar Ul Haq Khan

    2016-01-01

    Full Text Available Tumor cell metabolism is altered during leukemogenesis. Cells performing oxidative phosphorylation (OXPHOS generate reactive oxygen species (ROS through mitochondrial activity. To limit the deleterious effects of excess ROS, certain gene promoters contain antioxidant response elements (ARE, e.g. the genes NQO-1 and HO-1. ROS induces conformational changes in KEAP1 and releases NRF2, which activates AREs. We show in vitro and in vivo that OXPHOS induces, both in primary leukemic cells and cell lines, de novo expression of NQO-1 and HO-1 and also the MAPK ERK5 and decreases KEAP1 mRNA. ERK5 activates the transcription factor MEF2, which binds to the promoter of the miR-23a–27a–24-2 cluster. Newly generated miR-23a destabilizes KEAP1 mRNA by binding to its 3′UTR. Lower KEAP1 levels increase the basal expression of the NRF2-dependent genes NQO-1 and HO-1. Hence, leukemic cells performing OXPHOS, independently of de novo ROS production, generate an antioxidant response to protect themselves from ROS.

  7. House dust mite induces expression of intercellular adhesion molecule-1 in EoL-1 human eosinophilic leukemic cells.

    Science.gov (United States)

    Kwon, Byoung Chul; Sohn, Myung Hyun; Kim, Kyung Won; Kim, Eun Soo; Kim, Kyu-Earn; Shin, Myeong Heon

    2007-10-01

    The house dust mite (HDM) is considered to be the most common indoor allergen associated with bronchial asthma. In this study, we investigated whether crude extract of the HDM Dermatophagoides farinae could activate human eosinophilic leukemic cells (EoL-1) to induce upregulation of cell-surface adhesion molecules. When EoL-1 cells were incubated with D. farinae extract, expression of intercellular adhesion molecule-1 (ICAM-1) significantly increased on the cell surfaces compared to cells incubated with medium alone. In contrast, surface expression of CD11b and CD49d in EoL-1 cells was not affected by D. farinae extract. In addition, pretreatment of cells with NF-kappaB inhibitor (MG-132) or JNK inhibitor (SP600125) significantly inhibited ICAM-1 expression promoted by HDM extract. However, neither p38 MAP kinase inhibitor nor MEK inhibitor prevented HDM-induced ICAM-1 expression in EoL-1 cells. These results suggest that crude extract of D. farinae induces ICAM-1 expression in EoL-1 cells through signaling pathways involving both NF-kappaB and JNK.

  8. Genomic Profiling of a Human Leukemic Monocytic Cell-Line (THP-1 Exposed to Alpha Particle Radiation

    Directory of Open Access Journals (Sweden)

    Vinita Chauhan

    2012-01-01

    Full Text Available This study examined alpha (α- particle radiation effects on global changes in gene expression in human leukemic monocytic cells (THP-1 for the purposes of mining for candidate biomarkers that could be used for the development of a biological assessment tool. THP-1 cells were exposed to α-particle radiation at a dose range of 0 to 1.5 Gy. Twenty-four hours and three days after exposure gene expression was monitored using microarray technology. A total of 16 genes were dose responsive and classified as early onset due to their expression 24 h after exposure. Forty-eight transcripts were dose responsive and classified as late-onset as they were expressed 72 h after exposure. Among these genes, 6 genes were time and dose responsive and validated further using alternate technology. These transcripts were upregulated and associated with biological processes related to immune function, organelle stability and cell signalling/communication. This panel of genes merits further validation to determine if they are strong candidate biomarkers indicative of α-particle exposure.

  9. In vitro gamma irradiation Medical Center of leukemic cells in mice, rats, and guinea pigs

    International Nuclear Information System (INIS)

    Gross, L.; Dreyfuss, Y.; Ehrenreich, T.; Feldman, D.; Limbert, L.M.

    1980-01-01

    In vitro gamma irradiation of virus-induced (Gross) mouse leukemia cells at doses of 350 to 1600 rads (1 rad = 0.01 gray) had no effect on their ability to induce leukemia, usually within 2 weeks, after transplantation into syngeneic mice. However, when cells irradiated at doses of 2000-20,000 rads were transplanted, they induced leukemia after a latency period exceeding 2.5 months, similar to the results observed in mice inoculated with filtered mouse leukemia extracts. Similar results were also obtained after irradiation of leukemic cells derived from rats in which leukemia had been induced by rat-adapted mouse leukemia virus. Apparently, gamma irradiation at a dose of, or exceeding, 2000 rads, inhibits the ability of mouse and rat leukemic cells to induce leukemia after transplantation into syngeneic hosts; however, it does not inactivate the virus carried by such cells nor prevent it from inducing leukemia. [In previous experiments, doses of more than 4,500,000 rads were needed to inactivate the passage A (Gross) leukemia virus carried in either mouse or rat leukemic cells.] In vitro gamma irradiation of L2C guinea pig leukemic cells at doses of 750 to 2500 rads had no apparent effect on their ability to induce leukemia after transplantation into strain 2 guinea pigs. However, irradiation at doses of 3250 to 20,000 rads inactivated their ability to do so. The morphology of mouse, rat, and guinea pig leukemic cells and the virus particles present in such cells was not affected by irradiation at doses of 20,000 rads

  10. Leukemic optic neuropathy.

    Science.gov (United States)

    Brown, G C; Shields, J A; Augsburger, J J; Serota, F T; Koch, P

    1981-03-01

    The clinical course and ophthalmic manifestations of an eight year old child with acute undifferentiated leukemia and unilateral blindness secondary to leukemic optic nerve head infiltration are described. At autopsy the involved nerve head and peripapillary retina demonstrated massive leukemic cell infiltration and hemorrhagic necrosis. This manifestation of leukemia is quite uncommon and prognosis for life in such cases is poor with existing methods of therapy.

  11. Studies by radioiodination of normal adult, fetal and leukemic cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kannourakis, G; Cauchi, M N [Department of Pathology and Immunology, Monash Medical School, Melbourne, Australia

    1978-01-01

    A comparison was made between cord blood lymphocytes, normal adult lymphocytes and leukemic cells after membrane iodination with lactoperoxidase. A double-labeling technique using lactoperoxidase iodination with /sup 125/I and /sup 131/I followed by analysis on polyacrylamide gel electrophoresis revealed a number of membrane differences between leukemic, normal and fetal cells. There was a reduction in the 70,000 molecular weight component in cord blood cells compared to adult lymphocytes, and an increase in membrane peptides with molecular weights of 35,000, 20,000, 9,000 and 4,000. Although smaller molecular weight peptides were also present in chronic lymphatic leukemia as well as acute myeloid leukemia, these were shown to be distinct from fetal type membrane components.

  12. Ethyl acetate extract of Chinese medicinal herb Sarcandra glabra induces growth inhibition on human leukemic HL-60 cells, associated with cell cycle arrest and up-regulation of pro-apoptotic Bax/Bcl-2 ratio.

    Science.gov (United States)

    Li, W Y; Chiu, Lawrence C M; Lam, W S; Wong, W Y; Chan, Y T; Ho, Y P; Wong, Elaine Y L; Wong, Y S; Ooi, Vincent E C

    2007-02-01

    Sarcandra glabra (Thunb.) Nakai, colloquially known as Caoshanhu, is a Chinese medicinal herb with reported anti-tumor, anti-inflammatory, anti-viral and non-specific immunoenhancing properties. Although the plant has been clinically used for treating a variety of diseases, its bioactive ingredients are largely unknown and its mode of action has never been investigated. In this study, the anti-tumor property of ethyl acetate (EA) extract of S. glabra was investigated by determining its in vitro growth-inhibitory effects on a panel of human cancer cell lines of different histotypes. Growth inhibition of the EA extract on the cancer cells seemed to be selective, and the leukemic HL-60 was found to be the most responsive after 48 h of treatment (IC50=58 microg/ml). Flow cytometric studies further illustrated that the extract might interfere with DNA replication and thus arrested the cell cycle at S phase in the leukemic cells, followed by DNA fragmentation and loss of phospholipid asymmetry in the plasma membrane after 72 h of treatment. Concurrently, the pro-apoptotic Bax/Bcl-2 ratio was also up-regulated by more than 178% of the control level. All these findings suggested that the extract had initiated apoptosis to kill the leukemic cells. Results from this pioneer study help to establish a scientific foundation for future research and development of the bioactive ingredients in EA extract of S. glabra as efficacious anti-cancer agents.

  13. Determination of Elements in Normal and Leukemic Human Whole Blood by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D; Frykberg, B; Samsahl, K; Wester, P O

    1961-11-15

    By means of gamma-spectrometry the following elements were simultaneously determined in normal and leukemic human whole blood: Cu, Mn, Zn, Sr, Na, P, Ca, Rb, Cd, Sb, Au, Cs and Fe. Chemical separations were performed according to a group separation method using ion-exchange technique. No significant difference between the concentrations of the elements in normal- and leukemic blood was observed.

  14. Determination of Elements in Normal and Leukemic Human Whole Blood by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Brune, D.; Frykberg, B.; Samsahl, K.; Wester, P.O.

    1961-11-01

    By means of gamma-spectrometry the following elements were simultaneously determined in normal and leukemic human whole blood: Cu, Mn, Zn, Sr, Na, P, Ca, Rb, Cd, Sb, Au, Cs and Fe. Chemical separations were performed according to a group separation method using ion-exchange technique. No significant difference between the concentrations of the elements in normal- and leukemic blood was observed

  15. Leukemic Cells "Gas Up" Leaky Bone Marrow Blood Vessels.

    Science.gov (United States)

    Itkin, Tomer; Rafii, Shahin

    2017-09-11

    In this issue of Cancer Cell, Passaro et al. demonstrate how leukemia through aberrant induction of reactive oxygen species and nitric oxide production trigger marrow vessel leakiness, instigating pro-leukemic function. Disrupted tumor blood vessels promote exhaustion of non-malignant stem and progenitor cells and may facilitate leukemia relapse following chemotherapeutic treatment. Copyright © 2017. Published by Elsevier Inc.

  16. Profound radiosensitivity in leukemic T-cell lines and T-cell-type acute lymphoblastic leukemia demonstrated by sodium [51Cr]chromate labeling

    International Nuclear Information System (INIS)

    Nakazawa, S.; Minowada, J.; Tsubota, T.; Sinks, L.F.

    1978-01-01

    Radiation sensitivity was determined by measuring spontaneous release from 51 Cr-labeled cells in various lymphoid cell populations. Among six leukemia T-cell lines originating from acute lymphoblastic leukemia, four such lines were found to be highly radiosensitive. In contrast, two of the leukemic T-cell lines and four normal control B-cell lines were not radiosensitive. Thymocytes from six patients and leukemia T-cell blasts from three patients with T-cell leukemia were likewise found to be highly radiosensitive, whereas leukemic blasts from six patients with null-cell (non-T, non-B-cell) acute lymphoblastic leukemia were not radiosensitive. Normal peripheral blood lymphocytes and mitogen-induced normal lymphoblasts were found not to be radiosensitive. The results indicate that measurement of the radiation sensitivity of acute leukemic blasts may have a therapeutic significance in coping with the heterogeneous nature of individual leukemia cases

  17. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches

    NARCIS (Netherlands)

    Hira, Vashendriya V. V.; van Noorden, Cornelis J. F.; Carraway, Hetty E.; Maciejewski, Jaroslaw P.; Molenaar, Remco J.

    2017-01-01

    Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are

  18. Delayed expression of apoptosis in X-irradiated human leukemic MOLT-4 cells transfected with mutant p53

    International Nuclear Information System (INIS)

    Nakano, Hisako; Yonekawa, Hiromichi; Shinohara, Kunio

    2003-01-01

    The effects of X-rays on cell survival, apoptosis, and long-term response in the development of cell death as measured by the dye exclusion test were studied in human leukemic MOLT-4 cells (p53 wild-type) stably transfected with a mutant p53 cDNA expression vector. Cell survival, as determined from colony-forming ability, was increased in an expression level dependent manner, but the increase was partial even with the highest-expressing clone (B3). This contrasts with the prior observation that cell death and apoptosis in B3 are completely inhibited at 24 h after irradiation with 1.8 Gy of X-rays. The examination of B3 cells incubated for longer than 24 h after X-irradiation showed a delay in the induction of cell death and apoptosis. Western blot analysis revealed that the time required to reach the highest level of wild-type p53 protein in B3 was longer than the time in MOLT-4 and that the p53 may be stabilized by the phosphorylation at Ser-15. These results suggest that the introduction of mutant p53 into MOLT-4 merely delays the development of apoptosis, during which the cells could repair the damage induced by X-rays, and results in the partial increase in cell survival. (author)

  19. Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors.

    Directory of Open Access Journals (Sweden)

    Hannes C A Drexler

    Full Text Available Cells adapt to endoplasmic reticulum (ER-stress by arresting global protein synthesis while simultaneously activating specific transcription factors and their downstream targets. These processes are mediated in part by the phosphorylation-dependent inactivation of the translation initiation factor eIF2alpha. Following restoration of homeostasis protein synthesis is resumed when the serine/threonine-protein phosphatase PP1 dephosphorylates and reactivates eIF2alpha. Proteasome inhibitors, used to treat multiple myeloma patients evoke ER-stress and apoptosis by blocking the ER-associated degradation of misfolded proteins (ERAD, however, the role of eIF2alpha phosphorylation in leukemic cells under conditions of proteasome inhibitor-mediated ER stress is currently unclear.Bcr-Abl-positive and negative leukemic cell lines were used to investigate the functional implications of PP1-related phosphatase activities on eIF2alpha phosphorylation in proteasome inhibitor-mediated ER stress and apoptosis. Rather unexpectedly, salubrinal, a recently identified PP1 inhibitor capable to protect against ER stress in various model systems, strongly synergized with proteasome inhibitors to augment apoptotic death of different leukemic cell lines. Salubrinal treatment did not affect the phosphorlyation status of eIF2alpha. Furthermore, the proapoptotic effect of salubrinal occurred independently from the chemical nature of the proteasome inhibitor, was recapitulated by a second unrelated phosphatase inhibitor and was unaffected by overexpression of a dominant negative eIF2alpha S51A variant that can not be phosphorylated. Salubrinal further aggravated ER-stress and proteotoxicity inflicted by the proteasome inhibitors on the leukemic cells since characteristic ER stress responses, such as ATF4 and CHOP synthesis, XBP1 splicing, activation of MAP kinases and eventually apoptosis were efficiently abrogated by the translational inhibitor cycloheximide.Although PP1

  20. CD25 targeted therapy of chemotherapy resistant leukemic stem cells using DR5 specific TRAIL peptide

    Directory of Open Access Journals (Sweden)

    Jayaprakasam Madhumathi

    2017-03-01

    Full Text Available Chemotherapy resistant leukemic stem cells (LSCs are being targeted as a modern therapeutic approach to prevent disease relapse. LSCs isolated from methotrexate resistant side population (SP of leukemic cell lines HL60 and MOLT4 exhibited high levels of CD25 and TRAIL R2/DR5 which are potential targets. Recombinant immunotoxin conjugating IL2α with TRAIL peptide mimetic was constructed for DR5 receptor specific targeting of LSCs and were tested in total cell population and LSCs. IL2-TRAIL peptide induced apoptosis in drug resistant SP cells from cell lines and showed potent cytotoxicity in PBMCs derived from leukemic patients with an efficacy of 81.25% in AML and 100% in CML, ALL and CLL. IL2-TRAIL peptide showed cytotoxicity in relapsed patient samples and was more effective than TRAIL or IL2-TRAIL proteins. Additionally, DR5 specific IL2-TRAIL peptide was effective in targeting and killing LSCs purified from cell lines [IC50: 952 nM in HL60, 714 nM in MOLT4] and relapsed patient blood samples with higher efficacy (85% than IL2-TRAIL protein (46%. Hence, CD25 and DR5 specific targeting by IL2-TRAIL peptide may be an effective strategy for targeting drug resistant leukemic cells and LSCs.

  1. Chronic Myelogenous Leukemia Cells Contribute to the Stromal Myofibroblasts in Leukemic NOD/SCID Mouse In Vivo

    Directory of Open Access Journals (Sweden)

    Ryosuke Shirasaki

    2012-01-01

    Full Text Available We recently reported that chronic myelogenous leukemia (CML cells converted into myofibroblasts to create a microenvironment for proliferation of CML cells in vitro. To analyze a biological contribution of CML-derived myofibroblasts in vivo, we observed the characters of leukemic nonobese diabetes/severe combined immunodeficiency (NOD/SCID mouse. Bone marrow nonadherent mononuclear cells as well as human CD45-positive cells obtained from CML patients were injected to the irradiated NOD/SCID mice. When the chimeric BCR-ABL transcript was demonstrated in blood, human CML cells were detected in NOD/SCID murine bone marrow. And CML-derived myofibroblasts composed with the bone marrow-stroma, which produced significant amounts of human vascular endothelial growth factor A. When the parental CML cells were cultured with myofibroblasts separated from CML cell-engrafted NOD/SCID murine bone marrow, CML cells proliferated significantly. These observations indicate that CML cells make an adequate microenvironment for their own proliferation in vivo.

  2. Chemotherapy impedes in vitro microcirculation and promotes migration of leukemic cells with impact on metastasis

    International Nuclear Information System (INIS)

    Prathivadhi-Bhayankaram, Sruti V.; Ning, Jianhao; Mimlitz, Michael; Taylor, Carolyn; Gross, Erin; Nichols, Michael; Guck, Jochen; Ekpenyong, Andrew E.

    2016-01-01

    Although most cancer drugs target the proliferation of cancer cells, it is metastasis, the complex process by which cancer cells spread from the primary tumor to other tissues and organs of the body where they form new tumors, that leads to over 90% of all cancer deaths. Thus, there is an urgent need for anti-metastasis therapy. Surprisingly, emerging evidence suggests that certain anti-cancer drugs such as paclitaxel and doxorubicin can actually promote metastasis, but the mechanism(s) behind their pro-metastatic effects are still unclear. Here, we use a microfluidic microcirculation mimetic (MMM) platform which mimics the capillary constrictions of the pulmonary and peripheral microcirculation, to determine if in-vivo-like mechanical stimuli can evoke different responses from cells subjected to various cancer drugs. In particular, we show that leukemic cancer cells treated with doxorubicin and daunorubicin, commonly used anti-cancer drugs, have over 100% longer transit times through the device, compared to untreated leukemic cells. Such delays in the microcirculation are known to promote extravasation of cells, a key step in the metastatic cascade. Furthermore, we report a significant (p < 0.01) increase in the chemotactic migration of the doxorubicin treated leukemic cells. Both enhanced retention in the microcirculation and enhanced migration following chemotherapy, are pro-metastatic effects which can serve as new targets for anti-metastatic drugs. - Highlights: • Doxorubicin enhances migration of leukemic cancer cells before cell death. • Doxorubicin and Daunorubicin stiffen and delay cells in mimicked microcirculation. • Some cancer drugs cause changes in cell mechanics that lead to pro-metastatic effects. • Cell mechanics becomes a new target for anti-metastatic drugs.

  3. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    Science.gov (United States)

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin + ) and leukemia stem cell population (CD34 + CD38 - Lin -/low ). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G 0 /G 1 (7μM) and G 2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Quantitative assay for the number of leukemic spleen colony forming unit in radiation-induced murine myeloid leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Nara, N [Tokyo Medical and Dental Univ. (Japan). School of Medicine; Bessho, M

    1981-11-01

    In mice with myelogenous leukemia, leukemic spleen colony forming units were assayed quantitatively. When 5 x 10/sup 3/ - 2 x 10/sup 4/ leukemic cells were transplanted to other mice of the same strain, a rectilinear relationship (p < 0.01) was found between the number of the cells transplanted and that of the colonies formed on the surface of the spleen. From these results, the authors considered that myelogenous leukemia in mice is an adequate model for acute myelogenous leukemia in human adults, and that the quantitative assay of the leukemic colony forming units can be used for sensitivity tests of antileukemic agents.

  5. C60 Fullerene Effects on Diphenyl-N-(trichloroacetyl)-amidophosphate Interaction with DNA In Silico and Its Cytotoxic Activity Against Human Leukemic Cell Line In Vitro

    Science.gov (United States)

    Grebinyk, A.; Prylutska, S.; Grynyuk, I.; Kolp, B.; Hurmach, V.; Sliva, T.; Amirkhanov, V.; Trush, V.; Matyshevska, O.; Slobodyanik, M.; Prylutskyy, Yu.; Frohme, M.; Ritter, U.

    2018-03-01

    New representative of carbacylamidophosphates - diphenyl-N-(trichloroacetyl)-amidophosphate (HL), which contains two phenoxy substituents near the phosphoryl group, was synthesized, identified by elemental analysis and IR and NMR spectroscopy, and tested as a cytotoxic agent itself and in combination with C60 fullerene. According to molecular simulation results, C60 fullerene and HL could interact with DNA and form a rigid complex stabilized by stacking interactions of HL phenyl groups with C60 fullerene and DNA G nucleotide, as well as by interactions of HL CCl3 group by ion-π bonds with C60 molecule and by electrostatic bonds with DNA G nucleotide. With the use of MTT test, the cytotoxic activity of HL against human leukemic CCRF-CM cells with IC50 value detected at 10 μM concentration at 72 h of cells treatment was shown. Under combined action of 16 μM C60 fullerene and HL, the value of IC50 was detected at lower 5 μM HL concentration and at earlier 48 h period of incubation, besides the cytotoxic effect of HL was observed at a low 2.5 μM concentration at which HL by itself had no influence on cell viability. Binding of C60 fullerene and HL with minor DNA groove with formation of a stable complex is assumed to be one of the possible reasons of their synergistic inhibition of CCRF-CEM cells proliferation. Application of C60 fullerene in combination with 2.5 μM HL was shown to have no harmful effect on structural stability of blood erythrocytes membrane. Thus, combined action of C60 fullerene and HL in a low concentration potentiated HL cytotoxic effect against human leukemic cells and was not followed by hemolytic effect.

  6. Combined Treatment with Low Concentrations of Decitabine and SAHA Causes Cell Death in Leukemic Cell Lines but Not in Normal Peripheral Blood Lymphocytes

    Directory of Open Access Journals (Sweden)

    Barbora Brodská

    2013-01-01

    Full Text Available Epigenetic therapy reverting aberrant acetylation or methylation offers the possibility to target preferentially tumor cells and to preserve normal cells. Combination epigenetic therapy may further improve the effect of individual drugs. We investigated combined action of demethylating agent decitabine and histone deacetylase inhibitor SAHA (Vorinostat on different leukemic cell lines in comparison with peripheral blood lymphocytes. Large decrease of viability, as well as huge p21WAF1 induction, reactive oxygen species formation, and apoptotic features due to combined decitabine and SAHA action were detected in leukemic cell lines irrespective of their p53 status, while essentially no effect was observed in response to the combined drug action in normal peripheral blood lymphocytes of healthy donors. p53-dependent apoptotic pathway was demonstrated to participate in the wtp53 CML-T1 leukemic cell line response, while significant influence of reactive oxygen species on viability decrease has been detected in p53-null HL-60 cell line.

  7. Normal and Leukemic Hematopoiesis

    NARCIS (Netherlands)

    Vercauteren, Suzanne Maria

    2003-01-01

    Acute Myeloid Leukemia (AML) is a clonal myeloproliferative disease characterized by an uncontrolled proliferation and block in differentiation of myeloid committed blood cells in the bone marrow. Despite the lack of mature cells derived from the leukemic clone in the majority of AML patients, AML

  8. Uncontrolled hypertension secondary to leukemic cell infiltration of kidneys in a hemodialysis patient

    Directory of Open Access Journals (Sweden)

    Kultigin Turkmen

    2010-06-01

    Full Text Available Kultigin Turkmen1, Lutfullah Altintepe2, Ibrahim Guney2, Ismet Aydogdu3, Osman Koc4, Mehmet Ali Erkut5, Halil Zeki Tonbul11Department of Nephrology, Meram School of Medicine, Selcuk University, 2Meram Training and Research Hospital, Selcuk University, 3Department of Hematology, Meram School of Medicine, Selcuk University, 4Department of Radiology, Meram School of Medicine, Selcuk University, 5Department of Hematology, Meram Training and Research Hospital, Selcuk UniversityAbstract: Leukemic infiltration of the kidney is usually silent, and the admission of the patients with renal dysfunction or acute kidney injury is uncommon. We present a 34-year old hemodialysis patient with new onset of uncontrolled hypertension, erythropoietin-resistant anemia, thrombocytopenia, and Bell’s palsy. On admission, his blood pressure (BP was 210/110 mmHg and he had petechiae and purpura at upper and lower extremities. Renal ultrasonography (USG showed bilaterally enlarged kidneys without hydronephrosis, unlike his previous USG, which determined bilaterally atrophic kidneys. Acute lymphoblastic leukemia, hypertensive crisis due to bilateral leukemic cell infiltration of kidneys, tumor lysis syndrome, and leukemic involvement of the facial nerve were diagnosed. Despite intense antihypertensive management, his BP was not controlled. After prednisolone, daunorubicine, and vincristine therapy, the size of kidneys diminished and his BP dropped under normal range. In conclusion, pathological findings such as uncontrolled hypertension, flank pain, skin rashes, and abnormal blood count should be considered carefully, even in patients with end-stage renal disease receiving renal replacement therapy.Keywords: leukemic cell infiltration, uncontrolled hypertension, hemodialysis

  9. Flow cytometric analysis of expression of interleukin-2 receptor beta chain (p70-75) on various leukemic cells

    International Nuclear Information System (INIS)

    Hoshino, S.; Oshimi, K.; Tsudo, M.; Miyasaka, M.; Teramura, M.; Masuda, M.; Motoji, T.; Mizoguchi, H.

    1990-01-01

    We analyzed the expression of the interleukin-2 receptor (IL-2R) beta chain (p70-75) on various leukemic cells from 44 patients by flow cytometric analysis using the IL-2R beta chain-specific monoclonal antibody, designated Mik-beta 1. Flow cytometric analysis demonstrated the expression of the IL-2R beta chain on granular lymphocytes (GLs) from all eight patients with granular lymphocyte proliferative disorders (GLPDs), on adult T-cell leukemia (ATL) cells from all three patients with ATL, and on T-cell acute lymphoblastic leukemia (T-ALL) cells from one of three patients with T-ALL. Although GLs from all the GLPD patients expressed the IL-2R beta chain alone and not the IL-2R alpha chain (Tac-antigen: p55), ATL and T-ALL cells expressing the beta chain coexpressed the alpha chain. In two of seven patients with common ALL (cALL) and in both patients with B-cell chronic lymphocytic leukemia, the leukemic cells expressed the alpha chain alone. Neither the alpha chain nor the beta chain was expressed on leukemic cells from the remaining 28 patients, including all 18 patients with acute nonlymphocytic leukemia, five of seven patients with cALL, all three patients with multiple myeloma, and two of three patients with T-ALL. These results indicate that three different forms of IL-2R chain expression exist on leukemic cells: the alpha chain alone; the beta chain alone; and both the alpha and beta chains. To examine whether the results obtained by flow cytometric analysis actually reflect functional aspects of the expressed IL-2Rs, we studied the specific binding of 125I-labeled IL-2 (125I-IL-2) to leukemic cells in 18 of the 44 patients. In addition, we performed 125I-IL-2 crosslinking studies in seven patients. The results of IL-2R expression of both 125I-IL-2 binding assay and crosslinking studies were in agreement with those obtained by flow cytometric analysis

  10. Brief Report: Human Acute Myeloid Leukemia Reprogramming to Pluripotency Is a Rare Event and Selects for Patient Hematopoietic Cells Devoid of Leukemic Mutations.

    Science.gov (United States)

    Lee, Jong-Hee; Salci, Kyle R; Reid, Jennifer C; Orlando, Luca; Tanasijevic, Borko; Shapovalova, Zoya; Bhatia, Mickie

    2017-09-01

    Induced pluripotent stem cell reprogramming has provided critical insights into disease processes by modeling the genetics and related clinical pathophysiology. Human cancer represents highly diverse genetics, as well as inter- and intra-patient heterogeneity, where cellular model systems capable of capturing this disease complexity would be invaluable. Acute myeloid leukemia (AML) represents one of most heterogeneous cancers and has been divided into genetic subtypes correlated with unique risk stratification over the decades. Here, we report our efforts to induce pluripotency from the heterogeneous population of human patients that represents this disease in the clinic. Using robust optimized reprogramming methods, we demonstrate that reprogramming of AML cells harboring leukemic genomic aberrations is a rare event with the exception of those with de novo mixed-lineage leukemia (MLL) mutations that can be reprogrammed and model drug responses in vitro. Our findings indicate that unlike hematopoietic cells devoid of genomic aberrations, AML cells harboring driver mutations are refractory to reprogramming. Expression of MLL fusion proteins in AML cells did not contribute to induced reprogramming success, which continued to select for patient derived cells devoid of AML patient-specific aberrations. Our study reveals that unanticipated blockades to achieving pluripotency reside within the majority of transformed AML patient cells. Stem Cells 2017;35:2095-2102. © 2017 AlphaMed Press.

  11. Hematopoietic stem cells can be separated from leukemic cells in a subgroup of adult acute lymphoblastic leukemia patients.

    Science.gov (United States)

    Wang, Wenwen; Foerner, Elena; Buss, Eike; Jauch, Anna; Eckstein, Volker; Wuchter, Patrick; Ho, Anthony D; Lutz, Christoph

    2017-06-01

    In B-cell acute lymphoblastic leukemia (B-ALL) separation of normal hematopoietic stem cells (HSC) has so far been limited to a subgroup of patients. As aldehyde dehydrogenase (ALDH)-activity is enriched in various stem cells we investigated its value for HSC isolation in adult B-ALL. Based on ALDH-activity patients could be stratified in ALDH-numerous (≥1.9% ALDH +  cells) and ALDH-rare (cells) cases. In ALDH-rare B-ALL clonal-marker negative HSC could be separated by the CD34 + CD38 - ALDH +  phenotype, whereas this separation was not possible in ALDH-numerous B-ALL. Functional analysis confirmed the HSC-potential of isolated cells, which were uniformly CD19-negative. However, addition of ALDH-activity further improved HSC-purity. In summary, we provide a method to separate functionally normal HSC from leukemic cells in a subgroup of B-ALL patients that can be identified prospectively. This protocol thereby facilitates comparative analyses of matched HSC and leukemic cells in order to improve our understanding of leukemia evolution.

  12. Resistance of some leukemic blasts to lysis by lymphokine activated killer (LAK) cells

    Energy Technology Data Exchange (ETDEWEB)

    Panayotides, P; Sjoegren, A -M; Reizenstein, P; Porwit, A. Immunopathology Lab., Dept. of Pathology, Karolinska Hospital, Stockholm; Wasserman, J

    1988-01-01

    Peripheral blood mononuclear cells (PBMC) from healthy donors and AML patients in remission were stimulated with phytohemagglutinin (PHA) and recombinant interleukin-2 (IL-2). These stimulated cells (lymphokine activated killer (LAK) cells) showed increased DNA synthesis as measured by /sup 3/H-Thymidine uptake. A synergistic effect of PHA and IL-2 was found. LAK cells' ability to kill acute myeloid leukemia (AML) blasts was investigated by the /sup 51/Cr release assay. LAK cells showed a cytotoxicity (over 10% specific /sup 51/Cr release) against 9/12 leukemic blasts, even at effector/target (E/T) ratios as low as 5:1. However, on average only 22.2% (SD 11.8) and 36.5% (SD 12.5) /sup 51/Cr release were obtained in 4- and 18-hour cytotoxicity assays, respectively, at an E/T ratio of 20:1. Leukemic blasts in 3/12 AML cases and normal PBMC were entirely resistant to lysis, even at an E/T ratio of 80:1. Susceptibility to lysis was not correlated to peanut-agglutinin receptor expression. LAK cells were more cytotoxic towards the K-562 cell line (natural killer activity) than unstimulated PBMC.

  13. Leukemic meningitis involving the cauda equina: a case report

    International Nuclear Information System (INIS)

    Lee, Dong Hyun; Kim, Ho Kyun; Lee, Young Hwan

    2008-01-01

    The CNS involvement by leukemia may either be meningeal or parenchymal, although meningeal infiltration of leukemic cells, known as leukemic meningitis is more common. We report a case of leukemic meningitis involving the cauda equina in a patient with an acute lymphoblastic crisis which transformed from the chronic phase of chronic myeloid leukemia. An MR image revealed diffuse enlargement and peripheral ring enhancement of the nerve roots of the cauda equina

  14. Leukemic meningitis involving the cauda equina: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hyun; Kim, Ho Kyun; Lee, Young Hwan [School of Medicine, Catholic University of Daegu, Daegu (Korea, Republic of)

    2008-07-15

    The CNS involvement by leukemia may either be meningeal or parenchymal, although meningeal infiltration of leukemic cells, known as leukemic meningitis is more common. We report a case of leukemic meningitis involving the cauda equina in a patient with an acute lymphoblastic crisis which transformed from the chronic phase of chronic myeloid leukemia. An MR image revealed diffuse enlargement and peripheral ring enhancement of the nerve roots of the cauda equina.

  15. Effects of granulocyte-macrophage colony-stimulating factor and interleukin 6 on the growth of leukemic blasts in suspension culture.

    Science.gov (United States)

    Tsao, C J; Cheng, T Y; Chang, S L; Su, W J; Tseng, J Y

    1992-05-01

    We examined the stimulatory effects of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 6 (IL)-6 on the in vitro proliferation of leukemic blast cells from patients with acute leukemia. Bone marrow or peripheral blood leukemic blast cells were obtained from 21 patients, including 14 cases of acute myeloblastic leukemia (AML), four cases of acute lymphoblastic leukemia (ALL), two cases of acute undifferentiated leukemia, and one case of acute mixed-lineage leukemia. The proliferation of leukemic blast cells was evaluated by measuring the incorporation of 3H-thymidine into cells incubated with various concentrations of cytokines for 3 days. GM-CSF stimulated the DNA synthesis (with greater than 2.0 stimulation index) of blast cells in 9 of 14 (64%) AML cases, two cases of acute undifferentiated leukemia and one case of acute mixed-lineage leukemia. Only two cases of AML blasts responded to IL-6 to grow in the short-term suspension cultures. GM-CSF and IL-6 did not display a synergistic effect on the growth of leukemic cells. Moreover, GM-CSF and IL-6 did not stimulate the proliferation of ALL blast cells. Binding study also revealed the specific binding of GM-CSF on the blast cells of acute undifferentiated leukemia and acute mixed-lineage leukemia. Our results indicated that leukemic blast cells of acute undifferentiated leukemia and acute mixed-lineage leukemia possessed functional GM-CSF receptors.

  16. Leukemic meningitis in a patient with hairy cell leukemia. A case report

    International Nuclear Information System (INIS)

    Wolfe, D.W.; Scopelliti, J.A.; Boselli, B.D.

    1984-01-01

    Central nervous system involvement has not previously been described in patients with hairy cell leukemia (HCL). A patient is reported who presented with meningeal involvement as his initial symptom of HCL. Diagnosis was established by morphologic and cytochemical studies of his cerebrospinal fluid (CSF) and bone marrow. Treatment with whole-brain irradiation and intrathecal chemotherapy was successful in clearing leukemic cells from the CSF with resolution of symptoms

  17. Human monoclonal antibodies reactive with human myelomonocytic leukemia cells.

    Science.gov (United States)

    Posner, M R; Santos, D J; Elboim, H S; Tumber, M B; Frackelton, A R

    1989-04-01

    Peripheral blood mononuclear cells from a patient with chronic myelogenous leukemia (CML), in remission, were depleted of CD8-positive T-cells and cultured with Epstein-Barr virus. Four of 20 cultures (20%) secreted human IgG antibodies selectively reactive with the cell surfaces of certain human leukemia cell lines. Three polyclonal, Epstein-Barr virus-transformed, B-cell lines were expanded and fused with the human-mouse myeloma analogue HMMA2.11TG/O. Antibody from secreting clones HL 1.2 (IgG1), HL 2.1 (IgG3), and HL 3.1 (IgG1) have been characterized. All three react with HL-60 (promyelocytic), RWLeu4 (CML promyelocytic), and U937 (monocytic), but not with KG-1 (myeloblastic) or K562 (CML erythroid). There is no reactivity with T-cell lines, Burkitt's cell lines, pre-B-leukemia cell lines, or an undifferentiated CML cell line, BV173. Leukemic cells from two of seven patients with acute myelogenous leukemia and one of five with acute lymphocytic leukemia react with all three antibodies. Normal lymphocytes, monocytes, polymorphonuclear cells, red blood cells, bone marrow cells, and platelets do not react. Samples from patients with other diverse hematopoietic malignancies showed no reactivity. Immunoprecipitations suggest that the reactive antigen(s) is a lactoperoxidase iodinatable series of cell surface proteins with molecular weights of 42,000-54,000 and a noniodinatable protein with a molecular weight of 82,000. Based on these data these human monoclonal antibodies appear to react with myelomonocytic leukemic cells and may detect a leukemia-specific antigen or a highly restricted differentiation antigen.

  18. Demonstration of interleukin-1 beta transcripts in acute myeloblastic leukemic cells by in situ hybridization.

    Science.gov (United States)

    Nakamura, M; Kanakura, Y; Furukawa, Y; Ernst, T J; Griffin, J D

    1990-07-01

    The cells from some patients with acute myeloblastic leukemia will secrete autostimulatory cytokines in tissue culture without the addition of stimulators such as phorbol 12-myristate 13-acetate. Production of interleukin-1 beta (IL-1 beta), for example, has been observed in up to 50% of cases. In order to investigate the nature of the cell secreting IL-1 beta in AML, we used an antisense RNA probe to detect specific IL-1 beta transcripts in individual leukemic cells by in situ hybridization. In fresh, uncultured cells, IL-1 beta transcripts were observed in 1-40% of undifferentiated leukemic blast cells in 17 of 19 cases. In situ hybridization was at least as sensitive as Northern blot analysis in detecting IL-1 beta transcripts. No correlation of IL-1 beta transcript expression with FAB classification was observed. Normal blood and bone marrow mononuclear cells did not contain cells expressing IL-1 beta transcripts. These results support the concept that the regulation of cytokine genes in AML cells is aberrant.

  19. Resveratrol protects leukemic cells against cytotoxicity induced by proteasome inhibitors via induction of FOXO1 and p27Kip1

    International Nuclear Information System (INIS)

    Niu, Xiao-Fang; Liu, Bao-Qin; Du, Zhen-Xian; Gao, Yan-Yan; Li, Chao; Li, Ning; Guan, Yifu; Wang, Hua-Qin

    2011-01-01

    It was reported recently that resveratrol could sensitize a number of cancer cells to the antitumoral effects of some conventional chemotherapy drugs. The current study was designed to investigate whether resveratrol could sensitize leukemic cells to proteasome inhibitors. Leukemic cells were treated with MG132 alone or in combination with resveratrol. Cell viability was investigated using MTT assay, and induction of apoptosis and cell cycle distribution was measured using flow cytometry. Western blot and real-time RT-PCR were used to investigate the expression of FOXO1 and p27 Kip1 . CHIP was performed to investigate the binding of FOXO1 to the p27 Kip1 promoter. Resveratrol strongly reduced cytotoxic activities of proteasome inhibitors against leukemic cells. MG132 in combination with resveratrol caused cell cycle blockade at G1/S transition via p27 Kip1 accumulation. Knockdown of p27 Kip1 using siRNA dramatically attenuated the protective effects of resveratrol on cytotoxic actions of proteasome inhibitors against leukemic cells. Resveratrol induced FOXO1 expression at the transcriptional level, while MG132 increased nuclear distribution of FOXO1. MG132 in combination with resveratrol caused synergistic induction of p27 Kip1 through increased recruitment of FOXO1 on the p27 Kip1 promoter. Resveratrol may have the potential to negate the cytotoxic effects of proteasome inhibitors via regulation of FOXO1 transcriptional activity and accumulation of p27 Kip1

  20. Noninvasive identification of subcellular organization and nuclear morphology features associated with leukemic cells using light-scattering spectroscopy

    Science.gov (United States)

    Hsiao, Austin; Hunter, Martin; Greiner, Cherry; Gupta, Sharad; Georgakoudi, Irene

    2011-03-01

    Leukemia is the most common and deadly cancer among children and one of the most prevalent cancers among adults. Improvements in its diagnosis and monitoring of leukemic patients could have a significant impact in their long-term treatment. We demonstrate that light-scattering spectroscopy (LSS)-based approaches could serve as a tool to achieve this goal. Specifically, we characterize the light scattering properties of leukemic (NALM-6) cells and compare them to those of normal lymphocytes and granulocytes in the 440-710 nm range, over +/-4 deg about the exact backscattering direction. We find that the LSS spectra are well described by an inverse power-law wavelength dependence, with a power exponent insensitive to the scattering angle but significantly higher for leukemic cells than for normal leukocytes. This is consistent with differences in the subcellular morphology of these cells, detected in differential interference contrast images. Furthermore, the residual light-scattering signal, extracted after subtracting the inverse power-law fit from the data, can be analyzed assuming a Gaussian distribution of spherical scatterers using Mie theory. This analysis yields scatterer sizes that are consistent with the diameters of cell nuclei and allows the detection of the larger nuclei of NALM-6 cells compared to those of lymphocytes and granulocytes.

  1. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1.

    Science.gov (United States)

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-02-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK-HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated.

  2. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1

    Science.gov (United States)

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-01-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK–HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated. PMID:27451975

  3. Musashi2 modulates K562 leukemic cell proliferation and apoptosis involving the MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huijuan; Tan, Shi; Wang, Juan; Chen, Shana; Quan, Jing; Xian, Jingrong; Zhang, Shuai shuai; He, Jingang; Zhang, Ling, E-mail: lingzhang@cqmu.edu.cn

    2014-01-01

    The RNA-binding protein Musashi2 (Msi2) has been identified as a master regulator within a variety of stem cell populations via the regulation of translational gene expression. A recent study has suggested that Msi2 is strongly expressed in leukemic cells of acute myeloid leukemia patients, and elevated Msi2 is associated with poor prognosis. However, the potential role of Msi2 in leukemogenesis is still not well understood. Here, we investigated the effect of Msi2 knockdown on the biological properties of leukemic cells. High expression of Msi2 was found in K562 and KG-1a leukemic cell lines, and low expression was observed in the U937 cell line. We transduced K562 cells with two independent adenoviral shRNA vectors targeting Msi2 and confirmed knockdown of Msi2 at the mRNA and protein levels. Msi2 silencing inhibited cell growth and caused cell cycle arrest by increasing the expression of p21 and decreasing the expression of cyclin D1 and cdk2. In addition, knockdown of Msi2 promoted cellular apoptosis via the upregulation of Bax and downregulation of Bcl-2 expression. Furthermore, Msi2 knockdown resulted in the inactivation of the ERK/MAPK and p38/MAPK pathways, but no remarkable change in p-AKT was observed. These data provide evidence that Msi2 plays an important role in leukemogenesis involving the MAPK signaling pathway, which indicates that Msi2 may be a novel target for leukemia treatment. - Highlights: • Knockdown of Msi2 inhibited K562 cell growth and arrested cell cycle progression. • Knockdown of Msi2 induced K562 cell apoptosis via the regulation of Bax and Bcl-2. • The MAPK pathway was involved in the process of Msi2-mediated leukemogenesis. • Our data indicate that Msi2 is a potential new target for leukemia treatment.

  4. Inhibitory effect of turmeric curcuminoids on FLT3 expression and cell cycle arrest in the FLT3-overexpressing EoL-1 leukemic cell line.

    Science.gov (United States)

    Tima, Singkome; Ichikawa, Hideki; Ampasavate, Chadarat; Okonogi, Siriporn; Anuchapreeda, Songyot

    2014-04-25

    Leukemia is a hematologic malignancy with a frequent incidence and high mortality rate. Previous studies have shown that the FLT3 gene is overexpressed in leukemic blast cells, especially in acute myeloid leukemia. In this study, a commercially available curcuminoid mixture (1), pure curcumin (2), pure demethoxycurcumin (3), and pure bisdemethoxycurcumin (4) were investigated for their inhibitory effects on cell growth, FLT3 expression, and cell cycle progression in an FLT3-overexpressing EoL-1 leukemic cell line using an MTT assay, Western blotting, and flow cytometry, respectively. The mixture (1) and compounds 2-4 demonstrated cytotoxic effects with IC50 values ranging from 6.5 to 22.5 μM. A significant decrease in FLT3 protein levels was found after curcuminoid treatment with IC20 doses, especially with mixture 1 and compound 2. In addition, mixture 1 and curcumin (2) showed activity on cell cycle arrest at the G0/G1 phase and decreased the FLT3 and STAT5A protein levels in a dose-dependent manner. Compound 2 demonstrated the greatest potential for inhibiting cell growth, cell cycle progression, and FLT3 expression in EoL-1 cells. This investigation has provided new findings regarding the effect of turmeric curcuminoids on FLT3 expression in leukemic cells.

  5. IN SILICO MODELLING OF CYTOTOXIC BEHAVIOUR OF ANTI-LEUKEMIC COMPOUNDS ON HL-60 CELL LINE

    Directory of Open Access Journals (Sweden)

    David Ebuka Arthur

    2016-05-01

    Full Text Available This research employs multiple linear regression technique in the modelling of some potent anti-leukemic compounds using paDEL molecular descriptor software calculator, to identify the best relationship between the chemical structure and toxicities of the anticancer datasets against some leukemic cell lines (HL-60. Statistical parameters such as Q2 and R2pred (test set were computed to validate the strength of the model, while Williams plot was used to assess its applicability domain. The mean effects of the molecular descriptors in the models were calculated to illuminate the principal properties of the molecules responsible for their cytotoxicity.

  6. BCR/ABL downregulates DNA-PK(CS)-dependent and upregulates backup non-homologous end joining in leukemic cells.

    Science.gov (United States)

    Poplawski, Tomasz; Blasiak, Janusz

    2010-06-01

    Non-homologous end joining (NHEJ) and homologous recombination repair (HRR) are the main mechanisms involved in the processing of DNA double strand breaks (DSBs) in humans. We showed previously that the oncogenic tyrosine kinase BCR/ABL stimulated DSBs repair by HRR. To evaluate the role of BCR/ABL in DSBs repair by NHEJ we examined the ability of leukemic BCR/ABL-expressing cell line BV173 to repair DNA damage induced by two DNA topoisomerase II inhibitors: etoposide and sobuzoxane. DNA lesions induced by sobuzoxane are repaired by a NHEJ pathway which is dependent on the catalytic subunit of protein kinase dependent on DNA (DNA-PK(CS); D-NHEJ), whereas damage evoked by etoposide are repaired by two distinct NHEJ pathways, dependent on or independent of DNA-PK(CS) (backup NHEJ, B-NHEJ). Cells incubated with STI571, a highly specific inhibitor of BCR/ABL, displayed resistance to these agents associated with an accelerated kinetics of DSBs repair, as measured by the neutral comet assay and pulsed field gel electrophoresis. However, in a functional NHEJ assay, cells preincubated with STI571 repaired DSBs induced by a restriction enzyme with a lower efficacy than without the preincubation and addition of wortmannin, a specific inhibitor of DNA-PK(CS), did not change efficacy of the NHEJ reaction. We suggest that BCR/ABL switch on B-NHEJ which is more error-prone then D-NHEJ and in such manner contribute to the increase of the genomic instability of leukemic cells.

  7. Inhibition of time-dependent enhancement of amino acid transport by leukemic leukocytes: a possible index of the sensitivity of cells to drugs

    Energy Technology Data Exchange (ETDEWEB)

    Frengley, P A; Peck, W A; Lichtman, M A

    1975-01-01

    Leukemic leukocytes increase their rates of alpha aminoisobutyric acid (AIB) accumulation when incubated for prolonged periods in amino acid deficient media. The time-dependent increase was prevented by concurrent exposure of cells to cycloheximide or actinomycin D in vitro. In addition, the increase in AIB uptake was not present in leukemic blasts studied in vitro when the cells were obtained from subjects with acute myeloblastic leukemia who had received antileukemic therapy. Cortisol added to cell suspensions in vitro inhibited the development of time-dependent increases in AIB uptake in lymphoid cells, but accentuated the process slightly in myeloblasts. Cortisol administered to a subject with CLL by infusion reduced the time-dependent increase in AIB uptake by CLL cells subsequently studied in vitro. These data indicate that the time-dependent increase in AIB uptake may be a means of testing the sensitivity of leukemic cells to drugs.

  8. Expression of MIF and CD74 in leukemic cell lines: correlation to DR expression destiny.

    Science.gov (United States)

    Georgouli, Mirella; Papadimitriou, Lina; Glymenaki, Maria; Patsaki, Valia; Athanassakis, Irene

    2016-06-01

    Invariant chain (Ii) or CD74 is a non-polymorphic glycoprotein, which apart from its role as a chaperone dedicated to MHCII molecules, is known to be a high-affinity receptor for macrophage migration inhibitory factor (MIF). The present study aimed to define the roles of CD74 and MIF in the immune surveillance escape process. Towards this direction, the cell lines HL-60, Raji, K562 and primary pre-B leukemic cells were examined for expression and secretion of MIF. Flow cytometry analysis detected high levels of MIF and intracellular/membrane CD74 expression in all leukemic cells tested, while MIF secretion was shown to be inversely proportional to intracellular HLA-DR (DR) expression. In the MHCII-negative cells, IFN-γ increased MIF expression and induced its secretion in HL-60 and K562 cells, respectively. In K562 cells, CD74 (Iip33Iip35) was shown to co-precipitate with HLA-DOβ (DOβ), inhibiting thus MIF or DR binding. Induced expression of DOα in K562 (DOα-DOβ+) cells in different transfection combinations decreased MIF expression and secretion, while increasing surface DR expression. Thus, MIF could indeed be part of the antigen presentation process.

  9. The cyclin-dependent kinase inhibitor 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole induces nongenotoxic, DNA replication-independent apoptosis of normal and leukemic cells, regardless of their p53 status

    International Nuclear Information System (INIS)

    Turinetto, Valentina; Porcedda, Paola; Orlando, Luca; De Marchi, Mario; Amoroso, Antonio; Giachino, Claudia

    2009-01-01

    Current chemotherapy of human cancers focuses on the DNA damage pathway to induce a p53-mediated cellular response leading to either G1 arrest or apoptosis. However, genotoxic treatments may induce mutations and translocations that result in secondary malignancies or recurrent disease. In addition, about 50% of human cancers are associated with mutations in the p53 gene. Nongenotoxic activation of apoptosis by targeting specific molecular pathways thus provides an attractive therapeutic approach. Normal and leukemic cells were evaluated for their sensitivity to 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) through cell viability and caspase activation tests. The apoptotic pathway induced by DRB was analysed by immunfluorescence and immunoblot analysis. H2AX phosphorylation and cell cycle analysis were performed to study the dependance of apoptosis on DNA damage and DNA replication, respectively. To investigate the role of p53 in DRB-induced apoptosis, specific p53 inhibitors were used. Statistical analysis on cell survival was performed with the test of independence. Here we report that DRB, an inhibitor of the transcriptional cyclin-dependent kinases (CDKs) 7 and 9, triggers DNA replication-independent apoptosis in normal and leukemic human cells regardless of their p53 status and without inducing DNA damage. Our data indicate that (i) in p53-competent cells, apoptosis induced by DRB relies on a cytosolic accumulation of p53 and subsequent Bax activation, (ii) in the absence of p53, it may rely on p73, and (iii) it is independent of ATM and NBS1 proteins. Notably, even apoptosis-resistant leukemic cells such as Raji were sensitive to DRB. Our results indicate that DRB represents a potentially useful cancer chemotherapeutic strategy that employs both the p53-dependent and -independent apoptotic pathways without inducing genotoxic stress, thereby decreasing the risk of secondary malignancies

  10. Targeting Toll-like receptor 7/8 enhances uptake of apoptotic leukemic cells by monocyte-derived dendritic cells but interferes with subsequent cytokine-induced maturation.

    Science.gov (United States)

    van den Ancker, Willemijn; van Luijn, Marvin M; Ruben, Jurjen M; Westers, Theresia M; Bontkes, Hetty J; Ossenkoppele, Gert J; de Gruijl, Tanja D; van de Loosdrecht, Arjan A

    2011-01-01

    Therapeutic vaccination with dendritic cells (DC) is an emerging investigational therapy for eradication of minimal residual disease in acute myeloid leukemia. Various strategies are being explored in manufacturing DC vaccines ex vivo, e.g., monocyte-derived DC (MoDC) loaded with leukemia-associated antigens (LAA). However, the optimal source of LAA and the choice of DC-activating stimuli are still not well defined. Here, loading with leukemic cell preparations (harboring both unknown and known LAA) was explored in combination with a DC maturation-inducing cytokine cocktail (CC; IL-1β, IL-6, TNF-α, and PGE(2)) and Toll-like receptor ligands (TLR-L) to optimize uptake. Since heat shock induced apoptotic blasts were more efficiently taken up than lysates, we focused on uptake of apoptotic leukemic cells. Uptake of apoptotic blast was further enhanced by the TLR7/8-L R848 (20-30%); in contrast, CC-induced maturation inhibited uptake. CC, and to a lesser extent R848, enhanced the ability of MoDC to migrate and stimulate T cells. Furthermore, class II-associated invariant chain peptide expression was down-modulated after R848- or CC-induced maturation, indicating enhanced processing and presentation of antigenic peptides. To improve both uptake and maturation, leukemic cells and MoDC were co-incubated with R848 for 24 h followed by addition of CC. However, this approach interfered with CC-mediated MoDC maturation as indicated by diminished migratory and T cell stimulatory capacity, and the absence of IL-12 production. Taken together, our data demonstrate that even though R848 improved uptake of apoptotic leukemic cells, the sequential use of R848 and CC is counter-indicated due to its adverse effects on MoDC maturation.

  11. MicroRNA expression changes during human leukemic HL-60 cell differentiation induced by 4-hydroxynonenal, a product of lipid peroxidation.

    Science.gov (United States)

    Pizzimenti, Stefania; Ferracin, Manuela; Sabbioni, Silvia; Toaldo, Cristina; Pettazzoni, Piergiorgio; Dianzani, Mario Umberto; Negrini, Massimo; Barrera, Giuseppina

    2009-01-15

    4-Hydroxynonenal (HNE) is one of several lipid oxidation products that may have an impact on human pathophysiology. It is an important second messenger involved in the regulation of various cellular processes and exhibits antiproliferative and differentiative properties in various tumor cell lines. The mechanisms by which HNE affects cell growth and differentiation are only partially clarified. Because microRNAs (miRNAs) have the ability to regulate several cellular processes, we hypothesized that HNE, in addition to other mechanisms, could affect miRNA expression. Here, we present the results of a genome-wide miRNA expression profiling of HNE-treated HL-60 leukemic cells. Among 470 human miRNAs, 10 were found to be differentially expressed between control and HNE-treated cells (at p<0.05). Six miRNAs were down-regulated (miR-181a*, miR-199b, miR-202, miR-378, miR-454-3p, miR-575) and 4 were up-regulated (miR-125a, miR-339, miR-663, miR-660). Three of these regulated miRNAs (miR-202, miR-339, miR-378) were further assayed and validated by quantitative real-time RT-PCR. Moreover, consistent with the down-regulation of miR-378, HNE also induced the expression of the SUFU protein, a tumor suppressor recently identified as a target of miR-378. The finding that HNE could regulate the expression of miRNAs and their targets opens new perspectives on the understanding of HNE-controlled pathways. A functional analysis of 191 putative gene targets of miRNAs modulated by HNE is discussed.

  12. Isolation of a novel chronic lymphocytic leukemic (CLL) cell line and development of an in vivo mouse model of CLL.

    Science.gov (United States)

    Kellner, Joshua; Wierda, William; Shpall, Elizabeth; Keating, Michael; McNiece, Ian

    2016-01-01

    Leukemic cell lines have become important tools for studies of disease providing a monoclonal cell population that can be extensively expanded in vitro while preserving leukemic cellular characteristics. However, studies of chronic lymphocytic leukemia (CLL) have been impeded in part by the lack of continuous human cell lines. CLL cells have a high spontaneous apoptosis rate in vitro and exhibit minimal proliferation in xenograft models. Therefore, there is a need for development of primary CLL cell lines and we describe the isolation of such a line from the bone marrow of a CLL patient (17p deletion and TP53 mutation) which has been in long term culture for more than 12 months with continuous proliferation. The CLL cell line (termed MDA-BM5) which was generated in vitro with continuous co-culture on autologous stromal cells is CD19+CD5+ and shows an identical pattern of somatic hypermutation as determined in the patient's bone marrow (BM), confirming the origin of the cells from the original CLL clone. MDA-BM5 cells were readily transplantable in NOD/SCID gamma null mice (NSG) with disease developing in the BM, liver and spleen. BM cells from quaternary serial transplantation in NSG mice demonstrated the presence of CD19+CD5+ cells with Ig restricted to lambda which is consistent with the original patient cells. These studies describe a new CLL cell line from a patient with del(17p) that provides a unique model for in vitro and in vivo studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Anti-leukemic activity of bortezomib and carfilzomib on B-cell precursor ALL cell lines.

    Directory of Open Access Journals (Sweden)

    Kazuya Takahashi

    Full Text Available Prognosis of childhood acute lymphoblastic leukemia (ALL has been dramatically improved. However, prognosis of the cases refractory to primary therapy is still poor. Recent phase 2 study on the efficacy of combination chemotherapy with bortezomib (BTZ, a proteasome inhibitor, for refractory childhood ALL demonstrated favorable clinical outcomes. However, septic death was observed in over 10% of patients, indicating the necessity of biomarkers that could predict BTZ sensitivity. We investigated in vitro BTZ sensitivity in a large panel of ALL cell lines that acted as a model system for refractory ALL, and found that Philadelphia chromosome-positive (Ph+ ALL, IKZF1 deletion, and biallelic loss of CDKN2A were associated with favorable response. Even in Ph-negative ALL cell lines, IKZF1 deletion and bilallelic loss of CDKN2A were independently associated with higher BTZ sensitivity. BTZ showed only marginal cross-resistance to four representative chemotherapeutic agents (vincristine, dexamethasone, l-asparaginase, and daunorubicin in B-cell precursor-ALL cell lines. To improve the efficacy and safety of proteasome inhibitor combination chemotherapy, we also analyzed the anti-leukemic activity of carfilzomib (CFZ, a second-generation proteasome inhibitor, as a substitute for BTZ. CFZ showed significantly higher activity than BTZ in the majority of ALL cell lines except for the P-glycoprotein-positive t(17;19 ALL cell lines, and IKZF1 deletion was also associated with a favorable response to CFZ treatment. P-glycoprotein inhibitors effectively restored the sensitivity to CFZ, but not BTZ, in P-glycoprotein-positive t(17;19 ALL cell lines. P-glycoprotein overexpressing ALL cell line showed a CFZ-specific resistance, while knockout of P-glycoprotein by genome editing with a CRISPR/Cas9 system sensitized P-glycoprotein-positive t(17;19 ALL cell line to CFZ. These observations suggested that IKZF1 deletion could be a useful biomarker to predict good

  14. Correlation of total body potassium and leukemic cell mass in patients with chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Chandra, P.; Sawitsky, A.; Chanana, A.D.; Chikkappa, G.; Cohn, S.H.; Rai, K.R.; Cronkity, E.P.

    1979-01-01

    Total body leukemic mass in patients with chronic lymphocytic leukemia (CLL) was measured by quantitation of total body potassium (TBK) with a whole-body counter. In addition, the predicted normal total body potassium (Kp) for each patient was calculated from an empirically derived relationship involving height, weight age, and sex. Both the absolute TBK and the relative excess of total body potassium (TBK/Kp) were related to the stage of disease. Patients in the early stages of CLL were found to have lower TBK and TBK/Kp than patients in the late stages of disease. Both of these parameters increased with the successively advanced stages of the disease. The clinically monitored reduction of leukemic cell mass following therapy was accompanied by reductions in TBK and TBK/Kp. Data presented support the notion that TBK/Kp is a useful indicator of the total body leukemic mass. Futhermore, the results of these studies quantitatively validate the proposed clinical staging system for CLL. Quantitation of TBK by a whole-body counter is an accurate and noninvasive procedure and does not require administration of isotopes

  15. [Expression of c-MPL in leukemic stem cells from acute myeloid leukemia patients].

    Science.gov (United States)

    Yu, Pei; Qiu, Shao-Wei; Rao, Qing; Lin, Dong; Xing, Hai-Yan; Tang, Ke-Jing; Tian, Zheng; Wang, Min; Wang, Jian-Xiang

    2012-10-01

    This study was aimed to investigate the expression of c-MPL in acute myeloid leukemia (AML) and the correlation of the c-MPL expression with CD34 and CD38, so as to define the expression of c-MPL in leukemic stem cells. The expression levels of CD34, CD38 and c-MPL were detected by flow cytometry in bone marrow cells from 29 newly diagnosed AML patients. The relationship of c-MPL positive cell ratio with clinical parameters and correlation of c-MPL with CD34 and CD38 expression in AML patients were analyzed. The results showed that expression level of c-MPL in AML patients was significantly higher than that of normal controls (P MPL did not correlate with age, sex, white blood cell count, AML1-ETO fusion gene and remission after chemotherapy, but the expression of c-MPL in M2 and M5 patients was higher than that of normal control (P MPL in CD34 positive AML patients was obviously higher than that in CD34 negative AML patients (P MPL was significantly higher expressed in CD34(+) cells than that in CD34(-) cells (P MPL expression was not significantly different between CD34(+)CD38(-) and CD34(+)CD38(-) cell groups. Positive correlation between c-MPL and CD34 expression was observed (r = 0.380, P = 0.042). It is concluded that expression of c-MPL is higher in AML patients, and positively correlates with the expression level of CD34. The c-MPL expresses in leukemic stem cells.

  16. Indoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells

    OpenAIRE

    Curti, A; Trabanelli, S; Onofri, C; Aluigi, M; Salvestrini, V; Ocadlikova, D; Evangelisti, C; Rutella, S; De Cristofaro, R; Ottaviani, E; Baccarani, M; Lemoli, RM

    2010-01-01

    Background: The immunoregulatory enzyme indoleamine 2,3-dioxygenase, which catalyzes the conversion of tryptophan into kynurenine, is expressed in a significant subset of patients with acute myeloid leukemia, resulting in the inhibition of T-cell proliferation and the induction of regulatory T cells. Acute myeloid leukemia cells can be differentiated into dendritic cells, which have increased immunogenicity and have been proposed as vaccines against leukemia.\\ud Design and Methods: Leukemic d...

  17. Novel quinazolinone MJ-29 triggers endoplasmic reticulum stress and intrinsic apoptosis in murine leukemia WEHI-3 cells and inhibits leukemic mice.

    Directory of Open Access Journals (Sweden)

    Chi-Cheng Lu

    Full Text Available The present study was to explore the biological responses of the newly compound, MJ-29 in murine myelomonocytic leukemia WEHI-3 cells in vitro and in vivo fates. We focused on the in vitro effects of MJ-29 on ER stress and mitochondria-dependent apoptotic death in WEHI-3 cells, and to hypothesize that MJ-29 might fully impair the orthotopic leukemic mice. Our results indicated that a concentration-dependent decrease of cell viability was shown in MJ-29-treated cells. DNA content was examined utilizing flow cytometry, whereas apoptotic populations were determined using annexin V/PI, DAPI staining and TUNEL assay. Increasing vital factors of mitochondrial dysfunction by MJ-29 were further investigated. Thus, MJ-29-provaked apoptosis of WEHI-3 cells is mediated through the intrinsic pathway. Importantly, intracellular Ca(2+ release and ER stress-associated signaling also contributed to MJ-29-triggered cell apoptosis. We found that MJ-29 stimulated the protein levels of calpain 1, CHOP and p-eIF2α pathways in WEHI-3 cells. In in vivo experiments, intraperitoneal administration of MJ-29 significantly improved the total survival rate, enhanced body weight and attenuated enlarged spleen and liver tissues in leukemic mice. The infiltration of immature myeloblastic cells into splenic red pulp was reduced in MJ-29-treated leukemic mice. Moreover, MJ-29 increased the differentiations of T and B cells but decreased that of macrophages and monocytes. Additionally, MJ-29-stimulated immune responses might be involved in anti-leukemic activity in vivo. Based on these observations, MJ-29 suppresses WEHI-3 cells in vitro and in vivo, and it is proposed that this potent and selective agent could be a new chemotherapeutic candidate for anti-leukemia in the future.

  18. Leukemic transformation of donor spleen cells following their transplantation into supralethally irradiated mice with pre-existing viral leukemia. [X Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kuhnert, P M; OKunewick, J P; Erhard, P

    1974-01-01

    Fialkow et al. previously reported leukemia induction in donor-type cells after treating patients for acute lymphoblastic leukemia with total-body irradiation and hematopoietic cell transplantation. Utilizing a murine model and paralleling their treatment protocol, we have documented that induction of leukemia can occur in normal donor cells transplanted into Rauscher viral leukemic mice at 0, 1 and 2 days after irradiation. The induction of leukemia in the grafted cells was verified by: the occurrence of splenomegaly; and secondary spleen cell transplants, whereby the secondary donors were transplanted mice still alive at 30 days and the secondary recipients were normal unirradiated mice. The spleen weights of the grafted leukemic mice were found to be significantly greater than those of the controls and all secondary recipients that received spleen cells from the primary grafted leukemic mice also died of leukemia. Verification that the regenerating hematopoietic tissue was from donor (males) and not host source (females) was accomplished by spleen chromosome preparations taken from randomly selected mice at 14 and at 30 days after cell transplantation. In these preparations, the Y chromosome was clearly distinguishable on the basis of size, shape, and differential staining. The data indicate that induction of leukemia after whole-body irradiation and hematopoietic cell transplantation can occur in immunologically matched donor cells when a viral agent is present and that the incidence of this induction is not affected by a time delay between irradiation and transplant.

  19. Piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways.

    Science.gov (United States)

    Wang, Hongfei; Wang, Yongqiang; Gao, Hongmei; Wang, Bing; Dou, Lin; Li, Yin

    2018-02-01

    Piperlongumine is an alkaloid compound extracted from Piper longum L. It is a chemical substance with various pharmacological effects and medicinal value, including anti-tumor, lipid metabolism regulatory, antiplatelet aggregation and analgesic properties. The present study aimed to understand whether piperlongumine induces the apoptosis and autophagy of leukemic cells, and to identify the mechanism involved. Cell viability and autophagy were detected using MTT, phenazine methyl sulfate and trypan blue exclusion assays. The apoptosis rate was calculated using flow cytometry. The protein expression levels of microtubule-associated protein 1A/1B-light chain 3, Akt and mechanistic target of rapamycin (mTOR) were measured using western blotting. The cell growth of leukemic cells was completely inhibited following treatment with piperlongumine, and marked apoptosis was also induced. Dead cells as a result of autophagy were stained using immunofluorescence and observed under a light microscope. Phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling was suppressed by treatment with piperlongumine, while p38 signaling and caspase-3 activity were induced by treatment with piperlongumine. It was concluded that piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways.

  20. Cyclopentenyl cytosine induces apoptosis and increases cytarabine-induced apoptosis in a T-lymphoblastic leukemic cell-line

    NARCIS (Netherlands)

    Verschuur, A. C.; Brinkman, J.; van Gennip, A. H.; Leen, R.; Vet, R. J.; Evers, L. M.; Voûte, P. A.; van Kuilenburg, A. B.

    2001-01-01

    Cyclopentenyl cytosine (CPEC) is a nucleoside-analogue that decreases the concentrations of cytidine triphosphate (CTP) and deoxycytidine triphosphate (dCTP) in leukemic cells by inhibiting the enzyme CTP synthetase, resulting in a decreased synthesis of RNA and DNA. Low concentrations of dCTP

  1. Properties of murine leukemia viruses produced by leukemic cells established from NIH Swiss mice with radiation-induced leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Okumoto, Masaaki; Nishikawa, Ryosuke; Takamori, Yasuhiko; Iwai, Yoshiaki; Iwai, Mineko [Radiation Center of Osaka Prefecture, Sakai (Japan); Imai, Shunsuke; Morimoto, Junji; Tsubura, Yoshihiko

    1984-06-01

    Three leukemic cell lines, designated NIH-RL1, NIH-RL2 and NFS-RL1, were established from spleen and thymuses of NIH Swiss and NFS mice with radiation-induced leukemia. The culture fluids of these cell lines contained RNA-dependent DNA polymerase (RDDP) activities associated with particles of buoyant density of 1.15-1.17 (g/cm/sup 3/). The divalent cation reqirement of these enzymes was characteristic for that of murine leukemia viruses. In competition radioimmunoassay, a major core protein, p30, was detected in culture fluid of each leukemic cell line. Competition curves of viral p30 produced by these cell lines revealed that these viruses were very similar to those of xenotropic viruses of NZB mice. These viruses were undetectable both by XC plaque assay using SC-1 cells as an indicator cell, and by mink S/sup +/L/sup -/ focus induction assay. These viruses also lacked productive infectivity to mink lung cells (CCL-64), and were nononcogenic in syngeneic mice when the viruses were intrathymically inoculated.

  2. Positive /sup 111/In-granulocyte scintigraphy in a patient with focal leukemic blast cell infiltrations

    Energy Technology Data Exchange (ETDEWEB)

    Syrjaelae, M; Remes, K; Paavonen, T; Liewendahl, K

    1985-06-01

    A patient with acute myeloid leukemia was investigated with /sup 111/In-granulocyte scintigraphy to reveal possible sites of infection. /sup 111/In-granulocytes accumulated in areas of leukemia blast cell infiltration leading to a false-positive scintigram. This possibility must be kept in mind when studying leukemic patients using labeled leukocytes.

  3. Towards The Generation of Functionalized Magnetic Nanowires to Target Leukemic Cells

    KAUST Repository

    Alsharif, Nouf

    2016-04-01

    In recent years, magnetic nanowires (NWs) have been widely used for their therapeutic potential in biomedical applications. The use of iron (Fe) NWs combines two important properties, biocompatibility and remote manipulation by magnetic fields. In addition the NWs can be coated and functionalized to target cells of interest and, upon exposure to an alternating magnetic field, have been shown to induce cell death on several types of adherent cells, including several cancer cell types. For suspension cells, however, using these NWs has been much less effective primarily due to the free-floating nature of the cells minimizing the interaction between them and the NWs. Leukemic cells express higher levels of the cell surface marker CD44 (Braumüller, Gansauge, Ramadani, & Gansauge, 2000), compared to normal blood cells. The goal of this study was to functionalize Fe NWs with a specific monoclonal antibody towards CD44 in order to target leukemic cells (HL-60 cells). This approach is expected to increase the probability of a specific binding to occur between HL-60 cells and Fe NWs. Fe NWs were fabricated with an average diameter of 30-40 nm and a length around 3-4 μm. Then, they were coated with both 3-Aminopropyl-triethoxysilane and bovine serum albumin (BSA) in order to conjugate them with an anti-CD44 antibody (i.e. anti-CD44-iron NWs). The antibody interacts with the amine group in the BSA via the 1-Ethyl-3-3-dimethylaminopropyl-carbodiimide and N-Hydroxysuccinimide coupling. The NWs functionalization was confirmed using a number of approaches including: infrared spectroscopy, Nanodrop to measure the concentration of CD44 antibody, as well as fluorescent-labeled secondary antibody staining to detect the primary CD44 antibody. To confirm that the anti-CD44-iron NWs and bare Fe NWs, in the absence of a magnetic field, were not toxic to HL-60 cells, cytotoxicity assays using XTT (2,3-Bis-2-Methoxy-4-Nitro-5-Sulfophenyl-2H-Tetrazolium-5-Carboxanilide) were performed and

  4. Leukemic Oral Manifestations and their Management.

    Science.gov (United States)

    Francisconi, Carolina Favaro; Caldas, Rogerio Jardim; Oliveira Martins, Lazara Joyce; Fischer Rubira, Cassia Maria; da Silva Santos, Paulo Sergio

    2016-01-01

    Leukemia is the most common neoplastic disease of the white blood cells which is important as a pediatric malignancy. Oral manifestations occur frequently in leukemic patients and may present as initial evidence of the disease or its relapse. The symptoms include gingival enlargement and bleeding, oral ulceration, petechia, mucosal pallor, noma, trismus and oral infections. Oral lesions arise in both acute and chronic forms of all types of leukemia. These oral manifestations either may be the result of direct infiltration of leukemic cells (primary) or secondary to underlying thrombocytopenia, neutropenia, or impaired granulocyte function. Despite the fact that leukemia has long been known to be associated with oral lesions, the available literature on this topic consists mostly of case reports, without data summarizing the main oral changes for each type of leukemia. Therefore, the present review aimed at describing oral manifestations of all leukemia types and their dental management. This might be useful in early diagnosis, improving patient outcomes.

  5. Involvement of CD147 on multidrug resistance through the regulation of P-glycoprotein expression in K562/ADR leukemic cell line

    Directory of Open Access Journals (Sweden)

    Aoranit Somno

    2016-01-01

    Full Text Available The relationship between P-gp and CD147 in the regulation of MDR in leukemic cells has not been reported. This study aimed to investigate the correlation between CD147 and P-gp in the regulation of drug resistance in the K562/ADR leukemic cell line. The results showed that drug-resistant K562/ADR cells expressed significantly higher P-gp and CD147 levels than drug-free K562/ADR cells. To determine the regulatory effect of CD147 on P-gp expression, anti-CD147 antibody MEM-M6/6 significantly decreased P-gp and CD147 mRNA and protein levels. This is the first report to show that CD147 mediates MDR in leukemia through the regulation of P-gp expression.

  6. Dendritic cells (DCs) can be successfully generated from leukemic blasts in individual patients with AML or MDS: an evaluation of different methods.

    Science.gov (United States)

    Kremser, Andreas; Dressig, Julia; Grabrucker, Christine; Liepert, Anja; Kroell, Tanja; Scholl, Nina; Schmid, Christoph; Tischer, Johanna; Kufner, Stefanie; Salih, Helmut; Kolb, Hans Jochem; Schmetzer, Helga

    2010-01-01

    Myeloid-leukemic cells (AML, MDS, CML) can be differentiated to leukemia-derived dendritic cell [DC (DCleu)] potentially presenting the whole leukemic antigen repertoire without knowledge of distinct leukemia antigens and are regarded as promising candidates for a vaccination strategy. We studied the capability of 6 serum-free DC culture methods, chosen according to different mechanisms, to induce DC differentiation in 137 cases of AML and 52 cases of MDS. DC-stimulating substances were cytokines ("standard-medium", "MCM-Mimic", "cytokine-method"), bacterial lysates ("Picibanil"), double-stranded RNA ["Poly (I:C)"] or a cytokine bypass method ("Ca-ionophore"). The quality/quantity of DC generated was estimated by flow cytometry studying (co) expressions of "DC"antigens, costimulatory, maturation, and blast-antigens. Comparing these methods on average 15% to 32% DC, depending on methods used, could be obtained from blast-containing mononuclear cells (MNC) in AML/MDS cases with a DC viability of more than 60%. In all, 39% to 64% of these DC were mature; 31% to 52% of leukemic blasts could be converted to DCleu and DCleu-proportions in the suspension were 2% to 70% (13%). Average results of all culture methods tested were comparable, however not every given case of AML could be differentiated to DC with 1 selected method. However performing a pre-analysis with 3 DC-generating methods (MCM-Mimic, Picibanil, Ca-ionophore) we could generate DC in any given case. Functional analyses provided proof, that DC primed T cells to antileukemia-directed cytotoxic cells, although an anti-leukemic reaction was not achieved in every case. In summary our data show that a successful, quantitative DC/DCleu generation is possible with the best of 3 previously tested methods in any given case. Reasons for different functional behaviors of DC-primed T cells must be evaluated to design a practicable DC-based vaccination strategy.

  7. Limiting-dilution analysis for the determination of leukemic cell frequencies after bone marrow decontamination with mafosfamide or merocyanine 540

    Energy Technology Data Exchange (ETDEWEB)

    Porcellini, A.; Talevi, N.; Marchetti-Rossi, M.T.; Palazzi, M.; Manna, A.; Sparaventi, G.; Delfini, C.; Valentini, M.

    1987-11-01

    To stimulate a leukemia remission marrow, cell suspensions of normal human bone marrow were mixed with human acute lymphoblastic or myelogenous leukemic cells of the CCRF-SF, Nalm-6, and K-562 lines. The cell mixtures were incubated in vitro with mafosfamide (AZ) or with the photoreactive dye merocyanine 540 (MC-540). A quantity of 10(4) cells of the treated suspensions was dispensed into microculture plates, and graded cell numbers of the line used to contaminate the normal marrow were added. Limiting-dilution analysis was used to estimate the frequency of leukemia cells persisting after treatment with the decontaminating agents. Treatment with AZ or MC-540 produced a total elimination (ie, 6 logs or 5.3 logs respectively) of B cell acute leukemia cells (CCRF-SB), whereas nearly 1.7 logs and 2 logs of K-562 acute myelogenous blasts were still present in the cell mixtures after treatment with MC-540 and AZ, respectively. Treatment of the Nalm-6-contaminated cell mixtures with AZ resulted in 100% elimination of clonogenic cells, whereas nearly 80% decontamination was obtained with MC-540. Our results suggest that treatment with AZ could be an effective method of eliminating clonogenic tumor cells from human bone marrow. MC-540, shown by previous studies to spare sufficient pluripotential stem cells to ensure hemopoietic reconstitution in the murine model and in clinical application, has comparable effects and merits trials for possible clinical use in autologous bone marrow transplantation.

  8. Limiting-dilution analysis for the determination of leukemic cell frequencies after bone marrow decontamination with mafosfamide or merocyanine 540

    International Nuclear Information System (INIS)

    Porcellini, A.; Talevi, N.; Marchetti-Rossi, M.T.; Palazzi, M.; Manna, A.; Sparaventi, G.; Delfini, C.; Valentini, M.

    1987-01-01

    To stimulate a leukemia remission marrow, cell suspensions of normal human bone marrow were mixed with human acute lymphoblastic or myelogenous leukemic cells of the CCRF-SF, Nalm-6, and K-562 lines. The cell mixtures were incubated in vitro with mafosfamide (AZ) or with the photoreactive dye merocyanine 540 (MC-540). A quantity of 10(4) cells of the treated suspensions was dispensed into microculture plates, and graded cell numbers of the line used to contaminate the normal marrow were added. Limiting-dilution analysis was used to estimate the frequency of leukemia cells persisting after treatment with the decontaminating agents. Treatment with AZ or MC-540 produced a total elimination (ie, 6 logs or 5.3 logs respectively) of B cell acute leukemia cells (CCRF-SB), whereas nearly 1.7 logs and 2 logs of K-562 acute myelogenous blasts were still present in the cell mixtures after treatment with MC-540 and AZ, respectively. Treatment of the Nalm-6-contaminated cell mixtures with AZ resulted in 100% elimination of clonogenic cells, whereas nearly 80% decontamination was obtained with MC-540. Our results suggest that treatment with AZ could be an effective method of eliminating clonogenic tumor cells from human bone marrow. MC-540, shown by previous studies to spare sufficient pluripotential stem cells to ensure hemopoietic reconstitution in the murine model and in clinical application, has comparable effects and merits trials for possible clinical use in autologous bone marrow transplantation

  9. Long Terminal Repeat CRISPR-CAR-Coupled "Universal" T Cells Mediate Potent Anti-leukemic Effects.

    Science.gov (United States)

    Georgiadis, Christos; Preece, Roland; Nickolay, Lauren; Etuk, Aniekan; Petrova, Anastasia; Ladon, Dariusz; Danyi, Alexandra; Humphryes-Kirilov, Neil; Ajetunmobi, Ayokunmi; Kim, Daesik; Kim, Jin-Soo; Qasim, Waseem

    2018-03-06

    Gene editing can be used to overcome allo-recognition, which otherwise limits allogeneic T cell therapies. Initial proof-of-concept applications have included generation of such "universal" T cells expressing chimeric antigen receptors (CARs) against CD19 target antigens combined with transient expression of DNA-targeting nucleases to disrupt the T cell receptor alpha constant chain (TRAC). Although relatively efficient, transgene expression and editing effects were unlinked, yields variable, and resulting T cell populations heterogeneous, complicating dosing strategies. We describe a self-inactivating lentiviral "terminal" vector platform coupling CAR expression with CRISPR/Cas9 effects through incorporation of an sgRNA element into the ΔU3 3' long terminal repeat (LTR). Following reverse transcription and duplication of the hybrid ΔU3-sgRNA, delivery of Cas9 mRNA resulted in targeted TRAC locus cleavage and allowed the enrichment of highly homogeneous (>96%) CAR + (>99%) TCR - populations by automated magnetic separation. Molecular analyses, including NGS, WGS, and Digenome-seq, verified on-target specificity with no evidence of predicted off-target events. Robust anti-leukemic effects were demonstrated in humanized immunodeficient mice and were sustained longer than by conventional CAR + TCR + T cells. Terminal-TRAC (TT) CAR T cells offer the possibility of a pre-manufactured, non-HLA-matched CAR cell therapy and will be evaluated in phase 1 trials against B cell malignancies shortly. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  10. Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*

    Science.gov (United States)

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  11. Differentiation-inducing effects of small fruit juices on HL-60 leukemic cells.

    Science.gov (United States)

    Yoshizawa, Y; Kawaii, S; Urashima, M; Fukase, T; Sato, T; Murofushi, N; Nishimura, H

    2000-08-01

    Epidemiological studies indicate that high intakes of fruits and vegetables are associated with a reduced risk of cancer, and several plant-derived drugs have been developed in medical oncology. Since only a small part of the flora has been tested for any kind of bioactivity, we chose small fruits as sources of differentiation-inducing activity against HL-60 leukemic cells. We have prepared juices from various small fruits that grow mainly in the northern part of Japan. Screening of 43 samples indicated that juices of Actinidia polygama Maxim., Rosa rugosa Thunb., Vaccinium smallii A. Gray, and Sorbus sambucifolia Roem. strongly induced differentiation of HL-60 cells to monocyte/macrophage characteristics in a concentration-dependent manner as indicated by histochemical and biochemical examinations.

  12. ROLE OF LEUKEMIC STEM CELLS IN THE CHRONIC MYELOID LEUKEMIA PATHOGENESIS

    Directory of Open Access Journals (Sweden)

    Sviezhentseva IO

    2016-09-01

    Full Text Available The presence of leukemic stem cells (LSC in the bone marrow of patients with chronic myeloid leukemia (CML is the cause of relapses as a result of the treatment with chemotherapeutic agents and target therapy drugs. This is due to the ability of LSC to attach itself to the microenvironment cells and to remain at rest for a long time. Vascular and osteoblasts niche play a very important role in this process. However, for being in G0 phase LSC have direct contact with the cellular elements of bone marrow microenvironment. So LSK contact with mesenchymal cells of bone marrow using the appendixes, connecting components invaginations and lint. The cadherins and integrins are important in the interaction of osteoblasts niche. They are able to activate intracellular signaling cascades that provide resting state of LSK. In addition, a bone marrow niche provides changes of LSC oxidative metabolism, which also plays an important role for cell entry into the G0 phase. Further, LSC also have certain physiological properties, which play an important role in the drug resistance formation, particularly drugs with targeted actions - tyrosine kinase inhibitors. LSK characterized by a high level of BCR-ABL expression and their population can have a lot of point mutations in the bcr-abl gene in the same patient. This leads to the fact that the taken medicines dose does not act against LSK, reducing the number of a whole leukemic cells clone. However, complete LSC elimination from the the patient’s bone marrow need search the main differences between the LSC and normal HSC. After the literature analysis it was found that LSC have several significant differences such as the ability to cause leukemia during the transplantation to immunodeficient animals, this leukemia is morphologically and phenotypically similar to the original tumor, in addition the LSC can be transmitted from animal to animal. In addition, the LSC is also characterized by the mutations presence

  13. Expression of MICA, MICB and NKG2D in human leukemic myelomonocytic and cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Mendoza-Rincon Jorge

    2011-04-01

    Full Text Available Abstract Background Cancer cells are known to secrete the stress molecules MICA and MICB that activate cytotoxicity by lymphocytes and NK cells through their NKG2D receptor as a mechanism of immunological defense. This work was undertaken to evaluate if cancer cells can also express this receptor as a possible mechanisms of depletion of MIC molecules and thus interfere with their immune recognition. Methods Myelomonocytic leukemic (TPH-1 and U-937 and cervical cancer (CALO and INBL cell lines were evaluated by Western Blot, ELISA, flow cytometry and immunocytochemistry to evaluate their capacity to express and secrete MICA and MICB and to be induced to proliferate by these molecules as well as to express their receptor NKG2D. Statistical analysis was performed by two-way ANOVA for time course analysis and Student's t-test for comparison between groups. Values were considered significantly different if p Results THP-1 and U-937 produce and secrete the stress MICA and MICB as shown by Western Blot of lysed cells and by ELISA of their conditioned media. By Western Blot and flow cytometry we found that these cells also express the receptor NKG2D. When THP-1 and U-937 were cultured with recombinant MICA and MICB they exhibited a dose dependent induction for their proliferation. CALO and INBL also produce MICA and MICB and were induced to proliferate by these stress molecules. By Western Blot, flow cytometry and immunocytochemistry we also found that these cells express NKG2D. Conclusions Our novel results that tumor cells can simultaneously secrete MIC molecules and express their receptor, and to be induced for proliferation by these stress molecules, and that tumor epithelial cells can also express the NKG2D receptor that was thought to be exclusive of NK and cytotoxic lymphocytes is discussed as a possible mechanism of immunological escape and of tumor growth induction.

  14. Human T cell leukemia virus type I prevents cell surface expression of the T cell receptor through down-regulation of the CD3-gamma, -delta, -epsilon, and -zeta genes

    NARCIS (Netherlands)

    de Waal Malefyt, R.; Yssel, H.; Spits, H.; de Vries, J. E.; Sancho, J.; Terhorst, C.; Alarcon, B.

    1990-01-01

    Infection and transformation by human T cell leukemia virus type I (HTLV-I) up-regulates expression of several inducible genes including those coding for cytokines involved in the proliferation of normal and leukemic T cells. We demonstrate that HTLV-I can also shut off expression of the CD3-gamma,

  15. Autonomous growth potential of leukemia blast cells is associated with poor prognosis in human acute leukemias

    Directory of Open Access Journals (Sweden)

    Jakubowski Ann A

    2009-12-01

    Full Text Available Abstract We have described a severe combined immunodeficiency (SCID mouse model that permits the subcutaneous growth of primary human acute leukemia blast cells into a measurable subcutaneous nodule which may be followed by the development of disseminated disease. Utilizing the SCID mouse model, we examined the growth potential of leukemic blasts from 133 patients with acute leukemia, (67 acute lymphoblastic leukemia (ALL and 66 acute myeloid leukemia (AML in the animals after subcutaneous inoculation without conditioning treatment. The blasts displayed three distinct growth patterns: "aggressive", "indolent", or "no tumor growth". Out of 133 leukemias, 45 (33.8% displayed an aggressive growth pattern, 14 (10.5% displayed an indolent growth pattern and 74 (55.6% did not grow in SCID mice. The growth probability of leukemias from relapsed and/or refractory disease was nearly 3 fold higher than that from patients with newly diagnosed disease. Serial observations found that leukemic blasts from the same individual, which did not initiate tumor growth at initial presentation and/or at early relapse, may engraft and grow in the later stages of disease, suggesting that the ability of leukemia cells for engraftment and proliferation was gradually acquired following the process of leukemia progression. Nine autonomous growing leukemia cell lines were established in vitro. These displayed an aggressive proliferation pattern, suggesting a possible correlation between the capacity of human leukemia cells for autonomous proliferation in vitro and an aggressive growth potential in SCID mice. In addition, we demonstrated that patients whose leukemic blasts displayed an aggressive growth and dissemination pattern in SClD mice had a poor clinical outcome in patients with ALL as well as AML. Patients whose leukemic blasts grew indolently or whose leukemia cells failed to induce growth had a significantly longer DFS and more favorable clinical course.

  16. Fludarabine-mediated circumvention of cytarabine resistance is associated with fludarabine triphosphate accumulation in cytarabine-resistant leukemic cells.

    Science.gov (United States)

    Yamamoto, Shuji; Yamauchi, Takahiro; Kawai, Yasukazu; Takemura, Haruyuki; Kishi, Shinji; Yoshida, Akira; Urasaki, Yoshimasa; Iwasaki, Hiromichi; Ueda, Takanori

    2007-02-01

    The combination of cytarabine (ara-C) with fludarabine is a common approach to treating resistant acute myeloid leukemia. Success depends on a fludarabine triphosphate (F-ara-ATP)-mediated increase in the active intracellular metabolite of ara-C, ara-C 5'-triphosphate (ara-CTP). Therapy-resistant leukemia may exhibit ara-C resistance, the mechanisms of which might induce cross-resistance to fludarabine with reduced F-ara-ATP formation. The present study evaluated the effect of combining ara-C and fludarabine on ara-C-resistant leukemic cells in vitro. Two variant cell lines (R1 and R2) were 8-fold and 10-fold more ara-C resistant, respectively, than the parental HL-60 cells. Reduced deoxycytidine kinase activity was demonstrated in R1 and R2 cells, and R2 cells also showed an increase in cytosolic 5'-nucleotidase II activity. Compared with HL-60 cells, R1 and R2 cells produced smaller amounts of ara-CTP. Both variants accumulated less F-ara-ATP than HL-60 cells and showed cross-resistance to fludarabine nucleoside (F-ara-A). R2 cells, however, accumulated much smaller amounts of F-ara-ATP and were more F-ara-A resistant than R1 cells. In HL-60 and R1 cells, F-ara-A pretreatment followed by ara-C incubation produced F-ara-ATP concentrations sufficient for augmenting ara-CTP production, thereby enhancing ara-C cytotoxicity. No potentiation was observed in R2 cells. Nucleotidase might preferentially degrade F-ara-A monophosphate over ara-C monophosphate, leading to reduced F-ara-ATP production and thereby compromising the F-ara-A-mediated potentiation of ara-C cytotoxicity in R2 cells. Thus, F-ara-A-mediated enhancement of ara-C cytotoxicity depended on F-ara-ATP accumulation in ara-C-resistant leukemic cells but ultimately was associated with the mechanism of ara-C resistance.

  17. Cannabidiol Reduces Leukemic Cell Size - But Is It Important?

    Science.gov (United States)

    Kalenderoglou, Nikoletta; Macpherson, Tara; Wright, Karen L

    2017-01-01

    The anti-cancer effect of the plant-derived cannabinoid, cannabidiol, has been widely demonstrated both in vivo and in vitro . However, this body of preclinical work has not been translated into clinical use. Key issues around this failure can be related to narrow dose effects, the cell model used and incomplete efficacy. A model of acute lymphoblastic disease, the Jurkat T cell line, has been used extensively to study the cannabinoid system in the immune system and cannabinoid-induced apoptosis. Using these cells, this study sought to investigate the outcome of those remaining viable cells post-treatment with cannabidiol, both in terms of cell size and tracking any subsequent recovery. The phosphorylation status of the mammalian Target of Rapamycin (mTOR) signaling pathway and the downstream target ribosomal protein S6, were measured. The ability of cannabidiol to exert its effect on cell viability was also evaluated in physiological oxygen conditions. Cannabidiol reduced cell viability incompletely, and slowed the cell cycle with fewer cells in the G2/M phase of the cell cycle. Cannabidiol reduced phosphorylation of mTOR, PKB and S6 pathways related to survival and cell size. The remaining population of viable cells that were cultured in nutrient rich conditions post-treatment were able to proliferate, but did not recover to control cell numbers. However, the proportion of viable cells that were gated as small, increased in response to cannabidiol and normally sized cells decreased. This proportion of small cells persisted in the recovery period and did not return to basal levels. Finally, cells grown in 12% oxygen (physiological normoxia) were more resistant to cannabidiol. In conclusion, these results indicate that cannabidiol causes a reduction in cell size, which persists post-treatment. However, resistance to cannabidiol under physiological normoxia for these cells would imply that cannabidiol may not be useful in the clinic as an anti-leukemic agent.

  18. GPR84 sustains aberrant β-catenin signaling in leukemic stem cells for maintenance of MLL leukemogenesis.

    Science.gov (United States)

    Dietrich, Philipp A; Yang, Chen; Leung, Halina H L; Lynch, Jennifer R; Gonzales, Estrella; Liu, Bing; Haber, Michelle; Norris, Murray D; Wang, Jianlong; Wang, Jenny Yingzi

    2014-11-20

    β-catenin is required for establishment of leukemic stem cells (LSCs) in acute myeloid leukemia (AML). Targeted inhibition of β-catenin signaling has been hampered by the lack of pathway components amenable to pharmacologic manipulation. Here we identified a novel β-catenin regulator, GPR84, a member of the G protein-coupled receptor family that represents a highly tractable class of drug targets. High GPR84 expression levels were confirmed in human and mouse AML LSCs compared with hematopoietic stem cells (HSCs). Suppression of GPR84 significantly inhibited cell growth by inducing G1-phase cell-cycle arrest in pre-LSCs, reduced LSC frequency, and impaired reconstitution of stem cell-derived mixed-lineage leukemia (MLL) AML, which represents an aggressive and drug-resistant subtype of AML. The GPR84-deficient phenotype in established AML could be rescued by expression of constitutively active β-catenin. Furthermore, GPR84 conferred a growth advantage to Hoxa9/Meis1a-transduced stem cells. Microarray analysis demonstrated that GPR84 significantly upregulated a small set of MLL-fusion targets and β-catenin coeffectors, and downregulated a hematopoietic cell-cycle inhibitor. Altogether, our data reveal a previously unrecognized role of GPR84 in maintaining fully developed AML by sustaining aberrant β-catenin signaling in LSCs, and suggest that targeting the oncogenic GPR84/β-catenin signaling axis may represent a novel therapeutic strategy for AML. © 2014 by The American Society of Hematology.

  19. Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol

    International Nuclear Information System (INIS)

    Arora, Annu; Seth, Kavita; Kalra, Neetu; Shukla, Yogeshwer

    2005-01-01

    Resistance to chemotherapeutic drugs is one of the major problems in the treatment of cancer. P-glycoprotein (P-gp) encoded by the mdr gene is a highly conserved protein, acts as a multidrug transporter, and has a major role in multiple drug resistance (MDR). Targeting of P-gp by naturally occurring compounds is an effective strategy to overcome MDR. Indole-3-carbinol (I3C), a glucosinolates present in cruciferous vegetables, is a promising chemopreventive agent as it is reported to possess antimutagenic, antitumorigenic, and antiestrogenic properties in experimental studies. In the present investigation, the potential of I3C to modulate P-gp expression was evaluated in vinblastine (VBL)-resistant K562 human leukemic cells. The resistant K562 cells (K562/R10) were found to be cross-resistant to vincristine (VCR), doxorubicin (DXR), and other antineoplastic agents. I3C at a nontoxic dose (10 x 10 -3 M) enhanced the cytotoxic effects of VBL time dependently in VBL-resistant human leukemia (K562/R10) cells but had no effect on parent-sensitive cells (K562/S). The Western blot analysis of K 562/R 10 cells showed that I3C downregulates the induced levels of P-gp in resistant cells near to normal levels. The quantitation of immunocytochemically stained K562/R10 cells showed 24%, 48%, and 80% decrease in the levels of P-gp by I3C for 24, 48, and 72 h of incubation. The above features thus indicate that I3C could be used as a novel modulator of P-gp-mediated multidrug resistance in vitro and may be effective as a dietary adjuvant in the treatment of MDR cancers

  20. Targeted immunotherapy in acute myeloblastic leukemia: from animals to humans.

    Science.gov (United States)

    Robin, Marie; Schlageter, Marie-Hélène; Chomienne, Christine; Padua, Rose-Ann

    2005-10-01

    Immunity against acute myeloid leukemia (AML) is demonstrated in humans by the graft-versus-leukemia effect in allogeneic hematopoietic stem cell transplantation. Specific leukemic antigens have progressively been discovered and circulating specific T lymphocytes against Wilms tumor antigen, proteinase peptide or fusion-proteins produced from aberrant oncogenic chromosomal translocations have been detected in leukemic patients. However, due to the fact that leukemic blasts develop various escape mechanisms, antileukemic specific immunity is not able to control leukemic cell proliferation. The aim of immunotherapy is to overcome tolerance and boost immunity to elicit an efficient immune response against leukemia. We review different immunotherapy strategies tested in preclinical animal models of AML and the human trials that spurred from encouraging results obtained in animal models, demonstrate the feasibility of immunotherapy in AML patients.

  1. Genetically engineered mesenchymal stromal cells produce IL-3 and TPO to further improve human scaffold-based xenograft models

    NARCIS (Netherlands)

    Carretta, M; Boer, de B.; Jaques, J.; Antonelli, A; Horton, S J; Yuan, H; de Bruijn, J D; Groen, R W J; Vellenga, E.; Schuringa, J J

    Recently, NOD-SLID IL2R gamma(-/-) (NSG) mice were implanted with human mesenchymal stromal cells (MSCs) in the presence of ceramic scaffolds or Matrigel to mimic the human bone marrow (BM) microenvironment. This approach allowed the engraftment of leukemic samples that failed to engraft in NSG mice

  2. Elimination of acute muelogenous leukemic cells from marrow and tumor suspensions in the rat with 4-hydroperoxycyclophosphamide

    International Nuclear Information System (INIS)

    Sharkis, S.J.; Santos, G.W.; Colvin, M.

    1980-01-01

    Cell suspensions of normal rat marrow mixed with rat acute myelogenous leukemic cells were prepared and incubated in vitro with graded doses of 4-hydroperoxycyclophosphamide (4HC). The cell suspensions were injected into rats prepared with a lethal dose of total body irradiation. Animals injected with these cells survived fatal irradiation induced aplasia. In a dose related manner 4HC was able to purge tumor cells from the cell mixtures. Thus, animals given cell suspensions incubated with the lower doses of 4HC showed prolonged survived before death from leukemia and animals given cell suspensions incubated with higher doses of 4HC survival lethal irradiation without the subsequent appearance of leukemia. These studies clearly establish that tumor cells may be eliminated from normal marrow suspensions without completely destroying the pluripotent stem cells

  3. Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response.

    Science.gov (United States)

    Ueda, Norihiro; Uemura, Yasushi; Zhang, Rong; Kitayama, Shuichi; Iriguchi, Shoichi; Kawai, Yohei; Yasui, Yutaka; Tatsumi, Minako; Ueda, Tatsuki; Liu, Tian-Yi; Mizoro, Yasutaka; Okada, Chihiro; Watanabe, Akira; Nakanishi, Mahito; Senju, Satoru; Nishimura, Yasuharu; Kuzushima, Kiyotaka; Kiyoi, Hitoshi; Naoe, Tomoki; Kaneko, Shin

    2018-06-05

    CD4 + T helper (Th) cell activation is essential for inducing cytotoxic T lymphocyte (CTL) responses against malignancy. We reprogrammed a Th clone specific for chronic myelogenous leukemia (CML)-derived b3a2 peptide to pluripotency and re-differentiated the cells into original TCR-expressing T-lineage cells (iPS-T cells) with gene expression patterns resembling those of group 1 innate lymphoid cells. CD4 gene transduction into iPS-T cells enhanced b3a2 peptide-specific responses via b3a2 peptide-specific TCR. iPS-T cells upregulated CD40 ligand (CD40L) expression in response to interleukin-2 and interleukin-15. In the presence of Wilms tumor 1 (WT1) peptide, antigen-specific dendritic cells (DCs) conditioned by CD4-modified CD40L high iPS-T cells stimulated WT1-specific CTL priming, which eliminated WT1 peptide-expressing CML cells in vitro and in vivo. Thus, CD4 modification of CD40L high iPS-T cells generates innate lymphoid helper-like cells inducing bcr-abl-specific TCR signaling that mediates effectiveanti-leukemic CTL responses via DC maturation, showing potential for adjuvant immunotherapy against leukemia. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Aberrant methylation of the M-type phospholipase A2 receptor gene in leukemic cells

    International Nuclear Information System (INIS)

    Menschikowski, Mario; Platzbecker, Uwe; Hagelgans, Albert; Vogel, Margot; Thiede, Christian; Schönefeldt, Claudia; Lehnert, Renate; Eisenhofer, Graeme; Siegert, Gabriele

    2012-01-01

    The M-type phospholipase A2 receptor (PLA2R1) plays a crucial role in several signaling pathways and may act as tumor-suppressor. This study examined the expression and methylation of the PLA2R1 gene in Jurkat and U937 leukemic cell lines and its methylation in patients with myelodysplastic syndrome (MDS) or acute leukemia. Sites of methylation of the PLA2R1 locus were identified by sequencing bisulfite-modified DNA fragments. Methylation specific-high resolution melting (MS-HRM) analysis was then carried out to quantify PLA2R1 methylation at 5-CpG sites identified with differences in methylation between healthy control subjects and leukemic patients using sequencing of bisulfite-modified genomic DNA. Expression of PLA2R1 was found to be completely down-regulated in Jurkat and U937 cells, accompanied by complete methylation of PLA2R1 promoter and down-stream regions; PLA2R1 was re-expressed after exposure of cells to 5-aza-2´-deoxycytidine. MS-HRM analysis of the PLA2R1 locus in patients with different types of leukemia indicated an average methylation of 28.9% ± 17.8%, compared to less than 9% in control subjects. In MDS patients the extent of PLA2R1 methylation significantly increased with disease risk. Furthermore, measurements of PLA2R1 methylation appeared useful for predicting responsiveness to the methyltransferase inhibitor, azacitidine, as a pre-emptive treatment to avoid hematological relapse in patients with high-risk MDS or acute myeloid leukemia. The study shows for the first time that PLA2R1 gene sequences are a target of hypermethylation in leukemia, which may have pathophysiological relevance for disease evolution in MDS and leukemogenesis

  5. Modeling Human Leukemia Immunotherapy in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Jinxing Xia

    2016-08-01

    Full Text Available The currently available human tumor xenograft models permit modeling of human cancers in vivo, but in immunocompromised hosts. Here we report a humanized mouse (hu-mouse model made by transplantation of human fetal thymic tissue plus hematopoietic stem cells transduced with a leukemia-associated fusion gene MLL-AF9. In addition to normal human lymphohematopoietic reconstitution as seen in non-leukemic hu-mice, these hu-mice showed spontaneous development of B-cell acute lymphoblastic leukemia (B-ALL, which was transplantable to secondary recipients with an autologous human immune system. Using this model, we show that lymphopenia markedly improves the antitumor efficacy of recipient leukocyte infusion (RLI, a GVHD-free immunotherapy that induces antitumor responses in association with rejection of donor chimerism in mixed allogeneic chimeras. Our data demonstrate the potential of this leukemic hu-mouse model in modeling leukemia immunotherapy, and suggest that RLI may offer a safe treatment option for leukemia patients with severe lymphopenia.

  6. The Leukemic Stem Cell Niche: Adaptation to “Hypoxia” versus Oncogene Addiction

    Directory of Open Access Journals (Sweden)

    Giulia Cheloni

    2017-01-01

    Full Text Available Previous studies based on low oxygen concentrations in the incubation atmosphere revealed that metabolic factors govern the maintenance of normal hematopoietic or leukemic stem cells (HSC and LSC. The physiological oxygen concentration in tissues ranges between 0.1 and 5.0%. Stem cell niches (SCN are placed in tissue areas at the lower end of this range (“hypoxic” SCN, to which stem cells are metabolically adapted and where they are selectively hosted. The data reported here indicated that driver oncogenic proteins of several leukemias are suppressed following cell incubation at oxygen concentration compatible with SCN physiology. This suppression is likely to represent a key positive regulator of LSC survival and maintenance (self-renewal within the SCN. On the other hand, LSC committed to differentiation, unable to stand suppression because of addiction to oncogenic signalling, would be unfit to home in SCN. The loss of oncogene addiction in SCN-adapted LSC has a consequence of crucial practical relevance: the refractoriness to inhibitors of the biological activity of oncogenic protein due to the lack of their molecular target. Thus, LSC hosted in SCN are suited to sustain the long-term maintenance of therapy-resistant minimal residual disease.

  7. Cannabidiol Reduces Leukemic Cell Size – But Is It Important?

    Science.gov (United States)

    Kalenderoglou, Nikoletta; Macpherson, Tara; Wright, Karen L.

    2017-01-01

    The anti-cancer effect of the plant-derived cannabinoid, cannabidiol, has been widely demonstrated both in vivo and in vitro. However, this body of preclinical work has not been translated into clinical use. Key issues around this failure can be related to narrow dose effects, the cell model used and incomplete efficacy. A model of acute lymphoblastic disease, the Jurkat T cell line, has been used extensively to study the cannabinoid system in the immune system and cannabinoid-induced apoptosis. Using these cells, this study sought to investigate the outcome of those remaining viable cells post-treatment with cannabidiol, both in terms of cell size and tracking any subsequent recovery. The phosphorylation status of the mammalian Target of Rapamycin (mTOR) signaling pathway and the downstream target ribosomal protein S6, were measured. The ability of cannabidiol to exert its effect on cell viability was also evaluated in physiological oxygen conditions. Cannabidiol reduced cell viability incompletely, and slowed the cell cycle with fewer cells in the G2/M phase of the cell cycle. Cannabidiol reduced phosphorylation of mTOR, PKB and S6 pathways related to survival and cell size. The remaining population of viable cells that were cultured in nutrient rich conditions post-treatment were able to proliferate, but did not recover to control cell numbers. However, the proportion of viable cells that were gated as small, increased in response to cannabidiol and normally sized cells decreased. This proportion of small cells persisted in the recovery period and did not return to basal levels. Finally, cells grown in 12% oxygen (physiological normoxia) were more resistant to cannabidiol. In conclusion, these results indicate that cannabidiol causes a reduction in cell size, which persists post-treatment. However, resistance to cannabidiol under physiological normoxia for these cells would imply that cannabidiol may not be useful in the clinic as an anti-leukemic agent. PMID

  8. Novel function of the chromosome 7 open reading frame 41 gene to promote leukemic megakaryocyte differentiation by modulating TPA-induced signaling.

    Science.gov (United States)

    Sun, X; Lu, B; Hu, B; Xiao, W; Li, W; Huang, Z

    2014-03-28

    12-O-tetradecanoylphorbol-13-acetate (TPA) activates multiple signaling pathways, alters gene expression and causes leukemic cell differentiation. How TPA-induced genes contribute to leukemic cell differentiation remains elusive. We noticed that chromosome 7 open reading frame 41 (C7ORF41) was a TPA-responsive gene and its upregulation concurred with human megakaryocyte differentiation. In K562 cells, ectopic expression of C7ORF41 significantly increased CD61 expression, enhanced ERK and JNK signaling, and upregulated RUNX1 and FLI1, whereas C7ORF41 knockdown caused an opposite phenotype. These observations suggest that C7ORF41 may promote megakaryocyte differentiation partially through modulating ERK and JNK signaling that leads to upregulation of RUNX1 and FLI1. In supporting this, C7ORF41 overexpression rescued megakaryocyte differentiation blocked by ERK inhibition while JNK inhibition abrogated the upregulation of FLI1 by C7ORF41. Furthermore, we found that Y34F mutant C7ORF41 inhibited megakaryocyte differentiation. nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was the major activator of C7ORF41 that in turn repressed NF-κB activity by inhibiting its phosphorylation at serine 536, while MAPK/ERK was the potent repressor of C7ORF41. Finally, we showed that C7ORF41 knockdown in mouse fetal liver cells impaired megakaryocyte differentiation. Taken together, we have identified the function of a novel gene C7ORF41 that forms interplaying regulatory network in TPA-induced signaling and promotes leukemic and normal megakaryocyte differentiation.

  9. Novel function of the chromosome 7 open reading frame 41 gene to promote leukemic megakaryocyte differentiation by modulating TPA-induced signaling

    International Nuclear Information System (INIS)

    Sun, X; Lu, B; Hu, B; Xiao, W; Li, W; Huang, Z

    2014-01-01

    12-O-tetradecanoylphorbol-13-acetate (TPA) activates multiple signaling pathways, alters gene expression and causes leukemic cell differentiation. How TPA-induced genes contribute to leukemic cell differentiation remains elusive. We noticed that chromosome 7 open reading frame 41 (C7ORF41) was a TPA-responsive gene and its upregulation concurred with human megakaryocyte differentiation. In K562 cells, ectopic expression of C7ORF41 significantly increased CD61 expression, enhanced ERK and JNK signaling, and upregulated RUNX1 and FLI1, whereas C7ORF41 knockdown caused an opposite phenotype. These observations suggest that C7ORF41 may promote megakaryocyte differentiation partially through modulating ERK and JNK signaling that leads to upregulation of RUNX1 and FLI1. In supporting this, C7ORF41 overexpression rescued megakaryocyte differentiation blocked by ERK inhibition while JNK inhibition abrogated the upregulation of FLI1 by C7ORF41. Furthermore, we found that Y34F mutant C7ORF41 inhibited megakaryocyte differentiation. nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was the major activator of C7ORF41 that in turn repressed NF-κB activity by inhibiting its phosphorylation at serine 536, while MAPK/ERK was the potent repressor of C7ORF41. Finally, we showed that C7ORF41 knockdown in mouse fetal liver cells impaired megakaryocyte differentiation. Taken together, we have identified the function of a novel gene C7ORF41 that forms interplaying regulatory network in TPA-induced signaling and promotes leukemic and normal megakaryocyte differentiation

  10. Effects of in vitro Brevetoxin Exposure on Apoptosis and Cellular Metabolism in a Leukemic T Cell Line (Jurkat

    Directory of Open Access Journals (Sweden)

    John W. Sleasman

    2008-06-01

    Full Text Available Harmful algal blooms (HABs of the toxic dinoflagellate, Karenia brevis, produce red tide toxins, or brevetoxins. Significant health effects associated with red tide toxin exposure have been reported in sea life and in humans, with brevetoxins documented within immune cells from many species. The objective of this research was to investigate potential immunotoxic effects of brevetoxins using a leukemic T cell line (Jurkat as an in vitro model system. Viability, cell proliferation, and apoptosis assays were conducted using brevetoxin congeners PbTx-2, PbTx-3, and PbTx-6. The effects of in vitro brevetoxin exposure on cell viability and cellular metabolism or proliferation were determined using trypan blue and MTT (1-(4,5-dimethylthiazol-2-yl-3,5- diphenylformazan, respectively. Using MTT, cellular metabolic activity was decreased in Jurkat cells exposed to 5 - 10 μg/ml PbTx-2 or PbTx-6. After 3 h, no significant effects on cell viability were observed with any toxin congener in concentrations up to 10 μg/ml. Viability decreased dramatically after 24 h in cells treated with PbTx-2 or -6. Apoptosis, as measured by caspase-3 activity, was significantly increased in cells exposed to PbTx-2 or PbTx-6. In summary, brevetoxin congeners varied in effects on Jurkat cells, with PbTx-2 and PbTx-6 eliciting greater cellular effects compared to PbTx-3.

  11. Documentation of normal and leukemic myelopoietic progenitor cells with high-resolution phase-contrast time-lapse cinematography.

    Science.gov (United States)

    Boll, I T

    2001-08-01

    The high-resolution phase-contrast, time-lapse cinematography using oil immersion lenses and 16-mm film demonstrates the kinetic cell events as maturation, locomotion, mitosis, and apoptosis of cells cultivated at 37 degrees C for up to 10 days. 0.5 v/v frozen-thawed sera with presumably high cytokine concentrations were added to the plasma or agar clot. Vital progenitor cells from human bone marrow and blood have a large, bright, unstructured nucleus with a large nucleolus and a narrow rim of cytoplasm (nuclear/cytoplasmic volume ratio = 0.7). Their nuclei are 6-14 micrometer in diameter and double their volume within 8 h. Many (70%) move at a mean speed of 2 micrometer/min, and many (30%) multiply with alpha-2alpha mitoses, generating progenitor cell families. Various disturbances during the course of mitosis lead to the formation of polyploid cells, thereby yielding the megakaryocytic cell line. Some of the progenitor cells undergo asymmetric alpha-alphan mitoses: One of the two initially identical daughter cells remains a progenitor cell in the morphological sense, whereas the other daughter cell - depending on the size of its mother cell - matures in the same culture medium to form a granulocytopoietic, monocytopoietic or erythrocytopoietic cell line. - In acute myeloid leukemias (AML), the blasts and their nuclei are slightly larger than the corresponding progenitor cells and move faster (5 micrometer/min). Symmetric alpha-2alpha mitoses permit unlimited multiplication of the leukemic blasts if contact with cytotoxic lymphocytes does not render them apoptotic. This results in more stromal cells than normal. Granulocytopenia, monocytopenia, and anemia occur due to the genetic impairment of signaling control for asymmetric alpha-alphan mitoses, and thrombocytopenia occurs due to the reduction in polyploidization. Copyright 2001 S. Karger GmbH, Freiburg

  12. Defective quorum sensing of acute lymphoblastic leukemic cells: evidence of collective behavior of leukemic populations as semi-autonomous aberrant ecosystems

    Science.gov (United States)

    Patel, Sapan J; Dao, Su; Darie, Costel C; Clarkson, Bayard D

    2016-01-01

    Quorum sensing (QS) is a generic term used to describe cell-cell communication and collective decision making by bacterial and social insects to regulate the expression of specific genes in controlling cell density and other properties of the populations in response to nutrient supply or changes in the environment. QS mechanisms also have a role in higher organisms in maintaining homeostasis, regulation of the immune system and collective behavior of cancer cell populations. In the present study, we used a p190BCR-ABL driven pre-B acute lymphoblastic leukemia (ALL3) cell line derived from the pleural fluid of a terminally ill patient with ALL to test the QS hypothesis in leukemia. ALL3 cells don’t grow at low density (LD) in liquid media but grow progressively faster at increasingly high cell densities (HD) in contrast to other established leukemic cell lines that grow well at very low starting cell densities. The ALL3 cells at LD are poised to grow but shortly die without additional stimulation. Supernates of ALL3 cells (HDSN) and some other primary cells grown at HD stimulate the growth of the LD ALL3 cells without which they won’t survive. To get further insight into the activation processes we performed microarray analysis of the LD ALL3 cells after stimulation with ALL3 HDSN at days 1, 3, and 6. This screen identified several candidate genes, and we linked them to signaling networks and their functions. We observed that genes involved in lipid, cholesterol, fatty acid metabolism, and B cell activation are most up- or down-regulated upon stimulation of the LD ALL3 cells using HDSN. We also discuss other pathways that are differentially expressed upon stimulation of the LD ALL3 cells. Our findings suggest that the Ph+ ALL population achieves dominance by functioning as a collective aberrant ecosystem subject to defective quorum-sensing regulatory mechanisms. PMID:27429840

  13. Effect of cAMP signaling on expression of glucocorticoid receptor, Bim and Bad in glucocorticoid-sensitive and resistant leukemic and multiple myeloma cells.

    Science.gov (United States)

    Dong, Hongli; Carlton, Michael E; Lerner, Adam; Epstein, Paul M

    2015-01-01

    Stimulation of cAMP signaling induces apoptosis in glucocorticoid-sensitive and resistant CEM leukemic and MM.1 multiple myeloma cell lines, and this effect is enhanced by dexamethasone in both glucocorticoid-sensitive cell types and in glucocorticoid-resistant CEM cells. Expression of the mRNA for the glucocorticoid receptor alpha (GR) promoters 1A3, 1B and 1C, expression of mRNA and protein for GR, and the BH3-only proapoptotic proteins, Bim and Bad, and the phosphorylation state of Bad were examined following stimulation of the cAMP and glucocorticoid signaling pathways. Expression levels of GR promoters were increased by cAMP and glucocorticoid signaling, but GR protein expression was little changed in CEM and decreased in MM.1 cells. Stimulation of these two signaling pathways induced Bim in CEM cells, induced Bad in MM.1 cells, and activated Bad, as indicated by its dephosphorylation on ser112, in both cell types. This study shows that leukemic and multiple myeloma cells, including those resistant to glucocorticoids, can be induced to undergo apoptosis by stimulating the cAMP signaling pathway, with enhancement by glucocorticoids, and the mechanism by which this occurs may be related to changes in Bim and Bad expression, and in all cases, to activation of Bad.

  14. Migration of acute lymphoblastic leukemia cells into human bone marrow stroma.

    Science.gov (United States)

    Makrynikola, V; Bianchi, A; Bradstock, K; Gottlieb, D; Hewson, J

    1994-10-01

    Most cases of acute lymphoblastic leukemia (ALL) arise from malignant transformation of B-cell precursors in the bone marrow. Recent studies have shown that normal and leukemic B-cell precursors bind to bone marrow stromal cells through the beta-1 integrins VLA-4 and VLA-5, thereby exposing early lymphoid cells to regulatory cytokines. It has been recently reported that the pre-B cell line NALM-6 is capable of migrating under layers of murine stromal cells in vitro (Miyake et al. J Cell Biol 1992;119:653-662). We have further analyzed leukemic cell motility using human bone marrow fibroblasts (BMF) as a stromal layer. The precursor-B ALL cell line NALM-6 rapidly adhered to BMF, and underwent migration or tunneling into BMF layers within 5 h, as demonstrated by light and electron microscopy, and confirmed by a chromium-labeling assay. Migration was also observed with the precursor-B ALL lines Reh and KM-3, with a T leukemia line RPMI-8402, the monocytic line U937, and the mature B line Daudi. In contrast, mature B (Raji), myeloid (K562, HL-60), and T lines (CCRF-CEM, MOLT-4) did not migrate. When cases of leukemia were analyzed, BMF migration was largely confined to precursor-B ALL, occurring in eight of 13 cases tested. Of other types of leukemia, migration was observed in one of four cases of T-ALL, but no evidence was seen in six acute myeloid leukemias and two patients with chronic lymphocytic leukemia. Only minimal migration into BMF was observed with purified sorted CD10+ CD19+ early B cells from normal adult marrow, while normal mature B lymphocytes from peripheral blood did not migrate. ALL migration was inhibited by monoclonal antibodies to the beta sub-unit of the VLA integrin family, and by a combination of antibodies to VLA-4 and VLA-5. Partial inhibition was also observed when leukemic cells were incubated with antibodies to VLA-4, VLA-5, or VLA-6 alone. In contrast, treatment of stromal cells with antibodies to vascular cell adhesion molecule or

  15. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Progress report, January 1, 1981-December 31, 1981

    International Nuclear Information System (INIS)

    Rowley, J.D.

    1981-08-01

    The overall aim is to determine whether there is a relationship between exposure to radiation, environmental pollutants, and/or genetic background and the development of ANLL or other hematologic malignancies. I will try to define the factors that influence the development of ANLL as a second malignancy in patients who have been exposed to large doses of radiotherapy and/or chemotherapeutic agents. Two long-term goals are (1) to identify the genes that are located at the sites of consistent translocations, and then to determine the alterations in gene function that are associated with these translocations and (2) to establish the baseline frequency of various chromosome changes (mutations) in myeloid cells and then to analyze the influence of various types of environmental exposure or medical treatment on this baseline mutation rate. Ultimately, it may be possible to determine the extent of mutagenic exposure in various populations through an analysis of the leukemic cells of that populations

  16. Analysis of myelomonocytic leukemic differentiation by a cell surface marker panel including a fucose-binding lectin from Lotus tetragonolobus.

    Science.gov (United States)

    Elias, L; Van Epps, D E

    1984-06-01

    The fucose-binding lectin from Lotus tetragonolobus ( FBL -L) has been previously shown to bind specifically to normal cells of the myeloid and monocytic lineages. The purpose of this study was to explore the utility of fluoresceinated FBL -L as a leukemia differentiation marker in conjunction with a panel of other frequently used surface markers (Fc receptor, HLA-DR, OKM1, and antimonocyte antibody). FBL -L reacted with leukemic cells in 8/9 cases of clinically recognized acute myeloid leukemia, including myeloid blast crisis of chronic granulocytic leukemia, 3/3 cases of chronic phase chronic myelogenous leukemia, and in 2/7 cases of clinically undifferentiated acute leukemia. Correlations were noted between reactivity with FBL -L, and DR and Fc receptor expression. Among continuous cell lines, FBL -L bound with high intensity to a majority of HL-60 and U937 cells. The less well differentiated myeloblast cell lines, KG-1, KG1a , and HL-60 blast II, exhibited less FBL -L binding than HL-60 and U937. A moderate proportion of K562 cells exhibited low level binding of FBL -L. Several lymphoblastic cell lines exhibited a pattern of low intensity binding that was distinguishable from the high intensity binding pattern of the myeloblastic lines. FBL -L reactivity of U937 was enhanced by induction of differentiation with leukocyte conditioned medium, but not dimethylsulfoxide. Such treatments induced contrasting patterns of change of HL-60 and U937 when labeled with OKM1, alpha-Mono, and HLA-DR. These studies demonstrate the application of FBL -L to analysis and quantitation of myelomonocytic leukemic differentiation.

  17. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells

    Directory of Open Access Journals (Sweden)

    Aaron L. Miller

    2002-01-01

    Full Text Available Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone. (20Dex and two polyamine inhibitors, difluoromethylornithine. (20DFMO and methyl glyoxal bis guanylhydrazone. (20MGBG, on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase. (20ODC, the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity.

  18. Analysis of CTCL cell lines reveals important differences between mycosis fungoides/Sézary syndrome vs. HTLV-1+ leukemic cell lines

    DEFF Research Database (Denmark)

    Netchiporouk, Elena; Gantchev, Jennifer; Tsang, Matthew

    2017-01-01

    HTLV-1 is estimated to affect ~20 million people worldwide and in ~5% of carriers it produces Adult T-Cell Leukemia/Lymphoma (ATLL), which can often masquerade and present with classic erythematous pruritic patches and plaques that are typically seen in Mycosis Fungoides (MF) and Sézary Syndrome...... (SS), the most recognized variants of Cutaneous T-Cell Lymphomas (CTCL). For many years the role of HTLV- 1 in the pathogenesis of MF/SS has been hotly debated. In this study we analyzed CTCL vs. HTLV-1+ leukemic cells. We performed G-banding/spectral karyotyping, extensive gene expression analysis......, TP53 sequencing in the 11 patient-derived HTLV- 1+ (MJ and Hut102) vs. HTLV-1- (Myla, Mac2a, PB2B, HH, H9, Hut78, SZ4, Sez4 and SeAx) CTCL cell lines. We further tested drug sensitivities to commonly used CTCL therapies and studied the ability of these cells to produce subcutaneous xenograft tumors...

  19. Development Refractoriness of MLL-Rearranged Human B Cell Acute Leukemias to Reprogramming into Pluripotency

    Directory of Open Access Journals (Sweden)

    Alvaro Muñoz-López

    2016-10-01

    Full Text Available Induced pluripotent stem cells (iPSCs are a powerful tool for disease modeling. They are routinely generated from healthy donors and patients from multiple cell types at different developmental stages. However, reprogramming leukemias is an extremely inefficient process. Few studies generated iPSCs from primary chronic myeloid leukemias, but iPSC generation from acute myeloid or lymphoid leukemias (ALL has not been achieved. We attempted to generate iPSCs from different subtypes of B-ALL to address the developmental impact of leukemic fusion genes. OKSM(L-expressing mono/polycistronic-, retroviral/lentiviral/episomal-, and Sendai virus vector-based reprogramming strategies failed to render iPSCs in vitro and in vivo. Addition of transcriptomic-epigenetic reprogramming “boosters” also failed to generate iPSCs from B cell blasts and B-ALL lines, and when iPSCs emerged they lacked leukemic fusion genes, demonstrating non-leukemic myeloid origin. Conversely, MLL-AF4-overexpressing hematopoietic stem cells/B progenitors were successfully reprogrammed, indicating that B cell origin and leukemic fusion gene were not reprogramming barriers. Global transcriptome/DNA methylome profiling suggested a developmental/differentiation refractoriness of MLL-rearranged B-ALL to reprogramming into pluripotency.

  20. Genetically engineered mesenchymal stromal cells produce IL-3 and TPO to further improve human scaffold-based xenograft models.

    Science.gov (United States)

    Carretta, Marco; de Boer, Bauke; Jaques, Jenny; Antonelli, Antonella; Horton, Sarah J; Yuan, Huipin; de Bruijn, Joost D; Groen, Richard W J; Vellenga, Edo; Schuringa, Jan Jacob

    2017-07-01

    Recently, NOD-SCID IL2Rγ -/- (NSG) mice were implanted with human mesenchymal stromal cells (MSCs) in the presence of ceramic scaffolds or Matrigel to mimic the human bone marrow (BM) microenvironment. This approach allowed the engraftment of leukemic samples that failed to engraft in NSG mice without humanized niches and resulted in a better preservation of leukemic stem cell self-renewal properties. To further improve our humanized niche scaffold model, we genetically engineered human MSCs to secrete human interleukin-3 (IL-3) and thrombopoietin (TPO). In vitro, these IL-3- and TPO-producing MSCs were superior in expanding human cord blood (CB) CD34 + hematopoietic stem/progenitor cells. MLL-AF9-transduced CB CD34 + cells could be transformed efficiently along myeloid or lymphoid lineages on IL-3- and TPO-producing MSCs. In vivo, these genetically engineered MSCs maintained their ability to differentiate into bone, adipocytes, and other stromal components. Upon transplantation of MLL-AF9-transduced CB CD34 + cells, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) developed in engineered scaffolds, in which a significantly higher percentage of myeloid clones was observed in the mouse compartments compared with previous models. Engraftment of primary AML, B-cell ALL, and biphenotypic acute leukemia (BAL) patient samples was also evaluated, and all patient samples could engraft efficiently; the myeloid compartment of the BAL samples was better preserved in the human cytokine scaffold model. In conclusion, we show that we can genetically engineer the ectopic human BM microenvironment in a humanized scaffold xenograft model. This approach will be useful for functional study of the importance of niche factors in normal and malignant human hematopoiesis. Copyright © 2017 ISEH - International Society for Experimental Hematology. All rights reserved.

  1. Lack of correlation between immunologic markers and cell surface ultrastructure in the leukemic phase of lymphoproliferative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Golomb, Harvey M.; Simon, Deberah

    1977-01-01

    In a prospective study of malignant cells from 13 patients with the leukemic phase of lymphoproliferative diseases, we wished to determine whether any correlation between the immunologic markers and the cell surface ultrastructure. Five patients had chronic lymphocytic leukemia, four had malignant lymphomas, poorly differentiated lymphocytic type, two had the Sezary syndrome, and one each had acute prolymphocytic leukemia and acute lymphocytic leukemia. Cell separation and isolation was done at room temperature for all specimens. Immunologic markers tested for were surface immunoglobins, a B-cell property, and E-rosettes, a T-cell property. Three patients had T-cell diseases, 6 had B-cell diseases, and 4 were classified as ''null.'' All but one patient had moderate to large numbers of microvilli on their malignant cells. The single exception had a typical B-cell form of chronic lymphocytic leukemia. There appears to be no correlation between immunologic markers and cell surface ultrastructure; therefore, SEM appears not to be valuable in the diagnosis or classification of immunologic sub-types of certain lymphoproliferative diseases.

  2. Radiobiological heterogeneity of leukemic lymphocyte precursors from acute lymphoblastic leukemia patients

    International Nuclear Information System (INIS)

    Uckun, F.M.; Kim, T.H.; Ramsay, N.C.; Min, W.S.; Song, C.W.

    1989-01-01

    The report outlines the authors' findings on the radiobiological features of leukemic lymphocyte precursors from acute lymphoblastic leukemia (ALL) patients. A marked heterogeneity existed between different cell lines, with a remarkable radioresistance and repair capacity in some ALL patients and an acute radiosensitivity in the absence of a detectable repair capacity in others. (U.K.)

  3. Adhesion molecule profiles of B-cell non-Hodgkin's lymphomas in the leukemic phase

    Directory of Open Access Journals (Sweden)

    D.M. Matos

    2006-10-01

    Full Text Available We evaluated the expression of 10 adhesion molecules on peripheral blood tumor cells of 17 patients with chronic lymphocytic leukemia, 17 with mantle-cell lymphoma, and 13 with nodal or splenic marginal B-cell lymphoma, all in the leukemic phase and before the beginning of any therapy. The diagnosis of B-cell non-Hodgkin's lymphomas was based on cytological, histological, immunophenotypic, and molecular biology methods. The mean fluorescence intensity of the adhesion molecules in tumor cells was measured by flow cytometry of CD19-positive cells and differed amongst the types of lymphomas. Comparison of chronic lymphocytic leukemia and mantle-cell lymphoma showed that the former presented a higher expression of CD11c and CD49c, and a lower expression of CD11b and CD49d adhesion molecules. Comparison of chronic lymphocytic leukemia and marginal B-cell lymphoma showed that the former presented a higher expression of CD49c and a lower expression of CD11a, CD11b, CD18, CD49d, CD29, and CD54. Finally, comparison of mantle-cell lymphoma and marginal B-cell lymphoma showed that marginal B-cell lymphoma had a higher expression of CD11a, CD11c, CD18, CD29, and CD54. Thus, the CD49c/CD49d pair consistently demonstrated a distinct pattern of expression in chronic lymphocytic leukemia compared with mantle-cell lymphoma and marginal B-cell lymphoma, which could be helpful for the differential diagnosis. Moreover, the distinct profiles of adhesion molecules in these diseases may be responsible for their different capacities to invade the blood stream.

  4. Stromal cells expressing hedgehog-interacting protein regulate the proliferation of myeloid neoplasms

    International Nuclear Information System (INIS)

    Kobune, M; Iyama, S; Kikuchi, S; Horiguchi, H; Sato, T; Murase, K; Kawano, Y; Takada, K; Ono, K; Kamihara, Y; Hayashi, T; Miyanishi, K; Sato, Y; Takimoto, R; Kato, J

    2012-01-01

    Aberrant reactivation of hedgehog (Hh) signaling has been described in a wide variety of human cancers including cancer stem cells. However, involvement of the Hh-signaling system in the bone marrow (BM) microenvironment during the development of myeloid neoplasms is unknown. In this study, we assessed the expression of Hh-related genes in primary human CD34 + cells, CD34 + blastic cells and BM stromal cells. Both Indian Hh (Ihh) and its signal transducer, smoothened (SMO), were expressed in CD34 + acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)-derived cells. However, Ihh expression was relatively low in BM stromal cells. Remarkably, expression of the intrinsic Hh-signaling inhibitor, human Hh-interacting protein (HHIP) in AML/MDS-derived stromal cells was markedly lower than in healthy donor-derived stromal cells. Moreover, HHIP expression levels in BM stromal cells highly correlated with their supporting activity for SMO + leukemic cells. Knockdown of HHIP gene in stromal cells increased their supporting activity although control cells marginally supported SMO + leukemic cell proliferation. The demethylating agent, 5-aza-2′-deoxycytidine rescued HHIP expression via demethylation of HHIP gene and reduced the leukemic cell-supporting activity of AML/MDS-derived stromal cells. This indicates that suppression of stromal HHIP could be associated with the proliferation of AML/MDS cells

  5. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells1

    Science.gov (United States)

    Miller, Aaron L; Johnson, Betty H; Medh, Rheem D; Townsend, Courtney M; Thompson, E Brad

    2002-01-01

    Abstract Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone (Dex) and two polyamine inhibitors, difluoromethylornithine (DFMO) and methyl glyoxal bis guanylhydrazone (MGBG), on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity. PMID:11922393

  6. Cyanobacteria as a Source for Novel Anti-Leukemic Compounds.

    Science.gov (United States)

    Humisto, Anu; Herfindal, Lars; Jokela, Jouni; Karkman, Antti; Bjørnstad, Ronja; Choudhury, Romi R; Sivonen, Kaarina

    2016-01-01

    Cyanobacteria are an inspiring source of bioactive secondary metabolites. These bioactive agents are a diverse group of compounds which are varying in their bioactive targets, the mechanisms of action, and chemical structures. Cyanobacteria from various environments, especially marine benthic cyanobacteria, are found to be rich sources for the search for novel bioactive compounds. Several compounds with anticancer activities have been discovered from cyanobacteria and some of these have succeeded to enter the clinical trials. Varying anticancer agents are needed to overcome increasing challenges in cancer treatments. Different search methods are used to reveal anticancer compounds from natural products, but cell based methods are the most common. Cyanobacterial bioactive compounds as agents against acute myeloid leukemia are not well studied. Here we examined our new results combined with previous studies of anti-leukemic compounds from cyanobacteria with emphasis to reveal common features in strains producing such activity. We report that cyanobacteria harbor specific anti-leukemic compounds since several studied strains induced apoptosis against AML cells but were inactive against non-malignant cells like hepatocytes. We noted that particularly benthic strains from the Baltic Sea, such as Anabaena sp., were especially potential AML apoptosis inducers. Taken together, this review and re-analysis of data demonstrates the power of maintaining large culture collections for the search for novel bioactivities, and also how anti-AML activity in cyanobacteria can be revealed by relatively simple and low-cost assays.

  7. PENGARUH EKSTRAK JAMU TERHADAP AKTIVITAS SEL NATURAL KILLER DALAM MELISIS ALUR SEL LEUKIMIA (K-562 SECARA IN VITRO [The Effects of Commercial “Jamu” Extracts on Natural Killer Cell Activity in Lysing Leukemic Cell Line (K-562 in vitro

    Directory of Open Access Journals (Sweden)

    Elisa Veronica D.C. 2

    2002-04-01

    Full Text Available Natural killer (NK cell consitutes white blood cells which specifically functions in lysing tumor and virus invected cells. In this research, a commercial “Jamu” was tested to observe its effect on NK cells activity against leukemic cell lines (K562 in vitro. Jamu was extracted with hot water, diluted and added into cell cultures consisted of a mixture of human peripheric limphocyte cells, as the source of the effector NK cells, and K562 cell line i.e., the target cells which were cell line derived from human leukemia and had been labelled with H3-thymidine. The mixture of the cells were made by culturing the two cells at the ratio of 50:1 and 100 : 1, respectively. The results showed that lysing activity of NK cells in the presence of “Jamu” water extract measured as lysing percentage and lysing index increased only slightly, which were not statiscally significant. It should be considered that the test used in this research represents only a part of the lysing mechanism by NK cells against the target cells. An in vivo test for a period of time will be recessary to elucidate ffurther this NK cell activity.

  8. Effect of pentoxifylline on P-glycoprotein mediated vincristine resistance of L1210 mouse leukemic cell line

    International Nuclear Information System (INIS)

    Breier, A.; Uhrik, B.; Barancik, M.; Stefankova, Z.; Tribulova, N.

    1994-01-01

    Effect of pentoxifylline (PTX) on vincristine (VCR) resistance of multidrug resistant L1210/VCR mouse leukemic cell line was studied. Reversal effect of PTX (in concentration 50-150 mg dm -3 ) on vincristine resistance, i.e. potentiation of vincristine cytotoxicity on L1210/VCR cells by PTX was found. PTX alone in the above concentration did not exert any significant effect on sensitive or resistant cell lines in the absence of vincristine. Resistance of L1210/VCR cell line was found previously to be accompanied with overexpression of drug transporting P-glycoprotein. Indeed, lower level of 3 H-vincristine accumulation by resistant L1210/VCR cell line in comparison with sensitive L1210 cell line was observed. Accumulation of 3 H-vincristine by L1210/VCR cell line was significantly increased in the presence of PTX. PTX in the same condition did not exert any considerable effect on accumulation of 3 H-vincristine by nonresistant L1210 cells. Observable morphological damage was observed in 1210/VCR cells cultivated in medium containing vincristine (0.2 mg dm -3 ) and pentoxifylline (100 mg dm -3 ) in comparison with the non-damaged cells in the presence of vincristine or pentoxifylline alone. The results obtained indicate that pentoxifylline may be considered as a reversal agent in multidrug resistance. (author)

  9. Proteoglycan biosynthesis in murine monocytic leukemic (M1) cells before and after differentiation

    International Nuclear Information System (INIS)

    McQuillan, D.J.; Yanagishita, M.; Hascall, V.C.; Bickel, M.

    1989-01-01

    Murine monocytic leukemic (M1) cells were cultured in the presence of [ 3 H]glucosamine and [ 35 S]sulfate. Labeled proteoglycans were purified by anion exchange chromatography and characterized by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis in combination with chemical and enzymatic degradation. M1 cells synthesize a single predominant species of proteoglycan which distributes almost equally between the cell and medium after 17 h labeling. The cell-associated proteoglycan has an overall size of about 135 kDa and contains three to five chondroitin sulfate chains (28-31 kDa each) attached to a chondroitinase-generated core protein of 28 kDa. The synthesis and subsequent secretion of this proteoglycan was enhanced 4-5-fold in cells induced to differentiate into macrophages. This was not a phenomenon of arrest in the G0/G1 stage of the cell cycle, since density inhibited undifferentiated cells arrested at this stage did not increase proteoglycan synthesis. The chondroitin sulfate chains contained exclusively chondroitin 4- and 6-sulfate; however, the ratio of these two disaccharides differed between the medium- and cell-associated proteoglycans, and changed during progression of the cells into a fully differentiated phenotype. Pulse-chase kinetics indicate the presence of two distinct pools of proteoglycan; one that is secreted very rapidly from the cell after a approximately 1-h lag, and a second pool that is turned over in the cell with a half-time of approximately 3.5 h. Subtle differences in the glycosylation patterns of the medium- and cell-associated species are consistent with synthesis of two pools. Papain digestion suggests that the chondroitin sulfate chains are clustered on a small protease resistant peptide. The data suggest that this proteoglycan is similar to the serglycin proteoglycan family

  10. Apoptosis and reduced cell proliferation of HL-60 cell line caused by human telomerase reverse transcriptase inhibition by siRNA.

    Science.gov (United States)

    Miri-Moghaddam, Ebrahim; Deezagi, Abdolkhaleg; Soheili, Zahra Sohaila; Shariati, Parvin

    2010-01-01

    The close correlation between telomerase activity and human telomerase reverse transcriptase (hTERT) expression has made hTERT to be considered as a selective molecular target for human cancer therapy. In this study, the ability of short-interfering RNA (siRNA) to downregulate hTERT expression and its correlation with cell growth and apoptosis in the promyelocytic cell line HL-60 was evaluated. hTERT siRNA was designed and transfected to HL-60. hTERT mRNA expression, cell proliferation and apoptotic cells were measured. The results indicated that hTERT siRNA resulted in 97.2 ± 0.6% downregulation of the hTERT mRNA content; inhibition of the cell proliferation rate was about 52.8 ± 2.3% and the apoptotic index of cells was 30.5 ± 1.5%. hTERT plays an essential role in cell proliferation and control of the viability of leukemic cells, thus promising the development of drugs for leukemia. Copyright © 2010 S. Karger AG, Basel.

  11. Anti-proliferative and differentiation-inducing activities of the green tea catechin epigallocatechin-3-gallate (EGCG) on the human eosinophilic leukemia EoL-1 cell line.

    Science.gov (United States)

    Lung, H L; Ip, W K; Wong, C K; Mak, N K; Chen, Z Y; Leung, K N

    2002-12-06

    A novel approach for the treatment of leukemia is the differentiation therapy in which immature leukemia cells are induced to attain a mature phenotype when exposed to differentiation inducers, either alone or in combinations with other chemotherapeutic or chemopreventive drugs. Over the past decade, numerous studies indicated that green tea catechins (GTC) could suppress the growth and induce apoptosis on a number of human cancer cell lines. However, the differentiation-inducing activity of GTC on human tumors remains poorly understood. In the present study, the effect of the major GTC epigallocatechin-3-gallate (EGCG) on the proliferation and differentiation of a human eosinophilc leukemic cell line, EoL-1, was examined. Our results showed that EGCG suppressed the proliferation of the EoL-1 cells in a dose-dependent manner, with an estimated IC(50) value of 31.5 microM. On the other hand, EGCG at a concentration of 40 microM could trigger the EoL-1 cells to undergo morphological differentiation into mature eosinophil-like cells. Using RT-PCR and flow cytometry, it was found that EGCG upregulated the gene and protein expression of two eosinophil-specific granule proteins, the major basic protein (MBP) and eosinophil peroxidase (EPO), in EoL-1 cells. Taken together, our findings suggest that EGCG can exhibit anti-leukemic activity on a human eosinophilic cell line EoL-1 by suppressing the proliferation and by inducing the differentiation of the leukemia cells.

  12. Sporadic on/off switching of HTLV-1 Tax expression is crucial to maintain the whole population of virus-induced leukemic cells.

    Science.gov (United States)

    Mahgoub, Mohamed; Yasunaga, Jun-Ichirou; Iwami, Shingo; Nakaoka, Shinji; Koizumi, Yoshiki; Shimura, Kazuya; Matsuoka, Masao

    2018-02-06

    Viruses causing chronic infection artfully manipulate infected cells to enable viral persistence in vivo under the pressure of immunity. Human T-cell leukemia virus type 1 (HTLV-1) establishes persistent infection mainly in CD4+ T cells in vivo and induces leukemia in this subset. HTLV-1-encoded Tax is a critical transactivator of viral replication and a potent oncoprotein, but its significance in pathogenesis remains obscure due to its very low level of expression in vivo. Here, we show that Tax is expressed in a minor fraction of leukemic cells at any given time, and importantly, its expression spontaneously switches between on and off states. Live cell imaging revealed that the average duration of one episode of Tax expression is ∼19 hours. Knockdown of Tax rapidly induced apoptosis in most cells, indicating that Tax is critical for maintaining the population, even if its short-term expression is limited to a small subpopulation. Single-cell analysis and computational simulation suggest that transient Tax expression triggers antiapoptotic machinery, and this effect continues even after Tax expression is diminished; this activation of the antiapoptotic machinery is the critical event for maintaining the population. In addition, Tax is induced by various cytotoxic stresses and also promotes HTLV-1 replication. Thus, it seems that Tax protects infected cells from apoptosis and increases the chance of viral transmission at a critical moment. Keeping the expression of Tax minimal but inducible on demand is, therefore, a fundamental strategy of HTLV-1 to promote persistent infection and leukemogenesis. Copyright © 2018 the Author(s). Published by PNAS.

  13. Stimulation of granulocytic cell iodination by pine cone antitumor substances

    International Nuclear Information System (INIS)

    Unten, S.; Sakagami, H.; Konno, K.

    1989-01-01

    Antitumor substances (Fractions VI and VII) prepared from the NaOH extract of pine cone significantly stimulated the iodination (incorporation of radioactive iodine into an acid-insoluble fraction) of human peripheral blood adherent mononuclear cells, polymorphonuclear cells (PMN), and human promyelocytic leukemic HL-60 cells. In contrast, these fractions did not significantly increase the iodination of nonadherent mononuclear cells, red blood cells, other human leukemic cell lines (U-937, THP-1, K-562), human diploid fibroblast (UT20Lu), or mouse cell lines (L-929, J774.1). Iodination of HL-60 cells, which were induced to differentiate by treatment with either retinoic acid or tumor necrosis factor, were stimulated less than untreated cells. The stimulation of iodination of both PMN and HL-60 cells required the continuous presence of these fractions and was almost completely abolished by the presence of myeloperoxidase inhibitors. The stimulation activity of these fractions was generally higher than that of various other immunopotentiators. Possible mechanisms of extract stimulation of myeloperoxidase-containing cell iodination are discussed

  14. Cytotoxic Capacity of IL-15-Stimulated Cytokine-Induced Killer Cells Against Human Acute Myeloid Leukemia and Rhabdomyosarcoma in Humanized Preclinical Mouse Models

    Energy Technology Data Exchange (ETDEWEB)

    Rettinger, Eva; Meyer, Vida; Kreyenberg, Hermann [Department of Pediatric Hematology, Oncology and Hemostaseology, University Children’s Hospital of Frankfurt/Main, Goethe-University Frankfurt/Main, Frankfurt/Main (Germany); Volk, Andreas [Chemotherapeutisches Forschungsinstitut, Georg-Speyer-Haus, Frankfurt/Main (Germany); Kuçi, Selim; Willasch, Andre [Department of Pediatric Hematology, Oncology and Hemostaseology, University Children’s Hospital of Frankfurt/Main, Goethe-University Frankfurt/Main, Frankfurt/Main (Germany); Koscielniak, Ewa [Department of Pediatric Oncology and Hematology, Olgahospital Stuttgart, Stuttgart (Germany); Fulda, Simone [Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt/Main, Frankfurt/Main (Germany); Wels, Winfried S. [Chemotherapeutisches Forschungsinstitut, Georg-Speyer-Haus, Frankfurt/Main (Germany); Boenig, Halvard [Institute for Transfusion Medicine and Immunohematology, Goethe-University Frankfurt/Main, Division for Cell Processing, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Frankfurt/Main (Germany); Klingebiel, Thomas; Bader, Peter, E-mail: eva.rettinger@kgu.de, E-mail: peter.bader@kgu.de [Department of Pediatric Hematology, Oncology and Hemostaseology, University Children’s Hospital of Frankfurt/Main, Goethe-University Frankfurt/Main, Frankfurt/Main (Germany)

    2012-04-09

    Allogeneic stem cell transplantation (allo-SCT) has become an important treatment modality for patients with high-risk acute myeloid leukemia (AML) and is also under investigation for soft tissue sarcomas. The therapeutic success is still limited by minimal residual disease (MRD) status ultimately leading to patients’ relapse. Adoptive donor lymphocyte infusions based on MRD status using IL-15-expanded cytokine-induced killer (CIK) cells may prevent relapse without causing graft-versus-host-disease (GvHD). To generate preclinical data we developed mouse models to study anti-leukemic- and anti-tumor-potential of CIK cells in vivo. Immunodeficient mice (NOD/SCID/IL-2Rγc{sup −}, NSG) were injected intravenously with human leukemic cell lines THP-1, SH-2 and with human rhabdomyosarcoma (RMS) cell lines RH41 and RH30 at minimal doses required for leukemia or tumor engraftment. Mice transplanted with THP-1 or RH41 cells were randomly assigned for analysis of CIK cell treatment. Organs of mice were analyzed by flow cytometry as well as quantitative polymerase chain reaction for engraftment of malignant cells and CIK cells. Potential of CIK cells to induce GvHD was determined by histological analysis. Tissues of the highest degree of THP-1 cell expansion included bone marrow followed by liver, lung, spleen, peripheral blood (PB), and brain. RH30 and RH41 engraftment mainly took place in liver and lung, but was also detectable in spleen and PB. In spite of delayed CIK cell expansion compared with malignant cells, CIK cells injected at equal amounts were sufficient for significant reduction of RH41 cells, whereas against fast-expanding THP-1 cells 250 times more CIK than THP-1 cells were needed to achieve comparable results. Our preclinical in vivo mouse models showed a reliable 100% engraftment of malignant cells which is essential for analysis of anti-cancer therapy. Furthermore our data demonstrated that IL-15-activated CIK cells have potent cytotoxic capacity

  15. Cytotoxic capacity of IL-15-stimulated cytokine-induced killer cells against human acute myeloid leukemia and rhabdomyosarcoma in humanized preclinical mouse models

    Directory of Open Access Journals (Sweden)

    Eva eRettinger

    2012-04-01

    Full Text Available Allogeneic stem cell transplantation (allo-SCT has become an important treatment modality for patients with high risk acute myeloid leukemia (AML and is also under investigation for soft tissue sarcomas. The therapeutic success is still limited by minimal residual disease (MRD status ultimately leading to patients’ relapse. Adoptive donor lymphocyte infusions (DLI based on MRD status using IL-15-expanded cytokine-induced killer (CIK cells may prevent relapse without causing graft-versus-host-disease (GvHD. To generate preclinical data we developed mouse models to study anti-leukemic- and anti-tumor-potential of CIK cells in vivo. Immunodeficient mice (NOD/SCID/IL2Rγc-, NSG were injected intravenously with human leukemic cell lines THP-1, SH-2 and with human rhabdomyosarcoma (RMS cell lines RH41 and RH30 at minimal doses required for leukemia or tumor engraftment. Mice transplanted with THP-1 or RH41 cells were randomly assigned for analysis of CIK cell treatment. Organs of mice were analyzed by flow cytometry as well as quantitative polymerase chain reaction (qPCR for engraftment of malignant cells and CIK cells. Potential of CIK cells to induce GvHD was determined by histological analysis. Tissues of the highest degree of THP-1 cell expansion included bone marrow (BM followed by liver, lung, spleen, peripheral blood (PB, and brain. RH30 and RH41 engraftment mainly took place in liver and lung, but was also detectable in spleen and PB. In spite of delayed CIK cell expansion compared with malignant cells, CIK cells injected at an effector to target cell (E:T ratio of 1:1 were sufficient for significant reduction of RH41 cells, whereas against fast-expanding THP-1 cells an E:T ratio of 250:1 was needed to achieve comparable results. Our preclinical in vivo mouse models showed a reliably 100% engraftment of malignant cells which is essential for analysis of anti-cancer therapy. Furthermore our data demonstrated that IL-15-activated CIK cells

  16. Downregulation of telomerase activity in human promyelocytic cell line using RNA interference.

    Science.gov (United States)

    Miri-Moghaddam, E; Deezagi, A; Soheili, Z S

    2009-12-01

    Telomerase is a ribonucleoprotein complex. It consists of two main components, human telomerase reverse transcriptase (hTERT) and human telomerase RNA. High telomerase activity is present in most malignant cells, but it is barely detectable in majority of somatic cells. The direct correlation between telomerase reactivation and carcinogens has made hTERT a key target for anticancer therapeutic studies. In this study, for the first time, we evaluated the ability of the new generation of short interfering RNA (siRNA) to regulate telomerase activity in the human promyelocytic leukemia cell line (HL-60). Transient transfection cell line by hTERT siRNAs resulted in statistically significant suppression of hTERT messenger RNAs which were detected by quantitative real-time polymerase chain reaction, while the expressed hTERT protein levels were measured by flow cytometry. The results of telomeric repeat amplification protocol showed that telomerase activity was significantly reduced upon transfection of the HL-60 cell line with hTERT siRNAs. The results of this study showed that telomerase activity and cell proliferation were efficiently inhibited in the hTERT siRNA-treated leukemic cell line.

  17. Glucocorticoid receptors on leukemic cells as evidenced by dexamethasone-induced cytolysis and /sup 3/H-dexamethasone binding

    Energy Technology Data Exchange (ETDEWEB)

    Thraenhardt, H; Haefer, R; Zintl, F

    1987-01-01

    The presence of glucocorticoid receptors on the leukemic cells of 33 patients affected with acute lymphatic leukemia (ALL) and 6 patients affected with acute myeloic leukemia (AML) was investigated by dexamethasone-induced cytolysis and (/sup 3/H)-dexamethasone binding. The tests undertaken proved that after 20 hours of incubation 9 of 26 non-T-non-B-ALL (c-ALL and unclassified ALL) and 2 of AML were lysed with dexamethasone; blood lymphocytes and bone marrow leukocytes of healthy donors, however, were not affected. Non-T-non-B-ALL and AML were able to bind essentially more (/sup 3/H)-dexamethasone than T-ALL. There existed no correlation between dexamethasone binding and dexamethasone-induced cytolysis.

  18. To the nucleolar density and size in apoptotic human leukemic myeloblasts produced in vitro by Trichostatin A

    Directory of Open Access Journals (Sweden)

    K Smetana

    2009-08-01

    Full Text Available The present study was designed to provide more information on nucleoli in apoptotic cells, which were represented in the present study by cultured leukemic myeloblasts (Kasumi-1 cells. The apoptotic process in these cells was produced by trichostatin A (TSA that is a histone deacetylase inhibitor with strong cytostatic effects. The selected TSA concentration added to cultures facilitated to study apoptotic and notapoptotic cells in one and the same specimen. The nucleolar diameter and density were determined using computer assisted measurement and densitometry in specimens stained for RNA. In comparison with not-apoptotic cells, in apoptotic cells, nucleolar mean diameter did not change significantly and nucleolar RNA density was also not apparently different. On the other hand, the cytoplasmic RNA density in apoptotic cells was markedly reduced. Thus it seemed to be possible that the transcribed RNA remained “frozen” within the nucleolus but its transport to the cytoplasm decreased or stopped. However, the possibility of the RNA degradation in the cytoplasm of apoptotic cells based on the present study cannot be eliminated. At this occasion it should be added that AgNORs reflecting nucleolar biosynthetic and cell proliferation activity in apoptotic cells decreased in number or disappeared. The presented results also indicated that large nucleoli intensely stained for RNA need not be necessarily related to the high nucleolar biosynthetic or cell proliferation activity and may be also present in apoptotic cells responding to the cytostatic treatment.

  19. Effects of buffers and pH on in vitro binding of 67Ga by L1210 leukemic cells

    International Nuclear Information System (INIS)

    Glickson, J.D.; Webb, J.; Gams, R.A.

    1974-01-01

    The effect of sodium nitrate and a series of buffers on in vitro 67 Ga binding to L1210 leukemic cells at pH 6.8 +- 0.2 and 37 0 at concentrations of 10 -7 to 10 -2 M has been investigated. The relative ability of these agents to inhibit cellular incorporation of 67 Ga is given. Inhibition probably results from formation of gallium(III) complexes which are either impermeable to the tumor membrane or which compete with intracellular receptor complexes. However, direct interaction of buffers with the cell membrane or with gallium(III) receptors, as well as effects of buffers on cellular metabolism, have not been excluded. A monotonic decrease in the cellular incorporation of 67 Ga occurs between pH 6.2 and 7.8 in the presence of the inert buffer, 10 -2 M morpholinopropane sulfonic acid. (U.S.)

  20. Anti-leukemic effect of a synthetic compound, (±) trans-dihydronarciclasine (HYU-01) via cell-cycle arrest and apoptosis in acute myeloid leukemia.

    Science.gov (United States)

    Kim, Seo Ju; Park, Hyun Ki; Kim, Ju Young; Yoon, Jin Sun; Kim, Eun Shil; Cho, Cheon-Gyu; Kim, Byoung Kook; Park, Byeong Bae; Lee, Young Yiul

    2012-10-01

    (±) trans-Dihydronarciclasine, isolated from Chinese medicinal plant Zephyranthes candida, has been shown to possess quite potent anti-tumoral effect against selected human cancer cell lines. However, little is known about the anti-tumoral effect of (±) trans-dihydronarciclasine in acute myeloid leukemia (AML). This study was performed to investigate the effect of a novel synthetic (±) trans-dihydronarciclasine (code name; HYU-01) in AML. The HYU-01 inhibited the proliferation of various AML cell lines including HL-60 as well as primary leukemic blasts in a dose-dependent manner. To investigate the mechanism of the anti-proliferative effect of HYU-01, cell-cycle analysis was attempted in HL-60 cells, resulting in G1 arrest. The expression levels of CDK2, CDK4, CDK6, cyclin E, and cyclin A were decreased in a time-dependent manner. In addition, HYU-01 up-regulated the expression of the p27, and markedly enhanced the binding of p27 with CDK2, 4, and 6, ultimately resulting in the decrease of their kinase activities. Furthermore, HYU-01 induced the apoptosis through the induction of proapoptotic molecules and reduction of antiapoptotic molecules in association with the activation of caspase-3, -8, and -9. These results suggest that HYU-01 may inhibit the proliferation of HL-60 cells, via apoptosis, as well as G1 block in association with the induction of p27. © 2012 The Authors APMIS © 2012 APMIS.

  1. Reduced hematopoietic stem cell frequency predicts outcome in acute myeloid leukemia

    Science.gov (United States)

    Wang, Wenwen; Stiehl, Thomas; Raffel, Simon; Hoang, Van T.; Hoffmann, Isabel; Poisa-Beiro, Laura; Saeed, Borhan R.; Blume, Rachel; Manta, Linda; Eckstein, Volker; Bochtler, Tilmann; Wuchter, Patrick; Essers, Marieke; Jauch, Anna; Trumpp, Andreas; Marciniak-Czochra, Anna; Ho, Anthony D.; Lutz, Christoph

    2017-01-01

    In patients with acute myeloid leukemia and low percentages of aldehyde-dehydrogenase-positive cells, non-leukemic hematopoietic stem cells can be separated from leukemic cells. By relating hematopoietic stem cell frequencies to outcome we detected poor overall- and disease-free survival of patients with low hematopoietic stem cell frequencies. Serial analysis of matched diagnostic and follow-up samples further demonstrated that hematopoietic stem cells increased after chemotherapy in patients who achieved durable remissions. However, in patients who eventually relapsed, hematopoietic stem cell numbers decreased dramatically at the time of molecular relapse demonstrating that hematopoietic stem cell levels represent an indirect marker of minimal residual disease, which heralds leukemic relapse. Upon transplantation in immune-deficient mice cases with low percentages of hematopoietic stem cells of our cohort gave rise to leukemic or no engraftment, whereas cases with normal hematopoietic stem cell levels mostly resulted in multi-lineage engraftment. Based on our experimental data, we propose that leukemic stem cells have increased niche affinity in cases with low percentages of hematopoietic stem cells. To validate this hypothesis, we developed new mathematical models describing the dynamics of healthy and leukemic cells under different regulatory scenarios. These models suggest that the mechanism leading to decreases in hematopoietic stem cell frequencies before leukemic relapse must be based on expansion of leukemic stem cells with high niche affinity and the ability to dislodge hematopoietic stem cells. Thus, our data suggest that decreasing numbers of hematopoietic stem cells indicate leukemic stem cell persistence and the emergence of leukemic relapse. PMID:28550184

  2. Reduced hematopoietic stem cell frequency predicts outcome in acute myeloid leukemia.

    Science.gov (United States)

    Wang, Wenwen; Stiehl, Thomas; Raffel, Simon; Hoang, Van T; Hoffmann, Isabel; Poisa-Beiro, Laura; Saeed, Borhan R; Blume, Rachel; Manta, Linda; Eckstein, Volker; Bochtler, Tilmann; Wuchter, Patrick; Essers, Marieke; Jauch, Anna; Trumpp, Andreas; Marciniak-Czochra, Anna; Ho, Anthony D; Lutz, Christoph

    2017-09-01

    In patients with acute myeloid leukemia and low percentages of aldehyde-dehydrogenase-positive cells, non-leukemic hematopoietic stem cells can be separated from leukemic cells. By relating hematopoietic stem cell frequencies to outcome we detected poor overall- and disease-free survival of patients with low hematopoietic stem cell frequencies. Serial analysis of matched diagnostic and follow-up samples further demonstrated that hematopoietic stem cells increased after chemotherapy in patients who achieved durable remissions. However, in patients who eventually relapsed, hematopoietic stem cell numbers decreased dramatically at the time of molecular relapse demonstrating that hematopoietic stem cell levels represent an indirect marker of minimal residual disease, which heralds leukemic relapse. Upon transplantation in immune-deficient mice cases with low percentages of hematopoietic stem cells of our cohort gave rise to leukemic or no engraftment, whereas cases with normal hematopoietic stem cell levels mostly resulted in multi-lineage engraftment. Based on our experimental data, we propose that leukemic stem cells have increased niche affinity in cases with low percentages of hematopoietic stem cells. To validate this hypothesis, we developed new mathematical models describing the dynamics of healthy and leukemic cells under different regulatory scenarios. These models suggest that the mechanism leading to decreases in hematopoietic stem cell frequencies before leukemic relapse must be based on expansion of leukemic stem cells with high niche affinity and the ability to dislodge hematopoietic stem cells. Thus, our data suggest that decreasing numbers of hematopoietic stem cells indicate leukemic stem cell persistence and the emergence of leukemic relapse. Copyright© 2017 Ferrata Storti Foundation.

  3. A novel application of furazolidone: anti-leukemic activity in acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Xueqing Jiang

    Full Text Available Acute myeloid leukemia (AML is the most common malignant myeloid disorder of progenitor cells in myeloid hematopoiesis and exemplifies a genetically heterogeneous disease. The patients with AML also show a heterogeneous response to therapy. Although all-trans retinoic acid (ATRA has been successfully introduced to treat acute promyelocytic leukemia (APL, it is rather ineffective in non-APL AML. In our present study, 1200 off-patent marketed drugs and natural compounds that have been approved by the Food and Drug Administration (FDA were screened for anti-leukemia activity using the retrovirus transduction/transformation assay (RTTA. Furazolidone (FZD was shown to inhibit bone marrow transformation mediated by several leukemia fusion proteins, including AML1-ETO. Furazolidone has been used in the treatment of certain bacterial and protozoan infections in human and animals for more than sixty years. We investigated the anti-leukemic activity of FZD in a series of AML cells. FZD displayed potent antiproliferative properties at submicromolar concentrations and induced apoptosis in AML cell lines. Importantly, FZD treatment of certain AML cells induced myeloid cell differentiation by morphology and flow cytometry for CD11b expression. Furthermore, FZD treatment resulted in increased stability of tumor suppressor p53 protein in AML cells. Our in vitro results suggest furazolidone as a novel therapeutic strategy in AML patients.

  4. Do endothelial cells belong to the primitive stem leukemic clone in CML? Role of extracellular vesicles.

    Science.gov (United States)

    Ramos, Teresa L; Sánchez-Abarca, Luis Ignacio; López-Ruano, Guillermo; Muntión, Sandra; Preciado, Silvia; Hernández-Ruano, Montserrat; Rosado, Belén; de las Heras, Natalia; Chillón, M Carmen; Hernández-Hernández, Ángel; González, Marcos; Sánchez-Guijo, Fermín; Del Cañizo, Consuelo

    2015-08-01

    The expression of BCR-ABL in hematopoietic stem cells is a well-defined primary event in chronic myeloid leukemia (CML). Some reports have described the presence of BCR-ABL on endothelial cells from CML patients, suggesting the origin of the disease in a primitive hemangioblastic cell. On the other hand, extracellular vesicles (EVs) released by CML leukemic cells are involved in the angiogenesis modulation process. In the current work we hypothesized that EVs released from BCR-ABL(+) cells may carry inside the oncogene that can be transferred to endothelial cells leading to the expression of both BCR-ABL transcript and the oncoprotein. EVs from K562 cells and plasma of newly diagnosed CML patients were isolated by ultracentrifugation. RT-PCR analysis detected the presence of BCR-ABL RNA in the EVs isolated from both K562 cells and plasma of CML patients. The incorporation of these EVs into endothelial cells was demonstrated by flow cytometry and fluorescence microscopy showed that after 24h of incubation most EVs were incorporated. BCR-ABL transcripts were detected in all experiments on endothelial cells incubated with EVs from both sources. The presence of BCR-ABL on endothelial cells incubated with Philadelphia(+) EVs was also confirmed by Western blot assays. In summary, endothelial cells acquire BCR-ABL RNA and the oncoprotein after incubation with EVs released from Ph(+) positive cells (either from K562 cells or from plasma of newly diagnosed CML patients). This results challenge the hypothesis that endothelial cells may be part of the Philadelphia(+) clone in CML. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Hematopoietic growth factors and human acute leukemia.

    Science.gov (United States)

    Löwenberg, B; Touw, I

    1988-10-22

    The study of myelopoietic maturation arrest in acute myeloblastic leukemia (AML) has been eased by availability of the human recombinant hemopoietic growth factors, macrophage colony stimulating factor (M-CSF), granulocyte-(G-CSF), granulocyte-macrophage-(GM-CSF) and multilineage stimulating factor (IL-3). Nonphysiological expansion of the leukemic population is not due to escape from control by these factors. Proliferation in vitro of AML cells is dependent on the presence of one or several factors in most cases. The pattern of factor-dependency does not correlate with morphological criteria in individual cases, and may thus offer a new tool for classification of AML. Overproduction of undifferentiated cells is not due to abnormal expression of receptors for the stimulating factors acting at an immature level. Rather, autocrine secretion of early acting lymphokines maintains proliferation of the leukemic clone. When looking at causes of leukemic dysregulation, yet undefined inhibitors of differentiation probably are of equal importance as dysequilibrated stimulation by lymphokines.

  6. Stable curcumin-loaded polymeric micellar formulation for enhancing cellular uptake and cytotoxicity to FLT3 overexpressing EoL-1 leukemic cells.

    Science.gov (United States)

    Tima, Singkome; Anuchapreeda, Songyot; Ampasavate, Chadarat; Berkland, Cory; Okonogi, Siriporn

    2017-05-01

    The present study aims to develop a stable polymeric micellar formulation of curcumin (CM) with improved solubility and stability, and that is suitable for clinical applications in leukemia patients. CM-loaded polymeric micelles (CM-micelles) were prepared using poloxamers. The chemical structure of the polymers influenced micellar properties. The best formulation of CM-micelles, namely CM-P407, was obtained from poloxamer 407 at drug to polymer ratio of 1:30 and rehydrated with phosphate buffer solution pH 7.4. CM-P407 exhibited the smallest size of 30.3±1.3nm and highest entrapment efficiency of 88.4±4.1%. When stored at -80°C for 60days, CM-P407 retained high protection of CM and had no significant size change. In comparison with CM solution in dimethyl sulfoxide (CM-DMSO), CM kinetic degradation in both formulations followed a pseudo-first-order reaction, but the half-life of CM in CM-P407 was approx. 200 times longer than in CM-DMSO. Regarding the activity against FLT3 overexpressing EoL-1 leukemic cells, CM-P407 showed higher cytotoxicity than CM-DMSO. Moreover, intracellular uptake to leukemic cells of CM-P407 was 2-3 times greater than that of CM-DMSO. These promising results for CM-P407 will be further investigated in rodents and in clinical studies for leukemia treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Arrangement of chromosome 11 and 22 territories, EWSR1 and FLI1 genes, and other genetic elements of these chromosomes in human lymphocytes and Ewing sarcoma cells

    Czech Academy of Sciences Publication Activity Database

    Taslerová, R.; Kozubek, Stanislav; Lukášová, Emilie; Jirsová, Pavla; Bártová, Eva; Kozubek, Michal

    2003-01-01

    Roč. 112, č. 2 (2003), s. 143-155 ISSN 0340-6717 R&D Projects: GA MZd NC5955; GA AV ČR IBS5004010; GA ČR GA301/01/0186 Institutional research plan: CEZ:AV0Z5004920 Keywords : high-resolution cytometry * human leukemic cells * Ewing sarcoma cells Subject RIV: BO - Biophysics Impact factor: 4.022, year: 2003

  8. Novel anti-c-Mpl monoclonal antibodies identified multiple differentially glycosylated human c-Mpl proteins in megakaryocytic cells but not in human solid tumors.

    Science.gov (United States)

    Zhan, Jinghui; Felder, Barbara; Ellison, Aaron R; Winters, Aaron; Salimi-Moosavi, Hossein; Scully, Sheila; Turk, James R; Wei, Ping

    2013-06-01

    Thrombopoietin and its cognate receptor, c-Mpl, are the primary molecular regulators of megakaryocytopoiesis and platelet production. To date the pattern of c-Mpl expression in human solid tumors and the distribution and biochemical properties of c-Mpl proteins in hematopoietic tissues are largely unknown. We have recently developed highly specific mouse monoclonal antibodies (MAb) against human c-Mpl. In this study we used these antibodies to demonstrate the presence of full-length and truncated human c-Mpl proteins in various megakaryocytic cell types, and their absence in over 100 solid tumor cell lines and in the 12 most common primary human tumor types. Quantitative assays showed a cell context-dependent distribution of full-length and truncated c-Mpl proteins. All forms of human c-Mpl protein were found to be modified with extensive N-linked glycosylation but different degrees of sialylation and O-linked glycosylation. Of note, different variants of full-length c-Mpl protein exhibiting differential glycosylation were expressed in erythromegakaryocytic leukemic cell lines and in platelets from healthy human donors. This work provides a comprehensive analysis of human c-Mpl mRNA and protein expression on normal and malignant hematopoietic and non-hematopoietic cells and demonstrates the multiple applications of several novel anti-c-Mpl antibodies.

  9. Therapeutic Effects of Myeloid Cell Leukemia-1 siRNA on Human Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Hadi Karami

    2014-05-01

    Full Text Available Purpose: Up-regulation of Mcl-1, a known anti-apoptotic protein, is associated with the survival and progression of various malignancies including leukemia. The aim of this study was to explore the effect of Mcl-1 small interference RNA (siRNA on the proliferation and apoptosis of HL-60 acute myeloid leukemia (AML cells. Methods: siRNA transfection was performed using Lipofectamine™2000 reagent. Relative mRNA and protein expressions were quantified by quantitative real-time PCR and Western blotting, respectively. Trypan blue assay was performed to assess tumor cell proliferation after siRNA transfection. The cytotoxic effect of Mcl-1 siRNA on leukemic cells was measured using MTT assay. Apoptosis was detected using ELISA cell death assay. Results: Mcl-1 siRNA clearly lowered both Mcl-1 mRNA and protein levels in a time-dependent manner, leading to marked inhibition of cell survival and proliferation. Furthermore, Mcl-1 down-regulation significantly enhanced the extent of HL-60 apoptotic cells. Conclusion: Our results suggest that the down-regulation of Mcl-1 by siRNA can effectively trigger apoptosis and inhibit the proliferation of leukemic cells. Therefore, Mcl-1 siRNA may be a potent adjuvant in AML therapy.

  10. Establishment of a humanized APL model via the transplantation of PML-RARA-transduced human common myeloid progenitors into immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Hiromichi Matsushita

    Full Text Available Recent advances in cancer biology have revealed that many malignancies possess a hierarchal system, and leukemic stem cells (LSC or leukemia-initiating cells (LIC appear to be obligatory for disease progression. Acute promyelocytic leukemia (APL, a subtype of acute myeloid leukemia characterized by the formation of a PML-RARα fusion protein, leads to the accumulation of abnormal promyelocytes. In order to understand the precise mechanisms involved in human APL leukemogenesis, we established a humanized in vivo APL model involving retroviral transduction of PML-RARA into CD34(+ hematopoietic cells from human cord blood and transplantation of these cells into immunodeficient mice. The leukemia well recapitulated human APL, consisting of leukemic cells with abundant azurophilic abnormal granules in the cytoplasm, which expressed CD13, CD33 and CD117, but not HLA-DR and CD34, were clustered in the same category as human APL samples in the gene expression analysis, and demonstrated sensitivity to ATRA. As seen in human APL, the induced APL cells showed a low transplantation efficiency in the secondary recipients, which was also exhibited in the transplantations that were carried out using the sorted CD34- fraction. In order to analyze the mechanisms underlying APL initiation and development, fractionated human cord blood was transduced with PML-RARA. Common myeloid progenitors (CMP from CD34(+/CD38(+ cells developed APL. These findings demonstrate that CMP are a target fraction for PML-RARA in APL, whereas the resultant CD34(- APL cells may share the ability to maintain the tumor.

  11. Rapid Treatment of Leukostasis in Leukemic Mantle Cell Lymphoma Using Therapeutic Leukapheresis: A Case Report

    Directory of Open Access Journals (Sweden)

    Xuan Duc Nguyen

    2011-01-01

    Full Text Available We describe a case of severe leukocytosis caused by leukemic mantle cell lymphoma (MCL, complicated by leukostasis with myocardial infarction in which leukapheresis was used in the initial management. A 73-year-old male presented to the emergency department because of fatigue and thoracic pain. Blood count revealed 630 × 109/L WBC (white blood cells. The electrocardiogram showed ST-elevation with an increase of troponin and creatinine kinase. The diagnosis was ST-elevation myocardial infarction (STEMI induced and complicated by leukostasis. Immunophenotyping, morphology, cytogenetic and fluorescence-in-situ-hybridization analysis revealed the diagnosis of a blastoid variant of MCL. To remove leukocytes rapidly, leukapheresis was performed in the intensive care unit. Based on the differential blood count with 95% blasts, which were assigned to the lymphocyte population by the automatic hematology analyzer, leukapheresis procedures were then performed with the mononuclear cell standard program on the Spectra cell separator. The patient was treated with daily leukapheresis for 3 days. The WBC count decreased to 174 × 109/L after the third leukapheresis, with a 72% reduction. After the second apheresis, treatment with vincristine, cyclophosphamide, and prednisolone was started. The patient fully recovered in the further course of the treatment. To the best of our knowledge, this is the first report on blastoid MCL with leukostasis associated with a STEMI that was successfully treated by leukapheresis. Effective harvest of circulating lymphoma cells by leukapheresis requires adaptation of instrument settings based on the results of the differential blood count prior to apheresis.

  12. The novel anticancer agent JNJ-26854165 is active in chronic myeloid leukemic cells with unmutated BCR/ABL and T315I mutant BCR/ABL through promoting proteosomal degradation of BCR/ABL proteins.

    Science.gov (United States)

    You, Liangshun; Liu, Hui; Huang, Jian; Xie, Wanzhuo; Wei, Jueying; Ye, Xiujin; Qian, Wenbin

    2017-01-31

    Chronic myeloid leukemia (CML) is a clonal malignant disease caused by the expression of BCR/ABL. MDM2 (human homolog of the murine double minute-2) inhibitors such as Nutlin-3 have been shown to induce apoptosis in a p53-dependent manner in CML cells and sensitize cells to Imatinib. Here, we demonstrate that JNJ-26854165, an inhibitor of MDM2, inhibits proliferation and triggers cell death in a p53-independent manner in various BCR/ABL-expressing cells, which include primary leukemic cells from patients with CML blast crisis and cells expressing the Imatinib-resistant T315I BCR/ABL mutant. The response to JNJ-26854165 is associated with the downregulation of BCR/ABL dependently of proteosome activation. Moreover, in all tested CML cells, with the exception of T315I mutation cells, combining JNJ-26854165 and tyrosine kinase inhibitor (TKI) Imatinib or PD180970 leads to a synergistic effect. In conclusion, our results suggest that JNJ-26854165, used either alone or in combination with TKIs, represents a promising novel targeted approach to overcome TKI resistance and improve patient outcome in CML.

  13. Acute Respiratory Distress Syndrome Caused by Leukemic Infiltration of the Lung

    Directory of Open Access Journals (Sweden)

    Yao-Kuang Wu

    2008-05-01

    Full Text Available Respiratory distress syndrome resulting from leukemic pulmonary infiltrates is seldom diagnosed antemortem. Two 60- and 80-year-old women presented with general malaise, progressive shortness of breath, and hyperleukocytosis, which progressed to acute respiratory distress syndrome (ARDS after admission. Acute leukemia with pulmonary infection was initially diagnosed, but subsequent examinations including open lung biopsy revealed leukemic pulmonary infiltrates without infection. In one case, the clinical condition and chest radiography improved initially after combination therapy with chemotherapy for leukemia and aggressive pulmonary support. However, new pulmonary infiltration on chest radiography and hypoxemia recurred, which was consistent with acute lysis pneumopathy. Despite aggressive treatment, both patients died due to rapidly deteriorating condition. Leukemic pulmonary involvement should be considered in acute leukemia patients with non-infectious diffusive lung infiltration, especially in acute leukemia with a high blast count.

  14. Interaction of leukemic cells with proteins of the extracellular matrix Interações de células leucêmicas com proteínas da matriz extracelular

    Directory of Open Access Journals (Sweden)

    Adriana Rodrigues-Anjos

    2004-01-01

    Full Text Available The interaction of neoplastic cells with basement membrane molecules is the first step for the dissemination of tumor cells in vivo. Leukemic cells have a great ability to spread in the host, since cells are released from the bone marrow to the circulation. In this study we analysed whether CEM, U937, K562 and HL-60 cells were able to attach to different concentrations of laminin and/or fibronectin and/or type IV collagen. Attachment to type IV collagen was low, but it increased with the addition of laminin and occurred in all four leukemic cell lines. On the other hand, attachment to fibronectin was higher, but it decreased with the addition of laminin in the assays using U937 and HL-60 cells. The combination of type IV collagen and fibronectin was a good substratum for cellular attachment. However, the addition of laminin to this substratum impaired its attachment activity in U937, HL-60 and K562. These data suggest that laminin may control cellular attachment to the extracellular matrix during leukemic dissemination in hosts in different ways.A interação de células neoplásicas com moléculas da membrana basal é a primeira etapa para a disseminação, in vivo, de células tumorais in vivo. As células leucêmicas possuem grande capacidade de espraiamento e disseminação no organismo uma vez que as mesmas são liberadas da medula óssea para a circulação. Neste trabalho avaliamos a capacidade das linhagens celulares CEM, U937, K562 and HL-60 em aderirem a uma matriz extracelular constituída por diferentes concentrações de laminina e,ou fibronectina e sobre colágeno IV. A adesão de todas a linhagens leucêmicas a colágeno IV foi baixa, mas aumentou com a associação à laminina. Por outro lado, as células U937 e HL-60 apresentaram alta ligação à fibronectina porém, foi reduzida com a adição de laminina. A associação de colágeno IV e fibronectina possibilitou um bom substrato para a adesão celular. Entretanto, a adi

  15. Gemtuzumab Ozogamicin (GO Inclusion to Induction Chemotherapy Eliminates Leukemic Initiating Cells and Significantly Improves Survival in Mouse Models of Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Cathy C Zhang

    2018-01-01

    Full Text Available Gemtuzumab ozogamicin (GO is an anti-CD33 antibody-drug conjugate for the treatment of acute myeloid leukemia (AML. Although GO shows a narrow therapeutic window in early clinical studies, recent reports detailing a modified dosing regimen of GO can be safely combined with induction chemotherapy, and the combination provides significant survival benefits in AML patients. Here we tested whether the survival benefits seen with the combination arise from the enhanced reduction of chemoresidual disease and leukemic initiating cells (LICs. Herein, we use cell line and patient-derived xenograft (PDX AML models to evaluate the combination of GO with daunorubicin and cytarabine (DA induction chemotherapy on AML blast growth and animal survival. DA chemotherapy and GO as separate treatments reduced AML burden but left significant chemoresidual disease in multiple AML models. The combination of GO and DA chemotherapy eliminated nearly all AML burden and extended overall survival. In two small subsets of AML models, chemoresidual disease following DA chemotherapy displayed hallmark markers of leukemic LICs (CLL1 and CD34. In vivo, the two chemoresistant subpopulations (CLL1+/CD117− and CD34+/CD38+ showed higher ability to self-renewal than their counterpart subpopulations, respectively. CD33 was coexpressed in these functional LIC subpopulations. We demonstrate that the GO and DA induction chemotherapy combination more effectively eliminates LICs in AML PDX models than either single agent alone. These data suggest that the survival benefit seen by the combination of GO and induction chemotherapy, nonclinically and clinically, may be attributed to the enhanced reduction of LICs.

  16. DNA repair and DNA synthesis in leukemic and virus infected cells

    International Nuclear Information System (INIS)

    Tuschl, H.; Altmann, H.; Kovac, R.; Topaloglou, A.; Stacher, A.; Fanta, D.

    1978-09-01

    Autoradiographic determinations of unscheduled DNA synthesis in peripheral lymphocytes of leukemic patients showed strongly different results according to various types of disease of different forms of therapy, respectively. Similar investigations performed with lymphocytes of Herpes simplex infected persons during symptom-free intervals revealed imbalances of the repair system caused by virus infection. BND cellulose chromatography and measurement of 3 H-thymidine incorporation into single- and double stranded DNA fractions showed an increase in velocity of the rejoining process, but a decrease in total incorporation. Because of these results and the demonstration of the supercoiled structure of DNA it is suggested that virusinfections cause a faster rejoining of gaps, but at the same time leave a number of failures within DNA unrecognized. (author)

  17. Overcoming of P-glycoprotein mediated vincristine resistance of L1210/VCR mouse leukemic cells could be induced by pentoxifylline but not by theophylline and caffeine

    International Nuclear Information System (INIS)

    Stefankova, Z.; Barancik, M.; Breier, A.

    1996-01-01

    Effects of xanthine derivatives (pentoxifylline (PTX), caffeine, theophylline, 1-methyl-3-isobutylxanthine) on P-glycoprotein mediated vincristine resistance of L1210/VCR mouse leukemic cell sub-line were studied. From the applied xanthines only PTX was found to reverse the vincristine resistance of the above cells. Moreover, only PTX, but not other xanthine, increased the accumulation of [ 3 H]vincristine by L1210/VCR cells. Thus it may be concluded that PTX-induced reversal of vincristine (VCR) resistance could not be explained from the point of known pharmacological effects of PTX that are common for other xanthines such as inhibition of phosphodiesterase activity, calcium mobilizing effect, inhibition of tumor necrosis factor α (TNF), etc. (author)

  18. Assay of hybrid ribonuclease using a membrane filter-immobilized synthetic hybrid: application to the human leukemic cell

    International Nuclear Information System (INIS)

    Papaphilis, A.D.; Kamper, E.F.

    1985-01-01

    A method for assaying hybrid ribonuclease has been devised which utilizes as substrate the synthetic hybrid [ 3 H]polyriboadenylic acid [poly(rA)]:polydeoxythymidylic acid [poly(dT)] immobilized on the solid matrix of nitrocellulose filters. The hybridization on filter of [ 3 H]poly(rA) to poly(dT) has been explored in terms of efficacy of the process and the response of the product to RNase H. A pulse of uv irradiation of poly(dT) while in dry state on the filter increased its firm binding to the filter in a concentration-dependent manner, resulting in a concomitant increase of the yield of hybrid formation. The filter-immobilized hybrid was 95% resistant to RNase A but sensitive to RNase H. When stored in toluene in the cold the hybrid maintained its stability for over 6 months, as judged by its resistance to RNase A. The method offers a number of advantages over assays that use solution hybrids as substrates and was readily applicable in the screening of leukemic patients, in the leukocytes of which it has demonstrated increased RNase H levels

  19. 5-Aza-2'-deoxycytidine synergistic action with thymidine on leukemic cells and interaction of 5-aza-dCMP with dCMP deaminase

    International Nuclear Information System (INIS)

    Momparler, R.L.; Bartolucci, S.; Bouchard, J.; Momparler, L.F.; Raia, C.A.; Rossi, M.

    1986-01-01

    The authors observe a synergistic antineoplastic effect between 5-AZA-dCR and dTR on leukemia cells in culture. In order to understand the mechanism behind this interaction the authors investigate the effects of dTTP on the deamination of 5-aza-2'-deoxycytidine-5'-monophosphate (5-AZA-dCMP) by dCMP deaminase. The effects of 5-AZA-dCTP on this enzyme is also studied. The incorporation of tritium-5-AZA-Cdr into DNA of leukemic cells was performed. The amount of radioactivity incorproated into DNA was determined by trapping the cells on GF/C glass fiber filters and washing with cold TCA. It is shown that the modulation of the atieoplastic activity of deoxycytidine analogs by allosteric effectors such as dTTP may have the potential to increase the effectiveness of the chemotherapy for acute leukemia

  20. Specific inhibition of Wee1 kinase and Rad51 recombinase: A strategy to enhance the sensitivity of leukemic T-cells to ionizing radiation-induced DNA double-strand breaks

    International Nuclear Information System (INIS)

    Havelek, Radim; Cmielova, Jana; Kralovec, Karel; Bruckova, Lenka; Bilkova, Zuzana; Fousova, Ivana; Sinkorova, Zuzana; Vavrova, Jirina; Rezacova, Martina

    2014-01-01

    Highlights: • Pre-treatment with the inhibitors increased the sensitivity of Jurkat cells to irradiation. • Combining both inhibitors together resulted in a G2 cell cycle arrest abrogation in Jurkat. • Jurkat cells pre-treated with inhibitors were positive for γH2AX foci 24 h upon irradiation. • Pre-treatment with Rad51 RI-1 had no effect on apoptosis induction in MOLT-4 cells. • When dosed together, the combination decreased MOLT-4 cell survival. - Abstract: Present-day oncology sees at least two-thirds of cancer patients receiving radiation therapy as a part of their anticancer treatment. The objectives of the current study were to investigate the effects of the small molecule inhibitors of Wee1 kinase II (681641) and Rad51 (RI-1) on cell cycle progression, DNA double-strand breaks repair and apoptosis following ionizing radiation exposure in human leukemic T-cells Jurkat and MOLT-4. Pre-treatment with the Wee1 681641 or Rad51 RI-1 inhibitor alone increased the sensitivity of Jurkat cells to irradiation, however combining both inhibitors together resulted in a further enhancement of apoptosis. Jurkat cells pre-treated with inhibitors were positive for γH2AX foci 24 h upon irradiation. MOLT-4 cells were less affected by inhibitors application prior to ionizing radiation exposure. Pre-treatment with Rad51 RI-1 had no effect on apoptosis induction; however Wee1 681641 increased ionizing radiation-induced cell death in MOLT-4 cells

  1. Comparison of edge detection techniques for M7 subtype Leukemic cell in terms of noise filters and threshold value

    Directory of Open Access Journals (Sweden)

    Abdul Salam Afifah Salmi

    2017-01-01

    Full Text Available This paper will focus on the study and identifying various threshold values for two commonly used edge detection techniques, which are Sobel and Canny Edge detection. The idea is to determine which values are apt in giving accurate results in identifying a particular leukemic cell. In addition, evaluating suitability of edge detectors are also essential as feature extraction of the cell depends greatly on image segmentation (edge detection. Firstly, an image of M7 subtype of Acute Myelocytic Leukemia (AML is chosen due to its diagnosing which were found lacking. Next, for an enhancement in image quality, noise filters are applied. Hence, by comparing images with no filter, median and average filter, useful information can be acquired. Each threshold value is fixed with value 0, 0.25 and 0.5. From the investigation found, without any filter, Canny with a threshold value of 0.5 yields the best result.

  2. The variable chemotherapeutic response of Malabaricone-A in leukemic and solid tumor cell lines depends on the degree of redox imbalance.

    Science.gov (United States)

    Manna, Alak; De Sarkar, Sritama; De, Soumita; Bauri, Ajay K; Chattopadhyay, Subrata; Chatterjee, Mitali

    2015-07-15

    The 'two-faced' character of reactive oxygen species (ROS) plays an important role in cancer biology by acting as secondary messengers in intracellular signaling cascades, enhancing cell proliferation and survival, thereby sustaining the oncogenic phenotype. Conversely, enhanced generation of ROS can trigger an oxidative assault leading to a redox imbalance translating into an apoptotic cell death. Intrinsically, cancer cells have higher basal levels of ROS which if supplemented by additional oxidative insult by pro-oxidants can be cytotoxic, an example being Malabaricone-A (MAL-A). MAL-A is a plant derived diarylnonanoid, purified from fruit rind of the plant Myristica malabarica whose anti-cancer activity has been demonstrated in leukemic cell lines, the modality of cell death being apoptosis. This study aimed to compare the degree of effectiveness of MAL-A in leukemic vs. solid tumor cell lines. The cytotoxicity of MAL-A was evaluated by the MTS-PMS cell viability assay in leukemic cell lines (MOLT3, K562 and HL-60) and compared with solid tumor cell lines (MCF7, A549 and HepG2); further studies then proceeded with MOLT3 vs. MCF7 and A549. The contribution of redox imbalance in MAL-A induced cytotoxicity was confirmed by pre-incubating cells with an antioxidant, N-acetyl-L-cysteine (NAC) or a thiol depletor, buthionine sulfoximine (BSO). MAL-A induced redox imbalance was quantitated by flow cytometry, by measuring the generation of ROS and levels of non protein thiols using dichlorofluorescein diacetate (CM-H2DCFDA) and 5-chloromethylfluorescein diacetate (CMFDA) respectively. The activities of glutathione peroxidase (GPx), superoxide dismutase, catalase (CAT), NAD(P)H dehydrogenase (quinone 1) NQO1 and glutathione-S-transferase GST were measured spectrophotometrically. The mitochondrial involvement of MAL-A induced cell death was measured by evaluation of cardiolipin peroxidation using 10-N-nonyl acridine orange (NAO), transition pore activity with calcein

  3. Alkaloid-rich fraction of Himatanthus lancifolius contains anti-tumor agents against leukemic cells

    Directory of Open Access Journals (Sweden)

    Melissa Pires de Lima

    2010-06-01

    Full Text Available The effects of the alkaloid-rich fraction of Himatanthus lancifolius (Müll. Arg Woodson on normal marrow cells and leukemic cell lines were investigated. After 48 h exposure, the proliferation assay showed significant cell growth inhibition for Daudi (0.1-10 µg/mL, K-562 (1-10 µg/mL, and REH cells (10-100 µg/mL, yet was inert for normal marrow cells. A similar inhibition profile was observed in clonogenic assays. This alkaloid-rich fraction, in which uleine is the main compound, showed no signs of toxicity to any cells up to 10 µg/mL. Cell feature analyses after induction of differentiation showed maintenance of the initial phenotype. Flow cytometric expression of Annexin-V and 7-AAD in K-562 and Daudi cells has indicated that the cells were not undergoing apoptosis or necrosis, suggesting cytostatic activity for tumor cellsOs efeitos da fração rica em alcalóides indólicos de Himatanthus lancifolius (Müll. Arg Woodson sobre células normais de medula óssea e linhagens celulares leucêmicas foram investigados. Após 48 horas de exposição, os ensaios de proliferação demonstraram efeitos inibitórios significativos para as linhagens Daudi (0,1-10 µg/mL, K-562 (1-10 µg/mL e REH (10-100 µg/mL, enquanto mostrou-se inerte sobre células normais de medula óssea. Os perfis de inibição se repetiram nos ensaios clonogênicos. A fração rica em alcalóides, na qual a uleína é a substância majoritária, não demonstrou toxicidade até a dose de 10 µg/mL para nenhuma das células incluídas no estudo. Da mesma forma, não se observou influência dessa fração sobre a diferenciação celular dessas linhagens, mas manutenção de seu estado maturacional inicial. O conjunto de dados descritos associado à baixa co-expressão de anexina-V e 7-AAD sugerem que esta fração exerce atividade citostática para células tumorais.

  4. SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS.

    Science.gov (United States)

    Inoue, D; Kitaura, J; Matsui, H; Hou, H-A; Chou, W-C; Nagamachi, A; Kawabata, K C; Togami, K; Nagase, R; Horikawa, S; Saika, M; Micol, J-B; Hayashi, Y; Harada, Y; Harada, H; Inaba, T; Tien, H-F; Abdel-Wahab, O; Kitamura, T

    2015-04-01

    Mutations in ASXL1 are frequent in patients with myelodysplastic syndrome (MDS) and are associated with adverse survival, yet the molecular pathogenesis of ASXL1 mutations (ASXL1-MT) is not fully understood. Recently, it has been found that deletion of Asxl1 or expression of C-terminal-truncating ASXL1-MTs inhibit myeloid differentiation and induce MDS-like disease in mice. Here, we find that SET-binding protein 1 (SETBP1) mutations (SETBP1-MT) are enriched among ASXL1-mutated MDS patients and associated with increased incidence of leukemic transformation, as well as shorter survival, suggesting that SETBP1-MT play a critical role in leukemic transformation of MDS. We identify that SETBP1-MT inhibit ubiquitination and subsequent degradation of SETBP1, resulting in increased expression. Expression of SETBP1-MT, in turn, inhibited protein phosphatase 2A activity, leading to Akt activation and enhanced expression of posterior Hoxa genes in ASXL1-mutant cells. Biologically, SETBP1-MT augmented ASXL1-MT-induced differentiation block, inhibited apoptosis and enhanced myeloid colony output. SETBP1-MT collaborated with ASXL1-MT in inducing acute myeloid leukemia in vivo. The combination of ASXL1-MT and SETBP1-MT activated a stem cell signature and repressed the tumor growth factor-β signaling pathway, in contrast to the ASXL1-MT-induced MDS model. These data reveal that SETBP1-MT are critical drivers of ASXL1-mutated MDS and identify several deregulated pathways as potential therapeutic targets in high-risk MDS.

  5. Monoclonal antibodies to antigens on human neutrophils, activated T lymphocytes, and acute leukemia blast cells

    International Nuclear Information System (INIS)

    Miterev, G.Yu.; Burova, G.F.; Puzhitskaya, M.S.; Danilevich, S.V.; Bulycheva, T.I.

    1987-01-01

    The authors describe the production of two mouse hybridomas secreting monoclonal antibodies to antigenic determinants of the surface membranes of human neutrophils, activated T lymphocytes, and acute leukemic blast cells. The degree of lymphocyte stimulation was estimated from incorporation of 3 H-thymidine with parallel microculture. Monoclonal antibodies of supernatants of hybridoma cultures shown here reacted in both immunofluorescence test and cytotoxicity test with surface membrane antigens on the majority of neutrophils and PHA-activated peripheral blood lymphocytes from healthy subjects, but did not give positive reactions with unactivated lymphocytes, adherent monocytes, erythrocytes, and alloantigen-stimulated lymphocytes

  6. Monoclonal antibodies to antigens on human neutrophils, activated T lymphocytes, and acute leukemia blast cells

    Energy Technology Data Exchange (ETDEWEB)

    Miterev, G.Yu.; Burova, G.F.; Puzhitskaya, M.S.; Danilevich, S.V.; Bulycheva, T.I.

    1987-11-01

    The authors describe the production of two mouse hybridomas secreting monoclonal antibodies to antigenic determinants of the surface membranes of human neutrophils, activated T lymphocytes, and acute leukemic blast cells. The degree of lymphocyte stimulation was estimated from incorporation of /sup 3/H-thymidine with parallel microculture. Monoclonal antibodies of supernatants of hybridoma cultures shown here reacted in both immunofluorescence test and cytotoxicity test with surface membrane antigens on the majority of neutrophils and PHA-activated peripheral blood lymphocytes from healthy subjects, but did not give positive reactions with unactivated lymphocytes, adherent monocytes, erythrocytes, and alloantigen-stimulated lymphocytes.

  7. F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation

    Science.gov (United States)

    Chen, Bill B.; Glasser, Jennifer R.; Coon, Tiffany A.; Zou, Chunbin; Miller, Hannah L.; Fenton, Moon; McDyer, John F.; Boyiadzis, Michael

    2012-01-01

    Hematologic maligancies exhibit a growth advantage by up-regulation of components within the molecular apparatus involved in cell-cycle progression. The SCF (Skip-Cullin1-F-box protein) E3 ligase family provides homeostatic feedback control of cell division by mediating ubiquitination and degradation of cell-cycle proteins. By screening several previously undescribed E3 ligase components, we describe the behavior of a relatively new SCF subunit, termed FBXL2, that ubiquitinates and destabilizes cyclin D2 protein leading to G0 phase arrest and apoptosis in leukemic and B-lymphoblastoid cell lines. FBXL2 expression was strongly suppressed, and yet cyclin D2 protein levels were robustly expressed in acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) patient samples. Depletion of endogenous FBXL2 stabilized cyclin D2 levels, whereas ectopically expressed FBXL2 decreased cyclin D2 lifespan. FBXL2 did not bind a phosphodegron within its substrate, which is typical of other F-box proteins, but uniquely targeted a calmodulin-binding signature within cyclin D2 to facilitate its polyubiquitination. Calmodulin competes with the F-box protein for access to this motif where it bound and protected cyclin D2 from FBXL2. Calmodulin reversed FBXL2-induced G0 phase arrest and attenuated FBXL2-induced apoptosis of lymphoblastoid cells. These results suggest an antiproliferative effect of SCFFBXL2 in lymphoproliferative malignancies. PMID:22323446

  8. ZFP521 regulates murine hematopoietic stem cell function and facilitates MLL-AF9 leukemogenesis in mouse and human cells.

    Science.gov (United States)

    Garrison, Brian S; Rybak, Adrian P; Beerman, Isabel; Heesters, Balthasar; Mercier, Francois E; Scadden, David T; Bryder, David; Baron, Roland; Rossi, Derrick J

    2017-08-03

    The concept that tumor-initiating cells can co-opt the self-renewal program of endogenous stem cells as a means of enforcing their unlimited proliferative potential is widely accepted, yet identification of specific factors that regulate self-renewal of normal and cancer stem cells remains limited. Using a comparative transcriptomic approach, we identify ZNF521 / Zfp521 as a conserved hematopoietic stem cell (HSC)-enriched transcription factor in human and murine hematopoiesis whose function in HSC biology remains elusive. Competitive serial transplantation assays using Zfp521 -deficient mice revealed that ZFP521 regulates HSC self-renewal and differentiation. In contrast, ectopic expression of ZFP521 in HSCs led to a robust maintenance of progenitor activity in vitro. Transcriptional analysis of human acute myeloid leukemia (AML) patient samples revealed that ZNF521 is highly and specifically upregulated in AMLs with MLL translocations. Using an MLL-AF9 murine leukemia model and serial transplantation studies, we show that ZFP521 is not required for leukemogenesis, although its absence leads to a significant delay in leukemia onset. Furthermore, knockdown of ZNF521 reduced proliferation in human leukemia cell lines possessing MLL-AF9 translocations. Taken together, these results identify ZNF521/ZFP521 as a critical regulator of HSC function, which facilitates MLL-AF9-mediated leukemic disease in mice.

  9. Molecular mechanisms associated with leukemic transformation of MPL-mutant myeloproliferative neoplasms

    DEFF Research Database (Denmark)

    Beer, Philip A; Ortmann, Christina A; Stegelmann, Frank

    2010-01-01

    Somatic activating mutations in MPL, the thrombopoietin receptor, occur in the myeloproliferative neoplasms, although virtually nothing is known about their role in evolution to acute myeloid leukemia. In this study, the MPL T487A mutation, identified in de novo acute myeloid leukemia......, was not detected in 172 patients with a myeloproliferative neoplasm. In patients with a prior MPL W515L-mutant myeloproliferative neoplasm, leukemic transformation was accompanied by MPL-mutant leukemic blasts, was seen in the absence of prior cytoreductive therapy and often involved loss of wild-type MPL...

  10. Antileukemic Potential of Momordica charantia Seed Extracts on Human Myeloid Leukemic HL60 Cells

    Directory of Open Access Journals (Sweden)

    Ramani Soundararajan

    2012-01-01

    Full Text Available Momordica charantia (bitter gourd has been used in the traditional system of medicine for the treatment of various diseases. Anticancer activity of M. charantia extracts has been demonstrated by numerous in vitro and in vivo studies. In the present study, we investigated the differentiation inducing potential of fractionated M. charantia seed extracts in human myeloid HL60 cells. We found that the HL60 cells treated with the fractionated seed extracts differentiated into granulocytic lineage as characterized by NBT staining, CD11b expression, and specific esterase activity. The differentiation inducing principle was found to be heat-stable, and organic in nature. The differentiation was accompanied by a downregulation of c-myc transcript, indicating the involvement of c-myc pathway, at least in part, in differentiation. Taken together these results indicate that fractionated extracts of M. charantia seeds possess differentiation inducing activity and therefore can be evaluated for their potential use in differentiation therapy for leukemia in combination with other inducers of differentiation.

  11. Antileukemic Potential of Momordica charantia Seed Extracts on Human Myeloid Leukemic HL60 Cells

    Science.gov (United States)

    Soundararajan, Ramani; Prabha, Punit; Rai, Umesh; Dixit, Aparna

    2012-01-01

    Momordica charantia (bitter gourd) has been used in the traditional system of medicine for the treatment of various diseases. Anticancer activity of M. charantia extracts has been demonstrated by numerous in vitro and in vivo studies. In the present study, we investigated the differentiation inducing potential of fractionated M. charantia seed extracts in human myeloid HL60 cells. We found that the HL60 cells treated with the fractionated seed extracts differentiated into granulocytic lineage as characterized by NBT staining, CD11b expression, and specific esterase activity. The differentiation inducing principle was found to be heat-stable, and organic in nature. The differentiation was accompanied by a downregulation of c-myc transcript, indicating the involvement of c-myc pathway, at least in part, in differentiation. Taken together these results indicate that fractionated extracts of M. charantia seeds possess differentiation inducing activity and therefore can be evaluated for their potential use in differentiation therapy for leukemia in combination with other inducers of differentiation. PMID:22654956

  12. Effects of Vitamin K3 and K5 on Daunorubicin-resistant Human T Lymphoblastoid Leukemia Cells.

    Science.gov (United States)

    Nakaoka, Eri; Tanaka, Sachiko; Onda, Kenji; Sugiyama, Kentaro; Hirano, Toshihiko

    2015-11-01

    Anticancer efficacy of vitamin K derivatives on multidrug-resistant cancer cells has been scarcely investigated. The effects of vitamins K3 and K5 on proliferation of human leukemia MOLT-4 cells and on daunorubicin-resistant MOLT-4/DNR cells were estimated by a WST assay. Apoptotic cells were detected by Annexin V and propidium iodide staining, followed by flow cytometry. Vitamins K3 and K5 significantly inhibited proliferation of leukemic cells at 10 and 100 μM (pVitamin K3 induced cell apoptosis at 10 and 100 μM in both MOLT-4 and MOLT-4/DNR cells (pVitamin K5 also increased apoptotic cells, while rather inducing necrotic cell death. Vitamins K3 and K5 suppress MOLT-4 and MOLT-4/DNR cell-proliferation partially through induction of apoptosis, and these vitamin derivatives can overcome drug resistance due to P-glycoprotein expression. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Auger electron-emitting "1"1"1In-DTPA-NLS-CSL360 radioimmunoconjugates are cytotoxic to human acute myeloid leukemia (AML) cells displaying the CD123"+/CD131"− phenotype of leukemia stem cells

    International Nuclear Information System (INIS)

    Gao, Catherine; Leyton, Jeffrey V.; Schimmer, Aaron D.; Minden, Mark; Reilly, Raymond M.

    2016-01-01

    Chimeric IgG_1 monoclonal antibody CSL360 recognizes the CD123"+/CD131"− phenotype expressed by leukemic stem cells (LSC). Auger electron-emitting "1"1"1In-DTPA-NLS-CSL360 radioimmunoconjugates incorporating nuclear translocation sequence (NLS) peptides bound specifically to Raji cells transfected with CD123 and exhibited a K_D of 11 nmols/L in a competition receptor-binding assay using CD123-transfected CHO cells. "1"1"1In-DTPA-NLS-CSL360 was bound, internalized and transported to the nucleus of human AML-5 myeloid leukemia cells. The clonogenic survival of AML-5 cells was reduced by "1"1"1In-DTPA-NLS-CSL360 up to 3.7-fold. Isotype control "1"1"1In-DTPA-chIgG_1 was 2-fold less cytotoxic, and unlabeled CSL360, DTPA-NLS-CSL360 or free "1"1"1In acetate did not decrease cell survival. These results are promising for further evaluation of "1"1"1In-DTPA-NLS-CSL360 for Auger electron radioimmunotherapy of AML targeting the critical LSC subpopulation. - Highlights: • "1"1"1In-DTPA-NLS-CSL360 the CD123"+/CD131"− phenotype of leukemic stem cells (LSC). • "1"1"1In-DTPA-NLS-CSL360 was bound, internalized and imported into the nucleus of AML-5 leukemia cells. • "1"1"1In-DTPA-NLS-CSL360 reduced the clonogenic survival of AML-5 leukemia cells by 4-fold.

  14. Pre leukemic granulocytic sarcoma of vagina: a case report with review of literature

    International Nuclear Information System (INIS)

    Lakshminarasimhan, Srinivasan; Doval, D.C.; Rajashekhar, Usha; Mukherjee, Geethashree; Kannan, V.; Lakshmi Devi; Bapsy, P.P.

    1996-01-01

    Granulocytic sarcoma is an extramedullary tumor of malignant granulocytic progenitor cells, that may precede the onset of acute myeloid leukemia or appear during the leukemic manifestation or blastic crisis of chronic myeloproliferative disorders. A case of granulocytic sarcoma of vagina in a 27 year old woman treated with local radiotherapy is described. After seven months of follow up she developed acute myeloid leukemia. The case has been presented in view of its rarity and discussed in light of the available literature. (author). 13 refs., 1 fig

  15. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells

    DEFF Research Database (Denmark)

    Eriksen, K W; Kaltoft, K; Mikkelsen, G

    2001-01-01

    are IL-2Ralpha negative. An aberrant expression of IL-2Ralpha has recently been described in cutaneous T-cell lymphoma (CTCL). Here, we study the regulation of IL-2Ralpha expression and STATs in a tumor cell line obtained from peripheral blood from a patient with Sezary syndrome (SS), a leukemic variant...... of CTCL. We show that (1) STAT3 (a transcription factor known to regulate IL-2Ralpha transcription) is constitutively tyrosine-phosphorylated in SS tumor cells, but not in non-malignant T cells; (2) STAT3 binds constitutively to a STAT-binding sequence in the promotor of the IL-2Ralpha gene; (3) the Janus...... kinase inhibitor, tyrphostine AG490, inhibits STAT3 activation, STAT3 DNA binding, and IL-2Ralpha mRNA and protein expression in parallel; and (4) tyrphostine AG490 inhibits IL-2 driven mitogenesis and triggers apoptosis in SS tumor cells. In conclusion, we provide the first example of a constitutive...

  16. Regulation of IFN regulatory factor 4 expression in human T cell leukemia virus-I-transformed T cells.

    Science.gov (United States)

    Sharma, Sonia; Grandvaux, Nathalie; Mamane, Yael; Genin, Pierre; Azimi, Nazli; Waldmann, Thomas; Hiscott, John

    2002-09-15

    IFN regulatory factor (IRF)-4 is a lymphoid/myeloid-restricted member of the IRF transcription factor family that plays an essential role in the homeostasis and function of mature lymphocytes. IRF-4 expression is tightly regulated in resting primary T cells and is transiently induced at the mRNA and protein levels after activation by Ag-mimetic stimuli such as TCR cross-linking or treatment with phorbol ester and calcium ionophore (PMA/ionomycin). However, IRF-4 is constitutively upregulated in human T cell leukemia virus type I (HTLV-I) infected T cells as a direct gene target for the HTLV-I Tax oncoprotein. In this study we demonstrate that chronic IRF-4 expression in HTLV-I-infected T lymphocytes is associated with a leukemic phenotype, and we examine the mechanisms by which continuous production of IRF-4 is achieved in HTLV-I-transformed T cells. IRF-4 expression in HTLV-1-infected cells is driven through activation of the NF-kappaB and NF-AT pathways, resulting in the binding of p50, p65, and c-Rel to the kappaB1 element and p50, c-Rel, and NF-ATp to the CD28RE element within the -617 to -209 region of the IRF-4 promoter. Furthermore, mutation of either the kappaB1 or CD28RE sites blocks Tax-mediated transactivation of the human IRF-4 promoter in T cells. These experiments constitute the first detailed analysis of human IRF-4 transcriptional regulation within the context of HTLV-I infection and transformation of CD4(+) T lymphocytes.

  17. Comparison of Cytotoxic Activity in Leukemic Lineages Reveals Important Features of β-Hairpin Antimicrobial Peptides.

    Science.gov (United States)

    Buri, Marcus V; Torquato, Heron F Vieira; Barros, Carlos Castilho; Ide, Jaime S; Miranda, Antonio; Paredes-Gamero, Edgar J

    2017-07-01

    Several reports described different modes of cell death triggered by antimicrobial peptides (AMPs) due to direct effects on membrane disruption, and more recently by apoptosis and necrosis-like patterns. Cytotoxic curves of four β-hairpin AMPs (gomesin, protegrin, tachyplesin, and polyphemusin) were obtained from several human leukemic lineages and normal monocytes and Two cell lines were then selected based on their cytotoxic sensitivity. One was sensitive to AMPs (K562) and the other resistant (KG-1) and their effect compared between these lineages. Thus, these lineages were chosen to further investigate biological features related with their cytotoxicities to AMPs. Stimulation with AMPs produced cell death, with activation of caspase-3, in K562 lineage. Increase on the fluidity of plasmatic membrane by reducing cholesterol potentiated cytotoxicity of AMPs in both lineages. Quantification of internal and external gomesin binding to the cellular membrane of both K562 and KG-1 cells showed that more peptide is accumulated inside of K562 cells. Additionally, evaluation of multi-drug resistant pumps activity showed that KG-1 has more activity than K562 lineage. A comparison of intrinsic gene patterns showed great differences between K562 and KG-1, but stimulation with gomesin promoted few changes in gene expression patterns. Differences in internalization process through the plasma membrane, multidrug resistance pumps activity, and gene expression pattern are important features to AMPs regulated cell death. J. Cell. Biochem. 118: 1764-1773, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Unsupervised explorative data analysis of normal human leukocytes and BCR/ABL positive leukemic cells mid-infrared spectra

    NARCIS (Netherlands)

    Bellisola, G.; Bolomini-Vittori, M.; Cinque, G.; Dumas, P.; Fiorini, Z.; Laudanna, C.; Mirenda, M.; Sandt, C.; Silvestri, G.; Tomasello, L.; Vezzalini, M.; Wehbe, K.; Sorio, C.

    2015-01-01

    We proved the ability of Fourier Transform Infrared microspectroscopy (microFTIR) complemented by Principal Component Analysis (PCA) to detect protein phosphorylation/de-phosphorylation in mammalian cells. We analyzed by microFTIR human polymorphonuclear neutrophil (PMNs) leukocytes, mouse-derived

  19. Surface topography of hairy cell leukemia cells compared to other leukemias as seen by scanning electron microscopy.

    Science.gov (United States)

    Polliack, Aaron; Tadmor, Tamar

    2011-06-01

    This short review deals with the ultrastructural surface architecture of hairy cell leukemia (HCL) compared to other leukemic cells, as seen by scanning electron microscopy (SEM). The development of improved techniques for preparing blood cells for SEM in the 1970s readily enabled these features to be visualized more accurately. This review returns us to the earlier history of SEM, when the surface topography of normal and neoplastic cells was visualized and reported for the first time, in an era before the emergence and use of monoclonal antibodies and flow cytometry, now used routinely to define cells by their immunophenotype. Surface microvilli are characteristic for normal and leukemic lymphoid cells, myelo-monocytic cells lack microvilli and show surface ruffles, while leukemic plasma and myeloma cells and megakaryocytes display large surface blebs. HCL cell surfaces are complex and typically 'hybrid' in nature, displaying both lymphoid and monocytic features with florid ruffles of varying sizes interspersed with clumps of short microvilli cytoplasm. The surface features of other leukemic cells and photomicrographs of immuno-SEM labeling of cells employing antibodies and colloidal gold, reported more than 20 years ago, are shown.

  20. Transformation of bone marrow stem-cells and radiation-induced myeloid leukemia in mice

    International Nuclear Information System (INIS)

    Hirashima, K.; Bessho, M.; Hayata, I.; Nara, N.; Kawase, Y.; Ohtani, M.

    1982-01-01

    After a single whole-body X-irradiation of 300R to male RFM/MsNrs strain mice, the occurrence of myeloid leukemia initiated since four months and ceased at eleven months after irradiation. The cumulative incidence reached 24.5%. A time course study on the kinetics of pluripotential stem-cells (CFU-S) and granuloid committed stem-cells (CFU-C) in the marrow after 300R was also performed. The repopulation of CFU-S was accomplished within one month whereas that of CFU-C needed 210 days after irradiation. The incidence of leukemia was very rare after the complete repopulation of CFU-C. Simultaneously, collected spleen cells from the irradiated mice without overt leukemia were transplanted into 300-600R irradiated recipients of another sex. Three months thereafter, recipients were sacrificed to detect leukemic changes and the origin of leukemic cells by chromosome analysis. The results revealed that leukemic cell transformation of donor cells began 18 days after irradiation and on an average, 37.1% of the irradiated mice carried potentially leukemic cells for seven months after exposure, whereas none of the unirradiated mice carried leukemic cells at 7 months after irradiation. To investigate host factor(s) contributing to the proliferation of leukemic cells, the suppression of cellular immunity after 300R was measured by GVH mortality assay. However, the recovery of cellular immunity was observed until three months after irradiation and the role of cellular immunity to proliferation of leukemic cells after three months was negligible. (author)

  1. Cytotoxic activity of vitamins K1, K2 and K3 against human oral tumor cell lines.

    Science.gov (United States)

    Okayasu, H; Ishihara, M; Satoh, K; Sakagami, H

    2001-01-01

    Vitamin K1, K2 and K3 were compared for their cytotoxic activity, radical generation and O2- scavenging activity. Among these compounds, vitamin K3 showed the highest cytotoxic activity against human oral tumor cell lines (HSC-2, HSG), human promyelocytic leukemic cell line (HL-60) and human gingival fibroblast (HGF). Vitamin K3 induced internucleosomal DNA fragmentation in HL-60 cells, but not in HSC-2 or HSG cells. The cytotoxic activity of vitamins K2 and K1 was one and two orders lower, respectively, than K3. Vitamin K2, but not vitamin K3, showed tumor-specific cytotoxic action. ESR spectroscopy showed that only vitamin K3 produced radical(s) under alkaline condition and most potently enhanced the radical intensity of sodium ascorbate and scavenged O2- (generated by hypoxanthine-xanthine oxidase reaction system); vitamin K2 was much less active whereas vitamin K1 was inactive. These data suggest that the cytotoxic activity of vitamin K3 is generated by radical-mediated oxidation mechanism and that this vitamin has two opposing actions (that is, antioxidant and prooxidant), depending on the experimental conditions.

  2. Detection of Ca2+-induced acetylcholine released from leukemic T-cells using an amperometric microfluidic sensor.

    Science.gov (United States)

    Akhtar, Mahmood H; Hussain, Khalil K; Gurudatt, N G; Shim, Yoon-Bo

    2017-12-15

    A microfluidic structured-dual electrodes sensor comprising of a pair of screen printed carbon electrodes was fabricated to detect acetylcholine, where one of them was used for an enzyme reaction and another for a detection electrode. The former was coated with gold nanoparticles and the latter with a porous gold layer, followed by electropolymerization of 2, 2:5,2-terthiophene-3-(p-benzoic acid) (pTTBA) on both the electrodes. Then, acetylcholinesterase was covalently attached onto the reaction electrode, and hydrazine and choline oxidase were co-immobilized on the detection electrode. The layers of both modified electrodes were characterized employing voltammetry, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, and quartz crystal microscopy. After the modifications of both electrode surfaces, they were precisely faced each other to form a microfluidic channel structure, where H 2 O 2 produced from the sequential enzymatic reactions was reduced by hydrazine to obtain the analytical signal which was analyzed by the detection electrode. The microfluidic sensor at the optimized experimental conditions exhibited a wide dynamic range from 0.7nM to 1500μM with the detection limit of 0.6 ± 0.1nM based on 3s (S/N = 3). The biomedical application of the proposed sensor was evaluated by detecting acetylcholine in human plasma samples. Moreover, the Ca 2+ -induced acetylcholine released in leukemic T-cells was also investigated to show the in vitro detection ability of the designed microfluidic sensor. Interference due to the real component matrix were also studied and long term stability of the designed sensor was evaluated. The analytical performance of the designed sensor was also compared with commercially available ACh detection kit. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Phenotypic and Functional Alterations of Hematopoietic Stem and Progenitor Cells in an In Vitro Leukemia-Induced Microenvironment

    Directory of Open Access Journals (Sweden)

    Jean-Paul Vernot

    2017-02-01

    Full Text Available An understanding of the cell interactions occurring in the leukemic microenvironment and their functional consequences for the different cell players has therapeutic relevance. By co-culturing mesenchymal stem cells (MSC with the REH acute lymphocytic leukemia (ALL cell line, we have established an in vitro leukemic niche for the functional evaluation of hematopoietic stem/progenitor cells (HSPC, CD34+ cells. We showed that the normal homeostatic control exerted by the MSC over the HSPC is considerably lost in this leukemic microenvironment: HSPC increased their proliferation rate and adhesion to MSC. The adhesion molecules CD54 and CD44 were consequently upregulated in HSPC from the leukemic niche. Consequently, with this adhesive phenotype, HSPC showed less Stromal derived factor-1 (SDF-1-directed migration. Interestingly, multipotency was severely affected with an important reduction in the absolute count and the percentage of primitive progenitor colonies. It was possible to simulate most of these HSPC alterations by incubation of MSC with a REH-conditioned medium, suggesting that REH soluble factors and their effect on MSC are important for the observed changes. Of note, these HSPC alterations were reproduced when primary leukemic cells from an ALL type B (ALL-B patient were used to set up the leukemic niche. These results suggest that a general response is induced in the leukemic niche to the detriment of HSPC function and in favor of leukemic cell support. This in vitro leukemic niche could be a valuable tool for the understanding of the molecular events responsible for HSPC functional failure and a useful scenario for therapeutic evaluation.

  4. [Linezolid-induced Apoptosis through Mitochondrial Damage and Role of Superoxide Dismutase-1 in Human Monocytic Cell Line U937].

    Science.gov (United States)

    Fujii, Satoshi; Muraoka, Sanae; Miyamoto, Atsushi; Sakurai, Koichi

    2018-01-01

     Cytopenia is a major adverse event associated with linezolid therapy. The objective of this study was to examine whether the cytotoxicity of linezolid to eukaryotic cells was associated with mitochondrial dysfunction and apoptosis-like cell death in human leukemic monocyte lymphoma cell line U937. Apoptosis-like cell death was clearly observed when cells were incubated with linezolid, depending on the duration and linezolid concentration. Mitochondrial membrane potential of cells treated with linezolid collapsed in a short period of time, but the number of mitochondria did not decrease. Cytotoxicity of linezolid was relieved by the knockdown of superoxide dismutase-1 in U937 cells. On the other hand, no autophagy was observed in cells treated with linezolid. These results suggest that mitochondrial damages would be linked to the induction of apoptosis in U937 cells treated with linezolid and that its mechanism does not involve autophagy.

  5. Defective immunoregulatory T-cell function in chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Han, T.; Ozer, H.; Henderson, E.S.; Dadey, B.; Nussbaum-Blumenson, A.; Barcos, M.

    1981-01-01

    Chronic lymphocytic leukemia (CLL) of B-cell origin results in the malignant proliferation of small immunoglobulin-bearing lymphocytes. There is currently a controversy in the literature regarding both the ability of this leukemic population to differentiate into mature plasma cells, as well as the ability of apparently normal T cells from these patients to regulate allogeneic B-cell differentiation. In the present study we have examined the lymphocytes of CLL patients in various clinical stages of their disease and with different surface phenotypes of their leukemic B-cell population. Our results show that leukemic CLL B cells from all 20 patients (including one patient with a monoclonal IgM paraprotein and another with a monoclonal IgG paraprotein) are incapable of further differentiation even in the absence of suppressor T cells and the presence of helper T lymphocytes. This lack of capacity to differentiate is unaffected by clinical stage, by therapy, or by the phenotype of the malignant population. Since the leukemic B population did not suppress normal allogeneic B-cell differentiation, the maturation deficit is evidently intrinsic to the leukemic clone rather than a result of activity of non-T suppressor cells. T helper function was also variably depressed in the blood of some patients with CLL, and this depression did not correlate with clinical stage, with therapy, or with the degree of lymphocytosis. Dysfunction of radiosensitive T suppressor cells was found to be the most consistent regulatory deficit of CLL T cells. Each of 11 patients whose leukemic cell population was of the μdelta, μα, or μ phenotype had both helper and suppressor cell defects

  6. shRNA-mediated EMMPRIN silencing inhibits human leukemic monocyte lymphoma U937 cell proliferation and increases chemosensitivity to adriamycin.

    Science.gov (United States)

    Gao, Hui; Jiang, Qixiao; Han, Yantao; Peng, Jianjun; Wang, Chunbo

    2015-03-01

    EMMPRIN is a widely distributed cell surface glycoprotein, which plays an important role in tumor progression and confers resistance to some chemotherapeutic drugs. Recent studies have shown that EMMPRIN overexpression indicates poor prognosis in acute myeloid leukemia (AML). However, little was known on the role of EMMPRIN in leukemia. Human leukemia cell line U937 was stably transfected with a EMMPRIN-targeted shRNA-containing vector to investigate the effect of EMMPRIN on cellular functions. EMMPRIN expression was monitored by qRT-PCR and Western blotting. Cell viability and proliferation were determined by trypan blue exclusion and BrdU labeling, respectively. Cell cycle and apoptosis were analyzed by flow cytometry. Cytotoxicity of chemotherapeutic agent adriamycin on cells was assessed by MTT assay. Knockdown of EMMPRIN gene significantly inhibited cell viability and decreased cell proliferation. Fluorescence-activated cell-sorting analysis revealed that the reduced EMMPRIN expression resulted in cell cycle arrest at G1 phase and induced apoptosis. Meanwhile, western blotting analysis showed that EMMPRIN knockdown was associated with downregulation of cell cycle- and apoptosis-related molecules including cyclin D1, cyclin E, as well as increase in cleavage of caspase-3 and PARP. This study also showed that silencing of EMMPRIN sensitized U937 cells to Adriamycin. EMMPRIN is involved in proliferation, growth, and chemosensitivity of human AML line U937, indicating that EMMPRIN may be a promising therapeutic target for AML.

  7. Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44

    KAUST Repository

    Abu Samra, Dina Bashir Kamil; Aleisa, Fajr A; Al-Amoodi, Asma S.; Jalal Ahmed, Heba M.; Chin, Chee Jia; AbuElela, Ayman; Bergam, Ptissam; Sougrat, Rachid; Merzaban, Jasmeen

    2017-01-01

    CD34 is routinely used to identify and isolate human hematopoietic stem/progenitor cells (HSPCs) for use clinically in bone marrow transplantation, but its function on these cells remains elusive. Glycoprotein ligands on HSPCs help guide their migration to specialized microvascular beds in the bone marrow that express vascular selectins (E- and P-selectin). Here, we show that HSPC-enriched fractions from human hematopoietic tissue expressing CD34 (CD34pos) bound selectins, whereas those lacking CD34 (CD34neg) did not. An unbiased proteomics screen identified potential glycoprotein ligands on CD34pos cells revealing CD34 itself as a major vascular selectin ligand. Biochemical and CD34 knockdown analyses highlight a key role for CD34 in the first prerequisite step of cell migration, suggesting that it is not just a marker on these cells. Our results also entice future potential strategies to investigate the glycoforms of CD34 that discriminate normal HSPCs from leukemic cells and to manipulate CD34neg HSPC-enriched bone marrow or cord blood populations as a source of stem cells for clinical use.

  8. Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44

    KAUST Repository

    Abu Samra, Dina Bashir Kamil

    2017-12-27

    CD34 is routinely used to identify and isolate human hematopoietic stem/progenitor cells (HSPCs) for use clinically in bone marrow transplantation, but its function on these cells remains elusive. Glycoprotein ligands on HSPCs help guide their migration to specialized microvascular beds in the bone marrow that express vascular selectins (E- and P-selectin). Here, we show that HSPC-enriched fractions from human hematopoietic tissue expressing CD34 (CD34pos) bound selectins, whereas those lacking CD34 (CD34neg) did not. An unbiased proteomics screen identified potential glycoprotein ligands on CD34pos cells revealing CD34 itself as a major vascular selectin ligand. Biochemical and CD34 knockdown analyses highlight a key role for CD34 in the first prerequisite step of cell migration, suggesting that it is not just a marker on these cells. Our results also entice future potential strategies to investigate the glycoforms of CD34 that discriminate normal HSPCs from leukemic cells and to manipulate CD34neg HSPC-enriched bone marrow or cord blood populations as a source of stem cells for clinical use.

  9. A model with competition between the cell lines in leukemia under treatment

    International Nuclear Information System (INIS)

    Halanay, A.; Cândea, D.; Rădulescu, R.

    2014-01-01

    The evolution of leukemia is modeled with a delay differential equation model of four cell populations: two populations (healthy and leukemic) ) of stem-like cells involving a larger category consisting of proliferating stem and progenitor cells with self-renew capacity and two populations (healthy and leukemic) of mature cells, considering the competition of healthy vs. leukemic cell populations and three types of division that a stem-like cell can exhibit: self-renew, asymmetric division and differentiation. In the model it is assumed that the treatment acts on the proliferation rate of the leukemic stem cells and on the apoptosis of stem and mature cells. The emphasis in this model is on establishing relevant parameters for chronic and acute manifestations of leukemia. Stability of equilibria is investigated and sufficient conditions for local asymptotic stability will be given using a Lyapunov-Krasovskii functional

  10. Quantitative MR imaging of normal and leukemic bone marrow

    International Nuclear Information System (INIS)

    Hinks, R.S.; Dunlap, H.J.; Poon, P.Y.; Curtis, J.; Henkelman, R.M.

    1986-01-01

    The authors have developed and tested a protocol that allows extraction of reliable T1 and T2 relaxation times from imaging data. They have used these methods to study in vivo the bone marrow of healthy volunteers and patients with acute leukemia. Examinations were performed at 6.25 MHz using an interleaved ISE/SE sequence to calculate T1 and an eight echo (TE = 25) sequence to calculate T2. The results are summarized as follows: In leukemic patients, T1 = 476 +- 115 msec; in leukemic patients in remission, T1 = 290 +- 31 msec; in healthy volunteers, T1 = 329 +- 32 msec. The T2 values were not significantly different for the three groups (105 +- 10 msec). Work is underway to evaluate whether T1 values of bone marrow may be used to monitor patients in remission and to detect the onset of relapse

  11. Macrophage inflammatory protein-3α influences growth of K562 leukemia cells in co-culture with anticancer drug-pretreated HS-5 stromal cells

    International Nuclear Information System (INIS)

    Lee, Y.C.; Chiou, T.-J.; Tzeng, W.-F.; Chu, S.T.

    2008-01-01

    Stromal cell monolayers have been an important means of studying the regulation of hematopoiesis, because they produce cytokines. Cytosine arabinoside, vincristine, daunorubicin, and doxorubicin are common drugs for hematological cancer therapy, and they may have some effects on bone marrow stroma during chemotherapy. The aim of this study was to elucidate interactions between the bone marrow stromal microenvironment and leukemic cells after drug treatment. We tested the hypothesis that human HS-5 stromal cells, pretreated with anticancer drugs, affected the growth of leukemic K562 cells by changing the cytokines in the culture microenvironment. Thereafter, proliferation of K562 cells increased nearly 2.5-fold compared the co-cultivation with drugs-pretreated HS-5 stromal cells and drugs-untreated HS-5 stromal cells. The results indicated that co-cultivation with HS-5 stromal cells pretreated with drugs caused significant K562 cell proliferation. Cytokines in the microenvironment were detected via the RayBio Human Cytokine Antibody Array Membrane. The levels of the cytokines CKβ, IL-12, IL-13, IGFBP-2, MCP-1, MCP-3, MCP-4, MDC, MIP-1β and MIP-1δ were decreased, with a particularly marked decrease in MIP-3α. In co-culture medium, there was a 20-fold decrease in MIP-3α in daunorubicin-pretreated HS-5 cells and at least a 3-fold decrease in Ara-C-pretreated cells. This indicated a significant effect of anticancer drugs on the stromal cell line. Using phosphorylated Erk and pRb proteins as cell proliferation markers, we found that phosphorylation of these markers in K562 cells was inhibited during co-cultivation with drug-pretreated stromal cells in MIP-3α-supplemented medium and restored by MIP-3α antibody supplement. In conclusion, anticancer drug pretreatment suppresses the negative control exerted by HS-5 cells on leukemic cell proliferation, via modulation of cytokines in the microenvironment, especially at the level of MIP-3α

  12. Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Patel, B; Kang, Y; Cui, K; Litt, M; Riberio, M S J; Deng, C; Salz, T; Casada, S; Fu, X; Qiu, Y; Zhao, K; Huang, S

    2014-02-01

    Long-range chromatin interactions control metazoan gene transcription. However, the involvement of intra- and interchromosomal interactions in development and oncogenesis remains unclear. TAL1/SCL is a critical transcription factor required for the development of all hematopoietic lineages; yet, aberrant TAL1 transcription often occurs in T-cell acute lymphoblastic leukemia (T-ALL). Here, we report that oncogenic TAL1 expression is regulated by different intra- and interchromosomal loops in normal hematopoietic and leukemic cells, respectively. These intra- and interchromosomal loops alter the cell-type-specific enhancers that interact with the TAL1 promoter. We show that human SET1 (hSET1)-mediated H3K4 methylations promote a long-range chromatin loop, which brings the +51 enhancer in close proximity to TAL1 promoter 1 in erythroid cells. The CCCTC-binding factor (CTCF) facilitates this long-range enhancer/promoter interaction of the TAL1 locus in erythroid cells while blocking the same enhancer/promoter interaction of the TAL1 locus in human T-cell leukemia. In human T-ALL, a T-cell-specific transcription factor c-Maf-mediated interchromosomal interaction brings the TAL1 promoter into close proximity with a T-cell-specific regulatory element located on chromosome 16, activating aberrant TAL1 oncogene expression. Thus, our study reveals a novel molecular mechanism involving changes in three-dimensional chromatin interactions that activate the TAL1 oncogene in human T-cell leukemia.

  13. Clinical impact of leukemic blast heterogeneity at diagnosis in cytogenetic intermediate-risk acute myeloid leukemia

    DEFF Research Database (Denmark)

    Hoffmann, Marianne Hutchings; Klausen, Tobias Wirenfeldt; Boegsted, Martin

    2012-01-01

    Individual cellular heterogeneity within the acute myeloid leukemia (AML) bone marrow samples can be observed by multi parametric flow cytometry analysis (MFC) indicating that immunophenotypic screening for leukemic blast subsets may have prognostic impact.......Individual cellular heterogeneity within the acute myeloid leukemia (AML) bone marrow samples can be observed by multi parametric flow cytometry analysis (MFC) indicating that immunophenotypic screening for leukemic blast subsets may have prognostic impact....

  14. ArtinM Mediates Murine T Cell Activation and Induces Cell Death in Jurkat Human Leukemic T Cells

    Science.gov (United States)

    Oliveira-Brito, Patrícia Kellen Martins; Gonçalves, Thiago Eleutério; Vendruscolo, Patrícia Edivânia; Roque-Barreira, Maria Cristina

    2017-01-01

    The recognition of cell surface glycans by lectins may be critical for the innate and adaptive immune responses. ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus, activates antigen-presenting cells by recognizing TLR2 N-glycans and induces Th1 immunity. We recently demonstrated that ArtinM stimulated CD4+ T cells to produce proinflammatory cytokines. Here, we further studied the effects of ArtinM on adaptive immune cells. We showed that ArtinM activates murine CD4+ and CD8+ T cells, augmenting their positivity for CD25, CD69, and CD95 and showed higher interleukin (IL)-2 and interferon (IFN)-γ production. The CD4+ T cells exhibited increased T-bet expression in response to ArtinM, and IL-2 production by CD4+ and CD8+ T cells depended on the recognition of CD3εγ-chain glycans by ArtinM. The ArtinM effect on aberrantly-glycosylated neoplastic lymphocytes was studied in Jurkat T cells, in which ArtinM induced IL-2, IFN-γ, and IL-1β production, but decreased cell viability and growth. A higher frequency of AnnexinV- and propidium iodide-stained cells demonstrated the induction of Jurkat T cells apoptosis by ArtinM, and this apoptotic response was reduced by caspases and protein tyrosine kinase inhibitors. The ArtinM effects on murine T cells corroborated with the immunomodulatory property of lectin, whereas the promotion of Jurkat T cells apoptosis may reflect a potential applicability of ArtinM in novel strategies for treating lymphocytic leukemia. PMID:28665310

  15. Establishment of a high production system for AIDS retroviruses with a human T-leukemic cell line Molt-4

    International Nuclear Information System (INIS)

    Koyanagi, Yoshio; Harada, Shinji; Yamamoto, Naoki

    1986-01-01

    A cell culture system was developed for the continuous and efficient production of acquired immune deficiency syndrome (AIDS) retrovirus. After infection of a human T-cell line Molt-4 with HTLV-III and LAV the cells grow permanently and produce large amounts of virus continuously. The yields of production of virus were assessed either with reverse transcriptase activity or a newly established biological quantitation assay of active virus. The amounts of virus with this cell system were much higher than those of the H9 cell system. This procedure enabled us first to compare the two viral isolates HTLV-III and LAV directly in the same cell lines. Establishment of the culture system, allowing efficient production of AIDS retroviruses, provides a useful tool for the isolation of the virus from patients with AIDS and for more basic research, such as the mechanisms of immune destruction caused by the virus leading to the occurence of various malignancies (author)

  16. A micro-Raman spectroscopic investigation of leukemic U-937 cells treated with Crotalaria agatiflora Schweinf and the isolated compound madurensine

    Science.gov (United States)

    le Roux, Karlien; Prinsloo, Linda C.; Hussein, Ahmed A.; Lall, Namrita

    In South Africa traditional medicine plays an important role in primary health care and therefore it is very important that the medicinal use of plants is scientifically tested for toxicity and effectiveness. It was established that the ethanolic extract of the leaves of Crotalaria agatiflora, as well as the isolated compound madurensine, is moderately toxic against leukemic U-937 cells. Light microscopic investigations indicated that symptoms of cell death are induced during treatments, but flow cytometry analysis of treated cells, using annexin-V and propidium iodide, showed that apoptosis and necrosis are insignificantly induced. The Raman results suggested that protein extraction and DNA melting occur in the cells during treatment with the ethanolic extracts (IC50 value 73.9 μg/mL), drastically changing the molecular content of the cells. In contrast, treatment with madurensine (IC50 value 136.5 μg/mL), an isolated pyrrolizidine alkaloid from the ethanolic extract of the leaves, did not have the same effect. The results are also compared to that of cells treated with actinomycin D, a compound known to induce apoptosis. The investigation showed that micro-Raman spectroscopy has great promise to be used for initial screening of samples to determine the effects of different treatments on cancerous cell lines together with conventional methods. The results highlight the fact that for many natural products used for medicinal purposes, the therapeutic effect of the crude plant extract tends to be significantly more effective than the particular action of its individual constituents.

  17. Chromosomal Aberrations Associated with Clonal Evolution and Leukemic Transformation in Fanconi Anemia: Clinical and Biological Implications

    Directory of Open Access Journals (Sweden)

    Stefan Meyer

    2012-01-01

    Full Text Available Fanconi anaemia (FA is an inherited disease with congenital and developmental abnormalities, bone marrow failure, and extreme risk of leukemic transformation. Bone marrow surveillance is an important part of the clinical management of FA and often reveals cytogenetic aberrations. Here, we review bone marrow findings in FA and discuss the clinical and biological implications of chromosomal aberrations associated with leukemic transformation.

  18. Anti-proliferative activity of recombinant melittin expressed in ...

    African Journals Online (AJOL)

    Recombinant melittin was then successfully expressed in Escherichia coli. The activity of affinity-purified recombinant melittin was determined in human leukemic U937 cells. Results show that the recombinant melittin had the same anti-proliferative activity in human leukemic U937 cells in vitro as natural one. This shows the ...

  19. Colloidal silver nanoparticles improve anti-leukemic drug efficacy via amplification of oxidative stress.

    Science.gov (United States)

    Guo, Dawei; Zhang, Junren; Huang, Zhihai; Jiang, Shanxiang; Gu, Ning

    2015-02-01

    Recently, increased reactive oxygen species (ROS) levels and altered redox status in cancer cells have become a novel therapeutic strategy to improve cancer selectivity over normal cells. It has been known that silver nanoparticles (AgNPs) display anti-leukemic activity via ROS overproduction. Hence, we hypothesized that AgNPs could improve therapeutic efficacy of ROS-generating agents against leukemia cells. In the current study, N-(4-hydroxyphenyl)retinamide (4-HPR), a synthetic retinoid, was used as a drug model of ROS induction to investigate its synergistic effect with AgNPs. The data exhibited that AgNPs with uniform size prepared by an electrochemical method could localize in the lysosomes, mitochondria and cytoplasm of SHI-1 cells. More importantly, AgNPs together with 4-HPR could exhibit more cytotoxicity and apoptosis via overproduction of ROS in comparison with that alone. Taken together, these results reveal that AgNPs combined with ROS-generating drugs could potentially enhance therapeutic efficacy against leukemia cells, thereby providing a novel strategy for AgNPs in leukemia therapy. Copyright © 2015. Published by Elsevier B.V.

  20. Heterogeneity of clonogenic cells in acute myeloblastic leukemia.

    Science.gov (United States)

    Sabbath, K D; Ball, E D; Larcom, P; Davis, R B; Griffin, J D

    1985-02-01

    The expression of differentiation-associated surface antigens by the clonogenic leukemic cells from 20 patients with acute myeloblastic leukemia (AML) was studied with a panel of seven cytotoxic monoclonal antibodies (anti-Ia, -MY9, -PM-81, -AML-2-23, -Mol, -Mo2, and -MY3). The surface antigen phenotypes of the clonogenic cells were compared with the phenotypes of the whole leukemic cell population, and with the phenotypes of normal hematopoietic progenitor cells. In each case the clonogenic leukemic cells were found within a distinct subpopulation that was less "differentiated" than the total cell population. Clonogenic leukemic cells from different patients could be divided into three phenotype groups. In the first group (7 of 20 cases), the clonogenic cells expressed surface antigens characteristic of the normal multipotent colony-forming cell (Ia, MY9). These cases tended to have "undifferentiated" (FAB M1) morphology, and the total cell population generally lacked expression of "late" monocyte antigens such as MY3 and Mo2. A second group (seven cases) of clonogenic cells expressed surface antigens characteristic of an "early" (day 14) colony-forming unit granulocyte-monocyte (CFU-GM), and a third group (six cases) was characteristic of a "late" (day 7) CFU-GM. The cases in these latter two groups tended to have myelomonocytic (FAB M4) morphology and to express monocyte surface antigens. These results suggest that the clonogenic cells are a distinct subpopulation in all cases of AML, and may be derived from normal hematopoietic progenitor cells at multiple points in the differentiation pathway. The results further support the possibility that selected monoclonal antibodies have the potential to purge leukemic clonogenic cells from bone marrow in some AML patients without eliminating critical normal progenitor cells.

  1. The collagen receptor uPARAP/Endo180 as a novel target for antibody-drug conjugate mediated treatment of mesenchymal and leukemic cancers

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Fagernæs; van Putten, Sander Maarten; Lund, Ida Katrine

    2017-01-01

    A key task in developing the field of personalized cancer therapy is the identification of novel molecular targets that enable treatment of cancers not susceptible to other means of specific therapy. The collagen receptor uPARAP/Endo180 is overexpressed by malignant cells in several non-epithelia......A key task in developing the field of personalized cancer therapy is the identification of novel molecular targets that enable treatment of cancers not susceptible to other means of specific therapy. The collagen receptor uPARAP/Endo180 is overexpressed by malignant cells in several non...... into the endosomal-lysosomal system, thus opening a potential route of entry into receptor-positive cells. This combination of specific expression and endocytic function appears well suited for targeting of uPARAP/Endo180-positive cancers by antibody-drug conjugate (ADC) mediated drug delivery. Therefore, we...... model with human uPARAP/Endo180-positive leukemic cells, obtaining a complete cure of all tested mice following intravenous ADC treatment with no sign of adverse effects. Our study identifies uPARAP/Endo180 as a promising target for novel therapy against several highly malignant cancer types....

  2. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Progress report, January 1-July 31, 1986

    International Nuclear Information System (INIS)

    Rowley, J.D.

    1986-08-01

    Two genes for colony stimulating factors (CSF) has been mapped on chromosome five of humans. These CSFs are a family of glycoproteins that are required for the growth and maturation of myeloid progenetor cells in vitro. They are classified according to their cell specificity; thus, M-CSF (CSF-1) and G-CSF primarily stimulate cells committed to the macrophage and granulocyte lineages, respectively. Recently, the genes for both of these factors have been cloned and probes for the clonal genes were used to map their location on normal human chromosomes. Localization of CSF-1 was performed by in situ hybridization of the probe pST-CSF-17 to normal human metaphase chromosomes. This resulted in specific labeling only of chromosome 5. 8 refs., 4 figs., 2 tabs

  3. Alternative Splice Variants Modulates Dominant-Negative Function of Helios in T-Cell Leukemia.

    Directory of Open Access Journals (Sweden)

    Shaorong Zhao

    Full Text Available The molecular defects which lead to multistep incidences of human T-cell leukemia have yet to be identified. The DNA-binding protein Helios (known as IKZF2, a member of the Ikaros family of Krüppel-like zinc-finger proteins, functions pivotally in T-cell differentiation and activation. In this study, we identify three novel short Helios splice variants which are T-cell leukemic specific, and demonstrate their dominant-negative function. We then test the cellular localization of distinct Helios isoforms, as well as their capability to form heterodimer with Ikaros, and the association with complexes comprising histone deacetylase (HDAC. In addition, the ectopic expression of T-cell leukemic Helios isoforms interferes with T-cell proliferation and apoptosis. The gene expression profiling and pathway analysis indicated the enrichment of signaling pathways essential for gene expression, translation, cell cycle checkpoint, and response to DNA damage stimulus. These data indicate the molecular function of Helios to be involved in the leukemogenesis and phenotype of T-cell leukemia, and also reveal Helios deregulation as a novel marker for T-cell leukemia.

  4. A radiolabeled antibody targeting CD123+ leukemia stem cells – initial radioimmunotherapy studies in NOD/SCID mice engrafted with primary human AML

    Directory of Open Access Journals (Sweden)

    Jeffrey V. Leyton

    2015-01-01

    Full Text Available Radioimmunotherapy (RIT with anti-CD123 monoclonal antibody CSL360 modified with nuclear translocation sequence (NLS peptides and labeled with the Auger electron-emitter, 111In (111In-NLS-CSL360 was studied in the prevalent NOD/SCID mouse AML engraftment assay. Significant decreases in CD123+ leukemic cells and impairment of leukemic stem cell self-renewal were achieved with high doses of RIT. However, NOD/SCID mice were very radiosensitive to these doses. At low non-toxic treatment doses, 111In-NLS-CSL360 demonstrated a trend towards improved survival associated with decreased spleen/body weight ratio, an indicator of leukemia burden, and almost complete eradication of leukemia from the bone marrow in some mice.

  5. Activation of store – operated Ca(2+ entry in cisplatin resistant leukemic cells after treatment with photoexcited fullerene C(60 and cisplatin

    Directory of Open Access Journals (Sweden)

    D. V. Franskevych

    2018-04-01

    Full Text Available Ca2+-regulating system in cancer cells is suggested to be remodulated particularly by reduced store-operated Ca2+ entry (SOCE through plasma membrane in order to maintain moderately reduced cytosolic Ca2+ concentration and to avoid apoptosis. The endoplasmic reticulum (ER Ca2+ pool content and the size of SOCE in leukemic wild type (L1210 and resistant to cisplatin (L1210R cells in control, after treatment with either cisplatin (1 µg/ml or photoexcited fulleren C60 (10-5 M alone, or their combination were estimated with the use of Indo-1 AM. The SOCE in resistant to cisplatin L1210R cells was found to be lower than in the wild-type cells. After treatment with cisplatin the decrease of thapsigargin (TG-sensitive ER Ca2+ pool with no significant increase of SOCE was observed in L1210 cells, while no changes were detected in L1210R cells. Photoexcitation of intracellular accumulated fullerene C60 in the visible range of spectrum (410-700 nm was accompanied by increase of SOCE not only in sensitive, but in resistant cells as well. In resistant L1210R cells treated with photoexcited C60 essential effect of cisplatin on Ca2+ homeostasis became obvious: the size of SOCE proved to be higher than after treatment with photoexcited C60 alone. The data obtained allow suggesting­ the influence of photoexcited C60 not only on Ca2+-regulating system, but on those involved in controlling cisplatin entry into drug resistant cancer cells.

  6. Paraptosis cell death induction by the thiamine analog benfotiamine in leukemia cells.

    Directory of Open Access Journals (Sweden)

    Naomi Sugimori

    Full Text Available Benfotiamine is a synthetic thiamine analogue that stimulates transketolase, a cellular enzyme essential for glucose metabolism. Currently, benfotiamine is used to treat diabetic neuropathy. We recently reported that oral benfotiamine induced a temporary but remarkable recovery from acute myeloid leukemia in an elderly patient who was ineligible for standard chemotherapy due to dementia and renal failure. In the present study we present evidences that benfotiamine possess antitumor activity against leukemia cells. In a panel of nine myeloid leukemia cell lines benfotiamine impaired the viability of HL-60, NB4, K562 and KG1 cells and also inhibited the growing of primary leukemic blasts. The antitumor activity of benfotiamine is not mediated by apoptosis, necrosis or autophagy, but rather occurs though paraptosis cell death induction. Mechanistic studies revealed that benfotiamine inhibited the activity of constitutively active ERK1/2 and concomitantly increased the phosphorylation of JNK1/2 kinase in leukemic cells. In addition, benfotiamine induced the down regulation of the cell cycle regulator CDK3 which resulted in G1 cell cycle arrest in the sensitive leukemic cells. Moreover, combination index studies showed that benfotiamine enhanced the antiproliferative activities of cytarabine against leukemia cells. These findings suggest that benfotiamine has antitumor therapeutic potential.

  7. Paraptosis cell death induction by the thiamine analog benfotiamine in leukemia cells.

    Science.gov (United States)

    Sugimori, Naomi; Espinoza, J Luis; Trung, Ly Quoc; Takami, Akiyoshi; Kondo, Yukio; An, Dao Thi; Sasaki, Motoko; Wakayama, Tomohiko; Nakao, Shinji

    2015-01-01

    Benfotiamine is a synthetic thiamine analogue that stimulates transketolase, a cellular enzyme essential for glucose metabolism. Currently, benfotiamine is used to treat diabetic neuropathy. We recently reported that oral benfotiamine induced a temporary but remarkable recovery from acute myeloid leukemia in an elderly patient who was ineligible for standard chemotherapy due to dementia and renal failure. In the present study we present evidences that benfotiamine possess antitumor activity against leukemia cells. In a panel of nine myeloid leukemia cell lines benfotiamine impaired the viability of HL-60, NB4, K562 and KG1 cells and also inhibited the growing of primary leukemic blasts. The antitumor activity of benfotiamine is not mediated by apoptosis, necrosis or autophagy, but rather occurs though paraptosis cell death induction. Mechanistic studies revealed that benfotiamine inhibited the activity of constitutively active ERK1/2 and concomitantly increased the phosphorylation of JNK1/2 kinase in leukemic cells. In addition, benfotiamine induced the down regulation of the cell cycle regulator CDK3 which resulted in G1 cell cycle arrest in the sensitive leukemic cells. Moreover, combination index studies showed that benfotiamine enhanced the antiproliferative activities of cytarabine against leukemia cells. These findings suggest that benfotiamine has antitumor therapeutic potential.

  8. Heterogeneity of clonogenic cells in acute myeloblastic leukemia.

    OpenAIRE

    Sabbath, K D; Ball, E D; Larcom, P; Davis, R B; Griffin, J D

    1985-01-01

    The expression of differentiation-associated surface antigens by the clonogenic leukemic cells from 20 patients with acute myeloblastic leukemia (AML) was studied with a panel of seven cytotoxic monoclonal antibodies (anti-Ia, -MY9, -PM-81, -AML-2-23, -Mol, -Mo2, and -MY3). The surface antigen phenotypes of the clonogenic cells were compared with the phenotypes of the whole leukemic cell population, and with the phenotypes of normal hematopoietic progenitor cells. In each case the clonogenic ...

  9. Characterization and molecular features of the cell surface receptor for human granulocyte-macrophage colony-stimulating factor

    International Nuclear Information System (INIS)

    Chiba, S.; Tojo, A.; Kitamura, T.; Urabe, A.; Miyazono, K.; Takaku, F.

    1990-01-01

    The receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF) on the surfaces of normal and leukemic myeloid cells were characterized using 125I-labeled bacterially synthesized GM-CSF. The binding was rapid, specific, time dependent, and saturable. Scatchard analysis of the 125I-GM-CSF binding to peripheral blood neutrophils indicated the presence of a single class of binding site (Kd = 99 +/- 21 pM; 2,304 +/- 953 sites/cell). However, for peripheral blood monocytes and two GM-CSF-responsive myeloid cell lines (U-937 and TF-1), the Scatchard plots were biphasic curvilinear, which were best fit by curves derived from two binding site model: one with high affinity (Kd1 = 10-40 pM) and the other with low affinity (Kd2 = 0.9-2.0 nM). For U-937 cells, the number of high-affinity receptors was 1,058 +/- 402 sites/cell and that of low-affinity receptors was estimated to be 10,834 +/- 2,396 sites/cell. Cross-linking studies yielded three major bands with molecular masses of 150 kDa, 115 kDa, and 95 kDa, which were displaced by an excess amount of unlabeled GM-CSF, suggesting 135-kDa, 100-kDa, and 80-kDa species for the individual components of the human GM-CSF receptor. These bands comigrated for different cell types including peripheral blood neutrophils, U-937 cells and TF-1 cells. In experiments using U-937 cells, only the latter two bands appeared to be labeled in a dose-dependent manner in a low-affinity state. These results suggest that the human GM-CSF receptor possibly forms a multichain complex

  10. JS-K, an arylating nitric oxide (NO) donor, has synergistic anti-leukemic activity with cytarabine (ARA-C).

    Science.gov (United States)

    Shami, Paul J; Maciag, Anna E; Eddington, Jordan K; Udupi, Vidya; Kosak, Ken M; Saavedra, Joseph E; Keefer, Larry K

    2009-11-01

    We have designed prodrugs that release nitric oxide (NO) on metabolism by glutathione S-transferases (GST). This design exploits the upregulation of GST in acute myeloid leukemia (AML) cells. O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, a member of this class) has potent anti-leukemic activity. HL-60 myeloid leukemia cells were used for in vitro studies of the combination of JS-K with daunorubicin (DAUNO), cytarabine (ARA-C) or etoposide (ETOP) using the median effect method to determine synergistic, antagonistic, or additive effects. Combinations of JS-K added simultaneously, 2h before or 2h after the other compounds were used. JS-K and DAUNO were antagonistic in all three drug sequences. JS-K and ETOP were also antagonistic but to a lesser degree. JS-K and ARA-C showed strong synergy. The combination index at the 50% fraction affected was 0.37+/-0.23, 0.24+/-0.27, and 0.15+/-0.11 for simultaneous, JS-K first and ARA-C first additions, respectively. JS-K by itself induced DNA strand breaks at relatively high concentrations. However, at submicromolar concentrations, it significantly augmented ARA-C-induced DNA strand breaks. NMR spectroscopy revealed no evidence of chemical interaction between JS-K and the other chemotherapeutic agents. We conclude that ARA-C and JS-K have synergistic anti-leukemic activity and warrant further exploration in combination.

  11. Ex vivo assays to study self-renewal and long-term expansion of genetically modified primary human acute myeloid leukemia stem cells

    NARCIS (Netherlands)

    Schuringa, Jan Jacob; Schepers, Hein

    2009-01-01

    With the emergence of the concept of the leukemia stem cell, assays to study them remain pivotal in understanding (leukemic) stem cell biology. Although the in vivo NOD-SCID xenotransplantation model is still the favored model of choice in most cases, this system has some limitations as well, such

  12. Homotypic aggregation of human cell lines by HLA class II-, class Ia- and HLA-G-specific monoclonal antibodies

    DEFF Research Database (Denmark)

    Odum, Niels; Ledbetter, J A; Martin, P

    1991-01-01

    Major histocompatibility complex (MHC) class II molecules have been implicated in cell adhesion in two ways. In addition to the well-established role of class II antigens in low-affinity adhesion provided by interactions between class II and CD4, recent data indicated that class II may also induce...... adhesion between T and B cells by activating the CD18/CD11a (LFA-1) adhesion pathway. Here we report that monoclonal antibodies (mAb) against HLA-DR (L243, p4.1, HB10a, VI15) and certain broad class II reacting mAb (TU35, TU39), but not anti-DQ (TU22, Leu-10) mAb, induced homotypic aggregation of human...... class II-positive monocytic (I937) and T leukemic (HUT78) tumor cell lines and Epstein-Barr virus (EBV) transformed B-lymphoid cell lines (EBV-LCL). Class II-negative cell lines (U-937 and the EBV-LCL mutant line 616) were not induced to aggregate. An HLA-G-transfected EBV-LCL, 221-AGN...

  13. Zebrafish Models of Human Leukemia: Technological Advances and Mechanistic Insights.

    Science.gov (United States)

    Harrison, Nicholas R; Laroche, Fabrice J F; Gutierrez, Alejandro; Feng, Hui

    2016-01-01

    Insights concerning leukemic pathophysiology have been acquired in various animal models and further efforts to understand the mechanisms underlying leukemic treatment resistance and disease relapse promise to improve therapeutic strategies. The zebrafish (Danio rerio) is a vertebrate organism with a conserved hematopoietic program and unique experimental strengths suiting it for the investigation of human leukemia. Recent technological advances in zebrafish research including efficient transgenesis, precise genome editing, and straightforward transplantation techniques have led to the generation of a number of leukemia models. The transparency of the zebrafish when coupled with improved lineage-tracing and imaging techniques has revealed exquisite details of leukemic initiation, progression, and regression. With these advantages, the zebrafish represents a unique experimental system for leukemic research and additionally, advances in zebrafish-based high-throughput drug screening promise to hasten the discovery of novel leukemia therapeutics. To date, investigators have accumulated knowledge of the genetic underpinnings critical to leukemic transformation and treatment resistance and without doubt, zebrafish are rapidly expanding our understanding of disease mechanisms and helping to shape therapeutic strategies for improved outcomes in leukemic patients.

  14. The effect of extracorporeal photopheresis alone or in combination therapy on circulating CD4+Foxp3+CD25- T-cells in patients with leukemic cutaneous T-cell lymphoma

    Science.gov (United States)

    Shiue, Lisa H.; Couturier, Jacob; Lewis, Dorothy E.; Wei, Caimiao; Ni, Xiao; Duvic, Madeleine

    2015-01-01

    Purpose Extracorporeal photopheresis (ECP) alone or in combination therapy is effective for treatment of leukemic cutaneous T-cell lymphoma (L-CTCL), but its mechanism(s) of action remain unclear. This study was designed to investigate the effect of ECP on regulatory T-cell and CD8+ T-cells in L-CTCL patients. Experimental Design Peripheral blood from 18 L-CTCL patients at baseline, Day 2, 1-month, 3-month, and 6-month post-ECP therapy were analyzed by flow cytometry for CD4+CD25+/high, CD4+Foxp3+CD25+/-, CD3+CD8+, CD3+CD8+CD69+, and CD3+CD8+IFN-γ+ T-cells. Clinical responses were assessed and correlated with changes in these T-cell subsets. Results Twelve of 18 patients achieved clinical responses. The average baseline number of CD4+CD25+/high T-cells of PBMCs in L-CTCL patients was normal (2.2%), but increased at 6-month post-therapy (4.3%, p<0.01). The average baseline number of CD4+Foxp3+ T-cells out of CD4+ T-cells in 9 evaluable patients was high (66.8±13.7%), mostly CD25 negative. The levels of CD4+Foxp3+ T cells in responders were higher (n=6, 93.1±5.7%) than non-responders (n=3, 14.2±16.0%, p<0.01), and they declined in parallel with malignant T-cells. The numbers of CD3+CD8+CD69+ and CD3+CD8+ IFN-γ+ T-cells increased at 3-month post-therapy in 5 of 6 patients studied. Conclusions ECP alone or in combination therapy might be effective in L-CTCL patients whose malignant T-cells have a CD4+Foxp3+CD25- phenotype. PMID:25772268

  15. Aberrant Expression of CD19 and CD43 in a Patient With Therapy-Related Acute Myeloid Leukemia and a History of Mantle Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Yen-Chuan Hsieh

    2009-07-01

    Full Text Available Mantle cell lymphoma (MCL is an aggressive B cell lymphoma with frequent involvement of the gastrointestinal tract and peripheral blood (PB. In addition to the B cell markers, the neoplastic cells express CD5 and CD43. In patients with a prior history of MCL with PB involvement, the appearance of leukemic cells after chemotherapy usually heralds a relapse, particularly if the leukemic cells express B cell markers and CD43. We report a patient with MCL who presented with multiple lymphomatous polyposis of the intestine. The staging procedures revealed the involvement of lymph nodes, bone marrow and PB. Three years after chemotherapy, thrombocytopenia with the appearance of rare leukemic cells in the PB was noted. Leukemic cells obtained from bone marrow aspirate expressed CD19 and CD43, suggesting a relapse. Detailed cytomorphological and immunophenotypic studies unveiled the myeloid nature of these leukemic cells, and a diagnosis of therapy-related acute myeloid leukemia was made. This case illustrates the importance of morphologic examination and performing a complete antibody panel in the diagnosis of a suspected relapse in patients with a prior history of lymphoma.

  16. Functional and genomic analyses of FOXP3-transduced Jurkat-T cells as regulatory T (Treg)-like cells

    International Nuclear Information System (INIS)

    Kim, Joon-Young; Kim, Han-Jong; Hurt, Elaine M.; Chen, Xin; Howard, O.M. Zack; Farrar, William L.

    2007-01-01

    FOXP3, a forkhead transcription factor is essential for the development and function of CD4 + CD25 + regulatory T cells (Tregs). In contrast to conversion of murine naive T cells to Tregs by transduction of Foxp3, it is controversial whether ectopic expression of FOXP3 in human CD4 + T cells is sufficient for acquisition of suppressive activity. Here, we show that retroviral transduction of FOXP3 induces a Treg phenotype in human leukemic CD4 + Jurkat-T cells, evidenced by increased expression of Treg-associated cell surface markers as well as inhibition of cytokine production. Furthermore, FOXP3-transduced Jurkat-T cells suppress the proliferation of human CD4 + CD25 - T cells. Additionally, DNA microarray analysis identifies Treg-related genes regulated by FOXP3. Our study demonstrates that enforced expression of FOXP3 confers Treg-like properties on Jurkat-T cells, which can be a convenient and efficient Treg-like cell model for further study to identify Treg cell surface markers and target genes regulated by FOXP3

  17. Inhibition of the NAD-dependent protein deacetylase SIRT2 induces granulocytic differentiation in human leukemia cells.

    Directory of Open Access Journals (Sweden)

    Yoshitaka Sunami

    Full Text Available Sirtuins, NAD-dependent protein deacetylases, play important roles in cellular functions such as metabolism and differentiation. Whether sirtuins function in tumorigenesis is still controversial, but sirtuins are aberrantly expressed in tumors, which may keep cancerous cells undifferentiated. Therefore, we investigated whether the inhibition of sirtuin family proteins induces cellular differentiation in leukemic cells. The sirtuin inhibitors tenovin-6 and BML-266 induce granulocytic differentiation in the acute promyelocytic leukemia (APL cell line NB4. This differentiation is likely caused by an inhibition of SIRT2 deacetylase activity, judging from the accumulation of acetylated α-tubulin, a major SIRT2 substrate. Unlike the clinically used differentiation inducer all-trans retinoic acid, tenovin-6 shows limited effects on promyelocytic leukemia-retinoic acid receptor α (PML-RAR-α stability and promyelocytic leukemia nuclear body formation in NB4 cells, suggesting that tenovin-6 does not directly target PML-RAR-α activity. In agreement with this, tenovin-6 induces cellular differentiation in the non-APL cell line HL-60, where PML-RAR-α does not exist. Knocking down SIRT2 by shRNA induces granulocytic differentiation in NB4 cells, which demonstrates that the inhibition of SIRT2 activity is sufficient to induce cell differentiation in NB4 cells. The overexpression of SIRT2 in NB4 cells decreases the level of granulocytic differentiation induced by tenovin-6, which indicates that tenovin-6 induces granulocytic differentiation by inhibiting SIRT2 activity. Taken together, our data suggest that targeting SIRT2 is a viable strategy to induce leukemic cell differentiation.

  18. A leukemic double-hit follicular lymphoma associated with a complex variant translocation, t(8;14;18)(q24;q32;q21), involving BCL2, MYC, and IGH.

    Science.gov (United States)

    Minakata, Daisuke; Sato, Kazuya; Ikeda, Takashi; Toda, Yumiko; Ito, Shoko; Mashima, Kiyomi; Umino, Kento; Nakano, Hirofumi; Yamasaki, Ryoko; Morita, Kaoru; Kawasaki, Yasufumi; Sugimoto, Miyuki; Yamamoto, Chihiro; Ashizawa, Masahiro; Hatano, Kaoru; Oh, Iekuni; Fujiwara, Shin-Ichiro; Ohmine, Ken; Kawata, Hirotoshi; Muroi, Kazuo; Miura, Ikuo; Kanda, Yoshinobu

    2018-01-01

    Double-hit lymphoma (DHL) is defined as lymphoma with concurrent BCL2 and MYC translocations. While the most common histological subtype of DHL is diffuse large B-cell lymphoma, the present patient had leukemic follicular lymphoma (FL). A 52-year-old man was admitted to our hospital due to general fatigue and cervical and inguinal lymph node swelling. The patient was leukemic and the pathological diagnosis of the inguinal lymph node was FL grade 1. Chromosomal analysis revealed a complex karyotype including a rare three-way translocation t(8;14;18)(q24;q32;q21) involving the BCL2, MYC, and IGH genes. Based on a combination of fluorescence in situ hybridization (FISH), using BCL2, MYC and IGH, and spectral karyotyping (SKY), the karyotype was interpreted as being the result of a multistep mechanism in which the precursor B-cell gained t(14;18) in the bone marrow and acquired a translocation between der(14)t(14;18) and chromosome 8 in the germinal center, resulting in t(8;14;18). The pathological diagnosis was consistently FL, not only at presentation but even after a second relapse. The patient responded well to standard chemotherapies but relapsed after a short remission. This patient is a unique case of leukemic DH-FL with t(8;14;18) that remained in FL even at a second relapse. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Activity of the hypoxia-activated prodrug, TH-302, in preclinical human acute myeloid leukemia models.

    Science.gov (United States)

    Portwood, Scott; Lal, Deepika; Hsu, Yung-Chun; Vargas, Rodrigo; Johnson, Megan K; Wetzler, Meir; Hart, Charles P; Wang, Eunice S

    2013-12-01

    Acute myeloid leukemia (AML) is an aggressive hematologic neoplasm. Recent evidence has shown the bone marrow microenvironment in patients with AML to be intrinsically hypoxic. Adaptive cellular responses by leukemia cells to survive under low oxygenation also confer chemoresistance. We therefore asked whether therapeutic exploitation of marrow hypoxia via the hypoxia-activated nitrogen mustard prodrug, TH-302, could effectively inhibit AML growth. We assessed the effects of hypoxia and TH-302 on human AML cells, primary samples, and systemic xenograft models. We observed that human AML cells and primary AML colonies cultured under chronic hypoxia (1% O2, 72 hours) exhibited reduced sensitivity to cytarabine-induced apoptosis as compared with normoxic controls. TH-302 treatment resulted in dose- and hypoxia-dependent apoptosis and cell death in diverse AML cells. TH-302 preferentially decreased proliferation, reduced HIF-1α expression, induced cell-cycle arrest, and enhanced double-stranded DNA breaks in hypoxic AML cells. Hypoxia-induced reactive oxygen species by AML cells were also diminished. In systemic human AML xenografts (HEL, HL60), TH-302 [50 mg/kg intraperitoneally (i.p.) 5 times per week] inhibited disease progression and prolonged overall survival. TH-302 treatment reduced the number of hypoxic cells within leukemic bone marrows and was not associated with hematologic toxicities in nonleukemic or leukemic mice. Later initiation of TH-302 treatment in advanced AML disease was as effective as earlier TH-302 treatment in xenograft models. Our results establish the preclinical activity of TH-302 in AML and provide the rationale for further clinical studies of this and other hypoxia-activated agents for leukemia therapy. ©2013 AACR.

  20. Dissection of the transformation of primary human hematopoietic cells by the oncogene NUP98-HOXA9.

    Directory of Open Access Journals (Sweden)

    Enas R Yassin

    2009-08-01

    Full Text Available NUP98-HOXA9 is the prototype of a group of oncoproteins associated with acute myeloid leukemia. It consists of an N-terminal portion of NUP98 fused to the homeodomain of HOXA9 and is believed to act as an aberrant transcription factor that binds DNA through the homeodomain. Here we show that NUP98-HOXA9 can regulate transcription without binding to DNA. In order to determine the relative contributions of the NUP98 and HOXA9 portions to the transforming ability of NUP98-HOXA9, the effects of NUP98-HOXA9 on primary human CD34+ cells were dissected and compared to those of wild-type HOXA9. In contrast to previous findings in mouse cells, HOXA9 had only mild effects on the differentiation and proliferation of primary human hematopoietic cells. The ability of NUP98-HOXA9 to disrupt the differentiation of primary human CD34+ cells was found to depend primarily on the NUP98 portion, whereas induction of long-term proliferation required both the NUP98 moiety and an intact homeodomain. Using oligonucleotide microarrays in primary human CD34+ cells, a group of genes was identified whose dysregulation by NUP98-HOXA9 is attributable primarily to the NUP98 portion. These include RAP1A, HEY1, and PTGS2 (COX-2. Their functions may reflect the contribution of the NUP98 moiety of NUP98-HOXA9 to leukemic transformation. Taken together, these results suggest that the effects of NUP98-HOXA9 on gene transcription and cell transformation are mediated by at least two distinct mechanisms: one that involves promoter binding through the homeodomain with direct transcriptional activation, and another that depends predominantly on the NUP98 moiety and does not involve direct DNA binding.

  1. Correlation of chromosome patterns in leukemic cells of patients with exposure to chemicals and/or radiation

    International Nuclear Information System (INIS)

    Rowley, J.D.

    1989-10-01

    We have identified two new recurring translocations involving chromosome 5; one is a 3;5 translocation and the other involves a rearrangement between chromosomes 5 and 7. The first is t(3;5)(q25.1;q35). We studied five patients with AML and a t(3;5) in their leukemic cells. At diagnosis, four of the patients had a t(3;5) as their sole karyotypic anomaly; the remaining patient had additional structural and numerical abnormalities. Careful cytogenetic analysis indicated that the breakpoints of this rearrangement were 3q25.1 and 5q34, in contrast to the various breakpoints reported in earlier studies (3q21 to 3q25 and 5q31 to 5q35). The karyotypic, morphologic, and clinical characteristics of this group, as well as those of 15 previously reported patients with the t(3;5), were compared to identify any features that might warrant consideration of this anomaly as a specific syndrome. The median age of the group, 37 years, as younger than that of all patients with AML, 49 years. A preceding myelodysplastic syndrome was observed in three patients. We have no information regarding the occupation of most of these patients. Except for acute promyelocytic leukemia, each morphologic subtype occurred in these patients; however, the frequency of erythroleukemia (M6) was much greater than expected. 11 refs., 2 figs., 5 tabs

  2. BET bromodomain inhibition rescues erythropoietin differentiation of human erythroleukemia cell line UT7

    International Nuclear Information System (INIS)

    Goupille, Olivier; Penglong, Tipparat; Lefèvre, Carine; Granger, Marine; Kadri, Zahra; Fucharoen, Suthat; Maouche-Chrétien, Leila; Leboulch, Philippe; Chrétien, Stany

    2012-01-01

    Highlights: ► UT7 erythroleukemia cells are known to be refractory to differentiate. ► Brief JQ1 treatment initiates the first steps of erythroid differentiation program. ► Engaged UT7 cells then maturate in the presence of erythropoietin. ► Sustained JQ1 treatment inhibits both proliferation and erythroid differentiation. -- Abstract: Malignant transformation is a multistep process requiring oncogenic activation, promoting cellular proliferation, frequently coupled to inhibition of terminal differentiation. Consequently, forcing the reengagement of terminal differentiation of transformed cells coupled or not with an inhibition of their proliferation is a putative therapeutic approach to counteracting tumorigenicity. UT7 is a human leukemic cell line able to grow in the presence of IL3, GM-CSF and Epo. This cell line has been widely used to study Epo-R/Epo signaling pathways but is a poor model for erythroid differentiation. We used the BET bromodomain inhibition drug JQ1 to target gene expression, including that of c-Myc. We have shown that only 2 days of JQ1 treatment was required to transitory inhibit Epo-induced UT7 proliferation and to restore terminal erythroid differentiation. This study highlights the importance of a cellular erythroid cycle break mediated by c-Myc inhibition before initiation of the erythropoiesis program and describes a new model for BET bromodomain inhibitor drug application.

  3. BET bromodomain inhibition rescues erythropoietin differentiation of human erythroleukemia cell line UT7

    Energy Technology Data Exchange (ETDEWEB)

    Goupille, Olivier [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Penglong, Tipparat [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Thalassemia Research Center and Department of Clinical Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University (Thailand); Lefevre, Carine; Granger, Marine; Kadri, Zahra [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Fucharoen, Suthat [Thalassemia Research Center and Department of Clinical Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University (Thailand); Maouche-Chretien, Leila [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Leboulch, Philippe [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Genetics Division, Department of Medicine, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA (United States); Chretien, Stany, E-mail: stany.chretien@cea.fr [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer UT7 erythroleukemia cells are known to be refractory to differentiate. Black-Right-Pointing-Pointer Brief JQ1 treatment initiates the first steps of erythroid differentiation program. Black-Right-Pointing-Pointer Engaged UT7 cells then maturate in the presence of erythropoietin. Black-Right-Pointing-Pointer Sustained JQ1 treatment inhibits both proliferation and erythroid differentiation. -- Abstract: Malignant transformation is a multistep process requiring oncogenic activation, promoting cellular proliferation, frequently coupled to inhibition of terminal differentiation. Consequently, forcing the reengagement of terminal differentiation of transformed cells coupled or not with an inhibition of their proliferation is a putative therapeutic approach to counteracting tumorigenicity. UT7 is a human leukemic cell line able to grow in the presence of IL3, GM-CSF and Epo. This cell line has been widely used to study Epo-R/Epo signaling pathways but is a poor model for erythroid differentiation. We used the BET bromodomain inhibition drug JQ1 to target gene expression, including that of c-Myc. We have shown that only 2 days of JQ1 treatment was required to transitory inhibit Epo-induced UT7 proliferation and to restore terminal erythroid differentiation. This study highlights the importance of a cellular erythroid cycle break mediated by c-Myc inhibition before initiation of the erythropoiesis program and describes a new model for BET bromodomain inhibitor drug application.

  4. MicroRNA-29b mediates altered innate immune development in acute leukemia

    Science.gov (United States)

    Mundy-Bosse, Bethany L.; Scoville, Steven D.; Chen, Li; McConnell, Kathleen; Mao, Hsiaoyin C.; Ahmed, Elshafa H.; Zorko, Nicholas; Harvey, Sophia; Cole, Jordan; Zhang, Xiaoli; Costinean, Stefan; Croce, Carlo M.; Larkin, Karilyn; Byrd, John C.; Vasu, Sumithira; Blum, William; Yu, Jianhua; Freud, Aharon G.; Caligiuri, Michael A.

    2016-01-01

    Natural killer (NK) cells can have potent antileukemic activity following haplo-mismatched, T cell–depleted stem cell transplantations for the treatment of acute myeloid leukemia (AML), but they are not successful in eradicating de novo AML. Here, we have used a mouse model of de novo AML to elucidate the mechanisms by which AML evades NK cell surveillance. NK cells in leukemic mice displayed a marked reduction in the cytolytic granules perforin and granzyme B. Further, as AML progressed, we noted the selective loss of an immature subset of NK cells in leukemic mice and in AML patients. This absence was not due to elimination by cell death or selective reduction in proliferation, but rather to the result of a block in NK cell differentiation. Indeed, NK cells from leukemic mice and humans with AML showed lower levels of TBET and EOMES, transcription factors that are critical for terminal NK cell differentiation. Further, the microRNA miR-29b, a regulator of T-bet and EOMES, was elevated in leukemic NK cells. Finally, deletion of miR-29b in NK cells reversed the depletion of this NK cell subset in leukemic mice. These results indicate that leukemic evasion of NK cell surveillance occurs through miR-mediated dysregulation of lymphocyte development, representing an additional mechanism of immune escape in cancer. PMID:27775550

  5. Siglec-7 tetramers characterize B-cell subpopulations and leukemic blasts.

    Science.gov (United States)

    Gieseke, Friederike; Mang, Philippa; Viebahn, Susanne; Sonntag, Inga; Kruchen, Anne; Erbacher, Annika; Pfeiffer, Matthias; Handgretinger, Rupert; Müller, Ingo

    2012-08-01

    Cell surface glycosylation has important regulatory functions in the maturation, activation, and homeostasis of lymphocytes. The family of human sialic acid-binding immunoglobulin-like lectins (siglecs) comprises inhibitory as well as activating receptors intimately involved in the regulation of immune responses. Analyses of the interaction between siglecs and glycans are hampered by the low affinity of this interaction. Therefore, we expressed siglec-7 in eukaryotic cells, allowing for glycosylation, and oligomerized the protein in analogy to MHC tetramers. Using this tool, flow cytometric analysis of lymphocytes became possible. Sialic acid-dependent binding of siglec-7 tetramers was confirmed by glycan array analysis and loss of siglec tetramer binding after neuraminidase treatment of lymphocytes. In contrast to most lymphocyte subpopulations, which showed high siglec-7 ligand expression, B-cell subpopulations could be further subdivided according to different siglec-7 ligand expression levels. We also analyzed blasts from acute lymphoblastic leukemias of the B-cell lineage as well as the T-cell lineage, since malignant transformation is often associated with aberrant cell surface glycosylation. While pediatric T-ALL blasts highly expressed siglec-7 ligands, siglec-7 ligands were barely detectable on cALL blasts. Taken together, oligomerization of recombinant soluble siglec-7 enabled flow cytometric identification of physiologic lymphocyte subpopulations and malignant blasts. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Study of the quantitative, functional, cytogenetic, and immunoregulatory properties of bone marrow mesenchymal stem cells in patients with B-cell chronic lymphocytic leukemia.

    Science.gov (United States)

    Pontikoglou, Charalampos; Kastrinaki, Maria-Christina; Klaus, Mirjam; Kalpadakis, Christina; Katonis, Pavlos; Alpantaki, Kalliopi; Pangalis, Gerassimos A; Papadaki, Helen A

    2013-05-01

    The bone marrow (BM) microenvironment has clearly been implicated in the pathogenesis of B-cell chronic lymphocytic leukemia (B-CLL). However, the potential involvement of BM stromal progenitors, the mesenchymal stem cells (MSCs), in the pathophysiology of the disease has not been extensively investigated. We expanded in vitro BM-MSCs from B-CLL patients (n=11) and healthy individuals (n=16) and comparatively assessed their reserves, proliferative potential, differentiation capacity, and immunoregulatory effects on T- and B-cells. We also evaluated the anti-apoptotic effect of patient-derived MSCs on leukemic cells and studied their cytogenetic characteristics in comparison to BM hematopoietic cells. B-CLL-derived BM MSCs exhibit a similar phenotype, differentiation potential, and ability to suppress T-cell proliferative responses as compared with MSCs from normal controls. Furthermore, they do not carry the cytogenetic abnormalities of the leukemic clone, and they exert a similar anti-apoptotic effect on leukemic cells and healthy donor-derived B-cells, as their normal counterparts. On the other hand, MSCs from B-CLL patients significantly promote normal B-cell proliferation and IgG production, in contrast to healthy-donor-derived MSCs. Furthermore, they have impaired reserves, defective cellular growth due to increased apoptotic cell death and exhibit aberrant production of stromal cell-derived factor 1, B-cell activating factor, a proliferation inducing ligand, and transforming growth factor β1, cytokines that are crucial for the survival/nourishing of the leukemic cells. We conclude that ex vivo expanded B-CLL-derived MSCs harbor intrinsic qualitative and quantitative abnormalities that may be implicated in disease development and/or progression.

  7. Effects of highly ripened cheeses on HL-60 human leukemia cells: antiproliferative activity and induction of apoptotic DNA damage.

    Science.gov (United States)

    Yasuda, S; Ohkura, N; Suzuki, K; Yamasaki, M; Nishiyama, K; Kobayashi, H; Hoshi, Y; Kadooka, Y; Igoshi, K

    2010-04-01

    To establish cheese as a dairy product with health benefits, we examined the multifunctional role of cheeses. In this report, we clarify whether different types of commercial cheeses may possess antiproliferative activity using HL-60 human promyelocytic leukemia cell lines as a cancer model. Among 12 cheese extracts tested, 6 (Montagnard, Pont-l'Eveque, Brie, Camembert, Danablue, and Blue) revealed strong growth inhibition activity and induction of DNA fragmentation in HL-60 cells. Based on the quantification of nitrogen contents in different cheese samples, a positive correlation between the ripeness of various cheeses and their antiproliferative activity tested in HL-60 cells was displayed. Four varieties of Blue cheese ripened for 0, 1, 2, or 3 mo demonstrated that the Blue cheese ripened for a long term was capable of causing the strong suppression of the cell growth and the induction of apoptotic DNA damage as well as nucleic morphological change in HL-60 cells. Collectively, these results obtained suggest a potential role of highly ripened cheeses in the prevention of leukemic cell proliferation. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Quantitation of human thymus/leukemia-associated antigen by radioimmunoassay in different forms of leukemia.

    Science.gov (United States)

    Chechik, B E; Jason, J; Shore, A; Baker, M; Dosch, H M; Gelfand, E W

    1979-12-01

    Using a radioimmunoassay, increased levels of a human thymus/leukemia-associated antigen (HThy-L) have been detected in leukemic cells and plasma from most patients with E-rosette-positive acute lymphoblastic leukemia (ALL) and a number of patients with E-rosette-negative ALL, acute myeloblastic leukemia (AML), acute monomyelocytic leukemia (AMML), and acute undifferentiated leukemia (AVL). Low levels of HThy-L have been demonstrated in white cells from patients with chronic myelocytic leukemia (stable phase) and in mononuclear cells from patients with chronic lymphatic leukemia. The relationship between HThy-L and differentiation of hematopoietic cells is discussed.

  9. Characterization of activating mutations of NOTCH3 in T-cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH3 inhibitory antibodies.

    Science.gov (United States)

    Bernasconi-Elias, P; Hu, T; Jenkins, D; Firestone, B; Gans, S; Kurth, E; Capodieci, P; Deplazes-Lauber, J; Petropoulos, K; Thiel, P; Ponsel, D; Hee Choi, S; LeMotte, P; London, A; Goetcshkes, M; Nolin, E; Jones, M D; Slocum, K; Kluk, M J; Weinstock, D M; Christodoulou, A; Weinberg, O; Jaehrling, J; Ettenberg, S A; Buckler, A; Blacklow, S C; Aster, J C; Fryer, C J

    2016-11-24

    Notch receptors have been implicated as oncogenic drivers in several cancers, the most notable example being NOTCH1 in T-cell acute lymphoblastic leukemia (T-ALL). To characterize the role of activated NOTCH3 in cancer, we generated an antibody that detects the neo-epitope created upon gamma-secretase cleavage of NOTCH3 to release its intracellular domain (ICD3), and sequenced the negative regulatory region (NRR) and PEST (proline, glutamate, serine, threonine) domain coding regions of NOTCH3 in a panel of cell lines. We also characterize NOTCH3 tumor-associated mutations that result in activation of signaling and report new inhibitory antibodies. We determined the structural basis for receptor inhibition by obtaining the first co-crystal structure of a NOTCH3 antibody with the NRR protein and defined two distinct epitopes for NRR antibodies. The antibodies exhibit potent anti-leukemic activity in cell lines and tumor xenografts harboring NOTCH3 activating mutations. Screening of primary T-ALL samples reveals that 2 of 40 tumors examined show active NOTCH3 signaling. We also identified evidence of NOTCH3 activation in 12 of 24 patient-derived orthotopic xenograft models, 2 of which exhibit activation of NOTCH3 without activation of NOTCH1. Our studies provide additional insights into NOTCH3 activation and offer a path forward for identification of cancers that are likely to respond to therapy with NOTCH3 selective inhibitory antibodies.

  10. A 5-year old male with “leukemic form” of disseminated post-transplant lymphoproliferative disorder

    Directory of Open Access Journals (Sweden)

    Saadiya Haque

    2010-03-01

    Full Text Available Post-transplant lymphoproliferative disorder (PTLD represents an abnormal lymphoid proliferation that occurs in recipients of solid organ or bone marrow allograft. It includes a diverse group of diseases ranging from polymorphic B-cell hyperplasia to frank malignant lymphoma. Clinical presentation is variable, ranging from asymptomatic to generalized lymphadenopathy, mononucleosis-like syndrome, nodal or extranodal tumors (usually gastrointestinal tract, systemic lymphomatous involvement, and rare (less than 1% of cases fulminant disseminated disease. PTLD is more common in children than in adults. Younger patients usually present with mononucleosis-like symptoms. We present an unusual case of a 5-year old male who developed a widely disseminated leukemic form of PTLD, involving lymph nodes, tonsils, multiple organs, bone marrow, cerebrospinal fluid, and peripheral blood.

  11. Radioimmunodetection of human leukemia with anti-interleukin-2 receptor antibody in severe combined immunodeficiency mice

    International Nuclear Information System (INIS)

    Hosono, Makoto; Takaori-Kondo, Akifumi; Zheng-Sheng, Yao; Kobayashi, Hisataka; Hosono, Masako N.; Sakahara, Harumi; Imada, Kazunori; Okuma, Minoru; Uchiyama, Takashi; Konishi, Junji

    1995-01-01

    Anti-Tac monoclonal antibody recognizes human interleukin-2 receptor, which is overexpressed in leukemic cells of most adult T-cell leukemia (ATL) patients. To examine the potency of anti-Tac for targeting of ATL, biodistributions of intravenously administered 125 I- and 111 In-labeled anti-Tac were examined in severe combined immunodeficiency (SCID) mice inoculated with ATL cells. Significant amounts of radiolabeled anti-Tac were found in the spleen and thymus. The trafficking of ATL cells in SCID mice was detected using 111 In-oxine-labeled ATL cells. These results were coincident with the histologically confirmed infiltration of ATL cells. The radiolabeled anti-Tac seemed potent for targeting of ATL

  12. Induced apoptosis by mild hyperthermia occurs via telomerase inhibition on the three human myeloid leukemia cell lines: TF-1, K562, and HL-60.

    Science.gov (United States)

    Deezagi, Abdolkhaleg; Manteghi, Sanaz; Khosravani, Pardis; Vaseli-Hagh, Neda; Soheili, Zahra-Soheila

    2009-09-01

    The purpose of this research was to understand the effect of hyperthermia on the telomerase activity in human leukemic cell lines (HL-60, K562, and TF-1). The cells were treated by hyperthermia at the range of 41-44 degrees C for 120 min and incubated for 96 h. Then telomerase activity, cell proliferation, and apoptosis were assessed. The results indicated that hyperthermia significantly induced apoptosis on the cells. The cells exhibited pre-apoptotic pattern at 41 and 42 degrees C at 60-120 min and apoptotic pattern at 43 and 44 degrees C over 30 min after hyperthermia. Telomerase activity (that was assayed immediately after hyperthermia) was stable at 41-42 degrees C for 60 min but decreased to 35-40% at 120 min. However, at severe hyperthermia (43-44 degrees C) telomerase activity was decreased in a time- and dose-dependent manner. Following hyperthermia (41-44 degrees C up to 120 min), the cells were incubated for 96 h. In these conditions, the telomerase activity was decreased by about 60-80% in comparison with that untreated control cells.

  13. Detection of a novel specificity (CTLA-4) in ATG/TMG globulins and sera from ATG-treated leukemic patients.

    Science.gov (United States)

    Pistillo, Maria Pia; Tazzari, Pier Luigi; Bonifazi, Francesca; Bandini, Giuseppe; Kato, Tomohiro; Matsui, Toshihiro; Nishioka, Kusuki; Conte, Roberto; Ferrara, Giovanni Battista

    2002-04-27

    T-cell costimulation has been shown to provide positive signals for T-cell activation and generation of effector activity. In this study, we analyzed the presence of antibodies (Abs) against the T-lymphocyte costimulatory molecules CD28, CTLA-4, CD80, and CD86 in anti-T-lymphocyte (ATG) and antithymocyte (TMG) globulin preparations to address their mechanism of action. We focused our attention on the role of CTLA-4-specific Abs in the immunosuppressive effect of ATG/TMG, because anti-CTLA-4 agonistic Abs may suppress T-cell proliferation and nonagonistic Abs may lead to T-cell depletion through an Ab-dependent cell cytotoxicity mechanism. ATG/TMG and patients' sera were tested for binding to recombinant human costimulatory molecules by ELISA techniques. CTLA-4 specificity was also analyzed by cytoplasmic immunofluorescence staining of a CTLA-4 transfectant by competitive inhibition immunofluorescence and by cell proliferation assay in allogeneic mixed lymphocyte reaction (MLR). Either ATG or TMG predominantly contained anti-CTLA-4 Abs, with higher reactivity in ATG followed by anti-CD86 and -CD28 Abs, whereas anti-CD80 Abs were found only in ATG. Anti-CTLA-4 Abs present in ATG/TMG recognized the native form of CTLA-4 molecule, and their removal reduced the effect of ATG in an allogeneic MLR. Kinetic studies indicated that such Abs were present in the sera of 12 ATG-treated leukemic patients up to 21 days after ATG administration. These data suggest that the novel anti-CTLA-4 Abs found in ATG may greatly contribute to its immunosuppressive effect, thus accounting for the absence of rejection and exceptionally low incidence of graft-versus-host disease in the group of patients analyzed.

  14. Kaempferol increases apoptosis in human acute promyelocytic leukemia cells and inhibits multidrug resistance genes.

    Science.gov (United States)

    Moradzadeh, Maliheh; Tabarraei, Alijan; Sadeghnia, Hamid Reza; Ghorbani, Ahmad; Mohamadkhani, Ashraf; Erfanian, Saiedeh; Sahebkar, Amirhossein

    2018-02-01

    Acute promyelocytic leukemia (APL) is one of the most life-threatening hematological malignancies. Defects in the cell growth and apoptotic pathways are responsible for both disease pathogenesis and treatment resistance. Therefore, pro-apoptotic agents are potential candidates for APL treatment. Kaempferol is a flavonoid with antioxidant and anti-tumor properties. This study was designed to investigate the cytotoxic, pro-apoptotic, and differentiation-inducing effects of kaempferol on HL-60 and NB4 leukemia cells. Resazurin assay was used to determine cell viability following treatment with kaempferol (12.5-100 μM) and all-trans retinoic acid (ATRA; 10 μM; used as a positive control). Apoptosis and differentiation were also detected using propidium iodide and NBT staining techniques, respectively. Furthermore, the expression levels of genes involved in apoptosis (PI3 K, AKT, BCL2, BAX, p53, p21, PTEN, CASP3, CASP8, and CASP9), differentiation (PML-RAR and HDAC1), and multi-drug resistance (ABCB1 and ABCC1) were determined using quantitative real-time PCR. The protein expressions of Bax/Bcl2 and casp3 were confirmed using Western blot. The results showed that kaempferol decreased cell viability and increased subG1 population in the tested leukemic cells. This effect was associated with decreased expression of Akt, BCL2, ABCB1, and ABCC1 genes, while the expression of CASP3 and BAX/BCL-2 ratio were significantly increased at both gene and protein levels. Kaempferol promoted apoptosis and inhibited multidrug resistance in a concentration-dependent manner, without any differential effect on leukemic cells. In conclusion, this study suggested that kaempferol may be utilized as an appropriate alternative for ATRA in APL patients. © 2017 Wiley Periodicals, Inc.

  15. Trisomy 4 in a case of acute undifferentiated myeloblastic leukemia with hand-mirror cells.

    Science.gov (United States)

    Kao, Y S; McCormick, C; Vial, R

    1990-04-01

    A case of acute undifferentiated myelocytic leukemic with trisomy 4 is described. The patient is a 61-year-old woman who developed leukemia 4 1/2 years after receiving radiation therapy for uterine carcinoma. Many leukemic cells exhibited hand-mirror configuration after the bone marrow aspirate was left at room temperature overnight. The relationship between trisomy 4 and hand-mirror cells in acute myelocytic leukemia is unknown.

  16. Cytotoxic Effect on Human Myeloma Cells and Leukemic Cells by the Agaricus blazei Murill Based Mushroom Extract, Andosan™

    Directory of Open Access Journals (Sweden)

    Jon-Magnus Tangen

    2017-01-01

    Full Text Available Agaricus blazei Murill is an edible mushroom of the Basidiomycetes family, which has been found to contain a number of compounds with antitumor properties, such as proteoglycans and ergosterol. In the present investigation, we show that the commercial mushroom product Andosan, which contains 82.4% Agaricus blazei Murill, together with medicinal mushrooms Hericium erinaceus (14.7% and Grifola frondosa (2.9%, has a cytotoxic effect on primary myeloma cells, other myeloma cell lines, and leukemia cell lines in vitro. Although the exact content and hence the mechanisms of action of the Andosan extract are unknown, we have found in this investigation indications of cell cycle arrest when myeloma cell lines are cultivated with Andosan. This may be one of the possible explanations for the cytotoxic effects of Andosan.

  17. Potent antitumor activities of recombinant human PDCD5 protein in combination with chemotherapy drugs in K562 cells

    International Nuclear Information System (INIS)

    Shi, Lin; Song, Quansheng; Zhang, Yingmei; Lou, Yaxin; Wang, Yanfang; Tian, Linjie; Zheng, Yi; Ma, Dalong; Ke, Xiaoyan; Wang, Ying

    2010-01-01

    Conventional chemotherapy is still frequently used. Programmed cell death 5 (PDCD5) enhances apoptosis of various tumor cells triggered by certain stimuli and is lowly expressed in leukemic cells from chronic myelogenous leukemia patients. Here, we describe for the first time that recombinant human PDCD5 protein (rhPDCD5) in combination with chemotherapy drugs has potent antitumor effects on chronic myelogenous leukemia K562 cells in vitro and in vivo. The antitumor efficacy of rhPDCD5 protein with chemotherapy drugs, idarubicin (IDR) or cytarabine (Ara-C), was examined in K562 cells in vitro and K562 xenograft tumor models in vivo. rhPDCD5 protein markedly increased the apoptosis rates and decreased the colony-forming capability of K562 cells after the combined treatment with IDR or Ara-C. rhPDCD5 protein by intraperitoneal administration dramatically improved the antitumor effects of IDR treatment in the K562 xenograft model. The tumor sizes and cell proliferation were significantly decreased; and TUNEL positive cells were significantly increased in the combined group with rhPDCD5 protein and IDR treatment compared with single IDR treatment groups. rhPDCD5 protein, in combination with IDR, has potent antitumor effects on chronic myelogenous leukemia K562 cells and may be a novel and promising agent for the treatment of chronic myelogenous leukemia.

  18. Anti-leukemic activity and tolerability of anti-human CD47 monoclonal antibodies

    Science.gov (United States)

    Pietsch, E C; Dong, J; Cardoso, R; Zhang, X; Chin, D; Hawkins, R; Dinh, T; Zhou, M; Strake, B; Feng, P-H; Rocca, M; Santos, C Dos; Shan, X; Danet-Desnoyers, G; Shi, F; Kaiser, E; Millar, H J; Fenton, S; Swanson, R; Nemeth, J A; Attar, R M

    2017-01-01

    CD47, a broadly expressed cell surface protein, inhibits cell phagocytosis via interaction with phagocyte-expressed SIRPα. A variety of hematological malignancies demonstrate elevated CD47 expression, suggesting that CD47 may mediate immune escape. We discovered three unique CD47-SIRPα blocking anti-CD47 monoclonal antibodies (mAbs) with low nano-molar affinity to human and cynomolgus monkey CD47, and no hemagglutination and platelet aggregation activity. To characterize the anti-cancer activity elicited by blocking CD47, the mAbs were cloned into effector function silent and competent Fc backbones. Effector function competent mAbs demonstrated potent activity in vitro and in vivo, while effector function silent mAbs demonstrated minimal activity, indicating that blocking CD47 only leads to a therapeutic effect in the presence of Fc effector function. A non-human primate study revealed that the effector function competent mAb IgG1 C47B222-(CHO) decreased red blood cells (RBC), hematocrit and hemoglobin by >40% at 1 mg/kg, whereas the effector function silent mAb IgG2σ C47B222-(CHO) had minimal impact on RBC indices at 1 and 10 mg/kg. Taken together, our findings suggest that targeting CD47 is an attractive therapeutic anti-cancer approach. However, the anti-cancer activity observed with anti-CD47 mAbs is Fc effector dependent as are the side effects observed on RBC indices. PMID:28234345

  19. A Recombinant Fragment of Human Surfactant Protein D induces Apoptosis in Pancreatic Cancer Cell Lines via Fas-Mediated Pathway.

    Science.gov (United States)

    Kaur, Anuvinder; Riaz, Muhammad Suleman; Murugaiah, Valarmathy; Varghese, Praveen Mathews; Singh, Shiv K; Kishore, Uday

    2018-01-01

    Human surfactant protein D (SP-D) is a potent innate immune molecule, which is emerging as a key molecule in the recognition and clearance of altered and non-self targets. Previous studies have shown that a recombinant fragment of human SP-D (rfhSP-D) induced apoptosis via p53-mediated apoptosis pathway in an eosinophilic leukemic cell line, AML14.3D10. Here, we report the ability of rfhSP-D to induce apoptosis via TNF-α/Fas-mediated pathway regardless of the p53 status in human pancreatic adenocarcinoma using Panc-1 (p53 mt ), MiaPaCa-2 (p53 mt ), and Capan-2 (p53 wt ) cell lines. Treatment of these cell lines with rfhSP-D for 24 h caused growth arrest in G1 cell cycle phase and triggered transcriptional upregulation of pro-apoptotic factors such as TNF-α and NF-κB. Translocation of NF-κB from the cytoplasm into the nucleus of pancreatic cancer cell lines was observed via immunofluorescence microscopy following treatment with rfhSP-D as compared to the untreated cells. The rfhSP-D treatment caused upregulation of pro-apoptotic marker Fas, as analyzed via qPCR and western blot, which then triggered caspase cascade, as evident from cleavage of caspase 8 and 3 analyzed via western blot at 48 h. The cell number following the rfhSP-D treatment was reduced in the order of Panc-1 (~67%) > MiaPaCa-2 (~60%) > Capan-2 (~35%). This study appears to suggest that rfhSP-D can potentially be used to therapeutically target pancreatic cancer cells irrespective of their p53 phenotype.

  20. Targeting Human C-Type Lectin-Like Molecule-1 (CLL1) with a Bispecific Antibody for Acute Myeloid Leukemia Immunotherapy**

    OpenAIRE

    Lu, Hua; Zhou, Quan; Deshmukh, Vishal; Phull, Hardeep; Ma, Jennifer; Tardif, Virginie; Naik, Rahul R.; Bouvard, Claire; Zhang, Yong; Choi, Seihyun; Lawson, Brian R.; Zhu, Shoutian; Kim, Chan Hyuk; Schultz, Peter G.

    2014-01-01

    Acute myeloid leukemia (AML), the most common acute adult leukemia and the second most common pediatric leukemia, still has a poor prognosis. Human C-type lectin-like molecule-1 (CLL1) is a recently identified myeloid lineage restricted cell surface marker, which is overexpressed in over 90% of AML patient myeloid blasts and in leukemic stem cells. Here, we describe the synthesis of a novel bispecific antibody, αCLL1-αCD3, using the genetically encoded unnatural amino acid, p-acetylphenylalan...

  1. Leukemia in AKR mice. III. Size distribution of suppressor T-cells in AKR leukemia and neonatal mice

    International Nuclear Information System (INIS)

    Mulder, A.M.; Durdik, J.M.; Toth, P.; Golub, E.S.

    1978-01-01

    Suppression of in vitro antibody forming potential of normal cells by leukemic cells of AKR and normal neonatal mice have many similarities. In both cases the suppression is by cell contact rather than by the elaboration of soluble suppressive factors and the suppression is sensitive to both x-irradiation and mitomycin C treatment. When the size distribution of suppressing cells in thymus and spleen were compared by velocity sedimentation, both leukemic and neonatal suppressing cells had similar size distribution in each organ. Both large and small cells in the thymus suppress but only large cells (sedimentation velocity > 3.5 mm/hr) in the spleen are able to suppress. Leukemic cells in lymph node have a splenic size distribution, viz., only large cells suppress. Both large and small cells of a subcutaneously growing long passage AKR lymphoma are able to suppress. While large cells contain the bulk of cells actively incorporating tritiated thymidine and thus probably in cycle, small but significant amounts of incorporation in small suppressing cells is also seen

  2. Changes in T-cell subpopulations and cytokine network during early period of ibrutinib therapy in chronic lymphocytic leukemia patients: the significant decrease in T regulatory cells number.

    Science.gov (United States)

    Podhorecka, Monika; Goracy, Aneta; Szymczyk, Agnieszka; Kowal, Malgorzata; Ibanez, Blanca; Jankowska-Lecka, Olga; Macheta, Arkadiusz; Nowaczynska, Aleksandra; Drab-Urbanek, Elzbieta; Chocholska, Sylwia; Jawniak, Dariusz; Hus, Marek

    2017-05-23

    B cell receptor (BCR) stimulation signal plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL), and kinase inhibitors directed toward the BCR pathway are now the promising anti-leukemic drugs. Ibrutinib, a Bruton tyrosine kinase inhibitor, demonstrates promising clinical activity in CLL. It is reported that ibrutinib, additionally to directly targeting leukemic cells, also inhibits the interactions of these cells with T cells, macrophages and accessory cells. Assessment of these mechanisms is important because of their non -direct anti-leukemic effects and to identify possible side effects connected with long-term drug administration.The aim of this study was to assess the in vivo effects of ibrutinib on T-cell subpopulations and cytokine network in CLL. The analysis was performed on a group of 19 patients during first month of ibrutinib therapy. The standard multicolor flow cytometry and cytometric bead array methods were used for assessment of T-cell subsets and cytokines/chemokines, respectively.The data obtained indicates that Ibrutinib treatment results in changes in T-cell subpopulations and cytokine network in CLL patients. Particularly, a significant reduction of T regulatory cells in peripheral blood was observed. By targeting these populations of T cells Ibrutinib can stimulate rejection of tumor cells by the immune system.

  3. Interleukin 1 as an autocrine growth factor for acute myeloid leukemia cells

    International Nuclear Information System (INIS)

    Cozzolino, F.; Rubartelli, A.; Aldinucci, D.; Sitia, R.; Torcia, M.; Shaw, A.; Di Guglielmo, R.

    1989-01-01

    Production of interleukin 1 (IL-1) by leukemic cells was studied in 13 cases of acute myeloid leukemia. Intracytoplasmic immunofluorescence studies showed that the cells invariably contained the cytokine. Endogenous labeling studies demonstrated that acute myeloid leukemia cells produced either only the 33-kDa propeptide or both the propeptide and the 17-kDa mature form of IL-1β. The 33-kDa propeptide IL-1α was always produced but was less frequently released. Involvement of IL-1 in leukemic cell growth was investigated using two antibodies specific for IL-1 subtypes, which inhibited spontaneous cell proliferation in the six cases studied. After acid treatment of the cells, a surface receptor for IL-1 could be demonstrated, which mediated 125 I-labeled IL-1-specific uptake by leukemic cells. Furthermore, recombinant IL-1α or IL-1β induced significant cell proliferation in 10 12 cases. The above findings were uncorrelated with the cytologic type (French-American-British classification) of leukemia. The studies suggest that IL-1 may act as an autocrine growth factor in most cases of acute myeloid leukemia

  4. Induction of apoptosis by Citrus paradisi essential oil in human leukemic (HL-60) cells.

    Science.gov (United States)

    Hata, Tomona; Sakaguchi, Ikuyo; Mori, Masahiro; Ikeda, Norikazu; Kato, Yoshiko; Minamino, Miki; Watabe, Kazuhito

    2003-01-01

    Limonene is a primary component of citrus essential oils (EOs) and has been reported to induce apoptosis on tumor cells. Little is known about induction of apoptosis by citrus EOs. In this study, we examined induction of apoptosis by Citrus aurantium var. dulcis (sweet orange) EO, Citrus paradisi (grapefruit) EO and Citrus limon (lemon) EO. These EOs induced apoptosis in HL-60 cells and the apoptosis activities were related to the limonene content of the EOs. Moreover, sweet orange EO and grapefruit EO may contain components besides limonene that have apoptotic activity. To identify the components with apoptotic activity, grapefruit EO was fractionated using silica gel columns, and the components were analyzed by GC-MS. The n-hexane fraction contained limonene, and the dichloromethane fraction (DF) contained aldehyde compounds and nootkatone. Decanal, octanal and citral in the DF showed strong apoptotic activity, suggesting that the aldehyde compounds induced apoptosis strongly in HL-60 cells.

  5. DENTAL CONSIDERATIONS FOR LEUKEMIC PEDIATRIC PATIENTS: AN UPDATED REVIEW FOR GENERAL DENTAL PRACTITIONER.

    Science.gov (United States)

    Lowal, Kholoud A; Alaizari, Nader Ahmed; Tarakji, Bassel; Petro, Waleed; Hussain, Khaja Amjad; Altamimi, Mohamed Abdullah Alsakran

    2015-10-01

    The early signs of leukemia can usually manifest in the oral cavity due to infiltration of leukemic cells or due to associated decline in normal marrow elements, especially in the acute phase of leukemia, as common lesions at this stage of the disease can be screened and diagnosed by the dentist. Therefore, the dental community should be aware of the oral manifestations of leukemia and oral complications of anticancer treatment. This can eliminate the oral symptoms of the disease and to improve quality of life for these patients. An extensive search in PubMed line using a combination of terms like "leukemia, children, dental, Acute lymphoblastic leukemia, pediatric" for last ten years was made. Reviews and case reports concerned about acute lymphoblastic leukemia in children were all collected and analyzed and data were extracted. Accordingly, the aim of this review is to highlight on the oral presentations of leukemia in children attending dental clinics and the management of its undesirable side effects.

  6. A comparison of caspase 3 expression in the endocrine and exocrine parts of the pancreas after cladribine application according to the "leukemic" schema

    Directory of Open Access Journals (Sweden)

    Jasinski Ludwik

    2017-03-01

    Full Text Available The therapeutic effects of the immunosuppressive agent, cladribine, have been demonstrated by its toxicity to cells. However, its effects on healthy cells of the body is poorly understood. The aim of study was, hence, to, firstly, evaluate the morphology of the endocrine and exocrine pancreas after the administration of cladribine according to the "leukemic" schema, and, secondly, to assess its impact on the intensity of apoptosis. The experiment was carried out on female Wistar rats which were placed within the control group KA, and the experimental groups: A and A-bis. In the experimental groups, Cladribine was administered according to the cycle used to treat human hairy cell leukemia. In group A, the material was taken 24 hours after administration of the last dose of the drug, while in group A-bis, this was done after a 4 weeks break. The reaction was assessed to be average in 80% of all cells in group A, and in 64% of all acinar cells in group KA, while in group A-bis, the majority of the exocrine cells demonstrated a lack of immunohistochemical response (72%. Moreover, most endocrine cells (60% in group A-bis revealed a strong reaction, while in Group A, the corresponding figure is a little over 34%. A comparison of the severity of the caspase 3 expression in both the exocrine and endocrine pancreas showed significant differentiation results between the group KA and group A-bis, and between group A and A-bis (p < 0.0001. In can be concluded that endocrine cells are more sensitive to cladribine than are exocrine cells.

  7. Radiation responses of hematopoietic-cells and inducing acute myeloid leukemia

    International Nuclear Information System (INIS)

    Ojima, Mitsuaki; Hirouchi, Tokuhisa

    2016-01-01

    Leukemia has consistently held the interest of researchers from the beginning of radiation carcinogenesis. One of the major reasons for this interest is the availability of several strains of mice that develop leukemia following radiation exposure after a short latency period that resemble those found in A-Bomb survivors. Previous studies have shown that rAML (Radiation-induced Acute Myeloid Leukemia) in mice show inactivation of Sfpi1 gene and a hemizygous deletion in chromosome 2. Leukemic stem cells in murine rAML have been reported to share some characteristics with common myeloid progenitor cells. In this review, we will discuss the possible mechanisms in the development of rAML stem cells, focusing on the alterations found in the leukemic stem cells and as well as the environment in which these leukemic stem cells are developed, such cytokine expression, as Well as alterations that may be found in other cells residing in the bone marrow. Hematopoietic stem cells respond to radiation exposure both as a single cell and as a part of the differentiating hematopoietic tissue for several months prior to its transformation to a rAML stem cell. It is however unclear how these 2 responses contribute to the development of the rAML stem cell. This review covers previous reports and examines the development of the rAML stem cell in detail. (author)

  8. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun; Zhuang, Wen-Fang

    2015-01-01

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice

  9. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun, E-mail: majuntongrensh1@126.com; Zhuang, Wen-Fang, E-mail: wenfangzhuangmd@163.com

    2015-05-15

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.

  10. Allogeneic cellular immunotherapy for chronic B-cell leukemia

    NARCIS (Netherlands)

    Hoogendoorn, Mels

    2007-01-01

    Allogeneic stem cell transplantation (SCT) following reduced-intensity conditioning (RIC) as treatment modality has curative potential in patients suffering from chronic lymphocytic leukemia (CLL) or mantle cell lymphoma (MCL), illustrating susceptibility of these leukemic cells for the

  11. Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species.

    Science.gov (United States)

    De Milito, Angelo; Iessi, Elisabetta; Logozzi, Mariantonia; Lozupone, Francesco; Spada, Massimo; Marino, Maria Lucia; Federici, Cristina; Perdicchio, Maurizio; Matarrese, Paola; Lugini, Luana; Nilsson, Anna; Fais, Stefano

    2007-06-01

    Proton pumps like the vacuolar-type H+ ATPase (V-ATPase) are involved in the control of cellular pH in normal and tumor cells. Treatment with proton pump inhibitors (PPI) induces sensitization of cancer cells to chemotherapeutics via modifications of cellular pH gradients. It is also known that low pH is the most suitable condition for a full PPI activation. Here, we tested whether PPI treatment in unbuffered culture conditions could affect survival and proliferation of human B-cell tumors. First, we showed that PPI treatment increased the sensitivity to vinblastine of a pre-B acute lymphoblastic leukemia (ALL) cell line. PPI, per se, induced a dose-dependent inhibition of proliferation of tumor B cells, which was associated with a dose- and time-dependent apoptotic-like cytotoxicity in B-cell lines and leukemic cells from patients with pre-B ALL. The effect of PPI was mediated by a very early production of reactive oxygen species (ROS), that preceded alkalinization of lysosomal pH, lysosomal membrane permeabilization, and cytosol acidification, suggesting an early destabilization of the acidic vesicular compartment. Lysosomal alterations were followed by mitochondrial membrane depolarization, release of cytochrome c, chromatin condensation, and caspase activation. However, inhibition of caspase activity did not affect PPI-induced cell death, whereas specific inhibition of ROS by an antioxidant (N-acetylcysteine) significantly delayed cell death and protected both lysosomal and mitochondrial membranes. The proapoptotic activity of PPI was consistent with a clear inhibition of tumor growth following PPI treatment of B-cell lymphoma in severe combined immunodeficient mice. This study further supports the importance of acidity and pH gradients in tumor cell homeostasis and suggests new therapeutic approaches for human B-cell tumors based on PPI.

  12. Establishment of a new human pre-B acute lymphoblastic leukemia cell line (KMO-90) with 1;19 translocation carrying p53 gene alterations.

    Science.gov (United States)

    Sotomatsu, M; Hayashi, Y; Kawamura, M; Yugami, S; Shitara, T

    1993-10-01

    A new human pre-B acute lymphoblastic leukemia cell line (KMO-90) was established from the bone marrow sample of a 12-year-old girl with acute lymphoblastic leukemia (ALL) carrying 1;19 chromosome translocation. KMO-90 cells expressed HLA-DR, CD10, CD19, and CD22 antigens. These cells had also cytoplasmic immunoglobulin lacking surface immunoglobulin, indicating that these had a pre-B phenotype. Chromosome analysis of this cell line showed 48, XX, +8, +19, t(1;19)(q23;p13). Southern blot analysis showed the same sized rearrangements of the E2A gene in KMO-90 cells as those in the original leukemic cells. By means of reverse transcriptase-polymerase chain reaction analysis, we detected E2A/PBX1 fusion transcripts in KMO-90 cells. KMO-90 is useful when studying the role of the 1;19 translocation in the etiology of pre-B ALL. Furthermore, we studied alterations of the p53 gene in this cell line by polymerase chain reaction, single-strand conformation polymorphism analysis. KMO-90 cells were identified to have a point mutation at codon 177 (CCC-->TCC) of the p53 gene, suggesting that alterations of the p53 gene may have an important role in the establishment of this cell line.

  13. Molecular cloning and expression of the human homologue of the murine gene encoding myeloid leukemia-inhibitory factor

    International Nuclear Information System (INIS)

    Gough, N.M.; Gearing, D.P.; King, J.A.; Willson, T.A.; Hilton, D.J.; Nicola, N.A.; Metcalf, D.

    1988-01-01

    A human homologue of the recently cloned murine leukemia-inhibitory factor (LIF) gene was isolated from a genomic library by using the marine cDNA as a hybridization probe. The nucleotide sequence of the human gene indicated that human LIF has 78% amino acid sequence identity with murine LIF, with no insertions or deletions, and that the region of the human gene encoding the mature protein has one intervening sequence. After oligonucleotide-mediated mutagenesis, the mature protein-coding region of the LIF gene was introduced into the yeast expression vector YEpsec1. Yeast cells transformed with the resulting recombinant could be induced with galactose to produce high levels of a factor that induced the differentiation of murine M1 leukemic cells in a manner analogous to murine LIF. This factor competed with 125 I-labeled native murine LIF for binding to specific cellular receptors on murine cells, compatible with a high degree of structural similarity between the murine and human factors

  14. T cell differentiation stages identified by molecular and immunologic analysis of the T cell receptor complex in childhood lymphoblastic leukemia.

    Science.gov (United States)

    Mirro, J; Kitchingman, G; Behm, F G; Murphy, S B; Goorha, R M

    1987-03-01

    T cell differentiation was investigated by determining the relationship of T cell receptor (Ti) gene rearrangement and transcription to the expression of surface and cytoplasmic T3 antigen using blast cells from five children with acute lymphoblastic leukemia of thymic origin. Patterns of monoclonal antibody (MoAb) reactivity indicated that these cases were representative of the three recognized stages (I, II, III) of human thymocyte development. The T3 antigen, which becomes linked to the Ti to form a functional T cell receptor complex on mature thymocytes, was expressed on the cell surface in two cases (stage III). However, in the remaining three cases that were surface T3 negative (stages I and II), large amounts of T3 were identified in the cytoplasm by immunoperoxidase staining and flow cytometry. Leukemic blasts from all five patients showed rearranged genes encoding the beta-chain portion of the Ti heterodimer. RNA transcripts of Ti beta-chain genes were also evident in lymphoblasts from all five cases, but transcripts coding for the alpha-chain portion of Ti were found only in cases that expressed T3 on the cell surface. Thus the absence of surface T3 (and presumably Ti) coincides with the absence of Ti alpha-chain RNA, suggesting that transcription of alpha-chain genes is a critical regulatory event in the surface expression of the Ti-T3 complex. Leukemic T cells that rearrange and express Ti beta-chain genes but lack Ti alpha-chain messenger RNA (mRNA) may represent a stage of differentiation analogous to pre-B cells, where heavy-chain immunoglobulin (Ig) genes are rearranged and expressed but light-chain Ig genes are not expressed.

  15. Concurrent targeting Akt and sphingosine kinase 1 by A-674563 in acute myeloid leukemia cells

    International Nuclear Information System (INIS)

    Xu, Lin; Zhang, Yanan; Gao, Meng; Wang, Guangping; Fu, Yunfeng

    2016-01-01

    Akt signaling plays a pivotal role in acute myeloid leukemia (AML) development and progression. In the present study, we evaluated the potential anti-AML activity by a novel Akt kinase inhibitor A-674563. Our results showed that A-674563 dose-dependently inhibited survival and proliferation of U937 AML cells and six lines of human AML progenitor cells, yet sparing human peripheral blood mononuclear leukocytes (PBMCs). A-674563 activated caspase-3/9 and apoptosis in the AML cells. Reversely, the pan-caspase inhibitor z-VAD-CHO dramatically alleviated A-674563-induced AML cell apoptosis and cytotoxicity. For the molecular study, we showed that A-674563 blocked Akt activation in U937 cells and human AML progenitor cells. Further, A-674563 decreased sphingosine kinase 1 (SphK1) activity in above AML cells to deplete pro-survival sphingosine-1-phosphate (S1P) and boost pro-apoptotic ceramide production. Such an effect on SphK1 signaling by A-674563 appeared independent of Akt blockage. Significantly, K6PC-5, a novel SphK1 activator, or supplement with S1P attenuated A-674563-induced ceramide production, and subsequent U937 cell death and apoptosis. Importantly, intraperitoneal injection of A-674563 at well-tolerated doses suppressed U937 leukemic xenograft tumor growth in nude mice, whiling significantly improving the animal survival. The results of the current study demonstrate that A-674563 exerts potent anti-leukemic activity in vitro and in vivo, possibly via concurrent targeting Akt and SphK1 signalings. - Highlights: • A-674563 is cytotoxic and anti-proliferative in U937 and AML progenitor cells. • A-674563 activates caspase-3/9 and apoptosis in U937 and AML progenitor cells. • Whiling blocking Akt, A-674563 manipulates other signalings in AML cells. • A-674563 inhibits SphK1 activity in AML cells, independent of Akt blockage. • A-674563 injection inhibits U937 xenograft in vivo growth, and improves mice survival.

  16. Concurrent targeting Akt and sphingosine kinase 1 by A-674563 in acute myeloid leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lin [Xiangya Hospital, Central South University, Changsha (China); Shaoyang Central Hospital, Hunan Province (China); Zhang, Yanan; Gao, Meng [The Third Xiangya Hospital, Central South University, Changsha, 410013 (China); Wang, Guangping, E-mail: wangguangping45@sina.com [Xiangya Hospital, Central South University, Changsha (China); Fu, Yunfeng, E-mail: fuyunfeng33163@163.com [The Third Xiangya Hospital, Central South University, Changsha, 410013 (China)

    2016-04-15

    Akt signaling plays a pivotal role in acute myeloid leukemia (AML) development and progression. In the present study, we evaluated the potential anti-AML activity by a novel Akt kinase inhibitor A-674563. Our results showed that A-674563 dose-dependently inhibited survival and proliferation of U937 AML cells and six lines of human AML progenitor cells, yet sparing human peripheral blood mononuclear leukocytes (PBMCs). A-674563 activated caspase-3/9 and apoptosis in the AML cells. Reversely, the pan-caspase inhibitor z-VAD-CHO dramatically alleviated A-674563-induced AML cell apoptosis and cytotoxicity. For the molecular study, we showed that A-674563 blocked Akt activation in U937 cells and human AML progenitor cells. Further, A-674563 decreased sphingosine kinase 1 (SphK1) activity in above AML cells to deplete pro-survival sphingosine-1-phosphate (S1P) and boost pro-apoptotic ceramide production. Such an effect on SphK1 signaling by A-674563 appeared independent of Akt blockage. Significantly, K6PC-5, a novel SphK1 activator, or supplement with S1P attenuated A-674563-induced ceramide production, and subsequent U937 cell death and apoptosis. Importantly, intraperitoneal injection of A-674563 at well-tolerated doses suppressed U937 leukemic xenograft tumor growth in nude mice, whiling significantly improving the animal survival. The results of the current study demonstrate that A-674563 exerts potent anti-leukemic activity in vitro and in vivo, possibly via concurrent targeting Akt and SphK1 signalings. - Highlights: • A-674563 is cytotoxic and anti-proliferative in U937 and AML progenitor cells. • A-674563 activates caspase-3/9 and apoptosis in U937 and AML progenitor cells. • Whiling blocking Akt, A-674563 manipulates other signalings in AML cells. • A-674563 inhibits SphK1 activity in AML cells, independent of Akt blockage. • A-674563 injection inhibits U937 xenograft in vivo growth, and improves mice survival.

  17. Adult T-cell leukemia on the east coast of Kii Peninsula--presentation of an anti-ATLA-negative case.

    Science.gov (United States)

    Karitani, Y; Kobayashi, T; Koh, T; Iwata, Y; Tanaka, I; Minami, N; Shirakawa, S

    1983-01-01

    Nineteen patients with adult T-cell leukemia (ATL) have been found in the last seven years along the east coast of Kii Peninsula in Japan. The leukemic cells were of the immunologically inducer/helper T-cell phenotype. The prognosis was very poor (median survival time, 85 days), and most of the patients had fatal complications of pulmonary infections. Antibody against ATL-associated antigen (anti-ATLA) was detected in sera from 9 of 10 patients who were born along the coast. However, it was not detected in one patient who was born in a district surrounded by mountains. Although he had neither superficial lymphadenopathy nor skin lesions, he showed rapid clinical deterioration. His leukemic cells appeared to be extremely bizarre with marked nuclear deformation compared with those of the other patients. In surface marker studies the leukemic cells reacted positively with OKT3, OKT4 and OKIa-1 monoclonal antibodies. The characteristics of the anti-ATLA-negative case are discussed in comparison with the other ATL cases.

  18. Regulatory effects of sestrin 3 (SESN3 in BCR-ABL expressing cells.

    Directory of Open Access Journals (Sweden)

    Eliza Vakana

    Full Text Available Chronic myeloid leukemia (CML and Ph+ acute lymphoblastic leukemia (ALL are characterized by the presence of the BCR-ABL oncoprotein, which leads to activation of a plethora of pro-mitogenic and pro-survival pathways, including the mTOR signaling cascade. We provide evidence that in BCR-ABL expressing cells, treatment with tyrosine kinase inhibitors (TKIs results in upregulation of mRNA levels and protein expression of sestrin3 (SESN3, a unique cellular inhibitor of mTOR complex 1 (mTORC1. Such upregulation appears to be mediated by regulatory effects on mTOR, as catalytic inhibition of the mTOR kinase also induces SESN3. Catalytic mTOR inhibition also results in upregulation of SESN3 expression in cells harboring the TKI-insensitive T315I-BCR-ABL mutant, which is resistant to imatinib mesylate. Overexpression of SESN3 results in inhibitory effects on different Ph+ leukemic cell lines including KT-1-derived leukemic precursors, indicating that SESN3 mediates anti-leukemic responses in Ph+ cells. Altogether, our findings suggest the existence of a novel mechanism for the generation of antileukemic responses in CML cells, involving upregulation of SESN3 expression.

  19. HUMAN NK CELLS: FROM SURFACE RECEPTORS TO THE THERAPY OF LEUKEMIAS AND SOLID TUMORS

    Directory of Open Access Journals (Sweden)

    LORENZO eMORETTA

    2014-03-01

    Full Text Available Natural Killer (NK cells are major effector cells of the innate immunity. The discovery, over two decades ago, of MHC-class I specific NK receptors and subsequently of activating receptors, recognizing ligands expressed by tumor or virus-infected cells, paved the way to our understanding of the mechanisms of selective recognition and killing of tumor cells. Although NK cells can efficiently kill tumor cells of different histotypes in vitro, their activity may be limited in vivo by their inefficient trafficking to tumor lesions and by the inhibition of their function induced by tumor cells themselves and by the tumor microenvironment. On the other hand, the important role of NK cells has been clearly demonstrated in the therapy of high risk leukemias in the haploidentical hematopoietic cell (HSC transplantation setting. NK cells derived from donor HSC kill leukemic cells residual after the conditioning regimen, thus preventing leukemia relapses. In addition, they also kill residual dendritic cells and T lymphocytes, thus preventing both GvHD and graft rejection.

  20. Single cell analysis of normal and leukemic hematopoiesis.

    Science.gov (United States)

    Povinelli, Benjamin J; Rodriguez-Meira, Alba; Mead, Adam J

    2018-02-01

    The hematopoietic system is well established as a paradigm for the study of cellular hierarchies, their disruption in disease and therapeutic use in regenerative medicine. Traditional approaches to study hematopoiesis involve purification of cell populations based on a small number of surface markers. However, such population-based analysis obscures underlying heterogeneity contained within any phenotypically defined cell population. This heterogeneity can only be resolved through single cell analysis. Recent advances in single cell techniques allow analysis of the genome, transcriptome, epigenome and proteome in single cells at an unprecedented scale. The application of these new single cell methods to investigate the hematopoietic system has led to paradigm shifts in our understanding of cellular heterogeneity in hematopoiesis and how this is disrupted in disease. In this review, we summarize how single cell techniques have been applied to the analysis of hematopoietic stem/progenitor cells in normal and malignant hematopoiesis, with a particular focus on recent advances in single-cell genomics, including how these might be utilized for clinical application. Copyright © 2017. Published by Elsevier Ltd.

  1. Comparative effect of two pan-class I PI3K inhibitors used as anticancer drugs on human T cell function.

    Science.gov (United States)

    Blanco, Belén; Herrero-Sánchez, Carmen; Rodríguez-Serrano, Concepción; Sánchez-Barba, Mercedes; Del Cañizo, María Consuelo

    2015-09-01

    The phosphatidylinositol 3-kinase (PI3K) pathway is commonly deregulated in cancer and, thus, PI3K has been recognized as an attractive molecular target for novel anti-cancer therapies. However, the effect of PI3K inhibitors on T-cell function, a key component of antitumor immunity, has been scantly explored. The objective of this study was to investigate the effect on human T-cell activation of two PI3K inhibitors currently being tested in clinical trials: PX-866 and BKM120. Their activity against a leukemic T cell line was also assessed. For that purpose, Jurkat cells or anti-CD3/anti-CD28 stimulated human peripheral blood mononuclear cells were cultured in the presence of different concentrations of PX-866 or BKM120 and their effect on T-cell proliferation, apoptosis, expression of activation markers and cytokine secretion was analyzed by flow cytometry. In addition, Akt and Erk phosphorylation was analyzed by Western blotting. Both PX-866 and BKM120 decreased viability of Jurkat cells and blocked cell cycle progression. Regarding primary T cells, both compounds similarly inhibited expression of activation markers and cytokine secretion, although they did not induce apoptosis of stimulated T cells. Interestingly, we found differences in their ability to block T-cell proliferation and IL-2 secretion, exerting BKM120 a more potent inhibition. These disparate effects could be related to differences observed in PI3K/Akt and RAS/MEK/ERK signaling between PX-866 and BKM120 treated cells. Our results suggest that, when selecting a PI3K inhibitor for cancer therapy, immunosuppressive characteristics should be taken into account in order to minimize detrimental effects on immune function. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Are there unexploited possibilities for the therapeutic use of radioactive and stable isotopically labeled DNA precursors and extracorporeal irradiation of the blood in treatment of leukemia

    International Nuclear Information System (INIS)

    Cronkite, E.P.; Fairchild, R.G.; Miller, M.E.

    1983-01-01

    The radiobiology of tritium and iodine-125 is reviewed. The killing of cells and apparent beneficial effect of tritiated thymidine in human leukemia are described. The reasons for considering the use of tritiated thymidine and/or 125 I deoxyuridine to attack leukemic cells in sanctuaries are discussed. Photon activation therapy as a method to improve effectiveness of extracorporeal irradiation of the blood is presented showing that one can in principle substantially increase the radiation dose to the leukemic cells and reduce the dose to red cells in transit through the irradiator. (orig.)

  3. Predicting radiation effects on the development of leukemic stem cells based on studies of leukemias induced by high- and low-dose-rate radiation

    International Nuclear Information System (INIS)

    Hirouchi, Tokuhisa

    2012-01-01

    One of the most important causes of radiation-induced cancers, particularly leukemia, is gene mutations resulting from single and double strand breaks in the DNA. Tanaka et al. (2003) reported life shortening in specific pathogen free male and female B6C3F1 mice continuously exposed to γ rays at a low dose rate of 20 mGy/22 h/d for 400 days from 8 weeks of age. Early death due to cancer, mostly malignant lymphomas, was observed in both sexes. A significant increase in the incidence of myeloid leukemia, resulting in early death, was also reported in males. It is expected however, that at 20 mGy/22 h/d, which is equivalent to a dose of 15 μGy/min, DNA strand breaks induced in these cells are repaired soon after they occur. Murine leukemias induced by high-dose-rate radiation were also found in males, and 80% of the mice with leukemia had hemizygous deletions in chromosome 2 around the PU.1 gene and they appeared to be derived from DNA strand breaks. Majority of these leukemia showing hemizygous deletions in chromosome 2 revealed point mutations in the remaining alleles resulting in PU.1 inactivation, which was reported to be related to leukemogenesis. These point mutations are assumed to be independent of DNA strand breaks that occur immediately after irradiation, as they appear at later time after irradiation. This review discusses the effect of radiation-induced DNA strand breaks and also mutagenesis induced independently of DNA strand breaks in hematopoietic cells contributing to the development of the first leukemic stem cell. (author)

  4. A study on stability and medical implications for a complex delay model for CML with cell competition and treatment.

    Science.gov (United States)

    Rădulescu, I R; Cândea, D; Halanay, A

    2014-12-21

    We study a mathematical model describing the dynamics of leukemic and normal cell populations (stem-like and differentiated) in chronic myeloid leukemia (CML). This model is a system of four delay differential equations incorporating three types of cell division. The competition between normal and leukemic stem cell populations for the common microenvironment is taken into consideration. The stability of one steady state is investigated. The results are discussed via their medical interpretation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Experimental studies on the mechanism of leukemogenesis following the hemopoietic stem cell kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Bessho, Masami; Hirashima, Kunitake (National Inst. of Radiological Sciences, Chiba (Japan))

    1982-12-01

    The mechanism of radiation-induced myeloid leukemogenesis was studied experimentally following the hemopoietic stem cell kinetics. Pluripotent stem cells (CFU-S) regarded as target cells to Friend virus (FV) were highly susceptible to leukemic cell transformation by FV during the regeneration period after irradiation. Experimental studies using RFM mice revealed that (1) the period of leukemic transformation closely corresponded to the prolonged suppressive period of CFU-C after irradiation, when significantly increased fraction of CFU-C is in S-phase, (2) the leukemic cell transformation after irradiation occurred earlier and more frequently than the overt leukemia, (3) some unknown host factors except cellular immunity played an important role in the establishment of overt leukemia, (4) lipopolysaccharide administrated after irradiation increased the incidence of myeloid leukemia whereas urethane decreased it. Another experimental systems using C3H/He mice bearing CSF-producing tumor revealed that the incidence of myeloid leukemia after a low-dose irradiation increased when CFU-S and CFU-C were proliferating and differentiating actively by the stimulus of CSF produced by the tumor. The mechanism of this phenomenon can be regarded as the activation of leukemia virus in irradiated bodies.

  6. T cell clones which share T cell receptor epitopes differ in phenotype, function and specificity

    NARCIS (Netherlands)

    Yssel, H.; Blanchard, D.; Boylston, A.; de Vries, J. E.; Spits, H.

    1986-01-01

    Recently, we described a monoclonal antibody (3D6) that reacts with the T cell receptor (Ti) of the T leukemic cell line HPB-ALL and that cross-reacts with 2-10% of the T cells of normal healthy individuals. In this study we report the establishment of T cell clones that are 3D6+ but that differ in

  7. A 7 YEAR-7-MONTH OLD BOY WITH LEUKEMIC RETINOPATHY

    Directory of Open Access Journals (Sweden)

    Ni Made Rini Suari

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Ocular problems in patient with leukemia which are called leukemic retinopathy and subhyaloid hemorrhage is one of its feature. Subhyaloid hemorrhage in children with acute lymphoblastic leukemia (ALL is rarely happened. We reported a boy 7 year 7 month old, complained sudden blurred vision on his both eyes and diagnosed with acute lymphoblastic leukemia. When patient had complained his vision, result of routine hematology showed anemia, thrombocytopenia, and leukocytosis. Treatment of leukemic retinopathy in this patient was supportive and causal therapy with transfusion of thrombocyte concentrate, hydration for leukocytosis, giving chemotherapy intrathecal methotrexate and systemic (vincristine, daunorubicin, L-asparginase. We found gradually undergone resolution of subhyaloid hemorrhages, visible flame shaped thin, and his vision recovered nearly completely to 6/6 OD and 6/20 OS /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  8. Cyanobacteria from Terrestrial and Marine Sources Contain Apoptogens Able to Overcome Chemoresistance in Acute Myeloid Leukemia Cells

    Science.gov (United States)

    Liu, Liwei; Herfindal, Lars; Jokela, Jouni; Shishido, Tania Keiko; Wahlsten, Matti; Døskeland, Stein Ove; Sivonen, Kaarina

    2014-01-01

    In this study, we investigated forty cyanobacterial isolates from biofilms, gastropods, brackish water and symbiotic lichen habitats. Their aqueous and organic extracts were used to screen for apoptosis-inducing activity against acute myeloid leukemia cells. A total of 28 extracts showed cytotoxicity against rat acute myeloid leukemia (IPC-81) cells. The design of the screen made it possible to eliminate known toxins, such as microcystins and nodularin, or known metabolites with anti-leukemic activity, such as adenosine and its analogs. A cytotoxicity test on human embryonic kidney (HEK293T) fibroblasts indicated that 21 of the 28 extracts containing anti-acute myeloid leukemia (AML) activity showed selectivity in favor of leukemia cells. Extracts L26-O and L30-O were able to partly overcome the chemotherapy resistance induced by the oncogenic protein Bcl-2, whereas extract L1-O overcame protection from the deletion of the tumor suppressor protein p53. In conclusion, cyanobacteria are a prolific resource for anti-leukemia compounds that have potential for pharmaceutical applications. Based on the variety of cellular responses, we also conclude that the different anti-leukemic compounds in the cyanobacterial extracts target different elements of the death machinery of mammalian cells. PMID:24705501

  9. Cyanobacteria from Terrestrial and Marine Sources Contain Apoptogens Able to Overcome Chemoresistance in Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Liwei Liu

    2014-04-01

    Full Text Available In this study, we investigated forty cyanobacterial isolates from biofilms, gastropods, brackish water and symbiotic lichen habitats. Their aqueous and organic extracts were used to screen for apoptosis-inducing activity against acute myeloid leukemia cells. A total of 28 extracts showed cytotoxicity against rat acute myeloid leukemia (IPC-81 cells. The design of the screen made it possible to eliminate known toxins, such as microcystins and nodularin, or known metabolites with anti-leukemic activity, such as adenosine and its analogs. A cytotoxicity test on human embryonic kidney (HEK293T fibroblasts indicated that 21 of the 28 extracts containing anti-acute myeloid leukemia (AML activity showed selectivity in favor of leukemia cells. Extracts L26-O and L30-O were able to partly overcome the chemotherapy resistance induced by the oncogenic protein Bcl-2, whereas extract L1-O overcame protection from the deletion of the tumor suppressor protein p53. In conclusion, cyanobacteria are a prolific resource for anti-leukemia compounds that have potential for pharmaceutical applications. Based on the variety of cellular responses, we also conclude that the different anti-leukemic compounds in the cyanobacterial extracts target different elements of the death machinery of mammalian cells.

  10. Halofuginone has anti-proliferative effects in acute promyelocytic leukemia by modulating the transforming growth factor beta signaling pathway.

    Directory of Open Access Journals (Sweden)

    Lorena L de Figueiredo-Pontes

    Full Text Available Promyelocytic leukemia-retinoic acid receptor alpha (PML-RARα expression in acute promyelocytic leukemia (APL impairs transforming growth factor beta (TGFβ signaling, leading to cell growth advantage. Halofuginone (HF, a low-molecular-weight alkaloid that modulates TGFβ signaling, was used to treat APL cell lines and non-obese diabetic/severe combined immunodeficiency (NOD/SCID mice subjected to transplantation with leukemic cells from human chorionic gonadotrophin-PML-RARα transgenic mice (TG. Cell cycle analysis using incorporated bromodeoxyuridine and 7-amino-actinomycin D showed that, in NB4 and NB4-R2 APL cell lines, HF inhibited cellular proliferation (P<0.001 and induced apoptosis (P = 0.002 after a 24-hour incubation. Addition of TGFβ revealed that NB4 cells were resistant to its growth-suppressive effects and that HF induced these effects in the presence or absence of the cytokine. Cell growth inhibition was associated with up-regulation of TGFβ target genes involved in cell cycle regulation (TGFB, TGFBRI, SMAD3, p15, and p21 and down-regulation of MYC. Additionally, TGFβ protein levels were decreased in leukemic TG animals and HF in vivo could restore TGFβ values to normal. To test the in vivo anti-leukemic activity of HF, we transplanted NOD/SCID mice with TG leukemic cells and treated them with HF for 21 days. HF induced partial hematological remission in the peripheral blood, bone marrow, and spleen. Together, these results suggest that HF has anti-proliferative and anti-leukemic effects by reversing the TGFβ blockade in APL. Since loss of the TGFβ response in leukemic cells may be an important second oncogenic hit, modulation of TGFβ signaling may be of therapeutic interest.

  11. Role of the B-cell receptor in chronic lymphocytic leukemia: where do we stand?

    Science.gov (United States)

    Fais, Franco; Bruno, Silvia; Ghiotto, Fabio

    2010-01-01

    The past 15 years have witnessed an enormous effort in studying B-cell Chronic Lymphocytic Leukemia. A great number of researches brought significant novel information and a better understanding of the natural history of this disease. This mini review will focus on the studies related to the Immunoglobulin variable (IgV) genes rearrangements that compose the B-cell receptor (BcR) of the leukemic clones. These studies have defined a role for the antigen(s) in the paths that lead to leukemic clone generation/expansion and underscore the informative value represented by BcR analyses.

  12. Intramuscular leukemic relapse: clinical signs and imaging findings. A multicentric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Surov, Alexey [Martin Luther University Halle-Wittenberg, Department of Radiology, Halle (Germany); University of Leipzig, Department of Diagnostic and Interventional Radiology, Leipzig (Germany); Kiratli, Hayyam [Hacettepe University School of Medicine, Department of Ophthalmology, Ankara (Turkey); Im, Soo Ah [Seoul St. Mary' s Hospital, Department of Radiology, Seoul (Korea, Republic of); Manabe, Yasuhiro [National Hospital Organization Okayama Medical Center, Department of Neurology, Okayama (Japan); O' Neill, Alibhe; Shinagare, Atul B. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Spielmann, Rolf Peter [Martin Luther University Halle-Wittenberg, Department of Radiology, Halle (Germany)

    2014-09-26

    Leukemia is a group of malignant diseases involving peripheral blood and bone marrow. Extramedullary tumor manifestation in leukemia can also occur. They more often involve lymph nodes, skin, and bones. Intramuscular leukemic relapse (ILR) is very unusual. The aim of this analysis was to summarize the reported data regarding clinical signs and radiological features of ILR. The PubMed database was searched for publications related to ILR. After an analysis of all identified articles, 20 publications matched the inclusion criteria. The authors of the 20 publications were contacted and provided imaging of their cases for review. The following were recorded: age, gender, primary diagnosis, clinical signs, pattern, localization and size of the intramuscular leukemic relapse. Images of 16 patients were provided [8 computer tomographic (CT) images and 15 magnetic resonance images, MRI]. Furthermore, one patient with ILR was identified in our institutional database. Therefore, images of 17 patients were available for further analysis. Overall, 32 cases with ILR were included in the analysis. In most cases acute myeloid leukemia was diagnosed. Most ILRs were localized in the extremities (44 %) and in the extraocular muscles (44 %). Clinically, ILR manifested as local pain, swelling and muscle weakness. Radiologically, ILR presented most frequently with diffuse muscle infiltration. On postcontrast CT/MRI, most lesions demonstrated homogeneous enhancement. ILRs were hypo-/isointense on T1w and hyperintense on T2w images. ILR manifests commonly as focal pain, swelling and muscle weakness. ILR predominantly involved the extraocular musculature and the extremities. Radiologically, diffuse muscle infiltration was the most common imaging finding. (orig.)

  13. Search for infective mammalian type-C virus-related genes in the DNA of human sarcomas and leukemias.

    Science.gov (United States)

    Nicolson, M O; Gilden, R V; Charman, H; Rice, N; Heberling, R; McAllister, R M

    1978-06-15

    DNA was extracted from two human sarcoma cell lines, TE-32 and TE-418, and the leukemic cells from five children with acute myelocytic leukemia, three children with acute lymphocytic leukemia and four adults with acute myelocytic leukemia. The DNAs, assayed for infectivity by transfection techniques, induced no measurable virus by methods which would detect known mammalian C-type antigens or RNA-directed DNA polymerase in TE-32, D-17 dog cells and other indicator cells, nor did they recombine with or rescue endogenous human or exogenous murine or baboon type-C virus. Model systems used as controls were human sarcoma cells, TE-32 and HT-1080, and human lymphoma cells TE-543, experimentally infected with KiMuLV, GaLV or baboon type-C virus, all of which released infectious virus and whose DNAs were infectious for TE-32 and D-17 dog cells. Other model systems included two baboon placentas and one embryonic cell strain spontaneously releasing infectious endogenous baboon virus and yielding DNAs infectious for D-17 dog cells but not for TE-32 cells. Four other baboon embryonic tissues and two embryonic cell strains, releasing either low levels of virus or no virus, did not yield infectious DNA.

  14. Metastasis and growth of friend tumor cells in irradiated syngeneic hosts

    International Nuclear Information System (INIS)

    Matioli, G.

    1974-01-01

    Friend tumor cells (FTC) have been studied by growing them in lethally irradiated syngeneic mice. After establishing the FTC dilution factor (delta), extinction factor (Q), and the optimal time for colony counts, the FTC kinetic was analyzed by the recovery curve method. It was found that FTC growth is different from that experienced by normal or leukemic Friend stem cells when tested by the same in vivo assay. The most interesting differences were the high metastatic activity, the lack of differentiation, the deterministic growth, and the independence from the spleen microenvironment experienced by the FTC, in contrast with the normal and leukemic stem cells. In addition, the estimate of the critical size the FTC colony has to reach before releasing the first metastatic cells is presented. (U.S.)

  15. Transglutaminase 2 expression in acute myeloid leukemia: Association with adhesion molecule expression and leukemic blast motility

    Science.gov (United States)

    Meyer, Stefan; Ravandi-Kashani, Farhad; Borthakur, Gautam; Coombes, Kevin R.; Zhang, Nianxiang; Kornblau, Steven

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogenous disease with differential oncogene association, outcome and treatment regimens. Treatment strategies for AML have improved outcome but despite increased molecular biological information AML is still associated with poor prognosis. Proteomic analysis on the effects of a range of leukemogenic oncogenes showed that the protein transglutaminase 2 (TG2) is expressed at greater levels as a consequence of oncogenic transformation. Further analysis of this observation was performed with 511 AML samples using reverse phase proteomic arrays, demonstrating that TG2 expression was higher at relapse than diagnosis in many cases. In addition elevated TG2 expression correlated with increased expression of numerous adhesion proteins and many apoptosis regulating proteins, two processes related to leukemogenesis. TG2 has previously been linked to drug resistance in cancer and given the negative correlation between TG2 levels and peripheral blasts observed increased TG2 levels may lead to the protection of the leukemic stem cell due to increased adhesion/reduced motility. TG2 may therefore form part of a network of proteins that define poor outcome in AML patients and potentially offer a target to sensitize AML stem cells to drug treatment. PMID:23576428

  16. The Role of Mitochondrial DNA Damage and Repair in the Resistance of BCR/ABL-Expressing Cells to Tyrosine Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Janusz Blasiak

    2013-08-01

    Full Text Available Chronic myeloid leukemia (CML is a hematological malignancy that arises from the transformation of stem hematopoietic cells by the fusion oncogene BCR/ABL and subsequent clonal expansion of BCR/ABL-positive progenitor leukemic cells. The BCR/ABL protein displays a constitutively increased tyrosine kinase activity that alters many regulatory pathways, leading to uncontrolled growth, impaired differentiation and increased resistance to apoptosis featured by leukemic cells. Current CML therapy is based on tyrosine kinase inhibitors (TKIs, primarily imatinib, which induce apoptosis in leukemic cells. However, some patients show primary resistance to TKIs while others develop it in the course of therapy. In both cases, resistance may be underlined by perturbations in apoptotic signaling in leukemic cells. As mitochondria may play an important role in such signaling, alteration in mitochondrial metabolism may change resistance to pro-apoptotic action of TKIs in BCR/ABL-positive cells. Because BCR/ABL may induce reactive oxygen species and unfaithful DNA repair, it may affect the stability of mitochondrial DNA, influencing mitochondrial apoptotic signaling and in this way change the sensitivity of CML cells to TKIs. Moreover, cancer cells, including BCR/ABL-positive cells, show an increased level of glucose metabolism, resulting from the shift from oxidative phosphorylation to glycolysis to supply ATP for extensive proliferation. Enhanced level of glycolysis may be associated with TKI resistance and requires change in the expression of several genes regulated mostly by hypoxia-inducible factor-1α, HIF-1α. Such regulation may be associated with the impaired mitochondrial respiratory system in CML cells. In summary, mitochondria and mitochondria-associated molecules and pathways may be attractive targets to overcome TKI resistance in CML.

  17. Using Proteomics to 1) Identify the Bone Marrow Homing Receptors Expressed on Human Hematopoietic Stem Cells and 2) Elucidate Critical Signaling Pathways Responsible for the Blockage of Hematopoietic Differentiation in Leukemia

    KAUST Repository

    Chin, Chee J.

    2011-05-22

    Successful hematopoiesis requires the trafficking of hematopoietic stem/progenitor cells (HSPCs) to their bone marrow (BM) niche, where they can differentiate to produce all blood lineages. Leukemia arises when there is a blockage of differentiation and uncontrolled proliferation in the hematopoietic cells during their development. To refine therapies for leukemia, this study sought to improve the homing of healthy donor HSPCs for better transplantation and to find new candidates for differentiating and blocking proliferation in leukemic cells. Characterizing the molecular effectors mediating cell migration forms the basis for improving clinical transplantation of HSPCs. E-selectin/ligand interactions play a critical role in the homing of HSPCs to the BM, however, the identity of E-selectin ligands remains elusive. We aimed to use mass spectrometry (MS) to fully analyze the E-selectin ligands expressed on HSPCs. Immunoprecipitation studies coupled with MS confirmed the expression of three known E-selectin ligands, the hematopoietic cell E-/L-selectin ligand (HCELL), P-selectin glycoprotein ligand-1 (PSGL-1) and CD43, and revealed the presence of many interesting candidates on HSPCs-like cell line and on primary human BM CD34+ cells. The MS dataset represents a rich resource for further characterization of E-selectin ligands, which will lead to improvement of HSPCs transplantation. 4 Understanding the critical pathways underlying the initiation and maintenance of leukemia plays a key role in treating acute myeloid leukemia (AML). Ligation of the glycoprotein, CD44, using monoclonal antibodies or its natural ligand, hyaluronic acid, drives the differentiation of immature leukemic cells towards mature terminally differentiated cells, inhibits their proliferation and in some case induces their apoptosis. The aim of this study is to characterize the phosphoproteome of AML cells in response to CD44-induced differentiation. This will afford novel insights into the

  18. Coamplification of human acetylcholinesterase and butyrylcholinesterase genes in blood cells: Correlation with various leukemias and abnormal megakaryocytopoiesis

    International Nuclear Information System (INIS)

    Lapidot-Lifson, Y.; Prody, C.A.; Ginzberg, D.; Meytes, D.; Zakut, H.; Soreq, H.

    1989-01-01

    To study the yet unknown role of the ubiquitous family of cholinesterases (ChoEases) in developing blood cells, the recently isolated cDNAs encoding human acetylcholinesterase and butyrylcholinesterase were used in blot hybridization with peripheral blood DNA from various leukemic patients. Hybridization signals and modified restriction patterns were observed with both cDNA probes in 4 of the 16 leukemia DNA preparations examined. These reflected the amplification of the corresponding AcCho-Ease and BtChoEase genes (ACHE and CHE) and alteration in their structure. Parallel analysis of 30 control samples revealed nonpolymorphic, much weaker hybridization signals for each of the probes. In view of previous reports on the effect of acetylcholine analogs and ChoEase inhibitors in the induction of megakaryocytopoiesis and production of platelets in the mouse. The authors further searched for such phenomena in nonleukemic patients with platelet production disorders. Amplifications of both ACHE and CHE genes were found in 2 of the 4 patients so far examined. Pronounced coamplification of these two related but distinct genes in correlation with pathological production of blood cells suggests a functional role for members of the ChoEase family in megakaryocytopoiesis and raises the question whether the coamplification of these genes could be casually involved in the etiology of hemocytopoietic disorders

  19. Assembly of the T-cell antigen receptor. Participation of the CD3 omega chain

    DEFF Research Database (Denmark)

    Neisig, A; Vangsted, A; Zeuthen, J

    1993-01-01

    The human TCR is composed of the Ti alpha beta heterodimer in association with the CD3 chains CD3 gamma delta epsilon zeta 2. Another chain, referred to as CD3 omega, has recently been described in T cells. CD3 omega is an intracellular protein transiently associated with the CD3 complex during...... the assembly of the TCR in the endoplasmic reticulum (ER) and it is not expressed on the cell surface. The function of CD3 omega is unknown but it has been suggested that it plays an important role in the assembly of the TCR. We have studied the possible function of CD3 omega in the human leukemic T-cell line...... Jurkat and different variants of this cell line. Cells were metabolically labeled, subjected to lysis, immunoprecipitated, and analyzed by SDS-PAGE. The results indicate that: 1) CD3 omega associates primarily with the CD3 delta epsilon complex; 2) CD3 omega is not associated with single Ti alpha or Ti...

  20. STAT3-mediated constitutive expression of SOCS-3 in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Brender, C; Nielsen, M; Kaltoft, K

    2001-01-01

    ) obtained from affected skin from a patient with mycosis fungoides (MF) and from peripheral blood from a patient with Sezary syndrome (SS). In contrast, constitutive SOCS-3 expression is not found in the leukemic Jurkat T-cell line, the MOLT-4 acute lymphoblastic leukemia cell line, and the monocytic......, it has been hypothesized that an aberrant SOCS expression plays a role in neoplastic transformation. This study reports on a constitutive SOCS-3 expression in cutaneous T-cell lymphoma (CTCL) cell lines. SOCS-3 protein is constitutively expressed in tumor cell lines (but not in nonmalignant T cells...... leukemic cell line U937. Expression of SOCS-3 coincides with a constitutive activation of STAT3 in CTCL tumor cells, and stable transfection of CTCL tumor cells with a dominant negative STAT3 strongly inhibits SOCS-3 expression, whereas transfection with wild-type STAT3 does not. Moreover, the reduced SOCS...

  1. Synthesis and evaluation of chloramphenicol homodimers: molecular target, antimicrobial activity, and toxicity against human cells.

    Directory of Open Access Journals (Sweden)

    Ourania N Kostopoulou

    Full Text Available As fight against antibiotic resistance must be strengthened, improving old drugs that have fallen in reduced clinical use because of toxic side effects and/or frequently reported resistance, like chloramphenicol (CAM, is of special interest. Chloramphenicol (CAM, a prototypical wide-spectrum antibiotic has been shown to obstruct protein synthesis via binding to the bacterial ribosome. In this study we sought to identify features intensifying the bacteriostatic action of CAM. Accordingly, we synthesized a series of CAM-dimers with various linker lengths and functionalities and compared their efficiency in inhibiting peptide-bond formation in an Escherichia coli cell-free system. Several CAM-dimers exhibited higher activity, when compared to CAM. The most potent of them, compound 5, containing two CAM bases conjugated via a dicarboxyl aromatic linker of six successive carbon-bonds, was found to simultaneously bind both the ribosomal catalytic center and the exit-tunnel, thus revealing a second, kinetically cryptic binding site for CAM. Compared to CAM, compound 5 exhibited comparable antibacterial activity against MRSA or wild-type strains of Staphylococcus aureus, Enterococcus faecium and E. coli, but intriguingly superior activity against some CAM-resistant E. coli and Pseudomonas aeruginosa strains. Furthermore, it was almost twice as active in inhibiting the growth of T-leukemic cells, without affecting the viability of normal human lymphocytes. The observed effects were rationalized by footprinting tests, crosslinking analysis, and MD-simulations.

  2. The CNGRC-GG-D(KLAKLAK)2 peptide induces a caspase-independent, Ca2+-dependent death in human leukemic myeloid cells by targeting surface aminopeptidase N/CD13

    OpenAIRE

    Bouchet, Sandrine; Tang, Ruoping; Fava, Fanny; Legrand, Ollivier; Bauvois, Brigitte

    2015-01-01

    The CD13 antigen's binding site for the Asn-Gly-Arg (NGR) motif enables NGR-containing chemotherapeutic drugs to be delivered to CD13-positive tumours. Human CD13-positive acute myeloid leukemia (AML) cells proliferate abnormally and escape death. Here, we show that the CNGRC-GG-D(KLAKLAK)2 peptide induces death in AML cell lines (U937, THP-1, NB4, HL-60) and primary blood cells from AML patients. Cell death was characterized as a caspase-independent mechanism, without DNA fragmentation, but ...

  3. Bortezomib as a new therapeutic approach for blastic plasmacytoid dendritic cell neoplasm.

    Science.gov (United States)

    Philippe, Laure; Ceroi, Adam; Bôle-Richard, Elodie; Jenvrin, Alizée; Biichle, Sabeha; Perrin, Sophie; Limat, Samuel; Bonnefoy, Francis; Deconinck, Eric; Saas, Philippe; Garnache-Ottou, Francine; Angelot-Delettre, Fanny

    2017-11-01

    Blastic plasmacytoid dendritic cell neoplasm is an aggressive hematologic malignancy with a poor prognosis. No consensus regarding optimal treatment modalities is currently available. Targeting the nuclear factor-kappa B pathway is considered a promising approach since blastic plasmacytoid dendritic cell neoplasm has been reported to exhibit constitutive activation of this pathway. Moreover, nuclear factor-kappa B inhibition in blastic plasmacytoid dendritic cell neoplasm cell lines, achieved using either an experimental specific inhibitor JSH23 or the clinical drug bortezomib, interferes in vitro with leukemic cell proliferation and survival. Here we extended these data by showing that primary blastic plasmacytoid dendritic cell neoplasm cells from seven patients were sensitive to bortezomib-induced cell death. We confirmed that bortezomib efficiently inhibits the phosphorylation of the RelA nuclear factor-kappa B subunit in blastic plasmacytoid dendritic cell neoplasm cell lines and primary cells from patients in vitro and in vivo in a mouse model. We then demonstrated that bortezomib can be associated with other drugs used in different chemotherapy regimens to improve its impact on leukemic cell death. Indeed, when primary blastic plasmacytoid dendritic cell neoplasm cells from a patient were grafted into mice, bortezomib treatment significantly increased the animals' survival, and was associated with a significant decrease of circulating leukemic cells and RelA nuclear factor-kappa B subunit expression. Overall, our results provide a rationale for the use of bortezomib in combination with other chemotherapy for the treatment of patients with blastic plasmacytoid dendritic cell neoplasm. Based on our data, a prospective clinical trial combining proteasome inhibitor with classical drugs could be envisaged. Copyright© Ferrata Storti Foundation.

  4. In vitro anti-leukemic activity and chemical transformation of the 5'-chloro-5'-deoxy derivative of cyclo-cytidine

    International Nuclear Information System (INIS)

    Stankovicova, M.; Bachrata, M.; Sveda, P.; Rauko, P.; Blesova, P.

    1995-01-01

    Hydrochloride of 5'-chloro-5'-deoxy-cytocytidine (Cl-cC) is an analogue of hydrochloride (cC), a pro-drug of the compound with of the compound with the strong anti-leukemic activity arabinosylcytosine (araC). This paper is devoted to the study of its cytotoxic activity in vitro and to the effect of acid alkaline conditions and temperature on its stability. Cl-cC inhibits not only the growth of L1210 leukemia cells in vitro and the DNA synthesis (IC 50 = 0.09 μmol/dm 3 ) but, at the same time, it has a weak effect on RNA synthesis (IC 50 > 250 μmol/dm 3 ) and no effect on proteosynthesis. In alkaline conditions Cl-cC is transformed to 5'-chloro-araC and 2',5'-anhydro-araC but is more stable in acid solutions. (author)

  5. Inhibition of c-Myc overcomes cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation.

    Directory of Open Access Journals (Sweden)

    Xiao-Na Pan

    Full Text Available Nowadays, drug resistance still represents a major obstacle to successful acute myeloid leukemia (AML treatment and the underlying mechanism is not fully elucidated. Here, we found that high expression of c-Myc was one of the cytogenetic characteristics in the drug-resistant leukemic cells. c-Myc over-expression in leukemic cells induced resistance to chemotherapeutic drugs, enhanced colony formation capacity and inhibited cell differentiation induced by all-trans retinoic acid (ATRA. Meanwhile, inhibition of c-Myc by shRNA or specific c-Myc inhibitor 10058-F4 rescued the sensitivity to cytotoxic drugs, restrained the colony formation ability and promoted differentiation. RT-PCR and western blotting analysis showed that down-regulation of C/EBPβ contributed to the poor differentiation state of leukemic cells induced by c-Myc over-expression. Importantly, over-expression of C/EBPβ could reverse c-Myc induced drug resistance. In primary AML cells, the c-Myc expression was negatively correlated with C/EBPβ. 10058-F4, displayed anti-proliferative activity and increased cellular differentiation with up-regulation of C/EBPβ in primary AML cells. Thus, our study indicated that c-Myc could be a novel target to overcome drug resistance, providing a new approach in AML therapy.

  6. Metabolism modifications and apoptosis induction after Cellfood™ administration to leukemia cell lines.

    Science.gov (United States)

    Catalani, Simona; Carbonaro, Valentina; Palma, Francesco; Arshakyan, Marselina; Galati, Rossella; Nuvoli, Barbara; Battistelli, Serafina; Canestrari, Franco; Benedetti, Serena

    2013-09-09

    Cellfood™ (CF) is a nutritional supplement containing deuterium sulphate, minerals, amino acids, and enzymes, with well documented antioxidant properties. Its organic and inorganic components are extracted from the red algae Lithothamnion calcareum, whose mineral extract has shown growth-inhibitory effect both on in vitro and in vivo models. The purpose of this study was to evaluate the antiproliferative effects of CF on leukemic cells. In fact, according to its capacity to modulate O2 availability and to improve mitochondrial respiratory metabolism, we wondered if CF could affect cancer cell metabolism making cells susceptible to apoptosis. Three leukemic cell lines, Jurkat, U937, and K562, were treated with CF 5 μl/ml up to 72 hours. Cell viability, apoptosis (i.e. caspase-3 activity and DNA fragmentation), hypoxia inducible factor 1 alpha (HIF-1α) concentration, glucose transporter 1 (GLUT-1) expression, lactate dehydrogenase (LDH) activity and lactate release in the culture medium were detected and compared with untreated cells. CF significantly inhibited leukemic cell viability by promoting cell apoptosis, as revealed by caspase-3 activation and DNA laddering. In particular, CF treated cells showed lower HIF-1α levels and lower GLUT-1 expression as compared to untreated cells. At the same time, CF was able to reduce LDH activity and, consequently, the amount of lactate released in the extracellular environment. We supplied evidence for an antiproliferative effect of CF on leukemia cell lines by inducing cell death through an apoptotic mechanism and by altering cancer cell metabolism through HIF-1α and GLUT-1 regulation. Thanks to its antioxidative and proapoptotic properties, CF might be a good candidate for cancer prevention.

  7. PU.1 silencing leads to terminal differentiation of erythroleukemia cells

    International Nuclear Information System (INIS)

    Atar, Orna; Levi, Ben-Zion

    2005-01-01

    The transcription factor PU.1 plays a central role in development and differentiation of hematopoietic cells. Evidence from PU.1 knockout mice indicates a pivotal role for PU.1 in myeloid lineage and B-lymphocyte development. In addition, PU.1 is a key player in the development of Friend erythroleukemia disease, which is characterized by proliferation and differentiation arrest of proerythrocytes. To study the role of PU.1 in erythroleukemia, we have used murine erythroleukemia cells, isolated from Friend virus-infected mice. Expression of PU.1 small interfering RNA in these cells led to significant inhibition of PU.1 levels. This was accompanied by inhibition of proliferation and restoration in the ability of the proerythroblastic cells to produce hemoglobin, i.e., reversion of the leukemic phenotype. The data suggest that overexpression of PU.1 gene is the immediate cause for maintaining the leukemic phenotype of the disease by retaining the self-renewal capacity of transformed erythroblastic cells and by blocking the terminal differentiation program towards erythrocytes

  8. The Human Cell Atlas.

    Science.gov (United States)

    Regev, Aviv; Teichmann, Sarah A; Lander, Eric S; Amit, Ido; Benoist, Christophe; Birney, Ewan; Bodenmiller, Bernd; Campbell, Peter; Carninci, Piero; Clatworthy, Menna; Clevers, Hans; Deplancke, Bart; Dunham, Ian; Eberwine, James; Eils, Roland; Enard, Wolfgang; Farmer, Andrew; Fugger, Lars; Göttgens, Berthold; Hacohen, Nir; Haniffa, Muzlifah; Hemberg, Martin; Kim, Seung; Klenerman, Paul; Kriegstein, Arnold; Lein, Ed; Linnarsson, Sten; Lundberg, Emma; Lundeberg, Joakim; Majumder, Partha; Marioni, John C; Merad, Miriam; Mhlanga, Musa; Nawijn, Martijn; Netea, Mihai; Nolan, Garry; Pe'er, Dana; Phillipakis, Anthony; Ponting, Chris P; Quake, Stephen; Reik, Wolf; Rozenblatt-Rosen, Orit; Sanes, Joshua; Satija, Rahul; Schumacher, Ton N; Shalek, Alex; Shapiro, Ehud; Sharma, Padmanee; Shin, Jay W; Stegle, Oliver; Stratton, Michael; Stubbington, Michael J T; Theis, Fabian J; Uhlen, Matthias; van Oudenaarden, Alexander; Wagner, Allon; Watt, Fiona; Weissman, Jonathan; Wold, Barbara; Xavier, Ramnik; Yosef, Nir

    2017-12-05

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.

  9. Effective control of acute myeloid leukaemia and acute lymphoblastic leukaemia progression by telomerase specific adoptive T-cell therapy.

    Science.gov (United States)

    Sandri, Sara; De Sanctis, Francesco; Lamolinara, Alessia; Boschi, Federico; Poffe, Ornella; Trovato, Rosalinda; Fiore, Alessandra; Sartori, Sara; Sbarbati, Andrea; Bondanza, Attilio; Cesaro, Simone; Krampera, Mauro; Scupoli, Maria T; Nishimura, Michael I; Iezzi, Manuela; Sartoris, Silvia; Bronte, Vincenzo; Ugel, Stefano

    2017-10-20

    Telomerase (TERT) is a ribonucleoprotein enzyme that preserves the molecular organization at the ends of eukaryotic chromosomes. Since TERT deregulation is a common step in leukaemia, treatments targeting telomerase might be useful for the therapy of hematologic malignancies. Despite a large spectrum of potential drugs, their bench-to-bedside translation is quite limited, with only a therapeutic vaccine in the clinic and a telomerase inhibitor at late stage of preclinical validation. We recently demonstrated that the adoptive transfer of T cell transduced with an HLA-A2-restricted T-cell receptor (TCR), which recognize human TERT with high avidity, controls human B-cell chronic lymphocytic leukaemia (B-CLL) progression without severe side-effects in humanized mice. In the present report, we show the ability of our approach to limit the progression of more aggressive leukemic pathologies, such as acute myeloid leukaemia (AML) and B-cell acute lymphoblastic leukaemia (B-ALL). Together, our findings demonstrate that TERT-based adoptive cell therapy is a concrete platform of T cell-mediated immunotherapy for leukaemia treatment.

  10. Low resolution structural X-ray studies of human FEZ1: a natively unfolded protein associated to the flower-like nuclei phenotype

    International Nuclear Information System (INIS)

    Lanza, Daniel Carlos Ferreira; Trindade, Daniel Maragno; Bressan, Gustavo Costa; Kobarg, Joerg

    2008-01-01

    The fasciculation and elongation protein Zeta1 (FEZ1) has been implicated in important functions in mammalian cells, ranging from molecular transport to transcriptional regulation. Theoretical predictions, circular dichroism spectroscopy and limiting proteolysis experiments all suggested that FEZ1 contains regions of low structural complexity and that it may belong to the growing family of natively unfolded proteins. We therefore performed Small Angle Scattering (SAXS) experiments which showed that FEZ1 is a dimer of elongated shape and that its conformation is mainly disordered. In parallel functional studies we observed that the overexpression of FEZ1 in human cells causes the so-called 'flower-like nuclei' phenotype, similar to what is observed in certain leukemic cells. Taken together, our results suggest that the FEZ1 dimer configuration may be critical to explain why its overexpression causes the formation of flower-like nuclei in human cells. (author)

  11. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation

    International Nuclear Information System (INIS)

    Yu, Lingling; Zhao, Yingmin; Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin; Gu, Jian; Yu, Duonan

    2016-01-01

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. - Highlights: • LPS alone in culture is required for the proliferation of murine myeloid tumor cells. • Bone marrow stromal cells as a feeder layer is also required for the proliferation of myeloid tumor cells. • However, the growth of myeloid tumor cells is inhibited when LPS and stromal cells are both available in culture. • Thus LPS can either facilitate or attenuate tumor growth through its direct effect or modulation of tumor microenvironment.

  12. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lingling [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Zhao, Yingmin [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin [Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Gu, Jian [Department of Hematology, Yangzhou University School of Clinical Medicine, Yangzhou 225001 (China); Yu, Duonan, E-mail: duonan@yahoo.com [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou 225001 (China); Institute of Comparative Medicine, Yangzhou University, Yangzhou 225001 (China); Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou 225001 (China)

    2016-06-10

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. - Highlights: • LPS alone in culture is required for the proliferation of murine myeloid tumor cells. • Bone marrow stromal cells as a feeder layer is also required for the proliferation of myeloid tumor cells. • However, the growth of myeloid tumor cells is inhibited when LPS and stromal cells are both available in culture. • Thus LPS can either facilitate or attenuate tumor growth through its direct effect or modulation of tumor microenvironment.

  13. A novel cell growth-promoting factor identified in a B cell leukemia cell line, BALL-1

    International Nuclear Information System (INIS)

    Dao, T.; Holan, V.; Minowada, J.

    1993-01-01

    A novel leukemia cell growth-promoting activity has been identified in the culture supernatant from a human B cell leukemia cell line, BALL-1. The supernatant from unstimulated cultures of the BALL-1 cells significantly promoted the growth of 16 out of 24 leukemia/lymphoma cell lines of different lineages (T, B and non-lymphoid) in a minimal concentration of fetal bovine serum (FBS), and 5 out of 12 cases of fresh leukemia cells in FBS-free medium. The growth-promoting sieve filtration and dialysis. The MW of the factor was less than 10 kDa. The growth-promoting activity was heat and acid stable and resistant to trypsin treatment. The factor isolated from the BALL-1 supernatant was distinct from known polypeptide growth factors with MW below 10 kDa, such as epidermal growth factor, transforming growth factor α, insulin-like growth factor I (IGF-I), IGF-II and insulin, as determine by specific antibodies and by cell-growth-promoting tests. The factor is the BALL-1 supernatant did not promote the proliferation of normal human fresh peripheral blood lymphocytes or mouse fibroblast cell line, BALB/C 3T3. In addition to the BALL-1 supernatant, a similar growth-promoting activity was found in the culture supernatant from 13 of 17 leukemia/lymphoma cell lines tested. The activity in these culture supernatant promoted the growth of leukemia/lymphoma cell lines in autocrine and/or paracrine fashions. These observations suggest that the low MW cell growth-promoting activity found in the BALL-1 culture supernatant is mediated by a novel factor which may be responsible for the clonal expansion of particular leukemic clones. (author)

  14. Identification of CD34+ and CD34− leukemia-initiating cells in MLL-rearranged human acute lymphoblastic leukemia

    Science.gov (United States)

    Aoki, Yuki; Watanabe, Takashi; Saito, Yoriko; Kuroki, Yoko; Hijikata, Atsushi; Takagi, Masatoshi; Tomizawa, Daisuke; Eguchi, Mariko; Eguchi-Ishimae, Minenori; Kaneko, Akiko; Ono, Rintaro; Sato, Kaori; Suzuki, Nahoko; Fujiki, Saera; Koh, Katsuyoshi; Ishii, Eiichi; Shultz, Leonard D.; Ohara, Osamu; Mizutani, Shuki

    2015-01-01

    Translocation of the mixed-lineage leukemia (MLL) gene with AF4, AF9, or ENL results in acute leukemia with both lymphoid and myeloid involvement. We characterized leukemia-initiating cells (LICs) in primary infant MLL-rearranged leukemia using a xenotransplantation model. In MLL-AF4 patients, CD34+CD38+CD19+ and CD34−CD19+ cells initiated leukemia, and in MLL-AF9 patients, CD34−CD19+ cells were LICs. In MLL-ENL patients, either CD34+ or CD34− cells were LICs, depending on the pattern of CD34 expression. In contrast, in patients with these MLL translocations, CD34+CD38−CD19−CD33− cells were enriched for normal hematopoietic stem cells (HSCs) with in vivo long-term multilineage hematopoietic repopulation capacity. Although LICs developed leukemic cells with clonal immunoglobulin heavy-chain (IGH) rearrangement in vivo, CD34+CD38−CD19−CD33− cells repopulated recipient bone marrow and spleen with B cells, showing broad polyclonal IGH rearrangement and recipient thymus with CD4+ single positive (SP), CD8+ SP, and CD4+CD8+ double-positive (DP) T cells. Global gene expression profiling revealed that CD9, CD32, and CD24 were over-represented in MLL-AF4, MLL-AF9, and MLL-ENL LICs compared with normal HSCs. In patient samples, these molecules were expressed in CD34+CD38+ and CD34− LICs but not in CD34+CD38−CD19−CD33− HSCs. Identification of LICs and LIC-specific molecules in primary human MLL-rearranged acute lymphoblastic leukemia may lead to improved therapeutic strategies for MLL-rearranged leukemia. PMID:25538041

  15. Catch me if you can: Leukemia Escape after CD19-Directed T Cell Immunotherapies

    Directory of Open Access Journals (Sweden)

    Marco Ruella

    2016-01-01

    Full Text Available Immunotherapy is the revolution in cancer treatment of this last decade. Among multiple approaches able to harness the power of the immune system against cancer, T cell based immunotherapies represent one of the most successful examples. In particular, biotechnological engineering of protein structures, like the T cell receptor or the immunoglobulins, allowed the generation of synthetic peptides like chimeric antigen receptors and bispecific antibodies that are able to redirect non-tumor specific T cells to recognize and kill leukemic cells. The anti-CD19/CD3 bispecific antibody blinatumomab and anti-CD19 chimeric antigen receptor T cells (CART19 have produced deep responses in patients with relapsed and refractory B-cell acute leukemias. However, although the majority of these patients responds to anti-CD19 immunotherapy, a subset of them still relapses. Interestingly, a novel family of leukemia escape mechanisms has been described, all characterized by the apparent loss of CD19 on the surface of leukemic blasts. This extraordinary finding demonstrates the potent selective pressure of CART19/blinatumomab that drives extreme and specific escape strategies by leukemic blasts. Patients with CD19-negative relapsed leukemia have very poor prognosis and novel approaches to treat and ideally prevent antigen-loss are direly needed. In this review we discuss the incidence, mechanisms and therapeutic approaches for CD19-negative leukemia relapses occuring after CD19-directed T cell immunotherapies and present our future perspective.

  16. shRNA screening identifies JMJD1C as being required for leukemia maintenance

    DEFF Research Database (Denmark)

    Sroczynska, Patrycja; Cruickshank, V Adam; Bukowski, John-Paul

    2014-01-01

    Epigenetic regulatory mechanisms are implicated in the pathogenesis of acute myeloid and lymphoid leukemia (AML and ALL). Recent progress suggests that proteins involved in epigenetic control are amenable to drug intervention, but little is known about the cancer-specific dependency on epigenetic...... candidate drug targets identified in these screens was Jmjd1c. Depletion of Jmjd1c impairs growth and colony formation of mouse MLL-AF9 cells in vitro, as well as establishment of leukemia after transplantation. Depletion of JMJD1C impairs expansion and colony formation of human leukemic cell lines......, with the strongest effect observed in the MLL-rearranged ALL cell line, SEM. In both mouse and human leukemic cells, the growth defect upon JMJD1C depletion appears to be primarily due to increased apoptosis, which implicates JMJD1C as a potential therapeutic target in leukemia....

  17. The human cell atlas

    DEFF Research Database (Denmark)

    Regev, Aviv; Teichmann, Sarah A.; Lander, Eric S.

    2017-01-01

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international...... collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells...... in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early...

  18. Role of Bruton's tyrosine kinase in B cells and malignancies

    NARCIS (Netherlands)

    Pal Singh, S. (Simar); F. Dammeijer (Floris); R.W. Hendriks (Rudi)

    2018-01-01

    textabstractBruton's tyrosine kinase (BTK) is a non-receptor kinase that plays a crucial role in oncogenic signaling that is critical for proliferation and survival of leukemic cells in many B cell malignancies. BTK was initially shown to be defective in the primary immunodeficiency X-linked

  19. Immunomodulatory Potential of the Polysaccharide-Rich Extract from Edible Cyanobacterium Nostoc commune

    Directory of Open Access Journals (Sweden)

    Hui-Fen Liao

    2015-11-01

    Full Text Available A dry sample of Nostoc commune from an organic farm in Pingtung city (Taiwan was used to prepare polysaccharide-rich (NCPS extract. The conditioned medium (CM from NCPS-treated human peripheral blood (PB-mononuclear cells (MNC effectively inhibited the growth of human leukemic U937 cells and triggered differentiation of U937 monoblast cells into monocytic/macrophagic lines. Cytokine levels in MNC-CMs showed upregulation of granulocyte/macrophage-colony stimulatory factor and IL-1β and downregulation of IL-6 and IL-17 upon treatment with NCPS. Moreover, murine macrophage RAW264.7 cells treated with NCPS exhibited the stimulatory effects of nitric oxide and superoxide secretion, indicating that NCPS might activate the immunity of macrophages. Collectively, the present study demonstrates that NCPS from N. commune could be potentially used for macrophage activation and consequently inhibited the leukemic cell growth and induced monocytic/macrophagic differentiation.

  20. Succesful therapy of viral leukemia by transplantation of histocompatibly unmatched marrow

    International Nuclear Information System (INIS)

    Meredith, R.F.; OKunewick, J.P.; Kuhnert, P.M.; Brozovich, B.J.; Weaver, E.V.

    1978-01-01

    The therapeutic effectiveness on murine viral-leukemia of allogeneic or hybrid hematopoietic cells transplanted from leukemia-virus resistant donors was evaluated and compared with that of syngeneic cells. Transplantation of syngeneic cells gave no protection to the viral-leukemic mice. Transplantation of spleen cells from allogeneic donors resulted in early deaths of both leukemic and non-leukemic recipients. Transplantation of hybrid spleen cells resulted in no long-term survival of the leukemic mice. However, there were a number of long-term survivors among the leukemic recipients of allogeneic or hybrid marrow cells. Engraftment of allogeneic marrow resulted in a large number of survivors. Hybrid marrow recipients showed an even better survival, but some leukemia relapses. Tests of the longterm survivors revealed that even though they gave no evidence of leukemia they still harbored the active virus. This suggests that the mechanism of protection may be related to some inherent characteristic of the donor cells rendering them refractory to viral transformation. A difference in graft-versus-host (GvH) response between the leukemic and control mice was also found after transplantation of allogeneic cells. While all of the controls died of GvH reaction, none of the leukemic recipients showed severe GvH response, suggesting a possible effect of the leukemia on histocompatibility. No GvH reaction was found with hybrid marrow engraftment, although some of the leukemic recipients reconstituted with F 1 cells did die of leukemic relapse. (author)

  1. Establishing long-term cultures with self-renewing acute myeloid leukemia stem/progenitor cells

    NARCIS (Netherlands)

    van Gosliga, Djoke; Schepers, Hein; Rizo, Aleksandra; van der Kolk, Dorina; Vellenga, Edo; Schuringa, Jan Jacob

    2007-01-01

    Objective. With the emergence of the concept of the leukemia stem cell, assays to study them remain pivotal in understanding (leukemic) stem cell biology. Methods. We have cultured acute myeloid leukemia CD34(+) cells on bone marrow stroma. Long-term expansion was monitored and self-renewal was

  2. IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells.

    Science.gov (United States)

    Schinke, Carolina; Giricz, Orsolya; Li, Weijuan; Shastri, Aditi; Gordon, Shanisha; Barreyro, Laura; Barreryo, Laura; Bhagat, Tushar; Bhattacharyya, Sanchari; Ramachandra, Nandini; Bartenstein, Matthias; Pellagatti, Andrea; Boultwood, Jacqueline; Wickrema, Amittha; Yu, Yiting; Will, Britta; Wei, Sheng; Steidl, Ulrich; Verma, Amit

    2015-05-14

    Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are associated with disease-initiating stem cells that are not eliminated by conventional therapies. Novel therapeutic targets against preleukemic stem cells need to be identified for potentially curative strategies. We conducted parallel transcriptional analysis of highly fractionated stem and progenitor populations in MDS, AML, and control samples and found interleukin 8 (IL8) to be consistently overexpressed in patient samples. The receptor for IL8, CXCR2, was also significantly increased in MDS CD34(+) cells from a large clinical cohort and was predictive of increased transfusion dependence. High CXCR2 expression was also an adverse prognostic factor in The Cancer Genome Atlas AML cohort, further pointing to the critical role of the IL8-CXCR2 axis in AML/MDS. Functionally, CXCR2 inhibition by knockdown and pharmacologic approaches led to a significant reduction in proliferation in several leukemic cell lines and primary MDS/AML samples via induction of G0/G1 cell cycle arrest. Importantly, inhibition of CXCR2 selectively inhibited immature hematopoietic stem cells from MDS/AML samples without an effect on healthy controls. CXCR2 knockdown also impaired leukemic growth in vivo. Together, these studies demonstrate that the IL8 receptor CXCR2 is an adverse prognostic factor in MDS/AML and is a potential therapeutic target against immature leukemic stem cell-enriched cell fractions in MDS and AML. © 2015 by The American Society of Hematology.

  3. Acadesine kills chronic myelogenous leukemia (CML cells through PKC-dependent induction of autophagic cell death.

    Directory of Open Access Journals (Sweden)

    Guillaume Robert

    Full Text Available CML is an hematopoietic stem cell disease characterized by the t(9;22 (q34;q11 translocation encoding the oncoprotein p210BCR-ABL. The effect of acadesine (AICAR, 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside a compound with known antileukemic effect on B cell chronic lymphoblastic leukemia (B-CLL was investigated in different CML cell lines. Acadesine triggered loss of cell metabolism in K562, LAMA-84 and JURL-MK1 and was also effective in killing imatinib-resistant K562 cells and Ba/F3 cells carrying the T315I-BCR-ABL mutation. The anti-leukemic effect of acadesine did not involve apoptosis but required rather induction of autophagic cell death. AMPK knock-down by Sh-RNA failed to prevent the effect of acadesine, indicating an AMPK-independent mechanism. The effect of acadesine was abrogated by GF109203X and Ro-32-0432, both inhibitor of classical and new PKCs and accordingly, acadesine triggered relocation and activation of several PKC isoforms in K562 cells. In addition, this compound exhibited a potent anti-leukemic effect in clonogenic assays of CML cells in methyl cellulose and in a xenograft model of K562 cells in nude mice. In conclusion, our work identifies an original and unexpected mechanism by which acadesine triggers autophagic cell death through PKC activation. Therefore, in addition to its promising effects in B-CLL, acadesine might also be beneficial for Imatinib-resistant CML patients.

  4. Alternative splicing of T cell receptor (TCR) alpha chain transcripts containing V alpha 1 or V alpha 14 elements.

    Science.gov (United States)

    Mahotka, C; Hansen-Hagge, T E; Bartram, C R

    1995-10-01

    Human acute lymphoblastic leukemia cell lines represent valuable tools to investigate distinct steps of the complex regulatory pathways underlying T cell receptor recombination and expression. A case in point are V delta 2D delta 3 and subsequent V delta 2D delta 3J alpha rearrangements observed in human leukemic pre-B cells as well as in normal lymphopoiesis. The functional expression of these unusual (VD) delta (JC) alpha hybrids is almost exclusively prevented by alternative splicing events. In this report we show that alternative splicing at cryptic splice donor sites within V elements is not a unique feature of hybrid TCR delta/alpha transcripts. Among seven V alpha families analyzed by RT-PCR, alternatively spliced products were observed in TCR alpha recombinations containing V alpha 1 or V alpha 14 elements. In contrast to normal peripheral blood cells and thymocytes, the leukemia cell line JM expressing functional V alpha 1J alpha 3C alpha transcripts lacked evidence of aberrant TCR alpha RNA species.

  5. Pulmonary leukemic involvement: high-resolution computed tomography evaluation

    International Nuclear Information System (INIS)

    Oliveira, Ana Paola de; Marchiori, Edson; Souza Junior, Arthur Soares

    2004-01-01

    Objective: To evaluate the role of high-resolution computed tomography (HRCT) in patients with leukemia and pulmonary symptoms, to establish the main patterns and to correlate them with the etiology. Materials and Methods: This is a retrospective study of the HRCT of 15 patients with leukemia and pulmonary symptoms. The examinations were performed using a spatial high-resolution protocol and were analyzed by two independent radiologists. Results: The main HRCT patterns found were ground-glass opacity (n=11), consolidation (n=9), airspace nodules (n=3), septal thickening (n=3), tree-in-bud pattern (n=3), and pleural effusion (n=3). Pulmonary infection was the most common finding seen in 12 patients: bacterial pneumonia (n=6), fungal infection (n = 4), pulmonary tuberculosis (n=1) and viral infection (n=1). Leukemic pleural infiltration (n=1), lymphoma (n=1) and pulmonary hemorrhage (n=1) were detected in the other three patients. Conclusion: HRCT is an important tool that may suggest the cause of lung involvement, its extension and in some cases to guide invasive procedures in patients with leukemia. (author)

  6. Regulation of Trib2 by an E2F1-C/EBPα feedback loop in AML cell proliferation.

    LENUS (Irish Health Repository)

    Rishi, Loveena

    2014-04-10

    The loss of regulation of cell proliferation is a key event in leukemic transformation, and the oncogene tribbles (Trib)2 is emerging as a pivotal target of transcription factors in acute leukemias. Deregulation of the transcription factor E2F1, normally repressed by CCAAT enhancer-binding protein α (C\\/EBPα)-p42, occurs in acute myeloid leukemia (AML), resulting in the perturbation of cell cycle and apoptosis, emphasizing its importance in the molecular pathogenesis of AML. Here we show that E2F family members directly regulate Trib2 in leukemic cells and identify a feedback regulatory loop for E2F1, C\\/EBPα, and Trib2 in AML cell proliferation and survival. Further analyses revealed that E2F1-mediated Trib2 expression was repressed by C\\/EBPα-p42, and in normal granulocyte\\/macrophage progenitor cells, we detect C\\/EBPα bound to the Trib2 promoter. Pharmacological inhibition of the cell cycle or Trib2 knockdown resulted in a block in AML cell proliferation. Our work proposes a novel paradigm whereby E2F1 plays a key role in the regulation of Trib2 expression important for AML cell proliferation control. Importantly, we identify the contribution of dysregulated C\\/EBPα and E2F1 to elevated Trib2 expression and leukemic cell survival, which likely contributes to the initiation and maintenance of AML and may have significant implications for normal and malignant hematopoiesis.

  7. Clinical approach to circumvention of multidrug resistance in refractory leukemic patients: association of cyclosporin A with etoposide.

    Science.gov (United States)

    Maia, R C; Carriço, M K; Klumb, C E; Noronha, H; Coelho, A M; Vasconcelos, F C; Ruimanek, V M

    1997-12-01

    Alternative therapy for refractory leukemic patients is being increasingly adopted. Circumvention of multidrug resistance represents a strategy that has been taken into account when conventional chemotherapy failed. In this work a group of 15 refractory, heavily pretreated, patients was enrolled in a circumvention protocol including etoposide (ETO) and cyclosporin A (CSA). All patients received etoposide prior to this schedule. Toxicity to circumvention protocol was acceptable and only one serious side-effect was observed. Two hematological clinical responses were seen, both of which were positive to P-glycoprotein immunostaining and exhibited in vitro modulation by CSA in cultures using the thymidine incorporation assay. Three out of four patients negative for P-glycoprotein achieved a minor response. Three out of six clinical failures were also negative for Pgp immunostaining one of which exhibited sinergistic effect between ETO and CSA. Our study suggests that hematological response to ETO and CSA association can be obtained in intensely pretreated leukemic patients. Several factors may affect the response such as clinical status before this therapy. Additionally, it also suggests that not all CSA effects on the combination ETO-CSA can be attributed to Pgp modulation.

  8. Results of investigation of trace element content in nucleic acids and histones, isolated from human leucaemic cells

    International Nuclear Information System (INIS)

    Andronikashvili, Eh.L.; Mosulishvili, L.M.; Belokobyl'skij, A.I.; Kharabadze, N.E.; Desai, A.S.; Foley, G.E.; Harvard Cancer Commission, Boston, MA

    1977-01-01

    Trace metals in purified nucleic acids and histones, extracted from lymphocyte cell culture of patients with acute lymphocytic leukemia or infections mononucleosis and healthy donors were determined with the activation analysis method. In the lymphocyte DNA of patients with infections mononucleosis and healthy donors the content of Co ++ , Sb ++ , Fe +++ , Zn ++ , turned out to be high, while in the lymphoblast DNA of patients with acute lymphocytic leukemia lower concentrations of these metals were detected, with the exception of Co ++ , the content of which is 20 times higher than in the DNA, extracted from the lymphocytes of healthy donors. In the general histone of the leukemic cells the content of the most of trace metals is higher than in the general lymphocyte histone of healthy donors. The exception is Zn ++ , the content of which is lower

  9. Virulence of Mycobacterium avium Subsp. hominissuis Human Isolates in an in vitro Macrophage Infection Model

    Directory of Open Access Journals (Sweden)

    Laura Rindi

    2018-01-01

    Full Text Available Background: Mycobacterium avium subsp. hominissuis (MAH is an environmental opportunistic pathogen for humans and swine worldwide; in humans, the vast majority of MAH infections is due to strains belonging to specific genotypes, such as the internal transcribed spacer (ITS-sequevars Mav-A and Mav-B that mostly cause pulmonary infections in elderly patients and severe disseminated infections in acquired immunodeficiency syndrome patients, respectively. To test whether the different types of infections in distinct patients' populations might reflect a different virulence of the infecting genotypes, MAH human isolates, genotyped by ITS sequencing and MIRU-VNTR minisatellite analysis, were studied for the capacity to infect and replicate in human macrophages in vitro. Methods: Cultures of human peripheral blood mononuclear cells and phagocytic human leukemic cell line THP-1 cells were infected with each MAH isolate and intracellular colony-forming units (CFU were determined. Results: At 2 h after infection, i.e., immediately after cell entry, the numbers of intracellular bacteria did not differ between Mav-A and Mav-B organisms in both phagocytic cell types. At 5 days, Mav-A organisms, sharing highly related VNTR-MIRU genotypes, yielded numbers of intracellular CFUs significantly higher than Mav-B organisms in both phagocytic cell types. MIRU-VNTR-based minimum spanning tree analysis of the MAH isolates showed a divergent phylogenetic pathway of Mav-A and Mav-B organisms. Conclusion: Mav-A and Mav-B sequevars might have evolved different pathogenetic properties that might account for their association with different human infections.

  10. Scoulerine affects microtubule structure, inhibits proliferation, arrests cell cycle and thus culminates in the apoptotic death of cancer cells.

    Science.gov (United States)

    Habartova, Klara; Havelek, Radim; Seifrtova, Martina; Kralovec, Karel; Cahlikova, Lucie; Chlebek, Jakub; Cermakova, Eva; Mazankova, Nadezda; Marikova, Jana; Kunes, Jiri; Novakova, Lucie; Rezacova, Martina

    2018-03-19

    Scoulerine is an isoquinoline alkaloid, which indicated promising suppression of cancer cells growth. However, the mode of action (MOA) remained unclear. Cytotoxic and antiproliferative properties were determined in this study. Scoulerine reduces the mitochondrial dehydrogenases activity of the evaluated leukemic cells with IC 50 values ranging from 2.7 to 6.5 µM. The xCELLigence system revealed that scoulerine exerted potent antiproliferative activity in lung, ovarian and breast carcinoma cell lines. Jurkat and MOLT-4 leukemic cells treated with scoulerine were decreased in proliferation and viability. Scoulerine acted to inhibit proliferation through inducing G2 or M-phase cell cycle arrest, which correlates well with the observed breakdown of the microtubule network, increased Chk1 Ser345, Chk2 Thr68 and mitotic H3 Ser10 phosphorylation. Scoulerine was able to activate apoptosis, as determined by p53 upregulation, increase caspase activity, Annexin V and TUNEL labeling. Results highlight the potent antiproliferative and proapoptotic function of scoulerine in cancer cells caused by its ability to interfere with the microtubule elements of the cytoskeleton, checkpoint kinase signaling and p53 proteins. This is the first study of the mechanism of scoulerine at cellular and molecular level. Scoulerine is a potent antimitotic compound and that it merits further investigation as an anticancer drug.

  11. Monitoring Tumour Cell Purge by Long Term Marrow Culture in Acute Leukemia

    International Nuclear Information System (INIS)

    El-Masry, M.; Hashem, T. M.

    2001-01-01

    Purging of leukemic cells from bone marrow harvested for autologous bone marrow transplantation (ABMT) remains a challenge. This work aimed at evaluating the efficacy of long-term marrow culture (LTMC) on purging leukemic progenitors in acute leukemia. Design and methods: We planned to study the presence of immunoglobulin heavy (lgH) chain gene rearrangements by polymerase chain reaction (PCR) at diagnosis for bone marrow of 23 patients with acute leukemia. LTMC was performed only for patients who showed positive IgH chain gene monoclonality at diagnosis. The efficiency of purge was evaluated by PCR for monoclonal IgH chain gene on weekly basis of LTMC. Results: Of the 23 studied cases, 18 (78.26%) showed positive clonal IgH chain gene at diagnosis. LTMC study showed that 6/]8 (33.33%), 3/18 (16.67%),7/18 (38.89%) and 2/18 (11.11 %) underwent complete purging of the leukemic progenitors at the first, second, third and fourth weeks of culture, respectively. Follow up could be performed for 14 positive ALL cases after induction of remission; 12/14 (85.7%) showed minimal residual disease (MRD) while only two cases did not show MRD. Complete purging of the latter two cases by LTMC occurred on the second and third weeks of culture. Conclusion: LTMC is a useful and successful method for leukemic cell purging. LTMC should be undertaken at initial diagnosis and on an individual basis. Each case should be dealt with solely to determine at which week of culture complete purging could be obtained for subsequent autologous grafting of the purged marrow

  12. Human Langerhans cells use an IL-15R-α/IL-15/pSTAT5-dependent mechanism to break T-cell tolerance against the self-differentiation tumor antigen WT1.

    Science.gov (United States)

    Romano, Emanuela; Cotari, Jesse W; Barreira da Silva, Rosa; Betts, Brian C; Chung, David J; Avogadri, Francesca; Fink, Mitsu J; St Angelo, Erin T; Mehrara, Babak; Heller, Glenn; Münz, Christian; Altan-Bonnet, Gregoire; Young, James W

    2012-05-31

    Human CD34(+) progenitor-derived Langerhans-type dendritic cells (LCs) are more potent stimulators of T-cell immunity against tumor and viral antigens in vitro than are monocyte-derived DCs (moDCs). The exact mechanisms have remained elusive until now, however. LCs synthesize the highest amounts of IL-15R-α mRNA and protein, which binds IL-15 for presentation to responder lymphocytes, thereby signaling the phosphorylation of signal transducer and activator of transcription 5 (pSTAT5). LCs electroporated with Wilms tumor 1 (WT1) mRNA achieve sufficiently sustained presentation of antigenic peptides, which together with IL-15R-α/IL-15, break tolerance against WT1 by stimulating robust autologous, WT1-specific cytolytic T-lymphocytes (CTLs). These CTLs develop from healthy persons after only 7 days' stimulation without exogenous cytokines and lyse MHC-restricted tumor targets, which include primary WT1(+) leukemic blasts. In contrast, moDCs require exogenous rhuIL-15 to phosphorylate STAT5 and attain stimulatory capacity comparable to LCs. LCs therefore provide a more potent costimulatory cytokine milieu for T-cell activation than do moDCs, thus accounting for their superior stimulation of MHC-restricted Ag-specific CTLs without need for exogenous cytokines. These data support the use of mRNA-electroporated LCs, or moDCs supplemented with exogenous rhuIL-15, as vaccines for cancer immunotherapy to break tolerance against self-differentiation antigens shared by tumors.

  13. Sulforaphane induces cell cycle arrest and apoptosis in acute lymphoblastic leukemia cells.

    Directory of Open Access Journals (Sweden)

    Koramit Suppipat

    Full Text Available Acute lymphoblastic leukemia (ALL is the most common hematological cancer in children. Although risk-adaptive therapy, CNS-directed chemotherapy, and supportive care have improved the survival of ALL patients, disease relapse is still the leading cause of cancer-related death in children. Therefore, new drugs are needed as frontline treatments in high-risk disease and as salvage agents in relapsed ALL. In this study, we report that purified sulforaphane, a natural isothiocyanate found in cruciferous vegetables, has anti-leukemic properties in a broad range of ALL cell lines and primary lymphoblasts from pediatric T-ALL and pre-B ALL patients. The treatment of ALL leukemic cells with sulforaphane resulted in dose-dependent apoptosis and G2/M cell cycle arrest, which was associated with the activation of caspases (3, 8, and 9, inactivation of PARP, p53-independent upregulation of p21(CIP1/WAF1, and inhibition of the Cdc2/Cyclin B1 complex. Interestingly, sulforaphane also inhibited the AKT and mTOR survival pathways in most of the tested cell lines by lowering the levels of both total and phosphorylated proteins. Finally, the administration of sulforaphane to the ALL xenograft models resulted in a reduction of tumor burden, particularly following oral administration, suggesting a potential role as an adjunctive agent to improve the therapeutic response in high-risk ALL patients with activated AKT signaling.

  14. TLX1 and NOTCH coregulate transcription in T cell acute lymphoblastic leukemia cells

    OpenAIRE

    Riz, Irene; Hawley, Teresa S; Luu, Truong V; Lee, Norman H; Hawley, Robert G

    2010-01-01

    Abstract Background The homeobox gene TLX1 (for T-cell leukemia homeobox 1, previously known as HOX11) is inappropriately expressed in a major subgroup of T cell acute lymphoblastic leukemia (T-ALL) where it is strongly associated with activating NOTCH1 mutations. Despite the recognition that these genetic lesions cooperate in leukemogenesis, there have been no mechanistic studies addressing how TLX1 and NOTCH1 functionally interact to promote the leukemic phenotype. Results Global gene expre...

  15. Suppression of postmitochondrial signaling and delayed response to UV-induced nuclear apoptosis in HeLa cells

    International Nuclear Information System (INIS)

    Sasai, Kaori; Yajima, Hirohiko; Suzuki, Fumio

    2002-01-01

    Activation of postmitochondrial pathways by UV irradiation was examined using mouse lymphoma 3SB and human leukemic Jurkat cells and two human carcinoma cell lines (HeLa and MCF-7). Exposure of 3SB and Jurkat cells resulted in large amounts of cytochrome c and apoptosis-inducing factor (AIF) being released into the cytosol, and a clear laddering pattern of DNA fragments was observed within 3 h of incubation after irradiation. Simultaneously, activation of caspase-9 and its downstream caspases was detected. HeLa and MCF-7 cells also showed extensive release of mitochondrial factors and caspase-9 activation at 4 to 6 h after exposure, but apoptotic nuclear changes appeared much later. Compared with 3SB and Jurkat cells, these carcinoma cell lines exhibited reduced activation of caspase-9-like proteolytic activity by UV radiation, and levels of caspase-3-like activity in HeLa cells were extremely low, similar to those in caspase-3-deficient MCF-7 cells. These results suggest that the delayed response to UV-induced nuclear apoptosis in HeLa cells is due to a reduced activation of the caspase cascade downstream of cytochrome c release and suppression of caspase-3 activity. (author)

  16. Defective repair of UV-damaged DNA in human tumor and SV40-transformed human cells but not in adenovirus-transformed human cells

    International Nuclear Information System (INIS)

    Rainbow, A.J.

    1989-01-01

    The DNA repair capacities of five human tumor cell lines, one SV40-transformed human cell line and one adenovirus-transformed human cell line were compared with that of normal human fibroblasts using a sensitive host cell reactivation (HCR) technique. Unirradiated and UV-irradiated suspensions of adenovirus type 2 (Ad 2) were assayed for their ability to form viral structural antigens (Vag) in the various cell types using immunofluorescent staining. The survival of Vag formation for UV-irradiated Ad 2 was significantly reduced in all the human tumor cell lines and the SV40-transformed human line compared to the normal human fibroblasts, but was apparently normal in the adenovirus-transformed human cells. D 0 values for the UV survival of Ad 2 Vag synthesis in the tumor and virally transformed lines expressed as a percentage of that obtained on normal fibroblast strains were used as a measure of DNA repair capacity. Percent HCR values ranged from 26 to 53% in the tumor cells. These results indicate a deficiency in the repair of UV-induced DNA damage associated with human tumorigenesis and the transformation of human cells by SV40 but not the transformation of human cells by adenovirus. (author)

  17. Genome engineering in human cells.

    Science.gov (United States)

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  18. Cyclophosphamide/x-ray: combined mode preparation for transplantation therapy

    International Nuclear Information System (INIS)

    Meredith, R.; Okunewick, J.; Shadduck, R.; Raikow, R.; Brozovich, B.; Seeman, P.

    1979-01-01

    Use of total body irradiation (TBI) and/or chemotherapy as a preparation for marrow transplantation in the treatment of leukemia has been only moderately successful in the clinic. Although cyclophosphamide (CY) has shown promise as a marrow ablative agent, leukemia relapses are often found, and optimal therapeutic protocols have not been established. Our transplantation therapy studies of murine leukemia with parental recipients and hybrid donors provide an excellent model for research aimed at improved survival of human transplant patients. Utilizing a murine leukemia induced by a virus, various doses of CY in combination with sub-lethal irradiation were compared to determine the optimal pretreatment for transplantation therapy. Both normal and leukemic mice were engrafted with virus resistant, histocompatible marrow following these preparations, then monitored for survival and long term effects. Leukemic mice were also evaluated for pluripotent as well as myeloid committed stem cells as a measure of the effectiveness of the treatment in elimination of leukemic cells. Leukemic groups were also compared for the percentage and time of leukemia relapse. All CY/X-ray combinations were more effective in elimination of stem cell populations than supralethal TBI alone. However, the best survival was obtained with lethal TBI alone or low dose CY in combination with 550 R

  19. Effect of low dose radiation on expression of p16 gene in chronic myelogenous leukemia cells

    International Nuclear Information System (INIS)

    Zhang Longzhen; Ding Xin; Li Xiangyang; Cen Jiannong; Shen Hongjie; Chen Zixing

    2010-01-01

    Objective: To investigate the effect of low dose radiation on the expression on p16 gene in chronic myelogenous leukemia. Methods: Leukemic stem cells (LSCs) which expressed CD34 +, CD38 - and CD123 + were isolated from bone marrow cells obtained from twenty patients newly-diagnosedas chronic myeloid leukemia with EasySep TM magnet beads. Hematopoietic stem cells (HSCs) which expressed CD34 + and CD38 - were isolated from human cord blood cells obtained from twenty full-term deliveries with EasySep TM magnet beads as control. HSCs vs LSCs samples were further divided into three dose groups, including 0, 12.5 and 50 cGy, respectively. RT-PCR and real-time quantitative reverse transcription-polymerase chain reaction methods were used to detect mRNA expression of p16 gene in HSCs and LSCs after irradiation. Cells were harvested at different time for detection of cell cycle and apoptosis by flow cytometer. Results: p16 mRNA level in CML-LSCs was increased slightly at 12.5 cGy, and significantly increased at 50 cGy (Z=-3.39, P 0 /G 1 stagewas increased 48 h after 12.5 cGy irradiation, and 72 h post-irradiation with 50 cGy. The apoptosis rate of CML-LSCs was gradually raised after LDR, especially at 72 h post-irradiation of 50 cGy [(17.75±11.760% vs (6.13±4.71)%, Z=-2.37, P<0.01]. Conclusions: p16 gene transcription could be up-regulated by low dose radiation, which might provide a theoretical evidence for CML therapy and LDR in leukemic clinical application. (authors)

  20. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells.

    NARCIS (Netherlands)

    Dormeyer, W.; van Hoof, D.; Braam, S.R.; Heck, A.J.R.; Mummery, C.L.; Krijgsveld, J.

    2008-01-01

    Human embryonic stem cells (hESCs) are of immense interest in regenerative medicine as they can self-renew indefinitely and can give rise to any adult cell type. Human embryonal carcinoma cells (hECCs) are the malignant counterparts of hESCs found in testis tumors. hESCs that have acquired

  1. Disrupting BCR-ABL in combination with secondary leukemia-specific pathways in CML cells leads to enhanced apoptosis and decreased proliferation.

    Science.gov (United States)

    Woessner, David W; Lim, Carol S

    2013-01-07

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by expression of the fusion gene BCR-ABL following a chromosomal translocation in the hematopoietic stem cell. Therapeutic management of CML uses tyrosine kinase inhibitors (TKIs), which block ABL-signaling and effectively kill peripheral cells with BCR-ABL. However, TKIs are not curative, and chronic use is required in order to treat CML. The primary failure for TKIs is through the development of a resistant population due to mutations in the TKI binding regions. This led us to develop the mutant coiled-coil, CC(mut2), an alternative method for BCR-ABL signaling inhibition by targeting the N-terminal oligomerization domain of BCR, necessary for ABL activation. In this article, we explore additional pathways that are important for leukemic stem cell survival in K562 cells. Using a candidate-based approach, we test the combination of CC(mut2) and inhibitors of unique secondary pathways in leukemic cells. Transformative potential was reduced following silencing of the leukemic stem cell factor Alox5 by RNA interference. Furthermore, blockade of the oncogenic protein MUC-1 by the novel peptide GO-201 yielded reductions in proliferation and increased cell death. Finally, we found that inhibiting macroautophagy using chloroquine in addition to blocking BCR-ABL signaling with the CC(mut2) was most effective in limiting cell survival and proliferation. This study has elucidated possible combination therapies for CML using novel blockade of BCR-ABL and secondary leukemia-specific pathways.

  2. Epigenetics targeted protein-vorinostat nanomedicine inducing apoptosis in heterogeneous population of primary acute myeloid leukemia cells including refractory and relapsed cases.

    Science.gov (United States)

    Chandran, Parwathy; Kavalakatt, Anu; Malarvizhi, Giridharan Loghanathan; Vasanthakumari, Divya Rani Vikraman Nair; Retnakumari, Archana Payickattu; Sidharthan, Neeraj; Pavithran, Keechilat; Nair, Shantikumar; Koyakutty, Manzoor

    2014-05-01

    Aberrant epigenetics play a key role in the onset and progression of acute myeloid leukemia (AML). Herein we report in silico modelling based development of a novel, protein-vorinostat nanomedicine exhibiting selective and superior anti-leukemic activity against heterogeneous population of AML patient samples (n=9), including refractory and relapsed cases, and three representative cell lines expressing CD34(+)/CD38(-) stem cell phenotype (KG-1a), promyelocytic phenotype (HL-60) and FLT3-ITD mutation (MV4-11). Nano-vorinostat having ~100nm size exhibited enhanced cellular uptake rendering significantly lower IC50 in AML cell lines and patient samples, and induced enhanced HDAC inhibition, oxidative injury, cell cycle arrest and apoptosis compared to free vorinostat. Most importantly, nanomedicine showed exceptional single-agent activity against the clonogenic proliferative capability of bone marrow derived leukemic progenitors, while remaining non-toxic to healthy bone marrow cells. Collectively, this epigenetics targeted nanomedicine appears to be a promising therapeutic strategy against various French-American-British (FAB) classes of AML. Through the use of a protein-vorinostat agent, exceptional single-agent activity was demonstrated against the clonogenic proliferative capability of bone marrow derived leukemic progenitors, while remaining non-toxic to healthy bone marrow cells. The studied epigenetics targeted nanomedicine approach is a promising therapeutic strategy against various French-American-British classes of acute myeloid leukemia. © 2014 Elsevier Inc. All rights reserved.

  3. Non-canonical PRC1.1 Targets Active Genes Independent of H3K27me3 and Is Essential for Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Vincent van den Boom

    2016-01-01

    Full Text Available Polycomb proteins are classical regulators of stem cell self-renewal and cell lineage commitment and are frequently deregulated in cancer. Here, we find that the non-canonical PRC1.1 complex, as identified by mass-spectrometry-based proteomics, is critically important for human leukemic stem cells. Downmodulation of PRC1.1 complex members, like the DNA-binding subunit KDM2B, strongly reduces cell proliferation in vitro and delays or even abrogates leukemogenesis in vivo in humanized xenograft models. PRC1.1 components are significantly overexpressed in primary AML CD34+ cells. Besides a set of genes that is targeted by PRC1 and PRC2, ChIP-seq studies show that PRC1.1 also binds a distinct set of genes that are devoid of H3K27me3, suggesting a gene-regulatory role independent of PRC2. This set encompasses genes involved in metabolism, which have transcriptionally active chromatin profiles. These data indicate that PRC1.1 controls specific genes involved in unique cell biological processes required for leukemic cell viability.

  4. Radiation induced damage to the lipid contents of bacteria and cultured mammalian cells

    International Nuclear Information System (INIS)

    Gholipour Khalili, K.

    1993-01-01

    In this study, exponentially growing phase of E. Coli. K12-N167 and cultured mouse leukemic L5178Y were used to study the effect of gamma irradiation on phospholipid contents. Following irradiation, both bacteria and cultured cells were incubated with either 14 C or 32 P labelled precursors for periods of cell division time. Phospholipid composition and their contents were detected in both the bacteria and cultured cells by using liquid scintillation counting and autoradiography methods. In contrast, as radiation dose increased, the Phospholipid contents were decreased in the both bacteria and cultured cells. It was concluded that the changes of phospholipid contents may result to altered activities of phospholipid pathway enzymes damaged by a radiation dose. The results of this investigation would be helpful in control of induced radiation damages in cell killings in radiation workers and radiation treatment of human cancer in the clinics. (author). 35 refs, 3 figs, 4 tabs

  5. Anti-ATLA (antibody to adult T-cell leukemia-lymphoma virus-associated antigen)-negative adult T-cell leukemia-lymphoma.

    Science.gov (United States)

    Shimoyama, M; Minato, K; Tobinai, K; Nagai, M; Setoya, T; Watanabe, S; Hoshino, H; Miwa, M; Nagoshi, H; Ichiki, N; Fukushima, N; Sugiura, K; Funaki, N

    1983-01-01

    Five cases of adult T-cell leukemia-lymphoma (ATL) having typical clinicohematologic and morphologic features but negative for anti-ATLA [antibody to ATL virus (ATLV)-associated antigen (ATLA)] are presented. Some differences in immunologic, epidemiologic, and serologic data between anti-ATLA-positive and -negative ATLs are also described. Expression of ATLA in early primary cultured leukemic cells was found to be negative in three patients tested (Cases 1, 2 and 4), however, a long-term cultured cell line, ATL-6A, derived from peripheral blood leukemia cells from Case 1, was found to express ATLA. Mother of Case 1 and a daughter of Case 2 were anti-ATLA negative. These results indicate that ATLV was involved in certain anti-ATLA-negative ATL patients, at least in Case 1, and that the patient had no detectable immune response against ATLV and ATLA. However, in other cases in which no ATLA reactivity of serum and no ATLA expression in cultured leukemic cells were observed, another possibility such as activation of an unknown cellular oncogene specific for ATL without ATLV involvement may be considered. In order to prove these possibilities definitely, it is necessary to elucidate whether or not proviral DNA of ATLV is integrated into chromosomal DNA of ATL cells and to find a cellular oncogene specific for ATL in the future.

  6. Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia

    NARCIS (Netherlands)

    Folkerts, Hendrik; Hilgendorf, Susan; Wierenga, Albertus T J; Jaques, Jennifer; Mulder, André B; Coffer, Paul J; Schuringa, Jan Jacob; Vellenga, Edo

    2017-01-01

    Here we have explored whether inhibition of autophagy can be used as a treatment strategy for acute myeloid leukemia (AML). Steady-state autophagy was measured in leukemic cell lines and primary human CD34(+) AML cells with a large variability in basal autophagy between AMLs observed. The autophagy

  7. Cannabidiol Reduces Leukemic Cell Size ? But Is It Important?

    OpenAIRE

    Kalenderoglou, Nikoletta; Macpherson, Tara; Wright, Karen L.

    2017-01-01

    The anti-cancer effect of the plant-derived cannabinoid, cannabidiol, has been widely demonstrated both in vivo and in vitro. However, this body of preclinical work has not been translated into clinical use. Key issues around this failure can be related to narrow dose effects, the cell model used and incomplete efficacy. A model of acute lymphoblastic disease, the Jurkat T cell line, has been used extensively to study the cannabinoid system in the immune system and cannabinoid-induced apoptos...

  8. Regulation of Trib2 by an E2F1-C/EBPα feedback loop in AML cell proliferation

    DEFF Research Database (Denmark)

    Rishi, Loveena; Hannon, Maura; Salomè, Mara

    2014-01-01

    α (C/EBPα)-p42, occurs in acute myeloid leukemia (AML), resulting in the perturbation of cell cycle and apoptosis, emphasizing its importance in the molecular pathogenesis of AML. Here we show that E2F family members directly regulate Trib2 in leukemic cells and identify a feedback regulatory loop......The loss of regulation of cell proliferation is a key event in leukemic transformation, and the oncogene tribbles (Trib)2 is emerging as a pivotal target of transcription factors in acute leukemias. Deregulation of the transcription factor E2F1, normally repressed by CCAAT enhancer-binding protein...... for E2F1, C/EBPα, and Trib2 in AML cell proliferation and survival. Further analyses revealed that E2F1-mediated Trib2 expression was repressed by C/EBPα-p42, and in normal granulocyte/macrophage progenitor cells, we detect C/EBPα bound to the Trib2 promoter. Pharmacological inhibition of the cell cycle...

  9. Therapeutic activity of two xanthones in a xenograft murine model of human chronic lymphocytic leukemia

    Directory of Open Access Journals (Sweden)

    Berthou Christian

    2010-12-01

    Full Text Available Abstract Background We previously reported that allanxanthone C and macluraxanthone, two xanthones purified from Guttiferae trees, display in vitro antiproliferative and proapoptotic activities in leukemic cells from chronic lymphocytic leukemia (CLL and leukemia B cell lines. Results Here, we investigated the in vivo therapeutic effects of the two xanthones in a xenograft murine model of human CLL, developed by engrafting CD5-transfected chronic leukemia B cells into SCID mice. Treatment of the animals with five daily injections of either allanxanthone C or macluraxanthone resulted in a significant prolongation of their survival as compared to control animals injected with the solvent alone (p = 0.0006 and p = 0.0141, respectively. The same treatment of mice which were not xenografted induced no mortality. Conclusion These data show for the first time the in vivo antileukemic activities of two plant-derived xanthones, and confirm their potential interest for CLL therapy.

  10. HTLV-1 HBZ Viral Protein: A Key Player in HTLV-1 Mediated Diseases

    Directory of Open Access Journals (Sweden)

    Marco Baratella

    2017-12-01

    Full Text Available Human T cell leukemia virus type 1 (HTLV-1 is an oncogenic human retrovirus that has infected 10–15 million people worldwide. After a long latency, 3–5% of infected individuals will develop either a severe malignancy of CD4+ T cells, known as Adult T-cell Leukemia (ATL or a chronic and progressive inflammatory disease of the nervous system designated Tropical Spastic Paraparesis/HTLV-1-Associated Myelopathy (HAM/TSP. The precise mechanism behind HTLV-1 pathogenesis still remains elusive. Two viral regulatory proteins, Tax-1 and HTLV-1 bZIP factor (HBZ are thought to play a critical role in HTLV-1-associated diseases. Tax-1 is mainly involved in the onset of neoplastic transformation and in elicitation of the host’s inflammatory responses; its expression may be lost during cell clonal proliferation and oncogenesis. Conversely, HBZ remains constantly expressed in all patients with ATL, playing a role in the proliferation and maintenance of leukemic cells. Recent studies have shown that the subcellular distribution of HBZ protein differs in the two pathologies: it is nuclear with a speckled-like pattern in leukemic cells and is cytoplasmic in cells from HAM/TSP patients. Thus, HBZ expression and distribution could be critical in the progression of HTLV-1 infection versus the leukemic state or the inflammatory disease. Here, we reviewed recent findings on the role of HBZ in HTLV-1 related diseases, highlighting the new perspectives open by the possibility of studying the physiologic expression of endogenous protein in primary infected cells.

  11. HTLV-1 HBZ Viral Protein: A Key Player in HTLV-1 Mediated Diseases.

    Science.gov (United States)

    Baratella, Marco; Forlani, Greta; Accolla, Roberto S

    2017-01-01

    Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic human retrovirus that has infected 10-15 million people worldwide. After a long latency, 3-5% of infected individuals will develop either a severe malignancy of CD4+ T cells, known as Adult T-cell Leukemia (ATL) or a chronic and progressive inflammatory disease of the nervous system designated Tropical Spastic Paraparesis/HTLV-1-Associated Myelopathy (HAM/TSP). The precise mechanism behind HTLV-1 pathogenesis still remains elusive. Two viral regulatory proteins, Tax-1 and HTLV-1 bZIP factor (HBZ) are thought to play a critical role in HTLV-1-associated diseases. Tax-1 is mainly involved in the onset of neoplastic transformation and in elicitation of the host's inflammatory responses; its expression may be lost during cell clonal proliferation and oncogenesis. Conversely, HBZ remains constantly expressed in all patients with ATL, playing a role in the proliferation and maintenance of leukemic cells. Recent studies have shown that the subcellular distribution of HBZ protein differs in the two pathologies: it is nuclear with a speckled-like pattern in leukemic cells and is cytoplasmic in cells from HAM/TSP patients. Thus, HBZ expression and distribution could be critical in the progression of HTLV-1 infection versus the leukemic state or the inflammatory disease. Here, we reviewed recent findings on the role of HBZ in HTLV-1 related diseases, highlighting the new perspectives open by the possibility of studying the physiologic expression of endogenous protein in primary infected cells.

  12. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    International Nuclear Information System (INIS)

    Li, Lin; Yue, Grace G.L.; Lau, Clara B.S.; Sun, Handong; Fung, Kwok Pui; Leung, Ping Chung; Han, Quanbin; Leung, Po Sing

    2012-01-01

    Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment. -- Highlights: ► We study Eriocalyxin B (EriB)'s cytotoxic effects on pancreatic cancer cell lines. ► EriB inhibits cell proliferation via mediation of apoptosis and cell cycle arrest. ► The effects are involved in caspase-dependent apoptosis and p53 pathway. ► In vivo study also shows EriB inhibits the growth of human pancreatic tumor. ► EriB can be a good candidate for chemotherapy in pancreatic cancer.

  13. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lin [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Yue, Grace G.L. [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Lau, Clara B.S. [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); Sun, Handong [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, CAS, Yunnan (China); Fung, Kwok Pui [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Leung, Ping Chung [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Han, Quanbin, E-mail: simonhan@hkbu.edu.hk [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); School of Chinese Medicine, The Hong Kong Baptist University, Hong Kong (China); Leung, Po Sing, E-mail: psleung@cuhk.edu.hk [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China)

    2012-07-01

    Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment. -- Highlights: ► We study Eriocalyxin B (EriB)'s cytotoxic effects on pancreatic cancer cell lines. ► EriB inhibits cell proliferation via mediation of apoptosis and cell cycle arrest. ► The effects are involved in caspase-dependent apoptosis and p53 pathway. ► In vivo study also shows EriB inhibits the growth of human pancreatic tumor. ► EriB can be a good candidate for chemotherapy in pancreatic cancer.

  14. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    Science.gov (United States)

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  15. Immunosuppressive Mesenchymal Stromal Cells Derived from Human-Induced Pluripotent Stem Cells Induce Human Regulatory T Cells In Vitro and In Vivo.

    Science.gov (United States)

    Roux, Clémence; Saviane, Gaëlle; Pini, Jonathan; Belaïd, Nourhène; Dhib, Gihen; Voha, Christine; Ibáñez, Lidia; Boutin, Antoine; Mazure, Nathalie M; Wakkach, Abdelilah; Blin-Wakkach, Claudine; Rouleau, Matthieu

    2017-01-01

    Despite mesenchymal stromal cells (MSCs) are considered as a promising source of cells to modulate immune functions on cells from innate and adaptive immune systems, their clinical use remains restricted (few number, limited in vitro expansion, absence of a full phenotypic characterization, few insights on their in vivo fate). Standardized MSCs derived in vitro from human-induced pluripotent stem (huIPS) cells, remediating part of these issues, are considered as well as a valuable tool for therapeutic approaches, but their functions remained to be fully characterized. We generated multipotent MSCs derived from huiPS cells (huiPS-MSCs), and focusing on their immunosuppressive activity, we showed that human T-cell activation in coculture with huiPS-MSCs was significantly reduced. We also observed the generation of functional CD4 + FoxP3 + regulatory T (Treg) cells. Further tested in vivo in a model of human T-cell expansion in immune-deficient NSG mice, huiPS-MSCs immunosuppressive activity prevented the circulation and the accumulation of activated human T cells. Intracytoplasmic labeling of cytokines produced by the recovered T cells showed reduced percentages of human-differentiated T cells producing Th1 inflammatory cytokines. By contrast, T cells producing IL-10 and FoxP3 + -Treg cells, absent in non-treated animals, were detected in huiPS-MSCs treated mice. For the first time, these results highlight the immunosuppressive activity of the huiPS-MSCs on human T-cell stimulation with a concomitant generation of human Treg cells in vivo . They may favor the development of new tools and strategies based on the use of huiPS cells and their derivatives for the induction of immune tolerance.

  16. Immunosuppressive Mesenchymal Stromal Cells Derived from Human-Induced Pluripotent Stem Cells Induce Human Regulatory T Cells In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Clémence Roux

    2018-01-01

    Full Text Available Despite mesenchymal stromal cells (MSCs are considered as a promising source of cells to modulate immune functions on cells from innate and adaptive immune systems, their clinical use remains restricted (few number, limited in vitro expansion, absence of a full phenotypic characterization, few insights on their in vivo fate. Standardized MSCs derived in vitro from human-induced pluripotent stem (huIPS cells, remediating part of these issues, are considered as well as a valuable tool for therapeutic approaches, but their functions remained to be fully characterized. We generated multipotent MSCs derived from huiPS cells (huiPS-MSCs, and focusing on their immunosuppressive activity, we showed that human T-cell activation in coculture with huiPS-MSCs was significantly reduced. We also observed the generation of functional CD4+ FoxP3+ regulatory T (Treg cells. Further tested in vivo in a model of human T-cell expansion in immune-deficient NSG mice, huiPS-MSCs immunosuppressive activity prevented the circulation and the accumulation of activated human T cells. Intracytoplasmic labeling of cytokines produced by the recovered T cells showed reduced percentages of human-differentiated T cells producing Th1 inflammatory cytokines. By contrast, T cells producing IL-10 and FoxP3+-Treg cells, absent in non-treated animals, were detected in huiPS-MSCs treated mice. For the first time, these results highlight the immunosuppressive activity of the huiPS-MSCs on human T-cell stimulation with a concomitant generation of human Treg cells in vivo. They may favor the development of new tools and strategies based on the use of huiPS cells and their derivatives for the induction of immune tolerance.

  17. Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics

    Directory of Open Access Journals (Sweden)

    Nigel G. Kooreman

    2017-08-01

    Full Text Available There is growing interest in using embryonic stem cell (ESC and induced pluripotent stem cell (iPSC derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an “allogenized” mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts.

  18. C/EBPα is dispensable for the ontogeny of PD-1+ CD4+ memory T cells but restricts their expansion in an age-dependent manner

    DEFF Research Database (Denmark)

    Norrie, Ida Christine; Ohlsson, Ewa; Nielsen, Olaf

    2014-01-01

    Ageing and cancer is often associated with altered T cell distributions and this phenomenon has been suggested to be the main driver in the development of immunosenescence. Memory phenotype PD-1+ CD4+ T cells accumulate with age and during leukemic development, and they might account for the atte......Ageing and cancer is often associated with altered T cell distributions and this phenomenon has been suggested to be the main driver in the development of immunosenescence. Memory phenotype PD-1+ CD4+ T cells accumulate with age and during leukemic development, and they might account...... for the attenuated T cell response in elderly or diseased individuals. The transcription factor C/EBPα has been suggested to be responsible for the accumulation as well as for the senescent features of these cells including impaired TCR signaling and decreased proliferation. Thus modulating the activity of C...

  19. Trophoblast lineage cells derived from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-01-01

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro

  20. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  1. Formation of human hepatocyte-like cells with different cellular phenotypes by human umbilical cord blood-derived cells in the human-rat chimeras

    International Nuclear Information System (INIS)

    Sun, Yan; Xiao, Dong; Zhang, Ruo-Shuang; Cui, Guang-Hui; Wang, Xin-Hua; Chen, Xi-Gu

    2007-01-01

    We took advantage of the proliferative and permissive environment of the developing pre-immune fetus to develop a noninjury human-rat xenograft small animal model, in which the in utero transplantation of low-density mononuclear cells (MNCs) from human umbilical cord blood (hUCB) into fetal rats at 9-11 days of gestation led to the formation of human hepatocyte-like cells (hHLCs) with different cellular phenotypes, as revealed by positive immunostaining for human-specific alpha-fetoprotein (AFP), cytokeratin 19 (CK19), cytokeratin 8 (CK8), cytokeratin 18 (CK18), and albumin (Alb), and with some animals exhibiting levels as high as 10.7% of donor-derived human cells in the recipient liver. More interestingly, donor-derived human cells stained positively for CD34 and CD45 in the liver of 2-month-old rat. Human hepatic differentiation appeared to partially follow the process of hepatic ontogeny, as evidenced by the expression of AFP gene at an early stage and albumin gene at a later stage. Human hepatocytes generated in this model retained functional properties of normal hepatocytes. In this xenogeneic system, the engrafted donor-derived human cells persisted in the recipient liver for at least 6 months after birth. Taken together, these findings suggest that the donor-derived human cells with different cellular phenotypes are found in the recipient liver and hHLCs hold biological activity. This humanized small animal model, which offers an in vivo environment more closely resembling the situations in human, provides an invaluable approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future

  2. Mesenchymal Stromal Cells Can Regulate the Immune Response in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Alessandro Poggi

    2016-11-01

    Full Text Available The tumor microenvironment is a good target for therapy in solid tumors and hematological malignancies. Indeed, solid tumor cells’ growth and expansion can influence neighboring cells’ behavior, leading to a modulation of mesenchymal stromal cell (MSC activities and remodeling of extracellular matrix components. This leads to an altered microenvironment, where reparative mechanisms, in the presence of sub-acute inflammation, are not able to reconstitute healthy tissue. Carcinoma cells can undergo epithelial mesenchymal transition (EMT, a key step to generate metastasis; these mesenchymal-like cells display the functional behavior of MSC. Furthermore, MSC can support the survival and growth of leukemic cells within bone marrow participating in the leukemic cell niche. Notably, MSC can inhibit the anti-tumor immune response through either carcinoma-associated fibroblasts or bone marrow stromal cells. Experimental data have indicated their relevance in regulating cytolytic effector lymphocytes of the innate and adaptive arms of the immune system. Herein, we will discuss some of the evidence in hematological malignancies and solid tumors. In particular, we will focus our attention on the means by which it is conceivable to inhibit MSC-mediated immune suppression and trigger anti-tumor innate immunity.

  3. Pilot Study on Mass Spectrometry–Based Analysis of the Proteome of CD34+CD123+ Progenitor Cells for the Identification of Potential Targets for Immunotherapy in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Johannes R. Schmidt

    2018-02-01

    Full Text Available Targeting of leukemic stem cells with specific immunotherapy would be an ideal approach for the treatment of myeloid malignancies, but suitable epitopes are unknown. The comparative proteome-level characterization of hematopoietic stem and progenitor cells from healthy stem cell donors and patients with acute myeloid leukemia has the potential to reveal differentially expressed proteins which can be used as surface-markers or as proxies for affected molecular pathways. We employed mass spectrometry methods to analyze the proteome of the cytosolic and the membrane fraction of CD34 and CD123 co-expressing FACS-sorted leukemic progenitors from five patients with acute myeloid leukemia. As a reference, CD34+CD123+ normal hematopoietic progenitor cells from five healthy, granulocyte-colony stimulating factor (G-CSF mobilized stem cell donors were analyzed. In this Tandem Mass Tag (TMT 10-plex labelling–based approach, 2070 proteins were identified with 171 proteins differentially abundant in one or both cellular compartments. This proof-of-principle-study demonstrates the potential of mass spectrometry to detect differentially expressed proteins in two compartment fractions of the entire proteome of leukemic stem cells, compared to their non-malignant counterparts. This may contribute to future immunotherapeutic target discoveries and individualized AML patient characterization.

  4. Unveiling the role of PAK2 in CD44 mediated inhibition of proliferation, differentiation and apoptosis in AML cells

    KAUST Repository

    Aldehaiman, Mansour M.

    2018-01-01

    the success of the differentiation agent, All-trans retinoic acid (ATRA), in the treatment of acute promyelocytic leukemia (APL), much effort has gone into trying to find agents that are able to differentiate AML cells and specifically the leukemic stem cell

  5. Discrete dynamic modeling of T cell survival signaling networks

    Science.gov (United States)

    Zhang, Ranran

    2009-03-01

    Biochemistry-based frameworks are often not applicable for the modeling of heterogeneous regulatory systems that are sparsely documented in terms of quantitative information. As an alternative, qualitative models assuming a small set of discrete states are gaining acceptance. This talk will present a discrete dynamic model of the signaling network responsible for the survival and long-term competence of cytotoxic T cells in the blood cancer T-LGL leukemia. We integrated the signaling pathways involved in normal T cell activation and the known deregulations of survival signaling in leukemic T-LGL, and formulated the regulation of each network element as a Boolean (logic) rule. Our model suggests that the persistence of two signals is sufficient to reproduce all known deregulations in leukemic T-LGL. It also indicates the nodes whose inactivity is necessary and sufficient for the reversal of the T-LGL state. We have experimentally validated several model predictions, including: (i) Inhibiting PDGF signaling induces apoptosis in leukemic T-LGL. (ii) Sphingosine kinase 1 and NFκB are essential for the long-term survival of T cells in T-LGL leukemia. (iii) T box expressed in T cells (T-bet) is constitutively activated in the T-LGL state. The model has identified potential therapeutic targets for T-LGL leukemia and can be used for generating long-term competent CTL necessary for tumor and cancer vaccine development. The success of this model, and of other discrete dynamic models, suggests that the organization of signaling networks has an determining role in their dynamics. Reference: R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, T. P. Loughran, Jr., Network Model of Survival Signaling in LGL Leukemia, PNAS 105, 16308-16313 (2008).

  6. c-Myc-Dependent Cell Competition in Human Cancer Cells.

    Science.gov (United States)

    Patel, Manish S; Shah, Heta S; Shrivastava, Neeta

    2017-07-01

    Cell Competition is an interaction between cells for existence in heterogeneous cell populations of multicellular organisms. This phenomenon is involved in initiation and progression of cancer where heterogeneous cell populations compete directly or indirectly for the survival of the fittest based on differential gene expression. In Drosophila, cells having lower dMyc expression are eliminated by cell competition through apoptosis when present in the milieu of cells having higher dMyc expression. Thus, we designed a study to develop c-Myc (human homolog) dependent in vitro cell competition model of human cancer cells. Cells with higher c-Myc were transfected with c-myc shRNA to prepare cells with lower c-Myc and then co-cultured with the same type of cells having a higher c-Myc in equal ratio. Cells with lower c-Myc showed a significant decrease in numbers when compared with higher c-Myc cells, suggesting "loser" and "winner" status of cells, respectively. During microscopy, engulfment of loser cells by winner cells was observed with higher expression of JNK in loser cells. Furthermore, elimination of loser cells was prevented significantly, when co-cultured cells were treated with the JNK (apoptosis) inhibitor. Above results indicate elimination of loser cells in the presence of winner cells by c-Myc-dependent mechanisms of cell competition in human cancer cells. This could be an important mechanism in human tumors where normal cells are eliminated by c-Myc-overexpressed tumor cells. J. Cell. Biochem. 118: 1782-1791, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  8. SB225002 Induces Cell Death and Cell Cycle Arrest in Acute Lymphoblastic Leukemia Cells through the Activation of GLIPR1

    Science.gov (United States)

    Leal, Paulo C.; Bhasin, Manoj K.; Zenatti, Priscila Pini; Nunes, Ricardo J.; Yunes, Rosendo A.; Nowill, Alexandre E.; Libermann, Towia A.; Zerbini, Luiz Fernando; Yunes, José Andrés

    2015-01-01

    Acute Lymphoblastic Leukemia (ALL) is the most frequent childhood malignancy. In the effort to find new anti-leukemic agents, we evaluated the small drug SB225002 (N-(2-hydroxy-4-nitrophenyl)-N’-(2-bromophenyl)urea). Although initially described as a selective antagonist of CXCR2, later studies have identified other cellular targets for SB225002, with potential medicinal use in cancer. We found that SB225002 has a significant pro-apoptotic effect against both B- and T-ALL cell lines. Cell cycle analysis demonstrated that treatment with SB225002 induces G2-M cell cycle arrest. Transcriptional profiling revealed that SB225002-mediated apoptosis triggered a transcriptional program typical of tubulin binding agents. Network analysis revealed the activation of genes linked to the JUN and p53 pathways and inhibition of genes linked to the TNF pathway. Early cellular effects activated by SB225002 included the up-regulation of GLIPR1, a p53-target gene shown to have pro-apoptotic activities in prostate and bladder cancer. Silencing of GLIPR1 in B- and T-ALL cell lines resulted in increased resistance to SB225002. Although SB225002 promoted ROS increase in ALL cells, antioxidant N-Acetyl Cysteine pre-treatment only modestly attenuated cell death, implying that the pro-apoptotic effects of SB225002 are not exclusively mediated by ROS. Moreover, GLIPR1 silencing resulted in increased ROS levels both in untreated and SB225002-treated cells. In conclusion, SB225002 induces cell cycle arrest and apoptosis in different B- and T-ALL cell lines. Inhibition of tubulin function with concurrent activation of the p53 pathway, in particular, its downstream target GLIPR1, seems to underlie the anti-leukemic effect of SB225002. PMID:26302043

  9. Uptake of cerium oxide nanoparticles and its influence on functions of mouse leukemic monocyte macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiangyan; Wang, Bing; Jiang, Pengfei; Chen, Yiqi; Mao, Zhengwei, E-mail: zwmao@zju.edu.cn; Gao, Changyou [Zhejiang University, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering (China)

    2015-01-15

    Exposure of the CeO{sub 2} nanoparticles (NPs) causes a public concern on their potential health risk due to their wide applications in the fields of fuel additive, commodities, pharmaceutical, and other industries. In this study, the interactions between two commercial CeO{sub 2} NPs (D-CeO{sub 2} from Degussa and PC-CeO{sub 2} from PlasmaChem) and mouse leukemic monocyte macrophage Raw264.7 cells were investigated to provide a fast and in-depth understanding of the biological influences of the NPs. Both types of the CeO{sub 2} NPs had a negative surface charge around −12 mV and showed a tendency to form aggregates with sizes of 191 ± 5.9 and 60.9 ± 2.8 nm in cell culture environment, respectively. The cellular uptake of the CeO{sub 2} NPs increased along with the increase of feeding dosage and prolongation of the culture time. The PC-CeO{sub 2} NPs had a faster uptake rate and reached higher cellular loading amount at the highest feeding concentration (200 µg/mL). In general, both types of the CeO{sub 2} NPs had rather small cytotoxicity even with a dosage as high as 200 µg/mL. The D-CeO{sub 2} NPs showed a relative stronger cytotoxicity especially at higher concentrations and longer incubation time. The NPs were dispersed in vacuoles (most likely endosomes and lysosomes) and cytoplasm. Although both types of the CeO{sub 2} NPs could suppress the production of reactive oxygen species, they impaired the mitochondria membrane potential to some extent. The cytoskeleton organization was altered and consequently the cell adhesion ability decreased after uptake of both types of the CeO{sub 2} NPs.

  10. Shedding of CD9 antigen into cerebrospinal fluid by acute lymphoblastic leukemia cells.

    Science.gov (United States)

    Komada, Y; Ochiai, H; Shimizu, K; Azuma, E; Kamiya, H; Sakurai, M

    1990-07-01

    The accurate identification of small numbers of leukemic cells in the cerebrospinal fluid (CSF) presents a diagnostic problem in the treatment of acute lymphoblastic leukemia (ALL). We demonstrated that soluble CD9 antigen was shed into CSF obtained from children with ALL, using enzyme-linked immunosorbent assay (ELISA), which used the activity of CD9 antigen to bind the Ricinus communis agglutinin (RCA1) and a monoclonal antibody, SJ-9A4, simultaneously. Using RCA1/SJ-9A4 ELISA, CD9 antigen was detectable in CSF but not in plasma from 12 cases of CD9+ ALL in central nervous system (CNS) relapse. However, CD9 antigen was not released into CSF from 11 cases of CD9- ALL with CNS involvement, 136 cases of CD9+ ALL in complete remission (CR), 29 cases of CD9- ALL in CR, or 21 cases of aseptic meningitis. Interestingly, the levels of CD9 antigen were elevated in CSF from 7 of 10 CD9+ ALL patients without cytologically proven CNS involvement at diagnosis, with subsequent return to undetectable levels after initial induction chemotherapy was begun. In addition, sequential analysis of CSF from a 5-year-old boy with CD9+ ALL in CNS relapse showed that levels of CD9 antigen correlated well with the number of leukemic cells in CSF. Serial quantitative analysis of CD9 antigen in CSF could be useful to detect the proliferation of residual leukemic cells before the clinical manifestation.

  11. The CNGRC-GG-D(KLAKLAK)2 peptide induces a caspase-independent, Ca2+-dependent death in human leukemic myeloid cells by targeting surface aminopeptidase N/CD13.

    Science.gov (United States)

    Bouchet, Sandrine; Tang, Ruoping; Fava, Fanny; Legrand, Ollivier; Bauvois, Brigitte

    2016-04-12

    The CD13 antigen's binding site for the Asn-Gly-Arg (NGR) motif enables NGR-containing chemotherapeutic drugs to be delivered to CD13-positive tumours. Human CD13-positive acute myeloid leukemia (AML) cells proliferate abnormally and escape death. Here, we show that the CNGRC-GG-D(KLAKLAK)2 peptide induces death in AML cell lines (U937, THP-1, NB4, HL-60) and primary blood cells from AML patients. Cell death was characterized as a caspase-independent mechanism, without DNA fragmentation, but phosphatidylserine externalization and membrane disruption. Our results demonstrate in U937 cells that (i) the NGR-peptide triggers the loss of mitochondrial potential(ΔΨm) and generates superoxide anion (O2-), (ii) N-acetyl-L-cysteine (NAC) and extra/intracellular Ca2+ chelators (BAPTA) prevent both O2- production and cell death, (iii) the Ca2+-channel blocker nifedipine prevents cell death (indicating that Ca2+ influx is the initial death trigger), and (iv) BAPTA, but not NAC, prevents ΔΨm loss (suggesting O2- is a mitochondrial downstream effector). AML cell lines and primary blasts responding to the lethal action of NGR-peptide express promatrix metalloproteinase-12 (proMMP-12) and its substrate progranulin (an 88 kDa cell survival factor). A cell-free assay highlighted proMMP-12 activation by O2-. Accordingly, NGR-peptide's downregulation of 88 kDa progranulin protein was prevented by BAPTA and NAC. Conversely, AML blast resistance to NGR-peptide is associated with the expression of a distinct, 105 kDa progranulin isoform. These results indicate that CNGRC-GG-D(KLAKLAK)2 induces death in AML cells through the Ca2+-mitochondria-O2.-pathway, and support the link between proMMP-12 activation and progranulin cleavage during cell death. Our findings may have implications for the understanding of tumour biology and treatment.

  12. The acute monocytic leukemias: multidisciplinary studies in 45 patients.

    Science.gov (United States)

    Straus, D J; Mertelsmann, R; Koziner, B; McKenzie, S; de Harven, E; Arlin, Z A; Kempin, S; Broxmeyer, H; Moore, M A; Menendez-Botet, C J; Gee, T S; Clarkson, B D

    1980-11-01

    The clinical and laboratory features of 37 patients with variants of acute monocytic leukemia are described. Three of these 37 patients who had extensive extramedullary leukemic tissue infiltration are examples of true histiocytic "lymphomas." Three additional patients with undifferentiated leukemias, one patient with refractory anemia with excess of blasts, one patient with chronic myelomonocytic leukemia, one patient with B-lymphocyte diffuse "histiocytic" lymphoma and one patient with "null" cell, terminal deoxynucleotidyl transferase-positive lymphoblastic lymphoma had bone marrow cells with monocytic features. Another patient had dual populations of lymphoid and monocytoid leukemic cells. The true monocytic leukemias, acute monocytic leukemia (AMOL) and acute myelomonocytic leukemia (AMMOL), are closely related to acute myelocytic leukemia (AML) morphologically and by their response to chemotherapy. like AML, the leukemic cells from the AMMOL and AMOL patients form leukemic clusters in semisolid media. Cytochemical staining of leukemic cells for nonspecific esterases, presence of Fc receptor on the cell surface, phagocytic ability, low TdT activity, presence of surface "ruffles" and "ridges" on scanning EM, elevations of serum lysozyme, and clinical manifestations of leukemic tissue infiltration are features which accompanied monocytic differentiation in these cases.

  13. 2-Hydroxypropyl-β-Cyclodextrin Acts as a Novel Anticancer Agent.

    Directory of Open Access Journals (Sweden)

    Masako Yokoo

    Full Text Available 2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD is a cyclic oligosaccharide that is widely used as an enabling excipient in pharmaceutical formulations, but also as a cholesterol modifier. HP-β-CyD has recently been approved for the treatment of Niemann-Pick Type C disease, a lysosomal lipid storage disorder, and is used in clinical practice. Since cholesterol accumulation and/or dysregulated cholesterol metabolism has been described in various malignancies, including leukemia, we hypothesized that HP-β-CyD itself might have anticancer effects. This study provides evidence that HP-β-CyD inhibits leukemic cell proliferation at physiologically available doses. First, we identified the potency of HP-β-CyD in vitro against various leukemic cell lines derived from acute myeloid leukemia (AML, acute lymphoblastic leukemia and chronic myeloid leukemia (CML. HP-β-CyD treatment reduced intracellular cholesterol resulting in significant leukemic cell growth inhibition through G2/M cell-cycle arrest and apoptosis. Intraperitoneal injection of HP-β-CyD significantly improved survival in leukemia mouse models. Importantly, HP-β-CyD also showed anticancer effects against CML cells expressing a T315I BCR-ABL mutation (that confers resistance to most ABL tyrosine kinase inhibitors, and hypoxia-adapted CML cells that have characteristics of leukemic stem cells. In addition, colony forming ability of human primary AML and CML cells was inhibited by HP-β-CyD. Systemic administration of HP-β-CyD to mice had no significant adverse effects. These data suggest that HP-β-CyD is a promising anticancer agent regardless of disease or cellular characteristics.

  14. Towards The Generation of Functionalized Magnetic Nanowires to Target Leukemic Cells

    KAUST Repository

    Alsharif, Nouf

    2016-01-01

    . In addition the NWs can be coated and functionalized to target cells of interest and, upon exposure to an alternating magnetic field, have been shown to induce cell death on several types of adherent cells, including several cancer cell types. For suspension

  15. The role of C/EBPa in PD-1+ CD4+ T cells & modulation of RNR activity prolongs survival of mice with AML

    DEFF Research Database (Denmark)

    Norrie, Ida Christine

    of age-dependent PD-1+ CD4+ T cells was therefore investigated as well as its importance for development of PD-1+ CD4+ T cells during leukemic development. My results showed that loss of C/EBPα expression in the lymphoid compartment led to an increased amount of aged PD-1+ CD4+ T cells, but not of young...... PD-1+ CD4+ T cells, suggesting that C/EBPα repress the accumulation of these cells in old mice. Furthermore, C/EBPα-deficiency in the lymphoid compartment had no effect on leukemic development and did not affect the accumulation of PD-1+ CD4+ T cells during development of leukemia. M data indicates......The Ph.D. thesis comprises two projects: (1) C/EBPα is dispensable for the ontogeny of PD1+ CD4+ memory T cells, but restricts their expansion in an age-dependent manner. (2) Modulation of RNR activity prolongs survival of mice with AML. Immunosenescence is a condition of the immune system...

  16. C/EBPα is dispensable for the ontogeny of PD-1+ CD4+ memory T cells but restricts their expansion in an age-dependent manner.

    Science.gov (United States)

    Norrie, Ida Christine; Ohlsson, Ewa; Nielsen, Olaf; Hasemann, Marie Sigurd; Porse, Bo T

    2014-01-01

    Ageing and cancer is often associated with altered T cell distributions and this phenomenon has been suggested to be the main driver in the development of immunosenescence. Memory phenotype PD-1+ CD4+ T cells accumulate with age and during leukemic development, and they might account for the attenuated T cell response in elderly or diseased individuals. The transcription factor C/EBPα has been suggested to be responsible for the accumulation as well as for the senescent features of these cells including impaired TCR signaling and decreased proliferation. Thus modulating the activity of C/EBPα could potentially target PD-1+ CD4+ T cells and consequently, impede the development of immunosenescence. To exploit this possibility we tested the importance of C/EBPα for the development of age-dependent PD-1+ CD4+ T cells as well as its role in the accumulation of PD-1+ CD4+ T cells during leukemic progression. In contrast to earlier suggestions, we find that loss of C/EBPα expression in the lymphoid compartment led to an increase of PD-1+ CD4+ T cells specifically in old mice, suggesting that C/EBPα repress the accumulation of these cells in elderly by inhibiting their proliferation. Furthermore, C/EBPα-deficiency in the lymphoid compartment had no effect on leukemic development and did not affect the accumulation of PD-1+ CD4+ T cells. Thus, in addition to contradict earlier suggestions of a role for C/EBPα in immunosenescence, these findings efficiently discard the potential of using C/EBPα as a target for the alleviation of ageing/cancer-associated immunosenescence.

  17. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    OpenAIRE

    Hayato Fukusumi; Tomoko Shofuda; Yohei Bamba; Atsuyo Yamamoto; Daisuke Kanematsu; Yukako Handa; Keisuke Okita; Masaya Nakamura; Shinya Yamanaka; Hideyuki Okano; Yonehiro Kanemura

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPS...

  18. SALL4, a stem cell factor, affects the side population by regulation of the ATP-binding cassette drug transport genes.

    Directory of Open Access Journals (Sweden)

    Ha-Won Jeong

    2011-04-01

    Full Text Available Our previous work shows that the stem cell factor SALL4 plays a central role in embryonic and leukemic stem cells. In this study, we report that SALL4 expression was higher in drug resistant primary acute myeloid leukemic patients than those from drug-responsive cases. In addition, while overexpression of SALL4 led to drug resistance in cell lines, cells with decreased SALL4 expression were more sensitive to drug treatments than the parental cells. This led to our investigation of the implication of SALL4 in drug resistance and its role in side population (SP cancer stem cells. SALL4 expression was higher in SP cells compared to non-SP cells by 2-4 fold in various malignant hematopoietic cell lines. Knocking down of SALL4 in isolated SP cells resulted in a reduction of SP cells, indicating that SALL4 is required for their self-renewal. The SP phenotype is known to be mediated by members of the ATP-binding cassette (ABC drug transport protein family, such as ABCG2 and ABCA3. Using chromatin-immunoprecipitation (ChIP, quantitative reverse transcription polymerase chain reaction (qRT-PCR and electrophoretic mobility shift assay(EMSA, we demonstrated that SALL4 was able to bind to the promoter region of ABCA3 and activate its expression while regulating the expression of ABCG2 indirectly. Furthermore, SALL4 expression was positively correlated to those of ABCG2 and ABCA3 in primary leukemic patient samples. Taken together, our results suggest a novel role for SALL4 in drug sensitivity, at least in part through the maintenance of SP cells, and therefore may be responsible for drug-resistance in leukemia. We are the first to demonstrate a direct link between stem cell factor SALL4, SP and drug resistance in leukemia.

  19. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    2011-05-01

    Full Text Available The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population.Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels.The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium.

  20. Extrinsic and intrinsic cues involved in BCR-ABL induced leukemogenesis : Establishing an ectopic humanized niche xenograft model and the study of metabolic alterations in chronic myeloid leukemia

    NARCIS (Netherlands)

    Sontakke, Pallavi

    2016-01-01

    Leukemia is defined as the cancer of blood cells. Any defect in properties of hematopoietic stem cells (HSC) i.e. either in self-renewal or differentiation leads to the development of hematopoietic malignancies. The hematological malignancies are considered to arise from leukemic stem cells (LSCs)

  1. Impact of charged particle exposure on homologous DNA double-strand break repair in human blood-derived cells

    Directory of Open Access Journals (Sweden)

    Melanie eRall

    2015-11-01

    Full Text Available Ionizing radiation generates DNA double-strand breaks (DSB which, unless faithfully repaired, can generate chromosomal rearrangements in hematopoietic stem and/or progenitor cells (HSPC, potentially priming the cells towards a leukemic phenotype. Using an enhanced green fluorescent protein (EGFP-based reporter system, we recently identified differences in the removal of enzyme-mediated DSB in human HSPC versus mature peripheral blood lymphocytes (PBL, particularly regarding homologous DSB repair (HR. Assessment of chromosomal breaks via premature chromosome condensation or γH2AX foci indicated similar efficiency and kinetics of radiation-induced DSB formation and rejoining in PBL and HSPC. Prolonged persistence of chromosomal breaks was observed for higher LET charged particles which are known to induce more complex DNA damage compared to X rays. Consistent with HR deficiency in HSPC observed in our previous study, we noticed here pronounced focal accumulation of 53BP1 after X-ray and carbon ion exposure (intermediate LET in HSPC versus PBL. For higher LET, 53BP1 foci kinetics were similarly delayed in PBL and HSPC suggesting similar failure to repair complex DNA damage. Data obtained with plasmid reporter systems revealed a dose- and LET-dependent HR increase after X-ray, carbon ion and higher LET exposure, particularly in HR-proficient immortalized and primary lymphocytes, confirming preferential use of conservative HR in PBL for intermediate LET damage repair. HR measured adjacent to the leukemia-associated MLL breakpoint cluster sequence in reporter lines revealed dose-dependency of potentially leukemogenic rearrangements underscoring the risk of leukemia-induction by radiation treatment.

  2. Characterization of the apoptotic response of human leukemia cells to organosulfur compounds

    International Nuclear Information System (INIS)

    Wong, W Wei-Lynn; Langler, Richard F; Penn, Linda Z; Boutros, Paul C; Wasylishen, Amanda R; Guckert, Kristal D; O'Brien, Erin M; Griffiths, Rebecca; Martirosyan, Anna R; Bros, Christina; Jurisica, Igor

    2010-01-01

    Novel therapeutic agents that selectively induce tumor cell death are urgently needed in the clinical management of cancers. Such agents would constitute effective adjuvant approaches to traditional chemotherapy regimens. Organosulfur compounds (OSCs), such as diallyl disulfide, have demonstrated anti-proliferative effects on cancer cells. We have previously shown that synthesized relatives of dysoxysulfone, a natural OSC derived from the Fijian medicinal plant, Dysoxylum richi, possess tumor-specific antiproliferative effects and are thus promising lead candidates. Because our structure-activity analyses showed that regions flanking the disulfide bond mediated specificity, we synthesized 18 novel OSCs by structural modification of the most promising dysoxysulfone derivatives. These compounds were tested for anti-proliferative and apoptotic activity in both normal and leukemic cells. Six OSCs exhibited tumor-specific killing, having no effect on normal bone marrow, and are thus candidates for future toxicity studies. We then employed mRNA expression profiling to characterize the mechanisms by which different OSCs induce apoptosis. Using Gene Ontology analysis we show that each OSC altered a unique set of pathways, and that these differences could be partially rationalized from a transcription factor binding site analysis. For example, five compounds altered genes with a large enrichment of p53 binding sites in their promoter regions (p < 0.0001). Taken together, these data establish OSCs derivatized from dysoxysulfone as a novel group of compounds for development as anti-cancer agents

  3. Development and function of human innate immune cells in a humanized mouse model.

    Science.gov (United States)

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V; Teichmann, Lino L; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A Karolina; Manz, Markus G; Flavell, Richard A

    2014-04-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.

  4. Utilization of human amniotic mesenchymal cells as feeder layers to sustain propagation of human embryonic stem cells in the undifferentiated state.

    Science.gov (United States)

    Zhang, Kehua; Cai, Zhe; Li, Yang; Shu, Jun; Pan, Lin; Wan, Fang; Li, Hong; Huang, Xiaojie; He, Chun; Liu, Yanqiu; Cui, Xiaohui; Xu, Yang; Gao, Yan; Wu, Liqun; Cao, Shanxia; Li, Lingsong

    2011-08-01

    Human embryonic stem (ES) cells are usually maintained in the undifferentiated state by culturing on feeder cells layers of mouse embryonic fibroblasts (MEFs). However, MEFs are not suitable to support human ES cells used for clinical purpose because of risk of zoonosis from animal cells. Therefore, human tissue-based feeder layers need to be developed for human ES cells for clinical purpose. Hereof we report that human amniotic mesenchymal cells (hAMCs) could act as feeder cells for human ES cells, because they are easily obtained and relatively exempt from ethical problem. Like MEFs, hAMCs could act as feeder cells for human ES cells to grow well on. The self-renewal rate of human ES cells cultured on hAMCs feeders was higher than that on MEFs and human amniotic epithelial cells determined by measurement of colonial diameters and growth curve as well as cell cycle analysis. Both immunofluorescence staining and immunoblotting showed that human ES cells cultured on hAMCs expressed stem cell markers such as Oct-3/4, Sox2, and NANOG. Verified by embryoid body formation in vitro and teratoma formation in vivo, we found out that after 20 passages of culture, human ES cells grown on hAMCs feeders could still retain the potency of differentiating into three germ layers. Taken together, our data suggested hAMCs may be safe feeder cells to sustain the propagation of human ES cells in undifferentiated state for future therapeutic use.

  5. Clonal proliferation and karyotypic features of cells in bone marrow after irradiation

    International Nuclear Information System (INIS)

    Kohno, S.; Ishihara, T.

    1979-01-01

    Single stem cells in which chromosome abnormalities are induced by radiation may multiply to form the chromosomally abnormal clones of cells that may replace most of the cells in regenerating hematopoietic tissues after irradiation. It is only a limited number of karyotypes out of a variety of the cells with radiation-induced chromosome abnormalities that can persist as proliferative clones. Such clones in the bone marrows of irradiated rats were found to have aneusomic chromosome constitutions with trisomy or monosomy. This finding is contradictory to the general beliefs that the chromosomally abnormal clones surviving after irradiation would have the chromosome constitutions comparable to a normal diploid set making such clone cells selectively neutral, and that autosomally monosomic cells would not be able to compete against the cells in normal somatic tissues. The proliferation of aneusomic cells in hematopoietic tissues is a phenomenon observable in various blood disorders such as leukemia. The fact that almost all of the aneuploid clones observed possessed various chromosomal rearrangements in addition to their numerical changes appears to indicate that the chromosomal imbalance in original clones may predispose their chromosomes to non-disjunction. The process of the leukemic development of cells may require two steps: the leukemic transformation of cells and the proliferation of such transformed cells up to the manifestation of the disease. (Yamashita, S.)

  6. Signaling hierarchy regulating human endothelial cell development.

    Science.gov (United States)

    Kelly, Melissa A; Hirschi, Karen K

    2009-05-01

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these studies. Using human embryonic stem cells as a model system, we were able to reproducibly and robustly generate differentiated endothelial cells via coculture on OP9 marrow stromal cells. We found that, in contrast to studies in the mouse, bFGF and VEGF had no specific effects on the initiation of human vasculogenesis. However, exogenous Ihh promoted endothelial cell differentiation, as evidenced by increased production of cells with cobblestone morphology that coexpress multiple endothelial-specific genes and proteins, form lumens, and exhibit DiI-AcLDL uptake. Inhibition of BMP signaling using Noggin or BMP4, specifically, using neutralizing antibodies suppressed endothelial cell formation; whereas, addition of rhBMP4 to cells treated with the hedgehog inhibitor cyclopamine rescued endothelial cell development. Our studies revealed that Ihh promoted human endothelial cell differentiation from pluripotent hES cells via BMP signaling, providing novel insights applicable to modulating human endothelial cell formation and vascular regeneration for human clinical therapies.

  7. Human regulatory B cells control the TFH cell response.

    Science.gov (United States)

    Achour, Achouak; Simon, Quentin; Mohr, Audrey; Séité, Jean-François; Youinou, Pierre; Bendaoud, Boutahar; Ghedira, Ibtissem; Pers, Jacques-Olivier; Jamin, Christophe

    2017-07-01

    Follicular helper T (T FH ) cells support terminal B-cell differentiation. Human regulatory B (Breg) cells modulate cellular responses, but their control of T FH cell-dependent humoral immune responses is unknown. We sought to assess the role of Breg cells on T FH cell development and function. Human T cells were polyclonally stimulated in the presence of IL-12 and IL-21 to generate T FH cells. They were cocultured with B cells to induce their terminal differentiation. Breg cells were included in these cultures, and their effects were evaluated by using flow cytometry and ELISA. B-cell lymphoma 6, IL-21, inducible costimulator, CXCR5, and programmed cell death protein 1 (PD-1) expressions increased on stimulated human T cells, characterizing T FH cell maturation. In cocultures they differentiated B cells into CD138 + plasma and IgD - CD27 + memory cells and triggered immunoglobulin secretions. Breg cells obtained by Toll-like receptor 9 and CD40 activation of B cells prevented T FH cell development. Added to T FH cell and B-cell cocultures, they inhibited B-cell differentiation, impeded immunoglobulin secretions, and expanded Foxp3 + CXCR5 + PD-1 + follicular regulatory T cells. Breg cells modulated IL-21 receptor expressions on T FH cells and B cells, and their suppressive activities involved CD40, CD80, CD86, and intercellular adhesion molecule interactions and required production of IL-10 and TGF-β. Human Breg cells control T FH cell maturation, expand follicular regulatory T cells, and inhibit the T FH cell-mediated antibody secretion. These novel observations demonstrate a role for the Breg cell in germinal center reactions and suggest that deficient activities might impair the T FH cell-dependent control of humoral immunity and might lead to the development of aberrant autoimmune responses. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Identification of molecules derived from human fibroblast feeder cells that support the proliferation of human embryonic stem cells

    DEFF Research Database (Denmark)

    Anisimov, Sergey V.; Christophersen, Nicolaj S.; Correia, Ana S.

    2011-01-01

    The majority of human embryonic stem cell lines depend on a feeder cell layer for continuous growth in vitro, so that they can remain in an undifferentiated state. Limited knowledge is available concerning the molecular mechanisms that underlie the capacity of feeder cells to support both...... the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early...... foreskin fibroblasts to serve as feeder cells for human embryonic stem cell cultures. Among these, the C-KIT, leptin and pigment epithelium-derived factor (PEDF) genes were the most interesting candidates....

  9. Structural features of nucleoli in blood, leukemic, lymphoma and myeloma cells

    Directory of Open Access Journals (Sweden)

    K Smetana

    2010-01-01

    Full Text Available At present, it seems clear that the nucleolus is multifunctional and represents one of the key cell organelles that participate directly or indirectly in cell resting, proliferation, differentiation and maturation states, and possibly also in programmed cell death. Thus, the morphology and cytochemistry of nucleoli may represent a very useful tool not only for the evaluation of nucleolar biosynthetic activities but also for the evaluation of various cell states under physiological, experimental and pathological conditions.

  10. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    Science.gov (United States)

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS

  11. Stem cells in the human breast

    DEFF Research Database (Denmark)

    Petersen, Ole William; Polyak, Kornelia

    2010-01-01

    The origins of the epithelial cells participating in the development, tissue homeostasis, and cancer of the human breast are poorly understood. However, emerging evidence suggests a role for adult tissue-specific stem cells in these processes. In a hierarchical manner, these generate the two main...... mammary cell lineages, producing an increasing number of cells with distinct properties. Understanding the biological characteristics of human breast stem cells and their progeny is crucial in attempts to compare the features of normal stem cells and cancer precursor cells and distinguish these from...... nonprecursor cells and cells from the bulk of a tumor. A historical overview of research on human breast stem cells in primary tissue and in culture reveals the progress that has been made in this area, whereas a focus on the cell-of-origin and reprogramming that occurs during neoplastic conversion provides...

  12. The cyclin-dependent kinase inhibitor flavopiridol disrupts sodium butyrate-induced p21WAF1/CIP1 expression and maturation while reciprocally potentiating apoptosis in human leukemia cells.

    Science.gov (United States)

    Rosato, Roberto R; Almenara, Jorge A; Cartee, Leanne; Betts, Vicki; Chellappan, Srikumar P; Grant, Steven

    2002-02-01

    Interactions between the cyclin-dependent kinase inhibitor flavopiridol (FP) and the histone deacetylase inhibitor sodium butyrate (SB) have been examined in human leukemia cells (U937) in relation to differentiation and apoptosis. Whereas 1 mM of SB or 100 nM of FP minimally induced apoptosis (4% and 10%, respectively) at 24 h, simultaneous exposure of U937 cells to these agents dramatically increased cell death (e.g., approximately 60%), reflected by both morphological and Annexin/propidium iodide-staining features, procaspase 3 activation, and poly(ADP-ribose) polymerase cleavage. Similar interactions were observed in human promyelocytic (HL-60), B-lymphoblastic (Raji), and T-lymphoblastic (Jurkat) leukemia cells. Coadministration of FP opposed SB-mediated accumulation of cells in G0G1 and differentiation, reflected by reduced CD11b expression, but instead dramatically increased procaspase-3, procaspase-8, Bid, and poly(ADP-ribose) polymerase cleavage, as well as mitochondrial damage (e.g., loss of mitochondrial membrane potential and cytochrome c release). FP also blocked SB-related p21WAF1-CIP1 induction through a caspase-independent mechanism and triggered the caspase-mediated cleavage of p27KIP1 and retinoblastoma protein. The latter event was accompanied by a marked reduction in retinoblastoma protein/E2F1 complex formation. However, FP did not modify the extent of SB-associated acetylation of histones H3 and H4. Treatment of cells with FP/SB also resulted in the caspase-mediated cleavage of Bcl-2 and caspase-independent down-regulation of Mcl-1. Levels of cyclins A, D1, and E, and X-linked inhibitor of apoptosis also declined in SB/FP-treated cells. Finally, FP/SB coexposure potently induced apoptosis in two primary acute myelogenous leukemia samples. Together, these findings demonstrate that FP, when combined with SB, induces multiple perturbations in cell cycle and apoptosis regulatory proteins, which oppose leukemic cell differentiation but instead

  13. Nuclear topography of beta-like globin gene cluster in IL-3-stimulated human leukemic K-562 cells

    Czech Academy of Sciences Publication Activity Database

    Galiová-Šustáčková, Gabriela; Bártová, Eva; Kozubek, Stanislav

    2004-01-01

    Roč. 33, č. 1 (2004), s. 4-14 ISSN 1079-9796 R&D Projects: GA ČR GA301/01/0186; GA AV ČR KSK5052113; GA AV ČR IAA5004306; GA ČR GA202/04/0907; GA MŠk ME 565 Institutional research plan: CEZ:AV0Z5004920 Keywords : beta-like globin gene cluster * K-562 cells * nuclear topography Subject RIV: BO - Biophysics Impact factor: 2.549, year: 2004

  14. Human prostatic cancer cells, PC3, elaborate mitogenic activity which selectively stimulates human bone cells

    International Nuclear Information System (INIS)

    Perkel, V.S.; Mohan, S.; Herring, S.J.; Baylink, D.J.; Linkhart, T.A.

    1990-01-01

    Prostatic cancer typically produces osteoblastic metastases which are not attended by marrow fibrosis. In the present study we sought to test the hypothesis that prostatic cancer cells produce factor(s) which act selectively on human osteoblasts. Such a paracrine mechanism would explain the observed increase in osteoblasts, unaccompanied by an increase in marrow fibroblasts. To test this hypothesis we investigated the mitogenic activity released by the human prostatic tumor cell line, PC3. PC3 cells have been reported previously to produce mitogenic activity for cells that was relatively specific for rat osteoblasts compared to rat fibroblasts. However, the effects of this activity on human cells has not been examined previously. PC3-conditioned medium (CM) (5-50 micrograms CM protein/ml) stimulated human osteoblast proliferation by 200-950% yet did not stimulate human fibroblast proliferation ([3H]thymidine incorporation). PC3 CM also increased cell numbers in human osteoblast but not fibroblast cell cultures. To determine whether the osteoblast-specific mitogenic activity could be attributed to known bone growth factors, specific assays for these growth factors were performed. PC3 CM contained 10 pg insulin-like growth factor (IGF) I, less than 2 pg IGF II, 54 pg basic fibroblast growth factor, and 16 pg transforming growth factor beta/microgram CM protein. None of these growth factors alone or in combination could account for the observed osteoblast-specific PC3 cell-derived mitogenic activity. Furthermore, when 5 micrograms/ml PC3 CM was tested in combination with maximally effective concentrations of either basic fibroblast growth factor, IGF I, IGF II, or transforming growth factor beta, it produced an additive effect suggesting that PC3 CM stimulates osteoblast proliferation by a mechanism independent of these bone mitogens

  15. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    OpenAIRE

    Barkla, D. H.; Whitehead, R. H.; Foster, H.; Tutton, P. J.

    1988-01-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting f...

  16. Fc-receptors and surface immunoglobulins in cells of the hairy cell leukemia

    International Nuclear Information System (INIS)

    Rieber, E.P.; Linke, R.P.; Riethmueller, G.; Heyden, H.W. von; Waller, H.D.

    1976-01-01

    Using 125 I-labelled aggregated IgG in a quantitative assay a strong expression of Fc-receptors was found on the leukemic cells of a patient with hairy cell leukemia. The Fc-receptor activity on these cells was much higher than that on monocytes and B-lymphocytes from normal blood. Surface immunoglobulins were detected by radioautography using radioactively labelled (Fab') 2 -fragments of monospecific antibodies directed against immunoglobulin heavy chains. Prior to radioautography the cells were stained for the tartrate resistant acid phosphatase. It is found that all cells containing this enzyme bore delta-chains on their surface. On more than 90% of these cells a simultaneous expression of μ-chains was detected. γ-chains could only be demonstrated on cells which were negative for the tartrate resistant acid phosphatase; part of these cells, however, were hairy cells by morphological criteria. (orig.) [de

  17. Fc-receptors and surface immunoglobulins in cells of the hairy cell leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Rieber, E P; Linke, R P; Riethmueller, G [Tuebingen Univ. (Germany, F.R.). Abt. fuer Experimentelle Chirurgie und Immunologie; Heyden, H.W. von; Waller, H D [Tuebingen Univ. (Germany, F.R.). Abt. Innere Medizin 2

    1976-01-01

    Using /sup 125/I-labelled aggregated IgG in a quantitative assay a strong expression of Fc-receptors was found on the leukemic cells of a patient with hairy cell leukemia. The Fc-receptor activity on these cells was much higher than that on monocytes and B-lymphocytes from normal blood. Surface immunoglobulins were detected by radioautography using radioactively labelled (Fab')/sub 2/-fragments of monospecific antibodies directed against immunoglobulin heavy chains. Prior to radioautography the cells were stained for the tartrate resistant acid phosphatase. It is found that all cells containing this enzyme bore delta-chains on their surface. On more than 90% of these cells a simultaneous expression of ..mu..-chains was detected. ..gamma..-chains could only be demonstrated on cells which were negative for the tartrate resistant acid phosphatase; part of these cells, however, were hairy cells by morphological criteria.

  18. Modeling human infertility with pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Di Chen

    2017-05-01

    Full Text Available Human fertility is dependent upon the correct establishment and differentiation of the germline. This is because no other cell type in the body is capable of passing a genome and epigenome from parent to child. Terminally differentiated germline cells in the adult testis and ovary are called gametes. However, the initial specification of germline cells occurs in the embryo around the time of gastrulation. Most of our knowledge regarding the cell and molecular events that govern human germline specification involves extrapolating scientific principles from model organisms, most notably the mouse. However, recent work using next generation sequencing, gene editing and differentiation of germline cells from pluripotent stem cells has revealed that the core molecular mechanisms that regulate human germline development are different from rodents. Here, we will discuss the major molecular pathways required for human germline differentiation and how pluripotent stem cells have revolutionized our ability to study the earliest steps in human embryonic lineage specification in order to understand human fertility.

  19. C/EBPα is dispensable for the ontogeny of PD-1+ CD4+ memory T cells but restricts their expansion in an age-dependent manner.

    Directory of Open Access Journals (Sweden)

    Ida Christine Norrie

    Full Text Available Ageing and cancer is often associated with altered T cell distributions and this phenomenon has been suggested to be the main driver in the development of immunosenescence. Memory phenotype PD-1+ CD4+ T cells accumulate with age and during leukemic development, and they might account for the attenuated T cell response in elderly or diseased individuals. The transcription factor C/EBPα has been suggested to be responsible for the accumulation as well as for the senescent features of these cells including impaired TCR signaling and decreased proliferation. Thus modulating the activity of C/EBPα could potentially target PD-1+ CD4+ T cells and consequently, impede the development of immunosenescence. To exploit this possibility we tested the importance of C/EBPα for the development of age-dependent PD-1+ CD4+ T cells as well as its role in the accumulation of PD-1+ CD4+ T cells during leukemic progression. In contrast to earlier suggestions, we find that loss of C/EBPα expression in the lymphoid compartment led to an increase of PD-1+ CD4+ T cells specifically in old mice, suggesting that C/EBPα repress the accumulation of these cells in elderly by inhibiting their proliferation. Furthermore, C/EBPα-deficiency in the lymphoid compartment had no effect on leukemic development and did not affect the accumulation of PD-1+ CD4+ T cells. Thus, in addition to contradict earlier suggestions of a role for C/EBPα in immunosenescence, these findings efficiently discard the potential of using C/EBPα as a target for the alleviation of ageing/cancer-associated immunosenescence.

  20. Thrombopoietin/MPL participates in initiating and maintaining RUNX1-ETO acute myeloid leukemia via PI3K/AKT signaling.

    Science.gov (United States)

    Pulikkan, John Anto; Madera, Dmitri; Xue, Liting; Bradley, Paul; Landrette, Sean Francis; Kuo, Ya-Huei; Abbas, Saman; Zhu, Lihua Julie; Valk, Peter; Castilla, Lucio Hernán

    2012-07-26

    Oncogenic mutations in components of cytokine signaling pathways elicit ligand-independent activation of downstream signaling, enhancing proliferation and survival in acute myeloid leukemia (AML). The myeloproliferative leukemia virus oncogene, MPL, a homodimeric receptor activated by thrombopoietin (THPO), is mutated in myeloproliferative disorders but rarely in AML. Here we show that wild-type MPL expression is increased in a fraction of human AML samples expressing RUNX1-ETO, a fusion protein created by chromosome translocation t(8;21), and that up-regulation of Mpl expression in mice induces AML when coexpressed with RUNX1-ETO. The leukemic cells are sensitive to THPO, activating survival and proliferative responses. Mpl expression is not regulated by RUNX1-ETO in mouse hematopoietic progenitors or leukemic cells. Moreover, we find that activation of PI3K/AKT but not ERK/MEK pathway is a critical mediator of the MPL-directed antiapoptotic function in leukemic cells. Hence, this study provides evidence that up-regulation of wild-type MPL levels promotes leukemia development and maintenance through activation of the PI3K/AKT axis, and suggests that inhibitors of this axis could be effective for treatment of MPL-positive AML.

  1. Stability and bifurcation in a model for the dynamics of stem-like cells in leukemia under treatment

    Science.gov (United States)

    Rǎdulescu, I. R.; Cândea, D.; Halanay, A.

    2012-11-01

    A mathematical model for the dynamics of leukemic cells during treatment is introduced. Delay differential equations are used to model cells' evolution and are based on the Mackey-Glass approach, incorporating Goldie-Coldman law. Since resistance is propagated by cells that have the capacity of self-renewal, a population of stem-like cells is studied. Equilibrium points are calculated and their stability properties are investigated.

  2. Synergistic apoptosis of CML cells by buthionine sulfoximine and hydroxychavicol correlates with activation of AIF and GSH-ROS-JNK-ERK-iNOS pathway.

    Directory of Open Access Journals (Sweden)

    Avik Acharya Chowdhury

    Full Text Available BACKGROUND: Hydroxychavicol (HCH, a constituent of Piper betle leaf has been reported to exert anti-leukemic activity through induction of reactive oxygen species (ROS. The aim of the study is to optimize the oxidative stress -induced chronic myeloid leukemic (CML cell death by combining glutathione synthesis inhibitor, buthionine sulfoximine (BSO with HCH and studying the underlying mechanism. MATERIALS AND METHODS: Anti-proliferative activity of BSO and HCH alone or in combination against a number of leukemic (K562, KCL22, KU812, U937, Molt4, non-leukemic (A549, MIA-PaCa2, PC-3, HepG2 cancer cell lines and normal cell lines (NIH3T3, Vero was measured by MTT assay. Apoptotic activity in CML cell line K562 was detected by flow cytometry (FCM after staining with annexin V-FITC/propidium iodide (PI, detection of reduced mitochondrial membrane potential after staining with JC-1, cleavage of caspase- 3 and poly (ADP-ribose polymerase proteins by western blot analysis and translocation of apoptosis inducing factor (AIF by confocal microscopy. Intracellular reduced glutathione (GSH was measured by colorimetric assay using GSH assay kit. 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA and 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM were used as probes to measure intracellular increase in ROS and nitric oxide (NO levels respectively. Multiple techniques like siRNA transfection and pharmacological inhibition were used to understand the mechanisms of action. RESULTS: Non-apoptotic concentrations of BSO significantly potentiated HCH-induced apoptosis in K562 cells. BSO potentiated apoptosis-inducing activity of HCH in CML cells by caspase-dependent as well as caspase-independent but apoptosis inducing factor (AIF-dependent manner. Enhanced depletion of intracellular GSH induced by combined treatment correlated with induction of ROS. Activation of ROS- dependent JNK played a crucial role in ERK1/2 activation which subsequently induced the

  3. Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene

    Science.gov (United States)

    Catalina, Purificación; Rodríguez, René; Melen, Gustavo J.; Bueno, Clara; Arriero, Mar; García-Sánchez, Félix; Lassaletta, Alvaro; García-Sanz, Ramón

    2009-01-01

    MLL-AF4 fusion is a hallmark genetic abnormality in infant B-acute lymphoblastic leukemia (B-ALL) known to arise in utero. The cellular origin of leukemic fusion genes during human development is difficult to ascertain. The bone marrow (BM) microenvironment plays an important role in the pathogenesis of several hematological malignances. BM mesenchymal stem cells (BM-MSC) from 38 children diagnosed with cytogenetically different acute leukemias were screened for leukemic fusion genes. Fusion genes were absent in BM-MSCs of childhood leukemias carrying TEL-AML1, BCR-ABL, AML1-ETO, MLL-AF9, MLL-AF10, MLL-ENL or hyperdiploidy. However, MLL-AF4 was detected and expressed in BM-MSCs from all cases of MLL-AF4+ B-ALL. Unlike leukemic blasts, MLL-AF4+ BM-MSCs did not display monoclonal Ig gene rearrangements. Endogenous or ectopic expression of MLL-AF4 exerted no effect on MSC culture homeostasis. These findings suggest that MSCs may be in part tumor-related, highlighting an unrecognized role of the BM milieu on the pathogenesis of MLL-AF4+ B-ALL. MLL-AF4 itself is not sufficient for MSC transformation and the expression of MLL-AF4 in MSCs is compatible with a mesenchymal phenotype, suggesting a differential impact in the hematopoietic system and mesenchyme. The absence of monoclonal rearrangements in MLL-AF4+ BM-MSCs precludes the possibility of cellular plasticity or de-differentiation of B-ALL blasts and suggests that MLL-AF4 might arise in a population of prehematopoietic precursors. PMID:19995953

  4. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies.

    Science.gov (United States)

    Png, Yi Tian; Vinanica, Natasha; Kamiya, Takahiro; Shimasaki, Noriko; Coustan-Smith, Elaine; Campana, Dario

    2017-11-28

    Effective immunotherapies for T-cell malignancies are lacking. We devised a novel approach based on chimeric antigen receptor (CAR)-redirected T lymphocytes. We selected CD7 as a target because of its consistent expression in T-cell acute lymphoblastic leukemia (T-ALL), including the most aggressive subtype, early T-cell precursor (ETP)-ALL. In 49 diagnostic T-ALL samples (including 14 ETP-ALL samples), median CD7 expression was >99%; CD7 expression remained high at relapse (n = 14), and during chemotherapy (n = 54). We targeted CD7 with a second-generation CAR (anti-CD7-41BB-CD3ζ), but CAR expression in T lymphocytes caused fratricide due to the presence of CD7 in the T cells themselves. To downregulate CD7 and control fratricide, we applied a new method (protein expression blocker [PEBL]), based on an anti-CD7 single-chain variable fragment coupled with an intracellular retention domain. Transduction of anti-CD7 PEBL resulted in virtually instantaneous abrogation of surface CD7 expression in all transduced T cells; 2.0% ± 1.7% were CD7 + vs 98.1% ± 1.5% of mock-transduced T cells (n = 5; P < .0001). PEBL expression did not impair T-cell proliferation, interferon-γ and tumor necrosis factor-α secretion, or cytotoxicity, and eliminated CAR-mediated fratricide. PEBL-CAR T cells were highly cytotoxic against CD7 + leukemic cells in vitro and were consistently more potent than CD7 + T cells spared by fratricide. They also showed strong anti-leukemic activity in cell line- and patient-derived T-ALL xenografts. The strategy described in this study fits well with existing clinical-grade cell manufacturing processes and can be rapidly implemented for the treatment of patients with high-risk T-cell malignancies.

  5. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Directory of Open Access Journals (Sweden)

    Hayato Fukusumi

    2016-01-01

    Full Text Available Human neural progenitor cells (hNPCs have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi. Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  6. 3 CFR - Guidelines for Human Stem Cell Research

    Science.gov (United States)

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Guidelines for Human Stem Cell Research Presidential Documents Other Presidential Documents Memorandum of July 30, 2009 Guidelines for Human Stem Cell Research..., scientifically worthy human stem cell research, including human embryonic stem cell research, to the extent...

  7. Soluble endothelial protein C receptor (sEPCR) is likely a biomarker of cancer-associated hypercoagulability in human hematologic malignancies

    International Nuclear Information System (INIS)

    Ducros, Elodie; Mirshahi, Shah Soltan; Faussat, Anne-Marie; Mirshahi, Pezhman; Dimicoli, Sophie; Tang, Ruoping; Pardo, Julia; Ibrahim, Jdid; Marie, Jean-Pierre; Therwath, Amu; Soria, Jeannette; Mirshahi, Massoud

    2012-01-01

    Elevated plasma level of soluble endothelial protein C receptor (sEPCR) may be an indicator of thrombotic risk. The present study aims to correlate leukemia-associated hypercoagulability to high level plasma sEPCR and proposes its measurement in routine clinical practice. EPCR expressions in leukemic cell lines were determined by flow cytometry, immunocytochemistry, and reverse transcription polymerase chain reaction (RT-PCR). EPCR gene sequence of a candidate cell line HL-60 was also determined. Plasma samples (n = 76) and bone marrow aspirates (n = 72) from 148 patients with hematologic malignancies and 101 healthy volunteers were analyzed by enzyme-linked immunosorbent assay (ELISA) via a retrospective study for sEPCR and D-dimer. All leukemic cell lines were found to express EPCR. Also, HL-60 EPCR gene sequence showed extensive similarities with the endothelial reference gene. All single nucleotide polymorphisms (SNPs) originally described and some new SNPs were revealed in the promoter and intronic regions. Among these patients 67% had plasma sEPCR level higher than the controls (100 ± 28 ng/mL), wherein 16.3% patients had experienced a previous thrombotic event. These patients were divided into: group-1 (n = 45) with amount of plasmatic sEPCR below 100 ng/mL, group-2 (n = 45) where the concentration of sEPCR was between 100 and 200, and group-3 (n = 20) higher than 200 ng/mL. The numbers of thrombotic incidence recorded in each group were four, six, and eight, respectively. These results reveal that EPCR is expressed not only by a wide range of human malignant hematological cells but also the detection of plasma sEPCR levels provides a powerful insight into thrombotic risk assessment in cancer patients, especially when it surpasses 200 ng/mL

  8. Current and Emerging Therapeutics for Cutaneous T-Cell Lymphoma: Histone Deacetylase Inhibitors

    OpenAIRE

    Annabelle L. Rodd; Katherine Ververis; Tom C. Karagiannis

    2012-01-01

    Cutaneous T-cell lymphoma is a term that encompasses a spectrum of non-Hodgkin’s T-cell lymphomas with primary manifestations in the skin. It describes a heterogeneous group of neoplasms that are characterised by an accumulation of malignant T cells of the CD4 phenotype that have the propensity to home and accumulate in the skin, lymph nodes, and peripheral blood. The two most common variants of cutaneous T-cell lymphoma include mycosis fungoides and the leukemic variant, the Sézary syndrome....

  9. In vitro proliferation of adult human beta-cells.

    Directory of Open Access Journals (Sweden)

    Sabine Rutti

    Full Text Available A decrease in functional beta-cell mass is a key feature of type 2 diabetes. Glucagon-like peptide 1 (GLP-1 analogues induce proliferation of rodent beta-cells. However, the proliferative capacity of human beta-cells and its modulation by GLP-1 analogues remain to be fully investigated. We therefore sought to quantify adult human beta-cell proliferation in vitro and whether this is affected by the GLP-1 analogue liraglutide.Human islets from 7 adult cadaveric organ donors were dispersed into single cells. Beta-cells were purified by FACS. Non-sorted cells and the beta-cell enriched ("beta-cells" population were plated on extracellular matrix from rat (804G and human bladder carcinoma cells (HTB9 or bovine corneal endothelial ECM (BCEC. Cells were maintained in culture+/-liraglutide for 4 days in the presence of BrdU.Rare human beta-cell proliferation could be observed either in the purified beta-cell population (0.051±0.020%; 22 beta-cells proliferating out of 84'283 beta-cells counted or in the non-sorted cell population (0.055±0.011%; 104 proliferating beta-cells out of 232'826 beta-cells counted, independently of the matrix or the culture conditions. Liraglutide increased human beta-cell proliferation on BCEC in the non-sorted cell population (0.082±0.034% proliferating beta-cells vs. 0.017±0.008% in control, p<0.05.These results indicate that adult human beta-cell proliferation can occur in vitro but remains an extremely rare event with these donors and particular culture conditions. Liraglutide increases beta-cell proliferation only in the non-sorted cell population and only on BCEC. However, it cannot be excluded that human beta-cells may proliferate to a greater extent in situ in response to natural stimuli.

  10. Graft-versus-Leukemia Effect Following Hematopoietic Stem Cell Transplantation for Leukemia

    Directory of Open Access Journals (Sweden)

    Anne M. Dickinson

    2017-06-01

    Full Text Available The success of hematopoietic stem cell transplantation (HSCT lies with the ability of the engrafting immune system to remove residual leukemia cells via a graft-versus-leukemia effect (GvL, caused either spontaneously post-HSCT or via donor lymphocyte infusion. GvL effects can also be initiated by allogenic mismatched natural killer cells, antigen-specific T cells, and activated dendritic cells of leukemic origin. The history and further application of this GvL effect and the main mechanisms will be discussed and reviewed in this chapter.

  11. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation: Comprehensive progress report, January 1986--June 1988

    International Nuclear Information System (INIS)

    Rowley, J.D.

    1988-06-01

    I purchased one of the few available prototypes of the pulse field gel electrophoresis (PFGE) apparatus. We used PFGE and its various modifications to map the human Abelson protooncogene (ABL) and to show that the two alternative first exons (Ia and Ib) are separated by at least 200 kilobases (kb). This has provided the first evidence that alternative splicing from exon Ib to the common splice acceptor site (exon II) could occur over such very large distances. We are actively using vertical field gel electrophoresis, a modification of PFGE, for mapping various DNA probes on chromosome 5. Another major advance has been the development of the polymerase chain reaction (PCR). We are currently using this to define the breakpoints in the BCR gene in the 9; 22 translocation in chronic myeloid leukemia (CML) and in Ph 1 -positive acute lymphoblastic leukemia (ALL). I had expected to be able to describe major progress in cloning the chromosome translocation breakpoints in ANLL, and this has not occurred. Our laboratory knows how to solve the problem. We successfully cloned a new translocation breakpoint in B cell chronic lymphatic leukemia involving Nos. 14 and 19. 22 refs., 2 figs., 5 tabs

  12. Human innate lymphoid cells.

    Science.gov (United States)

    Mjösberg, Jenny; Spits, Hergen

    2016-11-01

    Innate lymphoid cells (ILCs) are increasingly acknowledged as important mediators of immune homeostasis and pathology. ILCs act as early orchestrators of immunity, responding to epithelium-derived signals by expressing an array of cytokines and cell-surface receptors, which shape subsequent immune responses. As such, ILCs make up interesting therapeutic targets for several diseases. In patients with allergy and asthma, group 2 innate lymphoid cells produce high amounts of IL-5 and IL-13, thereby contributing to type 2-mediated inflammation. Group 3 innate lymphoid cells are implicated in intestinal homeostasis and psoriasis pathology through abundant IL-22 production, whereas group 1 innate lymphoid cells are accumulated in chronic inflammation of the gut (inflammatory bowel disease) and lung (chronic obstructive pulmonary disease), where they contribute to IFN-γ-mediated inflammation. Although the ontogeny of mouse ILCs is slowly unraveling, the development of human ILCs is far from understood. In addition, the growing complexity of the human ILC family in terms of previously unrecognized functional heterogeneity and plasticity has generated confusion within the field. Here we provide an updated view on the function and plasticity of human ILCs in tissue homeostasis and disease. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Some Ethical Concerns About Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Zheng, Yue Liang

    2016-10-01

    Human induced pluripotent stem cells can be obtained from somatic cells, and their derivation does not require destruction of embryos, thus avoiding ethical problems arising from the destruction of human embryos. This type of stem cell may provide an important tool for stem cell therapy, but it also results in some ethical concerns. It is likely that abnormal reprogramming occurs in the induction of human induced pluripotent stem cells, and that the stem cells generate tumors in the process of stem cell therapy. Human induced pluripotent stem cells should not be used to clone human beings, to produce human germ cells, nor to make human embryos. Informed consent should be obtained from patients in stem cell therapy.

  14. The rarity of ALDH(+) cells is the key to separation of normal versus leukemia stem cells by ALDH activity in AML patients.

    Science.gov (United States)

    Hoang, Van T; Buss, Eike C; Wang, Wenwen; Hoffmann, Isabel; Raffel, Simon; Zepeda-Moreno, Abraham; Baran, Natalia; Wuchter, Patrick; Eckstein, Volker; Trumpp, Andreas; Jauch, Anna; Ho, Anthony D; Lutz, Christoph

    2015-08-01

    To understand the precise disease driving mechanisms in acute myeloid leukemia (AML), comparison of patient matched hematopoietic stem cells (HSC) and leukemia stem cells (LSC) is essential. In this analysis, we have examined the value of aldehyde dehydrogenase (ALDH) activity in combination with CD34 expression for the separation of HSC from LSC in 104 patients with de novo AML. The majority of AML patients (80 out of 104) had low percentages of cells with high ALDH activity (ALDH(+) cells; cells (≥1.9%; ALDH-numerous AML). In patients with ALDH-rare AML, normal HSC could be separated by their CD34(+) ALDH(+) phenotype, whereas LSC were exclusively detected among CD34(+) ALDH(-) cells. For patients with ALDH-numerous AML, the CD34(+) ALDH(+) subset consisted mainly of LSC and separation from HSC was not feasible. Functional analyses further showed that ALDH(+) cells from ALDH-numerous AML were quiescent, refractory to ARA-C treatment and capable of leukemic engraftment in a xenogenic mouse transplantation model. Clinically, resistance to chemotherapy and poor long-term outcome were also characteristic for patients with ALDH-numerous AML providing an additional risk-stratification tool. The difference in spectrum and relevance of ALDH activity in the putative LSC populations demonstrates, in addition to phenotypic and genetic, also functional heterogeneity of leukemic cells and suggests divergent roles for ALDH activity in normal HSC versus LSC. By acknowledging these differences our study provides a new and useful tool for prospective identification of AML cases in which separation of HSC from LSC is possible. © 2014 UICC.

  15. Comprehensive evaluation of leukocyte lineage derived from human hematopoietic cells in humanized mice.

    Science.gov (United States)

    Takahashi, Masayuki; Tsujimura, Noriyuki; Otsuka, Kensuke; Yoshino, Tomoko; Mori, Tetsushi; Matsunaga, Tadashi; Nakasono, Satoshi

    2012-04-01

    Recently, humanized animals whereby a part of the animal is biologically engineered using human genes or cells have been utilized to overcome interspecific differences. Herein, we analyzed the detail of the differentiation states of various human leukocyte subpopulations in humanized mouse and evaluated comprehensively the similarity of the leukocyte lineage between humanized mice and humans. Humanized mice were established by transplanting human CD34(+) cord blood cells into irradiated severely immunodeficient NOD/Shi-scid/IL2Rγ(null) (NOG) mice, and the phenotypes of human cells contained in bone marrow, thymus, spleen and peripheral blood from the mice were analyzed at monthly intervals until 4 months after cell transplantation. The analysis revealed that transplanted human hematopoietic stem cells via the caudal vein homed and engrafted themselves successfully at the mouse bone marrow. Subsequently, the differentiated leukocytes migrated to the various tissues. Almost all of the leukocytes within the thymus were human cells. Furthermore, analysis of the differentiation states of human leukocytes in various tissues and organs indicated that it is highly likely that the human-like leukocyte lineage can be developed in mice. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. NK-like homeodomain proteins activate NOTCH3-signaling in leukemic T-cells

    International Nuclear Information System (INIS)

    Nagel, Stefan; Scherr, Michaela; MacLeod, Roderick AF; Venturini, Letizia; Przybylski, Grzegorz K; Grabarczyk, Piotr; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; Schmidt, Christian A; Drexler, Hans G

    2009-01-01

    Homeodomain proteins control fundamental cellular processes in development and in cancer if deregulated. Three members of the NK-like subfamily of homeobox genes (NKLs), TLX1, TLX3 and NKX2-5, are implicated in T-cell acute lymphoblastic leukemia (T-ALL). They are activated by particular chromosomal aberrations. However, their precise function in leukemogenesis is still unclear. Here we screened further NKLs in 24 T-ALL cell lines and identified the common expression of MSX2. The subsequent aim of this study was to analyze the role of MSX2 in T-cell differentiation which may be disturbed by oncogenic NKLs. Specific gene activity was examined by quantitative real-time PCR, and globally by expression profiling. Proteins were analyzed by western blot, immuno-cytology and immuno-precipitation. For overexpression studies cell lines were transduced by lentiviruses. Quantification of MSX2 mRNA in primary hematopoietic cells demonstrated higher levels in CD34+ stem cells as compared to peripheral blood cells and mature CD3+ T-cells. Furthermore, analysis of MSX2 expression levels in T-cell lines after treatment with core thymic factors confirmed their involvement in regulation. These results indicated that MSX2 represents an hematopoietic NKL family member which is downregulated during T-cell development and may functionally substituted by oncogenic NKLs. For functional analysis JURKAT cells were lentivirally transduced, overexpressing either MSX2 or oncogenic TLX1 and NKX2-5, respectively. These cells displayed transcriptional activation of NOTCH3-signaling, including NOTCH3 and HEY1 as analyzed by gene expression profiling and quantitative RT-PCR, and consistently attenuated sensitivity to gamma-secretase inhibitor as analyzed by MTT-assays. Furthermore, in addition to MSX2, both TLX1 and NKX2-5 proteins interacted with NOTCH-pathway repressors, SPEN/MINT/SHARP and TLE1/GRG1, representing a potential mechanism for (de)regulation. Finally, elevated expression of NOTCH3

  17. Efficient and Fast Differentiation of Human Neural Stem Cells from Human Embryonic Stem Cells for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xinxin Han

    2017-01-01

    Full Text Available Stem cell-based therapies have been used for repairing damaged brain tissue and helping functional recovery after brain injury. Aberrance neurogenesis is related with brain injury, and multipotential neural stem cells from human embryonic stem (hES cells provide a great promise for cell replacement therapies. Optimized protocols for neural differentiation are necessary to produce functional human neural stem cells (hNSCs for cell therapy. However, the qualified procedure is scarce and detailed features of hNSCs originated from hES cells are still unclear. In this study, we developed a method to obtain hNSCs from hES cells, by which we could harvest abundant hNSCs in a relatively short time. Then, we examined the expression of pluripotent and multipotent marker genes through immunostaining and confirmed differentiation potential of the differentiated hNSCs. Furthermore, we analyzed the mitotic activity of these hNSCs. In this report, we provided comprehensive features of hNSCs and delivered the knowledge about how to obtain more high-quality hNSCs from hES cells which may help to accelerate the NSC-based therapies in brain injury treatment.

  18. Haematopoietic stem and progenitor cells from human pluripotent stem cells

    Science.gov (United States)

    Sugimura, Ryohichi; Jha, Deepak Kumar; Han, Areum; Soria-Valles, Clara; da Rocha, Edroaldo Lummertz; Lu, Yi-Fen; Goettel, Jeremy A.; Serrao, Erik; Rowe, R. Grant; Malleshaiah, Mohan; Wong, Irene; Sousa, Patricia; Zhu, Ted N.; Ditadi, Andrea; Keller, Gordon; Engelman, Alan N.; Snapper, Scott B.; Doulatov, Sergei; Daley, George Q.

    2018-01-01

    A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders. PMID:28514439

  19. DNA fragmentation and cell death mediated by T cell antigen receptor/CD3 complex on a leukemia T cell line.

    Science.gov (United States)

    Takahashi, S; Maecker, H T; Levy, R

    1989-10-01

    An anti-T cell receptor (TcR) monoclonal antibody (mAb), LC4, directed against a human leukemic T cell line, SUP-T13, caused DNA fragmentation ("apoptosis") and cell death upon binding to this cell line. Cross-linking of receptor molecules was necessary for this effect since F(ab')2, but not Fab', fragments of LC4 could induce cell death. Five anti-CD3 mAb tested also caused apoptosis, but only when they were presented on a solid phase. Interestingly, soluble anti-CD3 mAb induced calcium flux and had an additive effect on the calcium flux and interleukin 2 receptor expression induced by LC4, but these anti-CD3 mAb reversed the growth inhibition and apoptosis caused by LC4. The calcium ionophore A23187, but not the protein kinase C activator phorbol 12-myristate 13-acetate (PMA), also induced apoptosis, suggesting that protein kinase C activation alone does not cause apoptosis, although PMA is growth inhibitory. These results suggest that two distinct biological phenomena can accompany stimulation of the TcR/CD3 complex. In both cases, calcium flux and interleukin 2 receptor expression is induced, but only in one case is apoptosis and cell death seen. The signal initiating apoptosis can be selectively prevented by binding CD3 portion of the receptor in this cell line. This difference in signals mediated by the TcR/CD3 complex may be important in explaining the process of thymic selection, as well as in choosing anti-TcR mAb for therapeutic use.

  20. Monoclonal antibody studies in B(non-T)-cell malignancies.

    Science.gov (United States)

    Shimoyama, M; Minato, K; Tobinai, K; Nagai, M; Hirose, M

    1983-09-01

    Tumor cells suspensions prepared from 129 B- or non-T cell malignancies were investigated with a panel of 10 monoclonal antibodies and conventional surface marker techniques. Surface immunoglobulin (sIg) and B1 antigen proved to be the most useful markers for B-cell lineage. Six major subtypes of acute lymphoblastic leukemia (ALL) of non-T cell nature are now recognized by these immunological techniques, including null-ALL, Ia-ALL, lymphoid stem cell ALL, pre-pre-B ALL, pre-B ALL and B-ALL. In cases of chronic leukemias and lymphomas of non-T cell nature, 80% of the tumor was defined by sIg and 88% by B1 antigen as definitely of B-cell lineage. The clonal character was also defined in 68% of the tumor on the basis of the detection of predominant single light chain in sIg. Ia-like antigen was detected in almost all cases (96%). Leukemic cells from all cases of chronic lymphocytic leukemia (CLL), chronic lymphosarcoma cell leukemia (CLsCL) and hairy cell leukemia (HCL) reacted with OKIa1 and anti-B1, and leukemic cells from most of them with anti-pan T monoclonal antibody (10.2). In more than half of CLL and CLsCL, leukemic cells were reactive with J5, OKM1, 9.6 and OKT8, but not with OKT3, OKT4 and OKT6. HCL cells had almost the same reactivity with these monoclonal antibodies as CLL and CLsCL cells except that J5 remained unreactive. These results indicated that Japanese CLL, CLsCL and HCL were different from Western ones at least with respect to surface marker characteristics. In cases of lymphomas, heavy chains of sIg were expressed in polyclonal fashion, especially in follicular lymphoma and diffuse lymphomas of medium sized cell type and large cell type, indicating that lymphomas of these types may originate from follicular center cells of the heavy chain switching stage. Anti-T monoclonals were also reactive with lymphoma cells. In about half of follicular lymphomas and diffuse lymphomas of the medium sized cell type, lymphoma cells reacted with 10.2, and less

  1. Satellite cells in human skeletal muscle plasticity

    Directory of Open Access Journals (Sweden)

    Tim eSnijders

    2015-10-01

    Full Text Available Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodelling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodelling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodelling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  2. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  3. Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Sugiyama-Nakagiri, Yoriko; Fujimura, Tsutomu; Moriwaki, Shigeru

    2016-01-01

    The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders.

  4. Enhancers of Polycomb EPC1 and EPC2 sustain the oncogenic potential of MLL leukemia stem cells

    Science.gov (United States)

    Huang, Xu; Spencer, Gary J; Lynch, James T; Ciceri, Filippo; Somerville, Tim D D; Somervaille, Tim C P

    2013-01-01

    Through a targeted knockdown (KD) screen of chromatin regulatory genes we identified the EP400 complex components EPC1 and EPC2 as critical oncogenic co-factors in acute myeloid leukemia (AML). EPC1 and EPC2 were required for the clonogenic potential of human AML cells of multiple molecular subtypes. Focusing on MLL-mutated AML as an exemplar, Epc1 or Epc2 KD induced apoptosis of murine MLL-AF9 AML cells and abolished leukemia stem cell potential. By contrast, normal hematopoietic stem and progenitor cells (HSPC) were spared. Similar selectivity was observed for human primary AML cells versus normal CD34+ HSPC. In keeping with these distinct functional consequences, Epc1 or Epc2 KD induced divergent transcriptional consequences in murine MLL-AF9 granulocyte-macrophage progenitor-like (GMP) cells versus normal GMP, with a signature of increased MYC activity in leukemic but not normal cells. This was caused by accumulation of MYC protein and was also observed following KD of other EP400 complex genes. Pharmacological inhibition of MYC:MAX dimerization, or concomitant MYC KD, reduced apoptosis following EPC1 KD, linking the accumulation of MYC to cell death. Therefore EPC1 and EPC2 are components of a complex which directly or indirectly serves to prevent MYC accumulation and AML cell apoptosis, thus sustaining oncogenic potential. PMID:24166297

  5. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    International Nuclear Information System (INIS)

    Ramasharma, K.; Li, C.H.

    1987-01-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and α-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin

  6. Identification of the Molecular Mechanisms Responsible for the Inhibition of Homing of AML Cells Triggered by CD44-Ligation

    KAUST Repository

    Al-Jifri, Ablah

    2011-08-03

    Acute Myeloid Leukemia (AML) is a cancerous disease that is defined by the inability to produce functional and mature blood cells, as well as the uncontrolled proliferation due to failure to undergo apoptosis of abnormal cells. The most common therapy for Leukemia, chemotherapy, has proven only to be partially efficient since it does not target the leukemic stem cells (LSCs) that have a high self-renewal and repopulation capacity and result in remission of the disease. Therefore targeting LSCs will provide more efficient therapy. One way to achieve this would be to inhibit their homing capability to the bone marrow. It has recently been shown that CD44, an adhesive molecule, plays a crucial role in cell trafficking and lodgement of both normal and leukemic stem cells. More importantly anti-CD44 monoclonal antibodies, along with its ability to induce differentiation of leukemic blasts, it inhibits specifically the homing capacity of LSCs to their micro-environmental niches. However, these molecular mechanisms that underlie the inhibition of homing have yet to be determined. To address these questions we conducted in vitro adhesion and blot-rolling assays to analyze the adherence and rolling capacity of these LSCs before and after treatment with anti-CD44 monoclonal antibody (mAb). Since glycosyltransferases play a crucial role in post translational carbohydrate decoration on adhesion molecules, we analyzed the expression (using quantitative PCR) of the different glycosyltransferases expressed in LSC\\'s before and after CD44 ligation (mAb treatment). Furthermore, we analyzed differentiation by flow cytometric analysis of treated and non-treated LSC\\'s. We anticipate that our results will set forth new insights into targeted therapies for AML.

  7. The contribution of human/non-human animal chimeras to stem cell research

    Directory of Open Access Journals (Sweden)

    Sonya Levine

    2017-10-01

    Full Text Available Chimeric animals are made up of cells from two separate zygotes. Human/non-human animal chimeras have been used for a number of research purposes, including human disease modeling. Pluripotent stem cell (PSC research has relied upon the chimera approach to examine the developmental potential of stem cells, to determine the efficacy of cell replacement therapies, and to establish a means of producing human organs. Based on ethical issues, this work has faced pushback from various sources including funding agencies. We discuss here the essential role these studies have played, from gaining a better understanding of human biology to providing a stepping stone to human disease treatments. We also consider the major ethical issues, as well as the current status of support for this work in the United States.

  8. Leu-9 (CD 7) positivity in acute leukemias: a marker of T-cell lineage?

    Science.gov (United States)

    Ben-Ezra, J; Winberg, C D; Wu, A; Rappaport, H

    1987-01-01

    Monoclonal antibody Leu-9 (CD 7) has been reported to be a sensitive and specific marker for T-cell lineage in leukemic processes, since it is positive in patients whose leukemic cells fail to express other T-cell antigens. To test whether Leu-9 is indeed specific for T-cell leukemias, we examined in detail 10 cases of acute leukemia in which reactions were positive for Leu-9 and negative for other T-cell-associated markers including T-11, Leu-1, T-3, and E-rosettes. Morphologically and cytochemically, 2 of these 10 leukemias were classified as lymphoblastic, 4 as myeloblastic, 2 as monoblastic, 1 as megakaryoblastic, and 1 as undifferentiated. The case of acute megakaryoblastic leukemia is the first reported case to be Leu-9 positive. None of the 10 were TdT positive. Of six cases (two monoblastic, one lymphoblastic, one myeloblastic, one megakaryoblastic, and one undifferentiated) in which we evaluated for DNA gene rearrangements, only one, a peroxidase-positive leukemia, showed a novel band on study of the T-cell-receptor beta-chain gene. We therefore conclude that Leu-9 is not a specific marker to T-cell lineage and that, in the absence of other supporting data, Leu-9 positivity should not be used as the sole basis of classifying an acute leukemia as being T-cell derived.

  9. Cell sources for in vitro human liver cell culture models

    Science.gov (United States)

    Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-01-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro. However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro. Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595

  10. Design of a Single-Cell Positioning Controller Using Electroosmotic Flow and Image Processing

    Directory of Open Access Journals (Sweden)

    Jhong-Yin Chen

    2013-05-01

    Full Text Available The objective of the current research was not only to provide a fast and automatic positioning platform for single cells, but also improved biomolecular manipulation techniques. In this study, an automatic platform for cell positioning using electroosmotic flow and image processing technology was designed. The platform was developed using a PCI image acquisition interface card for capturing images from a microscope and then transferring them to a computer using human-machine interface software. This software was designed by the Laboratory Virtual Instrument Engineering Workbench, a graphical language for finding cell positions and viewing the driving trace, and the fuzzy logic method for controlling the voltage or time of an electric field. After experiments on real human leukemic cells (U-937, the success of the cell positioning rate achieved by controlling the voltage factor reaches 100% within 5 s. A greater precision is obtained when controlling the time factor, whereby the success rate reaches 100% within 28 s. Advantages in both high speed and high precision are attained if these two voltage and time control methods are combined. The control speed with the combined method is about 5.18 times greater than that achieved by the time method, and the control precision with the combined method is more than five times greater than that achieved by the voltage method.

  11. Human adipose stromal cells expanded in human serum promote engraftment of human peripheral blood hematopoietic stem cells in NOD/SCID mice

    International Nuclear Information System (INIS)

    Kim, Su Jin; Cho, Hyun Hwa; Kim, Yeon Jeong; Seo, Su Yeong; Kim, Han Na; Lee, Jae Bong; Kim, Jae Ho; Chung, Joo Seop; Jung, Jin Sup

    2005-01-01

    Human mesenchymal stem cells (hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles, and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle, and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum (FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. In this study, we cultured human adipose stromal cells (hADSC) and bone marrow stroma cells (HBMSC) in human serum (HS) during their isolation and expansion, and demonstrated that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34(+) cells mobilized from bone marrow in NOD/SCID mice. Our results indicate that hADSC and hBMSC cultured in HS can be used for clinical trials of cell and gene therapies, including promotion of engraftment after allogeneic HSC transplantation

  12. Ontogeny of human IgE?expressing B cells and plasma cells

    OpenAIRE

    Ramadani, F.; Bowen, H.; Upton, N.; Hobson, P. S.; Chan, Y.?C.; Chen, J.?B.; Chang, T. W.; McDonnell, J. M.; Sutton, B. J.; Fear, D. J.; Gould, H. J.

    2016-01-01

    BACKGROUND: IgE-expressing (IgE+) plasma cells (PCs) provide a continuous source of allergen specific IgE that is central to allergic responses. The extreme sparsity of IgE+ cells in vivo has confined their study almost entirely to mouse models.OBJECTIVE: To characterise the development pathway of human IgE+ PCs and to determine the ontogeny of human IgE+ PCs.METHODS: To generate human IgE+ cells we cultured tonsil B cells with IL-4 and anti-CD40. Using FACS and RT-PCR we examined the phenoty...

  13. Development of hematopoietic stem and progenitor cells from human pluripotent stem cells.

    Science.gov (United States)

    Chen, Tong; Wang, Fen; Wu, Mengyao; Wang, Zack Z

    2015-07-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), provide a new cell source for regenerative medicine, disease modeling, drug discovery, and preclinical toxicity screening. Understanding of the onset and the sequential process of hematopoietic cells from differentiated hPSCs will enable the achievement of personalized medicine and provide an in vitro platform for studying of human hematopoietic development and disease. During embryogenesis, hemogenic endothelial cells, a specified subset of endothelial cells in embryonic endothelium, are the primary source of multipotent hematopoietic stem cells. In this review, we discuss current status in the generation of multipotent hematopoietic stem and progenitor cells from hPSCs via hemogenic endothelial cells. We also review the achievements in direct reprogramming from non-hematopoietic cells to hematopoietic stem and progenitor cells. Further characterization of hematopoietic differentiation in hPSCs will improve our understanding of blood development and expedite the development of hPSC-derived blood products for therapeutic purpose. © 2015 Wiley Periodicals, Inc.

  14. Human stem cells for craniomaxillofacial reconstruction.

    Science.gov (United States)

    Jalali, Morteza; Kirkpatrick, William Niall Alexander; Cameron, Malcolm Gregor; Pauklin, Siim; Vallier, Ludovic

    2014-07-01

    Human stem cell research represents an exceptional opportunity for regenerative medicine and the surgical reconstruction of the craniomaxillofacial complex. The correct architecture and function of the vastly diverse tissues of this important anatomical region are critical for life supportive processes, the delivery of senses, social interaction, and aesthetics. Craniomaxillofacial tissue loss is commonly associated with inflammatory responses of the surrounding tissue, significant scarring, disfigurement, and psychological sequelae as an inevitable consequence. The in vitro production of fully functional cells for skin, muscle, cartilage, bone, and neurovascular tissue formation from human stem cells, may one day provide novel materials for the reconstructive surgeon operating on patients with both hard and soft tissue deficit due to cancer, congenital disease, or trauma. However, the clinical translation of human stem cell technology, including the application of human pluripotent stem cells (hPSCs) in novel regenerative therapies, faces several hurdles that must be solved to permit safe and effective use in patients. The basic biology of hPSCs remains to be fully elucidated and concerns of tumorigenicity need to be addressed, prior to the development of cell transplantation treatments. Furthermore, functional comparison of in vitro generated tissue to their in vivo counterparts will be necessary for confirmation of maturity and suitability for application in reconstructive surgery. Here, we provide an overview of human stem cells in disease modeling, drug screening, and therapeutics, while also discussing the application of regenerative medicine for craniomaxillofacial tissue deficit and surgical reconstruction.

  15. Digitalization of a non-irradiated acute myeloid leukemia model.

    Science.gov (United States)

    Li, Rudong; Cheng, Hui; Cheng, Tao; Liu, Lei

    2016-08-26

    Computer-aided, interdisciplinary researches for biomedicine have valuable prospects, as digitalization of experimental subjects provide opportunities for saving the economic costs of researches, as well as promoting the acquisition of knowledge. Acute myeloid leukemia (AML) is intensively studied over long periods of time. Till nowaday, most of the studies primarily focus on the leukemic cells rather than how normal hematopoietic cells are affected by the leukemic environment. Accordingly, the conventional animal models for AML are mostly myeloablated as leukemia can be induced with short latency and complete penetrance. Meanwhile, most previous computational models focus on modeling the leukemic cells but not the multi-tissue leukemic body resided by both leukemic and normal blood cells. Recently, a non-irradiated AML mouse model has been established; therefore, normal hematopoietic cells can be investigated during leukemia development. Experiments based on the non-irradiated animal model have monitored the kinetics of leukemic and (intact) hematopoietic cells in multiple tissues simultaneously; and thus a systematic computational model for the multi-tissue hematopoiesis under leukemia has become possible. In the present work, we adopted the modeling methods in previous works, but aimed to model the tri-tissue (peripheral blood, spleen and bone marrow) dynamics of hematopoiesis under leukemia. The cell kinetics generated from the non-irradiated experimental model were used as the reference data for modeling. All mathematical formulas were systematically enumerated, and model parameters were estimated via numerical optimization. Multiple validations by additional experimental data were then conducted for the established computational model. In the results, we illustrated that the important fact of functional depression of hematopoietic stem/progenitor cells (HSC/HPC) in leukemic bone marrow (BM), which must require additional experiments to be established, could

  16. The contribution of human/non-human animal chimeras to stem cell research.

    Science.gov (United States)

    Levine, Sonya; Grabel, Laura

    2017-10-01

    Chimeric animals are made up of cells from two separate zygotes. Human/non-human animal chimeras have been used for a number of research purposes, including human disease modeling. Pluripotent stem cell (PSC) research has relied upon the chimera approach to examine the developmental potential of stem cells, to determine the efficacy of cell replacement therapies, and to establish a means of producing human organs. Based on ethical issues, this work has faced pushback from various sources including funding agencies. We discuss here the essential role these studies have played, from gaining a better understanding of human biology to providing a stepping stone to human disease treatments. We also consider the major ethical issues, as well as the current status of support for this work in the United States. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Comparison of Gene Expression in Human Embryonic Stem Cells, hESC-Derived Mesenchymal Stem Cells and Human Mesenchymal Stem Cells

    OpenAIRE

    Romain Barbet; Isabelle Peiffer; Antoinette Hatzfeld; Pierre Charbord; Jacques A. Hatzfeld

    2011-01-01

    We present a strategy to identify developmental/differentiation and plasma membrane marker genes of the most primitive human Mesenchymal Stem Cells (hMSCs). Using sensitive and quantitative TaqMan Low Density Arrays (TLDA) methodology, we compared the expression of 381 genes in human Embryonic Stem Cells (hESCs), hESC-derived MSCs ...

  18. New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells.

    Science.gov (United States)

    O'Brien, Carmel M; Chy, Hun S; Zhou, Qi; Blumenfeld, Shiri; Lambshead, Jack W; Liu, Xiaodong; Kie, Joshua; Capaldo, Bianca D; Chung, Tung-Liang; Adams, Timothy E; Phan, Tram; Bentley, John D; McKinstry, William J; Oliva, Karen; McMurrick, Paul J; Wang, Yu-Chieh; Rossello, Fernando J; Lindeman, Geoffrey J; Chen, Di; Jarde, Thierry; Clark, Amander T; Abud, Helen E; Visvader, Jane E; Nefzger, Christian M; Polo, Jose M; Loring, Jeanne F; Laslett, Andrew L

    2017-03-01

    The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterized monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here, we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs), confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs, providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition, we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs), normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency, and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. Stem Cells 2017;35:626-640. © 2016 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  19. STAT5-mediated self-renewal of normal hematopoietic and leukemic stem cells

    NARCIS (Netherlands)

    Schepers, Hein; Wierenga, Albertus T. J.; Vellenga, Edo; Schuringa, Jan Jacob

    2012-01-01

    The level of transcription factor activity critically regulates cell fate decisions such as hematopoietic stem cell self-renewal and differentiation. The balance between hematopoietic stem cell self-renewal and differentiation needs to be tightly controlled, as a shift toward differentiation might

  20. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    Full Text Available In guiding hES cell technology toward the clinic, one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs we isolated human fetal liver stromal cells (hFLSCs from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (about 100 days. Basic fibroblast growth factor (bFGF is known to play an important role in promoting self-renewal of human embryonic stem (hES cells. So, we established transgenic hFLSCs that stably express bFGF by lentiviral vectors. These transgenic human feeder cells--bFGF-hFLSCs maintained the properties of H9 hES cells without supplementing with any exogenous growth factors. H9 hES cells culturing under these conditions maintained all hES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. Our results demonstrated that bFGF-hFLSCs feeder cells were central to establishing the signaling network among bFGF, insulin-like growth factor 2 (IGF-2, and transforming growth factor β (TGF-β, thereby providing the framework in which hES cells were instructed to self-renew or to differentiate. We also found that the conditioned medium of bFGF-hFLSCs could maintain the H9 hES cells under feeder-free conditions without supplementing with bFGF. Taken together, bFGF-hFLSCs had great potential as feeders for maintaining pluripotent hES cell lines more safely and economically.

  1. Immortalization of human myogenic progenitor cell clone retaining multipotentiality

    International Nuclear Information System (INIS)

    Hashimoto, Naohiro; Kiyono, Tohru; Wada, Michiko R.; Shimizu, Shirabe; Yasumoto, Shigeru; Inagawa, Masayo

    2006-01-01

    Human myogenic cells have limited ability to proliferate in culture. Although forced expression of telomerase can immortalize some cell types, telomerase alone delays senescence of human primary cultured myogenic cells, but fails to immortalize them. In contrast, constitutive expression of both telomerase and the E7 gene from human papillomavirus type 16 immortalizes primary human myogenic cells. We have established an immortalized primary human myogenic cell line preserving multipotentiality by ectopic expression of telomerase and E7. The immortalized human myogenic cells exhibit the phenotypic characteristics of their primary parent, including an ability to undergo myogenic, osteogenic, and adipogenic terminal differentiation under appropriate culture conditions. The immortalized cells will be useful for both basic and applied studies aimed at human muscle disorders. Furthermore, immortalization by transduction of telomerase and E7 represents a useful method by which to expand human myogenic cells in vitro without compromising their ability to differentiate

  2. DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

    Science.gov (United States)

    Luo, Li Z.; Park, Sang-Won; Bates, Steven E.; Zeng, Xianmin; Iverson, Linda E.; O'Connor, Timothy R.

    2012-01-01

    The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use. PMID:22412831

  3. Interaction of Staphylococci with Human B cells.

    Directory of Open Access Journals (Sweden)

    Tyler K Nygaard

    Full Text Available Staphylococcus aureus is a leading cause of human infections worldwide. The pathogen produces numerous molecules that can interfere with recognition and binding by host innate immune cells, an initial step required for the ingestion and subsequent destruction of microbes by phagocytes. To better understand the interaction of this pathogen with human immune cells, we compared the association of S. aureus and S. epidermidis with leukocytes in human blood. We found that a significantly greater proportion of B cells associated with S. epidermidis relative to S. aureus. Complement components and complement receptors were important for the binding of B cells with S. epidermidis. Experiments using staphylococci inactivated by ultraviolet radiation and S. aureus isogenic deletion mutants indicated that S. aureus secretes molecules regulated by the SaeR/S two-component system that interfere with the ability of human B cells to bind this bacterium. We hypothesize that the relative inability of B cells to bind S. aureus contributes to the microbe's success as a human pathogen.

  4. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    International Nuclear Information System (INIS)

    Varga, Nóra; Veréb, Zoltán; Rajnavölgyi, Éva; Német, Katalin; Uher, Ferenc; Sarkadi, Balázs; Apáti, Ágota

    2011-01-01

    Highlights: ► MSC like cells were derived from hESC by a simple and reproducible method. ► Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. ► MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  5. Stereological quantification of mast cells in human synovium

    DEFF Research Database (Denmark)

    Damsgaard, T E; Sørensen, Flemming Brandt; Herlin, T

    1999-01-01

    Mast cells participate in both the acute allergic reaction as well as in chronic inflammatory diseases. Earlier studies have revealed divergent results regarding the quantification of mast cells in the human synovium. The aim of the present study was therefore to quantify these cells in the human...... synovium, using stereological techniques. Different methods of staining and quantification have previously been used for mast cell quantification in human synovium. Stereological techniques provide precise and unbiased information on the number of cell profiles in two-dimensional tissue sections of......, in this case, human synovium. In 10 patients suffering from osteoarthritis a median of 3.6 mast cells/mm2 synovial membrane was found. The total number of cells (synoviocytes, fibroblasts, lymphocytes, leukocytes) present was 395.9 cells/mm2 (median). The mast cells constituted 0.8% of all the cell profiles...

  6. A case of acute lymphoblastic leukemia with abnormal brain CT scan after cranial irradiation for central nervous system leukemia

    International Nuclear Information System (INIS)

    Sato, Junko; Abe, Takanori; Watanabe, Tsutomu

    1988-01-01

    A 21-year-old woman with acute lymphoblastic leukemia presented with central neurologic symptoms immediately after the second irradiation (20 Gy to the brain and 10 Gy to the spinal cord) for central nervous system (CNS)-leukemia 3 years and 2 months after the first cranial irradiation with 20 Gy. White matter was depicted as diffusely high density area on CT; histology revealed necrosis of leukemic cells. In the present patient with repeated recurrent CNS-leukemia, leukemic cells seemed to have been damaged simultaneously after irradiation because of parenchymal widespread involvement of leukemic cells, resulting in brain edema, an increased intracranial pressure and parenchymal disturbance. This finding may have an important implication for the risk of cranial irradiation in the case of widespread involvement of leukemic cells. Re-evaluation of cranial irradiation in such cases is suggested. (Namekawa, K.)

  7. Apoptosis induction by Maackia amurensis agglutinin in childhood acute lymphoblastic leukemic cells

    DEFF Research Database (Denmark)

    Kapoor, Sarika; Marwaha, Ram; Majumdar, Siddhartha

    2007-01-01

    acute lymphoblastic leukemia (ALL) as compared to cells from children with non-hematological disorders ("Controls"). MAA recognized a 66 kDa sialoglycoprotein present in membrane fraction of ALL cells. Moreover, MAA induced apoptosis in ALL cells was found to be reduced significantly in presence of GM2...

  8. Proper design of silica nanoparticles combines high brightness, lack of cytotoxicity and efficient cell endocytosis

    Science.gov (United States)

    Rampazzo, Enrico; Voltan, Rebecca; Petrizza, Luca; Zaccheroni, Nelsi; Prodi, Luca; Casciano, Fabio; Zauli, Giorgio; Secchiero, Paola

    2013-08-01

    Silica-based luminescent nanoparticles (SiNPs) show promising prospects in nanomedicine in light of their chemical properties and versatility. In this study, we have characterized silica core-PEG shell SiNPs derivatized with PEG moieties (NP-PEG), with external amino- (NP-PEG-amino) or carboxy-groups (NP-PEG-carbo), both in cell cultures as well as in animal models. By using different techniques, we could demonstrate that these SiNPs were safe and did not exhibit appreciable cytotoxicity in different relevant cell models, of normal or cancer cell types, growing either in suspension (JVM-2 leukemic cell line and primary normal peripheral blood mononuclear cells) or in adherence (human hepatocarcinoma Huh7 and umbilical vein endothelial cells). Moreover, by multiparametric flow cytometry, we could demonstrate that the highest efficiency of cell uptake and entry was observed with NP-PEG-amino, with a stable persistence of the fluorescence signal associated with SiNPs in the loaded cell populations both in vitro and in vivo settings suggesting this as an innovative method for cell traceability and detection in whole organisms. Finally, experiments performed with the endocytosis inhibitor Genistein clearly suggested the involvement of a caveolae-mediated pathway in SiNP endocytosis. Overall, these data support the safe use of these SiNPs for diagnostic and therapeutic applications.Silica-based luminescent nanoparticles (SiNPs) show promising prospects in nanomedicine in light of their chemical properties and versatility. In this study, we have characterized silica core-PEG shell SiNPs derivatized with PEG moieties (NP-PEG), with external amino- (NP-PEG-amino) or carboxy-groups (NP-PEG-carbo), both in cell cultures as well as in animal models. By using different techniques, we could demonstrate that these SiNPs were safe and did not exhibit appreciable cytotoxicity in different relevant cell models, of normal or cancer cell types, growing either in suspension (JVM-2

  9. Human Pluripotent Stem Cell Differentiation into Functional Epicardial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Juan Antonio Guadix

    2017-12-01

    Full Text Available Summary: Human pluripotent stem cells (hPSCs are widely used to study cardiovascular cell differentiation and function. Here, we induced differentiation of hPSCs (both embryonic and induced to proepicardial/epicardial progenitor cells that cover the heart during development. Addition of retinoic acid (RA and bone morphogenetic protein 4 (BMP4 promoted expression of the mesodermal marker PDGFRα, upregulated characteristic (proepicardial progenitor cell genes, and downregulated transcription of myocardial genes. We confirmed the (proepicardial-like properties of these cells using in vitro co-culture assays and in ovo grafting of hPSC-epicardial cells into chick embryos. Our data show that RA + BMP4-treated hPSCs differentiate into (proepicardial-like cells displaying functional properties (adhesion and spreading over the myocardium of their in vivo counterpart. The results extend evidence that hPSCs are an excellent model to study (proepicardial differentiation into cardiovascular cells in human development and evaluate their potential for cardiac regeneration. : The authors have shown that hPSCs can be instructed in vitro to differentiate into a specific cardiac embryonic progenitor cell population called the proepicardium. Proepicardial cells are required for normal formation of the heart during development and might contribute to the development of cell-based therapies for heart repair. Keywords: human pluripotent stem cells, proepicardium, progenitor cells, cardiovascular, differentiation

  10. Human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem; Kassem, Moustapha

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of clonogenic cells present among the bone marrow stroma and capable of multilineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. Due to their ease of isolation and their differentiation potential, MSC are being...... introduced into clinical medicine in variety of applications and through different ways of administration. Here, we discuss approaches for isolation, characterization and directing differentiation of human mesenchymal stem cells (hMSC). An update of the current clinical use of the cells is also provided....

  11. T-cell receptor transfer into human T cells with ecotropic retroviral vectors.

    Science.gov (United States)

    Koste, L; Beissert, T; Hoff, H; Pretsch, L; Türeci, Ö; Sahin, U

    2014-05-01

    Adoptive T-cell transfer for cancer immunotherapy requires genetic modification of T cells with recombinant T-cell receptors (TCRs). Amphotropic retroviral vectors (RVs) used for TCR transduction for this purpose are considered safe in principle. Despite this, TCR-coding and packaging vectors could theoretically recombine to produce replication competent vectors (RCVs), and transduced T-cell preparations must be proven free of RCV. To eliminate the need for RCV testing, we transduced human T cells with ecotropic RVs so potential RCV would be non-infectious for human cells. We show that transfection of synthetic messenger RNA encoding murine cationic amino-acid transporter 1 (mCAT-1), the receptor for murine retroviruses, enables efficient transient ecotropic transduction of human T cells. mCAT-1-dependent transduction was more efficient than amphotropic transduction performed in parallel, and preferentially targeted naive T cells. Moreover, we demonstrate that ecotropic TCR transduction results in antigen-specific restimulation of primary human T cells. Thus, ecotropic RVs represent a versatile, safe and potent tool to prepare T cells for the adoptive transfer.

  12. Influence of radiosterilized cells on cells L1210 growth

    International Nuclear Information System (INIS)

    Malaise, E.P.; Decheva-Ninova, Z.; Tubiana, M.

    1975-01-01

    The effect of cells sterilized by acute X-irradiation is investigated on the growth of L 1210 cells. For this purpose young male mice DBA 2 are injected intraperitoneally or hypodermically with suspension of either live cells or live and sterile cells. The effect is considered according to survival time of treated animals and the number of leukemic cells examined in dynamics after their intraperitoneal incorporation or according to tumor size after their hypodermical incorporation. In both cases the incorporation of sterile cells has an inhibitory effect - life duration of treated mice is increased. This common effect disappears if animals are previously irradiated with 350 R. The sterile cells have also a local stimulating effect when incorporated hypodermically - time for their duplication is reduced from 15,8 to 13,7 hours. This stimulation is much more expressed when the recipients are previously irradiated - the time for tumor cells duplication being 12,2 hours. Direct stimulating effect of sterilized cells is not established when they are intraperitoneally incorporated. (author)

  13. AF10 plays a key role in the survival of uncommitted hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Raquel Chamorro-Garcia

    Full Text Available Hematopoiesis is a complex process regulated by both cell intrinsic and cell extrinsic factors. Alterations in the expression of critical genes during hematopoiesis can modify the balance between stem cell differentiation and proliferation, and may ultimately give rise to leukemia and other diseases. AF10 is a transcription factor that has been implicated in the development of leukemia following chromosomal rearrangements between the AF10 gene and one of at least two other genes, MLL and CALM. The link between AF10 and leukemia, together with the known interactions between AF10 and hematopoietic regulators, suggests that AF10 may be important in hematopoiesis and in leukemic transformation. Here we show that AF10 is important for proper hematopoietic differentiation. The induction of hematopoietic differentiation in both human hematopoietic cell lines and murine total bone marrow cells triggers a decrease of AF10 mRNA and protein levels, particularly in stem cells and multipotent progenitors. Gain- and loss-of-function studies demonstrate that over- or under-expression of AF10 leads to apoptotic cell death in stem cells and multipotent progenitors. We conclude that AF10 plays a key role in the maintenance of multipotent hematopoietic cells.

  14. Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression

    International Nuclear Information System (INIS)

    Liu, Te; Cheng, Weiwei; Huang, Yongyi; Huang, Qin; Jiang, Lizhen; Guo, Lihe

    2012-01-01

    Currently, human induced pluripotent stem (iPS) cells were generated from patient or disease-specific sources and share the same key properties as embryonic stem cells. This makes them attractive for personalized medicine, drug screens or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state are a major challenge. Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells, or spermatogonial stem cells, but the mechanism for this is unknown. Here, we examined the effect of endogenous microRNA-145 regulation on Sox2 expression in human iPS cells by HuAECs feeder cells regulation, and in turn on human iPS cells pluripotency. We found that human IPS cells transfected with a microRNA-145 mutant expressed Sox2 at high levels, allowing iPS to maintain a high level of AP activity in long-term culture and form teratomas in SCID mice. Expression of stem cell markers was increased in iPS transfected with the microRNA-145 mutant, compared with iPS was transfected with microRNA-145. Besides, the expression of Drosha proteins of the microRNA-processor complex, required for the generation of precursor pre-miRNA, was significantly increased in human iPS cells cultured on MEF but not on HuAECs. Taken together, these results suggest that endogenous Sox2 expression may be regulated by microRNA-145 in human iPS cells with HuAECs feeder cells, and Sox2 is a crucial component required for maintenance of them in an undifferentiated, proliferative state capable of self-renewal. Highlights: ► microRNA-145 inhibits Sox2 expression in human iPS cells. ► microRNA-145 suppresses the self-renewal and pluripotency of human iPS cells. ► HuAECs regulate expression of microRNA-145 and Sox2 in human iPS cells. ► HuAECs feeder layers maintain human iPS cells pluripotency. ► HuAECs negatively regulates the synthesis of

  15. Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Te, E-mail: liute79@yahoo.com [School of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Shanghai Geriatric Institute of Chinese Medicine, Shanghai 200031 (China); Cheng, Weiwei [International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai 200030 (China); Huang, Yongyi [Laboratoire PROTEE, Batiment R, Universite du Sud Toulon-Var, 83957 LA GARDE Cedex (France); Huang, Qin; Jiang, Lizhen [Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Guo, Lihe, E-mail: liute79@yahoo.com [Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2012-02-15

    Currently, human induced pluripotent stem (iPS) cells were generated from patient or disease-specific sources and share the same key properties as embryonic stem cells. This makes them attractive for personalized medicine, drug screens or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state are a major challenge. Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells, or spermatogonial stem cells, but the mechanism for this is unknown. Here, we examined the effect of endogenous microRNA-145 regulation on Sox2 expression in human iPS cells by HuAECs feeder cells regulation, and in turn on human iPS cells pluripotency. We found that human IPS cells transfected with a microRNA-145 mutant expressed Sox2 at high levels, allowing iPS to maintain a high level of AP activity in long-term culture and form teratomas in SCID mice. Expression of stem cell markers was increased in iPS transfected with the microRNA-145 mutant, compared with iPS was transfected with microRNA-145. Besides, the expression of Drosha proteins of the microRNA-processor complex, required for the generation of precursor pre-miRNA, was significantly increased in human iPS cells cultured on MEF but not on HuAECs. Taken together, these results suggest that endogenous Sox2 expression may be regulated by microRNA-145 in human iPS cells with HuAECs feeder cells, and Sox2 is a crucial component required for maintenance of them in an undifferentiated, proliferative state capable of self-renewal. Highlights: Black-Right-Pointing-Pointer microRNA-145 inhibits Sox2 expression in human iPS cells. Black-Right-Pointing-Pointer microRNA-145 suppresses the self-renewal and pluripotency of human iPS cells. Black-Right-Pointing-Pointer HuAECs regulate expression of microRNA-145 and Sox2 in human iPS cells. Black-Right-Pointing-Pointer HuAECs feeder

  16. Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells.

    Science.gov (United States)

    Manlove, Luke S; Berquam-Vrieze, Katherine E; Pauken, Kristen E; Williams, Richard T; Jenkins, Marc K; Farrar, Michael A

    2015-10-15

    BCR-ABL(+) acute lymphoblastic leukemia patients have transient responses to current therapies. However, the fusion of BCR to ABL generates a potential leukemia-specific Ag that could be a target for immunotherapy. We demonstrate that the immune system can limit BCR-ABL(+) leukemia progression although ultimately this immune response fails. To address how BCR-ABL(+) leukemia escapes immune surveillance, we developed a peptide: MHC class II tetramer that labels endogenous BCR-ABL-specific CD4(+) T cells. Naive mice harbored a small population of BCR-ABL-specific T cells that proliferated modestly upon immunization. The small number of naive BCR-ABL-specific T cells was due to negative selection in the thymus, which depleted BCR-ABL-specific T cells. Consistent with this observation, we saw that BCR-ABL-specific T cells were cross-reactive with an endogenous peptide derived from ABL. Despite this cross-reactivity, the remaining population of BCR-ABL reactive T cells proliferated upon immunization with the BCR-ABL fusion peptide and adjuvant. In response to BCR-ABL(+) leukemia, BCR-ABL-specific T cells proliferated and converted into regulatory T (Treg) cells, a process that was dependent on cross-reactivity with self-antigen, TGF-β1, and MHC class II Ag presentation by leukemic cells. Treg cells were critical for leukemia progression in C57BL/6 mice, as transient Treg cell ablation led to extended survival of leukemic mice. Thus, BCR-ABL(+) leukemia actively suppresses antileukemia immune responses by converting cross-reactive leukemia-specific T cells into Treg cells. Copyright © 2015 by The American Association of Immunologists, Inc.

  17. 21 CFR 864.2280 - Cultured animal and human cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various diagnostic...

  18. Interaction of Human Enterochromaffin Cells with Human Enteric Adenovirus 41 Leads to Serotonin Release and Subsequent Activation of Enteric Glia Cells.

    Science.gov (United States)

    Westerberg, Sonja; Hagbom, Marie; Rajan, Anandi; Loitto, Vesa; Persson, B David; Allard, Annika; Nordgren, Johan; Sharma, Sumit; Magnusson, Karl-Eric; Arnberg, Niklas; Svensson, Lennart

    2018-04-01

    Human adenovirus 41 (HAdV-41) causes acute gastroenteritis in young children. The main characteristics of HAdV-41 infection are diarrhea and vomiting. Nevertheless, the precise mechanism of HAdV-41-induced diarrhea is unknown, as a suitable small-animal model has not been described. In this study, we used the human midgut carcinoid cell line GOT1 to investigate the effect of HAdV-41 infection and the individual HAdV-41 capsid proteins on serotonin release by enterochromaffin cells and on enteric glia cell (EGC) activation. We first determined that HAdV-41 could infect the enterochromaffin cells. Immunofluorescence staining revealed that the cells expressed HAdV-41-specific coxsackievirus and adenovirus receptor (CAR); flow cytometry analysis supported these findings. HAdV-41 infection of the enterochromaffin cells induced serotonin secretion dose dependently. In contrast, control infection with HAdV-5 did not induce serotonin secretion in the cells. Confocal microscopy studies of enterochromaffin cells infected with HAdV-41 revealed decreased serotonin immunofluorescence compared to that in uninfected cells. Incubation of the enterochromaffin cells with purified HAdV-41 short fiber knob and hexon proteins increased the serotonin levels in the harvested cell supernatant significantly. HAdV-41 infection could also activate EGCs, as shown in the significantly altered expression of glia fibrillary acidic protein (GFAP) in EGCs incubated with HAdV-41. The EGCs were also activated by serotonin alone, as shown in the significantly increased GFAP staining intensity. Likewise, EGCs were activated by the cell supernatant of HAdV-41-infected enterochromaffin cells. IMPORTANCE The nonenveloped human adenovirus 41 causes diarrhea, vomiting, dehydration, and low-grade fever mainly in children under 2 years of age. Even though acute gastroenteritis is well described, how human adenovirus 41 causes diarrhea is unknown. In our study, we analyzed the effect of human adenovirus 41

  19. Culture of human cell lines by a pathogen-inactivated human platelet lysate.

    Science.gov (United States)

    Fazzina, R; Iudicone, P; Mariotti, A; Fioravanti, D; Procoli, A; Cicchetti, E; Scambia, G; Bonanno, G; Pierelli, L

    2016-08-01

    Alternatives to the use of fetal bovine serum (FBS) have been investigated to ensure xeno-free growth condition. In this study we evaluated the efficacy of human platelet lysate (PL) as a substitute of FBS for the in vitro culture of some human cell lines. PL was obtained by pools of pathogen inactivated human donor platelet (PLT) concentrates. Human leukemia cell lines (KG-1, K562, JURKAT, HL-60) and epithelial tumor cell lines (HeLa and MCF-7) were cultured with either FBS or PL. Changes in cell proliferation, viability, morphology, surface markers and cell cycle were evaluated for each cell line. Functional characteristics were analysed by drug sensitivity test and cytotoxicity assay. Our results demonstrated that PL can support growth and expansion of all cell lines, although the cells cultured in presence of PL experienced a less massive proliferation compared to those grown with FBS. We found a comparable percentage of viable specific marker-expressing cells in both conditions, confirming lineage fidelity in all cultures. Functionality assays showed that cells in both FBS- and PL-supported cultures maintained their normal responsiveness to adriamycin and NK cell-mediated lysis. Our findings indicate that PL is a feasible serum substitute for supporting growth and propagation of haematopoietic and epithelial cell lines with many advantages from a perspective of process standardization, ethicality and product safety.

  20. Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress.

    Science.gov (United States)

    Li, Yibo; Amarachintha, Surya; Wilson, Andrew F; Li, Xue; Du, Wei

    2017-06-18

    Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G 2 /M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress.

  1. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  2. Male germline stem cells in non-human primates

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2017-09-01

    Full Text Available Over the past few decades, several studies have attempted to decipher the biology of mammalian germline stem cells (GSCs. These studies provide evidence that regulatory mechanisms for germ cell specification and migration are evolutionarily conserved across species. The characteristics and functions of primate GSCs are highly distinct from rodent species; therefore the findings from rodent models cannot be extrapolated to primates. Due to limited availability of human embryonic and testicular samples for research purposes, two non-human primate models (marmoset and macaque monkeys are extensively employed to understand human germline development and differentiation. This review provides a broader introduction to the in vivo and in vitro germline stem cell terminology from primordial to differentiating germ cells. Primordial germ cells (PGCs are the most immature germ cells colonizing the gonad prior to sex differentiation into testes or ovaries. PGC specification and migratory patterns among different primate species are compared in the review. It also reports the distinctions and similarities in expression patterns of pluripotency markers (OCT4A, NANOG, SALL4 and LIN28 during embryonic developmental stages, among marmosets, macaques and humans. This review presents a comparative summary with immunohistochemical and molecular evidence of germ cell marker expression patterns during postnatal developmental stages, among humans and non-human primates. Furthermore, it reports findings from the recent literature investigating the plasticity behavior of germ cells and stem cells in other organs of humans and monkeys. The use of non-human primate models would enable bridging the knowledge gap in primate GSC research and understanding the mechanisms involved in germline development. Reported similarities in regulatory mechanisms and germ cell expression profile in primates demonstrate the preclinical significance of monkey models for development of

  3. Human induced pluripotent stem cells on autologous feeders.

    Directory of Open Access Journals (Sweden)

    Kazutoshi Takahashi

    Full Text Available BACKGROUND: For therapeutic usage of induced Pluripotent Stem (iPS cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that human induced Pluripotent Stem (iPS cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.

  4. Expression, regulation and function of phosphofructo-kinase/fructose-biphosphatases (PFKFBs) in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia cells

    International Nuclear Information System (INIS)

    Carlet, Michela; Kofler, Reinhard; Janjetovic, Kristina; Rainer, Johannes; Schmidt, Stefan; Panzer-Grümayer, Renate; Mann, Georg; Prelog, Martina; Meister, Bernhard; Ploner, Christian

    2010-01-01

    Glucocorticoids (GCs) cause apoptosis and cell cycle arrest in lymphoid cells and constitute a central component in the therapy of lymphoid malignancies, most notably childhood acute lymphoblastic leukemia (ALL). PFKFB2 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-2), a kinase controlling glucose metabolism, was identified by us previously as a GC response gene in expression profiling analyses performed in children with ALL during initial systemic GC mono-therapy. Since deregulation of glucose metabolism has been implicated in apoptosis induction, this gene and its relatives, PFKFB1, 3, and 4, were further analyzed. Gene expression analyses of isolated lymphoblasts were performed on Affymetrix HGU133 Plus 2.0 microarrays. GCRMA normalized microarray data were analyzed using R-Bioconductor packages version 2.5. Functional gene analyses of PFKFB2-15A and -15B isoforms were performed by conditional gene over-expression experiments in the GC-sensitive T-ALL model CCRF-CEM. Expression analyses in additional ALL children, non-leukemic individuals and leukemic cell lines confirmed frequent PFKFB2 induction by GC in most systems sensitive to GC-induced apoptosis, particularly T-ALL cells. The 3 other family members, in contrast, were either absent or only weakly expressed (PFKFB1 and 4) or not induced by GC (PFKFB3). Conditional PFKFB2 over-expression in the CCRF-CEM T-ALL in vitro model revealed that its 2 splice variants (PFKFB2-15A and PFKFB2-15B) had no detectable effect on cell survival. Moreover, neither PFKFB2 splice variant significantly affected sensitivity to, or kinetics of, GC-induced apoptosis. Our data suggest that, at least in the model system investigated, PFKFB2 is not an essential upstream regulator of the anti-leukemic effects of GC

  5. Distinct regulation of c-myb gene expression by HoxA9, Meis1 and Pbx proteins in normal hematopoietic progenitors and transformed myeloid cells

    International Nuclear Information System (INIS)

    Dassé, E; Volpe, G; Walton, D S; Wilson, N; Del Pozzo, W; O'Neill, L P; Slany, R K; Frampton, J; Dumon, S

    2012-01-01

    The proto-oncogenic protein c-Myb is an essential regulator of hematopoiesis and is frequently deregulated in hematological diseases such as lymphoma and leukemia. To gain insight into the mechanisms underlying the aberrant expression of c-Myb in myeloid leukemia, we analyzed and compared c-myb gene transcriptional regulation using two cell lines modeling normal hematopoietic progenitor cells (HPCs) and transformed myelomonocytic blasts. We report that the transcription factors HoxA9, Meis1, Pbx1 and Pbx2 bind in vivo to the c-myb locus and maintain its expression through different mechanisms in HPCs and leukemic cells. Our analysis also points to a critical role for Pbx2 in deregulating c-myb expression in murine myeloid cells cotransformed by the cooperative activity of HoxA9 and Meis1. This effect is associated with an intronic positioning of epigenetic marks and RNA polymerase II binding in the orthologous region of a previously described alternative promoter for c-myb. Taken together, our results could provide a first hint to explain the abnormal expression of c-myb in leukemic cells

  6. Human interleukin for DA cells or leukemia inhibitory factor is released by Vero cells in human embryo coculture.

    Science.gov (United States)

    Papaxanthos-Roche, A; Taupin, J L; Mayer, G; Daniel, J Y; Moreau, J F

    1994-09-01

    In the light of the newly discovered implications of human interleukin for DA cells and leukemia inhibitory factor in embryology, we searched for the presence of this soluble cytokine in the supernatant of Vero cell coculture systems. Using a bioassay as well as a specific ELISA, we demonstrated that Vero cells are able to release large quantities of human interleukin for DA cells and leukemia inhibitory factor in the embryo-growing medium of such cocultures.

  7. Generation of Human Immunosuppressive Myeloid Cell Populations in Human Interleukin-6 Transgenic NOG Mice

    Directory of Open Access Journals (Sweden)

    Asami Hanazawa

    2018-02-01

    Full Text Available The tumor microenvironment contains unique immune cells, termed myeloid-derived suppressor cells (MDSCs, and tumor-associated macrophages (TAMs that suppress host anti-tumor immunity and promote tumor angiogenesis and metastasis. Although these cells are considered a key target of cancer immune therapy, in vivo animal models allowing differentiation of human immunosuppressive myeloid cells have yet to be established, hampering the development of novel cancer therapies. In this study, we established a novel humanized transgenic (Tg mouse strain, human interleukin (hIL-6-expressing NOG mice (NOG-hIL-6 transgenic mice. After transplantation of human hematopoietic stem cells (HSCs, the HSC-transplanted NOG-hIL-6 Tg mice (HSC-NOG-hIL-6 Tg mice showed enhanced human monocyte/macrophage differentiation. A significant number of human monocytes were negative for HLA-DR expression and resembled immature myeloid cells in the spleen and peripheral blood from HSC-NOG-hIL-6 Tg mice, but not from HSC-NOG non-Tg mice. Engraftment of HSC4 cells, a human head and neck squamous cell carcinoma-derived cell line producing various factors including IL-6, IL-1β, macrophage colony-stimulating factor (M-CSF, and vascular endothelial growth factor (VEGF, into HSC-NOG-hIL-6 Tg mice induced a significant number of TAM-like cells, but few were induced in HSC-NOG non-Tg mice. The tumor-infiltrating macrophages in HSC-NOG-hIL-6 Tg mice expressed a high level of CD163, a marker of immunoregulatory myeloid cells, and produced immunosuppressive molecules such as arginase-1 (Arg-1, IL-10, and VEGF. Such cells from HSC-NOG-hIL-6 Tg mice, but not HSC-NOG non-Tg mice, suppressed human T cell proliferation in response to antigen stimulation in in vitro cultures. These results suggest that functional human TAMs can be developed in NOG-hIL-6 Tg mice. This mouse model will contribute to the development of novel cancer immune therapies targeting immunoregulatory

  8. Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts.

    Science.gov (United States)

    Motté, Evi; Szepessy, Edit; Suenens, Krista; Stangé, Geert; Bomans, Myriam; Jacobs-Tulleneers-Thevissen, Daniel; Ling, Zhidong; Kroon, Evert; Pipeleers, Daniel

    2014-11-01

    β-Cells generated from large-scale sources can overcome current shortages in clinical islet cell grafts provided that they adequately respond to metabolic variations. Pancreatic (non)endocrine cells can develop from human embryonic stem (huES) cells following in vitro derivation to pancreatic endoderm (PE) that is subsequently implanted in immune-incompetent mice for further differentiation. Encapsulation of PE increases the proportion of endocrine cells in subcutaneous implants, with enrichment in β-cells when they are placed in TheraCyte-macrodevices and predominantly α-cells when they are alginate-microencapsulated. At posttransplant (PT) weeks 20-30, macroencapsulated huES implants presented higher glucose-responsive plasma C-peptide levels and a lower proinsulin-over-C-peptide ratio than human islet cell implants under the kidney capsule. Their ex vivo analysis showed the presence of single-hormone-positive α- and β-cells that exhibited rapid secretory responses to increasing and decreasing glucose concentrations, similar to isolated human islet cells. However, their insulin secretory amplitude was lower, which was attributed in part to a lower cellular hormone content; it was associated with a lower glucose-induced insulin biosynthesis, but not with lower glucagon-induced stimulation, which together is compatible with an immature functional state of the huES-derived β-cells at PT weeks 20-30. These data support the therapeutic potential of macroencapsulated huES implants but indicate the need for further functional analysis. Their comparison with clinical-grade human islet cell grafts sets references for future development and clinical translation. Copyright © 2014 the American Physiological Society.

  9. Bidirectional enhancing activities between human T cell leukemia-lymphoma virus type I and human cytomegalovirus in human term syncytiotrophoblast cells cultured in vitro.

    Science.gov (United States)

    Tóth, F D; Aboagye-Mathiesen, G; Szabó, J; Liu, X; Mosborg-Petersen, P; Kiss, J; Hager, H; Zdravkovic, M; Andirkó, I; Aranyosi, J

    1995-12-01

    The syncytiotrophoblast layer of the human placenta has an important role in limiting transplacental viral spread from mother to fetus. Human cytomegalovirus (HCMV) is capable of establishing a latent infection in syncytiotrophoblast cells, with restriction of gene expression to immediate-early and early proteins. We analyzed the extent of replication of human T cell leukemia-lymphoma virus type I (HTLV-I) in human term syncytiotrophoblasts infected with HTLV-I alone or coinfected with HTLV-I and HCMV. Although syncytiotrophoblasts could be infected with cell-free HTLV-I, no viral protein expression was found in the singly infected cells. On the contrary, coinfection of the cells with HTLV-I and HCMV resulted in simultaneous replication of both viruses. Bidirectional enhancing activities between HTLV-I and HCMV were mediated primarily by the Tax and immediate-early proteins, respectively. The stimulatory effect of HTLV-I Tax on HCMV replication appeared to be mediated partly by tumor necrosis factor beta and transforming growth factor beta-1. We observed formation of pseudotypes with HTLV-I nucleocapsids within HCMV envelopes, whereas HCMV was not pseudotyped by HTLV-I envelopes in dually infected syncytiotrophoblast cells. Our data suggest that in vivo dual infection of syncytiotrophoblast cells with HTLV-I and HCMV may facilitate the transplacental transmission of both viruses.

  10. Cobalt-60 radiation leukemogenesis studies

    International Nuclear Information System (INIS)

    Kawakami, T.G.; Cain, G.R.; Taylor, N.J.; Shifrine, M.; Goldman, M.

    1985-01-01

    Canine myeloblastic leukemia cells are not metabolically a homogeneous population. Isotopic ( 3 H-thymidine) and immunofluorescent labelling of blastic leukemia cells for DNA synthesis indicated that active DNA synthesis occurred in small populations (10-30%) while the remaining cells were at maturation arrest. This characteristic of reduced DNA synthesis is common to granulocytic, monocytic and megakaryoblastic leukemia. Based on allo-transplantation studies, malignancy of leukemic cells is a constitutive property of the cells. A protein factor produced by the leukemic cell is responsible for maturation arrest. Based on SDS-polyacrylamide gel electrophoresis, the maturation arrest factor consist of several peptides. Long-term cultures of leukemic cells have been established. Molecular studies for malignant transformation are now underway. 3 figures, 2 tables

  11. Sensing radiosensitivity of human epidermal stem cells

    International Nuclear Information System (INIS)

    Rachidi, Walid; Harfourche, Ghida; Lemaitre, Gilles; Amiot, Franck; Vaigot, Pierre; Martin, Michele T.

    2007-01-01

    Purpose: Radiosensitivity of stem cells is a matter of debate. For mouse somatic stem cells, both radiosensitive and radioresistant stem cells have been described. By contrast, the response of human stem cells to radiation has been poorly studied. As epidermis is a radiosensitive tissue, we evaluated in the present work the radiosensitivity of cell populations enriched for epithelial stem cells of human epidermis. Methods and materials: The total keratinocyte population was enzymatically isolated from normal human skin. We used flow cytometry and antibodies against cell surface markers to isolate basal cell populations from human foreskin. Cell survival was measured after a dose of 2 Gy with the XTT assay at 72 h after exposure and with a clonogenic assay at 2 weeks. Transcriptome analysis using oligonucleotide microarrays was performed to assess the genomic cell responses to radiation. Results: Cell sorting based on two membrane proteins, α6 integrin and the transferrin receptor CD71, allowed isolation of keratinocyte populations enriched for the two types of cells found in the basal layer of epidermis: stem cells and progenitors. Both the XTT assay and the clonogenic assay showed that the stem cells were radioresistant whereas the progenitors were radiosensitive. We made the hypothesis that upstream DNA damage signalling might be different in the stem cells and used microarray technology to test this hypothesis. The stem cells exhibited a much more reduced gene response to a dose of 2 Gy than the progenitors, as we found that 6% of the spotted genes were regulated in the stem cells and 20% in the progenitors. Using Ingenuity Pathway Analysis software, we found that radiation exposure induced very specific pathways in the stem cells. The most striking responses were the repression of a network of genes involved in apoptosis and the induction of a network of cytokines and growth factors. Conclusion: These results show for the first time that keratinocyte

  12. New frontiers in human cell biology and medicine: can pluripotent stem cells deliver?

    Science.gov (United States)

    Goldstein, Lawrence S B

    2012-11-12

    Human pluripotent stem cells provide enormous opportunities to treat disease using cell therapy. But human stem cells can also drive biomedical and cell biological discoveries in a human model system, which can be directly linked to understanding disease or developing new therapies. Finally, rigorous scientific studies of these cells can and should inform the many science and medical policy issues that confront the translation of these technologies to medicine. In this paper, I discuss these issues using amyotrophic lateral sclerosis as an example.

  13. Preclinical evaluation of WYE-687, a mTOR kinase inhibitor, as a potential anti-acute myeloid leukemia agent

    International Nuclear Information System (INIS)

    Cheng, Feng; Wang, Lingling; Shen, Yunfeng; Xia, Jun; Chen, Heng; Jiang, Yuanqiang; Lu, Mize

    2016-01-01

    Mammalian target of rapamycin (mTOR) as a potential drug target for treatment of acute myeloid leukemia (AML). Here, we investigated the potential anti-leukemic activity by WYE-687, a potent mTOR kinase inhibitor. We demonstrated that WYE-687 potently inhibited survival and proliferation of established (HL-60, U937, AML-193 and THP-1 lines) and human AML progenitor cells. Yet, same WYE-687 treatment was non-cytotoxic to the primary peripheral blood mononuclear leukocytes (PBMCs) isolated from healthy donors. WYE-687 induced caspase-dependent apoptotic death in above AML cells/progenitor cells. On the other hand, the pan-caspase inhibitor (Z-VAD-FMK), the caspase-3 specific inhibitor (Z-DEVD-FMK) or the caspase-9 specific inhibitor (z-LEHD-fmk) attenuated WYE-687-induced cytotoxicity. At the molecular level, WYE-687 concurrently inhibited activation of mTORC1 (p70S6K1 and S6 phosphorylations) and mTORC2 (AKT Ser-473 and FoxO1/3a phosphorylations), whiling downregulating mTORC1/2-regulated genes (Bcl-xL and hypoxia-inducible factor 1/2α) in both HL-60/U937 cells and human AML progenitor cells. In vivo, oral administration of WYE-687 potently inhibited U937 leukemic xenograft tumor growth in severe combined immunodeficient (SCID) mice, without causing significant toxicities. In summary, our results demonstrate that targeting mTORC1/2 by WYE-687 leads to potent antitumor activity in preclinical models of AML. - Highlights: • WYE-687 inhibits survival and proliferation of human AML cells/progenitor cells. • WYE-687 induces apoptotic death of human AML cells/progenitor cells. • WYE-687 inhibits mTORC1/2 activation in human AML cells/progenitor cells. • WYE-687 inhibits U937 xenograft growth in SCID mice.

  14. Preclinical evaluation of WYE-687, a mTOR kinase inhibitor, as a potential anti-acute myeloid leukemia agent

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng; Wang, Lingling; Shen, Yunfeng; Xia, Jun; Chen, Heng; Jiang, Yuanqiang, E-mail: jiangyuanqiangwuxi@163.com; Lu, Mize, E-mail: lumizewuxi9@sina.com

    2016-02-05

    Mammalian target of rapamycin (mTOR) as a potential drug target for treatment of acute myeloid leukemia (AML). Here, we investigated the potential anti-leukemic activity by WYE-687, a potent mTOR kinase inhibitor. We demonstrated that WYE-687 potently inhibited survival and proliferation of established (HL-60, U937, AML-193 and THP-1 lines) and human AML progenitor cells. Yet, same WYE-687 treatment was non-cytotoxic to the primary peripheral blood mononuclear leukocytes (PBMCs) isolated from healthy donors. WYE-687 induced caspase-dependent apoptotic death in above AML cells/progenitor cells. On the other hand, the pan-caspase inhibitor (Z-VAD-FMK), the caspase-3 specific inhibitor (Z-DEVD-FMK) or the caspase-9 specific inhibitor (z-LEHD-fmk) attenuated WYE-687-induced cytotoxicity. At the molecular level, WYE-687 concurrently inhibited activation of mTORC1 (p70S6K1 and S6 phosphorylations) and mTORC2 (AKT Ser-473 and FoxO1/3a phosphorylations), whiling downregulating mTORC1/2-regulated genes (Bcl-xL and hypoxia-inducible factor 1/2α) in both HL-60/U937 cells and human AML progenitor cells. In vivo, oral administration of WYE-687 potently inhibited U937 leukemic xenograft tumor growth in severe combined immunodeficient (SCID) mice, without causing significant toxicities. In summary, our results demonstrate that targeting mTORC1/2 by WYE-687 leads to potent antitumor activity in preclinical models of AML. - Highlights: • WYE-687 inhibits survival and proliferation of human AML cells/progenitor cells. • WYE-687 induces apoptotic death of human AML cells/progenitor cells. • WYE-687 inhibits mTORC1/2 activation in human AML cells/progenitor cells. • WYE-687 inhibits U937 xenograft growth in SCID mice.

  15. Hepatosplenic and renal candidiasis in leukemic patients: CT spectrum before and after therapy

    International Nuclear Information System (INIS)

    Shirkhoda, A.

    1986-01-01

    Abdominal CT performed in 14 leukemic patients with systemic candidiasis and involvement of the liver, spleen, or kidneys revealed numerous low-density lesions in ten livers (71%), eight spleens (57%), and in the kidneys of three patients (21%). Biopsy of all livers and of three kidneys proved hepatic candidiasis in all (100%) and renal candidiasis in three patients (21%). After treatment with amphotericin B and splenectomy (one patient), CT disclosed abnormal livers in eleven (80%) patients, abnormal spleens in seven (53%), and abnormal kidneys in three patients (21%). Rebiopsy disclosed Candida infection in all livers and all abnormal kidneys, so the patients were treated with liposomal amphotericin B. Although the patients became asymptomatic, CT continued to show abnormal livers in five (35%) and abnormal spleens in two (16%) (the previously abnormal kidneys became normal). Rebiopsy of the abnormal livers showed focal fibrosis and necrosis. These findings emphasize the importance of clinical and pathologic correlation of CT appearance

  16. The lifetime of hypoxic human tumor cells

    International Nuclear Information System (INIS)

    Durand, Ralph E.; Sham, Edward

    1998-01-01

    Purpose: For hypoxic and anoxic cells in solid tumors to be a therapeutic problem, they must live long enough to be therapeutically relevant, or else be rapidly recruited into the proliferating compartment during therapy. We have, therefore, estimated lifetime and recruitment rate of hypoxic human tumor cells in multicell spheroids in vitro, or in xenografted tumors in SCID mice. Materials and Methods: Cell turnover was followed by flow cytometry techniques, using antibodies directed at incorporated halogenated pyrimidines. The disappearance of labeled cells was quantified, and verified to be cell loss rather than label dilution. Repopulation was studied in SiHa tumor xenografts during twice-daily 2.5-Gy radiation exposures. Results: The longevity of hypoxic human tumor cells in spheroids or xenografts exceeded that of rodent cell lines, and cell turnover was slower in xenografts than under static growth as spheroids. Human tumor cells remained viable in the hypoxic regions of xenografts for 4-10 days, compared to 3-5 days in spheroids, and 1-3 days for most rodent cells in spheroids. Repopulation was observed within the first few radiation treatments for the SiHa xenografts and, with accumulated doses of more than 10 Gy, virtually all recovered cells had progressed through at least one S-phase. Conclusion: Our results suggest an important difference in the ability of human vs. rodent tumor cells to withstand hypoxia, and raise questions concerning the increased longevity seen in vivo relative to the steady-state spheroid system

  17. Toxicity of diuron in human cancer cells.

    Science.gov (United States)

    Huovinen, Marjo; Loikkanen, Jarkko; Naarala, Jonne; Vähäkangas, Kirsi

    2015-10-01

    Diuron is a substituted phenylurea used as a herbicide to control broadleaf and grass weeds and as a biocidal antifouling agent. Diuron is carcinogenic in rat urinary bladder and toxic to the reproductive system of oysters, sea urchins and lizards. The few studies carried out in human cells do not include the genotoxicity of diuron. We have investigated the toxicity of diuron in human breast adenocarcinoma (MCF-7) and human placental choriocarcinoma (BeWo) cells. The production of reactive oxygen species (ROS) was statistically significantly increased in both cell lines but only at the highest 200 μM concentration. Diuron clearly reduced the viability of BeWo, but not MCF-7 cells. The relative cell number was decreased in both cell lines indicative of inhibition of cell proliferation. In the Comet assay, diuron increased DNA fragmentation in MCF-7 but not in BeWo cells. The expressions of p53 protein, a marker for cell stress, and p21 protein, a transcriptional target of p53, were increased, but only in MCF-7 cells. In conclusion, our results suggest that diuron is cytotoxic and potentially genotoxic in a tissue-specific manner and that ROS play a role in its toxicity. Thus, exposure to diuron may exert harmful effects on fetal development and damage human health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells.

    Science.gov (United States)

    Lee, Jonghyeob; Sugiyama, Takuya; Liu, Yinghua; Wang, Jing; Gu, Xueying; Lei, Ji; Markmann, James F; Miyazaki, Satsuki; Miyazaki, Jun-Ichi; Szot, Gregory L; Bottino, Rita; Kim, Seung K

    2013-11-19

    Pancreatic islet β-cell insufficiency underlies pathogenesis of diabetes mellitus; thus, functional β-cell replacement from renewable sources is the focus of intensive worldwide effort. However, in vitro production of progeny that secrete insulin in response to physiological cues from primary human cells has proven elusive. Here we describe fractionation, expansion and conversion of primary adult human pancreatic ductal cells into progeny resembling native β-cells. FACS-sorted adult human ductal cells clonally expanded as spheres in culture, while retaining ductal characteristics. Expression of the cardinal islet developmental regulators Neurog3, MafA, Pdx1 and Pax6 converted exocrine duct cells into endocrine progeny with hallmark β-cell properties, including the ability to synthesize, process and store insulin, and secrete it in response to glucose or other depolarizing stimuli. These studies provide evidence that genetic reprogramming of expandable human pancreatic cells with defined factors may serve as a general strategy for islet replacement in diabetes. DOI: http://dx.doi.org/10.7554/eLife.00940.001.

  19. Lobaplatin arrests cell cycle progression in human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Chen Chang-Jie

    2010-10-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC still is a big burden for China. In recent years, the third-generation platinum compounds have been proposed as potential active agents for HCC. However, more experimental and clinical data are warranted to support the proposal. In the present study, the effect of lobaplatin was assessed in five HCC cell lines and the underlying molecular mechanisms in terms of cell cycle kinetics were explored. Methods Cytotoxicity of lobaplatin to human HCC cell lines was examined using MTT cell proliferation assay. Cell cycle distribution was determined by flow cytometry. Expression of cell cycle-regulated genes was examined at both the mRNA (RT-PCR and protein (Western blot levels. The phosphorylation status of cyclin-dependent kinases (CDKs and retinoblastoma (Rb protein was also examined using Western blot analysis. Results Lobaplatin inhibited proliferation of human HCC cells in a dose-dependent manner. For the most sensitive SMMC-7721 cells, lobaplatin arrested cell cycle progression in G1 and G2/M phases time-dependently which might be associated with the down-regulation of cyclin B, CDK1, CDC25C, phosphorylated CDK1 (pCDK1, pCDK4, Rb, E2F, and pRb, and the up-regulation of p53, p21, and p27. Conclusion Cytotoxicity of lobaplatin in human HCC cells might be due to its ability to arrest cell cycle progression which would contribute to the potential use of lobaplatin for the management of HCC.

  20. Green synthesis palladium nanoparticles mediated by white tea (Camellia sinensis extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4 cell line

    Directory of Open Access Journals (Sweden)

    Azizi S

    2017-12-01

    Full Text Available Susan Azizi,1 Mahnaz Mahdavi Shahri,2 Heshu Sulaiman Rahman,3–5 Raha Abdul Rahim,6 Abdullah Rasedee,5 Rosfarizan Mohamad1,7 1Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; 2Department of Chemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran; 3College of Veterinary Medicine, University of Sulaimani, Sulaimani Nwe, 4College of Health Science, Komar University of Science and Technology (KUST, Chaq-Chaq Qularaise, Sulaimani City, Iraq; 5Faculty of Veterinary Medicine, 6Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, 7Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia Abstract: Among nanoparticles used for medical applications, palladium nanoparticles (PdNPs are among the least investigated. This study was undertaken to develop PdNPs by green synthesis using white tea (W.tea; Camellia sinensis extract to produce the Pd@W.tea NPs. The Pd@W.tea NPs were characterized by UV–vis spectroscopy and X-ray diffractometry, and evaluated with transmission electron microscopy (TEM and scanning electron microscopy (SEM. The Pd@W.tea NPs were spherical (size 6–18 nm and contained phenols and flavonoids acquired from the W.tea extract. Pd@W.tea NPs has good 1-diphenyl-2-picrylhydrazyl (DPPH, OH, and NO-scavenging properties as well as antibacterial effects toward Staphylococcus epidermidis and Escherichia coli. MTT assay showed that Pd@W.tea NPs (IC50 =0.006 µM were more antiproliferative toward the human leukemia (MOLT-4 cells than the W.tea extract (IC50 =0.894 µM, doxorubicin (IC50 =2.133 µM, or cisplatin (IC50 =0.013 µM, whereas they were relatively innocuous for normal human fibroblast (HDF-a cells. The anticancer cell effects of Pd@W.tea NPs are mediated through the induction of apoptosis

  1. Low antigenicity of hematopoietic progenitor cells derived from human ES cells

    Directory of Open Access Journals (Sweden)

    Eun-Mi Kim

    2010-02-01

    Full Text Available Eun-Mi Kim1, Nicholas Zavazava1,21Department of Internal Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, Iowa, USA; 2Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USAAbstract: Human embryonic stem (hES cells are essential for improved understanding of diseases and our ability to probe new therapies for use in humans. Currently, bone marrow cells and cord blood cells are used for transplantation into patients with hematopoietic malignancies, immunodeficiencies and in some cases for the treatment of autoimmune diseases. However, due to the high immunogenicity of these hematopoietic cells, toxic regimens of drugs are required for preconditioning and prevention of rejection. Here, we investigated the efficiency of deriving hematopoietic progenitor cells (HPCs from the hES cell line H13, after co-culturing with the murine stromal cell line OP9. We show that HPCs derived from the H13 ES cells poorly express major histocompatibility complex (MHC class I and no detectable class II antigens (HLA-DR. These characteristics make hES cell-derived hematopoietic cells (HPCs ideal candidates for transplantation across MHC barriers under minimal immunosuppression.Keywords: human embryonic stem cells, H13, hematopoiesis, OP9 stromal cells, immunogenicity

  2. Why are hematopoietic stem cells so 'sexy'? on a search for developmental explanation.

    Science.gov (United States)

    Ratajczak, M Z

    2017-08-01

    Evidence has accumulated that normal human and murine hematopoietic stem cells express several functional pituitary and gonadal sex hormones, and that, in fact, some sex hormones, such as androgens, have been employed for many years to stimulate hematopoiesis in patients with bone marrow aplasia. Interestingly, sex hormone receptors are also expressed by leukemic cell lines and blasts. In this review, I will discuss the emerging question of why hematopoietic cells express these receptors. A tempting hypothetical explanation for this phenomenon is that hematopoietic stem cells are related to subpopulation of migrating primordial germ cells. To support of this notion, the anatomical sites of origin of primitive and definitive hematopoiesis during embryonic development are tightly connected with the migratory route of primordial germ cells: from the proximal epiblast to the extraembryonic endoderm at the bottom of the yolk sac and then back to the embryo proper via the primitive streak to the aorta-gonado-mesonephros (AGM) region on the way to the genital ridges. The migration of these cells overlaps with the emergence of primitive hematopoiesis in the blood islands at the bottom of the yolk sac, and definitive hematopoiesis that occurs in hemogenic endothelium in the embryonic dorsal aorta in AGM region.

  3. Identification of proteins specific for human herpesvirus 6-infected human T cells

    International Nuclear Information System (INIS)

    Balachandran, N.; Amelse, R.E.; Zhou, W.W.; Chang, C.K.

    1989-01-01

    Proteins specific for human herpesvirus 6 (HHV-6)-infected human T cells (HSB-2) were examined by using polyclonal rabbit antibodies and monoclonal antibodies against HHV-6-infected cells and human sera. More than 20 proteins and six glycoproteins specific for HHV-6-infected cells were identified from [ 35 S]methionine- and [ 3 H]glucosamine-labeled total-cell extracts. Polyclonal rabbit antibodies immunoprecipitated 33 [ 35 S]methionine-labeled HHV-6-specific polypeptides with approximate molecular weights ranging from 180,000 to 31,000. In immunoprecipitation and Western immunoblot reactions, a patient's serum also recognized more than 30 HHV-6-specific proteins and seven glycoproteins. In contrast, sera from individuals with high-titered antibodies against other human herpesviruses reacted with fewer HHV-6-infected cell proteins, and only a 135,000-M r polypeptide was prominent. Monoclonal antibodies to HHV-6-infected cells reacted with single and multiple polypeptides specific for virus-infected cells and immunoprecipitated three distinct sets of glycoproteins, which were designated gp105k and gp82k, gp116k, gp64k, and gp54k, and gp102k

  4. Identification of proteins specific for human herpesvirus 6-infected human T cells

    International Nuclear Information System (INIS)

    Balachandran, N.; Amelse, R.E.; Zhou, W.W.; Chang, C.K.

    1989-01-01

    Proteins specific for human herpesvirus 6 (HHV-6)-infected human T cells (HSB-2) were examined by using polyclonal rabbit antibodies and monoclonal antibodies against HHV-6-infected cells and human sera. More than 20 proteins and six glycoproteins specific for HHV-6-infected cells were identified from [ 35 S]methionine- and [ 3 H]glucosamine-labeled total-cell extracts. Polyclonal rabbit antibodies immunoprecipitated 33 [ 35 S]methionine-labeled HHV-6-specific polypeptides with approximate molecular weights ranging from 180,000 to 31,000. In immunoprecipitation and Western immunoblot reactions, a patient's serum also recognized more than 30 HHV-6-specific proteins and seven glycoproteins. In contrast, sera from individuals with high-titered antibodies against other human herpes viruses reacted with few HHV-6-infected cell proteins, and only a 135,000-M/sub r/ polypeptide was prominent. Monoclonal antibodies to HHV-6-infected cells reacted with single and multiple polypeptides specific for virus-infected cells and immunoprecipitated three distinct sets of glycoproteins, which were designated gp105K and gp92k, gp116k, gp64k, and gp54k, and gp102k

  5. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Progress report, January 1-December 31, 1984

    International Nuclear Information System (INIS)

    Rowley, J.D.

    1984-08-01

    Oncogenes associated with human neoplasms are genetically mapped to the human genome. In addition, chromosomal deletions and rearrangements presumably induced by radiotherapy and/or chemotherapy for other maladys are correlated with malignant lymphomas. 27 refs., 6 figs., 2 tabs. (DT)

  6. C7a, a Biphosphinic Cyclopalladated Compound, Efficiently Controls the Development of a Patient-Derived Xenograft Model of Adult T Cell Leukemia/Lymphoma

    Directory of Open Access Journals (Sweden)

    Carlos R. Figueiredo

    2011-07-01

    Full Text Available Adult T-cell leukemia/lymphoma (ATLL is a highly aggressive disease that occurs in individuals infected with the human T lymphotropic virus type 1 (HTLV-1. Patients with aggressive ATLL have a poor prognosis because the leukemic cells are resistant to conventional chemotherapy. We have investigated the therapeutic efficacy of a biphosphinic cyclopalladated complex {Pd2 [S(−C2, N-dmpa]2 (μ-dppeCl2}, termed C7a, in a patient-derived xenograft model of ATLL, and investigated the mechanism of C7a action in HTLV-1-positive and negative transformed T cell lines in vitro. In vivo survival studies in immunocompromised mice inoculated with human RV-ATL cells and intraperitoneally treated with C7a led to significantly increased survival of the treated mice. We investigated the mechanism of C7a activity in vitro and found that it induced mitochondrial release of cytochrome c, caspase activation, nuclear condensation and DNA degradation. These results suggest that C7a triggers apoptotic cell death in both HTLV-1 infected and uninfected human transformed T-cell lines. Significantly, C7a was not cytotoxic to peripheral blood mononuclear cells (PBMC from healthy donors and HTLV-1-infected individuals. C7a inhibited more than 60% of the ex vivo spontaneous proliferation of PBMC from HTLV-1-infected individuals. These results support a potential therapeutic role for C7a in both ATLL and HTLV-1-negative T-cell lymphomas.

  7. The response of human and rodent cells to hyperthermia

    International Nuclear Information System (INIS)

    Roizin-Towle, L.; Pirro, J.P.

    1991-01-01

    Inherent cellular radiosensitivity in vitro has been shown to be a good predictor of human tumor response in vivo. In contrast, the importance of the intrinsic thermosensitivity of normal and neoplastic human cells as a factor in the responsiveness of human tumors to adjuvant hyperthermia has never been analyzed systematically. A comparison of thermal sensitivity and thermo-radiosensitization in four rodent and eight human-derived cell lines was made in vitro. Arrhenius plots indicated that the rodent cells were more sensitive to heat killing than the human, and the break-point was 0.5 degrees C higher for the human than rodent cells. The relationship between thermal sensitivity and the interaction of heat with X rays at low doses was documented by thermal enhancement ratios (TER's). Cells received either a 1 hr exposure to 43 degrees C or a 20 minute treatment at 45 degrees C before exposure to 300 kVp X rays. Thermal enhancement ratios ranged from 1.0 to 2.7 for human cells heated at 43 degrees C and from 2.1 to 5.3 for heat exposures at 45 degrees C. Thermal enhancement ratios for rodent cells were generally 2 to 3 times higher than for human cells, because of the fact that the greater thermosensitivity of rodent cells results in a greater enhancement of radiation damage. Intrinsic thermosensitivity of human cells has relevance to the concept of thermal dose; intrinsic thermo-radiosensitization of a range of different tumor cells is useful in documenting the interactive effects of radiation combined with heat

  8. Repurposing Lesogaberan to Promote Human Islet Cell Survival and β-Cell Replication

    Directory of Open Access Journals (Sweden)

    Jide Tian

    2017-01-01

    Full Text Available The activation of β-cell’s A- and B-type gamma-aminobutyric acid receptors (GABAA-Rs and GABAB-Rs can promote their survival and replication, and the activation of α-cell GABAA-Rs promotes their conversion into β-cells. However, GABA and the most clinically applicable GABA-R ligands may be suboptimal for the long-term treatment of diabetes due to their pharmacological properties or potential side-effects on the central nervous system (CNS. Lesogaberan (AZD3355 is a peripherally restricted high-affinity GABAB-R-specific agonist, originally developed for the treatment of gastroesophageal reflux disease (GERD that appears to be safe for human use. This study tested the hypothesis that lesogaberan could be repurposed to promote human islet cell survival and β-cell replication. Treatment with lesogaberan significantly enhanced replication of human islet cells in vitro, which was abrogated by a GABAB-R antagonist. Immunohistochemical analysis of human islets that were grafted into immune-deficient mice revealed that oral treatment with lesogaberan promoted human β-cell replication and islet cell survival in vivo as effectively as GABA (which activates both GABAA-Rs and GABAB-Rs, perhaps because of its more favorable pharmacokinetics. Lesogaberan may be a promising drug candidate for clinical studies of diabetes intervention and islet transplantation.

  9. Comparative reactivity of human IgE to cynomolgus monkey and human effector cells and effects on IgE effector cell potency

    Science.gov (United States)

    Saul, Louise; Saul, Louise; Josephs, Debra H; Josephs, Debra H; Cutler, Keith; Cutler, Keith; Bradwell, Andrew; Bradwell, Andrew; Karagiannis, Panagiotis; Karagiannis, Panagiotis; Selkirk, Chris; Selkirk, Chris; Gould, Hannah J; Gould, Hannah J; Jones, Paul; Jones, Paul; Spicer, James F; Spicer, James F; Karagiannis, Sophia N; Karagiannis, Sophia N

    2014-01-01

    Background: Due to genetic similarities with humans, primates of the macaque genus such as the cynomolgus monkey are often chosen as models for toxicology studies of antibody therapies. IgE therapeutics in development depend upon engagement with the FcεRI and FcεRII receptors on immune effector cells for their function. Only limited knowledge of the primate IgE immune system is available to inform the choice of models for mechanistic and safety evaluations.   Methods: The recognition of human IgE by peripheral blood lymphocytes from cynomolgus monkey and man was compared. We used effector cells from each species in ex vivo affinity, dose-response, antibody-receptor dissociation and potency assays. Results: We report cross-reactivity of human IgE Fc with cynomolgus monkey cells, and comparable binding kinetics to peripheral blood lymphocytes from both species. In competition and dissociation assays, however, human IgE dissociated faster from cynomolgus monkey compared with human effector cells. Differences in association and dissociation kinetics were reflected in effector cell potency assays of IgE-mediated target cell killing, with higher concentrations of human IgE needed to elicit effector response in the cynomolgus monkey system. Additionally, human IgE binding on immune effector cells yielded significantly different cytokine release profiles in each species. Conclusion: These data suggest that human IgE binds with different characteristics to human and cynomolgus monkey IgE effector cells. This is likely to affect the potency of IgE effector functions in these two species, and so has relevance for the selection of biologically-relevant model systems when designing pre-clinical toxicology and functional studies. PMID:24492303

  10. Retinal Ganglion Cell Diversity and Subtype Specification from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Kirstin B. Langer

    2018-04-01

    Full Text Available Summary: Retinal ganglion cells (RGCs are the projection neurons of the retina and transmit visual information to postsynaptic targets in the brain. While this function is shared among nearly all RGCs, this class of cell is remarkably diverse, comprised of multiple subtypes. Previous efforts have identified numerous RGC subtypes in animal models, but less attention has been paid to human RGCs. Thus, efforts of this study examined the diversity of RGCs differentiated from human pluripotent stem cells (hPSCs and characterized defined subtypes through the expression of subtype-specific markers. Further investigation of these subtypes was achieved using single-cell transcriptomics, confirming the combinatorial expression of molecular markers associated with these subtypes, and also provided insight into more subtype-specific markers. Thus, the results of this study describe the derivation of RGC subtypes from hPSCs and will support the future exploration of phenotypic and functional diversity within human RGCs. : In this article, Langer and colleagues present extensive characterization of RGC subtypes derived from human pluripotent stem cells, with multiple subtypes identified by subtype-specific molecular markers. Their results present a more detailed analysis of RGC diversity in human cells and yield the use of different markers to identify RGC subtypes. Keywords: iPSC, retina, retinal ganglion cell, RGC subtype, stem cell, ipRGC, alpha RGC, direction selective RGC, RNA-seq

  11. Alternative Sources of Adult Stem Cells: Human Amniotic Membrane

    Science.gov (United States)

    Wolbank, Susanne; van Griensven, Martijn; Grillari-Voglauer, Regina; Peterbauer-Scherb, Anja

    Human amniotic membrane is a highly promising cell source for tissue engineering. The cells thereof, human amniotic epithelial cells (hAEC) and human amniotic mesenchymal stromal cells (hAMSC), may be immunoprivileged, they represent an early developmental status, and their application is ethically uncontroversial. Cell banking strategies may use freshly isolated cells or involve in vitro expansion to increase cell numbers. Therefore, we have thoroughly characterized the effect of in vitro cultivation on both phenotype and differentiation potential of hAEC. Moreover, we present different strategies to improve expansion including replacement of animal-derived supplements by human platelet products or the introduction of the catalytic subunit of human telomerase to extend the in vitro lifespan of amniotic cells. Characterization of the resulting cultures includes phenotype, growth characteristics, and differentiation potential, as well as immunogenic and immunomodulatory properties.

  12. Ginsenoside Rg3 induces DNA damage in human osteosarcoma cells and reduces MNNG-induced DNA damage and apoptosis in normal human cells.

    Science.gov (United States)

    Zhang, Yue-Hui; Li, Hai-Dong; Li, Bo; Jiang, Sheng-Dan; Jiang, Lei-Sheng

    2014-02-01

    Panax ginseng is a Chinese medicinal herb. Ginsenosides are the main bioactive components of P. ginseng, and ginsenoside Rg3 is the primary ginsenoside. Ginsenosides can potently kill various types of cancer cells. The present study was designed to evaluate the potential genotoxicity of ginsenoside Rg3 in human osteosarcoma cells and the protective effect of ginsenoside Rg3 with respect to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced DNA damage and apoptosis in a normal human cell line (human fibroblasts). Four human osteosarcoma cell lines (MG-63, OS732, U-2OS and HOS cells) and a normal human cell line (human fibroblasts) were employed to investigate the cytotoxicity of ginsenosides Rg3 by MTT assay. Alkaline comet assay and γH2AX focus staining were used to detect the DNA damage in MG-63 and U-2OS cells. The extent of cell apoptosis was determined by flow cytometry and a DNA ladder assay. Our results demonstrated that the cytotoxicity of ginsenoside Rg3 was dose-dependent in the human osteosarcoma cell lines, and MG-63 and U-2OS cells were the most sensitive to ginsenoside Rg3. As expected, compared to the negative control, ginsenoside Rg3 significantly increased DNA damage in a concentration-dependent manner. In agreement with the comet assay data, the percentage of γH2AX-positive MG-63 and U-2OS cells indicated that ginsenoside Rg3 induced DNA double-strand breaks in a concentration-dependent manner. The results also suggest that ginsenoside Rg3 reduces the extent of MNNG-induced DNA damage and apoptosis in human fibroblasts.

  13. Genetically-modified pig mesenchymal stromal cells: xenoantigenicity and effect on human T-cell xenoresponses.

    Science.gov (United States)

    Ezzelarab, Mohamed; Ezzelarab, Corin; Wilhite, Tyler; Kumar, Goutham; Hara, Hidetaka; Ayares, David; Cooper, David K C

    2011-01-01

    Mesenchymal stromal cells (MSC) are being investigated as immunomodulatory therapy in the field of transplantation, particularly islet transplantation. While MSC can regenerate across species barriers, the immunoregulatory influence of genetically modified pig MSC (pMSC) on the human and non-human primate T-cell responses has not been studied. Mesenchymal stromal cells from wild-type (WT), α1,3-galactosyltransferase gene knockout (GTKO) and GTKO pigs transgenic for the human complement-regulatory protein CD46 (GTKO/CD46) were isolated and tested for differentiation. Antibody binding and T-cell responses to WT and GTKO pMSC in comparison with GTKO pig aortic endothelial cells (pAEC) were investigated. The expression of swine leukocyte antigen (SLA) class II (SLA II) was tested. Costimulatory molecules CD80 and CD86 mRNA levels were measured. Human T-cell proliferation and the production of pro-inflammatory cytokines in response to GTKO and GTKO/CD46 pMSC in comparison with human MSC (hMSC) were evaluated. α1,3-galactosyltransferase gene knockout and GTKO/CD46 pMSC isolation and differentiation were achieved in vitro. Binding of human antibodies and T-cell responses were lower to GTKO than those to WT pMSC. Human and baboon (naïve and sensitized) antibody binding were significantly lower to GTKO pMSC than to GTKO pAEC. Before activation, human CD4(+) T-cell response to GTKO pMSC was significantly weaker than that to GTKO pAEC, even after pIFN-γ activation. More than 99% of GTKO/CD46 pMSC expressed hCD46. Human peripheral blood mononuclear cells and CD4(+) T-cell responses to GTKO and GTKO/CD46 pMSC were comparable with those to hMSC, and all were significantly lower than to GTKO pAEC. GTKO/CD46 pMSC downregulated human T-cell proliferation as efficiently as hMSC. The level of proinflammatory cytokines IL-2, IFN-γ, TNF-α, and sCD40L correlated with the downregulation of T-cell proliferation by all types of MSC. Genetically modified pMSC is significantly less

  14. A DNA Vaccine Protects Human Immune Cells against Zika Virus Infection in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Guohua Yi

    2017-11-01

    Full Text Available A DNA vaccine encoding prM and E protein has been shown to induce protection against Zika virus (ZIKV infection in mice and monkeys. However, its effectiveness in humans remains undefined. Moreover, identification of which immune cell types are specifically infected in humans is unclear. We show that human myeloid cells and B cells are primary targets of ZIKV in humanized mice. We also show that a DNA vaccine encoding full length prM and E protein protects humanized mice from ZIKV infection. Following administration of the DNA vaccine, humanized DRAG mice developed antibodies targeting ZIKV as measured by ELISA and neutralization assays. Moreover, following ZIKV challenge, vaccinated animals presented virtually no detectable virus in human cells and in serum, whereas unvaccinated animals displayed robust infection, as measured by qRT-PCR. Our results utilizing humanized mice show potential efficacy for a targeted DNA vaccine against ZIKV in humans.

  15. Differentiation of insulin-producing cells from human neural progenitor cells.

    Directory of Open Access Journals (Sweden)

    Yuichi Hori

    2005-04-01

    Full Text Available BACKGROUND: Success in islet-transplantation-based therapies for type 1 diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Islets and neurons share features, including common developmental programs, and in some species brain neurons are the principal source of systemic insulin. METHODS AND FINDINGS: Here we show that brain-derived human neural progenitor cells, exposed to a series of signals that regulate in vivo pancreatic islet development, form clusters of glucose-responsive insulin-producing cells (IPCs. During in vitro differentiation of neural progenitor cells with this novel method, genes encoding essential known in vivo regulators of pancreatic islet development were expressed. Following transplantation into immunocompromised mice, IPCs released insulin C-peptide upon glucose challenge, remained differentiated, and did not form detectable tumors. CONCLUSION: Production of IPCs solely through extracellular factor modulation in the absence of genetic manipulations may promote strategies to derive transplantable islet-replacement tissues from human neural progenitor cells and other types of multipotent human stem cells.

  16. Autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells.

    Science.gov (United States)

    Morita, Ken; Noura, Mina; Tokushige, Chieko; Maeda, Shintaro; Kiyose, Hiroki; Kashiwazaki, Gengo; Taniguchi, Junichi; Bando, Toshikazu; Yoshida, Kenichi; Ozaki, Toshifumi; Matsuo, Hidemasa; Ogawa, Seishi; Liu, Pu Paul; Nakahata, Tatsutoshi; Sugiyama, Hiroshi; Adachi, Souichi; Kamikubo, Yasuhiko

    2017-11-30

    Although runt-related transcription factor 1 (RUNX1) and its associating core binding factor-β (CBFB) play pivotal roles in leukemogenesis, and inhibition of RUNX1 has now been widely recognized as a novel strategy for anti-leukemic therapies, it has been elusive how leukemic cells could acquire the serious resistance against RUNX1-inhibition therapies and also whether CBFB could participate in this process. Here, we show evidence that p53 (TP53) and CBFB are sequentially up-regulated in response to RUNX1 depletion, and their mutual interaction causes the physiological resistance against chemotherapy for acute myeloid leukemia (AML) cells. Mechanistically, p53 induced by RUNX1 gene silencing directly binds to CBFB promoter and stimulates its transcription as well as its translation, which in turn acts as a platform for the stabilization of RUNX1, thereby creating a compensative RUNX1-p53-CBFB feedback loop. Indeed, AML cells derived from relapsed cases exhibited higher CBFB expression levels compared to those from primary AML cells at diagnosis, and these CBFB expressions were positively correlated to those of p53. Our present results underscore the importance of RUNX1-p53-CBFB regulatory loop in the development and/or maintenance of AML cells, which could be targeted at any sides of this triangle in strategizing anti-leukemia therapies.

  17. Polyalkoxybenzenes from plants. 5. Parsley seed extract in synthesis of azapodophyllotoxins featuring strong tubulin destabilizing activity in the sea urchin embryo and cell culture assays.

    Science.gov (United States)

    Semenova, Marina N; Kiselyov, Alex S; Tsyganov, Dmitry V; Konyushkin, Leonid D; Firgang, Sergei I; Semenov, Roman V; Malyshev, Oleg R; Raihstat, Mikhail M; Fuchs, Fabian; Stielow, Anne; Lantow, Margareta; Philchenkov, Alex A; Zavelevich, Michael P; Zefirov, Nikolay S; Kuznetsov, Sergei A; Semenov, Victor V

    2011-10-27

    A series of 4-azapodophyllotoxin derivatives with modified rings B and E have been synthesized using allylpolyalkoxybenzenes from parsley seed oil. The targeted molecules were evaluated in vivo in a phenotypic sea urchin embryo assay for antimitotic and tubulin destabilizing activity. The most active compounds identified by the in vivo sea urchin embryo assay featured myristicin-derived ring E. These molecules were determined to be more potent than podophyllotoxin. Cytotoxic effects of selected molecules were further confirmed and evaluated by conventional assays with A549 and Jurkat human leukemic T-cell lines including cell growth inhibition, cell cycle arrest, cellular microtubule disruption, and induction of apoptosis. The ring B modification yielded 6-OMe substituted molecule as the most active compound. Finally, in Jurkat cells, compound induced caspase-dependent apoptosis mediated by the apical caspases-2 and -9 and not caspase-8, implying the involvement of the intrinsic caspase-9-dependent apoptotic pathway.

  18. Human leukaemic cells

    International Nuclear Information System (INIS)

    Andronikashvili, E.L.; Mosulishvili, L.M.; Belokobil'skiy, A.I.; Kharabadze, N.E.; Shonia, N.I.; Desai, L.S.; Foley, G.E.

    1976-01-01

    The results of the determination of trace elements in nucleic acids and histones in human leukaemic cells by activation analysis are reported. The Cr 2+ , Fe 2+ , Zn 2+ , Co 2+ and Sb 2+ content of DNA and RNA of leukaemic cells compared to that of lymphocytes from a patient with infectious mononucleosis or a normal donor are shown tabulated. Similar comparisons are shown for the same trace metal content of histones isolated from the same type of cells. It is felt that the results afford further interesting speculation that trace metals may be involved in the interactions between histones and DNA (especially at the binding sites of histones to DNA), which affect transcription characteristics. (U.K.)

  19. Dasatinib accelerates valproic acid-induced acute myeloid leukemia cell death by regulation of differentiation capacity.

    Directory of Open Access Journals (Sweden)

    Sook-Kyoung Heo

    Full Text Available Dasatinib is a compound developed for chronic myeloid leukemia as a multi-targeted kinase inhibitor against wild-type BCR-ABL and SRC family kinases. Valproic acid (VPA is an anti-epileptic drug that also acts as a class I histone deacetylase inhibitor. The aim of this research was to determine the anti-leukemic effects of dasatinib and VPA in combination and to identify their mechanism of action in acute myeloid leukemia (AML cells. Dasatinib was found to exert potent synergistic inhibitory effects on VPA-treated AML cells in association with G1 phase cell cycle arrest and apoptosis induction involving the cleavage of poly (ADP-ribose polymerase and caspase-3, -7 and -9. Dasatinib/VPA-induced cell death thus occurred via caspase-dependent apoptosis. Moreover, MEK/ERK and p38 MAPK inhibitors efficiently inhibited dasatinib/VPA-induced apoptosis. The combined effect of dasatinib and VPA on the differentiation capacity of AML cells was more powerful than the effect of each drug alone, being sufficiently strong to promote AML cell death through G1 cell cycle arrest and caspase-dependent apoptosis. MEK/ERK and p38 MAPK were found to control dasatinib/VPA-induced apoptosis as upstream regulators, and co-treatment with dasatinib and VPA to contribute to AML cell death through the regulation of differentiation capacity. Taken together, these results indicate that combined dasatinib and VPA treatment has a potential role in anti-leukemic therapy.

  20. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.