WorldWideScience

Sample records for human jeg-3 cell

  1. MicroRNA-218 inhibits the proliferation of human choriocarcinoma JEG-3 cell line by targeting Fbxw8

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Dazun; Tan, Zhihui; Lu, Rong; Yang, Wenqing; Zhang, Yi, E-mail: zhangyi5588@hotmail.com

    2014-08-08

    Highlights: • The miR-218 expression was decreased in choriocarcinoma cell lines. • The Fbxw8 protein expression was increased in choriocarcinoma cell lines. • We show that Fbxw8 is bona-fide target of miR-218 in JEG-3. • Ectopic miR-218 expression inhibits the proliferation of JEG-3 via Fbxw8. • Overexpression of miR-218 affected cyclin A and p27 expression via Fbxw8. - Abstract: MicroRNAs (miRNAs) are endogenous 19–25 nucleotide noncoding single-stranded RNAs that regulate gene expression by blocking the translation or decreasing the stability of mRNAs. In this study, we showed that miR-218 expression levels were decreased while Fbxw8 expression levels were increased in human choriocarcinoma cell lines, and identified Fbxw8 as a novel direct target of miR-218. Overexpression of miR-218 inhibited cell growth arrest at G2/M phase, suppressed the protein levels of cyclin A and up-regulated the expression levels of p27 through decreasing the levels of Fbxw8. On the other hand, forced expression of Fbxw8 partly rescued the effect of miR-218 in the cells, attenuated cell proliferation decrease the percentage of cells at G2/M phase, induced cyclin A protein expression and suppressed the protein level of p27 through up-regulating the levels of Fbxw8. Taken together, these findings will shed light the role to mechanism of miR-218 in regulating JEG-3 cells proliferation via miR-218/Fbxw8 axis, and miR-218 may serve as a novel potential therapeutic target in human choriocarcinoma in the future.

  2. Expression of matrix metallo-proteinase-28 in human nor-mal cytotrophoblast cells and a choriocarcinoma cell line,JEG-3

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    There are striking similiarities present between the behavior of invasive placental cells and that of invasive cancer cells. Matrix metalioproteinases (MMPs) are one of the most important mediators. MMP-28, the new member ofMMPs, was sequenced and identified recently. Expression of MMP-28 mRNA and protein in the cytotrophoblast cells anda choriocarcinoma cell line, JEG-3 cell, was conducted by zymography, RT-PCR and Northern blot. There is MMP-28mRNA expression in both the cytotrophoblast cells and JEG-3 cells by RT-PCR. The activity of MMP-28 in cytotrophoblast cells was significantly weaker than that in JEG-3 (P < 0.01) by zymography. Furthermore, mRNA expression of MMP-28 was significantly stronger (P < 0.001) in JEG-3than in human cytotrophoblast cells in a time-dependent way by Northern Blot. Our results suggest that MMP-28 may play a role in some of the tissue-remodeling events associated with normal pregnancy and tumor progression.``

  3. Expression and Functional Activity of the Human Bitter Taste Receptor TAS2R38 in Human Placental Tissues and JEG-3 Cells

    Directory of Open Access Journals (Sweden)

    Ute Wölfle

    2016-03-01

    Full Text Available Bitter taste receptors (TAS2Rs are expressed in mucous epithelial cells of the tongue but also outside the gustatory system in epithelial cells of the colon, stomach and bladder, in the upper respiratory tract, in the cornified squamous epithelium of the skin as well as in airway smooth muscle cells, in the testis and in the brain. In the present work we addressed the question if bitter taste receptors might also be expressed in other epithelial tissues as well. By staining a tissue microarray with 45 tissue spots from healthy human donors with an antibody directed against the best characterized bitter taste receptor TAS2R38, we observed an unexpected strong TAS2R38 expression in the amniotic epithelium, syncytiotrophoblast and decidua cells of the human placenta. To analyze the functionality we first determined the TAS2R38 expression in the placental cell line JEG-3. Stimulation of these cells with diphenidol, a clinically used antiemetic agent that binds TAS2Rs including TAS2R38, demonstrated the functionality of the TAS2Rs by inducing calcium influx. Restriction enzyme based detection of the TAS2R38 gene allele identified JEG-3 cells as PTC (phenylthiocarbamide-taster cell line. Calcium influx induced by PTC in JEG-3 cells could be inhibited with the recently described TAS2R38 inhibitor probenecid and proved the specificity of the TAS2R38 activation. The expression of TAS2R38 in human placental tissues points to further new functions and hitherto unknown endogenous ligands of TAS2Rs far beyond bitter tasting.

  4. Expression and Functional Activity of the Human Bitter Taste Receptor TAS2R38 in Human Placental Tissues and JEG-3 Cells.

    Science.gov (United States)

    Wölfle, Ute; Elsholz, Floriana A; Kersten, Astrid; Haarhaus, Birgit; Schumacher, Udo; Schempp, Christoph M

    2016-03-03

    Bitter taste receptors (TAS2Rs) are expressed in mucous epithelial cells of the tongue but also outside the gustatory system in epithelial cells of the colon, stomach and bladder, in the upper respiratory tract, in the cornified squamous epithelium of the skin as well as in airway smooth muscle cells, in the testis and in the brain. In the present work we addressed the question if bitter taste receptors might also be expressed in other epithelial tissues as well. By staining a tissue microarray with 45 tissue spots from healthy human donors with an antibody directed against the best characterized bitter taste receptor TAS2R38, we observed an unexpected strong TAS2R38 expression in the amniotic epithelium, syncytiotrophoblast and decidua cells of the human placenta. To analyze the functionality we first determined the TAS2R38 expression in the placental cell line JEG-3. Stimulation of these cells with diphenidol, a clinically used antiemetic agent that binds TAS2Rs including TAS2R38, demonstrated the functionality of the TAS2Rs by inducing calcium influx. Restriction enzyme based detection of the TAS2R38 gene allele identified JEG-3 cells as PTC (phenylthiocarbamide)-taster cell line. Calcium influx induced by PTC in JEG-3 cells could be inhibited with the recently described TAS2R38 inhibitor probenecid and proved the specificity of the TAS2R38 activation. The expression of TAS2R38 in human placental tissues points to further new functions and hitherto unknown endogenous ligands of TAS2Rs far beyond bitter tasting.

  5. Exposure of human JEG-3 cell line to TCDD alters progesterone secretion but does not act on their viability and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Augustowska, K.; Gregoraszczuk, E.L. [Jagiellonian Univ., Krakow (Poland)

    2004-09-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related compounds are lipophilic and difficult to metabolize. Any environmental exposure of living organisms to these congeners results in their accumulation in fat tissue and bioconcentration in humans via the food chain. TCDD acts as an endocrine disrupter to alter differentiation and function of the reproductive system. Therefore, these compounds represent a serious health risk, especially to the fetus and infants, whose enzymatic and metabolic systems are not yet mature. Our previous data showed high accumulation of TCDD in cultured human placental tissue which caused a decrease in hormone secretion. However, the mechanism of this action is still unclear. JEG-3 cell line from malignant placental tissue has been used as an in vitro model for investigation of the effects of xenobiotics on placenta toxicity. These cells are morphologically similar to their origin, the trophoblast of the normal first trimester placenta, and produce many peptides and steroid hormones found in normal trophoblast cells, such as hCG, GhRH, progesterone. The aim of the present study was firstly, to show dose- and time-dependent effects of TCDD on progesterone production by JEG-3 cells and secondly, to examine mechanism of its action on cell viability and apoptosis.

  6. 氯菊酯异构体对人类绒毛膜癌 JEG-3细胞内分泌的选择性干扰%Endocrine disruption effect of permethrin isomers to the chorion carcinoma JEG-3 cells

    Institute of Scientific and Technical Information of China (English)

    钮利喜; 王萍; 朱欣凯; 陆颖冲; 赵美蓉

    2016-01-01

    The endocrine disruption effect of four permethrin isomers to the chorion carcinoma JEG-3 cells was investigated. JEG-3 cell lines was employed as thein vitro model and the potential risks of these compounds to maternal-fetal health were also evaluated. Four permethrin isomers were separated by HPLC. The results of real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that those four isomers, in RNA levels, exhibited selective influence on the relative expression amounts of the genes correspounding to gonadotropin-releasing hormone (GnRH) and its receptor, the enzymes of the steroidogenesis pathway and human leucocyte antigen G (HLA-G). The endocrine disruption effects induced by 1R-cis-PM and 1S-trans-PM were more significant than that induced by 1S-cis-PM and 1R-trans-PM.%以人类绒毛膜癌 JEG-3细胞为模型,通过考察拟除虫菊酯类农药氯菊酯(permethrin, PM)及其异构体对 JEG-3细胞内分泌相关基因的干扰情况,探讨了氯菊酯及其异构体暴露对产妇胎儿健康的潜在风险。通过高效液相色谱拆分得到氯菊酯的4个异构体,采用实时荧光定量反转录聚合酶链式反应(reverse transcription polymerase chain reaction, RT-PCR)法检测目的基因的相对表达水平,发现氯菊酯异构体对 JEG-3细胞促性腺激素释放激素(GnRHI, GnRHII)及其受体(GnRHR)、胆甾醇类雌激素合成关键基因以及胚胎免疫耐受相关基因(HLA-G)在 mRNA水平的相对表达量均呈现选择性干扰,其中1R-cis-PM和1S-trans-PM对滋养层细胞内分泌相关基因表达量的影响大于其他2个异构体。

  7. Effect of ghrelin on proliferation, apoptosis and secretion of progesterone and hCG in the placental JEG-3 cell line.

    Science.gov (United States)

    Rak-Mardyła, Agnieszka; Gregoraszczuk, Ewa

    2010-07-01

    To determine the effect of ghrelin on placental cell proliferation, apoptosis and hormone secretion we cultured human JEG-3 cells with 100, 250, 500 or 1000 pg/ml of ghrelin for 48 hours. Ghrelin stimulated cell proliferation and decreased caspase-3 activity. All of the investigated ghrelin concentrations decreased progesterone (P(3)) but had no effect on human chorionic gonadotrophin (hCG) secretion. Stimulatory effects on cell proliferation paralleled inhibitory effects on cell apoptosis suggesting a possible role for ghrelin in placental formation or remodeling.

  8. miR-152调节JEG-3细胞中HLA-G的表达%Effect of MIR-152 on Expression of HLA-G in JEG-3 Cells

    Institute of Scientific and Technical Information of China (English)

    朱晓明; 王晓红; 姜锋; 肖西峰; 尹国武

    2011-01-01

    Objective To investigate the effect of miR-152 on the expression of HLA-G in JEG-3 cells.Methods The trophoblastic tumor JEG-3 cells were transfected with pre-miR-152( as test group) ,pre-miRNA-control labeled with dye Cy3 (as negative control), and with nothing( normal control, NC ), respectively.48 and 72 hours after transfction, cells were used for RT-PCR and Western blot analysis to investigate the expression of miR-152 mRNA and HLA-G mRNA, HLA-G protein,respectively.Results After pre-miR-152 transfection, RT-PCR analysis showed that the transfection was effective( P < 0.05 ) ,whereas no significant changes were observed in the mRNA level of HLA-G.However,the cells transfected with pre-miR-152 significantly decrease the HLA-G protein level(P < 0.05).Conclusion The miR-152 can down-regulate the expression of HLA-G by inhibiting the translation process.%目的 研究miR-152分子对JEG-3细胞中HLA-G表达水平的调控.方法 在滋养细胞肿瘤细胞系JEG-3细胞中分别转染pre-miR-152(实验组),Cy3标记的pre-miRNA-control(阴性对照),空白对照(NC)为未转染的JEG-3细胞.转染48 h、72 h分别进行RT-PCR与Western blot实验检测细胞中miR-152、HLA-G mRNA与蛋白的表达水平.结果 RT-PCR结果 显示在细胞中转染pre-miR-152分子后miR-152的表达显著增高(P0.05).Western blot结果 显示与对照组相比,实验组的HLA-G蛋白表达水平显著降低(P<0.05).结论 miR-152可能在翻译水平抑制HLA-G的表达.

  9. 对溴磷及其对映体对人胎盘滋养层JEG-3细胞内分泌干扰的影响%Enantioseletive effect of endocrine disruption by leptophos in JEG-3 cells

    Institute of Scientific and Technical Information of China (English)

    陆颖冲; 张全; 王萃

    2012-01-01

    In this study, we employed organophosphorus pesticides leptophos as a model compound, JEG-3 cell lines as in vitro model and assessed enantioselective disruption of leptophos towards the metabolic pathway of GnRH-mediated and estrogen, which derived from cholesterol synthesis. Besides, we desire to generally evaluate the potential risks of maternal-fetal health exposure to these compounds. The results revealed that organophosphorus pesticides leptophos exhibited significant enantioselectivity among the two enantiomers of leptophos in most of the genes, including GnRH and its receptor, genes corresponding to enzymes of the steroidogenesis pathway and HLA-G. Moreover, (-)-Leptophos showed a stronger endocrine disruption than its ( + )form in JEG-3 cell.%考察了有机磷农药对溴磷(Leptophos)的外消旋及其两个对映体对内分泌相关基因的干扰情况.探讨了以人类绒毛膜癌JEG-3细胞为模型,对溴磷的外消旋及其两个对映体暴露对产妇胎儿健康的潜在风险.研究通过采用实时定量PCR的方法,发现有机磷农药对溴磷的外消旋及其两个对映体对促性腺释放激素及其受体(GnRHⅠ,GnRHⅡ和GnRHR),胆固醇来源的雌激素合成以及胎儿在怀孕期间母体免疫(HLA-G)的相关基因表达都有不同程度的影响.并且(-)-Leptophos相对于(-)-Leptophos具有更强的内分泌干扰效应.

  10. Class-Specific Histone Deacetylase Inhibitors Promote 11-Beta Hydroxysteroid Dehydrogenase Type 2 Expression in JEG-3 Cells

    Directory of Open Access Journals (Sweden)

    Katie L. Togher

    2017-01-01

    Full Text Available Exposure to maternal cortisol plays a crucial role in fetal organogenesis. However, fetal overexposure to cortisol has been linked to a range of short- and long-term adverse outcomes. Normally, this is prevented by the expression of an enzyme in the placenta called 11-beta hydroxysteroid dehydrogenase type 2 (11β-HSD2 which converts active cortisol to its inactive metabolite cortisone. Placental 11β-HSD2 is known to be reduced in a number of adverse pregnancy complications, possibly through an epigenetic mechanism. As a result, a number of pan-HDAC inhibitors have been examined for their ability to promote 11β-HSD2 expression. However, it is not known if the effects of pan-HDAC inhibition are a general phenomenon or if the effects are dependent upon a specific class of HDACs. Here, we examined the ability of pan- and class-specific HDAC inhibitors to regulate 11β-HSD2 expression in JEG3 cells. We find that pan-, class I, or class IIa HDAC inhibition promoted 11β-HSD2 expression and prevented cortisol or interleukin-1β-induced decrease in its expression. These results demonstrate that targeting a specific class of HDACs can promote 11β-HSD2 expression in JEG3 cells. This adds to the growing body of evidence suggesting that HDACs may be crucial in maintaining normal fetal development.

  11. Long non-coding RNA MALAT-1 is downregulated in preeclampsia and regulates proliferation, apoptosis, migration and invasion of JEG-3 trophoblast cells.

    Science.gov (United States)

    Chen, Haiying; Meng, Tao; Liu, Xuemin; Sun, Manni; Tong, Chunxiao; Liu, Jing; Wang, He; Du, Juan

    2015-01-01

    Long non-coding RNA (lncRNA), as a newly identified subset of the transcriptome, has been implicated in a variety of physiological and pathological processes. Metastasis associated lung adenocarcinoma transcript-1 (MALAT-1), a lncRNA that was initially detected in the metastatic lung cancer, was reported to be overexpressed in placenta previa increta/percreta (I/P), which is caused by excessive trophoblast invasion. However, the role of MALAT-1 in the regulation of trophoblast behavior is not fully understood. In this study, we first examined the expression of MALAT-1 in the placentas from the patients with preeclampsia, the pathology of which is associated with inadequate trophoblast invasion, and found that the expression of MALAT-1 was downregulated in the preeclamptic placentas as compared to the normal placentas. We further investigated the function of MALAT-1 in JEG-3 trophoblast cell line using short interfering RNA (siRNA) against MALAT-1 transcripts. Silencing of MALAT-1 in JEG-3 cells suppressed proliferation and induced cell cycle arrest at G0/G1 phase. Reduced expression of MALAT-1 by RNA interference resulted in enhanced apoptosis in JEG-3 cells, accompanied with elevated levels of the pro-apoptotic proteins including cleaved caspase-3, cleaved caspase-9 and cleaved poly (ADP-ribose) polymerase-1 (PARP-1). Moreover, the migration rate and the invasiveness of JEG-3 cells were suppressed when MALAT-1 was downregulated. In summary, our results suggest that MALAT-1 may play an important role in the regulation of proliferation, cell cycle, apoptosis, migration and invasion of trophoblast cells, and under-expression of MALAT-1 during early placentation may be involved in the pathogenesis of preeclampsia.

  12. Effects of Phytoestrogen Extracts Isolated from Elder Flower on Hormone Production and Receptor Expression of Trophoblast Tumor Cells JEG-3 and BeWo, as well as MCF7 Breast Cancer Cells

    Science.gov (United States)

    Schröder, Lennard; Richter, Dagmar Ulrike; Piechulla, Birgit; Chrobak, Mareike; Kuhn, Christina; Schulze, Sandra; Abarzua, Sybille; Jeschke, Udo; Weissenbacher, Tobias

    2016-01-01

    Herein we investigated the effect of elderflower extracts (EFE) and of enterolactone/enterodiol on hormone production and proliferation of trophoblast tumor cell lines JEG-3 and BeWo, as well as MCF7 breast cancer cells. The EFE was analyzed by mass spectrometry. Cells were incubated with various concentrations of EFE. Untreated cells served as controls. Supernatants were tested for estradiol production with an ELISA method. Furthermore, the effect of the EFE on ERα/ERβ/PR expression was assessed by immunocytochemistry. EFE contains a substantial amount of lignans. Estradiol production was inhibited in all cells in a concentration-dependent manner. EFE upregulated ERα in JEG-3 cell lines. In MCF7 cells, a significant ERα downregulation and PR upregulation were observed. The control substances enterolactone and enterodiol in contrast inhibited the expression of both ER and of PR in MCF7 cells. In addition, the production of estradiol was upregulated in BeWo and MCF7 cells in a concentration dependent manner. The downregulating effect of EFE on ERα expression and the upregulation of the PR expression in MFC-7 cells are promising results. Therefore, additional unknown substances might be responsible for ERα downregulation and PR upregulation. These findings suggest potential use of EFE in breast cancer prevention and/or treatment and warrant further investigation. PMID:27740591

  13. The expression of the imprinted gene pleckstrin homology-like domain family A member 2 in placental tissues of preeclampsia and its effects on the proliferation, migration and invasion of trophoblast cells JEG-3.

    Science.gov (United States)

    Jin, Feng; Qiao, Chong; Luan, Nannan; Shang, Tao

    2015-11-01

    Preeclampsia (PE) is one of the most common hypertensive disorders and is a leading cause of morbidity and mortality for pregnant women and perinatal babies. Additionally, pleckstrin homology-like domain family A member 2 (PHLDA2) is associated with placental dysfunction. However, the effect of PHLDA2 on trophoblast cell proliferation, migration and invasion has not been investigated. In this study, 15 PE patients and 15 normal pregnant women were recruited and clinical characteristics were summarized. Pleckstrin homology-like domain family A member 2 levels in placental tissues were examined using real-time PCR and western blot. Overexpression plasmid and PHLDA2 siRNA was introduced into JEG-3 cells, respectively. Cell proliferation was measured using MTT assay and flow cytometry. Cell migration and invasion capacities were assessed by wound healing and Transwell assays. It was found that PE patients collectively presented proteinuria, elevated systolic blood pressure (SBP) and diastolic blood pressure (DBP), and lower gestational ages and birth weights. Pleckstrin homology-like domain family A member 2 levels in the preeclamptic placenta were significantly upregulated. Pleckstrin homology-like domain family A member 2 overexpression significantly arrested cells in the G0/G1 phase, inhibited cell proliferation and suppressed the migration and invasion of JEG-3 cells. Pleckstrin homology-like domain family A member 2 knockdown significantly blocked the cells in the S phase of the cell cycle. Knockdown of PHLDA2 alleviated the inhibition on the migration and invasion of trophoblast cells JEG-3. These findings illustrate that PHLDA2 may participate in PE pathogenesis and indicate its potential application in the early diagnosis of PE. © 2015 Wiley Publishing Asia Pty Ltd.

  14. B-esterase determination and organophosphate insecticide inhibitory effects in JEG-3 trophoblasts.

    Science.gov (United States)

    Espinoza, Marlon; Rivero Osimani, Valeria; Sánchez, Victoria; Rosenbaum, Enrique; Guiñazú, Natalia

    2016-04-01

    The placenta and trophoblasts express several B-esterases. This family includes acethylcholinesterase (AChE), carboxylesterase (CES) and butyrylcholinesterase (BChE), which are important targets of organophosphate insecticide (OP) toxicity. To better understand OP effects on trophoblasts, B-esterase basal activity and kinetic behavior were studied in JEG-3 choriocarcinoma cell cultures. Effects of the OP azinphos-methyl (Am) and chlorpyrifos (Cp) on cellular enzyme activity were also evaluated. JEG-3 cells showed measurable activity levels of AChE and CES, while BChE was undetected. Recorded Km for AChE and CES were 0.33 and 0.26 mM respectively. Native gel electrophoresis and RT-PCR analysis demonstrated CES1 and CES2 isoform expression. Cells exposed for 4 and 24 h to the OP Am or Cp, showed a differential CES and AChE inhibition profiles. Am inhibited CES and AChE at 4 h treatment while Cp showed the highest inhibition profile at 24 h. Interestingly, both insecticides differentially affected CES1 and CES2 activities. Results demonstrated that JEG-3 trophoblasts express AChE, CES1 and CES2. B-esterase enzymes were inhibited by in vitro OP exposure, indicating that JEG-3 cells metabolization capabilities include phase I enzymes, able to bioactivate OP. In addition, since CES enzymes are important for medicinal drug activation/deactivation, OP exposure may interfere with trophoblast CES metabolization, probably being relevant in a co-exposure scenario during pregnancy.

  15. Epidermal growth factor-like domain 7 promotes migration and invasion of human trophoblast cells through activation of MAPK, PI3K and NOTCH signaling pathways.

    Science.gov (United States)

    Massimiani, M; Vecchione, L; Piccirilli, D; Spitalieri, P; Amati, F; Salvi, S; Ferrazzani, S; Stuhlmann, H; Campagnolo, L

    2015-05-01

    Epidermal growth factor-like domain 7 (Egfl7) is a gene that encodes a partially secreted protein and whose expression is largely restricted to the endothelia. We recently reported that EGFL7 is also expressed by trophoblast cells in mouse and human placentas. Here, we investigated the molecular pathways that are regulated by EGFL7 in trophoblast cells. Stable EGFL7 overexpression in a Jeg3 human choriocarcinoma cell line resulted in significantly increased cell migration and invasiveness, while cell proliferation was unaffected. Analysis of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways showed that EGFL7 promotes Jeg3 cell motility by activating both pathways. We show that EGFL7 activates the epidermal growth factor receptor (EGFR) in Jeg3 cells, resulting in downstream activation of extracellular regulated kinases (ERKs). In addition, we provide evidence that EGFL7-triggered migration of Jeg3 cells involves activation of NOTCH signaling. EGFL7 and NOTCH1 are co-expressed in Jeg3 cells, and blocking of NOTCH activation abrogates enhanced migration of Jeg3 cells overexpressing EGFL7. We also demonstrate that signaling through EGFR and NOTCH converged to mediate EGFL7 effects. Reduction of endogenous EGFL7 expression in Jeg3 cells significantly decreased cell migration. We further confirmed that EGFL7 stimulates cell migration by using primary human first trimester trophoblast (PTB) cells overexpressing EGFL7. In conclusion, our data suggest that in trophoblast cells, EGFL7 regulates cell migration and invasion by activating multiple signaling pathways. Our results provide a possible explanation for the correlation between reduced expression of EGFL7 and inadequate trophoblast invasion observed in placentopathies.

  16. Expression of serum amyloid A4 in human trophoblast-like choriocarcinoma cell lines and human first trimester/term trophoblast cells

    Science.gov (United States)

    Rossmann, C.; Hammer, A.; Koyani, C.N.; Kovacevic, A.; Siwetz, M.; Desoye, G.; Poehlmann, T.G.; Markert, U.R.; Huppertz, B.; Sattler, W.; Malle, E.

    2014-01-01

    Trophoblast invasion into uterine tissues represents a hallmark of first trimester placental development. As expression of serum amyloid A4 (SAA4) occurs in tumorigenic and invasive tissues we here investigated whether SAA4 is present in trophoblast-like human AC1-M59/Jeg-3 cells and trophoblast preparations of human first trimester and term placenta. SAA4 mRNA was expressed in non-stimulated and cytokine-treated AC1-M59/Jeg-3 cells. In purified trophoblast cells SAA4 mRNA expression was upregulated at weeks 10 and 12 of pregnancy. Western-blot and immunohistochemical staining of first trimester placental tissue revealed pronounced SAA4 expression in invasive trophoblast cells indicating a potential role of SAA4 during invasion. PMID:24951172

  17. Differential Effects of Glyphosate and Roundup on Human Placental Cells and Aromatase

    OpenAIRE

    Richard, Sophie; Moslemi, Safa; Sipahutar, Herbert; Benachour, Nora; Seralini, Gilles-Eric

    2005-01-01

    Roundup is a glyphosate-based herbicide used worldwide, including on most genetically modified plants that have been designed to tolerate it. Its residues may thus enter the food chain, and glyphosate is found as a contaminant in rivers. Some agricultural workers using glyphosate have pregnancy problems, but its mechanism of action in mammals is questioned. Here we show that glyphosate is toxic to human placental JEG3 cells within 18 hr with concentrations lower than those found with agricult...

  18. GLUT12 expression in human placenta in first trimester and term

    NARCIS (Netherlands)

    Gude, NM; Stevenson, JL; Rogers, S; Best, JD; Kalionis, B; Erwich, JJHM; Timmer, A; King, RG

    2003-01-01

    The aim of this study was to characterize the expression of a novel glucose transporter protein GLUT12 in human placenta. GLUT12 mRNA expression was identified by RT-PCR in extracts from five normal term placentae and in extracts from cultured cells of the JAR, JEG-3 and HTR-8Svneo cell lines. In fu

  19. Dynamic change of Adamalysin 19 (ADAM19) in human placentas and its effects on cell invasion and adhesion in human trophoblastic cells

    Institute of Scientific and Technical Information of China (English)

    SANG; QingXiang; Amy

    2009-01-01

    Human ADAM19 is a recently identified member of the ADAM family.It is highly expressed in human placentas,but its dynamic change and function at the human feto-maternal interface during placentation remain to be elucidated.In this present study,the spatial and temporal expression and cellular localization of ADAM19 in normal human placentas were first demonstrated,and the effects of ADAM19 on trophoblast cell adhesion and invasion were further investigated by using a human choriocarcinoma cell line(JEG-3) as an in vitro model.The data demonstrated that ADAM19 was widely distributed in villous cytotrophoblast cells,syncytiotrophoblast cells,column trophoblasts,and villous capillary endothelial cells during early pregnancy.The mRNA and protein level of ADAM19 in placentas was high at gestational weeks 8-9,but diminished significantly at mid-and term pregnancy.In JEG-3 cells,the overexpression of ADAM19 led to diminished cell invasion,as well as increases in cell adhesiveness and the expression of E-cadherin,with no changes in β-catenin expression observed.These data indicate that ADAM19 may participate in the coordinated regulation of human trophoblast cell behaviors during the process of placentation.

  20. Treatment of Human Placental Choriocarcinoma Cells with Formaldehyde and Benzene Induced Growth and Epithelial Mesenchymal Transition via Induction of an Antioxidant Effect

    Directory of Open Access Journals (Sweden)

    Hae-Miru Lee

    2017-07-01

    Full Text Available Cigarette smoke (CS causes about 480,000 deaths each year worldwide, and it is well-known to have harmful effects on the human body, leading to heart disease, stroke, lung cancer, and cardiovascular problems. In this study, the effects of formaldehyde (FA and benzene (Bz, the main components of CS, on cell proliferation and epithelial mesenchymal transition (EMT of JEG-3 human choriocarcinoma cells were examined to confirm the relationship between CS components and placenta carcinoma. Upon MTT assay, FA (10−8 M to 10−5 M and Bz (10−11 M to 10−8 M increased JEG-3 cell proliferation. Western blot assay revealed that the protein expression of cyclin D1 and E1 increased, while the levels of p21 and p27 were reduced following treatment. In Scratch assay, FA (10−8 M and 10−5 M and Bz (10−11 M and 10−8 M increased migration of JEG-3 cells at 24 h and 48 h compared with that at 0 h. In addition, the expression of the epithelial marker, E-cadherin, was significantly decreased, while the expression of the mesenchymal marker, N-cadherin, was significantly increased by FA (10−8 M and 10−5 M and Bz (10−11 M and 10−8 M. snail and slug transcriptional factors were associated with EMT, which were also up-regulated by FA and Bz, indicating that FA and Bz lead to an increase in the EMT process in JEG-3 choriocarcinoma cells. We further evaluated reactive oxygen species (ROS and activation of antioxidant effect using dichlorofluorescin diacetate (DCFH-DA and Western blot assay. FA and Bz increased the ROS production and an antioxidant related marker, Nrf2, in JEG-3 cells. However, eIF2α levels were reduced by FA and Bz via activation of the antioxidant reaction. Taken together, these results indicated that FA and Bz induce the growth and migration of human choriocarcinoma cells via regulation of the cell cycle and EMT and activation of ROS and antioxidant related markers.

  1. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Casas, Josefina [Department of Biomedicinal Chemistry, IQAC–CSIC, 08034 Barcelona, Catalonia (Spain); Lacorte, Sílvia, E-mail: slbqam@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Porte, Cinta, E-mail: cinta.porte@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain)

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  2. Calorimetric signatures of human cancer cells and their nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Todinova, S. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Stoyanova, E. [Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tzarigradsko shose Blvd. 73, Sofia 1113 (Bulgaria); Krumova, S., E-mail: sakrumo@gmail.com [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Iliev, I. [Institute of Experimental Morphology, Pathology and Anthropology with Museum, Acad. G. Bonchev Str., Bl. 25, Sofia 1113 (Bulgaria); Taneva, S.G. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria)

    2016-01-10

    Graphical abstract: - Highlights: • Two temperature ranges are distinguished in the thermograms of cells/nuclei. • Different thermodynamic properties of cancer and normal human cells/nuclei. • Dramatic reduction of the enthalpy of the low-temperature range in cancer cells. • Oxaliplatin and 5-FU affect the nuclear matrix proteins and the DNA stability. - Abstract: The human cancer cell lines HeLa, JEG-3, Hep G2, SSC-9, PC-3, HT-29, MCF7 and their isolated nuclei were characterized by differential scanning calorimetry. The calorimetric profiles differed from normal human fibroblast (BJ) cells in the two well distinguished temperature ranges—the high-temperature range (H{sub T}, due to DNA-containing structures) and the low-temperature range (L{sub T}, assigned to the nuclear matrix and cellular proteins). The enthalpy of the L{sub T} range, and, respectively the ratio of the enthalpies of the L{sub T}- vs. H{sub T}-range, ΔH{sub L}/ΔH{sub H}, is strongly reduced for all cancer cells compared to normal fibroblasts. On the contrary, for most of the cancer nuclei this ratio is higher compared to normal nuclei. The HT-29 human colorectal cancer cells/nuclei differed most drastically from normal human fibroblast cells/nuclei. Our data also reveal that the treatment of HT-29 cancer cells with cytostatic drugs affects not only the DNA replication but also the cellular proteome.

  3. The effect of acetaminophen on the expression of BCRP in trophoblast cells impairs the placental barrier to bile acids during maternal cholestasis

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez, Alba G., E-mail: albamgb@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain); Briz, Oscar, E-mail: obriz@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain); Gonzalez-Sanchez, Ester, E-mail: u60343@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); Perez, Maria J., E-mail: mjperez@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); University Hospital of Salamanca, IECSCYL-IBSAL, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain); Ghanem, Carolina I., E-mail: cghanem@ffyb.uba.ar [Instituto de Investigaciones Farmacologicas, Facultad de Farmacia y Bioquimica, CONICET, Universidad de Buenos Aires, Buenos Aires (Argentina); Marin, Jose J.G., E-mail: jjgmarin@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain)

    2014-05-15

    Acetaminophen is used as first-choice drug for pain relief during pregnancy. Here we have investigated the effect of acetaminophen at subtoxic doses on the expression of ABC export pumps in trophoblast cells and its functional repercussion on the placental barrier during maternal cholestasis. The incubation of human choriocarcinoma cells (JAr, JEG-3 and BeWo) with acetaminophen for 48 h resulted in no significant changes in the expression and/or activity of MDR1 and MRPs. In contrast, in JEG-3 cells, BCRP mRNA, protein, and transport activity were reduced. In rat placenta, collected at term, acetaminophen administration for the last three days of pregnancy resulted in enhanced mRNA, but not protein, levels of Mrp1 and Bcrp. In fact, a decrease in Bcrp protein was found. Using in situ perfused rat placenta, a reduction in the Bcrp-dependent fetal-to-maternal bile acid transport after treating the dams with acetaminophen was found. Complete biliary obstruction in pregnant rats induced a significant bile acid accumulation in fetal serum and tissues, which was further enhanced when the mothers were treated with acetaminophen. This drug induced increased ROS production in JEG-3 cells and decreased the total glutathione content in rat placenta. Moreover, the NRF2 pathway was activated in JEG-3 cells as shown by an increase in nuclear NRF2 levels and an up-regulation of NRF2 target genes, NQO1 and HMOX-1, which was not observed in rat placenta. In conclusion, acetaminophen induces in placenta oxidative stress and a down-regulation of BCRP/Bcrp, which may impair the placental barrier to bile acids during maternal cholestasis. - Highlights: • Acetaminophen induces changes in placental BCRP expression in vitro. • This drug reduces the ability of placental cells to export BCRP substrates. • Acetaminophen induces changes in Bcrp expression in rat placenta. • Placental barrier to bile acids is impaired in rats treated with this drug.

  4. Combination Effects of (TriAzole Fungicides on Hormone Production and Xenobiotic Metabolism in a Human Placental Cell Line

    Directory of Open Access Journals (Sweden)

    Svenja Rieke

    2014-09-01

    Full Text Available Consumers are exposed to multiple residues of different pesticides via the diet. Therefore, EU legislation for pesticides requires the evaluation of single active substances as well as the consideration of combination effects. Hence the analysis of combined effects of substances in a broad dose range represents a key challenge to current experimental and regulatory toxicology. Here we report evidence for additive effects for (triazole fungicides, a widely used group of antifungal agents, in the human placental cell line Jeg-3. In addition to the triazoles cyproconazole, epoxiconazole, flusilazole and tebuconazole and the azole fungicide prochloraz also pesticides from other chemical classes assumed to act via different modes of action (i.e., the organophosphate chlorpyrifos and the triazinylsulfonylurea herbicide triflusulfuron-methyl were investigated. Endpoints analysed include synthesis of steroid hormone production (progesterone and estradiol and gene expression of steroidogenic and non-steroidogenic cytochrome-P-450 (CYP enzymes. For the triazoles and prochloraz, a dose dependent inhibition of progesterone production was observed and additive effects could be confirmed for several combinations of these substances in vitro. The non-triazoles chlorpyrifos and triflusulfuron-methyl did not affect this endpoint and, in line with this finding, no additivity was observed when these substances were applied in mixtures with prochloraz. While prochloraz slightly increased aromatase expression and estradiol production and triflusulfuron-methyl decreased estradiol production, none of the other substances had effects on the expression levels of steroidogenic CYP-enzymes in Jeg-3 cells. For some triazoles, prochloraz and chlorpyrifos a significant induction of CYP1A1 mRNA expression and potential combination effects for this endpoint were observed. Inhibition of CYP1A1 mRNA induction by the AhR inhibitor CH223191 indicated AhR receptor dependence this

  5. Combination Effects of (Tri)Azole Fungicides on Hormone Production and Xenobiotic Metabolism in a Human Placental Cell Line

    Science.gov (United States)

    Rieke, Svenja; Koehn, Sophie; Hirsch-Ernst, Karen; Pfeil, Rudolf; Kneuer, Carsten; Marx-Stoelting, Philip

    2014-01-01

    Consumers are exposed to multiple residues of different pesticides via the diet. Therefore, EU legislation for pesticides requires the evaluation of single active substances as well as the consideration of combination effects. Hence the analysis of combined effects of substances in a broad dose range represents a key challenge to current experimental and regulatory toxicology. Here we report evidence for additive effects for (tri)azole fungicides, a widely used group of antifungal agents, in the human placental cell line Jeg-3. In addition to the triazoles cyproconazole, epoxiconazole, flusilazole and tebuconazole and the azole fungicide prochloraz also pesticides from other chemical classes assumed to act via different modes of action (i.e., the organophosphate chlorpyrifos and the triazinylsulfonylurea herbicide triflusulfuron-methyl) were investigated. Endpoints analysed include synthesis of steroid hormone production (progesterone and estradiol) and gene expression of steroidogenic and non-steroidogenic cytochrome-P-450 (CYP) enzymes. For the triazoles and prochloraz, a dose dependent inhibition of progesterone production was observed and additive effects could be confirmed for several combinations of these substances in vitro. The non-triazoles chlorpyrifos and triflusulfuron-methyl did not affect this endpoint and, in line with this finding, no additivity was observed when these substances were applied in mixtures with prochloraz. While prochloraz slightly increased aromatase expression and estradiol production and triflusulfuron-methyl decreased estradiol production, none of the other substances had effects on the expression levels of steroidogenic CYP-enzymes in Jeg-3 cells. For some triazoles, prochloraz and chlorpyrifos a significant induction of CYP1A1 mRNA expression and potential combination effects for this endpoint were observed. Inhibition of CYP1A1 mRNA induction by the AhR inhibitor CH223191 indicated AhR receptor dependence of this effect. PMID

  6. The human leukocyte antigen G promotes trophoblast fusion and β-hCG production through the Erk1/2 pathway in human choriocarcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji-meng [School of Medicine, Nankai University, Tianjin 300071 (China); State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Zhao, Hong-xi [Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038 (China); Wang, Li [Department of Obstetrics and Gynecology, General Hospital of Chinese People’s Liberation Army, Beijing 100853 (China); Gao, Zhi-ying, E-mail: gaozy301@yahoo.com.cn [Department of Obstetrics and Gynecology, General Hospital of Chinese People’s Liberation Army, Beijing 100853 (China); Yao, Yuan-qing, E-mail: yqyao@126.com [Department of Obstetrics and Gynecology, General Hospital of Chinese People’s Liberation Army, Beijing 100853 (China)

    2013-05-10

    Highlights: •HLA-G expression promotes BeWo cells fusion and fusogenic gene expression. •HLA-G is capable of inducing β-hCG production in human choriocarcinoma cell lines. •Up-regulation of β-hCG production by HLA-G is mediated via the Erk1/2 pathway. -- Abstract: The human leukocyte antigen G (HLA-G) is expressed on the fetal–maternal interface and plays a role in protecting fetal-derived trophoblasts from the maternal immune response, allowing trophoblasts to invade the uterus. However, HLA-G also possesses immune suppressing-independent functions. We found that HLA-G expressing BeWo choriocarcinoma cells increased cell–cell fusion compared to control BeWo cells under forskolin treatment. Regardless of forskolin treatment, the expression of fusogenic gene mRNAs, including syncytin-1, the transcription factor glial cell missing 1 (Gcm1), and beta human chorionic gonadotropin (β-hCG) were elevated. HLA-G up-regulates β-hCG production in human choriocarcinoma cells because HLA-G knockdown in JEG-3 cells induces a dramatic decrease in β-hCG compared with control cells. The defect in β-hCG production in HLA-G knocked-down cells could not be completely overcome by stimulating hCG production through increasing intracellular cAMP levels. HLA-G expressing cells have increased phosphorylation levels for extracellular signal-regulated kinase1/2 (Erk1/2) in BeWo cells. The Erk1/2 pathway is inactivated after the inhibition of HLA-G expression in JEG-3 cells. Finally, Erk1/2 inhibition was able to suppress the increased hCG production induced by HLA-G expression. Together, these data suggest novel roles for HLA-G in regulating β-hCG production via the modulation of the Erk1/2 pathway and by inducing trophoblast cell fusion.

  7. Major Pesticides Are More Toxic to Human Cells Than Their Declared Active Principles

    Directory of Open Access Journals (Sweden)

    Robin Mesnage

    2014-01-01

    Full Text Available Pesticides are used throughout the world as mixtures called formulations. They contain adjuvants, which are often kept confidential and are called inerts by the manufacturing companies, plus a declared active principle, which is usually tested alone. We tested the toxicity of 9 pesticides, comparing active principles and their formulations, on three human cell lines (HepG2, HEK293, and JEG3. Glyphosate, isoproturon, fluroxypyr, pirimicarb, imidacloprid, acetamiprid, tebuconazole, epoxiconazole, and prochloraz constitute, respectively, the active principles of 3 major herbicides, 3 insecticides, and 3 fungicides. We measured mitochondrial activities, membrane degradations, and caspases 3/7 activities. Fungicides were the most toxic from concentrations 300–600 times lower than agricultural dilutions, followed by herbicides and then insecticides, with very similar profiles in all cell types. Despite its relatively benign reputation, Roundup was among the most toxic herbicides and insecticides tested. Most importantly, 8 formulations out of 9 were up to one thousand times more toxic than their active principles. Our results challenge the relevance of the acceptable daily intake for pesticides because this norm is calculated from the toxicity of the active principle alone. Chronic tests on pesticides may not reflect relevant environmental exposures if only one ingredient of these mixtures is tested alone.

  8. Major pesticides are more toxic to human cells than their declared active principles.

    Science.gov (United States)

    Mesnage, Robin; Defarge, Nicolas; Spiroux de Vendômois, Joël; Séralini, Gilles-Eric

    2014-01-01

    Pesticides are used throughout the world as mixtures called formulations. They contain adjuvants, which are often kept confidential and are called inerts by the manufacturing companies, plus a declared active principle, which is usually tested alone. We tested the toxicity of 9 pesticides, comparing active principles and their formulations, on three human cell lines (HepG2, HEK293, and JEG3). Glyphosate, isoproturon, fluroxypyr, pirimicarb, imidacloprid, acetamiprid, tebuconazole, epoxiconazole, and prochloraz constitute, respectively, the active principles of 3 major herbicides, 3 insecticides, and 3 fungicides. We measured mitochondrial activities, membrane degradations, and caspases 3/7 activities. Fungicides were the most toxic from concentrations 300-600 times lower than agricultural dilutions, followed by herbicides and then insecticides, with very similar profiles in all cell types. Despite its relatively benign reputation, Roundup was among the most toxic herbicides and insecticides tested. Most importantly, 8 formulations out of 9 were up to one thousand times more toxic than their active principles. Our results challenge the relevance of the acceptable daily intake for pesticides because this norm is calculated from the toxicity of the active principle alone. Chronic tests on pesticides may not reflect relevant environmental exposures if only one ingredient of these mixtures is tested alone.

  9. Distinct functional roles for the Menkes and Wilson copper translocating P-type ATPases in human placental cells.

    Science.gov (United States)

    Hardman, Belinda; Michalczyk, Agnes; Greenough, Mark; Camakaris, James; Mercer, Jjulian; Ackland, Leigh

    2007-01-01

    The copper transporting ATPases, Menkes (ATP7A; MNK) and Wilson (ATP7B; WND) are essential for normal copper transport in the human body. The placenta is the key organ in copper supply to the fetus during pregnancy and it is one of the few organs in the body to express both of the ATPases. The placenta therefore provides a unique opportunity to elucidate the specific roles of these transporters within the one cell type. Using polarized placental Jeg-3 cells, siRNA technology and radio-labelled 64Cu transport assays, MNK and WND were shown to have distinct roles in the vectorial transport of copper. MNK transported copper from the cell via the basolateral membrane and in contrast, WND transported copper from the apical membrane. Inactivation of MNK resulted in decreased activity of two important cuproenzymes, lysyl oxidase and Cu/Zn-superoxide dismutase. Overall, these results provide definitive evidence for distinct roles of MNK and WND in the human placenta, and are consistent with a role for MNK in the transport of copper into the fetal circulation, and through delivery of copper to placental cuproenzymes, whilst WND contributes to the maintenance of placental copper homeostasis by transporting copper to the maternal circulation.

  10. Embelin-Induced Apoptosis of Human Prostate Cancer Cells Is Mediated through Modulation of Akt and β-Catenin Signaling.

    Directory of Open Access Journals (Sweden)

    Nahee Park

    Full Text Available There is increasing evidence that embelin, an active component of Embelia ribes, induces apoptosis in human cancer cells, but the detailed mechanisms are still unclear. Here, we have investigated the effect of embelin on the growth of human prostate cancer cells. Embelin strongly inhibited cell growth especially in human prostate cancer cell lines, including PC3, DU145, LNCaP-LN3 and normal prostate epithelial cell, RWPE-1 compared to breast cancer (MDA-MB-231, MCF-7, and T47D, hepatoma (HepG2, Hep3B, and HuH-7, or choriocarcinoma (JEG-3. We observed that embelin induced apoptosis of PC3 cells in a time-dependent manner correlated with decreased expression of Bcl-2, Bcl-xL, and Mcl-1, increased translocation of Bax into mitochondria, and a reduction in the mitochondrial membrane potential. Furthermore, embelin induced voltage-dependent anion channel (VDAC 1 expression and oligomerization, which may promote cytochrome c and AIF release. Because embelin was able to inhibit Akt activation and cyclooxygenase-2 expression, the effects on Wnt/ β-catenin signaling were determined. Embelin activated glycogen synthase kinase (GSK-3β by preventing phosphorylation and suppressed β-catenin expression. Attenuation of β-catenin-mediated TCF transcriptional activity and gene transcription, such as cyclin D1, c-myc, and matrix metalloproteinase (MMP-7, were shown in embelin-treated cells. The changes in β-catenin levels in response to embelin were blocked by lithium chloride, a GSK-3 inhibitor, indicating that embelin may decrease β-catenin expression via GSK-3β activation. Furthermore, exposure of PC3 cells to embelin resulted in a significant decrease in cell migration and invasion. In conclusion, these findings suggest that inhibition of Akt signaling and activation of GSK-3β partially contributes to the pro-apoptotic effect of embelin in prostate cancer cells.

  11. Expression of human LINE-1 elements in enhanced by isochromosome 12p; evidence from testicular germ cell tumors and the Pallister-Killian syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Swergold, D. [Food & Drug Admin, Bethesda, MD (United States)

    1994-09-01

    Expression of the human LINE-1 (L1Hs) transposable element is restricted to a narrow range of cell types. Specific expression of either endogenous elements or transfected recombinant elements has been reported primarily in tumors and cell lines of germ cell origin, including the NTera2D1, 2102EP, and JEG3 cell lines. These tumors and cell lines often contain one or more copies of isochromosome 12p, or translocations of 12p. Another human condition, the Pallister-Killian syndrome, is also characterized by the mosaic presence of an isochromosome 12p in patient`s cells. M28, a previously described somatic hybrid cell line, contains a human isochromosone 12p derived from fibroblasts of a patient with Pallister-Killian syndrome in a mouse LMTK-background. I asked whether the M28 cell line would exhibit enhanced expression of endogenous or transfected L1Hs elements. Expression of transfected recombinant L1Hs elements was 10-20 fold higher in M28 than in LMTK-cells. Expression of L1Hs elements was not increased in the GM10868A somatic cell hybrid line which contains a complete human chromosome 12 in a Chinese Hamster Ovary background. Somatic cell hybrid lines containing various human chromosomes in a LMTK-background also exhibited no enhanced L1Hs expression. P40, the protein encoded by the L1Hs first open reading frame, was detected in NTera2D1 but not in non-transfected M28 cells. Preliminary promoter deletion experiments indicate that similar, but non-identical regions of the L1Hs 5{prime} UTR, contribute to high level expression in the NTera2D1 and the M28 cell lines. These data suggest that the enhanced expression of human LINE-1 elements in tumors of germ cell origin is due in part to the presence of the isochromosome 12p.

  12. Leptin stimulates protein synthesis-activating translation machinery in human trophoblastic cells.

    Science.gov (United States)

    Pérez-Pérez, Antonio; Maymó, Julieta; Gambino, Yésica; Dueñas, José L; Goberna, Raimundo; Varone, Cecilia; Sánchez-Margalet, Víctor

    2009-11-01

    Leptin was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in placenta, where it may work as an autocrine hormone, mediating angiogenesis, growth, and immunomodulation. Leptin receptor (LEPR, also known as Ob-R) shows sequence homology to members of the class I cytokine receptor (gp130) superfamily. In fact, leptin may function as a proinflammatory cytokine. We have previously found that leptin is a trophic and mitogenic factor for trophoblastic cells. In order to further investigate the mechanism by which leptin stimulates cell growth in JEG-3 cells and trophoblastic cells, we studied the phosphorylation state of different proteins of the initiation stage of translation and the total protein synthesis by [(3)H]leucine incorporation in JEG-3 cells. We have found that leptin dose-dependently stimulates the phosphorylation and activation of the translation initiation factor EIF4E as well as the phosphorylation of the EIF4E binding protein EIF4EBP1 (PHAS-I), which releases EIF4E to form active complexes. Moreover, leptin dose-dependently stimulates protein synthesis, and this effect can be partially prevented by blocking mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PIK3) pathways. In conclusion, leptin stimulates protein synthesis, at least in part activating the translation machinery, via the activation of MAPK and PIK3 pathways.

  13. Differential cell line susceptibility to the emerging Zika virus: implications for disease pathogenesis, non-vector-borne human transmission and animal reservoirs.

    Science.gov (United States)

    Chan, Jasper Fuk-Woo; Yip, Cyril Chik-Yan; Tsang, Jessica Oi-Ling; Tee, Kah-Meng; Cai, Jian-Piao; Chik, Kenn Ka-Heng; Zhu, Zheng; Chan, Chris Chung-Sing; Choi, Garnet Kwan-Yue; Sridhar, Siddharth; Zhang, Anna Jinxia; Lu, Gang; Chiu, Kin; Lo, Amy Cheuk-Yin; Tsao, Sai-Wah; Kok, Kin-Hang; Jin, Dong-Yan; Chan, Kwok-Hung; Yuen, Kwok-Yung

    2016-08-24

    Zika virus (ZIKV) is unique among human-pathogenic flaviviruses by its association with congenital anomalies and trans-placental and sexual human-to-human transmission. Although the pathogenesis of ZIKV-associated neurological complications has been reported in recent studies, key questions on the pathogenesis of the other clinical manifestations, non-vector-borne transmission and potential animal reservoirs of ZIKV remain unanswered. We systematically characterized the differential cell line susceptibility of 18 human and 15 nonhuman cell lines to two ZIKV isolates (human and primate) and dengue virus type 2 (DENV-2). Productive ZIKV replication (⩾2 log increase in viral load, ZIKV nonstructural protein-1 (NS1) protein expression and cytopathic effects (CPE)) was found in the placental (JEG-3), neuronal (SF268), muscle (RD), retinal (ARPE19), pulmonary (Hep-2 and HFL), colonic (Caco-2),and hepatic (Huh-7) cell lines. These findings helped to explain the trans-placental transmission and other clinical manifestations of ZIKV. Notably, the prostatic (LNCaP), testicular (833KE) and renal (HEK) cell lines showed increased ZIKV load and/or NS1 protein expression without inducing CPE, suggesting their potential roles in sexual transmission with persistent viral replication at these anatomical sites. Comparatively, none of the placental and genital tract cell lines allowed efficient DENV-2 replication. Among the nonhuman cell lines, nonhuman primate (Vero and LLC-MK2), pig (PK-15), rabbit (RK-13), hamster (BHK21) and chicken (DF-1) cell lines supported productive ZIKV replication. These animal species may be important reservoirs and/or potential animal models for ZIKV. The findings in our study help to explain the viral shedding pattern, transmission and pathogenesis of the rapidly disseminating ZIKV, and are useful for optimizing laboratory diagnostics and studies on the pathogenesis and counter-measures of ZIKV.

  14. Methotrexate induces DNA damage and inhibits homologous recombination repair in choriocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Xie L

    2016-11-01

    Full Text Available Lisha Xie,1,* Tiancen Zhao,1,2,* Jing Cai,1 You Su,1 Zehua Wang,1 Weihong Dong1 1Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 2Department of Obstetrics and Gynecology, Central Hospital of Wuhan, Wuhan, China *These authors contributed equally to this work Objective: The objective of this study was to investigate the mechanism of sensitivity to methotrexate (MTX in human choriocarcinoma cells regarding DNA damage response. Methods: Two choriocarcinoma cancer cell lines, JAR and JEG-3, were utilized in this study. An MTX-sensitive osteosarcoma cell line MG63, an MTX-resistant epithelial ovarian cancer cell line A2780 and an MTX-resistant cervical adenocarcinoma cell line Hela served as controls. Cell viability assay was carried out to assess MTX sensitivity of cell lines. MTX-induced DNA damage was evaluated by comet assay. Quantitative reverse transcription polymerase chain reaction was used to detect the mRNA levels of BRCA1, BRCA2, RAD51 and RAD52. The protein levels of γH2AX, RAD 51 and p53 were analyzed by Western blot. Results: Remarkable DNA strand breaks were observed in MTX-sensitive cell lines (JAR, JEG-3 and MG63 but not in MTX-resistant cancer cells (A2780 and Hela after 48 h of MTX treatment. Only in the choriocarcinoma cells, the expression of homologous recombination (HR repair gene RAD51 was dramatically suppressed by MTX in a dose- and time-dependent manner, accompanied with the increase in p53. Conclusion: The MTX-induced DNA strand breaks accompanied by deficiencies in HR repair may contribute to the hypersensitivity to chemotherapy in choriocarcinoma. Keywords: choriocarcinoma, chemotherapy hypersensitivity, DNA double-strand break, RAD51, p53

  15. Endocrine disrupting potentials of Bisphenol A, Bisphenol A dimethacrylate, 4-n-Nonyl-phenol and 4-Octylphenol assessed in cell model systems for effects on the estrogen-, androgen-, aryl hydrocarbon-receptor and aromatase activity

    DEFF Research Database (Denmark)

    Bonefeld-Jørgensen, Eva Cecilie; Long, Manhai; Hofmeister, Marlene V;

    used as surfactants. We have investigated the effect in vitro of these four plasticizers in four cell culture model systems.The estrogenic potencies were analyzed using the stable ERE-luciferase transfected cell line MVLN measuring the relative estrogen receptor (ER) transactivated luciferase units...... in the conversion of androgens to estrogens in an array of cells, were assessed in the human choriocarcinoma JEG-3 cells using the classical [3H]2O assay. Trans-activation of the Aryl hydrocarbon receptor (AhR) was determined in the mouse hepatoma Hepa1.12cR cell line, stable transfected by an AhR-CALUX construct...... determining RLU. All four compounds elicited a response in each of the four bioassays. Thus, our in vitro data clearly indicates that the four tested plasticizers have ED potentials and that such effects can be mediated via several cellular pathway systems including the estrogen- and the androgen hormones...

  16. Hypericum caprifoliatum and Hypericum connatum affect human trophoblast-like cells differentiation and Ca2+influx

    Institute of Scientific and Technical Information of China (English)

    Aline O da Conceio; Gilsane Lino von Poser; Benoit Barbeau; Julie Lafond

    2014-01-01

    Objective:To study the effect of crude methanol and n-hexane extracts of Hypericum connatum (H. connatum) and Hypericum caprifoliatum on trophoblast-like cells. Methods: BeWo and JEG-3 trophoblast-like cells were submitted to different extract concentrations (1, 5, 10 and 15 µg/mL) and evaluated in relation to cell viability and in vitro trophoblast differentiation and function. Cell viability was evaluated using WST-1 reagent. Differentiation was measured by luciferase production, hCG production/release, and mitogen-activated protein kinase signaling pathway activation. The function of the trophoblast-like cells was measured by 45Ca2+influx evaluation. Results:The results showed a decrease in cell viability/proliferation. Both plants and different extracts induced a significant decrease in hCG production/release and luciferase production. H. connatum did not cause mitogen-activated protein kinase signaling pathway disturbance;however, Hypericum caprifoliatum n-hexane extract at 15 µg/mL inhibited extracellular signal-regulated kinase 1/2 activation. The significant increase in Ca2+influx by JEG-3 cells was seen after short and long incubation times with H. connatum methanolic extract at 15 µg/mL. Conclusions: The results indicated that these two Hypericum species extracts can interfere on trophoblast differentiation and Ca2+influx, according to their molecular diversity. Although in vivo experiments are necessary to establish their action on placental formation and function, this study suggests that attention must be paid to the potential toxic effect of these plants.

  17. In vitro and in vivo models for the evaluation of new inhibitors of human steroid sulfatase, devoid of residual estrogenic activity.

    Science.gov (United States)

    Shields-Botella, J; Bonnet, P; Duc, I; Duranti, E; Meschi, S; Cardinali, S; Prouheze, P; Chaigneau, A M; Duranti, V; Gribaudo, S; Rivière, A; Mengual, L; Carniato, D; Cecchet, L; Lafay, J; Rondot, B; Sandri, J; Pascal, J C; Delansorne, R

    2003-02-01

    The goal of our research project is to develop a new class of orally active drugs, estrone sulfatase inhibitors, for the treatment of estrogen-dependent (receptor positive) breast cancer. Several compounds were synthesized and their pharmacological potencies explored. Based on encouraging preliminary results, three of them, TX 1299, TX 1492 and TX 1506 were further studied in vitro as well as in vivo. They proved to be strong inhibitors of estrone sulfatase when measured on the whole human JEG-3 choriocarcinoma and MCF-7 breast cancer cells and their IC(50)s found to be in the range of known standard inhibitors. Their residual estrogenic activity was checked as negative in the test of induction of alkaline phosphatase (APase) activity in whole human endometrial adenocarcinoma Ishikawa cells. In addition, their effect on aromatase activity in JEG-3 cells was also examined, since the goal of inhibiting both sulfatase and aromatase activities appears very attractive. However, it has been unsuccessful so far. Then, in vivo potencies of TX 1299, the lead compound in our chemical series, were evaluated in comparison with 6,6,7-COUMATE, a non-steroidal standard, in two different rat models and by oral route. First, the absence of any residual estrogenic activity for these compounds was checked in the uterotrophic model in prepubescent female rats. Second, antiuterotrophic activity in adult ovariectomized rat supplemented with estrone sulfate (E(1)S), showed that both compounds were potent inhibitors, the power of TX 1299 relative to 6,6,7-COUMATE being around 80%. This assay was combined with uterine sulfatase level determination and confirmed the complete inhibition of this enzyme within the target organ. Preliminary studies indicated that other non-steroid compounds in the Théramex series were potent in vitro and in vivo inhibitors of estrone sulfatase in rats and further studies are in progress.

  18. Human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem; Kassem, Moustapha

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of clonogenic cells present among the bone marrow stroma and capable of multilineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. Due to their ease of isolation and their differentiation potential, MSC are being...... introduced into clinical medicine in variety of applications and through different ways of administration. Here, we discuss approaches for isolation, characterization and directing differentiation of human mesenchymal stem cells (hMSC). An update of the current clinical use of the cells is also provided....

  19. Transforming growth factor-beta inhibits aromatase gene transcription in human trophoblast cells via the Smad2 signaling pathway

    Directory of Open Access Journals (Sweden)

    Fu Guodong

    2009-12-01

    Full Text Available Abstract Background Transforming growth factor-beta (TGF-beta is known to exert multiple regulatory functions in the human placenta, including inhibition of estrodial production. We have previously reported that TGF-beta1 decreased aromatase mRNA levels in human trophoblast cells. The objective of this study was to investigate the molecular mechanisms underlying the regulatory effect of TGF-beta1 on aromatase expression. Methods To determine if TGF-beta regulates aromatase gene transcription, several reporter constructs containing different lengths of the placental specific promoter of the human aromatase gene were generated. JEG-3 cells were transiently transfected with a promoter construct and treated with or without TGF-beta1. The promoter activity was measured by luciferase assays. To examine the downstream signaling molecule mediating the effect of TGF-beta on aromatase transcription, cells were transiently transfected with dominant negative mutants of TGF-beta type II (TbetaRII and type I receptor (ALK5 receptors before TGF-beta treatment. Smad2 activation was assessed by measuring phophorylated Smad2 protein levels in cytosolic and nuclear fractions. Smad2 expression was silenced using a siRNA expression construct. Finally, aromatase mRNA half-life was determined by treating cells with actinomycin D together with TGF-beta1 and measuring aromatase mRNA levels at various time points after treatment. Results and Discussion TGF-beta1 inhibited the aromatase promoter activity in a time- and dose-dependent manner. Deletion analysis suggests that the TGF-β1 response element resides between -422 and -117 nucleotides upstream from the transcription start site where a Smad binding element was found. The inhibitory effect of TGF-beta1 was blocked by dominant negative mutants of TbetaRII and ALK5. TGF-beta1 treatment induced Smad2 phosphorylation and translocation into the nucleus. On the other hand, knockdown of Smad2 expression reversed the

  20. Autophagy in the human placenta throughout gestation.

    Directory of Open Access Journals (Sweden)

    Tai-Ho Hung

    Full Text Available BACKGROUND: Autophagy has been reported to be essential for pre-implantation development and embryo survival. However, its role in placental development and regulation of autophagy during pregnancy remain unclear. The aims of this study were to (1 study autophagy by characterizing changes in levels of beclin-1, DRAM, and LC3B in human placenta throughout gestation; (2 determine whether autophagy is involved in regulation of trophoblast invasion in JEG-3 cells (a choriocarcinoma cell line; (3 examine the effects of reduced oxygen and glucose on the autophagic changes; and (4 investigate the effect of reoxygenation and supplementation of glucose after oxygen-glucose deprivation (OGD on the autophagic changes in primary cytotrophoblasts obtained from normal term pregnancy. METHODOLOGY/PRINCIPAL FINDINGS: An analysis of 40 placental samples representing different gestational stages showed (1 no significant differences in beclin-1, DRAM, and LC3B-II levels in placentas between early and mid-gestation, and late gestation with vaginal delivery; (2 placentas from late gestation with cesarean section had lower levels of LC3B-II compared to early and mid-gestation, and late gestation with vaginal delivery; levels of DRAM were also lower compared to placentas from early and mid-gestation; and (3 using explant cultures, villous tissues from early and late gestation had similar rates of autophagic flux under physiological oxygen concentrations. Knockdown of BECN1, DRAM, and LC3B had no effects on viability and invasion activity of JEG-3 cells. On the other hand, OGD caused a significant increase in the levels of LC3B-II in primary cytotrophoblasts, while re-supplementation of oxygen and glucose reduced these changes. Furthermore, there were differential changes in levels of beclin-1, DRAM, and LC3B-II in response to changes in oxygen and glucose levels. CONCLUSIONS/SIGNIFICANCE: Our results indicate that autophagy is involved in development of the human

  1. Human NR5A1/SF-1 mutations show decreased activity on BDNF (brain-derived neurotrophic factor), an important regulator of energy balance: testing impact of novel SF-1 mutations beyond steroidogenesis.

    Science.gov (United States)

    Malikova, Jana; Camats, Núria; Fernández-Cancio, Mónica; Heath, Karen; González, Isabel; Caimarí, María; del Campo, Miguel; Albisu, Marian; Kolouskova, Stanislava; Audí, Laura; Flück, Christa E

    2014-01-01

    Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations.

  2. Human NR5A1/SF-1 mutations show decreased activity on BDNF (brain-derived neurotrophic factor, an important regulator of energy balance: testing impact of novel SF-1 mutations beyond steroidogenesis.

    Directory of Open Access Journals (Sweden)

    Jana Malikova

    Full Text Available Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF, an important regulator of energy balance in the ventromedial hypothalamus.To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance.5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency.SF-1 mutations were studied in cell systems (HEK293, JEG3 for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2 and in energy balance (BDNF. BDNF regulation by SF-1 was studied by promoter assays (JEG3.Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159 were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters. However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI.Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop. In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations.

  3. Cell encoding recombinant human erythropoietin

    Energy Technology Data Exchange (ETDEWEB)

    Beck, A.K.; Withy, R.M.; Zabrecky, J.R.; Masiello, N.C.

    1990-09-04

    This patent describes a C127 cell transformed with a recombinant DNA vector. It comprises: a DNA sequence encoding human erythropoietin, the transformed cell being capable of producing N-linked and O-linked glycosylated human erythropoietin.

  4. Genome engineering in human cells.

    Science.gov (United States)

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  5. Placenta-on-a-chip: a novel platform to study the biology of the human placenta.

    Science.gov (United States)

    Lee, Ji Soo; Romero, Roberto; Han, Yu Mi; Kim, Hee Chan; Kim, Chong Jai; Hong, Joon-Seok; Huh, Dongeun

    2016-01-01

    Studying the biology of the human placenta represents a major experimental challenge. Although conventional cell culture techniques have been used to study different types of placenta-derived cells, current in vitro models have limitations in recapitulating organ-specific structure and key physiological functions of the placenta. Here we demonstrate that it is possible to leverage microfluidic and microfabrication technologies to develop a microengineered biomimetic model that replicates the architecture and function of the placenta. A "Placenta-on-a-Chip" microdevice was created by using a set of soft elastomer-based microfabrication techniques known as soft lithography. This microsystem consisted of two polydimethylsiloxane (PDMS) microfluidic channels separated by a thin extracellular matrix (ECM) membrane. To reproduce the placental barrier in this model, human trophoblasts (JEG-3) and human umbilical vein endothelial cells (HUVECs) were seeded onto the opposite sides of the ECM membrane and cultured under dynamic flow conditions to form confluent epithelial and endothelial layers in close apposition. We tested the physiological function of the microengineered placental barrier by measuring glucose transport across the trophoblast-endothelial interface over time. The permeability of the barrier study was analyzed and compared to that obtained from acellular devices and additional control groups that contained epithelial or endothelial layers alone. Our microfluidic cell culture system provided a tightly controlled fluidic environment conducive to the proliferation and maintenance of JEG-3 trophoblasts and HUVECs on the ECM scaffold. Prolonged culture in this model produced confluent cellular monolayers on the intervening membrane that together formed the placental barrier. This in vivo-like microarchitecture was also critical for creating a physiologically relevant effective barrier to glucose transport. Quantitative investigation of barrier function was

  6. Diffusion inside living human cells

    DEFF Research Database (Denmark)

    Leijnse, N.; Jeon, J. -H.; Loft, Steffen

    2012-01-01

    Naturally occurring lipid granules diffuse in the cytoplasm and can be used as tracers to map out the viscoelastic landscape inside living cells. Using optical trapping and single particle tracking we found that lipid granules exhibit anomalous diffusion inside human umbilical vein endothelial...... cells. For these cells the exact diffusional pattern of a particular granule depends on the physiological state of the cell and on the localization of the granule within the cytoplasm. Granules located close to the actin rich periphery of the cell move less than those located towards to the center...... of the cell or within the nucleus. Also, granules in cells which are stressed by intense laser illumination or which have attached to a surface for a long period of time move in a more restricted fashion than those within healthy cells. For granules diffusing in healthy cells, in regions away from the cell...

  7. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self-renewal and......Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self...... of clinical applications, e.g., non-healing bone fractures and defects and also non-skeletal degenerative diseases like heart failure. Currently, the numbers of clinical trials that employ MSC are increasing. However, several biological and biotechnological challenges need to be overcome to benefit from...

  8. Human embryonic stem cells handbook

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-03-01

    Full Text Available After the Nobel prize in physiology or medicine was awarded jointly to Sir John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent it became imperative to write down the review for a book entirely devoted to human embryonic stem cells (hES, those cells that are a urgent need for researchers, those cells that rekindle the ethical debates and finally, last but not least, those cells whose study paved the way to obtain induced pluripotent stem cells by the OSKC’s Yamanaka method (the OSKC acronim refers, for those not familiar with the topic, to the four stemness genes used to transfect somatic fibroblasts: Oct4, Sox2, Klf4 and c-Myc....

  9. Matrix metalloproteinase-2 (MMP-2) generates soluble HLA-G1 by cell surface proteolytic shedding.

    Science.gov (United States)

    Rizzo, Roberta; Trentini, Alessandro; Bortolotti, Daria; Manfrinato, Maria C; Rotola, Antonella; Castellazzi, Massimiliano; Melchiorri, Loredana; Di Luca, Dario; Dallocchio, Franco; Fainardi, Enrico; Bellini, Tiziana

    2013-09-01

    Human leukocyte antigen-G (HLA-G) molecules are non-classical HLA class I antigens with an important role in pregnancy immune regulation and inflammation control. Soluble HLA-G proteins can be generated through two mechanisms: alternative splicing and proteolytic release, which is known to be metalloprotease mediated. Among this class of enzymes, matrix metalloproteinases (MMPs) might be involved in the HLA-G1 membrane cleavage. Of particular interest are MMP-2 and MMP-9, which regulate the inflammatory process by cytokine and chemokine modulation. We evaluated the effect of MMP-9 and MMP-2 on HLA-G1 membrane shedding. In particular, we analyzed the in vitro effect of these two gelatinases on the secretion of HLA-G1 via proteolytic cleavage in 221-G1-transfected cell line, in JEG3 cell line, and in peripheral blood mononuclear cells. The results obtained by both cell lines showed the role of MMP-2 in HLA-G1 shedding. On the contrary, MMP-9 was not involved in this process. In addition, we identified three possible highly specific cleavage sites for MMP-2, whereas none were detected for MMP-9. This study suggests an effective link between MMP-2 and HLA-G1 shedding, increasing our knowledge on the regulatory machinery beyond HLA-G regulation in physiological and pathological conditions.

  10. Human fetal mesenchymal stem cells.

    Science.gov (United States)

    O'Donoghue, Keelin; Chan, Jerry

    2006-09-01

    Stem cells have been isolated at all stages of development from the early developing embryo to the post-reproductive adult organism. However, the fetal environment is unique as it is the only time in ontogeny that there is migration of stem cells in large numbers into different organ compartments. While fetal neural and haemopoietic stem cells (HSC) have been well characterised, only recently have mesenchymal stem cells from the human fetus been isolated and evaluated. Our group have characterised in human fetal blood, liver and bone marrow a population of non-haemopoietic, non-endothelial cells with an immunophenotype similar to adult bone marrow-derived mesenchymal stem cells (MSC). These cells, human fetal mesenchymal stem cells (hfMSC), are true multipotent stem cells with greater self-renewal and differentiation capacity than their adult counterparts. They circulate in first trimester fetal blood and have been found to traffic into the maternal circulation, engrafting in bone marrow, where they remain microchimeric for decades after pregnancy. Though fetal microchimerism has been implicated in the pathogenesis of autoimmune disease, the biological role of hfMSC microchimerism is unknown. Potential downstream applications of hfMSC include their use as a target cell for non-invasive pre-natal diagnosis from maternal blood, and for fetal cellular and gene therapy. Using hfMSC in fetal therapy offers the theoretical advantages of avoidance of immune rejection, increased engraftment, and treatment before disease pathology sets in. Aside from allogeneic hfMSC in utero transplantation, the use of autologous hfMSC has been brought a step forward with the development of early blood sampling techniques, efficient viral transduction and clonal expansion. Work is ongoing to determine hfMSC fate post-transplantation in murine models of genetic disease. In this review we will examine what is known about hfMSC biology, as well as discussing areas for future research. The

  11. Differentiated human stem cells resemble fetal, not adult, β cells.

    Science.gov (United States)

    Hrvatin, Sinisa; O'Donnell, Charles W; Deng, Francis; Millman, Jeffrey R; Pagliuca, Felicia Walton; DiIorio, Philip; Rezania, Alireza; Gifford, David K; Melton, Douglas A

    2014-02-25

    Human pluripotent stem cells (hPSCs) have the potential to generate any human cell type, and one widely recognized goal is to make pancreatic β cells. To this end, comparisons between differentiated cell types produced in vitro and their in vivo counterparts are essential to validate hPSC-derived cells. Genome-wide transcriptional analysis of sorted insulin-expressing (INS(+)) cells derived from three independent hPSC lines, human fetal pancreata, and adult human islets points to two major conclusions: (i) Different hPSC lines produce highly similar INS(+) cells and (ii) hPSC-derived INS(+) (hPSC-INS(+)) cells more closely resemble human fetal β cells than adult β cells. This study provides a direct comparison of transcriptional programs between pure hPSC-INS(+) cells and true β cells and provides a catalog of genes whose manipulation may convert hPSC-INS(+) cells into functional β cells.

  12. Human labour is associated with decreased cytoplasmic FoxO4.

    Science.gov (United States)

    Lim, R; Riley, C; Barker, G; Rice, G E; Lappas, M

    2012-01-01

    Forkhead box O (FoxO) proteins function primarily as transcription factors in the nucleus where they bind to their cognate DNA targeting sequences. FoxO regulated genes include those involved in cellular stress responses, inflammation and apoptosis; all of which are involved in the processes of human labour and delivery. We have previously identified Forkhead box O4 (FoxO4) proteins in human gestational tissues; there is, however, no data is available on the role of FoxO4 in the processes of human labour and delivery. Thus the aim of this study was to determine the effect of (i) human labour, preterm chorioamnionitis and pro-inflammatory stimuli on the expression of FoxO4 in human placenta and fetal membranes; and (ii) FoxO4 knockdown by siRNA on the expression of pro-labour mediators. Quantitative RT-PCR (qRT-PCR), immunohistochemistry and/or Western blotting was used to analyse the expression of FoxO4 (n = 6 per group). Human labour and preterm chorioamnionitis significantly decreased cytoplasmic FoxO4 expression in placenta and/or choriodecidua. Knockdown of FoxO4 mRNA and protein in JEG-3 cells using siRNA was associated with decreased COX-2 mRNA expression concomitant with lower PGF(2α) secretion. However, in BeWo cells, siRNA inhibition of FoxO4 was not associated with inflammation, oxidative stress or apoptosis. In summary, human term labour and chorioamnionitis is characterised by lower FoxO4 mRNA and/or protein expression in placenta and/or choriodecidua. Although the exact role of FoxO4 in human pregnancy remains to be fully elucidated, our data demonstrate that it can regulate COX-2 expression and subsequent prostaglandin expression. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The potency of human testicular stem cells

    NARCIS (Netherlands)

    Chikhovskaya, J.V.

    2013-01-01

    In this thesis, we evaluate the stem cell state of cells present in primary human testicular cell cultures as well as their origin and relation to germ or somatic lineages within testicular tissue. We conclude that human testis-derived embryonic stem cell-like (htES-like) colonies arising in primary

  14. Stem cell differentiation and human liver disease

    Institute of Scientific and Technical Information of China (English)

    Wen-Li Zhou; Claire N Medine; Liang Zhu; David C Hay

    2012-01-01

    Human stem cells are scalable cell populations capable of cellular differentiation.This makes them a very attractive in vitro cellular resource and in theory provides unlimited amounts of primary cells.Such an approach has the potential to improve our understanding of human biology and treating disease.In the future it may be possible to deploy novel stem cell-based approaches to treat human liver diseases.In recent years,efficient hepatic differentiation from human stem cells has been achieved by several research groups including our own.In this review we provide an overview of the field and discuss the future potential and limitations of stem cell technology.

  15. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    Full Text Available BACKGROUND: The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. METHODOLOGY/PRINCIPAL FINDINGS: Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. CONCLUSION/SIGNIFICANCE: The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of

  16. Endocannabinoids and Human Sperm Cells

    Directory of Open Access Journals (Sweden)

    Giovanna Zolese

    2010-10-01

    Full Text Available N-acylethanolamides (NAEs are naturally occurring signaling lipids consisting of amides and esters of long-chain polyunsaturated fatty acids. Usually they are present in a very small amounts in many mammalian tissues and cells, including human reproductive tracts and fluids. Recently, the presence of N-arachidonoylethanolamide (anandamide, AEA, the most characterised member of endocannabinoids, and its congeners palmitoylethanolamide (PEA and oleylethanolamide (OEA in seminal plasma, oviductal fluid, and follicular fluids was demonstrated. AEA has been shown to bind not only type-1 (CB1 and type-2 (CB2 cannabinoid receptors, but also type-1 vanilloid receptor (TRPV1, while PEA and OEA are inactive with respect to classical cannabinoid CB1 and CB2 but activate TRPV1 or peroxisome proliferator activate receptors (PPARs. This review concerns the most recent experimental data on PEA and OEA, endocannabinoid-like molecules which appear to exert their action exclusively on sperm cells with altered features, such as membrane characteristics and kinematic parameters. Their beneficial effects on these cells could suggest a possible pharmacological use of PEA and OEA on patients affected by some forms of idiopathic infertility.

  17. Human regulatory B cells control the TFH cell response.

    Science.gov (United States)

    Achour, Achouak; Simon, Quentin; Mohr, Audrey; Séité, Jean-François; Youinou, Pierre; Bendaoud, Boutahar; Ghedira, Ibtissem; Pers, Jacques-Olivier; Jamin, Christophe

    2017-07-01

    Follicular helper T (TFH) cells support terminal B-cell differentiation. Human regulatory B (Breg) cells modulate cellular responses, but their control of TFH cell-dependent humoral immune responses is unknown. We sought to assess the role of Breg cells on TFH cell development and function. Human T cells were polyclonally stimulated in the presence of IL-12 and IL-21 to generate TFH cells. They were cocultured with B cells to induce their terminal differentiation. Breg cells were included in these cultures, and their effects were evaluated by using flow cytometry and ELISA. B-cell lymphoma 6, IL-21, inducible costimulator, CXCR5, and programmed cell death protein 1 (PD-1) expressions increased on stimulated human T cells, characterizing TFH cell maturation. In cocultures they differentiated B cells into CD138(+) plasma and IgD(-)CD27(+) memory cells and triggered immunoglobulin secretions. Breg cells obtained by Toll-like receptor 9 and CD40 activation of B cells prevented TFH cell development. Added to TFH cell and B-cell cocultures, they inhibited B-cell differentiation, impeded immunoglobulin secretions, and expanded Foxp3(+)CXCR5(+)PD-1(+) follicular regulatory T cells. Breg cells modulated IL-21 receptor expressions on TFH cells and B cells, and their suppressive activities involved CD40, CD80, CD86, and intercellular adhesion molecule interactions and required production of IL-10 and TGF-β. Human Breg cells control TFH cell maturation, expand follicular regulatory T cells, and inhibit the TFH cell-mediated antibody secretion. These novel observations demonstrate a role for the Breg cell in germinal center reactions and suggest that deficient activities might impair the TFH cell-dependent control of humoral immunity and might lead to the development of aberrant autoimmune responses. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  19. IMMUNORESPONSES OF HUMANIZED SCID MICE TO HUMAN LUNG CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    陈力真; 王树蕙; 张云; 王世真

    1996-01-01

    HuPBL-SCID mice were used to explore how they would response to human ttmoor cells of 801/MLC.Living 801/MLC cells appeared to be fetal to the the mice due to the production of human TNF. The huP-BL-SCID rniee did not generate any noticeable amotmt of specific human immunoglobttlin either by single immunization with living 801/MLC cells or by repeated immunization with irradiated 801/MLC cells. Our preliminary experiments with huPBL-SCID mice showed that such chimeras would he a very useful models for tumor immunological researches.

  20. Search for naive human pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Simone Aparecida Siqueira Fonseca; Roberta Montero Costas; Lygia Veiga Pereira

    2015-01-01

    Normal mouse pluripotent stem cells were originallyderived from the inner cell mass (ICM) of blastocystsand shown to be the in vitro equivalent of those preimplantationembryonic cells, and thus were calledembryonic stem cells (ESCs). More than a decade later,pluripotent cells were isolated from the ICM of humanblastocysts. Despite being called human ESCs, thesecells differ significantly from mouse ESCs, includingdifferent morphology and mechanisms of control ofpluripotency, suggesting distinct embryonic originsof ESCs from the two species. Subsequently, mousepluripotent stem cells were established from the ICMderivedepiblast of post-implantation embryos. Thesemouse epiblast stem cells (EpiSCs) are morphologicaland epigenetically more similar to human ESCs. Thisraised the question of whether cells from the humanICM are in a more advanced differentiation stage thantheir murine counterpart, or whether the availableculture conditions were not adequate to maintain thosehuman cells in their in vivo state, leading to a transitioninto EpiSC-like cells in vitro . More recently, novel cultureconditions allowed the conversion of human ESCs intomouse ESC-like cells called naive (or ground state)human ESCs, and the derivation of naive human ESCsfrom blastocysts. Here we will review the characteristicsof each type of pluripotent stem cells, how (andwhether) these relate to different stages of embryonicdevelopment, and discuss the potential implications ofnaive human ESCs in research and therapy.

  1. Endothelial cells derived from human embryonic stem cells

    Science.gov (United States)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  2. Induced pluripotent stem cell lines derived from human somatic cells.

    Science.gov (United States)

    Yu, Junying; Vodyanik, Maxim A; Smuga-Otto, Kim; Antosiewicz-Bourget, Jessica; Frane, Jennifer L; Tian, Shulan; Nie, Jeff; Jonsdottir, Gudrun A; Ruotti, Victor; Stewart, Ron; Slukvin, Igor I; Thomson, James A

    2007-12-21

    Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.

  3. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  4. Human Neural Cell-Based Biosensor

    Science.gov (United States)

    2013-05-28

    including incubation with factors such as SHH ) and proceed to Human Neural Progenitor Cells Dopaminergic Differentiation β-III Tubulin/TH...exposure in human embryonic stem cells. J Recept Signal Transduct Res. 2011 Jun;31(3):206-13. Gerwe BA, Angel PM, West FD, Hasneen K, Young A

  5. Cortical network from human embryonic stem cells

    OpenAIRE

    2010-01-01

    Abstract The connection of embryonic stem cell technology and developmental biology provides valuable tools to decipher the mechanisms underlying human brain development and diseases, especially among neuronal populations, that are not readily available in primary cultures. It is obviously the case of neurons forming the human cerebral cortex. In the images that are presented, the neurons were generated in vitro from human embryonic stem cells via forebrain-like progenitors. Maintained in cul...

  6. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B;

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long...

  7. Human embryonic stem cells derived by somatic cell nuclear transfer.

    Science.gov (United States)

    Tachibana, Masahito; Amato, Paula; Sparman, Michelle; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Ma, Hong; Kang, Eunju; Fulati, Alimujiang; Lee, Hyo-Sang; Sritanaudomchai, Hathaitip; Masterson, Keith; Larson, Janine; Eaton, Deborah; Sadler-Fredd, Karen; Battaglia, David; Lee, David; Wu, Diana; Jensen, Jeffrey; Patton, Phillip; Gokhale, Sumita; Stouffer, Richard L; Wolf, Don; Mitalipov, Shoukhrat

    2013-06-06

    Reprogramming somatic cells into pluripotent embryonic stem cells (ESCs) by somatic cell nuclear transfer (SCNT) has been envisioned as an approach for generating patient-matched nuclear transfer (NT)-ESCs for studies of disease mechanisms and for developing specific therapies. Past attempts to produce human NT-ESCs have failed secondary to early embryonic arrest of SCNT embryos. Here, we identified premature exit from meiosis in human oocytes and suboptimal activation as key factors that are responsible for these outcomes. Optimized SCNT approaches designed to circumvent these limitations allowed derivation of human NT-ESCs. When applied to premium quality human oocytes, NT-ESC lines were derived from as few as two oocytes. NT-ESCs displayed normal diploid karyotypes and inherited their nuclear genome exclusively from parental somatic cells. Gene expression and differentiation profiles in human NT-ESCs were similar to embryo-derived ESCs, suggesting efficient reprogramming of somatic cells to a pluripotent state.

  8. Human Neuroepithelial Cells Express NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Cappell B

    2003-11-01

    Full Text Available Abstract L-glutamate, an excitatory neurotransmitter, binds to both ionotropic and metabotropic glutamate receptors. In certain parts of the brain the BBB contains two normally impermeable barriers: 1 cerebral endothelial barrier and 2 cerebral epithelial barrier. Human cerebral endothelial cells express NMDA receptors; however, to date, human cerebral epithelial cells (neuroepithelial cells have not been shown to express NMDA receptor message or protein. In this study, human hypothalamic sections were examined for NMDA receptors (NMDAR expression via immunohistochemistry and murine neuroepithelial cell line (V1 were examined for NMDAR via RT-PCR and Western analysis. We found that human cerebral epithelium express protein and cultured mouse neuroepithelial cells express both mRNA and protein for the NMDA receptor. These findings may have important consequences for neuroepithelial responses during excitotoxicity and in disease.

  9. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  10. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  11. Derivation of naive human embryonic stem cells.

    Science.gov (United States)

    Ware, Carol B; Nelson, Angelique M; Mecham, Brigham; Hesson, Jennifer; Zhou, Wenyu; Jonlin, Erica C; Jimenez-Caliani, Antonio J; Deng, Xinxian; Cavanaugh, Christopher; Cook, Savannah; Tesar, Paul J; Okada, Jeffrey; Margaretha, Lilyana; Sperber, Henrik; Choi, Michael; Blau, C Anthony; Treuting, Piper M; Hawkins, R David; Cirulli, Vincenzo; Ruohola-Baker, Hannele

    2014-03-25

    The naïve pluripotent state has been shown in mice to lead to broad and more robust developmental potential relative to primed mouse epiblast cells. The human naïve ES cell state has eluded derivation without the use of transgenes, and forced expression of OCT4, KLF4, and KLF2 allows maintenance of human cells in a naïve state [Hanna J, et al. (2010) Proc Natl Acad Sci USA 107(20):9222-9227]. We describe two routes to generate nontransgenic naïve human ES cells (hESCs). The first is by reverse toggling of preexisting primed hESC lines by preculture in the histone deacetylase inhibitors butyrate and suberoylanilide hydroxamic acid, followed by culture in MEK/ERK and GSK3 inhibitors (2i) with FGF2. The second route is by direct derivation from a human embryo in 2i with FGF2. We show that human naïve cells meet mouse criteria for the naïve state by growth characteristics, antibody labeling profile, gene expression, X-inactivation profile, mitochondrial morphology, microRNA profile and development in the context of teratomas. hESCs can exist in a naïve state without the need for transgenes. Direct derivation is an elusive, but attainable, process, leading to cells at the earliest stage of in vitro pluripotency described for humans. Reverse toggling of primed cells to naïve is efficient and reproducible.

  12. Regulatory T Cells in Human Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Dong-Jun Peng

    2012-01-01

    Full Text Available Multiple layers of suppressive components including regulatory T (TReg cells, suppressive antigen-presenting cells, and inhibitory cytokines form suppressive networks in the ovarian cancer microenvironment. It has been demonstrated that as a major suppressive element, TReg cells infiltrate tumor, interact with several types of immune cells, and mediate immune suppression through different molecular and cellular mechanisms. In this paper, we focus on human ovarian cancer and will discuss the nature of TReg cells including their subsets, trafficking, expansion, and function. We will briefly review the development of manipulation of TReg cells in preclinical and clinical settings.

  13. Generation of pancreatic islet cells from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG DongHui; JIANG Wei; SHI Yan; DENG HongKui

    2009-01-01

    Efficiently obtaining functional pancreaUc islet cells derived from human embryonic stem (hES) cells not only provides great potential to solve the shortage of islets sources for type I diabetes cell therapy,but also benefits the study of the development of the human pancreas and diabetes pathology. In 2001,hES cells were reported to have the capacity to generate insulin-producing cells by spontaneous differentiation in vitro. Since then, many strategies (such as overexpression of key transcription factors,delivery of key proteins for pancreatic development, co-transplantation of differentiated hES cells along with fetal pancreas, stepwise differentiation by mimicking in vivo pancreatic development) have been employed in order to induce the differentiation of pancreatic islet cells from hES cells. Moreover, patient-specific induced pluripotent stem (iPS) cells can be generated by reprogramming somatic cells.iPS cells have characteristics similar to those of ES cells and offer a new cell source for type I diabetes cell therapy that reduces the risk of immunologic rejection. In this review, we summarize the recent progress made in the differentiation of hES and iPS cells into functional pancreatic islet cells and discuss the challenges for their future study.

  14. Generation of pancreatic islet cells from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Efficiently obtaining functional pancreatic islet cells derived from human embryonic stem(hES) cells not only provides great potential to solve the shortage of islets sources for type I diabetes cell therapy,but also benefits the study of the development of the human pancreas and diabetes pathology.In 2001,hES cells were reported to have the capacity to generate insulin-producing cells by spontaneous differentiation in vitro.Since then,many strategies(such as overexpression of key transcription factors,delivery of key proteins for pancreatic development,co-transplantation of differentiated hES cells along with fetal pancreas,stepwise differentiation by mimicking in vivo pancreatic development) have been employed in order to induce the differentiation of pancreatic islet cells from hES cells.Moreover,patient-specific induced pluripotent stem(iPS) cells can be generated by reprogramming somatic cells.iPS cells have characteristics similar to those of ES cells and offer a new cell source for type I diabetes cell therapy that reduces the risk of immunologic rejection.In this review,we summarize the recent progress made in the differentiation of hES and iPS cells into functional pancreatic islet cells and discuss the challenges for their future study.

  15. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells.

    NARCIS (Netherlands)

    Dormeyer, W.; van Hoof, D.; Braam, S.R.; Heck, A.J.R.; Mummery, C.L.; Krijgsveld, J.

    2008-01-01

    Human embryonic stem cells (hESCs) are of immense interest in regenerative medicine as they can self-renew indefinitely and can give rise to any adult cell type. Human embryonal carcinoma cells (hECCs) are the malignant counterparts of hESCs found in testis tumors. hESCs that have acquired chromosom

  16. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    Science.gov (United States)

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-02-03

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts.

  17. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  18. Molecular analysis of the human SLC13A4 sulfate transporter gene promoter

    Energy Technology Data Exchange (ETDEWEB)

    Jefferis, J. [Mater Medical Research Institute, South Brisbane, Queensland (Australia); Rakoczy, J. [Mater Medical Research Institute, South Brisbane, Queensland (Australia); School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland (Australia); Translational Research Institute, Woolloongabba, Queensland (Australia); Simmons, D.G. [School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland (Australia); Dawson, P.A., E-mail: paul.dawson@mmri.mater.org.au [Mater Medical Research Institute, South Brisbane, Queensland (Australia); Translational Research Institute, Woolloongabba, Queensland (Australia)

    2013-03-29

    Highlights: ► Basal promoter activity of SLC13A4 −57 to −192 nt upstream of transcription initiation site. ► Human SLC13A4 5′-flanking region has conserved motifs with other placental species. ► Putative NFY, SP1 and KLF7 motifs in SLC13A4 5′-flanking region enhance transcription. -- Abstract: The human solute linked carrier (SLC) 13A4 gene is primarily expressed in the placenta where it is proposed to mediate the transport of nutrient sulfate from mother to fetus. The molecular mechanisms involved in the regulation of SLC13A4 expression remain unknown. To investigate the regulation of SLC13A4 gene expression, we analysed the transcriptional activity of the human SLC13A4 5′-flanking region in the JEG-3 placental cell line using luciferase reporter assays. Basal transcriptional activity was identified in the region −57 to −192 nucleotides upstream of the SLC13A4 transcription initiation site. Mutational analysis of the minimal promoter region identified Nuclear factor Y (NFY), Specificity protein 1 (SP1) and Krüppel like factor 7 (KLF7) motifs which conferred positive transcriptional activity, as well as Zinc finger protein of the cerebellum 2 (ZIC2) and helix–loop–helix protein 1 (HEN1) motifs that repressed transcription. The conserved NFY, SP1, KLF7, ZIC2 and HEN1 motifs in the SLC13A4 promoter of placental species but not in non-placental species, suggests a potential role for these putative transcriptional factor binding motifs in the physiological control of SLC13A4 mRNA expression.

  19. Stem cells in the human breast

    DEFF Research Database (Denmark)

    Petersen, Ole William; Polyak, Kornelia

    2010-01-01

    The origins of the epithelial cells participating in the development, tissue homeostasis, and cancer of the human breast are poorly understood. However, emerging evidence suggests a role for adult tissue-specific stem cells in these processes. In a hierarchical manner, these generate the two main...

  20. Human hair genealogies and stem cell latency

    Directory of Open Access Journals (Sweden)

    Tavaré Simon

    2006-02-01

    Full Text Available Abstract Background Stem cells divide to reproduce themselves and produce differentiated progeny. A fundamental problem in human biology has been the inability to measure how often stem cells divide. Although it is impossible to observe every division directly, one method for counting divisions is to count replication errors; the greater the number of divisions, the greater the numbers of errors. Stem cells with more divisions should produce progeny with more replication errors. Methods To test this approach, epigenetic errors (methylation in CpG-rich molecular clocks were measured from human hairs. Hairs exhibit growth and replacement cycles and "new" hairs physically reappear even on "old" heads. Errors may accumulate in long-lived stem cells, or in their differentiated progeny that are eventually shed. Results Average hair errors increased until two years of age, and then were constant despite decades of replacement, consistent with new hairs arising from infrequently dividing bulge stem cells. Errors were significantly more frequent in longer hairs, consistent with long-lived but eventually shed mitotic follicle cells. Conclusion Constant average hair methylation regardless of age contrasts with the age-related methylation observed in human intestine, suggesting that error accumulation and therefore stem cell latency differs among tissues. Epigenetic molecular clocks imply similar mitotic ages for hairs on young and old human heads, consistent with a restart with each new hair, and with genealogies surreptitiously written within somatic cell genomes.

  1. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  2. Effects of vitamin C, vitamin E, and molecular hydrogen on the placental function in trophoblast cells.

    Science.gov (United States)

    Guan, Zhong; Li, Huai-Fang; Guo, Li-Li; Yang, Xiang

    2015-08-01

    This study aimed to investigate the effects of three different antioxidants, namely vitamin C, vitamin E, and molecular hydrogen, on cytotrophoblasts in vitro. Two trophoblast cell lines, JAR and JEG-3, were exposed to different concentrations of vitamin C (0, 25, 50, 100, 500, 1,000, 5,000 μmol/L), vitamin E (0, 25, 50, 100, 500, 1,000, 5,000 μmol/L), and molecular hydrogen (0, 25, 50, 100, 500 μmol/L) for 48 h. The cell viability was detected using the MTS assay. The secretion of human chorionic gonadotropin (hCG) and the tumor necrosis factor-α (TNF-α) were assessed and the expression of TNF-α mRNA was observed by real-time RT-PCR. Cell viability was significantly suppressed by 500 μmol/L vitamins C and E (P 0.05). The expression of TNF-α was increased by 100 μmol/L vitamin C and 50 μmol/L vitamins E, separately or combined (P vitamin C and E, separately or combined. High levels of antioxidant vitamins C and E may have significant detrimental effects on placental function, as reflected by decreased cell viability and secretion of hCG; and placental immunity, as reflected by increased production of TNF-a. Meanwhile hydrogen showed no such effects on cell proliferation and TNF-α expression, but it could affect the level of hCG, indicating hydrogen as a potential candidate of antioxidant in the management of preeclampsia (PE) should be further studied.

  3. INTERACTIONS BETWEEN THE HUMAN GASTRIC CARCINOMA CELL AND THE HUMAN VASCULAR ENDOTHELIAL CELL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To definite the interactions between the human gastric carcinoma cell and the human vascular endothelial cell during the establishment and maintenance of the tumor vascular system and the tumor hematogenous metastasis.Methods We prepared the conditioned mediums of each cell so as to study the effect of the conditioned medium on itself or others by MTT colorimetry. The comprehensive effect of interactions between two cells was determined by stratified transfilter co-culture or direct contact co-culture.Results The conditioned medium of human gastric carcinoma cell can stimulate the proliferation of the human vascular endothelial cell, but the CM of HVEC can inhibit the growth of HGCC. Both kinds of cells can inhibit the growth of itself. The ultimate comprehensive effect of the interactions between two kinds of cells was increase of total cell numbers.Conclusion There exist the complicated interactions between the human gastric carcinoma cell and the human vascular endothelial cell during the tumor angiogenesis and the tumor hematogenous metastasis. The ultimate comprehensive effect of the interactions is increase of total cells numbers and tumor volume.

  4. Fibronectin production by human mammary cells

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, M.R. (Univ. of California, Berkeley); Vlodavsky, I.; Smith, H.S.; Ford, R.; Becker, F.F.; Riggs, J.

    1981-01-01

    Human mammary cells were examined for the presence of the high-molecular-weight surface glycoprotein fibronectin. Early passage mammary epithelial cell and fibroblast cultures from both carcinomas and normal tissues were tested for the presence of cell-associated fibronectin by immunofluorescence microscopy and for the synthesis and secretion of fibronectin by specific immunoprecipitation of metabolically labeled protein. In vivo frozen sections of primary carcinomas and normal tissues were tested for the localization of fibronectin by immunofluorescence microscopy. In contrast to the extensive fibrillar networks of fibronectin found in the fibroblast cultures, the epithelial cell cultures from both tissue sources displayed a pattern of cell-associated fibronectin characterizd by powdery, punctate staining. However, the cultured epithelial cells, as well as the fibroblasts, secreted large quantities of fibronectin into the medium. Putative myoepithelial cells also displayed extensive fibrillar networks of fibronectin. The difference in cell-associated fibronectin distribution between the epithelial cells and the fibroblasts and putative myoepithelial cells provided a simple means of quantitating stromal and myoepithelial cell contamination of the mammary epithelial cells in culture. In vivo, normal tissues showed fibronectin primarily localized in the basement membrane surrounding the epithelial cells and in the stroma. Most primary carcinomas displayed powdery, punctate staining on the epithelial cells in addition to the fibronectin present in the surrounding stroma.

  5. Laser printing of skin cells and human stem cells.

    Science.gov (United States)

    Koch, Lothar; Kuhn, Stefanie; Sorg, Heiko; Gruene, Martin; Schlie, Sabrina; Gaebel, Ralf; Polchow, Bianca; Reimers, Kerstin; Stoelting, Stephanie; Ma, Nan; Vogt, Peter M; Steinhoff, Gustav; Chichkov, Boris

    2010-10-01

    Laser printing based on laser-induced forward transfer (LIFT) is a new biofabrication technique for the arrangement of biological materials or living cells in well-defined patterns. In the current study, skin cell lines (fibroblasts/keratinocytes) and human mesenchymal stem cells (hMSC) were chosen for laser printing experiments due to their high potential in regeneration of human skin and new application possibilities of stem cell therapy. To evaluate the influence of LIFT on the cells, their survival rate, their proliferation and apoptotic activity, and the DNA damages and modifications of their cell surface markers were assessed and statistically evaluated over several days. The cells survived the transfer procedure with a rate of 98%  +/- 1% standard error of the mean (skin cells) and 90%  +/- 10% (hMSC), respectively. All used cell types maintain their ability to proliferate after LIFT. Further, skin cells and hMSC did not show an increase of apoptosis or DNA fragmentation. In addition, the hMSC keep their phenotype as proven by fluorescence activated cell sorting (FACS) analysis. This study demonstrates LIFT as a suitable technique for unharmed computer-controlled positioning of different cell types and a promising tool for future applications in the ex vivo generation of tissue replacements.

  6. Human spleen and red blood cells

    Science.gov (United States)

    Pivkin, Igor; Peng, Zhangli; Karniadakis, George; Buffet, Pierre; Dao, Ming

    2016-11-01

    Spleen plays multiple roles in the human body. Among them is removal of old and altered red blood cells (RBCs), which is done by filtering cells through the endothelial slits, small micron-sized openings. There is currently no experimental technique available that allows us to observe RBC passage through the slits. It was previously noticed that people without a spleen have less deformable red blood cells, indicating that the spleen may play a role in defining the size and shape of red blood cells. We used detailed RBC model implemented within the Dissipative Particle Dynamics (DPD) simulation framework to study the filter function of the spleen. Our results demonstrate that spleen indeed plays major role in defining the size and shape of the healthy human red blood cells.

  7. Rotating cell culture systems for human cell culture: human trophoblast cells as a model.

    Science.gov (United States)

    Zwezdaryk, Kevin J; Warner, Jessica A; Machado, Heather L; Morris, Cindy A; Höner zu Bentrup, Kerstin

    2012-01-18

    The field of human trophoblast research aids in understanding the complex environment established during placentation. Due to the nature of these studies, human in vivo experimentation is impossible. A combination of primary cultures, explant cultures and trophoblast cell lines support our understanding of invasion of the uterine wall and remodeling of uterine spiral arteries by extravillous trophoblast cells (EVTs), which is required for successful establishment of pregnancy. Despite the wealth of knowledge gleaned from such models, it is accepted that in vitro cell culture models using EVT-like cell lines display altered cellular properties when compared to their in vivo counterparts. Cells cultured in the rotating cell culture system (RCCS) display morphological, phenotypic, and functional properties of EVT-like cell lines that more closely mimic differentiating in utero EVTs, with increased expression of genes mediating invasion (e.g. matrix metalloproteinases (MMPs)) and trophoblast differentiation. The Saint Georges Hospital Placental cell Line-4 (SGHPL-4) (kindly donated by Dr. Guy Whitley and Dr. Judith Cartwright) is an EVT-like cell line that was used for testing in the RCCS. The design of the RCCS culture vessel is based on the principle that organs and tissues function in a three-dimensional (3-D) environment. Due to the dynamic culture conditions in the vessel, including conditions of physiologically relevant shear, cells grown in three dimensions form aggregates based on natural cellular affinities and differentiate into organotypic tissue-like assemblies. The maintenance of a fluid orbit provides a low-shear, low-turbulence environment similar to conditions found in vivo. Sedimentation of the cultured cells is countered by adjusting the rotation speed of the RCCS to ensure a constant free-fall of cells. Gas exchange occurs through a permeable hydrophobic membrane located on the back of the bioreactor. Like their parental tissue in vivo, RCCS

  8. Autophagy in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Thien Tra

    Full Text Available Autophagy (macroautophagy is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC.

  9. Human embryonic stem cells for neuronal repair.

    Science.gov (United States)

    Ben-Hur, Tamir

    2006-02-01

    Human embryonic stem cells may serve as a potentially endeless source of transplantable cells to treat various neurologic disorders. Accumulating data have shown the therapeutic value of various neural precursor cell types in experimental models of neurologic diseases. Tailoring cell therapy for specific disorders requires the generation of cells that are committed to specific neural lineages. To this end, protocols were recently developed for the derivation of dopaminergic neurons, spinal motor neurons and oligodendrocytes from hESC. These protocols recapitulate normal development in culture conditions. However, a novel concept emerging from these studies is that the beneficial effect of transplanted stem cells is not only via cell replacement in damaged host tissue, but also by trophic and protective effects, as well as by an immunomodulatory effect that down-regulates detrimental brain inflammation.

  10. Novel agents inhibit human leukemic cells

    Institute of Scientific and Technical Information of China (English)

    Wei-ping YU; Juan LI

    2012-01-01

    Ouabain (OUA) and pyrithione zinc (PZ) have been proved as the potential drugs for treating acute myeloid leukemia (AML).Selected from a screening among 1040 Food and Drug Administration-approved pharmacological agents,both drugs showability to induce apoptosis of the culturing AML cells,exhibiting the poisoning effect on the cells.Studies also reveal the efficiency of the drugs in inhibiting the growth of human AML cells injected into the mice lacking of immunity and killing primary AML cells from the peripheral blood of AML patients[1].

  11. 3 CFR - Guidelines for Human Stem Cell Research

    Science.gov (United States)

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Guidelines for Human Stem Cell Research Presidential Documents Other Presidential Documents Memorandum of July 30, 2009 Guidelines for Human Stem Cell Research..., scientifically worthy human stem cell research, including human embryonic stem cell research, to the extent...

  12. Myristoylation profiling in human cells and zebrafish

    Directory of Open Access Journals (Sweden)

    Malgorzata Broncel

    2015-09-01

    Full Text Available Human cells (HEK 293, HeLa, MCF-7 and zebrafish embryos were metabolically tagged with an alkynyl myristic acid probe, lysed with an SDS buffer and tagged proteomes ligated to multifunctional capture reagents via copper-catalyzed alkyne azide cycloaddition (CuAAC. This allowed for affinity enrichment and high-confidence identification, by delivering direct MS/MS evidence for the modification site, of 87 and 61 co-translationally myristoylated proteins in human cells and zebrafish, respectively. The data have been deposited to ProteomeXchange Consortium (Vizcaíno et al., 2014 Nat. Biotechnol., 32, 223–6 (PXD001863 and PXD001876 and are described in detail in Multifunctional reagents for quantitative proteome-wide analysis of protein modification in human cells and dynamic protein lipidation during vertebrate development׳ by Broncel et al., Angew. Chem. Int. Ed.

  13. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Science.gov (United States)

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  14. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    Science.gov (United States)

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  15. Efficient derivation and genetic modifications of human pluripotent stem cells on engineered human feeder cell lines.

    Science.gov (United States)

    Zou, Chunlin; Chou, Bin-Kuan; Dowey, Sarah N; Tsang, Kitman; Huang, Xiaosong; Liu, Cyndi F; Smith, Cory; Yen, Jonathan; Mali, Prashant; Zhang, Yu Alex; Cheng, Linzhao; Ye, Zhaohui

    2012-08-10

    Derivation of pluripotent stem cells (iPSCs) induced from somatic cell types and the subsequent genetic modifications of disease-specific or patient-specific iPSCs are crucial steps in their applications for disease modeling as well as future cell and gene therapies. Conventional procedures of these processes require co-culture with primary mouse embryonic fibroblasts (MEFs) to support self-renewal and clonal growth of human iPSCs as well as embryonic stem cells (ESCs). However, the variability of MEF quality affects the efficiencies of all these steps. Furthermore, animal sourced feeders may hinder the clinical applications of human stem cells. In order to overcome these hurdles, we established immortalized human feeder cell lines by stably expressing human telomerase reverse transcriptase, Wnt3a, and drug resistance genes in adult mesenchymal stem cells. Here, we show that these immortalized human feeders support efficient derivation of virus-free, integration-free human iPSCs and long-term expansion of human iPSCs and ESCs. Moreover, the drug-resistance feature of these feeders also supports nonviral gene transfer and expression at a high efficiency, mediated by piggyBac DNA transposition. Importantly, these human feeders exhibit superior ability over MEFs in supporting homologous recombination-mediated gene targeting in human iPSCs, allowing us to efficiently target a transgene into the AAVS1 safe harbor locus in recently derived integration-free iPSCs. Our results have great implications in disease modeling and translational applications of human iPSCs, as these engineered human cell lines provide a more efficient tool for genetic modifications and a safer alternative for supporting self-renewal of human iPSCs and ESCs.

  16. [Human pluripotent stem cell and neural differentiation].

    Science.gov (United States)

    Wataya, Takafumi; Muguruma, Keiko; Sasai, Yoshiki

    2008-10-01

    Recovery of lost brain function is an important issue in medical studies because neurons of the central nervous system (CNS) have poor potential for regeneration. Since few CNS diseases can be treated completely by medicines, regenerative therapy by using stem cells should be studied as a new type of therapeutic intervention. The efficacy of cell replacement therapy in Parkinson's disease has been well investigated. Several studies on fetal tissue transplantation have revealed that quantity and purity of transplanted cells are necessary for recovery of symptoms. SFEB (Serum-free floating culture of embryoid body-like aggregates) method is capable of inducing multi-potential CNS progenitors that can be steered to differentiate into region-specific tissues. On the basis of the existing knowledge of embryology, we have succeeded in the generating of various types of neurons such as telencephalic, cerebeller (Purkinje and granule cells), retinal (photoreceptor cells) and hypothalamic neurons. Application of this culture method to human ES (hES) cells is necessary for clinical purpose: however, poor survival of hES cells in SFEB culture might limit the possibility of using these cells for future medical applications. We found that a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, markedly diminished the dissociation-induced apoptosis of hES cells and enabled the cells to form aggregates in SFEB culture. For both mouse and human ES cells, SFEB culture is a favorable method that can generate large amounts of region-specific neurons. However, stem cell-based therapy continues to face several obstacles. It is important that researchers in the basic sciences and clinical medicine should discuss these problems together to overcome both scientific and ethical issues related to stem cells.

  17. T-cell response in human leishmaniasis

    DEFF Research Database (Denmark)

    Kharazmi, A; Kemp, K; Ismail, A

    1999-01-01

    In the present communication we provide evidence for the existence of a Th1/Th2 dichotomy in the T-cell response to Leishmania antigens in human leishmaniasis. Our data suggest that the pattern of IL-4 and IFN-gamma response is polarised in these patients. Lymphocytes from individuals recovered......+. Furthermore, IL-10 plays an important role in the development of post kala azar dermal leishmaniasis (PKDL) from VL. The balance between the parasitic-specific T-cell response plays an important regulatory role in determining the outcome of Leishmania infections in humans....

  18. Characterization of human pluripotent stem cells.

    Science.gov (United States)

    Gokhale, Paul J; Andrews, Peter W

    2013-12-18

    Human pluripotent stem cells (PSCs), whether embryonic stem cells or induced PSCs, offer enormous opportunities for regenerative medicine and other biomedical applications once we have developed the ability to harness their capacity for extensive differentiation. Central to this is our ability to identify and characterize such PSCs, but this is fraught with potential difficulties that arise from a tension between functional definitions of pluripotency and the more convenient use of 'markers', a problem exacerbated by ethical issues, our lack of knowledge of early human embryonic development, and differences from the mouse paradigm.

  19. CLOSTRIDIUM SPORE ATTACHMENT TO HUMAN CELLS

    Energy Technology Data Exchange (ETDEWEB)

    PANESSA-WARREN,B.; TORTORA,G.; WARREN,J.

    1997-08-10

    This paper uses high resolution scanning electron microscopy (SEM) with a LaB6 gun and the newest commercial field emission guns, to obtain high magnification images of intact clostridial spores throughout the activation/germination/outgrowth process. By high resolution SEM, the clostridial exosporial membrane can be seen to produce numerous delicate projections (following activation), that extend from the exosporial surface to a nutritive substrate (agar), or cell surface when anaerobically incubated in the presence of human cells (embryonic fibroblasts and colon carcinoma cells). Magnifications of 20,000 to 200,000Xs at accelerating voltages low enough to minimize or eliminate specimen damage (1--5 kV) have permitted the entire surface of C.sporogenes and C.difficile endospores to be examined during all stages of germination. The relationships between the spore and the agar or human cell surface were also clearly visible.

  20. Human pluripotent stem cells in contemporary medicine

    Directory of Open Access Journals (Sweden)

    S. A. Rodin

    2015-01-01

    Full Text Available Human pluripotent stem cells (hPSCs are capable of indefinite proliferation and can be differentiated into any cell type of the human body. Therefore, they are a promising source of cells for treatment of numerous degenerative diseases and injuries. Pluripotent stem cells are also associated with a number of ethical, safety and technological issues. In this review, we describe various types of hPSCs, safety issues that concern all or some types of hPSCs and methods of clinical-grade hPSC line development. Also, we discuss current and past clinical trials involving hPSCs, their outcomes and future perspectives of hPSC-based therapy. 

  1. Cell pattern in adult human corneal endothelium.

    Directory of Open Access Journals (Sweden)

    Carlos H Wörner

    Full Text Available A review of the current data on the cell density of normal adult human endothelial cells was carried out in order to establish some common parameters appearing in the different considered populations. From the analysis of cell growth patterns, it is inferred that the cell aging rate is similar for each of the different considered populations. Also, the morphology, the cell distribution and the tendency to hexagonallity are studied. The results are consistent with the hypothesis that this phenomenon is analogous with cell behavior in other structures such as dry foams and grains in polycrystalline materials. Therefore, its driving force may be controlled by the surface tension and the mobility of the boundaries.

  2. Merkel cell distribution in the human eyelid

    Directory of Open Access Journals (Sweden)

    C.A. May

    2013-10-01

    Full Text Available Although Merkel cell carcinoma of the eye lid is reported frequently in the literature, only limited information exists about the distribution of Merkel cells in this tissue. Therefore, serial sections of 18 human cadaver eye lids (donors ages ranging between 63 and 97 years were stained for cytokeratin 20 in various planes. The overall appearance of Merkel cells in these samples was low and mainly located in the outer root layer of the cilia hair follicles. Merkel cells were more frequent in the middle, and almost not detectable at the nasal and temporal edges. The localization is in accordance with that of Merkel cell carcinoma, but concerning the scarce appearance within this adulthood group, a specific physiological role of these cells in the eye lid is difficult to establish.

  3. Natural killer cells in human autoimmune disorders

    Science.gov (United States)

    2013-01-01

    Natural killer (NK) cells are innate lymphocytes that play a critical role in early host defense against viruses. Through their cytolytic capacity and generation of cytokines and chemokines, NK cells modulate the activity of other components of the innate and adaptive immune systems and have been implicated in the initiation or maintenance of autoimmune responses. This review focuses on recent research elucidating a potential immunoregulatory role for NK cells in T-cell and B-cell-mediated autoimmune disorders in humans, with a particular focus on multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematous. A better understanding of the contributions of NK cells to the development of autoimmunity may lead to novel therapeutic targets in these diseases. PMID:23856014

  4. Human Colon Cancer Cells Cultivated in Space

    Science.gov (United States)

    1995-01-01

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  5. Quercetin Inhibits Cell Migration and Invasion in Human Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Haifeng Lan

    2017-09-01

    Full Text Available Background/Aims: Osteosarcoma is a malignant tumor associated with high mortality; however, no effective therapies for the disease have been developed. Several studies have focused on elucidating the pathogenesis of osteosarcoma and have aimed to develop novel therapies for the disease. Quercetin is a vital dietary flavonoid that has been shown to have a variety of anticancer effects, as it induces cell cycle arrest, apoptosis, and differentiation and is involved in cell adhesion, metastasis and angiogenesis. Herein, we aimed to investigate the effects of quercetin on osteosarcoma migration and invasion in vitro and in vivo and to explore the molecular mechanisms underlying its effects on osteosarcoma migration and invasion. Methods: Cell viability, cell cycle activity and cell apoptosis were measured using CCK-8 assay and flow cytometry, and cell migration and invasion were evaluated by wound healing and transwell assays, respectively. The mRNA and protein expression levels of several proteins of interest were assessed by real-time quantitative PCR and western blotting, respectively. Moreover, a nude mouse model of human osteosarcoma lung metastasis was established to assess the anti-metastatic effects of quercetin in vivo. Results: We noted no significant differences in cell cycle activity and apoptosis between HOS and MG63 cells and control cells. Treatment with quercetin significantly attenuated cell migration and invasion in HOS and MG63 cells compared with treatment with control medium. Moreover HIF-1α, VEGF, MMP2, and MMP9 mRNA and protein expression levels were significantly downregulated in HOS cells treated with quercetin compared with HOS cells treated with controls. Additionally, treatment with quercetin attenuated metastatic lung tumor formation and growth in the nude mouse model of osteosarcoma compared with treatment with controls. Conclusion: Our findings regarding the inhibitory effects of quercetin on cell migration and

  6. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  7. Genetic Manipulation of Human Embryonic Stem Cells.

    Science.gov (United States)

    Eiges, Rachel

    2016-01-01

    One of the great advantages of embryonic stem (ES) cells over other cell types is their accessibility to genetic manipulation. They can easily undergo genetic modifications while remaining pluripotent, and can be selectively propagated, allowing the clonal expansion of genetically altered cells in culture. Since the first isolation of ES cells in mice, many effective techniques have been developed for gene delivery and manipulation of ES cells. These include transfection, electroporation, and infection protocols, as well as different approaches for inserting, deleting, or changing the expression of genes. These methods proved to be extremely useful in mouse ES cells, for monitoring and directing differentiation, discovering unknown genes, and studying their function, and are now being extensively implemented in human ES cells (HESCs). This chapter describes the different approaches and methodologies that have been applied for the genetic manipulation of HESCs and their applications. Detailed protocols for generating clones of genetically modified HESCs by transfection, electroporation, and infection will be described, with special emphasis on the important technical details that are required for this purpose. All protocols are equally effective in human-induced pluripotent stem (iPS) cells.

  8. Enriched retinal ganglion cells derived from human embryonic stem cells

    Science.gov (United States)

    Gill, Katherine P.; Hung, Sandy S. C.; Sharov, Alexei; Lo, Camden Y.; Needham, Karina; Lidgerwood, Grace E.; Jackson, Stacey; Crombie, Duncan E.; Nayagam, Bryony A.; Cook, Anthony L.; Hewitt, Alex W.; Pébay, Alice; Wong, Raymond C. B.

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  9. Human ES cells: starting culture from frozen cells.

    Science.gov (United States)

    Trish, Erin; Dimos, John; Eggan, Kevin

    2006-11-09

    Here we demonstrate how our lab begins a HuES human embryonic stem cell line culture from a frozen stock. First, a one to two day old ten cm plate of approximately one (to two) million irradiated mouse embryonic fibroblast feeder cells is rinsed with HuES media to remove residual serum and cell debris, and then HuES media added and left to equilibrate in the cell culture incubator. A frozen vial of cells from long term liquid nitrogen storage or a -80 C freezer is sourced and quickly submerged in a 37 C water bath for quick thawing. Cells in freezing media are then removed from the vial and placed in a large volume of HuES media. The large volume of HuES media facilitates removal of excess serum and DMSO, which can cause HuES human embryonic stem cells to differentiate. Cells are gently spun out of suspension, and then re-suspended in a small volume of fresh HuES media that is then used to seed the MEF plate. It is considered important to seed the MEF plate by gently adding the HuES cells in a drop wise fashion to evenly disperse them throughout the plate. The newly established HuES culture plate is returned to the incubator for 48 hrs before media is replaced, then is fed every 24 hours thereafter.

  10. Sodium Valproate Induces Cell Senescence in Human Hepatocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Hong-Mei An

    2013-12-01

    Full Text Available Hepatocarcinogenesis is associated with epigenetic changes, including histone deacetylases (HDACs. Epigenetic modulation by HDAC inhibition is a potentially valuable approach for hepatocellular carcinoma treatment. In present study, we evaluated the anticancer effects of sodium valproate (SVP, a known HDAC inhibitor, in human hepatocarcinoma cells. The results showed SVP inhibited the proliferation of Bel-7402 cells in a dose-dependent manner. Low dose SVP treatment caused a large and flat morphology change, positive SA-β-gal staining, and G0/G1 phase cell cycle arrest in human hepatocarcinoma cells. Low dose SVP treatment also increased acetylation of histone H3 and H4 on p21 promoter, accompanied by up-regulation of p21 and down-regulation of RB phosphorylation. These observations suggested that a low dose of SVP could induce cell senescence in hepatocarcinoma cells, which might correlate with hyperacetylation of histone H3 and H4, up-regulation of p21, and inhibition of RB phosphorylation. Since the effective concentration inducing cell senescence in hepatocarcinoma cells is clinically available, whether a clinical dose of SVP could induce cell senescence in clinical hepatocarcinoma is worthy of further study.

  11. Human embryonic stem cell lines model experimental human cytomegalovirus latency.

    Science.gov (United States)

    Penkert, Rhiannon R; Kalejta, Robert F

    2013-05-28

    Herpesviruses are highly successful pathogens that persist for the lifetime of their hosts primarily because of their ability to establish and maintain latent infections from which the virus is capable of productively reactivating. Human cytomegalovirus (HCMV), a betaherpesvirus, establishes latency in CD34(+) hematopoietic progenitor cells during natural infections in the body. Experimental infection of CD34(+) cells ex vivo has demonstrated that expression of the viral gene products that drive productive infection is silenced by an intrinsic immune defense mediated by Daxx and histone deacetylases through heterochromatinization of the viral genome during the establishment of latency. Additional mechanistic details about the establishment, let alone maintenance and reactivation, of HCMV latency remain scarce. This is partly due to the technical challenges of CD34(+) cell culture, most notably, the difficulty in preventing spontaneous differentiation that drives reactivation and renders them permissive for productive infection. Here we demonstrate that HCMV can establish, maintain, and reactivate in vitro from experimental latency in cultures of human embryonic stem cells (ESCs), for which spurious differentiation can be prevented or controlled. Furthermore, we show that known molecular aspects of HCMV latency are faithfully recapitulated in these cells. In total, we present ESCs as a novel, tractable model for studies of HCMV latency.

  12. [Immune system evolution. (From cells to humans)].

    Science.gov (United States)

    Belek, A S

    1992-01-01

    The great variety of cells and molecules observed in the mammalian immune system can be explained by stepwise acquisition of them during phylogeny. Self/nonself discrimination and cell-mediated immunity have been present since the early stages of evolution. Although some inducible antimicrobial molecules have been demonstrated in invertebrates, immunoglobulins appear in vertebrates. T and B cell diversity, development of the lymphoid organs, MHC molecules, complement and cytokines are the characteristics that appear through the evolution of vertebrates. Further knowledge that will be obtained from phylogenetic studies will improve our understanding of the immune system of human.

  13. Centre for human development, stem cells & regeneration.

    Science.gov (United States)

    Oreffo, Richard O C

    2014-01-01

    The Centre for Human Development, Stem Cells and Regeneration (CHDSCR) was founded in 2004 as a cross-disciplinary research and translational program within the Faculty of Medicine at the University of Southampton. The Centre undertakes fundamental research into early development and stem cells together with applied translational research for patient benefit. The Centre has vibrant and thriving multidisciplinary research programs that harness the translational strength of the Faculty together with an innovative Stem Cell PhD program, outstanding clinical infrastructure and enterprise to deliver on this vision.

  14. Biobanking human embryonic stem cell lines

    DEFF Research Database (Denmark)

    Holm, Søren

    2016-01-01

    Stem cell banks curating and distributing human embryonic stem cells have been established in a number of countries and by a number of private institutions. This paper identifies and critically discusses a number of arguments that are used to justify the importance of such banks in policy...... are curiously absent from the particular stem cell banking policy discourse. This to some extent artificially isolates this discourse from the broader discussions about the flows of reproductive materials and tissues in modern society, and such isolation may lead to the interests of important actors being...

  15. Advances in human B cell phenotypic profiling

    Directory of Open Access Journals (Sweden)

    Denise A Kaminski

    2012-10-01

    Full Text Available To advance our understanding and treatment of disease, research immunologists have been called-upon to place more centralized emphasis on impactful human studies. Such endeavors will inevitably require large-scale study execution and data management regulation (Big Biology, necessitating standardized and reliable metrics of immune status and function. A well-known example setting this large-scale effort in-motion is identifying correlations between eventual disease outcome and T lymphocyte phenotype in large HIV-patient cohorts using multiparameter flow cytometry. However, infection, immunodeficiency, and autoimmunity are also characterized by correlative and functional contributions of B lymphocytes, which to-date have received much less attention in the human Big Biology enterprise. Here, we review progress in human B cell phenotyping, analysis, and bioinformatics tools that constitute valuable resources for the B cell research community to effectively join in this effort.

  16. Human plasma cells express granzyme B.

    Science.gov (United States)

    Xu, Wei; Narayanan, Priya; Kang, Ning; Clayton, Sandra; Ohne, Yoichiro; Shi, Peiqing; Herve, Marie-Cecile; Balderas, Robert; Picard, Capucine; Casanova, Jean-Laurent; Gorvel, Jean-Pierre; Oh, Sangkon; Pascual, Virginia; Banchereau, Jacques

    2014-01-01

    While studying the plasma cell (PC) compartment in human tonsils, we identified that immunoglobulin kappa or lambda chain-expressing PCs are the main cells expressing granzyme B (GrzB). In vitro studies revealed that activated B cells differentiated into GrzB-expressing PCs when co-cultured with macrophages and follicular helper T cells. This effect could be reproduced on combined stimulation of IL-15 (produced by macrophages) and IL-21 (produced by T follicular helper cells) in a STAT3-dependent manner. Whereas IL-21 triggers the transcription of mRNA of GrzB, IL-15 synergizes the translation of GrzB proteins. The precise role of GrzB in PC biology remains to be understood and studies in mice will not help as their PCs do not express GrzB.

  17. Human CD56bright NK Cells

    DEFF Research Database (Denmark)

    Michel, Tatiana; Poli, Aurélie; Cuapio, Angelica

    2016-01-01

    Human NK cells can be subdivided into various subsets based on the relative expression of CD16 and CD56. In particular, CD56(bright)CD16(-/dim) NK cells are the focus of interest. They are considered efficient cytokine producers endowed with immunoregulatory properties, but they can also become...... cytotoxic upon appropriate activation. These cells were shown to play a role in different disease states, such as cancer, autoimmunity, neuroinflammation, and infection. Although their phenotype and functional properties are well known and have been extensively studied, their lineage relationship with other...... NK cell subsets is not fully defined, nor is their precise hematopoietic origin. In this article, we summarize recent studies about CD56(bright) NK cells in health and disease and briefly discuss the current controversies surrounding them....

  18. Human embryonic stem cells: preclinical perspectives

    Directory of Open Access Journals (Sweden)

    Sarda Kanchan

    2008-01-01

    Full Text Available Abstract Human embryonic stem cells (hESCs have been extensively discussed in public and scientific communities for their potential in treating diseases and injuries. However, not much has been achieved in turning them into safe therapeutic agents. The hurdles in transforming hESCs to therapies start right with the way these cells are derived and maintained in the laboratory, and goes up-to clinical complications related to need for patient specific cell lines, gender specific aspects, age of the cells, and several post transplantation uncertainties. The different types of cells derived through directed differentiation of hESC and used successfully in animal disease and injury models are described briefly. This review gives a brief outlook on the present and the future of hESC based therapies, and talks about the technological advances required for a safe transition from laboratory to clinic.

  19. Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries

    DEFF Research Database (Denmark)

    Høyer, Poul Erik; Byskov, Anne Grete; Møllgård, Kjeld

    2005-01-01

    Prenatal ovary (human), Primordial germ cells, Folliculogenesis, c-Kit, Stem cell factor, immunohistochemistry......Prenatal ovary (human), Primordial germ cells, Folliculogenesis, c-Kit, Stem cell factor, immunohistochemistry...

  20. Differences in the microrheology of human embryonic stem cells and human induced pluripotent stem cells.

    Science.gov (United States)

    Daniels, Brian R; Hale, Christopher M; Khatau, Shyam B; Kusuma, Sravanti; Dobrowsky, Terrence M; Gerecht, Sharon; Wirtz, Denis

    2010-12-01

    Embryonic and adult fibroblasts can be returned to pluripotency by the expression of reprogramming genes. Multiple lines of evidence suggest that these human induced pluripotent stem (hiPS) cells and human embryonic stem (hES) cells are behaviorally, karyotypically, and morphologically similar. Here we sought to determine whether the physical properties of hiPS cells, including their micromechanical properties, are different from those of hES cells. To this end, we use the method of particle tracking microrheology to compare the viscoelastic properties of the cytoplasm of hES cells, hiPS cells, and the terminally differentiated parental human fibroblasts from which our hiPS cells are derived. Our results indicate that although the cytoplasm of parental fibroblasts is both viscous and elastic, the cytoplasm of hiPS cells does not exhibit any measurable elasticity and is purely viscous over a wide range of timescales. The viscous phenotype of hiPS cells is recapitulated in parental cells with disassembled actin filament network. The cytoplasm of hES cells is predominantly viscous but contains subcellular regions that are also elastic. This study supports the hypothesis that intracellular elasticity correlates with the degree of cellular differentiation and reveals significant differences in the mechanical properties of hiPS cells and hES cells. Because mechanical stimuli have been shown to mediate the precise fate of differentiating stem cells, our results support the concept that stem cell "softness" is a key feature of force-mediated differentiation of stem cells and suggest there may be subtle functional differences between force-mediated differentiation of hiPS cells and hES cells.

  1. Generation of mature hematopoietic cells from human pluripotent stem cells.

    Science.gov (United States)

    Togarrati, Padma Priya; Suknuntha, Kran

    2012-06-01

    A number of malignant and non-malignant hematological disorders are associated with the abnormal production of mature blood cells or primitive hematopoietic precursors. Their capacity for continuous self-renewal without loss of pluripotency and the ability to differentiate into adult cell types from all three primitive germ layers make human embryonic stem cells and induced pluripotent stem cells (hiPSCs) attractive complementary cell sources for large-scale production of transfusable mature blood cell components in cell replacement therapies. The generation of patient-specific hematopoietic stem/precursor cells from iPSCs by the regulated manipulation of various factors involved in reprograming to ensure complete pluripotency, and developing innovative differentiation strategies for generating unlimited supply of clinically safe, transplantable, HLA-matched cells from hiPSCs to outnumber the inadequate source of hematopoietic stem cells obtained from cord blood, bone marrow and peripheral blood, would have a major impact on the field of regenerative and personalized medicine leading to translation of these results from bench to bedside.

  2. Human colostral cells. I. Separation and characterization.

    Science.gov (United States)

    Crago, S S; Prince, S J; Pretlow, T G; McGhee, J R; Mestecky, J

    1979-12-01

    Analyses of the cells present in human colostrum obtained from fifty-four healthy donors during the first four days of lactation revealed that there were 3.3 x 10(6) (range 1.1 x 10(5)--1.2 x 10(7)) cells per ml of colostrum. Based on histochemical examinations, it was found that this population consisted of 30--47% macrophages, 40--60% polymorphonuclear leucocytes, 5.2--8.9% lymphocytes, and 1.3--2.8% colostral corpuscles; epithelial cells were rarely encountered. The identity of various cell types was confirmed by Wright's stain and by a series of histochemical techniques which disclosed the presence of non-specific esterase, peroxidase, and lipids. For further characterization, the different types of cells were separated by various methods, such as Ficoll-Hypaque density centrifugation, isokinetic centrifugation on a linear Ficoll gradient, adherence to glass or plastic, and phagocytosis of carbonyl iron. Immunohistochemical staining with FITC- and/or TRITC-labelled reagents to IgA, IgM, IgG, K- and lambda-chains, secretory component, lactoferrin, and alpha-lactalbumin were applied to unseparated as well as separated colostral cells. Polymorphonuclear leucocytes (staining for peroxidase) as well as macrophages and colostral corpuscles (staining for non-specific esterase) exhibited numerous intracellular vesicles that contained lipids as well as various combinations of milk proteins. Lymphoid cells did not stain with any of these reagents and plasma cells were not detected among the colostral cells. Individual phagocytic cells contained immunoglobulins of the IgA and IgM classes, both K and lambda light chains, secretory component, lactoferrin, and alpha-lactalbumin. The coincidental appearance of these proteins in single, phagocytic cells but not in lymphoid cells indicate that the cells acquired these proteins by ingestion from the environment. Markers commonly used for the identification of B lymphocytes (surface immunoglobulins) and T lymphocytes (receptors

  3. 21 CFR 864.2280 - Cultured animal and human cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro...

  4. DNA repair responses in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Hanawalt, P.C.; Liu, S.C.; Parsons, C.S.

    1981-07-01

    Sunlight and some environmental chemical agents produce lesions in the DNA of human skin cells that if unrepaired may interfere with normal functioning of these cells. The most serious outcome of such interactions may be malignancy. It is therefore important to develop an understanding of mechanisms by which the lesions may be repaired or tolerated without deleterious consequences. Our models for the molecular processing of damaged DNA have been derived largely from the study of bacterial systems. Some similarities but significant differences are revealed when human cell responses are tested against these models. It is also of importance to learn DNA repair responses of epidermal keratinocytes for comparison with the more extensive studies that have been carried out with dermal fibroblasts. Our experimental results thus far indicate similarities for the excision-repair of ultraviolet-induced pyrimidine dimers in human keratinocytes and fibroblasts. Both the monoadducts and the interstrand crosslinks produced in DNA by photoactivated 8-methoxypsoralen (PUVA) can be repaired in normal human fibroblasts but not in those from xeroderma pigmentosum patients. The monoadducts, like pyrimidine dimers, are probably the more mutagenic/carcinogenic lesions while the crosslinks are less easily repaired and probably result in more effective blocking of DNA function. It is suggested that a split-dose protocol that maximizes the production of crosslinks while minimizing the yield of monoadducts may be more effective and potentially less carcinogenic than the single ultraviolet exposure regimen in PUVA therapy for psoriasis.

  5. Human T Cell Memory: A Dynamic View

    Directory of Open Access Journals (Sweden)

    Derek C. Macallan

    2017-02-01

    Full Text Available Long-term T cell-mediated protection depends upon the formation of a pool of memory cells to protect against future pathogen challenge. In this review we argue that looking at T cell memory from a dynamic viewpoint can help in understanding how memory populations are maintained following pathogen exposure or vaccination. For example, a dynamic view resolves the apparent paradox between the relatively short lifespans of individual memory cells and very long-lived immunological memory by focussing on the persistence of clonal populations, rather than individual cells. Clonal survival is achieved by balancing proliferation, death and differentiation rates within and between identifiable phenotypic pools; such pools correspond broadly to sequential stages in the linear differentiation pathway. Each pool has its own characteristic kinetics, but only when considered as a population; single cells exhibit considerable heterogeneity. In humans, we tend to concentrate on circulating cells, but memory T cells in non-lymphoid tissues and bone marrow are increasingly recognised as critical for immune defence; their kinetics, however, remain largely unexplored. Considering vaccination from this viewpoint shifts the focus from the size of the primary response to the survival of the clone and enables identification of critical system pinch-points and opportunities to improve vaccine efficacy.

  6. Biological impact of human embryonic stem cells.

    Science.gov (United States)

    Martín, Miguel; Menéndez, Pablo

    2012-01-01

    Research on human embryonic stem cells (hESCs) and induced pluripotent (iPS) stem cells is currently a field of great potential in biomedicine. These cells represent a highly valuable tool for developmental biology studies, disease models, and drug screening and toxicity. The ultimate goal of hESCs and iPS cell research is the treatment of diseases or disorders for which there is currently no treatment or existing therapies are only partially effective. Despite the disproportionate short-term hopes generated, which are putting too much pressure on scientists, the international scientific community is making rapid progress in understanding hESCs and iPS cells. Nonetheless, great efforts have to be made to provide an answer to still quite basic questions concerning their biology. Moreover, translation to clinical applications in cell replacement therapy requires prior solution to ethical barriers. The recent development of iPS cells has provided a strong alternative to overcome ethical issues concerning hESCs. However, an in-depth characterization of their genetic and epigenetic features, as well as their differentiation potential still remains to be undertaken. This chapter will describe, precisely, what the critical issues are, where scientific and ethical barriers stand, and how we are to overcome them. Only then, we shall finally discover whether hESCs and iPS cells will allow building reproducible disease models, and whether they really are a safe tool, with great potential for regenerative medicine.

  7. Human fetal liver stromal cells expressing erythropoietin promote hematopoietic development from human embryonic stem cells.

    Science.gov (United States)

    Yang, Chao; Ji, Lei; Yue, Wen; Shi, Shuang-Shuang; Wang, Ruo-Yong; Li, Yan-Hua; Xie, Xiao-Yan; Xi, Jia-Fei; He, Li-Juan; Nan, Xue; Pei, Xue-Tao

    2012-02-01

    Blood cells transfusion and hematopoietic stem cells (HSCs) transplantation are important methods for cell therapy. They are widely used in the treatment of incurable hematological disorder, infectious diseases, genetic diseases, and immunologic deficiency. However, their availability is limited by quantity, capacity of proliferation and the risk of blood transfusion complications. Recently, human embryonic stem cells (hESCs) have been shown to be an alternative resource for the generation of hematopoietic cells. In the current study, we describe a novel method for the efficient production of hematopoietic cells from hESCs. The stable human fetal liver stromal cell lines (hFLSCs) expressing erythropoietin (EPO) were established using the lentiviral system. We observed that the supernatant from the EPO transfected hFLSCs could induce the hESCs differentiation into hematopoietic cells, especially erythroid cells. They not only expressed fetal and embryonic globins but also expressed the adult-globin chain on further maturation. In addition, these hESCs-derived erythroid cells possess oxygen-transporting capacity, which indicated hESCs could generate terminally mature progenies. This should be useful for ultimately developing an animal-free culture system to generate large numbers of erythroid cells from hESCs and provide an experimental model to study early human erythropoiesis.

  8. Cell phoney: human cloning after Quintavalle.

    Science.gov (United States)

    Morgan, Derek; Ford, Mary

    2004-12-01

    Reproductive cloning has thrown up new scientific possibilities, ethical conundrums, and legal challenges. An initial question, considered by the English courts in 2003, was whether the technique presently available, that of cell nucleus replacement, falls outside the provisions of the Human Fertilisation and Embryology Act 1990. If it does, the creation and use, including use in research protocols, of human embryos would be unregulated, disclosing a need to consider remedial legislation. The resolution by the courts of this legal question dramatically engages them in a resolution of fundamental ethical dilemmas, and discloses the possibilities and limitation of negotiating science policy through the processes of litigation.

  9. Lymphoid Cell-Glioma Cell Interaction Enhances Cell Coat Production by Human Gliomas: Novel Suppressor Mechanism

    Science.gov (United States)

    Dick, Steven J.; Macchi, Beatrice; Papazoglou, Savvas; Oldfield, Edward H.; Kornblith, Paul L.; Smith, Barry H.; Gately, Maurice K.

    1983-05-01

    Certain human glioma lines produce mucopolysaccharide coats that impair the generation of cytolytic lymphocytes in response to these lines in vitro. Coat production is substantially enhanced by the interaction of glioma cells with a macromolecular factor released by human peripheral blood mononuclear cells in culture. This interaction thus constitutes an unusual mechanism by which inflammatory cells may nonspecifically suppress the cellular immune response to at least one class of solid tumors in humans.

  10. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  11. Human somatic cell nuclear transfer and cloning.

    Science.gov (United States)

    2012-10-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer (cloning)," last published in Fertil Steril 2000;74:873-6. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Dopamine receptor repertoire of human granulosa cells

    Directory of Open Access Journals (Sweden)

    Kunz Lars

    2007-10-01

    Full Text Available Abstract Background High levels of dopamine (DA were described in human ovary and recently evidence for DA receptors in granulosa and luteal cells has been provided, as well. However, neither the full repertoire of ovarian receptors for DA, nor their specific role, is established. Human granulosa cells (GCs derived from women undergoing in vitro fertilization (IVF are an adequate model for endocrine cells of the follicle and the corpus luteum and were therefore employed in an attempt to decipher their DA receptor repertoire and functionality. Methods Cells were obtained from patients undergoing IVF and examined using cDNA-array, RT-PCR, Western blotting and immunocytochemistry. In addition, calcium measurements (with FLUO-4 were employed. Expression of two DA receptors was also examined by in-situ hybridization in rat ovary. Effects of DA on cell viability and cell volume were studied by using an ATP assay and an electronic cell counter system. Results We found members of the two DA receptor families (D1- and D2 -like associated with different signaling pathways in human GCs, namely D1 (as expected and D5 (both are Gs coupled and linked to cAMP increase and D2, D4 (Gi/Gq coupled and linked to IP3/DAG. D3 was not found. The presence of the trophic hormone hCG (10 IU/ml in the culture medium for several days did not alter mRNA (semiquantitative RT-PCR or protein levels (immunocytochemistry/Western blotting of D1,2,4,5 DA receptors. Expression of prototype receptors for the two families, D1 and D2, was furthermore shown in rat granulosa and luteal cells by in situ hybridization. Among the DA receptors found in human GCs, D2 expression was marked both at mRNA and protein levels and it was therefore further studied. Results of additional RT-PCR and Western blots showed two splice variants (D2L, D2S. Irrespective of these variants, D2 proved to be functional, as DA raised intracellular calcium levels. This calcium mobilizing effect of DA was observed

  13. TALEN-Induced Translocations in Human Cells.

    Science.gov (United States)

    Piganeau, Marion; Renouf, Benjamin; Ghezraoui, Hind; Brunet, Erika

    2016-01-01

    Induction of chromosomal translocations in human cells is of a great interest to study tumorigenesis and genome instability. Here, we explain in detail a method to induce translocations using the transcription activator-like effector nucleases (TALENs). We describe how to detect translocation formation by PCR, calculate translocation frequency by 96-well PCR screen, and analyze breakpoint junctions. When inducing cancer translocations, it is also possible to detect the fusion gene by FISH analysis or western blot.

  14. The core regulatory network in human cells.

    Science.gov (United States)

    Kim, Man-Sun; Kim, Dongsan; Kang, Nam Sook; Kim, Jeong-Rae

    2017-03-04

    In order to discover the common characteristics of various cell types in the human body, many researches have been conducted to find the set of genes commonly expressed in various cell types and tissues. However, the functional characteristics of a cell is determined by the complex regulatory relationships among the genes rather than by expressed genes themselves. Therefore, it is more important to identify and analyze a core regulatory network where all regulatory relationship between genes are active across all cell types to uncover the common features of various cell types. Here, based on hundreds of tissue-specific gene regulatory networks constructed by recent genome-wide experimental data, we constructed the core regulatory network. Interestingly, we found that the core regulatory network is organized by simple cascade and has few complex regulations such as feedback or feed-forward loops. Moreover, we discovered that the regulatory links from genes in the core regulatory network to genes in the peripheral regulatory network are much more abundant than the reverse direction links. These results suggest that the core regulatory network locates at the top of regulatory network and plays a role as a 'hub' in terms of information flow, and the information that is common to all cells can be modified to achieve the tissue-specific characteristics through various types of feedback and feed-forward loops in the peripheral regulatory networks. We also found that the genes in the core regulatory network are evolutionary conserved, essential and non-disease, non-druggable genes compared to the peripheral genes. Overall, our study provides an insight into how all human cells share a common function and generate tissue-specific functional traits by transmitting and processing information through regulatory network.

  15. Cell Culture Assay for Human Noroviruses [response

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  16. Preliminary study on human fibroblasts as feeder layer for human embryonic stem cells culture in vitro

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To avoid the direct contact with mouse cells and possible heterogeneous pathogen in future application, we need to replace mouse embryonic fibroblastswith human fibroblasts as the feeder layer to maintain human embryonic stem cells growth in the undifferentiated state. We successfully use human fibroblasts derived from aborted fetus and adult prepuce as feeder layer to maintain human embryonic stem cells growth. During the passage and growth on this feeder layer, the human embryonic stem cells can keep their undifferentiated state.

  17. Primitive cardiac cells from human embryonic stem cells.

    Science.gov (United States)

    Hudson, James; Titmarsh, Drew; Hidalgo, Alejandro; Wolvetang, Ernst; Cooper-White, Justin

    2012-06-10

    Pluripotent stem cell-derived cardiomyocytes are currently being investigated for in vitro human heart models and as potential therapeutics for heart failure. In this study, we have developed a differentiation protocol that minimizes the need for specific human embryonic stem cell (hESC) line optimization. We first reduced the heterogeneity that exists within the starting population of bulk cultured hESCs by using cells adapted to single-cell passaging in a 2-dimensional (2D) culture format. Compared with bulk cultures, single-cell cultures comprised larger fractions of TG30(hi)/OCT4(hi) cells, corresponding to an increased expression of pluripotency markers OCT4 and NANOG, and reduced expression of early lineage-specific markers. A 2D temporal differentiation protocol was then developed, aimed at reducing the inherent heterogeneity and variability of embryoid body-based protocols, with induction of primitive streak cells using bone morphogenetic protein 4 and activin A, followed by cardiogenesis via inhibition of Wnt signaling using the small molecules IWP-4 or IWR-1. IWP-4 treatment resulted in a large percentage of cells expressing low amounts of cardiac myosin heavy chain and expression of early cardiac progenitor markers ISL1 and NKX2-5, thus indicating the production of large numbers of immature cardiomyocytes (~65,000/cm(2) or ~1.5 per input hESC). This protocol was shown to be effective in HES3, H9, and, to a lesser, extent, MEL1 hESC lines. In addition, we observed that IWR-1 induced predominantly atrial myosin light chain (MLC2a) expression, whereas IWP-4 induced expression of both atrial (MLC2a) and ventricular (MLC2v) forms. The intrinsic flexibility and scalability of this 2D protocol mean that the output population of primitive cardiomyocytes will be particularly accessible and useful for the investigation of molecular mechanisms driving terminal cardiomyocyte differentiation, and potentially for the future treatment of heart failure.

  18. Appearance of Human Plasma Cells Following Differentiation of Human B Cells in NOD/SCID Mouse Spleen

    OpenAIRE

    2003-01-01

    Relatively little is known for the differentiation and maturation process of human B cells to plasma cells. This is particularly important in reconstitution work involving transfer of autoantibodies. To address this issue, we transplanted human peripheral blood mononuclear cells (PBMC) directly into the spleen of irradiated NOD/SCID mice depleted of natural killer cell activity. Within 6 weeks, naïve B cells differentiated into memory B cells and, importantly, the numbers of human CD138+ plas...

  19. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Directory of Open Access Journals (Sweden)

    Hayato Fukusumi

    2016-01-01

    Full Text Available Human neural progenitor cells (hNPCs have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi. Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  20. Human microglial cells synthesize albumin in brain.

    Directory of Open Access Journals (Sweden)

    Sung-Min Ahn

    Full Text Available Albumin, an abundant plasma protein with multifunctional properties, is mainly synthesized in the liver. Albumin has been implicated in Alzheimer's disease (AD since it can bind to and transport amyloid beta (Abeta, the causative agent of AD; albumin is also a potent inhibitor of Abeta polymerization. Despite evidence of non-hepatic transcription of albumin in many tissues including kidney and pancreas, non-hepatic synthesis of albumin at the protein level has been rarely confirmed. In a pilot phase study of Human Brain Proteome Project, we found evidence that microglial cells in brain may synthesize albumin. Here we report, for the first time, the de novo synthesis of albumin in human microglial cells in brain. Furthermore, we demonstrate that the synthesis and secretion of albumin from microglial cells is enhanced upon microglial activation by Abeta(1-42- or lipopolysaccharide (LPS-treatment. These data indicate that microglial cells may play a beneficial role in AD by secreting albumin that not only inhibits Abeta polymerization but also increases its clearance.

  1. Neocortical glial cell numbers in human brains

    DEFF Research Database (Denmark)

    Pelvig, D.P.; Pakkenberg, H.; Stark, A.K.

    2008-01-01

    and neurons and counting were done in each of the four lobes. The study showed that the different subpopulations of glial cells behave differently as a function of age; the number of oligodendrocytes showed a significant 27% decrease over adult life and a strong correlation to the total number of neurons...... while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males......, a difference of 24% with a high biological variance. These numbers can serve as reference values in quantitative studies of the human neocortex. (C) 2007 Elsevier Inc. All rights reserved Udgivelsesdato: 2008/11...

  2. Characterizing motility dynamics in human RPE cells

    Science.gov (United States)

    Liu, Zhuolin; Kurokawa, Kazuhiro; Zhang, Furu; Miller, Donald T.

    2017-02-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, however, are often compromised in ageing and ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, but while in vivo biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. Recently we addressed this problem by using organelle motility as a novel contrast agent to enhance the RPE cell in conjunction with 3D resolution of adaptive optics-optical coherence tomography (AO-OCT) to section the RPE layer. In this study, we expand on the central novelty of our method - organelle motility - by characterizing the dynamics of the motility in individual RPE cells, important because of its direct link to RPE physiology. To do this, AO-OCT videos of the same retinal patch were acquired at approximately 1 min intervals or less, time stamped, and registered in 3D with sub-cellular accuracy. Motility was quantified by an exponential decay time constant, the time for motility to decorrelate the speckle field across an RPE cell. In two normal subjects, we found the decay time constant to be just 3 seconds, thus indicating rapid motility in normal RPE cells.

  3. Human cell culture in a space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  4. Appearance of Human Plasma Cells Following Differentiation of Human B Cells in NOD/SCID Mouse Spleen

    Directory of Open Access Journals (Sweden)

    Kentaro Kikuchi

    2003-01-01

    Full Text Available Relatively little is known for the differentiation and maturation process of human B cells to plasma cells. This is particularly important in reconstitution work involving transfer of autoantibodies. To address this issue, we transplanted human peripheral blood mononuclear cells (PBMC directly into the spleen of irradiated NOD/SCID mice depleted of natural killer cell activity. Within 6 weeks, naïve B cells differentiated into memory B cells and, importantly, the numbers of human CD138+ plasma cells in spleen increased by 100 fold after transplantation. Plasma cell numbers correlated with the detection of human IgM and IgG in serum, indicating that human B cells had differentiated into mature plasma cells in the murine spleen. In addition to CD19+ plasma cells, a distinct CD19- plasma cell population was detected, suggesting that downregulation of CD19 associated with maturation of plasma cells occurred. When purified human B cells were transplanted, those findings were not observed. Our results indicate that differentiation and maturation of human B cells and plasma cells can be investigated by transplantation of human PBMC into the spleen of NOD/SCID mice. The model will be useful for studying the differentiation of human B cells and generation of plasma cells.

  5. Human somatic cell nuclear transfer is alive and well.

    Science.gov (United States)

    Cibelli, Jose B

    2014-06-05

    In this issue, Chung et al. (2014) generate human embryonic stem cells by fusing an adult somatic cell to a previously enucleated human oocyte, in agreement with recent reports by the Mitalipov and Egli groups. We can now safely say that human somatic cell nuclear transfer is alive and well.

  6. The association between human papillomavirus and oropharyngeal squamous cell Carcinoma

    DEFF Research Database (Denmark)

    Walvik, Lena; Svensson, Amanda Björk; Friborg, Jeppe

    2016-01-01

    There is emerging evidence of the association between human papillomavirus and a subset of head and neck cancers. However, the role of human papillomavirus as a causal factor is still debated. This review addresses the association between human papillomavirus and oropharyngeal squamous cell...... of well-defined premalignant lesions. However, a causal relationship between human papillomavirus infection and oropharyngeal squamous cell carcinoma seems evident....

  7. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    Science.gov (United States)

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  8. Glycomics of human embryonic stem cells and human induced pluripotent stem cells.

    Science.gov (United States)

    Furukawa, Jun-Ichi; Okada, Kazue; Shinohara, Yasuro

    2016-10-01

    Most cells are coated by a dense glycocalyx composed of glycoconjugates such as glycosphingolipids, glycoproteins, and proteoglycans. The overall glycomic profile is believed to be crucial for the diverse roles of glycans, which are mediated by specific interactions that regulate cell-cell adhesion, the immune response, microbial pathogenesis, and other cellular events. Many cell surface markers were discovered and identified as glycoconjugates such as stage-specific embryonic antigen, Tra-1-60/81 and various other cell surface molecules (e.g., cluster of differentiation). Recent progress in the development of analytical methodologies and strategies has begun to clarify the cellular glycomics of various cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). The glycomic profiles of these cells are highly cell type-specific and reflect cellular alterations, such as development, differentiation and cancerous change. In this mini review, we briefly summarize the glycosylation spectra specific to hESCs and hiPSCs, which cover glycans of all major glycoconjugates (i.e., glycosphingolipids, N- and O-glycans of glycoproteins, and glycosaminoglycans) and free oligosaccharides.

  9. Isolation and characterization of human spermatogonial stem cells

    Directory of Open Access Journals (Sweden)

    Liu Shixue

    2011-10-01

    Full Text Available Abstract Background To isolate and characterization of human spermatogonial stem cells from stem spermatogonium. Methods The disassociation of spermatogonial stem cells (SSCs were performed using enzymatic digestion of type I collagenase and trypsin. The SSCs were isolated by using Percoll density gradient centrifugation, followed by differential surface-attachment method. Octamer-4(OCT4-positive SSC cells were further identified using immunofluorescence staining and flow cytometry technques. The purity of the human SSCs was also determined, and a co-culture system for SSCs and Sertoli cells was established. Results The cell viability was 91.07% for the suspension of human spermatogonial stem cells dissociated using a two-step enzymatic digestion process. The cells isolated from Percoll density gradient coupled with differential surface-attachement purification were OCT4 positive, indicating the cells were human spermatogonial stem cells. The purity of isolated human spermatogonial stem cells was 86.7% as assessed by flow cytometry. The isolated SSCs were shown to form stable human spermatogonial stem cell colonies on the feeder layer of the Sertoli cells. Conclusions The two-step enzyme digestion (by type I collagenase and trypsin process is an economical, simple and reproducible technique for isolating human spermatogonial stem cells. With little contamination and less cell damage, this method facilitates isolated human spermatogonial stem cells to form a stable cell colony on the supporting cell layer.

  10. Cell entry by human pathogenic arenaviruses.

    Science.gov (United States)

    Rojek, Jillian M; Kunz, Stefan

    2008-04-01

    The arenaviruses Lassa virus (LASV) in Africa and Machupo (MACV), Guanarito (GTOV) and Junin viruses (JUNV) in South America cause severe haemorrhagic fevers in humans with fatality rates of 15-35%. The present review focuses on the first steps of infection with human pathogenic arenaviruses, the interaction with their cellular receptor molecules and subsequent entry into the host cell. While similarities exist in genomic organization, structure and clinical disease caused by pathogenic Old World and New World arenaviruses these pathogens use different primary receptors. The Old World arenaviruses employ alpha-dystroglycan, a cellular receptor for proteins of the extracellular matrix, and the human pathogenic New World arenaviruses use the cellular cargo receptor transferrin receptor 1. While the New World arenavirus JUNV enters cells via clathrin-dependent endocytosis, evidence occurred for clathrin-independent entry of the prototypic Old World arenavirus lymphocytic choriomeningitis virus. Upon internalization, arenaviruses are delivered to the endosome, where pH-dependent membrane fusion is mediated by the envelope glycoprotein (GP). While arenavirus GPs share characteristics with class I fusion GPs of other enveloped viruses, unusual mechanistic features of GP-mediated membrane fusion have recently been discovered for arenaviruses with important implications for viral entry.

  11. Markers of T Cell Senescence in Humans

    Directory of Open Access Journals (Sweden)

    Weili Xu

    2017-08-01

    Full Text Available Many countries are facing the aging of their population, and many more will face a similar obstacle in the near future, which could be a burden to many healthcare systems. Increased susceptibility to infections, cardiovascular and neurodegenerative disease, cancer as well as reduced efficacy of vaccination are important matters for researchers in the field of aging. As older adults show higher prevalence for a variety of diseases, this also implies higher risk of complications, including nosocomial infections, slower recovery and sequels that may reduce the autonomy and overall quality of life of older adults. The age-related effects on the immune system termed as “immunosenescence” can be exemplified by the reported hypo-responsiveness to influenza vaccination of the elderly. T cells, which belong to the adaptive arm of the immune system, have been extensively studied and the knowledge gathered enables a better understanding of how the immune system may be affected after acute/chronic infections and how this matters in the long run. In this review, we will focus on T cells and discuss the surface and molecular markers that are associated with T cell senescence. We will also look at the implications that senescent T cells could have on human health and diseases. Finally, we will discuss the benefits of having these markers for investigators and the future work that is needed to advance the field of T cell senescence markers.

  12. Human embryonic stem cells and microenvironment

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2014-09-01

    Full Text Available Human embryonic stem cells (hESCs possess a great potential in the field of regenerative medicine by their virtue of pluripotent potential with indefinite proliferation capabilities. They can self renew themselves and differentiate into three embryonic germ layers. Although they are conventionally grown on mitotically inactivated mouse feeder cells, there are in vitro culture systems utilizing feeder cells of human origin in order to prevent cross-species contamination. Recently established in vitro culture systems suggested that direct interaction with feeder cells is not necessary but rather attachment to a substrate is required to ensure long-term, efficient hESC culture in vitro. This substrate is usually composed of a mixture of extracellular matrix components representing in vivo natural niche. In hESC biology, the mechanism of interaction of hESCs with extracellular matrix molecules remained insufficiently explored area of research due to their transient nature of interaction with the in vivo niche. However, an in vitro culture system established using extracellular matrix molecules may provide a safer alternative to culture systems with feeder cells while paving the way to Good Manufacturing Practice-GMP production of hESCs for therapeutic purposes. Therefore, it is essential to study the interaction of extracellular matrix molecules with hESCs in order to standardize in vitro culture systems for large-scale production of hESCs in a less labor-intensive way. This would not only provide valuable information regarding the mechanisms that control pluripotency but also serve to dissect the molecular signaling pathways of directed differentiation for prospective therapeutic applications in the future. J Clin Exp Invest 2014; 5 (3: 486-495

  13. Arecoline is cytotoxic for human endothelial cells.

    Science.gov (United States)

    Ullah, Mafaz; Cox, Stephen; Kelly, Elizabeth; Boadle, Ross; Zoellner, Hans

    2014-11-01

    Oral submucous fibrosis is a pre-malignant fibrotic condition caused by areca nut use and involves reduced mucosal vascularity. Arecoline is the principal areca nut alkaloid and is cytotoxic for epithelium and fibroblasts. Endothelial cell cycle arrest is reported on exposure to arecoline, as is cytotoxicity for endothelial-lung carcinoma hybrid cells. We here describe cytotoxicity for primary human endothelial cultures from seven separate donors. Human umbilical vein endothelial cells were exposed to increasing concentrations of arecoline and examined by: phase-contrast microscopy, haemocytometer counts, transmission electron microscopy, lactate dehydrogenase release and the methyl-thiazol-tetrazolium assay. Vacuolation and detachment of endothelium were observed at and above arecoline concentrations of 333 μg/ml or more. Ultrastructural features of cellular stress were seen after 24-h treatment with 111 μg/ml arecoline and included reduced ribosomal studding of endoplasmic reticulum, increased autophagolysosomal structures, increased vacuolation and reduced mitochondrial cristae with slight swelling. Similar changes were seen at 4 h with arecoline at 333 μg/ml or above, but with more severe mitochondrial changes including increased electron density of mitochondrial matrix and greater cristal swelling, while by 24 h, these cells were frankly necrotic. Haemocytometer counts were paralleled by both lactate dehydrogenase release and the methyl-thiazol-tetrazolium assays. Arecoline is cytotoxic via necrosis for endothelium, while biochemical assays indicate no appreciable cellular leakage before death and detachment, as well as no clear effect on mitochondrial function in viable cells. Arecoline toxicity may thus contribute to reduced vascularity in oral submucous fibrosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Identification of a candidate stem cell in human gallbladder

    Directory of Open Access Journals (Sweden)

    Rohan Manohar

    2015-05-01

    In conclusion, we have isolated a distinct clonogenic population of epithelial cells from primary human fetal gallbladder with stem cell characteristics and found it to be unique compared to IHBD cells.

  15. Cell cycle regulation by glucosamine in human pulmonary epithelial cells.

    Science.gov (United States)

    Chuang, Kun-Han; Lu, Chih-Shen; Kou, Yu Ru; Wu, Yuh-Lin

    2013-04-01

    Airway epithelial cells play an important role against intruding pathogens. Glucosamine, a commonly used supplemental compound, has recently begun to be regarded as a potential anti-inflammatory molecule. This study aimed to uncover how glucosamine impacts on cellular proliferation in human alveolar epithelial cells (A549) and bronchial epithelial cells (HBECs). With trypan blue-exclusion assay, we observed that glucosamine (10, 20, 50 mM) caused a decrease in cell number at 24 and 48 h; with a flow cytometric analysis, we also noted an enhanced cell accumulation within the G(0)/G(1) phase at 24 h and induction of late apoptosis at 24 and 48 h by glucosamine (10, 20, 50 mM) in A549 cells and HBECs. Examination of phosphorylation in retinoblastoma (Rb) protein, we found an inhibitory effect by glucosamine at 20 and 50 mM. Glucosamine at 50 mM was demonstrated to elevate both the mRNA and protein expression of p53 and heme oxygenase-1 (HO-1), but also caused a reduction in p21 protein expression. In addition, glucosamine attenuated p21 protein stability via the proteasomal proteolytic pathway, as well as inducing p21 nuclear accumulation. Altogether, our results suggest that a high dose of glucosamine may inhibit cell proliferation through apoptosis and disturb cell cycle progression with a halt at G(0)/G(1) phase, and that this occurs, at least in part, by a reduction in Rb phosphorylation together with modulation of p21, p53 and HO-1 expression, and nuclear p21 accumulation.

  16. Human embryonic stem cells and patent protection

    Directory of Open Access Journals (Sweden)

    Radovanović Sanja M.

    2015-01-01

    Full Text Available Given the importance of biotechnological research in modern diagnostics and therapeutics, on the one hand, and stimulative function of a patent, on the other hand, this work deals with the question of the possibility of pa-tent protection of human embryonic stem cells. Taking into account that this is a biotechnological invention, the key question that this paper highlights is the interpretation of the provisions of their patentability. Namely, thanks to the advanced methods of isolation, purification and preparation for implementation, modern patent systems do not exclude a priori living organisms from patent protection. Therefore, the analysis of representative administrative decisions or court rulings sought to define the criteria that would be applied in order to give patent protection to a certain biotechnological invention (stem cells while others do not.

  17. Generation of human induced pluripotent stem cells from dermal fibroblasts

    OpenAIRE

    2008-01-01

    The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ...

  18. Restriction of human adenovirus replication in Chinese hamster cell lines and their hybrids with human cells.

    Science.gov (United States)

    Radna, R L; Foellmer, B; Feldman, L A; Francke, U; Ozer, H L

    1987-11-01

    We have found that the replication of human adenovirus (Ad2) is restricted in multiple Chinese hamster cell lines including CHO and V79. The major site of restriction involves differential accumulation of late viral proteins as demonstrated by immunofluorescence assay and polyacrylamide gel electrophoresis with and without prior immunoprecipitation. Synthesis of fiber and penton base are markedly reduced, whereas others, such as the 100K polypeptide, are synthesized efficiently. This pattern of restriction is similar to that previously reported for Ad2 infection of several monkey cell lines; however, the restriction is more marked in the Chinese hamster cell lines. The restriction is most likely due to a deficient cellular function since stable cell hybrids between V79 or CHO and human cells are permissive for virus replication. By analysis of a series of hybrids with reduced numbers of human chromosomes, fiber synthesis was correlated with the presence of the short arm of human chromosome 3. More hybrids showed restoration of fiber synthesis than production of progeny virus, suggesting that more than one unlinked function is required for the latter.

  19. Phenotypic changes of human cells in human-rat liver during partial hepatectomy-induced regeneration

    Institute of Scientific and Technical Information of China (English)

    Yan Sun; Dong Xiao; Hong-An Li; Jin-Fang Jiang; Qing Li; Ruo-Shuang Zhang; Xi-Gu Chen

    2009-01-01

    AIM: To examine the human hepatic parenchymal and stromal components in rat liver and the phenotypic changes of human cells in liver of human-rat chimera (HRC) generated by in utero transplantation of human cells during partial hepatectomy (PHx)-induced liver regeneration. METHODS: Human hepatic parenchymal and stromal components and phenotypic changes of human cells during liver regeneration were examined by flow cytometry, in situ hybridization and immunohistochemistry. RESULTS: ISH analysis demonstrated human Alupositive cells in hepatic parenchyma and stroma of recipient liver. Functional human hepatocytes generated in this model potentially constituted human hepatic functional units with the presence of donor-derived human endothelial and biliary duct cells in host liver. Alpha fetoprotein (AFP)+, CD34+ and CD45+ cells were observed in the chimeric liver on day 10 after PHxinduced liver regeneration and then disappeared in PHx group, but not in non-PHx group, suggesting that dynamic phenotypic changes of human cells expressing AFP, CD34 and CD45 cells may occur during the chimeric liver regeneration. Additionally, immunostaining for human proliferating cell nuclear antigen (PCNA) showed that the number of PCNA-positive cells in the chimeric liver of PHx group was markedly increased, as compared to that of control group, indicating that donor-derived human cells are actively proliferated during PHx-induced regeneration of HRC liver.

  20. HIF induces human embryonic stem cell markers in cancer cells.

    Science.gov (United States)

    Mathieu, Julie; Zhang, Zhan; Zhou, Wenyu; Wang, Amy J; Heddleston, John M; Pinna, Claudia M A; Hubaud, Alexis; Stadler, Bradford; Choi, Michael; Bar, Merav; Tewari, Muneesh; Liu, Alvin; Vessella, Robert; Rostomily, Robert; Born, Donald; Horwitz, Marshall; Ware, Carol; Blau, C Anthony; Cleary, Michele A; Rich, Jeremy N; Ruohola-Baker, Hannele

    2011-07-01

    Low oxygen levels have been shown to promote self-renewal in many stem cells. In tumors, hypoxia is associated with aggressive disease course and poor clinical outcomes. Furthermore, many aggressive tumors have been shown to display gene expression signatures characteristic of human embryonic stem cells (hESC). We now tested whether hypoxia might be responsible for the hESC signature observed in aggressive tumors. We show that hypoxia, through hypoxia-inducible factor (HIF), can induce an hESC-like transcriptional program, including the induced pluripotent stem cell (iPSC) inducers, OCT4, NANOG, SOX2, KLF4, cMYC, and microRNA-302 in 11 cancer cell lines (from prostate, brain, kidney, cervix, lung, colon, liver, and breast tumors). Furthermore, nondegradable forms of HIFα, combined with the traditional iPSC inducers, are highly efficient in generating A549 iPSC-like colonies that have high tumorigenic capacity. To test potential correlation between iPSC inducers and HIF expression in primary tumors, we analyzed primary prostate tumors and found a significant correlation between NANOG-, OCT4-, and HIF1α-positive regions. Furthermore, NANOG and OCT4 expressions positively correlated with increased prostate tumor Gleason score. In primary glioma-derived CD133 negative cells, hypoxia was able to induce neurospheres and hESC markers. Together, these findings suggest that HIF targets may act as key inducers of a dynamic state of stemness in pathologic conditions.

  1. Derivation of human embryonic stem cells in defined conditions.

    Science.gov (United States)

    Ludwig, Tenneille E; Levenstein, Mark E; Jones, Jeffrey M; Berggren, W Travis; Mitchen, Erika R; Frane, Jennifer L; Crandall, Leann J; Daigh, Christine A; Conard, Kevin R; Piekarczyk, Marian S; Llanas, Rachel A; Thomson, James A

    2006-02-01

    We have previously reported that high concentrations of basic fibroblast growth factor (bFGF) support feeder-independent growth of human embryonic stem (ES) cells, but those conditions included poorly defined serum and matrix components. Here we report feeder-independent human ES cell culture that includes protein components solely derived from recombinant sources or purified from human material. We describe the derivation of two new human ES cell lines in these defined culture conditions.

  2. Introduction: characterization and functions of human T regulatory cells.

    Science.gov (United States)

    Romagnani, Sergio

    2005-06-01

    The field of human T regulatory (Treg) cells is a rapidly progressing, but still confused field of immunology. The effects of dendritic cell (DC) manipulation in Treg generation and the main features of human "natural" Treg cells, as well as of different populations of adaptive Treg subsets, are still partially unclear. However, it is clear that Treg cells play an important role in human diseases, such as autoimmune disorders, allergy, HIV infection, tumors and graft-versus-host disease.

  3. Human pancreatic cell autotransplantation following total pancreatectomy.

    Science.gov (United States)

    Traverso, L W; Abou-Zamzam, A M; Longmire, W P

    1981-01-01

    During total pancreaticoduodenectomy for chronic pancreatitis, four patients received an intraportal pancreatic mixed-cell autograft prepared by collagenase digestion. The technique of this autotransplantation procedure was successfully developed using a normal canine pancreas, but has proved difficult to apply in the human chronic pancreatitis model. Our four patients became insulin-dependent, with proof of intrahepatic insulin production in only one patient. Three factors have contributed to the lack of graft success: 1) the preoperative endocrine status, 2) systemic hypotension and portal hypertension secondary to graft infusion, and 3) difficulty applying the successful technique in a normal dog pancreas to an extensively scarred human pancreas. The preoperative insulin response during a glucose tolerance test was blunted or delayed in the three patients tested. An immediate decrease in blood pressure and rise in portal pressure occurred in every patient and prevented infusion of the entire graft (30-50%) in three patients. Unfortunately, the patient with the most compromised insulin status was the only patient able to receive the entire graft. Our experience would indicate that further refinements in technique are necessary to prevent the vascular reaction and allow infusion of the entire graft. Furthermore, normal islet cell function is necessary before a successful graft can be expected. PMID:6781424

  4. Sourcing human embryos for embryonic stem cell lines: Problems & perspectives

    OpenAIRE

    Mehta, Rajvi H.

    2014-01-01

    The ability to successfully derive human embryonic stem cells (hESC) lines from human embryos following in vitro fertilization (IVF) opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been ′discarded′ or ′spare′ fresh or frozen human embryos following IVF...

  5. Efficient Induction and Isolation of Human Primordial Germ Cell-Like Cells from Competent Human Pluripotent Stem Cells.

    Science.gov (United States)

    Irie, Naoko; Surani, M Azim

    2017-01-01

    We recently reported a robust and defined culture system for the specification of human primordial germ cell-like cells (hPGCLCs) from human pluripotent stem cells (hPSCs), both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in vitro (Irie et al. Cell 160: 253-268, 2015). Similar attempts previously produced hPGCLCs from hPSCs at a very low efficiency, and the resulting cells were not fully characterized. A key step, which facilitated efficient hPGCLC specification from hPSCs, was the induction of a "competent" state for PGC fate via the medium containing a cocktail of four inhibitors. The competency of hPSCs can be maintained indefinitely and interchangeably with the conventional/low-competent hPSCs. Specification of hPGCLC occurs following sequential expression of key germ cell fate regulators, notably SOX17 and BLIMP1, as well as initiation of epigenetic resetting over 5 days. The hPGCLCs can be isolated using specific cell surface markers without the need for generating germ cell-specific reporter hPSC lines. This powerful method for the induction and isolation of hPGCLCs can be applied to both hESCs and iPSCs, which can be used for advances in human germ line biology.

  6. The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells

    Institute of Scientific and Technical Information of China (English)

    Li-Wei Zheng; Logan Linthicum; Pamela K DenBesten; Yan Zhang

    2013-01-01

    This study aimed to compare epithelial cells derived from human embryonic stem cells (hESCs) to human ameloblast-lineage cells (ALCs), as a way to determine their potential use as a cell source for ameloblast regeneration. Induced by various concentrations of bone morphogenetic protein 4 (BMP4), retinoic acid (RA) and lithium chloride (LiCI) for 7 days, hESCs adopted cobble-stone epithelial phenotype (hESC-derived epithelial cells (ES-ECs)) and expressed cytokeratin 14. Compared with ALCs and oral epithelial cells (OE), ES-ECs expressed amelogenesis-associated genes similar to ALCs. ES-ECs were compared with human fetal skin epithelium, human fetal oral buccal mucosal epithelial cells and human ALCs for their expression pattern of cytokeratins as well. ALCs had relatively high expression levels of cytokeratin 76, which ,vas also found to be upregulated in ES-ECs. Based on the present study, with the similarity of gene expression with ALCs, ES-ECs are a promising potential cell source for regeneration, which are not available in erupted human teeth for regeneration of enamel.

  7. Radiosensitivity of Human Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Bergoc, R. M.; Medina, V.; Cricco, G.; Mohamed, N.; Martin, G.; Nunez, M.; Croci, M.; Crescenti, E. J.; Rivera, E. S.

    2004-07-01

    Cutaneous melanoma is a skin cancer resulting from the malign transformation of skin-pigment cells, the melanocytes. The radiotherapy, alone or in combination with other treatment, is an important therapy for this disease. the objective of this paper was to determine in vitro the radiosensitivity of two human melanoma cell lines with different metastatic capability: WM35 and MI/15, and to study the effect of drugs on radiobiological parameters. The Survival Curves were adjusted to the mathematical Linear-quadratic model using GrapsPad Prism software. Cells were seeded in RPMI medium (3000-3500 cells/flask), in triplicate and irradiated 24 h later. The irradiation was performed using an IBL 437C H Type equipment (189 TBq, 7.7 Gy/min) calibrated with a TLD 700 dosimeter. The range of Doses covered from 0 to 10 Gy and the colonies formed were counted at day 7th post-irradiation. Results obtained were: for WM35, {alpha}=0.37{+-}0.07 Gy''-1 and {beta}=0.06{+-}0.02 Gy''-2, for M1/15m {alpha}=0.47{+-}0.03 Gy''-1 and {beta}=0.06{+-}0.01 Gy''-2. The {alpha}/{beta} values WM35: {alpha}/{beta} values WM35: {alpha}/{beta}=6.07 Gy and M1/15: {alpha}/{beta}{sub 7}.33 Gy were similar, independently of their metastatic capabillity and indicate that both lines exhibit high radioresistance. Microscopic observation of irradiated cells showed multinuclear cells with few morphologic changes non-compatible with apoptosis. By means of specific fluorescent dyes and flow cytometry analysis we determined the intracellular levels of the radicals superoxide and hydrogen peroxide and their modulation in response to ionizing radiation. The results showed a marked decreased in H{sub 2}O{sub 2} intracellular levels with a simultaneous increase in superoxide that will be part of a mechanism responsible for induction of cell radioresistance. This response triggered by irradiated cells could not be abrogated by different treatments like histamine or the

  8. Generation of human induced pluripotent stem cells from dermal fibroblasts.

    Science.gov (United States)

    Lowry, W E; Richter, L; Yachechko, R; Pyle, A D; Tchieu, J; Sridharan, R; Clark, A T; Plath, K

    2008-02-26

    The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ectopic expression of the defined transcription factors KLF4, OCT4, SOX2, and C-MYC. The resultant cell lines are morphologically indistinguishable from human embryonic stem cells (HESC) generated from the inner cell mass of a human preimplantation embryo. Consistent with these observations, human iPS cells share a nearly identical gene-expression profile with two established HESC lines. Importantly, DNA fingerprinting indicates that the human iPS cells were derived from the donor material and are not a result of contamination. Karyotypic analyses demonstrate that reprogramming of human cells by defined factors does not induce, or require, chromosomal abnormalities. Finally, we provide evidence that human iPS cells can be induced to differentiate along lineages representative of the three embryonic germ layers indicating the pluripotency of these cells. Our findings are an important step toward manipulating somatic human cells to generate an unlimited supply of patient-specific pluripotent stem cells. In the future, the use of defined factors to change cell fate may be the key to routine nuclear reprogramming of human somatic cells.

  9. Stereological quantification of mast cells in human synovium

    DEFF Research Database (Denmark)

    Damsgaard, T E; Sørensen, Flemming Brandt; Herlin, T;

    1999-01-01

    Mast cells participate in both the acute allergic reaction as well as in chronic inflammatory diseases. Earlier studies have revealed divergent results regarding the quantification of mast cells in the human synovium. The aim of the present study was therefore to quantify these cells in the human...... synovium, using stereological techniques. Different methods of staining and quantification have previously been used for mast cell quantification in human synovium. Stereological techniques provide precise and unbiased information on the number of cell profiles in two-dimensional tissue sections of......, in this case, human synovium. In 10 patients suffering from osteoarthritis a median of 3.6 mast cells/mm2 synovial membrane was found. The total number of cells (synoviocytes, fibroblasts, lymphocytes, leukocytes) present was 395.9 cells/mm2 (median). The mast cells constituted 0.8% of all the cell profiles...

  10. Technical Challenges in the Derivation of Human Pluripotent Cells

    Directory of Open Access Journals (Sweden)

    Parinya Noisa

    2011-01-01

    Full Text Available It has long been discovered that human pluripotent cells could be isolated from the blastocyst state of embryos and called human embryonic stem cells (ESCs. These cells can be adapted and propagated indefinitely in culture in an undifferentiated manner as well as differentiated into cell representing the three major germ layers: endoderm, mesoderm, and ectoderm. However, the derivation of human pluripotent cells from donated embryos is limited and restricted by ethical concerns. Therefore, various approaches have been explored and proved their success. Human pluripotent cells can also be derived experimentally by the nuclear reprogramming of somatic cells. These techniques include somatic cell nuclear transfer (SCNT, cell fusion and overexpression of pluripotent genes. In this paper, we discuss the technical challenges of these approaches for nuclear reprogramming, involving their advantages and limitations. We will also highlight the possible applications of these techniques in the study of stem cell biology.

  11. Human B cell activating factor (BCAF): production by a human T cell tumor line.

    Science.gov (United States)

    Fevrier, M; Diu, A; Mollier, P; Abadie, A; Olive, D; Mawas, C; Theze, J

    1989-01-01

    In a previous study, we demonstrated that supernatants from human T cell clones stimulated by a pair of anti-CD2 monoclonal antibodies cause resting human B cells to become activated and to proliferate in the absence of any other signals. The activity responsible for these effects was shown to be different from already characterized lymphokines and in particular from IL-2 and IL-4, and was named B Cell Activating Factor or BCAF. In this paper, we describe the production of BCAF by a human T cell tumor line T687 after phorbol myristate acetate (PMA) stimulation; this production can be potentiated by phytohemagglutinin (PHA). We further show that the stimulatory phase can be separated from the secretory phase thereby avoiding contamination of BCAF-containing supernatant by PMA and PHA. Supernatants produced under these conditions do not contain either IL-4 or IFN but contain traces of lymphotoxin and 2 to 10 ng/ml of IL-2. The T687 cell line will allow us to obtain a large volume of supernatant for biochemical study and purification of the molecule(s) responsible for BCAF activity.

  12. Trichloroethylene toxicity in a human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, E.; McMillian, J. [Medical Univ. of Charleston South Carolina, SC (United States)

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  13. Human Immunodeficiency Syndromes Affecting Human Natural Killer Cell Cytolytic Activity

    OpenAIRE

    Ham, Hyoungjun; Billadeau, Daniel D.

    2014-01-01

    Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synaps...

  14. Human immunodeficiency virus type 1 infection of human uterine epithelial cells: viral shedding and cell contact-mediated infectivity.

    Science.gov (United States)

    Asin, Susana N; Wildt-Perinic, Dunja; Mason, Sarah I; Howell, Alexandra L; Wira, Charles R; Fanger, Michael W

    2003-05-15

    We examined the mechanism of human immunodeficiency virus (HIV) type 1 infection of human uterine epithelial cells to gain a clearer understanding of the events by which HIV-1 infects cells within the female reproductive tract. We demonstrated that these cells can be productively infected by HIV-1 and that infection is associated with viral RNA reverse transcription, DNA transcription, and secretion of infectious virus. Levels of viral DNA and secreted virus decreased gradually after infection. Moreover, virus released by the uterine epithelial cells shortly after infection was able to infect human T cell lines, but virus released later did not. In contrast, human CD4(+) T cell lines were infected after cocultivation with epithelial cells at both early and late stages of infection. These data demonstrated that HIV-1 infects human epithelial cells of upper reproductive tract origin and that productive viral infection of epithelial cells may be an important mechanism of transmission of HIV-1 infection in women.

  15. Effect of human neural progenitor cells on injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    XU Guang-hui; BAI Jin-zhu; CAI Qin-lin; LI Xiao-xia; LI Ling-song; SHEN Li

    2005-01-01

    Objective: To study whether human neural progenitor cells can differentiate into neural cells in vivo and improve the recovery of injured spinal cord in rats.Methods: Human neural progenitor cells were transplanted into the injured spinal cord and the functional recovery of the rats with spinal cord contusion injury was evaluated with Basso-Beattie-Bresnahan (BBB) locomotor scale and motor evoked potentials. Additionally, the differentiation of human neural progenitor cells was shown by immunocytochemistry.Results: Human neural progenitor cells developed into functional cells in the injured spinal cord and improved the recovery of injured spinal cord in both locomotor scores and electrophysiological parameters in rats.Conclusions: Human neural progenitor cells can treat injured spinal cord, which may provide a new cell source for research of clinical application.

  16. Generation of induced pluripotent stem cells from human blood.

    Science.gov (United States)

    Loh, Yuin-Han; Agarwal, Suneet; Park, In-Hyun; Urbach, Achia; Huo, Hongguang; Heffner, Garrett C; Kim, Kitai; Miller, Justine D; Ng, Kitwa; Daley, George Q

    2009-05-28

    Human dermal fibroblasts obtained by skin biopsy can be reprogrammed directly to pluripotency by the ectopic expression of defined transcription factors. Here, we describe the derivation of induced pluripotent stem cells from CD34+ mobilized human peripheral blood cells using retroviral transduction of OCT4/SOX2/KLF4/MYC. Blood-derived human induced pluripotent stem cells are indistinguishable from human embryonic stem cells with respect to morphology, expression of surface antigens, and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes, and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human blood will allow the generation of patient-specific stem cells for diseases in which the disease-causing somatic mutations are restricted to cells of the hematopoietic lineage.

  17. A Chemical Probe that Labels Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Nao Hirata

    2014-03-01

    Full Text Available A small-molecule fluorescent probe specific for human pluripotent stem cells would serve as a useful tool for basic cell biology research and stem cell therapy. Screening of fluorescent chemical libraries with human induced pluripotent stem cells (iPSCs and subsequent evaluation of hit molecules identified a fluorescent compound (Kyoto probe 1 [KP-1] that selectively labels human pluripotent stem cells. Our analyses indicated that the selectivity results primarily from a distinct expression pattern of ABC transporters in human pluripotent stem cells and from the transporter selectivity of KP-1. Expression of ABCB1 (MDR1 and ABCG2 (BCRP, both of which cause the efflux of KP-1, is repressed in human pluripotent stem cells. Although KP-1, like other pluripotent markers, is not absolutely specific for pluripotent stem cells, the identified chemical probe may be used in conjunction with other reagents.

  18. Enhanced casein kinase II activity in human tumour cell cultures

    DEFF Research Database (Denmark)

    Prowald, K; Fischer, H; Issinger, O G

    1984-01-01

    Casein kinase II (CKII) activity is enhanced as much as 2-3 fold in established and 4-5-fold in transformed human cell lines when compared to that of fibroblasts and primary human tumour cell cultures where CKII activity never exceeded a basic level. The high activity of CKII in transformed cells...

  19. MODERATE CYTOTOXICITY OF PROANTHOCYANIDINS TO HUMAN TUMOR-CELL LINES

    NARCIS (Netherlands)

    KOLODZIEJ, H; HABERLAND, C; WOERDENBAG, HJ; KONINGS, AWT

    1995-01-01

    In the present study the cytotoxicity of 16 proanthocyanidins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values ranging from 18 to >200 mu m following continuous

  20. Derivation and differentiation of haploid human embryonic stem cells.

    Science.gov (United States)

    Sagi, Ido; Chia, Gloryn; Golan-Lev, Tamar; Peretz, Mordecai; Weissbein, Uri; Sui, Lina; Sauer, Mark V; Yanuka, Ofra; Egli, Dieter; Benvenisty, Nissim

    2016-04-07

    Diploidy is a fundamental genetic feature in mammals, in which haploid cells normally arise only as post-meiotic germ cells that serve to ensure a diploid genome upon fertilization. Gamete manipulation has yielded haploid embryonic stem (ES) cells from several mammalian species, but haploid human ES cells have yet to be reported. Here we generated and analysed a collection of human parthenogenetic ES cell lines originating from haploid oocytes, leading to the successful isolation and maintenance of human ES cell lines with a normal haploid karyotype. Haploid human ES cells exhibited typical pluripotent stem cell characteristics, such as self-renewal capacity and a pluripotency-specific molecular signature. Moreover, we demonstrated the utility of these cells as a platform for loss-of-function genetic screening. Although haploid human ES cells resembled their diploid counterparts, they also displayed distinct properties including differential regulation of X chromosome inactivation and of genes involved in oxidative phosphorylation, alongside reduction in absolute gene expression levels and cell size. Surprisingly, we found that a haploid human genome is compatible not only with the undifferentiated pluripotent state, but also with differentiated somatic fates representing all three embryonic germ layers both in vitro and in vivo, despite a persistent dosage imbalance between the autosomes and X chromosome. We expect that haploid human ES cells will provide novel means for studying human functional genomics and development.

  1. Human embryonic stem cells and respect for life

    OpenAIRE

    Meyer, J.(CERN, Geneva, Switzerland)

    2000-01-01

    The purpose of this essay is to stimulate academic discussion about the ethical justification of using human primordial stem cells for tissue transplantation, cell replacement, and gene therapy. There are intriguing alternatives to using embryos obtained from elective abortions and in vitro fertilisation to reconstitute damaged or dysfunctional human organs. These include the expansion and transplantation of latent adult progenitor cells.

  2. Abnormalities in human pluripotent cells due to reprogramming mechanisms.

    Science.gov (United States)

    Ma, Hong; Morey, Robert; O'Neil, Ryan C; He, Yupeng; Daughtry, Brittany; Schultz, Matthew D; Hariharan, Manoj; Nery, Joseph R; Castanon, Rosa; Sabatini, Karen; Thiagarajan, Rathi D; Tachibana, Masahito; Kang, Eunju; Tippner-Hedges, Rebecca; Ahmed, Riffat; Gutierrez, Nuria Marti; Van Dyken, Crystal; Polat, Alim; Sugawara, Atsushi; Sparman, Michelle; Gokhale, Sumita; Amato, Paula; Wolf, Don P; Ecker, Joseph R; Laurent, Louise C; Mitalipov, Shoukhrat

    2014-07-10

    Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the 'gold standard', they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies.

  3. Proteomic analysis of human blastocoel fluid and blastocyst cells

    DEFF Research Database (Denmark)

    Jensen, Pernille; Beck, Hans Christian; Petersen, Jørgen

    2013-01-01

    Human embryonic stem cells (hESCs) are derived from the inner cell mass (ICM) of the blastocyst and can differentiate into any cell type in the human body. These cells hold a great potential for regenerative medicine, but to obtain enough cells needed for medical treatment, culture is required......, the blastocoel fluid, which is in contact with all the cells in the blastocyst, including hESCs. Fifty-three surplus human blastocysts were donated after informed consent, and blastocoel fluid was isolated by micromanipulation. Using highly sensitive nano-high-pressure liquid chromatography-tandem mass...

  4. EXPRESSION OF Fas LIGAND IN HUMAN COLON CANCER CELL LINES

    Institute of Scientific and Technical Information of China (English)

    张建军; 丁尔迅; 王强; 陈学云; 付志仁

    2001-01-01

    To investigate the expression of Fas ligand in human colon carcinoma cell lines. Methods: A total of six human colon cancer cell lines were examined for the expression of Fas ligand mRNA and cell surface protein by using RT-PCR and flow cytometry respectively. Results: The results showed that Fas ligand mRNA was expressed in all of the six cancer cell lines and Fas ligand cell surface protein was expressed in part of them. Conclusion: These data suggest that Fas ligand was expressed, at least in part, in human colon cancer cell lines and might facilitate to escape from immune surveillance of the host.

  5. Derivation and characterization of human embryonic stem cells on human amnion epithelial cells.

    Science.gov (United States)

    Lai, Dongmei; Wang, Yongwei; Sun, Jian; Chen, Yifei; Li, Ting; Wu, Yi; Guo, Lihe; Wei, Chunsheng

    2015-05-07

    Culture conditions that support the growth of undifferentiated human embryonic stem cells (hESCs) have already been established using primary human amnion epithelial cells (hAECs) as an alternative to traditional mitotically inactivated mouse embryonic fibroblasts (MEFs). In the present work, inner cell masses (ICM) were isolated from frozen embryos obtained as donations from couples undergoing in vitro fertilization (IVF) treatment and four new hESC lines were derived using hAECs as feeder cells. This feeder system was able to support continuous growth of what were, according to their domed shape and markers, undifferentiated naïve-like hESCs. Their pluripotent potential were also demonstrated by embryoid bodies developing to the expected three germ layers in vitro and the productions of teratoma in vivo. The cell lines retained their karyotypic integrity for over 35 passages. Transmission electron microscopy (TEM) indicated that these newly derived hESCs consisted mostly of undifferentiated cells with large nuclei and scanty cytoplasm. The new hESCs cultured on hAECs showed distinct undifferentiated characteristics in comparison to hESCs of the same passage maintained on MEFs. This type of optimized culture system may provide a useful platform for establishing clinical-grade hESCs and assessing the undifferentiated potential of hESCs.

  6. Dynamic behaviour of human neuroepithelial cells in the developing forebrain

    Science.gov (United States)

    Subramanian, Lakshmi; Bershteyn, Marina; Paredes, Mercedes F.; Kriegstein, Arnold R.

    2017-01-01

    To understand how diverse progenitor cells contribute to human neocortex development, we examined forebrain progenitor behaviour using timelapse imaging. Here we find that cell cycle dynamics of human neuroepithelial (NE) cells differ from radial glial (RG) cells in both primary tissue and in stem cell-derived organoids. NE cells undergoing proliferative, symmetric divisions retract their basal processes, and both daughter cells regrow a new process following cytokinesis. The mitotic retraction of the basal process is recapitulated by NE cells in cerebral organoids generated from human-induced pluripotent stem cells. In contrast, RG cells undergoing vertical cleavage retain their basal fibres throughout mitosis, both in primary tissue and in older organoids. Our findings highlight developmentally regulated changes in mitotic behaviour that may relate to the role of RG cells to provide a stable scaffold for neuronal migration, and suggest that the transition in mitotic dynamics can be studied in organoid models. PMID:28139695

  7. Derivation of a Homozygous Human Androgenetic Embryonic Stem Cell Line.

    Science.gov (United States)

    Ding, Chenhui; Huang, Sunxing; Qi, Quan; Fu, Rui; Zhu, Wanwan; Cai, Bing; Hong, Pingping; Liu, Zhengxin; Gu, Tiantian; Zeng, Yanhong; Wang, Jing; Xu, Yanwen; Zhao, Xiaoyang; Zhou, Qi; Zhou, Canquan

    2015-10-01

    Human embryonic stem cells (hESCs) have long been considered as a promising source for cell replacement therapy. However, one major obstacle for the use of these cells is immune compatibility. Histocompatible human parthenogenetic ESCs have been reported as a new method for generating human leukocyte antigen (HLA)-matched hESCs. To further investigate the possibility of obtaining histocompatible stem cells from uniparental embryos, we tried to produce androgenetic haploid human embryos by injecting a single spermatozoon into enucleated human oocyte, and establish human androgenetic embryonic stem (hAGES) cell lines from androgenetic embryos. In the present study, a diploid hAGES cell line has been established, which exhibits typical features of human ESCs, including the expression of pluripotency markers, having differentiation potential in vitro and in vivo, and stable propagation in an undifferentiated state (>P40). Bisulfite sequencing of the H19, Snrpn, Meg3, and Kv imprinting control regions suggested that hAGES cells maintained to a certain extent a sperm methylation pattern. Genome-wide single nucleotide polymorphism, short tandem repeat, and HLA analyses revealed that the hAGES cell genome was highly homozygous. These results suggest that hAGES cells from spermatozoon could serve as a useful tool for studying the mechanisms underlying genomic imprinting in humans. It might also be used as a potential resource for cell replacement therapy as parthenogenetic stem cells.

  8. Human Cell and Tissue Establishment Registration Public Query

    Data.gov (United States)

    U.S. Department of Health & Human Services — This application provides Human Cell and Tissue registration information for registered, inactive, and pre-registered firms. Query options are by Establishment Name,...

  9. Human Cell and Tissue Establishment Registration Public Query

    Data.gov (United States)

    U.S. Department of Health & Human Services — This application provides Human Cell and Tissue registration information for registered, inactive, and pre-registered firms. Query options are by Establishment Name,...

  10. Human tissue legislation in South Africa: Focus on stem cell ...

    African Journals Online (AJOL)

    Human tissue legislation in South Africa: Focus on stem cell research and therapy. ... Related Substances Act, the Consumer Protection Act, the Children's Act and ... human tissue legislation in SA, the legislator has an opportunity to mirror the ...

  11. Human Stem Cell Derived Cardiomyocytes: An Alternative ...

    Science.gov (United States)

    Chemical spills and associated deaths in the US has increased 2.6-fold and 16-fold from 1983 to 2012, respectfully. In addition, the number of chemicals to which humans are exposed to in the environment has increased almost 10-fold from 2001 to 2013 within the US. Internationally, a WHO report on the global composite impact of chemicals on health reported that 16% of the total burden of cardiovascular disease was attributed to environmental chemical exposure with 2.5 million deaths per year. Clearly, the cardiovascular system, at all its various developmental and life stages, represents a critical target organ system that can be adversely affected by existing and emerging chemicals (e.g., engineered nanomaterials) in a variety of environmental media. The ability to assess chemical cardiac risk and safety is critically needed but extremely challenging due to the number and categories of chemicals in commerce, as indicated. This presentation\\session will evaluate the use of adult human stem cell derived cardiomyocytes, and existing platforms, as an alternative model to evaluate environmental chemical cardiac toxicity as well as provide key information for the development of predictive adverse outcomes pathways associated with environmental chemical exposures. (This abstract does not represent EPA policy) Rapid and translatable chemical safety screening models for cardiotoxicity current status for informing regulatory decisions, a workshop sponsored by the Society

  12. Human pancreatic β-cell G1/S molecule cell cycle atlas.

    Science.gov (United States)

    Fiaschi-Taesch, Nathalie M; Kleinberger, Jeffrey W; Salim, Fatimah G; Troxell, Ronnie; Wills, Rachel; Tanwir, Mansoor; Casinelli, Gabriella; Cox, Amy E; Takane, Karen K; Scott, Donald K; Stewart, Andrew F

    2013-07-01

    Expansion of pancreatic β-cells is a key goal of diabetes research, yet induction of adult human β-cell replication has proven frustratingly difficult. In part, this reflects a lack of understanding of cell cycle control in the human β-cell. Here, we provide a comprehensive immunocytochemical "atlas" of G1/S control molecules in the human β-cell. This atlas reveals that the majority of these molecules, previously known to be present in islets, are actually present in the β-cell. More importantly, and in contrast to anticipated results, the human β-cell G1/S atlas reveals that almost all of the critical G1/S cell cycle control molecules are located in the cytoplasm of the quiescent human β-cell. Indeed, the only nuclear G1/S molecules are the cell cycle inhibitors, pRb, p57, and variably, p21: none of the cyclins or cdks necessary to drive human β-cell proliferation are present in the nuclear compartment. This observation may provide an explanation for the refractoriness of human β-cells to proliferation. Thus, in addition to known obstacles to human β-cell proliferation, restriction of G1/S molecules to the cytoplasm of the human β-cell represents an unanticipated obstacle to therapeutic human β-cell expansion.

  13. Identification of molecules derived from human fibroblast feeder cells that support the proliferation of human embryonic stem cells

    DEFF Research Database (Denmark)

    Anisimov, Sergey V.; Christophersen, Nicolaj S.; Correia, Ana S.

    2011-01-01

    the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early...

  14. Human embryonic stem cell research: ethical and legal issues.

    Science.gov (United States)

    Robertson, J A

    2001-01-01

    The use of human embryonic stem cells to replace damaged cells and tissues promises future hope for the treatment of many diseases. However, many countries now face complex ethical and legal questions as a result of the research needed to develop these cell-replacement therapies. The challenge that must be met is how to permit research on human embryonic tissue to occur while maintaining respect for human life generally.

  15. Epigenetic Regulation of Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Qidong eHu

    2012-11-01

    Full Text Available Recently, there has been tremendous progress in characterizing the transcriptional network regulating hESCs (MacArthur et al., 2009; Loh et al., 2011, including those signaling events mediated by Oct4, Nanog and Sox2. There is growing interest in the epigenetic machinery involved in hESC self-renewal and differentiation. In general, epigenetic regulation includeschromatin reorganization, DNA modification and histone modification, which are not directly related to alterations in DNA sequences. Various protein complexes, includingPolycomb, trithorax, NuRD, SWI/SNF andOct4, have been shown to play critical roles in epigenetic control of hESC maintenance and differentiation. Hence, we will formally review recent advances in unraveling the multifaceted role of epigenetic regulation in hESC self-renewal and induced differentiation, particularly with respect to chromatin remodeling and DNA methylation events. Unraveling the molecular mechanisms underlying the maintenance/differentiation of hESCs and reprogramming of somatic cells will greatly strengthen our capacity to generate various types of cells to treat human diseases.

  16. Mast cells and human hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Fabio Grizzi; Barbara Franceschini; Maurizio Chiriva-Internati; Young Liu; Paul L. Hermonat; Nicola Dioguardi

    2003-01-01

    AIM: To investigate the density of mast cells (MCs) in human hepatocellular carcinoma (HCC), and to determine whether the MCs density has any correlations with histopathological grading, staging or some baseline patient characteristics.METHODS: Tissue sections of 22 primary HCCs were histochemically stained with toluidine blue, in order to be able to quantify the MCs in and around the neoplasm using a computer-assisted image analysis system. HCC was staged and graded by two independent pathologists. To identify the sinusoidal capillarisation of each specimen 3μm thick sections were histochemically stained with sirius red, and semi-quantitatively evaluated by two independent observers. The data were statistically analysed using Spearman′s correlation and Student′s t-test when appropriate.RESULTS: MCs density did not correlate with the age or sex of the patients, the serum alanine aminotransferase (ALT) or aspartate aminotransferase (AST) levels, or the stage or grade of the HCC. No significant differences were found between the MCs density of the patients with and without hepatitis C virus infection, but they were significantly higher in the specimens showing marked sinusoidal capillarisation.CONCLUSION: The lack of any significant correlation between MCs density and the stage or grade of the neoplastic lesions suggests that there is no causal relationship between MCs recruitment and HCC. However, as capillarisation proceeds concurrently with arterial blood supply during hepatocarcinogenesis, MCs may be considered of primary importance in the transition from sinusoidal to capillary-type endothelial cells and the HCC growth.

  17. Derivation, propagation and differentiation of human embryonic stem cells.

    Science.gov (United States)

    Conley, Brock J; Young, Julia C; Trounson, Alan O; Mollard, Richard

    2004-04-01

    Embryonic stem (ES) cells are in vitro cultivated pluripotent cells derived from the inner cell mass (ICM) of the embryonic blastocyst. Attesting to their pluripotency, ES cells can be differentiated into representative derivatives of all three embryonic germ layers (endoderm, ectoderm and mesoderm) both in vitro and in vivo. Although mouse ES cells have been studied for many years, human ES cells have only more recently been derived and successfully propagated. Many biochemical differences and culture requirements between mouse and human ES cells have been described, yet despite these differences the study of murine ES cells has provided important insights into methodologies aimed at generating a greater and more in depth understanding of human ES cell biology. One common feature of both mouse and human ES cells is their capacity to undergo controlled differentiation into spheroid structures termed embryoid bodies (EBs). EBs recapitulate several aspects of early development, displaying regional-specific differentiation programs into derivatives of all three embryonic germ layers. For this reason, EB formation has been utilised as an initial step in a wide range of studies aimed at differentiating both mouse and human ES cells into a specific and desired cell type. Recent reports utilising specific growth factor combinations and cell-cell induction systems have provided alternative strategies for the directed differentiation of cells into a desired lineage. According to each one of these strategies, however, a relatively high cell lineage heterogeneity remains, necessitating subsequent purification steps including mechanical dissection, selective media or fluorescent or magnetic activated cell sorting (FACS and MACS, respectively). In the future, the ability to specifically direct differentiation of human ES cells at 100% efficiency into a desired lineage will allow us to fully explore the potential of these cells in the analysis of early human development, drug

  18. Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics

    Directory of Open Access Journals (Sweden)

    Nigel G. Kooreman

    2017-08-01

    Full Text Available There is growing interest in using embryonic stem cell (ESC and induced pluripotent stem cell (iPSC derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an “allogenized” mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts.

  19. New frontiers in human cell biology and medicine: can pluripotent stem cells deliver?

    Science.gov (United States)

    Goldstein, Lawrence S B

    2012-11-12

    Human pluripotent stem cells provide enormous opportunities to treat disease using cell therapy. But human stem cells can also drive biomedical and cell biological discoveries in a human model system, which can be directly linked to understanding disease or developing new therapies. Finally, rigorous scientific studies of these cells can and should inform the many science and medical policy issues that confront the translation of these technologies to medicine. In this paper, I discuss these issues using amyotrophic lateral sclerosis as an example.

  20. Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Xiaoti Xu

    2015-09-01

    Full Text Available Identification of human satellite cells that fulfill muscle stem cell criteria is an unmet need in regenerative medicine. This hurdle limits understanding how closely muscle stem cell properties are conserved among mice and humans and hampers translational efforts in muscle regeneration. Here, we report that PAX7 satellite cells exist at a consistent frequency of 2–4 cells/mm of fiber in muscles of the human trunk, limbs, and head. Xenotransplantation into mice of 50–70 fiber-associated, or 1,000–5,000 FACS-enriched CD56+/CD29+ human satellite cells led to stable engraftment and formation of human-derived myofibers. Human cells with characteristic PAX7, CD56, and CD29 expression patterns populated the satellite cell niche beneath the basal lamina on the periphery of regenerated fibers. After additional injury, transplanted satellite cells robustly regenerated to form hundreds of human-derived fibers. Together, these findings conclusively delineate a source of bona-fide endogenous human muscle stem cells that will aid development of clinical applications.

  1. CD56 marks human dendritic cell subsets with cytotoxic potential

    NARCIS (Netherlands)

    Roothans, D.; Smits, E.; Lion, E.; Tel, J.; Anguille, S.

    2013-01-01

    Human plasmacytoid and myeloid dendritic cells (DCs), when appropriately stimulated, can express the archetypal natural killer (NK)-cell surface marker CD56. In addition to classical DC functions, CD56+ DCs are endowed with an unconventional cytotoxic capacity.

  2. Effects of Human Umbilical Cord Mesenchymal Stem Cells on Human Trophoblast Cell Functions In Vitro

    Directory of Open Access Journals (Sweden)

    Yajing Huang

    2016-01-01

    Full Text Available Trophoblast cell dysfunction is involved in many disorders during pregnancy such as preeclampsia and intrauterine growth restriction. Few treatments exist, however, that target improving trophoblast cell function. Human umbilical cord mesenchymal stem cells (hUCMSCs are capable of self-renewing, can undergo multilineage differentiation, and have homing abilities; in addition, they have immunomodulatory effects and paracrine properties and thus are a prospective source for cell therapy. To identify whether hUCMSCs can regulate trophoblast cell functions, we treated trophoblast cells with hUCMSC supernatant or cocultured them with hUCMSCs. Both treatments remarkably enhanced the migration and invasion abilities of trophoblast cells and upregulated their proliferation ability. At a certain concentration, hUCMSCs also modulated hCG, PIGF, and sEndoglin levels in the trophoblast culture medium. Thus, hUCMSCs have a positive effect on trophoblast cellular functions, which may provide a new avenue for treatment of placenta-related diseases during pregnancy.

  3. Stem Cells: A Renaissance in Human Biology Research.

    Science.gov (United States)

    Wu, Jun; Izpisua Belmonte, Juan Carlos

    2016-06-16

    The understanding of human biology and how it relates to that of other species represents an ancient quest. Limited access to human material, particularly during early development, has restricted researchers to only scratching the surface of this inherently challenging subject. Recent technological innovations, such as single cell "omics" and human stem cell derivation, have now greatly accelerated our ability to gain insights into uniquely human biology. The opportunities afforded to delve molecularly into scarce material and to model human embryogenesis and pathophysiological processes are leading to new insights of human development and are changing our understanding of disease and choice of therapy options.

  4. Neoplastic human embryonic stem cells as a model of radiation resistance of human cancer stem cells.

    Science.gov (United States)

    Dingwall, Steve; Lee, Jung Bok; Guezguez, Borhane; Fiebig, Aline; McNicol, Jamie; Boreham, Douglas; Collins, Tony J; Bhatia, Mick

    2015-09-08

    Studies have implicated that a small sub-population of cells within a tumour, termed cancer stem cells (CSCs), have an enhanced capacity for tumour formation in multiple cancers and may be responsible for recurrence of the disease after treatment, including radiation. Although comparisons have been made between CSCs and bulk-tumour, the more important comparison with respect to therapy is between tumour-sustaining CSC versus normal stem cells that maintain the healthy tissue. However, the absence of normal known counterparts for many CSCs has made it difficult to compare the radiation responses of CSCs with the normal stem cells required for post-radiotherapy tissue regeneration and the maintenance of tissue homeostasis. Here we demonstrate that transformed human embryonic stem cells (t-hESCs), showing features of neoplastic progression produce tumours resistant to radiation relative to their normal counterpart upon injection into immune compromised mice. We reveal that t-hESCs have a reduced capacity for radiation induced cell death via apoptosis and exhibit altered cell cycle arrest relative to hESCs in vitro. t-hESCs have an increased expression of BclXL in comparison to their normal counterparts and re-sensitization of t-hESCs to radiation upon addition of BH3-only mimetic ABT737, suggesting that overexpression of BclXL underpins t-hESC radiation insensitivity. Using this novel discovery platform to investigate radiation resistance in human CSCs, our study indicates that chemotherapy targeting Bcl2-family members may prove to be an adjuvant to radiotherapy capable of targeting CSCs.

  5. Molecular aging and rejuvenation of human muscle stem cells

    DEFF Research Database (Denmark)

    Carlson, Morgan E; Suetta, Charlotte; Conboy, Michael J

    2009-01-01

    Very little remains known about the regulation of human organ stem cells (in general, and during the aging process), and most previous data were collected in short-lived rodents. We examined whether stem cell aging in rodents could be extrapolated to genetically and environmentally variable humans....... Our findings establish key evolutionarily conserved mechanisms of human stem cell aging. We find that satellite cells are maintained in aged human skeletal muscle, but fail to activate in response to muscle attrition, due to diminished activation of Notch compounded by elevated transforming growth...... factor beta (TGF-beta)/phospho Smad3 (pSmad3). Furthermore, this work reveals that mitogen-activated protein kinase (MAPK)/phosphate extracellular signal-regulated kinase (pERK) signalling declines in human muscle with age, and is important for activating Notch in human muscle stem cells. This molecular...

  6. Ultrastructure of interstitial cells in subserosa of human colon

    DEFF Research Database (Denmark)

    Rumessen, Jüri Johannes; Vanderwinden, Jean-Marie; Hansen, Alastair;

    2013-01-01

    We studied the ultrastructure of interstitial cells in the subserosal/adventitial layer in human colon. An interstitial cell type with an ultrastructure intermediate between fibroblast-like cells (FLC) and interstitial cells of Cajal was identified (IC-SS). IC-SS had thin and flattened branching...

  7. Differentiation of neuroepithelia from human embryonic stem cells

    OpenAIRE

    2009-01-01

    We describe the method for in vitro differentiation of neuroepithelial cells from human embryonic stem cells under a chemically defined condition. The protocol is established following the fundamental principle of in vivo neuroectodermal specification. The primitive neuroepithelial cells generated by this protocol can be further induced into neuronal and glia cells with forebrain, mid/hind brain, and spinal cord identities.

  8. Identification of a candidate stem cell in human gallbladder.

    Science.gov (United States)

    Manohar, Rohan; Li, Yaming; Fohrer, Helene; Guzik, Lynda; Stolz, Donna Beer; Chandran, Uma R; LaFramboise, William A; Lagasse, Eric

    2015-05-01

    There are currently no reports of identification of stem cells in human gallbladder. The differences between human gallbladder and intrahepatic bile duct (IHBD) cells have also not been explored. The goals of this study were to evaluate if human fetal gallbladder contains a candidate stem cell population and if fetal gallbladder cells are distinct from fetal IHBD cells. We found that EpCAM+CD44+CD13+ cells represent the cell population most enriched for clonal self-renewal from primary gallbladder. Primary EpCAM+CD44+CD13+ cells gave rise to EpCAM+CD44+CD13+ and EpCAM+CD44+CD13- cells in vitro, and gallbladder cells expanded in vitro exhibited short-term engraftment in vivo. Last, we found that CD13, CD227, CD66, CD26 and CD49b were differentially expressed between gallbladder and IHBD cells cultured in vitro indicating clear phenotypic differences between the two cell populations. Microarray analyses of expanded cultures confirmed that both cell types have unique transcriptional profiles with predicted functional differences in lipid, carbohydrate, nucleic acid and drug metabolism. In conclusion, we have isolated a distinct clonogenic population of epithelial cells from primary human fetal gallbladder with stem cell characteristics and found it to be unique compared to IHBD cells.

  9. Comparative mutagenesis of human cells in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Thilly, W.G.

    1992-05-01

    This report discusses measuring methods of point mutations; high density cell cultures for low dose studies; measurement and sequence determination of mutations in DNA; the mutational spectra of styrene oxide and ethlyene oxide in TK-6 cells; mutational spectrum of Cr in human lymphoblast cells; mutational spectra of radon in TK-6 cells; and the mutational spectra of smokeless tobacco. (CBS)

  10. Comparative mutagenesis of human cells in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Thilly, W.G.

    1992-05-01

    This report discusses measuring methods of point mutations; high density cell cultures for low dose studies; measurement and sequence determination of mutations in DNA; the mutational spectra of styrene oxide and ethlyene oxide in TK-6 cells; mutational spectrum of Cr in human lymphoblast cells; mutational spectra of radon in TK-6 cells; and the mutational spectra of smokeless tobacco. (CBS)

  11. Training human mesenchymal stromal cells for bone tissue engineering applications

    NARCIS (Netherlands)

    Doorn, J.

    2012-01-01

    Human mesenchymal stromal cells (hMSCs) are an interesting source for cell therapies and tissue engineering applications, because these cells are able to differentiate into various target tissues, such as bone, cartilage, fat and endothelial cells. In addition, they secrete a wide array of growth fa

  12. 77 FR 5489 - Identification of Human Cell Lines Project

    Science.gov (United States)

    2012-02-03

    ... working with cells derived from one individual or animal species, only to eventually learn that the cells..., morphology, pathologic or disease-state, hybrid or mixed culture, feeder cells, date of origin, etc), the STR... National Institute of Standards and Technology Identification of Human Cell Lines Project AGENCY: National...

  13. The evolution of human cells in terms of protein innovation.

    Science.gov (United States)

    Sardar, Adam J; Oates, Matt E; Fang, Hai; Forrest, Alistair R R; Kawaji, Hideya; Gough, Julian; Rackham, Owen J L

    2014-06-01

    Humans are composed of hundreds of cell types. As the genomic DNA of each somatic cell is identical, cell type is determined by what is expressed and when. Until recently, little has been reported about the determinants of human cell identity, particularly from the joint perspective of gene evolution and expression. Here, we chart the evolutionary past of all documented human cell types via the collective histories of proteins, the principal product of gene expression. FANTOM5 data provide cell-type-specific digital expression of human protein-coding genes and the SUPERFAMILY resource is used to provide protein domain annotation. The evolutionary epoch in which each protein was created is inferred by comparison with domain annotation of all other completely sequenced genomes. Studying the distribution across epochs of genes expressed in each cell type reveals insights into human cellular evolution in terms of protein innovation. For each cell type, its history of protein innovation is charted based on the genes it expresses. Combining the histories of all cell types enables us to create a timeline of cell evolution. This timeline identifies the possibility that our common ancestor Coelomata (cavity-forming animals) provided the innovation required for the innate immune system, whereas cells which now form the brain of human have followed a trajectory of continually accumulating novel proteins since Opisthokonta (boundary of animals and fungi). We conclude that exaptation of existing domain architectures into new contexts is the dominant source of cell-type-specific domain architectures.

  14. Adult human brain cell culture for neuroscience research.

    Science.gov (United States)

    Gibbons, Hannah M; Dragunow, Mike

    2010-06-01

    Studies of the brain have progressed enormously through the use of in vivo and in vitro non-human models. However, it is unlikely such studies alone will unravel the complexities of the human brain and so far no neuroprotective treatment developed in animals has worked in humans. In this review we discuss the use of adult human brain cell culture methods in brain research to unravel the biology of the normal and diseased human brain. The advantages of using adult human brain cells as tools to study human brain function from both historical and future perspectives are discussed. In particular, studies using dissociated cultures of adult human microglia, astrocytes, oligodendrocytes and neurons are described and the applications of these types of study are evaluated. Alternative sources of human brain cells such as adult neural stem cells, induced pluripotent stem cells and slice cultures of adult human brain tissue are also reviewed. These adult human brain cell culture methods could benefit basic research and more importantly, facilitate the translation of basic neuroscience research to the clinic for the treatment of brain disorders. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Apoptosis of human pancreatic cancer cells induced by Triptolide

    Institute of Scientific and Technical Information of China (English)

    Guo-Xiong Zhou; Xiao-Ling Ding; Jie-Fei Huang; Hong Zhang; Sheng-Bao Wu; Jian-Ping Cheng; Qun Wei

    2008-01-01

    AIM:To investigate apoptosis in human pancreatic cancer ceils induced by Triptolide (TL),and the relationship between this apoptosis and expression of caspase-3' bcl-2 and bax.METHODS:Human pancreatic cancer cell line SW1990 was cultured in DIEM media for this study.MTT assay was used to determine the cell growth inhibitory rate in vitro.Flow cytometry and TUNEL assay were used to detect the apoptosis of human pancreatic cancer cells before and after TL treatment.RT-PCR was used to detect the expression of apoptosis-associated gene caspase-3' bcl-2 and bax.RESULTS:TL inhibited the growth of human pancreatic cancer cells in a dose-and time-dependent manner.TL induced human pancreatic cancer cells to undergo apoptosis with typically apoptotic characteristics.TUNEL assay showed that after the treatment of human pancreatic cancer cells with 40 ng/mL TL for 12 h and 24 h,the apoptotic rates of human pancreatic cancer cells increased significantly.RT-PCR demonstrated that caspase-3 and bax were significantly up-regulated in SW1990 cells treated with TL while bcl-2 mRNA was not.CONCLUSION:TL is able to induce the apoptosis in human pancreatic cancer cells.This apoptosis may be mediated by up-regulating the expression of apoptosisassociated caspase-3 and bax gene.

  16. Nanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    H Nikukar

    2014-05-01

    We observed significant responses after 1 and 2-week stimulations in cell number, cell shapes and phenotypical markers. Microarray was performed for all groups. Cell count showed normal cell growth with stimulation. However, cell surface area, cell perimeter, and arboration after 1-week stimulation showed significant increases. Immunofluorescent studies have showed significant increase in osteocalcin production after stimulation. Conclusions: Nanoscale mechanical vibration showed significant changes in human mesenchymal stem cell behaviours. Cell morphology changed to become more polygonal and increased expression of the osteoblast markers were noted. These findings with gene regulation changes suggesting nanoscale mechanostimulation has stimulated osteoblastogenesis.  Keywords:  Mesenchymal, Nanoscale, Stem Cells.

  17. Activation of GPR119 Stimulates Human β-Cell Replication and Neogenesis in Humanized Mice with Functional Human Islets

    Science.gov (United States)

    Ansarullah; Free, Colette; Christopherson, Jenica; Chen, Quanhai; Gao, Jie; Liu, Chengyang; Naji, Ali; Rabinovitch, Alex; Guo, Zhiguang

    2016-01-01

    Using humanized mice with functional human islets, we investigated whether activating GPR119 by PSN632408, a small molecular agonist, can stimulate human β-cell regeneration in vivo. Human islets were transplanted under the left kidney capsule of immunodeficient mice with streptozotocin- (STZ-) induced diabetes. The recipient mice were treated with PSN632408 or vehicle and BrdU daily. Human islet graft function in the mice was evaluated by nonfasting glucose levels, oral glucose tolerance, and removal of the grafts. Immunostaining for insulin, glucagon, and BrdU or Ki67 was performed in islet grafts to evaluate α- and β-cell replication. Insulin and CK19 immunostaining was performed to evaluate β-cell neogenesis. Four weeks after human islet transplantation, 71% of PSN632408-treated mice achieved normoglycaemia compared with 24% of vehicle-treated mice. Also, oral glucose tolerance was significantly improved in the PSN632408-treated mice. PSN632408 treatment significantly increased both human α- and β-cell areas in islet grafts and stimulated α- and β-cell replication. In addition, β-cell neogenesis was induced from pancreatic duct cells in the islet grafts. Our results demonstrated that activation of GPR119 increases β-cell mass by stimulating human β-cell replication and neogenesis. Therefore, GPR119 activators may qualify as therapeutic agents to increase human β-cell mass in patients with diabetes. PMID:27413754

  18. Analysis of lead toxicity in human cells

    Directory of Open Access Journals (Sweden)

    Gillis Bruce S

    2012-07-01

    Full Text Available Abstract Background Lead is a metal with many recognized adverse health side effects, and yet the molecular processes underlying lead toxicity are still poorly understood. Quantifying the injurious effects of lead is also difficult because of the diagnostic limitations that exist when analyzing human blood and urine specimens for lead toxicity. Results We analyzed the deleterious impact of lead on human cells by measuring its effects on cytokine production and gene expression in peripheral blood mononuclear cells. Lead activates the secretion of the chemokine IL-8 and impacts mitogen-dependent activation by increasing the secretion of the proinflammatory cytokines IL-6 and TNF-α and of the chemokines IL-8 and MIP1-α in the presence of phytohemagglutinin. The recorded changes in gene expression affected major cellular functions, including metallothionein expression, and the expression of cellular metabolic enzymes and protein kinase activity. The expression of 31 genes remained elevated after the removal of lead from the testing medium thereby allowing for the measurement of adverse health effects of lead poisoning. These included thirteen metallothionein transcripts, three endothelial receptor B transcripts and a number of transcripts which encode cellular metabolic enzymes. Cellular responses to lead correlated with blood lead levels and were significantly altered in individuals with higher lead content resultantly affecting the nervous system, the negative regulation of transcription and the induction of apoptosis. In addition, we identified changes in gene expression in individuals with elevated zinc protoporphyrin blood levels and found that genes regulating the transmission of nerve impulses were affected in these individuals. The affected pathways were G-protein mediated signaling, gap junction signaling, synaptic long-term potentiation, neuropathic pain signaling as well as CREB signaling in neurons. Cellular responses to lead were

  19. In vitro proliferation of adult human beta-cells.

    Directory of Open Access Journals (Sweden)

    Sabine Rutti

    Full Text Available A decrease in functional beta-cell mass is a key feature of type 2 diabetes. Glucagon-like peptide 1 (GLP-1 analogues induce proliferation of rodent beta-cells. However, the proliferative capacity of human beta-cells and its modulation by GLP-1 analogues remain to be fully investigated. We therefore sought to quantify adult human beta-cell proliferation in vitro and whether this is affected by the GLP-1 analogue liraglutide.Human islets from 7 adult cadaveric organ donors were dispersed into single cells. Beta-cells were purified by FACS. Non-sorted cells and the beta-cell enriched ("beta-cells" population were plated on extracellular matrix from rat (804G and human bladder carcinoma cells (HTB9 or bovine corneal endothelial ECM (BCEC. Cells were maintained in culture+/-liraglutide for 4 days in the presence of BrdU.Rare human beta-cell proliferation could be observed either in the purified beta-cell population (0.051±0.020%; 22 beta-cells proliferating out of 84'283 beta-cells counted or in the non-sorted cell population (0.055±0.011%; 104 proliferating beta-cells out of 232'826 beta-cells counted, independently of the matrix or the culture conditions. Liraglutide increased human beta-cell proliferation on BCEC in the non-sorted cell population (0.082±0.034% proliferating beta-cells vs. 0.017±0.008% in control, p<0.05.These results indicate that adult human beta-cell proliferation can occur in vitro but remains an extremely rare event with these donors and particular culture conditions. Liraglutide increases beta-cell proliferation only in the non-sorted cell population and only on BCEC. However, it cannot be excluded that human beta-cells may proliferate to a greater extent in situ in response to natural stimuli.

  20. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells

    Science.gov (United States)

    Hofschröer, Verena; Koch, Kevin Alexander; Ludwig, Florian Timo; Friedl, Peter; Oberleithner, Hans; Stock, Christian; Schwab, Albrecht

    2017-01-01

    Detachment of cells from the primary tumour precedes metastatic progression by facilitating cell release into the tissue. Solid tumours exhibit altered pH homeostasis with extracellular acidification. In human melanoma, the Na+/H+ exchanger NHE1 is an important modifier of the tumour nanoenvironment. Here we tested the modulation of cell-cell-adhesion by extracellular pH and NHE1. MV3 tumour spheroids embedded in a collagen matrix unravelled the efficacy of cell-cell contact loosening and 3D emigration into an environment mimicking physiological confinement. Adhesive interaction strength between individual MV3 cells was quantified using atomic force microscopy and validated by multicellular aggregation assays. Extracellular acidification from pHe7.4 to 6.4 decreases cell migration and invasion but increases single cell detachment from the spheroids. Acidification and NHE1 overexpression both reduce cell-cell adhesion strength, indicated by reduced maximum pulling forces and adhesion energies. Multicellular aggregation and spheroid formation are strongly impaired under acidification or NHE1 overexpression. We show a clear dependence of melanoma cell-cell adhesion on pHe and NHE1 as a modulator. These effects are opposite to cell-matrix interactions that are strengthened by protons extruded via NHE1. We conclude that these opposite effects of NHE1 act synergistically during the metastatic cascade. PMID:28205573

  1. Generation of Corneal Keratocytes from Human Embryonic Stem Cells.

    Science.gov (United States)

    Hertsenberg, Andrew J; Funderburgh, James L

    2016-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.

  2. Derivation of multipotent mesenchymal precursors from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available BACKGROUND: Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. METHODS AND FINDINGS: Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. CONCLUSION: Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications.

  3. Nucleosome Organization in Human Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Puya G Yazdi

    Full Text Available The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a "ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this "ground state" by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational

  4. Nucleosome Organization in Human Embryonic Stem Cells.

    Science.gov (United States)

    Yazdi, Puya G; Pedersen, Brian A; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E; Wang, Ping H

    2015-01-01

    The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a "ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this "ground state" by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states) are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational analysis of nucleosome

  5. Immunosurveillance function of human mast cell?

    Institute of Scientific and Technical Information of China (English)

    (O)ner (O)zdemir

    2005-01-01

    Mast cell (MC) is so widely recognized as a critical effector in allergic disorders that it can be difficult to think of MC in any other context. Indeed, MCs are multifunctional and recently shown that MCs can also act as antigen presenters as well as effector elements of human immune system. First observations of their possible role as anti-tumor cells in peri- or intra-tumoral tissue were mentioned five decades ago and a high content of MCs is considered as a favorable prognosis,consistent with this study. Believers of this hypothesis assumed them to be inhibitors of tumor development through their pro-apoptotic and -necrolytic granules e.g.,granzymes and TNF-α. However, some still postulate them to be enhancers of tumor development through their effects on angiogenesis due to mostly tryptase.There are also some data suggesting increased MC density causes tumor development and indicates bad prognosis. Furthermore, since MC-associated mediators have shown to influence various aspects of tumor biology, the net effect of MCs on the development/progression of tumors has been difficult to evaluate. For instance, chymase induces apoptosis in targets; yet,tryptase, another MC protease, is a well-known mitogen.MCs with these various enzyme expression patterns may mediate different functions and the predominant MC type in tissues may be determined by the environmental needs. The coexistence of tryptase-expressing MCs(MCT) and chymase and tryptase-expressing MCs (MCTC)in physiological conditions reflects a naturally occurring balance that contributes to tissue homeostasis. We have recently discussed the role and relevance of MC serine proteases in different bone marrow diseases.

  6. Biological characteristics of cell lines of human dental alveolus

    Institute of Scientific and Technical Information of China (English)

    陈世璋; 黄靖香; 孙明学; 赵斌

    2003-01-01

    Objective To investigate the biological characteristics of cell lines of healthy and diseased human dental alveoli. Methods Primary cell lines from either healthy or diseased human dental alveoli were obtained. Two cell lines, H-258 and H-171 derived from healthy and diseased human tissues respectively, were selected for morphological study and research on their growth and aging, using cell counting, and histochemical and immunohistochemical staining. Results Primary cell lines were successfully established from innormal dental alveoli. After freezing and thawing for three times, cell growth was continued and no morphological alterations were observed. The doubling time was 53.4 hours and mean division index (MDI) was 4‰. Cells were kept normal after twenty generations with no obvious reduction of doubling time and MDI. Of twenty-six primary cell lines derived from healthy human dental alveoli, only three cell lines achieved generation. After freezing and thawing for twice, cultured cells were still alive at a decreased growth speed, with doubling time of 85.9 hours and MDI of 3‰. Both cell lines, H-171 and H-258, shared the characteristics of osteoblast. Conclusions Primary cell lines of diseased human dental alveoli show greater growth potential. All cell lines of dental alveoli share characteristics of osteoblast. The technique we developed may be put into practice for the treatment of abnormal dental alveoli.

  7. Cryopreservation of human embryonic stem cells by vitrification

    Institute of Scientific and Technical Information of China (English)

    周灿权; 麦庆云; 李涛; 庄广伦

    2004-01-01

    Background The efficiency of traditional cryopreservation of human embryonic stem (ES) cells is low, and there have been few attempts to prove new cryopreservation methods effective. This study was designed to evaluate the efficiency of cryopreservation of human ES cells using vitrification method.Methods Human ES cells clumped from an identical cell line were randomly allocated to be cryopreserved by vitrification or by slow freezing. The recovery rates, the growth and differentiation potential of thawed human ES cells were compared between these two groups. The pluripotency of human ES cells after thawing was identified.Results Eighty-one point nine percent (59/72) of human ES cell clumps were recovered after vitrification, while only 22.8% (16/70) were recovered after slow freezing (P<0.01). The colonies after vitrification manifested have not only faster growth but also a lower level of differentiation when compared to colonies subjected to the slow freezing protocol. However, the rates of growth and differentiation in undifferentiated colonies from both groups were identical to the rates in those of non-cryopreserved stem cells after a prolonged culture period. Passage 6 of vitrified human ES cells retained the properties of pluripotent cells, a normal karyotype and expressed the transcription factor OCT-4, stage specific expressed antigen-4 (SSEA-4) and SSEA-3. Teratoma growth of these cells demonstrated the ability to develop into all three germ layers.Conclusions Vitrification is effective in cryopreserving human ES cells. During a prolonged culture, human ES cells retain their pluripotency after cryopreservation.

  8. Identification of skin immune cells in non-human primates.

    Science.gov (United States)

    Adam, Lucille; Rosenbaum, Pierre; Cosma, Antonio; Le Grand, Roger; Martinon, Frédéric

    2015-11-01

    The skin is a valuable target for vaccine delivery because it contains many immune cell populations, notably antigen presenting cells. Skin immune cells have been extensively described in mice and humans but not in non-human primates, which are pertinent models for immunological research in vaccination. The aim of this work was to describe immune cell populations in the epidermis, dermis and skin draining lymph nodes in cynomolgus macaques by a single 12-parameter flow cytometry protocol. Given that skin cells share several markers, we defined a gating strategy to identify accurately immune cells and to limit contamination of one immune cell population by another. The epidermis contained CD1a(+)CD1c(-) Langerhans cells (LCs), CD3(+) T cells and putative NK cells. The dermis contained CD1a(+)CD1c(-) cells, which were similar to LCs, CD1a(+)CD1c(+) dermal dendritic cells (DDCs), CD163(high)CD11b(+) resident macrophages, CD3(+) T cells and putative NK cells. The skin also contained CD66(+) polymorphonuclear cells in some animals. Thus, immune cell populations in the macaque are similar to those in humans despite some differences in phenotype. In skin draining lymph nodes, we identified migratory LCs, CD1a(+)CD1c(+) DDCs and macrophages. The simultaneous identification of these different immune cells with one panel of markers avoids the use of large amounts of precious sample and may improve the understanding of immune mechanisms in the skin after treatment or vaccination.

  9. [In vitro strategies for human gametes production from stem cells].

    Science.gov (United States)

    Tosca, Lucie; Courtot, Anne-Marie; Bennaceur-Griscelli, Annelise; Tachdjian, Gérard

    2011-10-01

    Embryonic stem cells (ESC) are self-renewal and pluripotent cells that are able to differentiate in vitro into several cell types in favourable conditions. Technical protocols for in vitro gametes production have been developed in mice and human species. The functionality of such differentiated cells is not always analysed and an early meiotic arrest is a current observation. These kinds of experimentations have also been tested from human induced pluripotent stem cells (IPSC). However, differentiation ends shortly at the primordial germ cell stage.

  10. Growth in agarose of human cells infected with cytomegalovirus.

    Science.gov (United States)

    Lang, D J; Montagnier, L; Latarjet, R

    1974-08-01

    After infection by human cytomegalovirus (CMV), human diploid fibroblasts could grow in agarose medium for several generations. Clones of infected cells grew for weeks, although in every case they ultimately underwent lysis owing to the cytopathic effect of the virus. Virus was inoculated at high dilution and after UV irradiation in an effort to derive cells infected with noninfectious defective particles still capable of inducing cell stimulation. Dilute or irradiated virus occasionally yielded large colonies of replicating cells, although permanent transformation was not observed. One clone derived from UV-CMV-infected cells was passaged four times before undergoing lysis. During these passages the cells exhibited alterations in morphology and orientation.

  11. Cytotoxinic Mechanism of Hydroxyapatite Nanoparticles on Human Hepatoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    CAO Xian-ying; QI Zhi-tao; DAI Hong-lian; YAN Yu-hua; LI Shi-pu

    2003-01-01

    Stable and single-dispersed HAP nanoparticles were synthesized with chemical method assisted by ultrasonic treatment.HAP nanoparticles were surveyed by AFM and Zataplus.The effect on the Bel-7402 human hepatoma cell lines treated with HAP nanoparticles was investigated by the MTT methods and observation of morphology,and the mechanism was studied in changes of cell cycle and ultrastructure.The result shows that inhibition of HAP nanoparticles on the Bel-7402 human hepatoma cell lines is obviously in vitro.HAP nanoparticles the entered cancer cytoplasm,and cell proliferation is stopped at G1 phase of cell cycle,thus,cancer cells die directly.

  12. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    Science.gov (United States)

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin(+)) and leukemia stem cell population (CD34(+)CD38(-)Lin(-/low)). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G0/G1 (7μM) and G2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Human organomics: a fresh approach to understanding human development using single-cell transcriptomics.

    Science.gov (United States)

    Camp, J Gray; Treutlein, Barbara

    2017-05-01

    Innovative methods designed to recapitulate human organogenesis from pluripotent stem cells provide a means to explore human developmental biology. New technologies to sequence and analyze single-cell transcriptomes can deconstruct these 'organoids' into constituent parts, and reconstruct lineage trajectories during cell differentiation. In this Spotlight article we summarize the different approaches to performing single-cell transcriptomics on organoids, and discuss the opportunities and challenges of applying these techniques to generate organ-level, mechanistic models of human development and disease. Together, these technologies will move past characterization to the prediction of human developmental and disease-related phenomena. © 2017. Published by The Company of Biologists Ltd.

  14. Human dental pulp stem cells: Applications in future regenerative medicine.

    Science.gov (United States)

    Potdar, Pravin D; Jethmalani, Yogita D

    2015-06-26

    Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine.

  15. Role of human mast cells and basophils in bronchial asthma.

    Science.gov (United States)

    Marone, Gianni; Triggiani, Massimo; Genovese, Arturo; De Paulis, Amato

    2005-01-01

    Mast cells and basophils are the only cells expressing the tetrameric (alphabetagamma2) structure of the high affinity receptor for IgE (FcepsilonRI) and synthesizing histamine in humans. Human FcepsilonRI+ cells are conventionally considered primary effector cells of bronchial asthma. There is now compelling evidence that these cells differ immunologically, biochemically, and pharmacologically, which suggests that they might play distinct roles in the appearance and fluctuation of the asthma phenotype. Recent data have revealed the complexity of the involvement of human mast cells and basophils in asthma and have shed light on the control of recruitment and activation of these cells in different lung compartments. Preliminary evidence suggests that these cells might not always be detrimental in asthma but, under some circumstances, they might exert a protective effect by modulating certain aspects of innate and acquired immunity and allergic inflammation.

  16. Identification of human fibroblast cell lines as a feeder layer for human corneal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Rong Lu

    Full Text Available There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE and cell growth capacity were evaluated on days 5-14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1 × 10(4 in a 35-mm dish (9.6 cm(2 grew to confluence (about 1.87-2.41 × 10(6 cells in 12-14 days, representing 187-241 fold expansion with over 7-8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction.

  17. Genetic engineering of human pluripotent cells using TALE nucleases.

    Science.gov (United States)

    Hockemeyer, Dirk; Wang, Haoyi; Kiani, Samira; Lai, Christine S; Gao, Qing; Cassady, John P; Cost, Gregory J; Zhang, Lei; Santiago, Yolanda; Miller, Jeffrey C; Zeitler, Bryan; Cherone, Jennifer M; Meng, Xiangdong; Hinkley, Sarah J; Rebar, Edward J; Gregory, Philip D; Urnov, Fyodor D; Jaenisch, Rudolf

    2011-07-07

    Targeted genetic engineering of human pluripotent cells is a prerequisite for exploiting their full potential. Such genetic manipulations can be achieved using site-specific nucleases. Here we engineered transcription activator-like effector nucleases (TALENs) for five distinct genomic loci. At all loci tested we obtained human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) clones carrying transgenic cassettes solely at the TALEN-specified location. Our data suggest that TALENs employing the specific architectures described here mediate site-specific genome modification in human pluripotent cells with similar efficiency and precision as do zinc-finger nucleases (ZFNs).

  18. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1978-01-01

    The maintainance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro was studied. The primary approach was the testing of agents which may be expected to increase the release of the human growth hormone (hGH). A procedure for tissue procurement is described along with the methodologies used to dissociate human pituitary tissue (obtained either at autopsy or surgery) into single cell suspensions. The validity of the Biogel cell column perfusion system for studying the dynamics of GH release was developed and documented using a rat pituitary cell system.

  19. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Zhumur Ghosh

    Full Text Available Human induced pluripotent stem cells (hiPSCs generated by de-differentiation of adult somatic cells offer potential solutions for the ethical issues surrounding human embryonic stem cells (hESCs, as well as their immunologic rejection after cellular transplantation. However, although hiPSCs have been described as "embryonic stem cell-like", these cells have a distinct gene expression pattern compared to hESCs, making incomplete reprogramming a potential pitfall. It is unclear to what degree the difference in tissue of origin may contribute to these gene expression differences. To answer these important questions, a careful transcriptional profiling analysis is necessary to investigate the exact reprogramming state of hiPSCs, as well as analysis of the impression, if any, of the tissue of origin on the resulting hiPSCs. In this study, we compare the gene profiles of hiPSCs derived from fetal fibroblasts, neonatal fibroblasts, adipose stem cells, and keratinocytes to their corresponding donor cells and hESCs. Our analysis elucidates the overall degree of reprogramming within each hiPSC line, as well as the "distance" between each hiPSC line and its donor cell. We further identify genes that have a similar mode of regulation in hiPSCs and their corresponding donor cells compared to hESCs, allowing us to specify core sets of donor genes that continue to be expressed in each hiPSC line. We report that residual gene expression of the donor cell type contributes significantly to the differences among hiPSCs and hESCs, and adds to the incompleteness in reprogramming. Specifically, our analysis reveals that fetal fibroblast-derived hiPSCs are closer to hESCs, followed by adipose, neonatal fibroblast, and keratinocyte-derived hiPSCs.

  20. On the development of extragonadal and gonadal human germ cells

    Directory of Open Access Journals (Sweden)

    A. Marijne Heeren

    2016-02-01

    Full Text Available Human germ cells originate in an extragonadal location and have to migrate to colonize the gonadal primordia at around seven weeks of gestation (W7, or five weeks post conception. Many germ cells are lost along the way and should enter apoptosis, but some escape and can give rise to extragonadal germ cell tumors. Due to the common somatic origin of gonads and adrenal cortex, we investigated whether ectopic germ cells were present in the human adrenals. Germ cells expressing DDX4 and/or POU5F1 were present in male and female human adrenals in the first and second trimester. However, in contrast to what has been described in mice, where ‘adrenal’ and ‘ovarian’ germ cells seem to enter meiosis in synchrony, we were unable to observe meiotic entry in human ‘adrenal’ germ cells until W22. By contrast, ‘ovarian’ germ cells at W22 showed a pronounced asynchronous meiotic entry. Interestingly, we observed that immature POU5F1+ germ cells in both first and second trimester ovaries still expressed the neural crest marker TUBB3, reminiscent of their migratory phase. Our findings highlight species-specific differences in early gametogenesis between mice and humans. We report the presence of a population of ectopic germ cells in the human adrenals during development.

  1. Generation of human melanocytes from induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Shigeki Ohta

    Full Text Available Epidermal melanocytes play an important role in protecting the skin from UV rays, and their functional impairment results in pigment disorders. Additionally, melanomas are considered to arise from mutations that accumulate in melanocyte stem cells. The mechanisms underlying melanocyte differentiation and the defining characteristics of melanocyte stem cells in humans are, however, largely unknown. In the present study, we set out to generate melanocytes from human iPS cells in vitro, leading to a preliminary investigation of the mechanisms of human melanocyte differentiation. We generated iPS cell lines from human dermal fibroblasts using the Yamanaka factors (SOX2, OCT3/4, and KLF4, with or without c-MYC. These iPS cell lines were subsequently used to form embryoid bodies (EBs and then differentiated into melanocytes via culture supplementation with Wnt3a, SCF, and ET-3. Seven weeks after inducing differentiation, pigmented cells expressing melanocyte markers such as MITF, tyrosinase, SILV, and TYRP1, were detected. Melanosomes were identified in these pigmented cells by electron microscopy, and global gene expression profiling of the pigmented cells showed a high similarity to that of human primary foreskin-derived melanocytes, suggesting the successful generation of melanocytes from iPS cells. This in vitro differentiation system should prove useful for understanding human melanocyte biology and revealing the mechanism of various pigment cell disorders, including melanoma.

  2. Embryonic death and the creation of human embryonic stem cells

    OpenAIRE

    Landry, Donald W.; Zucker, Howard A.

    2004-01-01

    The creation of human embryonic stem cells through the destruction of a human embryo pits the value of a potential therapeutic tool against that of an early human life. This contest of values has resulted in a polarized debate that neglects areas of common interest and perspective. We suggest that a common ground for pursuing research on human embryonic stem cells can be found by reconsidering the death of the human embryo and by applying to this research the ethical norms of essential organ ...

  3. Embryonic death and the creation of human embryonic stem cells.

    Science.gov (United States)

    Landry, Donald W; Zucker, Howard A

    2004-11-01

    The creation of human embryonic stem cells through the destruction of a human embryo pits the value of a potential therapeutic tool against that of an early human life. This contest of values has resulted in a polarized debate that neglects areas of common interest and perspective. We suggest that a common ground for pursuing research on human embryonic stem cells can be found by reconsidering the death of the human embryo and by applying to this research the ethical norms of essential organ donation.

  4. Human induced pluripotent stem cells on autologous feeders.

    Directory of Open Access Journals (Sweden)

    Kazutoshi Takahashi

    Full Text Available BACKGROUND: For therapeutic usage of induced Pluripotent Stem (iPS cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that human induced Pluripotent Stem (iPS cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.

  5. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders

    OpenAIRE

    2009-01-01

    Human induced pluripotent stem (iPS) cells derived from somatic cells hold promise to develop novel patient-specific cell therapies and research models for inherited and acquired diseases. We and others previously reprogrammed human adherent cells, such as postnatal fibroblasts to iPS cells, which resemble adherent embryonic stem cells. Here we report derivation of iPS cells from postnatal human blood cells and the potential of these pluripotent cells for disease modeling. Multiple human iPS ...

  6. Modelling familial dysautonomia in human induced pluripotent stem cells

    OpenAIRE

    Lee, Gabsang; Studer, Lorenz

    2011-01-01

    Induced pluripotent stem (iPS) cells have considerable promise as a novel tool for modelling human disease and for drug discovery. While the generation of disease-specific iPS cells has become routine, realizing the potential of iPS cells in disease modelling poses challenges at multiple fronts. Such challenges include selecting a suitable disease target, directing the fate of iPS cells into symptom-relevant cell populations, identifying disease-related phenotypes and showing reversibility of...

  7. Generating trunk neural crest from human pluripotent stem cells.

    Science.gov (United States)

    Huang, Miller; Miller, Matthew L; McHenry, Lauren K; Zheng, Tina; Zhen, Qiqi; Ilkhanizadeh, Shirin; Conklin, Bruce R; Bronner, Marianne E; Weiss, William A

    2016-01-27

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior "cranial" NCC form craniofacial bone, whereas solely posterior "trunk" NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typically occur before pregnancy is detectable. As a result, current knowledge of NCC biology derives primarily from non-human organisms. Important differences between human and non-human NCC, such as expression of HNK1 in human but not mouse NCC, suggest a need to study human NCC directly. Here, we demonstrate that current protocols to differentiate human pluripotent stem cells (PSC) to NCC are biased toward cranial NCC. Addition of retinoic acid drove trunk-related markers and HOX genes characteristic of a posterior identity. Subsequent treatment with bone morphogenetic proteins (BMPs) enhanced differentiation to sympathoadrenal cells. Our approach provides methodology for detailed studies of human NCC, and clarifies roles for retinoids and BMPs in the differentiation of human PSC to trunk NCC and to sympathoadrenal lineages.

  8. Generation of human-induced pluripotent stem cells.

    Science.gov (United States)

    Park, In-Hyun; Lerou, Paul H; Zhao, Rui; Huo, Hongguang; Daley, George Q

    2008-01-01

    Pluripotent cells, such as embryonic stem cells, are invaluable tools for research and can potentially serve as a source of cell- and tissue-replacement therapy. Rejection after transplantation of cells and tissue derived from embryonic stem cells is a significant obstacle to their clinical use. Recently, human somatic cells have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Human iPS cells are a potential source of patient-specific pluripotent stem cells that would bypass immune rejection. iPS cells can also be used to study diseases for which there are no adequate human in vitro or animal models. In this protocol, we describe how to establish primary human fibroblasts lines and how to derive iPS cells by retroviral transduction of reprogramming factors. Overall, it takes 2 months to complete reprogramming human primary fibroblasts starting from biopsy.

  9. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    Science.gov (United States)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  10. The Isolation and Characterization of Human Prostate Cancer Stem Cells

    Science.gov (United States)

    2015-05-01

    IGF1, SOX15, BMPR1B, TGFBR1, etc), which fall into distinct GO categories including SC, development, stress response, and wound healing (unpublished...prostate cancer through the elucidation of the role of cancer stem cells in the pathogenesis of the disease. During the past year, we have made the...studies, ii) in vitro co-culture of human prostate cancer cells (established cell lines and primary patient samples) with human prostate fibroblasts

  11. Isolation, identification and differentiation of human embryonic cartilage stem cells.

    Science.gov (United States)

    Fu, Changhao; Yan, Zi; Xu, Hao; Zhang, Chen; Zhang, Qi; Wei, Anhui; Yang, Xi; Wang, Yi

    2015-07-01

    We isolated human embryonic cartilage stem cells (hECSCs), a novel stem cell population, from the articular cartilage of eight-week-old human embryos. These stem cells demonstrated a marker expression pattern and differentiation potential intermediate to those of human embryonic stem cells (hESCs) and human adult stem cells (hASCs). hECSCs expressed markers associated with both hESCs (OCT4, NANOG, SOX2, SSEA-3 and SSEA-4) and human adult stem cells (hASCs) (CD29, CD44, CD90, CD73 and CD10). These cells also differentiated into adipocytes, osteoblasts, chondrocytes, neurons and islet-like cells under specific inducing conditions. We identified N(6), 2'-O-dibutyryl cyclic adenosine 3':5'-monophosphate (Bt2cAMP) as an inducer of chondrogenic differentiation in hECSCs. Similar results using N(6), 2'-O-dibutyryl cyclic adenosine 3':5'-monophosphate (Bt2cAMP) were obtained for two other types of human embryonic tissue-derived stem cells, human embryonic hepatic stem cells (hEHSCs) and human embryonic amniotic fluid stem cells (hEASCs), both of which exhibited a marker expression pattern similar to that of hECSCs. The isolation of hECSCs and the discovery that N(6), 2'-O-dibutyryl cyclic adenosine 3':5'-monophosphate (Bt2cAMP) induces chondrogenic differentiation in different stem cell populations might aid the development of strategies in tissue engineering and cartilage repair.

  12. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines

    Directory of Open Access Journals (Sweden)

    Chen Lei

    2011-06-01

    Full Text Available Abstract Background Cancer stem cells (CSCs are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44. Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs.

  13. Vasoprotective effects of human CD34+ cells: towards clinical applications

    Directory of Open Access Journals (Sweden)

    Lerman Amir

    2009-07-01

    Full Text Available Abstract Background The development of cell-based therapeutics for humans requires preclinical testing in animal models. The use of autologous animal products fails to address the efficacy of similar products derived from humans. We used a novel immunodeficient rat carotid injury model in order to determine whether human cells could improve vascular remodelling following acute injury. Methods Human CD34+ cells were separated from peripheral buffy coats using automatic magnetic cell separation. Carotid arterial injury was performed in male Sprague-Dawley nude rats using a 2F Fogarty balloon catheter. Freshly harvested CD34+ cells or saline alone was administered locally for 20 minutes by endoluminal instillation. Structural and functional analysis of the arteries was performed 28 days later. Results Morphometric analysis demonstrated that human CD34+ cell delivery was associated with a significant reduction in intimal formation 4 weeks following balloon injury as compared with saline (I/M ratio 0.79 ± 0.18, and 1.71 ± 0.18 for CD34, and saline-treated vessels, respectively P Conclusion Delivery of human CD34+ cells limits neointima formation and improves arterial reactivity after vascular injury. These studies advance the concept of cell delivery to effect vascular remodeling toward a potential human cellular product.

  14. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos.

    Science.gov (United States)

    Ávila-González, Daniela; Vega-Hernández, Eva; Regalado-Hernández, Juan Carlos; De la Jara-Díaz, Julio Francisco; García-Castro, Irma Lydia; Molina-Hernández, Anayansi; Moreno-Verduzco, Elsa Romelia; Razo-Aguilera, Guadalupe; Flores-Herrera, Héctor; Portillo, Wendy; Díaz-Martínez, Néstor Emmanuel; García-López, Guadalupe; Díaz, Néstor Fabián

    2015-09-01

    Data from the literature suggest that human embryonic stem cell (hESC) lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1) from poor-quality (PQ) embryos derived and maintained on human amniotic epithelial cells (hAEC). This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers.

  15. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos

    Directory of Open Access Journals (Sweden)

    Daniela Ávila-González

    2015-09-01

    Full Text Available Data from the literature suggest that human embryonic stem cell (hESC lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1 from poor-quality (PQ embryos derived and maintained on human amniotic epithelial cells (hAEC. This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers.

  16. Human embryonic stem cells differentiate into functional renal proximal tubular-like cells.

    Science.gov (United States)

    Narayanan, Karthikeyan; Schumacher, Karl M; Tasnim, Farah; Kandasamy, Karthikeyan; Schumacher, Annegret; Ni, Ming; Gao, Shujun; Gopalan, Began; Zink, Daniele; Ying, Jackie Y

    2013-04-01

    Renal cells are used in basic research, disease models, tissue engineering, drug screening, and in vitro toxicology. In order to provide a reliable source of human renal cells, we developed a protocol for the differentiation of human embryonic stem cells into renal epithelial cells. The differentiated stem cells expressed markers characteristic of renal proximal tubular cells and their precursors, whereas markers of other renal cell types were not expressed or expressed at low levels. Marker expression patterns of these differentiated stem cells and in vitro cultivated primary human renal proximal tubular cells were comparable. The differentiated stem cells showed morphological and functional characteristics of renal proximal tubular cells, and generated tubular structures in vitro and in vivo. In addition, the differentiated stem cells contributed in organ cultures for the formation of simple epithelia in the kidney cortex. Bioreactor experiments showed that these cells retained their functional characteristics under conditions as applied in bioartificial kidneys. Thus, our results show that human embryonic stem cells can differentiate into renal proximal tubular-like cells. Our approach would provide a source for human renal proximal tubular cells that are not affected by problems associated with immortalized cell lines or primary cells.

  17. Growth suppressive efficacy of human lak cells against human lung-cancer implanted into scid mice.

    Science.gov (United States)

    Teraoka, S; Kyoizumi, S; Suzuki, T; Yamakido, M; Akiyama, M

    1995-06-01

    The purpose of our study was to determine the efficacy of immunotherapy using human lymphokine activated killer (LAK) cells against a human-lung squamous-cell carcinoma cell line (RERF-LC-AI) implanted into severe combined immunodeficient (SCID) mice. A statistically significant growth suppressive effect on RERF-LC-AI implanted into SCID mice was observed when human LAK cells were administered into the caudal vein of the mice treated with a continuous supply (initiated prior to LAK cells injection) of rIL-2. The human LAK cells stained with PKH 2, a fluorescent dye, for later detection using flow cytometry were administered into the caudal vein of RERF-LC-AI bearing SCID mice; the cells persisted for 7 days in the implanted lung cancer tissue and in the mouse peripheral blood, but for 5 days in the mouse spleen. The number of infiltrated human LAK cells in each tissue increased dose-dependently with the number of injected cells. The results indicate that the antitumor effect most likely occurred during the early implantation period of the human LAK cells. These results demonstrate the applicability of this model to the in vivo study of human lung cancer therapy.

  18. Use of human pluripotent stem cells to study and treatretinopathies

    Institute of Scientific and Technical Information of China (English)

    Karim Ben M’Barek; Florian Regent; Christelle Monville

    2015-01-01

    Human cell types affected by retinal diseases (such asage-related macular degeneration or retinitis pimentosa)are limited in cell number and of reduced accessibility. As aconsequence, their isolation for in vitro studies of diseasemechanisms or for drug screening efforts is fastidious.Human pluripotent stem cells (hPSCs), either of embryonicorigin or through reprogramming of adult somatic cells,represent a new promising way to generate models ofhuman retinopathies, explore the physiopathologicalmechanisms and develop novel therapeutic strategies.Disease-specific human embryonic stem cells were thefirst source of material to be used to study certain diseasestates. The recent demonstration that human somaticcells, such as fibroblasts or blood cells, can be geneticallyconverted to induce pluripotent stem cells together withthe continuous improvement of methods to differentiatethese cells into disease-affected cellular subtypes opensnew perspectives to model and understand a largenumber of human pathologies, including retinopathies.This review focuses on the added value of hPSCs for thedisease modeling of human retinopathies and the study oftheir molecular pathological mechanisms. We also discussthe recent use of these cells for establishing the validationstudies for therapeutic intervention and for the screeningof large compound libraries to identify candidate drugs.

  19. Proteomic Analysis of Human Blastocoel Fluid and Blastocyst Cells

    DEFF Research Database (Denmark)

    Linnert Jensen, Pernille; Beck, Hans Christian; Petersen, Jørgen;

    the cells of the blastocyst are exposed. The ICM is the starting point for the development of undifferentiated human embryonic stem cells (hESCs), which posses the potential to develop into any cell type present in the adult human body [1,2]. This ability makes hESCs a potential source of cells...... for regenerative medicine, such as in the treatment of diabetes, Parkinson’s disease, blindness, and spinal cord injury. In the context of developing regenerative medicine based on hESCs, it remains a challenge to employ safe, xenofree and defined culture conditions. The blastocoel fluid is per se the in vivo......The human blastocyst consists of 100-200 cells that are organized in an outer layer of differentiated trophectoderm (TE) cells lining the blastocyst cavity into which the undifferentiated inner cell mass (ICM) protrudes. The cavity of the blastocyst is filled with blastocoel fluid to which all...

  20. Proteomic Analysis of Human Blastocoel Fluid and Blastocyst Cells

    DEFF Research Database (Denmark)

    Linnert Jensen, Pernille; Beck, Hans Christian; Petersen, Jørgen

    the cells of the blastocyst are exposed. The ICM is the starting point for the development of undifferentiated human embryonic stem cells (hESCs), which posses the potential to develop into any cell type present in the adult human body [1,2]. This ability makes hESCs a potential source of cells......The human blastocyst consists of 100-200 cells that are organized in an outer layer of differentiated trophectoderm (TE) cells lining the blastocyst cavity into which the undifferentiated inner cell mass (ICM) protrudes. The cavity of the blastocyst is filled with blastocoel fluid to which all...... for regenerative medicine, such as in the treatment of diabetes, Parkinson’s disease, blindness, and spinal cord injury. In the context of developing regenerative medicine based on hESCs, it remains a challenge to employ safe, xenofree and defined culture conditions. The blastocoel fluid is per se the in vivo...

  1. Human induced pluripotent stem cells: A disruptive innovation.

    Science.gov (United States)

    De Vos, J; Bouckenheimer, J; Sansac, C; Lemaître, J-M; Assou, S

    2016-01-01

    This year (2016) will mark the 10th anniversary of the discovery of induced pluripotent stem cells (iPSCs). The finding that the transient expression of four transcription factors can radically remodel the epigenome, transcriptome and metabolome of differentiated cells and reprogram them into pluripotent stem cells has been a major and groundbreaking technological innovation. In this review, we discuss the major applications of this technology that we have grouped in nine categories: a model to study cell fate control; a model to study pluripotency; a model to study human development; a model to study human tissue and organ physiology; a model to study genetic diseases in a dish; a tool for cell rejuvenation; a source of cells for drug screening; a source of cells for regenerative medicine; a tool for the production of human organs in animals.

  2. Genome editing: a robust technology for human stem cells.

    Science.gov (United States)

    Chandrasekaran, Arun Pandian; Song, Minjung; Ramakrishna, Suresh

    2017-09-01

    Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

  3. Phenotype and functions of memory Tfh cells in human blood.

    Science.gov (United States)

    Schmitt, Nathalie; Bentebibel, Salah-Eddine; Ueno, Hideki

    2014-09-01

    Our understanding of the origin and functions of human blood CXCR5(+) CD4(+) T cells found in human blood has changed dramatically in the past years. These cells are currently considered to represent a circulating memory compartment of T follicular helper (Tfh) lineage cells. Recent studies have shown that blood memory Tfh cells are composed of phenotypically and functionally distinct subsets. Here, we review the current understanding of human blood memory Tfh cells and the subsets within this compartment. We present a strategy to define these subsets based on cell surface profiles. Finally, we discuss how increased understanding of the biology of blood memory Tfh cells may contribute insight into the pathogenesis of autoimmune diseases and the mode of action of vaccines.

  4. Human embryonic stem cell lines derived from the Chinese population

    Institute of Scientific and Technical Information of China (English)

    Zhen Fu FANG; Fan JIN; Hui GAI; Ying CHEN; Li WU; Ai Lian LIU; Bin CHEN; Hui Zhen SHENG

    2005-01-01

    Six human embryonic stem cell lines were established from surplus blastocysts. The cell lines expressed alkaline phosphatase and molecules typical of primate embryonic stem cells, including Oct-4, Nanog, TDGF1, Sox2, EBAF,Thy-1, FGF4, Rex-1, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81. Five of the six lines formed embryoid bodies that expressed markers of a variety of cell types; four of them formed teratomas with tissue types representative of all three embryonic germ layers. These human embryonic stem cells are capable of producing clones of undifferentiated morphology, and one of them was propagated to become a subline. Human embryonic stem cell lines from the Chinese population should facilitate stem cell research and may be valuable in studies of population genetics and ecology.

  5. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture

    Directory of Open Access Journals (Sweden)

    Nathalia R. Lestard

    2016-01-01

    Full Text Available Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells.

  6. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells

    OpenAIRE

    Islam, Mohammad S; Stemig, Melissa E.; Takahashi, Yutaka; Hui, Susanta K.

    2014-01-01

    Mesenchymal stem cells (MSCs) isolated from human pluripotent stem cells are comparable with bone marrow-derived MSCs in their function and immunophenotype. The purpose of this exploratory study was comparative evaluation of the radiation responses of mesenchymal stem cells derived from bone marrow- (BMMSCs) and from human embryonic stem cells (hESMSCs). BMMSCs and hESMSCs were irradiated at 0 Gy (control) to 16 Gy using a linear accelerator commonly used for cancer treatment. Cells were harv...

  7. The effects of TSH on human vascular endothelial cells and smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    田利民

    2014-01-01

    Objective To study the effect of thyroid-stimulating hormone(TSH)on human vascular endothelial cells and smooth muscle cells and to explore the roles of TSH in the development of atherosclerosis.Methods Human vascular endothelial cells and smooth muscle cells were cultured in vitro.MTT method was used to assay the effect of TSH on cell viability.Real-time PCR was used

  8. Applied Developmental Biology: Making Human Pancreatic Beta Cells for Diabetics.

    Science.gov (United States)

    Melton, Douglas A

    2016-01-01

    Understanding the genes and signaling pathways that determine the differentiation and fate of a cell is a central goal of developmental biology. Using that information to gain mastery over the fates of cells presents new approaches to cell transplantation and drug discovery for human diseases including diabetes. © 2016 Elsevier Inc. All rights reserved.

  9. Establishment of human embryonic stem cell line from gamete donors

    Institute of Scientific and Technical Information of China (English)

    LI Tao; ZHOU Can-quan; MAI Qing-yun; ZHUANG Guang-lun

    2005-01-01

    Background Human embryonic stem (HES) cell derived from human blastocyst can be propagated indefinitely in the primitive undifferentiated state while remaining pluripotent. It has exciting potential in human developmental biology, drug discovery, and transplantation medicine. But there are insufficient HES cell lines for further study. Methods Three oocyte donors were studied, and 3 in vitro fertilization (IVF) cycles were carried out to get blastocysts for the establishment of HES cell line. Isolated from blastocysts immunosurgically, inner cell mass (ICM) was cultured and propagated on mouse embryonic fibroblasts (MEFs). Once established, morphology, cell surface markers, karyotype and differentiating ability of the cell line were thoroughly analyzed.Results Four ICMs from 7 blastocysts were cultured on MEFs. After culture, one cell line (cHES-1) was established and met the criteria for defining human pluripotent stem cells including a series of markers used to identify pluripotent stem cells, morphological similarity to primate embryonic stem cells and HES reported else where. Normal and stable karyotype maintained over 60 passages, and demonstrated ability to differentiate into a wide variety of cell types.Conclusions HES cell lines can be established from gamete donors at a relatively highly efficient rate. The establishment will exert a widespread impact on biomedical research.

  10. Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy.

    Science.gov (United States)

    Senju, S; Haruta, M; Matsumura, K; Matsunaga, Y; Fukushima, S; Ikeda, T; Takamatsu, K; Irie, A; Nishimura, Y

    2011-09-01

    This report describes generation of dendritic cells (DCs) and macrophages from human induced pluripotent stem (iPS) cells. iPS cell-derived DC (iPS-DC) exhibited the morphology of typical DC and function of T-cell stimulation and antigen presentation. iPS-DC loaded with cytomegalovirus (CMV) peptide induced vigorous expansion of CMV-specific autologous CD8+ T cells. Macrophages (iPS-MP) with activity of zymosan phagocytosis and C5a-induced chemotaxis were also generated from iPS cells. Genetically modified iPS-MPs were generated by the introduction of expression vectors into undifferentiated iPS cells, isolation of transfectant iPS cell clone and subsequent differentiation. By this procedure, we generated iPS-MP expressing a membrane-bound form of single chain antibody (scFv) specific to amyloid β (Aβ), the causal protein of Alzheimer's disease. The scFv-transfectant iPS-MP exhibited efficient Aβ-specific phagocytosis activity. iPS-MP expressing CD20-specific scFv engulfed and killed BALL-1 B-cell leukemia cells. Anti-BALL-1 effect of iPS-MP in vivo was demonstrated in a xeno-transplantation model using severe combined immunodeficient mice. In addition, we established a xeno-free culture protocol to generate iPS-DC and iPS-MP. Collectively, we demonstrated the possibility of application of iPS-DC and macrophages to cell therapy.

  11. Stepwise development of MAIT cells in mouse and human.

    Directory of Open Access Journals (Sweden)

    Emmanuel Martin

    2009-03-01

    Full Text Available Mucosal-associated invariant T (MAIT cells display two evolutionarily conserved features: an invariant T cell receptor (TCRalpha (iTCRalpha chain and restriction by the nonpolymorphic class Ib major histocompatibility complex (MHC molecule, MHC-related molecule 1 (MR1. MR1 expression on thymus epithelial cells is not necessary for MAIT cell development but their accumulation in the gut requires MR1 expressing B cells and commensal flora. MAIT cell development is poorly known, as these cells have not been found in the thymus so far. Herein, complementary human and mouse experiments using an anti-humanValpha7.2 antibody and MAIT cell-specific iTCRalpha and TCRbeta transgenic mice in different genetic backgrounds show that MAIT cell development is a stepwise process, with an intra-thymic selection followed by peripheral expansion. Mouse MAIT cells are selected in an MR1-dependent manner both in fetal thymic organ culture and in double iTCRalpha and TCRbeta transgenic RAG knockout mice. In the latter mice, MAIT cells do not expand in the periphery unless B cells are added back by adoptive transfer, showing that B cells are not required for the initial thymic selection step but for the peripheral accumulation. In humans, contrary to natural killer T (NKT cells, MAIT cells display a naïve phenotype in the thymus as well as in cord blood where they are in low numbers. After birth, MAIT cells acquire a memory phenotype and expand dramatically, up to 1%-4% of blood T cells. Finally, in contrast with NKT cells, human MAIT cell development is independent of the molecular adaptor SAP. Interestingly, mouse MAIT cells display a naïve phenotype and do not express the ZBTB16 transcription factor, which, in contrast, is expressed by NKT cells and the memory human MAIT cells found in the periphery after birth. In conclusion, MAIT cells are selected by MR1 in the thymus on a non-B non-T hematopoietic cell, and acquire a memory phenotype and expand in the

  12. Human stem cells and articular cartilage regeneration.

    Science.gov (United States)

    Inui, Atsuyuki; Iwakura, Takashi; Reddi, A Hari

    2012-11-05

    The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES) cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS) cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  13. Human Stem Cells and Articular Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    A. Hari Reddi

    2012-11-01

    Full Text Available  The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  14. Growth-stimulatory effect of resveratrol in human cancer cells.

    Science.gov (United States)

    Fukui, Masayuki; Yamabe, Noriko; Kang, Ki Sung; Zhu, Bao Ting

    2010-08-01

    Earlier studies have shown that resveratrol could induce death in several human cancer cell lines in culture. Here we report our observation that resveratrol can also promote the growth of certain human cancer cells when they are grown either in culture or in athymic nude mice as xenografts. At relatively low concentrations (cells, but this effect was not observed in several other human cell lines tested. Analysis of cell signaling molecules showed that resveratrol induced the activation of JNK, p38, Akt, and NF-kappaB signaling pathways in these cells. Further analysis using pharmacological inhibitors showed that only the NF-kappaB inhibitor (BAY11-7082) abrogated the growth-stimulatory effect of resveratrol in cultured cells. In athymic nude mice, resveratrol at 16.5 mg/kg body weight enhanced the growth of MDA-MB-435s xenografts compared to the control group, while resveratrol at the 33 mg/kg body weight dose did not have a similar effect. Additional analyses confirmed that resveratrol stimulated cancer cell growth in vivo through activation of the NF-kappaB signaling pathway. Taken together, these observations suggest that resveratrol at low concentrations could stimulate the growth of certain types of human cancer cells in vivo. This cell type-specific mitogenic effect of resveratrol may also partly contribute to the procarcinogenic effect of alcohol consumption (rich in resveratrol) in the development of certain human cancers.

  15. Abnormal number cell division of human thyroid anaplastic carcinoma cell line, SW 1736

    Directory of Open Access Journals (Sweden)

    Keiichi Ikeda

    2015-12-01

    Full Text Available Cell division, during which a mother cell usually divides into two daughter cells during one cell cycle, is the most important physiological event of cell biology. We observed one-to-four cell division during imaging of live SW1736 human thyroid anaplastic carcinoma cells transfected with a plasmid expressing the hybrid protein of green fluorescent protein and histone 2B (plasmid eGFP-H2B. Analysis of the images revealed a mother cell divided into four daughter cells. And one of the abnormally divided daughter cells subsequently formed a dinucleate cell.

  16. Proteins differentially expressed in human beta-cells-enriched pancreatic islet cultures and human insulinomas

    DEFF Research Database (Denmark)

    Terra, Letícia F; Teixeira, Priscila C; Wailemann, Rosangela A M

    2013-01-01

    In view of the great demand for human beta-cells for physiological and medical studies, we generated cell lines derived from human insulinomas which secrete insulin, C-peptide and express neuroendocrine and islet markers. In this study, we set out to characterize their proteomes, comparing them t...

  17. Human CD8+ T cells mediate protective immunity induced by a human malaria vaccine in human immune system mice.

    Science.gov (United States)

    Li, Xiangming; Huang, Jing; Zhang, Min; Funakoshi, Ryota; Sheetij, Dutta; Spaccapelo, Roberta; Crisanti, Andrea; Nussenzweig, Victor; Nussenzweig, Ruth S; Tsuji, Moriya

    2016-08-31

    A number of studies have shown that CD8+ T cells mediate protective anti-malaria immunity in a mouse model. However, whether human CD8+ T cells play a role in protection against malaria remains unknown. We recently established human immune system (HIS) mice harboring functional human CD8+ T cells (HIS-CD8 mice) by transduction with HLA-A∗0201 and certain human cytokines using recombinant adeno-associated virus-based gene transfer technologies. These HIS-CD8 mice mount a potent, antigen-specific HLA-A∗0201-restricted human CD8+ T-cell response upon immunization with a recombinant adenovirus expressing a human malaria antigen, the Plasmodium falciparum circumsporozoite protein (PfCSP), termed AdPfCSP. In the present study, we challenged AdPfCSP-immunized HIS-CD8 mice with transgenic Plasmodium berghei sporozoites expressing full-length PfCSP and found that AdPfCSP-immunized (but not naïve) mice were protected against subsequent malaria challenge. The level of the HLA-A∗0201-restricted, PfCSP-specific human CD8+ T-cell response was closely correlated with the level of malaria protection. Furthermore, depletion of human CD8+ T cells from AdPfCSP-immunized HIS-CD8 mice almost completely abolished the anti-malaria immune response. Taken together, our data show that human CD8+ T cells mediate protective anti-malaria immunity in vivo.

  18. Isolation, Culture, and Imaging of Human Fetal Pancreatic Cell Clusters

    Science.gov (United States)

    Lopez, Ana D.; Kayali, Ayse G.; Hayek, Alberto; King, Charles C.

    2014-01-01

    For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation1-9. However in vitro, genesis of insulin producing cells from human fetal ICCs is low10; results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust11-17. A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro11-22, far fewer exist for ICCs10,23,24. Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue6. Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells. PMID:24895054

  19. Isolation, culture, and imaging of human fetal pancreatic cell clusters.

    Science.gov (United States)

    Lopez, Ana D; Kayali, Ayse G; Hayek, Alberto; King, Charles C

    2014-05-18

    For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation(1-9). However in vitro, genesis of insulin producing cells from human fetal ICCs is low(10); results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust(11-17). A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro(11-22), far fewer exist for ICCs(10,23,24). Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue(6). Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells.

  20. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ramasharma, K.; Li, C.H.

    1987-05-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and ..cap alpha..-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin.

  1. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin

    OpenAIRE

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34+ hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex...

  2. Human Soluble TRAIL Protein Inducing Apoptosis in Osteosarcoma Cell

    Institute of Scientific and Technical Information of China (English)

    ZHU Shaobo; YU Aixi; ZHANG Zhongning; WU Gang

    2007-01-01

    This study is to examine the effect of human recombinant soluble TRAIL (TNF-related apoptosis-inducing ligand) protein inducing apoptosis in MG-63 human osteosarcoma cells. The inhibitive rates of TRAIL to MG-63 cells were detected by MTT assay. The apoptosis induced by TRAIL in MG-63 human osteosarcoma cells was analyzed with FACS and TUNEL and the apoptotic bodies were observed by transmission electron microscope. MTT assay showed that the inhibitive rates of 500, 1 000,2 000 and 4 000 ng/mL TRAIL for 24 h were 10.1%, 24.3%,50.6% and 97.7% respectively. Flow cytometric analysis showed that after MG-63 cells were treated with 2 μg/mL TRAIL for 6 h,obvious apoptotic peak would immediately appear before diploid peak. Human soluble TRAIL protein can quickly kill MG-63 osteosarcoma cells selectively, and may have potential value for clinical treatment of osteosarcoma.

  3. Generation and application of human iPS cells

    Institute of Scientific and Technical Information of China (English)

    CUI Ghun; RAO LingJun; CHENG LinZhao; XIAO Lei

    2009-01-01

    Human embryonic stem (ES) cells are capable of unlimited proliferation and maintenance of pluripo-tency in vitro; these properties may lead to potential applications in regenerative medicine.However,immune rejection hampers the allogenic application of human ES cells.Over-expression of several specific transcription factors has been used to reprogram human adult cells into induced pluripotent stem (iPS) cells,which are similar to hESCs in many aspects.The iPS technique makes it possible to produce patient-specific pluripotent stem cells for transplantation therapy without immune rejection.However,some challenges remain,including viral vector integration into the genome,the existence of exogenous oncogenic factors,and low induction efficiency.Here,we review recent advances in human iPS methodology,as well as remaining challenges and its potential applications.

  4. Effect of Human Cytomegalovirus Infection on Nerve Growth Factor Expression in Human Glioma U251 Cells

    Institute of Scientific and Technical Information of China (English)

    HAI-TAO WANG; BIN WANG; ZHI-JUN LIU; ZHI-QIANG BAI; LING LI; HAI-YAN LIU; DONG-MENG QIAN; ZHI-YONG YAN; XU-XIA SONG

    2009-01-01

    Objectives To explore the change of endogenic nerve growth factor (NGF) expression in human glioma cells infected with human cytomegalovirus (HCMV). Methods U251 cells were cultured in RPMI 1640 culture medium and infected with HCMV AD169 strain in vitro to establish a cell model of viral infection. Morphologic changes of U251 cells were observed under inverted microscope before and after infection with HCMV. Expression of NGF gene and protein of cells was detected by RT-PCR and Western blotting before and after infection with HCMV. Results The cytopathic effects of HCMV-infected cells appeared on day 5 after infection. However, differential NGF expression was evident on day 7. NGF expression was decreased significantly in U251 cells on day 7 after infection in comparison with control group (P<0.05). Conclusion HCMV can down-regulate endogenous NGF levels in human glioma cell line U251.

  5. Derivation of novel human ground state naive pluripotent stem cells.

    Science.gov (United States)

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation

  6. Mesenchymal Stem Cell Levels of Human Spinal Tissues.

    Science.gov (United States)

    Harris, Liam; Vangsness, C Thomas

    2017-09-06

    .: Systematic Review. .: The aim of this study was to investigate, quantify, compare and compile the various mesenchymal stem cell tissue sources within human spinal tissues to act as a compendium for clinical and research application. .: Recent years have seen a dramatic increase in academic and clinical understanding of human mesenchymal stem cells (MSCs). Previously limited to cells isolated from bone marrow, the past decade has illicited the characterization and isolation of human MSCs from adipose, bone marrow, synovium, muscle, periosteum, peripheral blood, umbilical cord, placenta and numerous other tissues. As researchers explore practical applications of cells in these tissues, the absolute levels of MSCs in specific spinal tissue will be critical to guide future research. .: The PubMED, MEDLINE, EMBASE and Cochrane databases were searched for articles relating to the harvest, characterization, isolation and quantification of human mesenchymal stem cells from spinal tissues. Selected articles were examined for relevant data, categorized according to type of spinal tissue, and when possible, standardized to facilitate comparisons between sites. .: Human mesenchymal stem cell levels varied widely between spinal tissues. Yields for Intervertebral disc demonstrated roughly 5% of viable cells to be positive for MSC surface markers. Cartilage endplate cells yielded 18,500- 61,875 cells/ 0.8 mm thick sample of cartilage end plate. Ligamentum flavum yielded 250,000- 500,000 cells per gram of tissue. Annulus fibrosus FACS treatment found 29% of cells positive for MSC marker Stro-1. Nucleus pulposus yielded mean tissue samples of 40,584-234,137 MSCs/gram of tissue. .: Numerous tissues within and surrounding the spine represent a consistent and reliable source for the harvest and isolation of human mesenchymal stem cells. Among the tissues of the spine, the annulus fibrosus and ligamentum flavum each offer considerable levels of mesenchymal stem cells, and may

  7. Radiogenic transformation of human mammary epithelial cells in vitro

    Science.gov (United States)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  8. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Stefania Bruno

    2016-01-01

    Full Text Available Human liver stem cells (HLSCs are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs, and dendritic cells (DCs in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2 and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs, HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  9. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation.

    Science.gov (United States)

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  10. In vitro methods to culture primary human breast epithelial cells.

    Science.gov (United States)

    Raouf, Afshin; Sun, Yu Jia

    2013-01-01

    Current evidence suggests that much like leukemia, breast tumors are maintained by a small subpopulation of tumor cells that have stem cell properties. These cancer stem cells are envisaged to be responsible for tumor formation and relapse. Therefore, knowledge about their nature will provide a platform to develop therapies to eliminate these breast cancer stem cells. This concept highlights the need to understand the mechanisms that regulate the normal functions of the breast stem cells and their immediate progeny as alterations to these same mechanisms can cause these primitive cells to act as cancer stem cells. The study of the primitive cell functions relies on the ability to isolate them from primary sources of breast tissue. This chapter describes processing of discarded tissue from reduction mammoplasty samples as sources of normal primary human breast epithelial cells and describes cell culture systems to grow single-cell suspensions prepared from these reduction samples in vitro.

  11. Isolation and culture of human umbilical vein endothelial cells (HUVEC).

    Science.gov (United States)

    Cheung, Ambrose L

    2007-02-01

    Human-derived endothelial cells can now be routinely harvested from human umbilical veins. Studies with human umbilical vein endothelial cells (HUVEC) have been conducted with cells from passage 2 to 5. It is now also possible to cryopreserve primary and early-passaged HUVEC for future propagation and for forwarding to an end user by express courier. Stored HUVEC have been stably retrieved even after several years. These retrieval techniques have facilitated the deployment of HUVEC for many studies, including those for homeostasis, inflammatory disorders, atherosclerosis, cancer, and microbial adhesion and invasion. In this unit, we will delineate the procedure for harvesting, propagation, and storage of HUVEC.

  12. Chemical Conversion of Human Fibroblasts into Functional Schwann Cells

    Directory of Open Access Journals (Sweden)

    Eva C. Thoma

    2014-10-01

    Full Text Available Direct transdifferentiation of somatic cells is a promising approach to obtain patient-specific cells for numerous applications. However, conversion across germ-layer borders often requires ectopic gene expression with unpredictable side effects. Here, we present a gene-free approach that allows efficient conversion of human fibroblasts via a transient progenitor stage into Schwann cells, the major glial cell type of peripheral nerves. Using a multikinase inhibitor, we transdifferentiated fibroblasts into transient neural precursors that were subsequently further differentiated into Schwann cells. The resulting induced Schwann cells (iSCs expressed numerous Schwann cell-specific proteins and displayed neurosupportive and myelination capacity in vitro. Thus, we established a strategy to obtain mature Schwann cells from human postnatal fibroblasts under chemically defined conditions without the introduction of ectopic genes.

  13. Stem cell markers in the heart of the human newborn

    Directory of Open Access Journals (Sweden)

    Armando Faa

    2016-07-01

    Full Text Available The identification of cardiac progenitor cells in mammals raises the possibility that the human heart contains a population of stem cells capable of generating cardiomyocytes and coronary vessels. Several recent studies now show that the different cell types that characterize the adult human heart arise from a common ancestor. Human cardiac stem cells differentiate into cardiomyocytes, and, in lesser extent, into smooth muscle and endothelial cells. The characterization of human cardiac stem cells (CSCs has important clinical implications. In recent years, CD117 (c-kit has been reported to mark a subtype of stem/progenitor cells in the human heart, with stem cell-like properties, including the ability to self-renewal and clonogenicity multipotentiality. Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  14. Human periodontal ligament stem cells repair mental nerve injury*

    Institute of Scientific and Technical Information of China (English)

    Bohan Li; Hun-Jong Jung; Soung-Min Kim; Myung-Jin Kim; Jeong Won Jahng; Jong-Ho Lee

    2013-01-01

    Human periodontal ligament stem cells are easily accessible and can differentiate into Schwann cells. We hypothesized that human periodontal ligament stem cells can be used as an alternative source for the autologous Schwann cells in promoting the regeneration of injured peripheral nerve. To validate this hypothesis, human periodontal ligament stem cells (1 × 106) were injected into the crush-injured left mental nerve in rats. Simultaneously, autologous Schwann cells (1 × 106) and PBS were also injected as controls. Real-time reverse transcriptase polymerase chain reaction showed that at 5 days after injection, mRNA expression of low affinity nerve growth factor receptor was sig-nificantaly increased in the left trigeminal ganglion of rats with mental nerve injury. Sensory tests, histomorphometric evaluation and retrograde labeling demonstrated that at 2 and 4 weeks after in-jection, sensory function was significantly improved, the numbers of retrograde labeled sensory neurons and myelinated axons were significantly increased, and human periodontal ligament stem cells and autologous Schwann cells exhibited similar therapeutic effects. These findings suggest that transplantation of human periodontal ligament stem cells show a potential value in repair of mental nerve injury.

  15. Human B cells produce chemokine CXCL10 in the presence of Mycobacterium tuberculosis specific T cells

    DEFF Research Database (Denmark)

    Hoff, Soren T; Salman, Ahmed M; Ruhwald, Morten

    2015-01-01

    BACKGROUND: The role of B cells in human host response to Mycobacterium tuberculosis (Mtb) infection is still controversial, but recent evidence suggest that B cell follicle like structures within the lung may influence host responses through regulation of the local cytokine environment....... A candidate for such regulation could be the chemokine CXCL10. CXCL10 is mainly produced by human monocytes, but a few reports have also found CXCL10 production by human B cells. The objective of this study was to investigate CXCL10 production by human B cells in response to in vitro stimulation with Mtb...... antigens. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed human blood samples from 30 volunteer donors using multiparameter flow cytometry, and identified a subgroup of B cells producing CXCL10 in response to in vitro stimulation with antigens. T cells did not produce CXCL10, but CXCL10 production by B cells...

  16. Dissecting the oncogenic and tumorigenic potential of differentiated human induced pluripotent stem cells and human embryonic stem cells.

    Science.gov (United States)

    Ghosh, Zhumur; Huang, Mei; Hu, Shijun; Wilson, Kitchener D; Dey, Devaveena; Wu, Joseph C

    2011-07-15

    Pluripotent stem cells, both human embryonic stem cells (hESC) and human-induced pluripotent stem cells (hiPSC), can give rise to multiple cell types and hence have tremendous potential for regenerative therapies. However, the tumorigenic potential of these cells remains a great concern, as reflected in the formation of teratomas by transplanted pluripotent cells. In clinical practice, most pluripotent cells will be differentiated into useful therapeutic cell types such as neuronal, cardiac, or endothelial cells prior to human transplantation, drastically reducing their tumorigenic potential. Our work investigated the extent to which these differentiated stem cell derivatives are truly devoid of oncogenic potential. In this study, we analyzed the gene expression patterns from three sets of hiPSC- and hESC-derivatives and the corresponding primary cells, and compared their transcriptomes with those of five different types of cancer. Our analysis revealed a significant gene expression overlap of the hiPSC- and hESC-derivatives with cancer, whereas the corresponding primary cells showed minimum overlap. Real-time quantitative PCR analysis of a set of cancer-related genes (selected on the basis of rigorous functional and pathway analyses) confirmed our results. Overall, our findings suggested that pluripotent stem cell derivatives may still bear oncogenic properties even after differentiation, and additional stringent functional assays to purify these cells should be done before they can be used for regenerative therapy.

  17. Rho GTPase expression in human myeloid cells.

    Directory of Open Access Journals (Sweden)

    Suzanne F G van Helden

    Full Text Available Myeloid cells are critical for innate immunity and the initiation of adaptive immunity. Strict regulation of the adhesive and migratory behavior is essential for proper functioning of these cells. Rho GTPases are important regulators of adhesion and migration; however, it is unknown which Rho GTPases are expressed in different myeloid cells. Here, we use a qPCR-based approach to investigate Rho GTPase expression in myeloid cells.We found that the mRNAs encoding Cdc42, RhoQ, Rac1, Rac2, RhoA and RhoC are the most abundant. In addition, RhoG, RhoB, RhoF and RhoV are expressed at low levels or only in specific cell types. More differentiated cells along the monocyte-lineage display lower levels of Cdc42 and RhoV, while RhoC mRNA is more abundant. In addition, the Rho GTPase expression profile changes during dendritic cell maturation with Rac1 being upregulated and Rac2 downregulated. Finally, GM-CSF stimulation, during macrophage and osteoclast differentiation, leads to high expression of Rac2, while M-CSF induces high levels of RhoA, showing that these cytokines induce a distinct pattern. Our data uncover cell type specific modulation of the Rho GTPase expression profile in hematopoietic stem cells and in more differentiated cells of the myeloid lineage.

  18. Human embryonic stem cell derivation and directed differentiation.

    Science.gov (United States)

    Trounson, A

    2005-01-01

    Human embryonic stem cells (hESCs) are produced from normal, chromosomally aneuploid and mutant human embryos, which are available from in vitro fertilisation (IVF) for infertility or preimplantation diagnosis. These hESC lines are an important resource for functional genomics, drug screening and eventually cell and gene therapy. The methods for deriving hESCs are well established and repeatable, and are relatively successful, with a ratio of 1:10 to 1:2 hESC lines established to embryos used. hESCs can be formed from morula and blastocyst-stage embryos and from isolated inner cell mass cell (ICM) clusters. The hESCs can be formed and maintained on mouse or human somatic cells in serum-free conditions, and for several passages in cell-free cultures. The hESCs can be transfected with DNA constructs. Their gene expression profiles are being described and immunological characteristics determined. They may be grown indefinitely in culture while maintaining their original karyotype but this must be confirmed from time to time. hESCs spontaneously differentiate in the absence of the appropriate cell feeder layer, when overgrown in culture and when isolated from the ESC colony. All three major embryonic lineages are produced in differentiating attachment cultures and in unattached embryoid bodies. Cell progenitors of interest can be identified by markers, expression of reporter genes and characteristic morphology, and the culture thereafter enriched for further culture to more mature cell types. The most advanced directed differentiation pathways have been developed for neural cells and cardiac muscle cells, but many other cell types including haematopoietic progenitors, endothelial cells, lung alveoli, keratinocytes, pigmented retinal epithelium, neural crest cells and motor neurones, hepatic progenitors and cells that have some markers of gut tissue and pancreatic cells have been produced. The prospects for regenerative medicine are significant and there is much

  19. Generating trunk neural crest from human pluripotent stem cells

    OpenAIRE

    Miller Huang; Matthew L. Miller; McHenry, Lauren K.; Tina Zheng; Qiqi Zhen; Shirin Ilkhanizadeh; Conklin, Bruce R.; Bronner, Marianne E.; Weiss, William A.

    2016-01-01

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior “cranial” NCC form craniofacial bone, whereas solely posterior “trunk” NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typi...

  20. Hematopoietic Development from Human Induced Pluripotent Stem Cells

    OpenAIRE

    2009-01-01

    A decade of research on human embryonic stem cells (ESC) has paved the way for the discovery of alternative approaches to generating pluripotent stem cells.Combinatorial overexpression of a limited number of proteins linked to pluripotency in ESC was recently found to reprogram differentiated somatic cells back to a pluripotent state, enabling the derivation of isogenic (patient-specific) pluripotent stem cell lines. Current research is focusing on improving reprogramming protocols (e.g. circ...

  1. Lymphoreticular cells in human brain tumours and in normal brain.

    OpenAIRE

    1982-01-01

    The present investigation, using various rosetting assays of cell suspensions prepared by mechanical disaggregation or collagenase digestion, demonstrated lymphoreticular cells in human normal brain (cerebral cortex and cerebellum) and in malignant brain tumours. The study revealed T and B lymphocytes and their subsets (bearing receptors for Fc(IgG) and C3) in 5/14 glioma suspensions, comprising less than 15% of the cell population. Between 20-60% of cells in tumour suspensions morphologicall...

  2. Pathogenesis of Human Enterovirulent Bacteria: Lessons from Cultured, Fully Differentiated Human Colon Cancer Cell Lines

    Science.gov (United States)

    Liévin-Le Moal, Vanessa

    2013-01-01

    SUMMARY Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses. PMID:24006470

  3. Cardiac Progenitor Cell Extraction from Human Auricles

    KAUST Repository

    Di Nardo, Paolo

    2017-02-22

    For many years, myocardial tissue has been considered terminally differentiated and, thus, incapable of regenerating. Recent studies have shown, instead, that cardiomyocytes, at least in part, are slowly substituted by new cells originating by precursor cells mostly embedded into the heart apex and in the atria. We have shown that an elective region of progenitor cell embedding is represented by the auricles, non-contractile atria appendages that can be easily sampled without harming the patient. The protocol here reported describes how from auricles a population of multipotent, cardiogenic cells can be isolated, cultured, and differentiated. Further studies are needed to fully exploit this cell population, but, sampling auricles, it could be possible to treat cardiac patients using their own cells circumventing rejection or organ shortage limitations.

  4. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  5. Hydroxytyrosol protects against oxidative DNA damage in human breast cells.

    Science.gov (United States)

    Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J

    2011-10-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol's effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  6. Dark cells in human oral leukoplakias

    Energy Technology Data Exchange (ETDEWEB)

    Klein-Szanto, A.J.P. (Oak Ridge National Lab., TN); Sega, M.; Banoczy, J.; Albrecht, M.

    1982-01-01

    Dark basal keratinocytes, characterized by a strong affinity for basic dyes and by electron density of cytoplasm and nucleus, could be recognized in eleven oral leukoplakias. The percentage of dark cells was higher in the group comprising leukoplakias verrucosa, and erosiva (28% of the basal cells) than in the leukoplakia simplex group (10%). The presence of these cells is a good indicator of the degree of histological dysplasia and correlates well with the preneoplastic potential of these lesions.

  7. Cell sources for in vitro human liver cell culture models.

    Science.gov (United States)

    Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-09-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described.

  8. Staphylococcal SSL5 Binding to Human Leukemia Cells Inhibits Cell Adhesion to Endothelial Cells and Platelets

    Directory of Open Access Journals (Sweden)

    Annemiek M. E. Walenkamp

    2010-01-01

    Full Text Available Bacterial proteins provide promising tools for novel anticancer therapies. Staphylococcal superantigen-like 5 (SSL5 was recently described to bind P-selectin glycoprotein ligand-1 (PSGL-1 on leukocytes and to inhibit neutrophil rolling on a P-selectin surface. As leukocytes and tumor cells share many characteristics in migration and dissemination, we explored the potential of SSL5 as an antagonist of malignant cell behavior. Previously, it was demonstrated that rolling of human HL-60 leukemia cells on activated endothelial cells was mediated by P-selectin. In this study, we show that SSL5 targets HL-60 cells. Binding of SSL5 was rapid and without observed toxicity. Competition of SSL5 with the binding of three anti-PSGL-1 antibodies and P-selectin to HL-60 cells identified PSGL-1 as the ligand on HL-60 cells. Presence of sialyl Lewis x epitopes on PSGL-1 was crucial for its interaction with SSL5. Importantly, SSL5 not only inhibited the interaction of HL-60 cells with activated endothelial cells but also with platelets, which both play an important role in growth and metastasis of cancers. These data support the concept that SSL5 could be a lead in the search for novel strategies against hematological malignancies.

  9. Analysis of Intracellular Calcium Signaling in Human Embryonic Stem Cells.

    Science.gov (United States)

    Péntek, Adrienn; Pászty, Katalin; Apáti, Ágota

    2016-01-01

    Measurement of changes in intracellular calcium concentration is one of the most common and useful tools for studying signal transduction pathways or cellular responses in basic research and drug screening purposes as well. Increasing number of such applications using human pluripotent stem cells and their derivatives requires development of calcium signal measurements for this special cell type. Here we describe a modified protocol for analysis of calcium signaling events in human embryonic stem cells, which can be used for other pluripotent cell types (such as iPSC) or their differentiated offspring as well.

  10. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma.

    Directory of Open Access Journals (Sweden)

    G-Andre Banat

    Full Text Available Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+, cytotoxic-T cells (CD8+, T-helper cells (CD4+, B cells (CD20+, macrophages (CD68+, mast cells (CD117+, mononuclear cells (CD11c+, plasma cells, activated-T cells (MUM1+, B cells, myeloid cells (PD1+ and neutrophilic granulocytes (myeloperoxidase+ compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition.

  11. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin.

    Science.gov (United States)

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential.

  12. Antibody-Independent Function of Human B Cells Contributes to Antifungal T Cell Responses.

    Science.gov (United States)

    Li, Rui; Rezk, Ayman; Li, Hulun; Gommerman, Jennifer L; Prat, Alexandre; Bar-Or, Amit

    2017-03-08

    Fungal infections (e.g., Candida albicans) can manifest as serious medical illnesses, especially in the elderly and immune-compromised hosts. T cells are important for Candida control. Whether and how B cells are involved in antifungal immunity has been less clear. Although patients with agammaglobulinemia exhibit normal antifungal immunity, increased fungal infections are reported following B cell-depleting therapy, together pointing to Ab-independent roles of B cells in controlling such infections. To test how human B cells may contribute to fungal-associated human T cell responses, we developed a novel Ag-specific human T cell/B cell in vitro coculture system and found that human B cells could induce C. albicans-associated, MHC class II-restricted responses of naive T cells. Activated B cells significantly enhanced C. albicans-mediated Th1 and Th17 T cell responses, which were both strongly induced by CD80/CD86 costimulation. IL-6(+)GM-CSF(+) B cells were the major responding B cell subpopulation to C. albicans and provided efficient costimulatory signals to the T cells. In vivo B cell depletion in humans resulted in reduced C. albicans-associated T responses. Of note, the decreased Th17, but not Th1, responses could be reversed by soluble factors from B cells prior to depletion, in an IL-6-dependent manner. Taken together, our results implicate an Ab-independent cytokine-defined B cell role in human antifungal T cell responses. These findings may be particularly relevant given the prospects of chronic B cell depletion therapy use in lymphoma and autoimmune disease, as patients age and are exposed to serial combination therapies.

  13. Random mitotic activities across human embryonic stem cell colonies.

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Q.; Duggan, R.; Dasa, S.; Li, F.; Chen, L. (Biosciences Division)

    2010-08-01

    A systemic and quantitative study was performed to examine whether different levels of mitotic activities, assessed by the percentage of S-phase cells at any given time point, existed at different physical regions of human embryonic stem (hES) cell colonies at 2, 4, 6 days after cell passaging. Mitotically active cells were identified by the positive incorporation of 5-bromo-2-deoxyuridine (BrdU) within their newly synthesized DNA. Our data indicated that mitotically active cells were often distributed as clusters randomly across the colonies within the examined growth period, presumably resulting from local deposition of newly divided cells. This latter notion was further demonstrated by the confined growth of enhanced green florescence protein (EGFP) expressing cells amongst non-GFP expressing cells. Furthermore, the overall percentage of mitotically active cells remained constantly at about 50% throughout the 6-day culture period, indicating mitotic activities of hES cell cultures were time-independent under current growth conditions.

  14. Effect of nomegestrol acetate on estrogen biosynthesis and transformation in MCF-7 and T47-D breast cancer cells.

    Science.gov (United States)

    Shields-Botella, J; Chetrite, G; Meschi, S; Pasqualini, J R

    2005-01-01

    androstenedione to E(1) in the aromatase-rich choriocarcinoma cell line JEG-3. In conclusion, the inhibitory effect provoked by NOMAC on the enzymes involved in the biosynthesis of E(2) (sulfatase and 17HSD pathways) in estrogen-dependent breast cancer, as well as the stimulatory effect on the formation of the inactive E(1)S, can open attractive perspectives for future clinical trials.

  15. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  16. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  17. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  18. Connexin mutant embryonic stem cells and human diseases

    Institute of Scientific and Technical Information of China (English)

    Kiyomasa; Nishii; Yosaburo; Shibata; Yasushi; Kobayashi

    2014-01-01

    Intercellular communication via gap junctions allows cells within multicellular organisms to share small molecules. The effect of such interactions has been elucidated using mouse gene knockout strategies. Although several mutations in human gap junction-encoding connexin(Cx) have been described, Cx mutants in mice do not always recapitulate the human disease. Among the 20 mouse Cxs, Cx26, Cx43, and Cx45 play roles in early cardiac or placental development, and disruption of the genes results in lethality that hampers further analyses. Embryonic stem cells(ESCs) that lack Cx43 or Cx45 have made analysis feasible in both in vitro differentiated cell cultures and in vivo chimeric tissues. The success of mouse ESCs studies is leading to the use of induced pluripotent stem cells to learn more about the pathogenesis of human Cx diseases. This review summarizes the current status of mouse Cx disruption models and ESC differentiation studies, and discusses their implication for understanding human Cx diseases.

  19. Therapeutic potentials of human embryonic stem cells in Parkinson's disease

    National Research Council Canada - National Science Library

    Newman, Mary B; Bakay, Roy A E

    2008-01-01

    .... The isolation, differentiation, and long-term cultivation of human embryonic stem cells and the therapeutic research discovery made in relation to the beneficial properties of neurotrophic and neural...

  20. Connexin mutant embryonic stem cells and human diseases.

    Science.gov (United States)

    Nishii, Kiyomasa; Shibata, Yosaburo; Kobayashi, Yasushi

    2014-11-26

    Intercellular communication via gap junctions allows cells within multicellular organisms to share small molecules. The effect of such interactions has been elucidated using mouse gene knockout strategies. Although several mutations in human gap junction-encoding connexin (Cx) have been described, Cx mutants in mice do not always recapitulate the human disease. Among the 20 mouse Cxs, Cx26, Cx43, and Cx45 play roles in early cardiac or placental development, and disruption of the genes results in lethality that hampers further analyses. Embryonic stem cells (ESCs) that lack Cx43 or Cx45 have made analysis feasible in both in vitro differentiated cell cultures and in vivo chimeric tissues. The success of mouse ESCs studies is leading to the use of induced pluripotent stem cells to learn more about the pathogenesis of human Cx diseases. This review summarizes the current status of mouse Cx disruption models and ESC differentiation studies, and discusses their implication for understanding human Cx diseases.

  1. Carrier-mediated transport of oligopeptides in the human fibrosarcoma cell line HT1080

    National Research Council Canada - National Science Library

    Nakanishi, T; Tamai, I; Sai, Y; Sasaki, T; Tsuji, A

    1997-01-01

    To explore the feasibility of targeting human tumor cells via their transport systems, dipeptide uptake was studied in the human fibrosarcoma cell line HT1080 and the human fibroblast cell line IMR-90...

  2. Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells Using Sendai Virus.

    Science.gov (United States)

    Soares, Filipa A C; Pedersen, Roger A; Vallier, Ludovic

    2016-01-01

    This protocol describes the efficient isolation of peripheral blood mononuclear cells from circulating blood via density gradient centrifugation and subsequent generation of integration-free human induced pluripotent stem cells. Peripheral blood mononuclear cells are cultured for 9 days to allow expansion of the erythroblast population. The erythroblasts are then used to derive human induced pluripotent stem cells using Sendai viral vectors, each expressing one of the four reprogramming factors Oct4, Sox2, Klf4, and c-Myc.

  3. Role of endonuclease G in senescence-associated cell death of human endothelial cells

    OpenAIRE

    2011-01-01

    Mitotic cells in culture show a limited replicative potential and after extended subculturing undergo a terminal growth arrest termed cellular senescence. When cells reach the senescent phenotype, this is accompanied by a significant change in the cellular phenotype and massive changes in gene expression, including the upregulation of secreted factors. In human fibroblasts, senescent cells also acquire resistance to apoptosis. In contrary, in human endothelial cells, both replicative and stre...

  4. A novel method for generating xeno-free human feeder cells for human embryonic stem cell culture.

    Science.gov (United States)

    Meng, Guoliang; Liu, Shiying; Krawetz, Roman; Chan, Michael; Chernos, Judy; Rancourt, Derrick E

    2008-06-01

    Long-term cultures of human embryonic stem (hES) cells require a feeder layer for maintaining cells in an undifferentiated state and increasing karyotype stability. In routine hES cell culture, mouse embryonic fibroblast (MEF) feeders and animal component-containing media (FBS or serum replacement) are commonly used. However, the use of animal materials increases the risk of transmitting pathogens to hES cells and therefore is not optimal for use in cultures intended for human transplantation. There are other limitations with conventional feeder cells, such as MEFs, which have a short lifespan and can only be propagated five to six passages before senescing. Several groups have investigated maintaining existing hES cell lines and deriving new hES cell lines on human feeder layers. However, almost all of these human source feeder cells employed in previous studies were derived and cultured in animal component conditions. Even though one group previously reported the derivation and culture of human foreskin fibroblasts (HFFs) in human serum-containing medium, this medium is not optimal because HFFs routinely undergo senescence after 10 passages when cultured in human serum. In this study we have developed a completely animal-free method to derive HFFs from primary tissues. We demonstrate that animal-free (AF) HFFs do not enter senescence within 55 passages when cultured in animal-free conditions. This methodology offers alternative and completely animal-free conditions for hES cell culture, thus maintaining hES cell morphology, pluripotency, karyotype stability, and expression of pluripotency markers. Moreover, no difference in hES cell maintenance was observed when they were cultured on AF-HFFs of different passage number or independent derivations.

  5. Characterization and functionality of proliferative human Sertoli cells.

    Science.gov (United States)

    Chui, Kitty; Trivedi, Alpa; Cheng, C Yan; Cherbavaz, Diana B; Dazin, Paul F; Huynh, Ai Lam Thu; Mitchell, James B; Rabinovich, Gabriel A; Noble-Haeusslein, Linda J; John, Constance M

    2011-01-01

    It has long been thought that mammalian Sertoli cells are terminally differentiated and nondividing postpuberty. For most previous in vitro studies immature rodent testes have been the source of Sertoli cells and these have shown little proliferative ability when cultured. We have isolated and characterized Sertoli cells from human cadaveric testes from seven donors ranging from 12 to 36 years of age. The cells proliferated readily in vitro under the optimized conditions used with a doubling time of approximately 4 days. Nuclear 5-ethynyl-2'-deoxyuridine (EdU) incorporation confirmed that dividing cells represented the majority of the population. Classical Sertoli cell ultrastructural features, lipid droplet accumulation, and immunoexpression of GATA-4, Sox9, and the FSH receptor (FSHr) were observed by electron and fluorescence microscopy, respectively. Flow cytometry revealed the expression of GATA-4 and Sox9 by more than 99% of the cells, and abundant expression of a number of markers indicative of multipotent mesenchymal cells. Low detection of endogenous alkaline phosphatase activity after passaging showed that few peritubular myoid cells were present. GATA-4 and SOX9 expression were confirmed by reverse transcription polymerase chain reaction (RT-PCR), along with expression of stem cell factor (SCF), glial cell line-derived neurotrophic factor (GDNF), and bone morphogenic protein 4 (BMP4). Tight junctions were formed by Sertoli cells plated on transwell inserts coated with fibronectin as revealed by increased transepithelial electrical resistance (TER) and polarized secretion of the immunoregulatory protein, galectin-1. These primary Sertoli cell populations could be expanded dramatically in vitro and could be cryopreserved. The results show that functional human Sertoli cells can be propagated in vitro from testicular cells isolated from adult testis. The proliferative human Sertoli cells should have important applications in studying infertility

  6. Malaria and human red blood cells.

    Science.gov (United States)

    Mohandas, Narla; An, Xiuli

    2012-11-01

    Invasion by the malaria parasite, Plasmodium falciparum, brings about extensive changes in the host red cells. These include loss of the normal discoid shape, increased rigidity of the membrane, elevated permeability to a wide variety of ionic and other species and increased adhesiveness, most notably to endothelial surfaces. These effects facilitate survival of the parasite within the host cell and tend to increase the virulence of disease that includes cerebral malaria and anemia. Numerous proteins secreted by the internalized parasite and interacting with red cell membrane proteins are responsible for the changes occurring to the host cell. Anemia, a serious clinical manifestation of malaria, is due to increased destruction of both infected and uninfected red cells due to membrane alterations, as well as ineffective erythropoiesis. There is very good evidence that various red cell disorders including hemoglobinopathies and hereditary ovalocytosis decrease the virulence of disease following parasite infection. A number of mechanism(s) are likely responsible for the protective effect of various red cell abnormalities including decreased invasion, impaired intraerythrocytic development of the parasites and altered interaction between exported parasite proteins and the red cell membrane skeleton.

  7. The human T cell receptor alpha variable (TRAV) genes.

    Science.gov (United States)

    Scaviner, D; Lefranc, M P

    2000-01-01

    'Human T Cell Receptor Alpha Variable (TRAV) Genes', the eighth report of the 'IMGT Locus in Focus' section, comprises four tables: (1) 'Number of human germline TRAV genes at 14q11 and potential repertoire'; (2) 'Human germline TRAV genes at 14q11'; (3) 'Human TRAV allele table', and (4) 'Correspondence between the different human TRAV gene nomenclatures'. These tables are available at the IMGT Marie-Paule page of IMGT, the international ImMunoGeneTics database (http://imgt.cines.fr:8104) created by Marie-Paule Lefranc, Université Montpellier II, CNRS, France. Copyright 2000 S. Karger AG, Basel

  8. Subsets of human natural killer cells and their regulatory effects

    Science.gov (United States)

    Fu, Binqing; Tian, Zhigang; Wei, Haiming

    2014-01-01

    Human natural killer (NK) cells have distinct functions as NKtolerant, NKcytotoxic and NKregulatory cells and can be divided into different subsets based on the relative expression of the surface markers CD27 and CD11b. CD27+ NK cells, which are abundant cytokine producers, are numerically in the minority in human peripheral blood but constitute the large population of NK cells in cord blood, spleen, tonsil and decidua tissues. Recent data suggest that these NK cells may have immunoregulatory properties under certain conditions. In this review, we will focus on these new NK cell subsets and discuss how regulatory NK cells may serve as rheostats or sentinels in controlling inflammation and maintaining immune homeostasis in various organs. PMID:24303897

  9. Concise review: Human cell engineering: cellular reprogramming and genome editing.

    Science.gov (United States)

    Mali, Prashant; Cheng, Linzhao

    2012-01-01

    Cell engineering is defined here as the collective ability to both reset and edit the genome of a mammalian cell. Until recently, this had been extremely challenging to achieve as nontransformed human cells are significantly refractory to both these processes. The recent success in reprogramming somatic cells into induced pluripotent stem cells that are self-renewable in culture, coupled with our increasing ability to effect precise and predesigned genomic editing, now readily permits cellular changes at both the genetic and epigenetic levels. These dual capabilities also make possible the generation of genetically matched, disease-free stem cells from patients for regenerative medicine. The objective of this review is to summarize the key enabling developments on these two rapidly evolving research fronts in human cell engineering, highlight unresolved issues, and outline potential future research directions.

  10. Preparation of pancreatic β-cells from human iPS cells with small molecules.

    Science.gov (United States)

    Hosoya, Masaki

    2012-01-01

    Human induced pluripotent stem (iPS) cells obtained from patients are expected to be a useful source for cell transplantation therapy, because many patients (including those with type 1 diabetes and severe type 2 diabetes) are on waiting lists for transplantation for a long time due to the shortage of donors. At present, many concerns related to clinical application of human iPS cells have been raised, but rapid development of methods for the establishment, culture, and standardization of iPS cells will lead autologous cell therapy to be realistic sooner or later. However, establishment of a method for preparing some of desired cell types is still challenging. Regarding pancreatic β-cells, there have been many reports about differentiation of these cells from human embryonic stem (ES)/iPS cells, but a protocol for clinical application has still not been established. Since there is clear proof that cell transplantation therapy is effective for diabetes based on the results of clinical islet transplantation, pancreatic β-cells prepared from human iPS cells are considered likely to be effective for reducing the burden on patients. In this article, the current status of procedures for preparing pancreatic β-cells from human ES/iPS cells, including effective use of small molecules, is summarized, and some of the problems that still need to be overcome are discussed.

  11. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    Full Text Available In guiding hES cell technology toward the clinic, one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs we isolated human fetal liver stromal cells (hFLSCs from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (about 100 days. Basic fibroblast growth factor (bFGF is known to play an important role in promoting self-renewal of human embryonic stem (hES cells. So, we established transgenic hFLSCs that stably express bFGF by lentiviral vectors. These transgenic human feeder cells--bFGF-hFLSCs maintained the properties of H9 hES cells without supplementing with any exogenous growth factors. H9 hES cells culturing under these conditions maintained all hES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. Our results demonstrated that bFGF-hFLSCs feeder cells were central to establishing the signaling network among bFGF, insulin-like growth factor 2 (IGF-2, and transforming growth factor β (TGF-β, thereby providing the framework in which hES cells were instructed to self-renew or to differentiate. We also found that the conditioned medium of bFGF-hFLSCs could maintain the H9 hES cells under feeder-free conditions without supplementing with bFGF. Taken together, bFGF-hFLSCs had great potential as feeders for maintaining pluripotent hES cell lines more safely and economically.

  12. Expression of basal cell keratins in human prostate cancer metastases and cell lines.

    NARCIS (Netherlands)

    Leenders, G.J.L.H. van; Aalders, M.W.; Hulsbergen-van de Kaa, C.A.; Ruiter, D.J.; Schalken, J.A.

    2001-01-01

    Within normal human prostate epithelium, basal and luminal cells can be discriminated by their expression of keratins (K). While basal cells express K5/14, luminal cells show expression of K8/18 and an intermediate cell population can be identified by co-expression of K5/18. Prostate cancer is predo

  13. Generation of induced pluripotent stem cells from human β-thalassemia fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    Yixuan Wang; Yonghua Jiang; Sheng Liu; Xiaofang Sun; Shaorong Gao

    2009-01-01

    @@ Dear Editor, Induced pluripotent stem (iPS) cells have recently been generated by directly introducing several transcrip-tion factors into differentiated human somatic cells, and these iPS cells show great similarities to embryo-derived ES cells [1-3].

  14. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells

    OpenAIRE

    Buchholz Thomas A; Lacerda Lara; Xu Wei; Robertson Fredika; Ueno Naoto T; Lucci Anthony; Landis Melissa D; Rodriguez Angel A; Li Li; Cohen Evan; Gao Hui; Krishnamurthy Savitri; Zhang Xiaomei; Debeb Bisrat G; Cristofanilli Massimo

    2010-01-01

    Abstract Background Since the first suggestion of prospectively identifiable cancer stem cells in solid tumors, efforts have been made to characterize reported cancer stem cell surrogates in existing cancer cell lines, and cell lines rich with these surrogates have been used to screen for cancer stem cell targeted agents. Although 293T cells were derived from human embryonic kidney, transplantation of these cells into the mammary fat pad yields aggressive tumors that self-renew as evidenced b...

  15. Clonal, self-renewing and differentiating human and porcine urothelial cells, a novel stem cell population.

    Directory of Open Access Journals (Sweden)

    Hans M Larsson

    Full Text Available Although urothelial progenitor-like cells have been described in the human urinary tract, the existence of stem cells remains to be proven. Using a culture system that favors clonogenic epithelial cell growth, we evaluated and characterized clonal human urothelial cells. We isolated human urothelial cells that were clonogenic, capable of self-renewal and could develop into fully differentiated urothelium once re-implanted into the subcapsular space of nude mice. In addition to final urothelial cell differentiation, spontaneous formation of bladder-like microstructures was observed. By examining an epithelial stem cell signature marker, we found p63 to correlate with the self-renewal capacity of the isolated human urothelial clonal populations. Since a clinically relevant, long-term model for functional reconstitution of human cells does not exist, we sought to establish a culture method for porcine urothelial cells in a clinically relevant porcine model. We isolated cells from porcine ureter, urethra and bladder that were clonogenic and capable of self-renewal and differentiation into fully mature urothelium. In conclusion, we could isolate human and porcine cell populations, behaving as urothelial stem cells and showing clonogenicity, self-renewal and, once re-implanted, morphological differentiation.

  16. Toona Sinensis Extracts Induced Cell Cycle Arrest and Apoptosis in the Human Lung Large Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Wang

    2010-02-01

    Full Text Available Toona sinensis extracts have been shown to exhibit anti-cancer effects in human ovarian cancer cell lines, human promyelocytic leukemia cells and human lung adenocarcinoma. Its safety has also been confirmed in animal studies. However, its anti-cancer properties in human lung large cell carcinoma have not been studied. Here, we used a powder obtained by freeze-drying the super-natant of centrifuged crude extract from Toona sinensis leaves (TSL-1 to treat the human lung carcinoma cell line H661. Cell viability was evaluated by the 3-(4-,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide assay. Flow cytometry analysis revealed that TSL-1 blocked H661 cell cycle progression. Western blot analysis showed decreased expression of cell cycle proteins that promote cell cycle progression, including cyclin-dependent kinase 4 and cyclin D1, and increased the expression of proteins that inhibit cell cycle progression, including p27. Furthermore, flow cytometry analysis showed that TSL-1 induced H661 cell apoptosis. Western blot analysis showed that TSL-1 reduced the expression of the anti-apoptotic protein B-cell lymphoma 2, and degraded the DNA repair protein, poly(ADP-ribose polymerase. TSL-1 shows potential as a novel therapeutic agent or for use as an adjuvant for treating human lung large cell carcinoma.

  17. Novel factors modulating human β-cell proliferation.

    Science.gov (United States)

    Shirakawa, J; Kulkarni, R N

    2016-09-01

    β-Cell dysfunction in type 1 and type 2 diabetes is accompanied by a progressive loss of β-cells, and an understanding of the cellular mechanism(s) that regulate β-cell mass will enable approaches to enhance hormone secretion. It is becoming increasingly recognized that enhancement of human β-cell proliferation is one potential approach to restore β-cell mass to prevent and/or cure type 1 and type 2 diabetes. While several reports describe the factor(s) that enhance β-cell replication in animal models or cell lines, promoting effective human β-cell proliferation continues to be a challenge in the field. In this review, we discuss recent studies reporting successful human β-cell proliferation including WS6, an IkB kinase and EBP1 inhibitor; harmine and 5-IT, both DYRK1A inhibitors; GNF7156 and GNF4877, GSK-3β and DYRK1A inhibitors; osteoprotegrin and Denosmab, receptor activator of NF-kB (RANK) inhibitors; and SerpinB1, a protease inhibitor. These studies provide important examples of proteins and pathways that may prove useful for designing therapeutic strategies to counter the different forms of human diabetes.

  18. Cell diversity and network dynamics in photosensitive human brain organoids.

    Science.gov (United States)

    Quadrato, Giorgia; Nguyen, Tuan; Macosko, Evan Z; Sherwood, John L; Min Yang, Sung; Berger, Daniel R; Maria, Natalie; Scholvin, Jorg; Goldman, Melissa; Kinney, Justin P; Boyden, Edward S; Lichtman, Jeff W; Williams, Ziv M; McCarroll, Steven A; Arlotta, Paola

    2017-05-04

    In vitro models of the developing brain such as three-dimensional brain organoids offer an unprecedented opportunity to study aspects of human brain development and disease. However, the cells generated within organoids and the extent to which they recapitulate the regional complexity, cellular diversity and circuit functionality of the brain remain undefined. Here we analyse gene expression in over 80,000 individual cells isolated from 31 human brain organoids. We find that organoids can generate a broad diversity of cells, which are related to endogenous classes, including cells from the cerebral cortex and the retina. Organoids could be developed over extended periods (more than 9 months), allowing for the establishment of relatively mature features, including the formation of dendritic spines and spontaneously active neuronal networks. Finally, neuronal activity within organoids could be controlled using light stimulation of photosensitive cells, which may offer a way to probe the functionality of human neuronal circuits using physiological sensory stimuli.

  19. Rho GTPases and regulation of cell migration and polarization in human corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hou

    Full Text Available PURPOSE: Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. METHODS: Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. RESULTS: Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. CONCLUSION: Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells.

  20. Signaling pathways in failing human heart muscle cells.

    Science.gov (United States)

    Drexler, H; Hasenfuss, G; Holubarsch, C

    1997-07-01

    Experimental studies have delineated important signaling pathways in cardiomyocytes and their alterations in heart failure; however, there is now evidence that these observations are not necessarily applicable to human cardiac muscle cells. For example, angiotensin II (A II) does not exert positive inotropic effects in human ventricular muscle cells, in contrast to observation in rats. Thus, it is important to elucidate cardiac signaling pathways in humans in order to appreciate the functional role of neurohumoral or mechanical stimulation in human myocardium in health and disease. In the present article, we review signal pathways in the failing human heart based on studies in human cardiac tissues and in vivo physiological studies related to A II, nitric oxide, and β-adrenergic stimulation. (Trends Cardiovasc Med 1997; 7:151-160). © 1997, Elsevier Science Inc.

  1. AFM-based analysis of human metastatic cancer cells

    Science.gov (United States)

    Cross, Sarah E.; Jin, Yu-Sheng; Tondre, Julianne; Wong, Roger; Rao, Jian Yu; Gimzewski, James K.

    2008-09-01

    Recently biomechanics of cancer cells, in particular stiffness or elasticity, has been identified as an important factor relating to cancer cell function, adherence, motility, transformation and invasion. We report on the nanomechanical responses of metastatic cancer cells and benign mesothelial cells taken from human body cavity fluids using atomic force microscopy. Following our initial study (Cross et al 2007 Nat. Nanotechnol. 2 780-3), we report on the biophysical properties of patient-derived effusion cells and address the influence of cell morphology on measured cell stiffness. Using a cytocentrifugation method, which yields morphologically indistinguishable cells that can be prepared in 1 min and avoids any possible artifacts due to 12 h ex vivo culture, we find that metastatic tumor cells are more than 80% softer than benign cells with a distribution over six times narrower than that of normal cells. Consistent with our previous study, which yielded distinguishable cell populations based on ex vivo growth and morphological characteristics, our results show it is unlikely that morphology alone is sufficient to explain the difference in elastic moduli for these two cell types. Moreover, analysis of non-specific cell adhesion inherent to tumor and normal cells collected from patients show surface adhesion of tumor cells is ~33% less adhesive compared to that of normal cells. Our findings indicate that biomechanical-based functional analysis may provide an additional platform for cytological evaluation and diagnosis of cancer in the future.

  2. AFM-based analysis of human metastatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cross, Sarah E; Gimzewski, James K [Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 (United States); Jin Yusheng; Tondre, Julianne; Wong, Roger [Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095 (United States); Rao Jianyu [California NanoSystems Institute, University of California, Los Angeles, CA 90095 (United States)], E-mail: jrao@mednet.ucla.edu, E-mail: gim@chem.ucla.edu

    2008-09-24

    Recently biomechanics of cancer cells, in particular stiffness or elasticity, has been identified as an important factor relating to cancer cell function, adherence, motility, transformation and invasion. We report on the nanomechanical responses of metastatic cancer cells and benign mesothelial cells taken from human body cavity fluids using atomic force microscopy. Following our initial study (Cross et al 2007 Nat. Nanotechnol. 2 780-3), we report on the biophysical properties of patient-derived effusion cells and address the influence of cell morphology on measured cell stiffness. Using a cytocentrifugation method, which yields morphologically indistinguishable cells that can be prepared in 1 min and avoids any possible artifacts due to 12 h ex vivo culture, we find that metastatic tumor cells are more than 80% softer than benign cells with a distribution over six times narrower than that of normal cells. Consistent with our previous study, which yielded distinguishable cell populations based on ex vivo growth and morphological characteristics, our results show it is unlikely that morphology alone is sufficient to explain the difference in elastic moduli for these two cell types. Moreover, analysis of non-specific cell adhesion inherent to tumor and normal cells collected from patients show surface adhesion of tumor cells is {approx}33% less adhesive compared to that of normal cells. Our findings indicate that biomechanical-based functional analysis may provide an additional platform for cytological evaluation and diagnosis of cancer in the future.

  3. Cell membrane softening in human breast and cervical cancer cells

    Science.gov (United States)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  4. Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the importance of choosing the right sources of iPSCs, iPSC reprogramming methods, iPSC culture systems, embryoid body intermediates, pathway inhibitors, basal medium, serum, growth factors and culture surface coating. We also highlight some progress in the application of iPSC-MSCs in direct cell therapy, tissue engineering and gene therapy.

  5. Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells

    DEFF Research Database (Denmark)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen

    2015-01-01

    The presence of AT2 receptors in mitochondria and their role in NO generation and cell aging were recently demonstrated in various human and mouse non-tumour cells. We investigated the intracellular distribution of AT2 receptors including their presence in mitochondria and the role in the induction...... densities in mitochondria. Activation of the cell membrane AT2 receptors by a concomitant treatment with angiotensin II and the AT1 receptor antagonist, losartan, induces apoptosis but does not affect the rate of cell death. We demonstrate for the first time that the high-affinity, non-peptide AT2 receptor...... of apoptosis and cell death in cultured human uterine leiomyosarcoma (SK-UT-1) cells and control human uterine smooth muscle cells (HutSMC). The intracellular levels of the AT2 receptor are low in proliferating SK-UT-1 cells but the receptor is substantially up-regulated in quiescent SK-UT-1 cells with high...

  6. The DNA methylome of human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Li, Yingrui; Zhu, Jingde; Tian, Geng;

    2010-01-01

    DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold pe...

  7. Differentiation and functional regulation of human fetal NK cells.

    Science.gov (United States)

    Ivarsson, Martin A; Loh, Liyen; Marquardt, Nicole; Kekäläinen, Eliisa; Berglin, Lena; Björkström, Niklas K; Westgren, Magnus; Nixon, Douglas F; Michaëlsson, Jakob

    2013-09-01

    The human fetal immune system is naturally exposed to maternal allogeneic cells, maternal antibodies, and pathogens. As such, it is faced with a considerable challenge with respect to the balance between immune reactivity and tolerance. Here, we show that fetal natural killer (NK) cells differentiate early in utero and are highly responsive to cytokines and antibody-mediated stimulation but respond poorly to HLA class I-negative target cells. Strikingly, expression of killer-cell immunoglobulin-like receptors (KIRs) did not educate fetal NK cells but rendered them hyporesponsive to target cells lacking HLA class I. In addition, fetal NK cells were highly susceptible to TGF-β-mediated suppression, and blocking of TGF-β signaling enhanced fetal NK cell responses to target cells. Our data demonstrate that KIR-mediated hyporesponsiveness and TGF-β-mediated suppression are major factors determining human fetal NK cell hyporesponsiveness to HLA class I-negative target cells and provide a potential mechanism for fetal-maternal tolerance in utero. Finally, our results provide a basis for understanding the role of fetal NK cells in pregnancy complications in which NK cells could be involved, for example, during in utero infections and anti-RhD-induced fetal anemia.

  8. Hormone Production by Epithelial Cells of Human Thymus in vitro.

    Science.gov (United States)

    Yarilin, A. A.; Sharova, N. I.; Bulanova, E. C.; Kotchergina, N. I.; Mitin, A. N.; Kharchenko, T. Yu.; Arshinov, V. Yu.

    1996-12-01

    The conditions of hormone production by human thymic stromal cell line were studied. Human thymic stromal cells did not produce any hormones in 5-day monoculture. Co-cultivation of these cells with human thymocytes induced alpha1-thymosin and thymulin production increased to 4-5 days of co-cultivation. An increase in number of human thymic stromal cells and thymocyte elimination were observed in co-culture. The maximal stimulation of proliferation and hormone secretion by human thymic stromal cell was reached in their co-culturing with thymocytes at relative concentrations of 10(4) and 10(7) cells per ml. Thymocyte viability was important for inducing the stimulatory effect. The effect of viable cells could not be replaced by their supernatant. Stimulatory activity of CD4(-)CD8(-) and CD4(+)CD8(+) thymocytes was comparable, alpha1-thymosin and some of its synthetic fragments did not influence alpha1-thymosin synthesis or slightly inhibited it (in high concentrations). Synthetic peptide corresponding to C-terminal half of alpha1-thymosin molecule strongly enhanced production of this hormone.

  9. Telomere dynamics in human cells reprogrammed to pluripotency.

    Directory of Open Access Journals (Sweden)

    Steven T Suhr

    Full Text Available BACKGROUND: Human induced pluripotent stem cells (IPSCs have enormous potential in the development of cellular models of human disease and represent a potential source of autologous cells and tissues for therapeutic use. A question remains as to the biological age of IPSCs, in particular when isolated from older subjects. Studies of cloned animals indicate that somatic cells reprogrammed to pluripotency variably display telomere elongation, a common indicator of cell "rejuvenation." METHODOLOGY/PRINCIPAL FINDINGS: We examined telomere lengths in human skin fibroblasts isolated from younger and older subjects, fibroblasts converted to IPSCs, and IPSCs redifferentiated through teratoma formation and explant culture. In IPSCs analyzed at passage five (P5, telomeres were significantly elongated in 6/7 lines by >40% and approximated telomere lengths in human embryonic stem cells (hESCs. In cell lines derived from three IPSC-teratoma explants cultured to P5, two displayed telomeres shortened to lengths similar to input fibroblasts while the third line retained elongated telomeres. CONCLUSIONS/SIGNIFICANCE: While these results reveal some heterogeneity in the reprogramming process with respect to telomere length, human somatic cells reprogrammed to pluripotency generally displayed elongated telomeres that suggest that they will not age prematurely when isolated from subjects of essentially any age.

  10. The production and directed differentiation of human embryonic stem cells.

    Science.gov (United States)

    Trounson, Alan

    2006-04-01

    Human embryonic stem cells (hESCs) are being rapidly produced from chromosomally euploid, aneuploid, and mutant human embryos that are available from in vitro fertilization clinics treating patients for infertility or preimplantation genetic diagnosis. These hESC lines are an important resource for functional genomics, drug screening, and, perhaps eventually, cell and gene therapy. The methods for deriving hESCs are well established and repeatable and are relatively successful with a ratio of 1:10 to 1:2 new hESC lines produced from 4- to 8-d-old morula and blastocysts and from isolated inner cell mass cell clusters of human blastocysts. The hESCs can be formed and maintained on human somatic cells in humanized serum-free culture conditions and for several passages in cell-free culture systems. The hESCs can be transfected with DNA constructs. Their gene expression profiles are being described and immunological characteristics determined. They may be grown indefinitely in vitro while maintaining their original karyotype and epigenetic status, but this needs to be confirmed from time to time in long-term cultures. hESCs spontaneously differentiate in the absence of the appropriate cell feeder layer, when overgrown in culture and when isolated from the ESC colony. All three major embryonic lineages are produced in differentiating flat attachment cultures and unattached embryoid bodies. Cell progenitors of interest can be identified by markers, expression of reporter genes, and characteristic morphology, and the cells thereafter enriched for progenitor types and further culture to more mature cell types. Directed differentiation systems are well developed for ectodermal pathways that result in neural and glial cells and the mesendodermal pathway for cardiac muscle cells and many other cell types including hematopoietic progenitors and endothelial cells. Directed differentiation into endoderm has been more difficult to achieve, perhaps because of the lack of markers of

  11. ETM study of electroporation influence on cell morphology in human malignant melanoma and human primary gingival fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    Nina Skolucka; Malgorzata Daczewska; Jolanta Saczko; Agnieszka Chwilkowska; Anna Choromanska; Malgorzata Kotulska; Iwona Kaminska; Julita Kulbacka

    2011-01-01

    Objective:To estimate electroporation (EP) influence on malignant and normal cells.Methods:Two cell lines including human malignant melanoma (Me-45) and normal human gingival fibroblast (HGFs) were used. EP parameters were the following:250,1000,1750,2500 V/cm;50 μs by5 impulses for every case. The viability of cells after EP was estimated byMTT assay. The ultrastructural analysis was observed by transmission electron microscope (ZeissEM900). Results:In the current study we observed the intracellular effect followingEP on Me-45 and HGF cells. At the conditions applied, we did not observe any significant damage of mitochondrial activity in both cell lines treated byEP. Conversely, we showed thatEP in some conditions can stimulate cells to proliferation. Some changes induced byEP were only visible in electron microscopy. In fibroblast cells we observed significant changes in lower parameters ofEP (250 and1000 V/cm). After applying higher electric field intensities (2500 V/cm) we detected many vacuoles, myelin-like bodies and swallowed endoplasmic reticulum. In melanoma cells such strong pathological modifications afterEP were not observed, in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters ofEP.Conclusions:We can claim thatEP conditions are cell line dependent. In terms of the intracellular morphology, human fibroblasts are more sensitive to electric field as compared with melanoma cells. Optimal conditions should be determined for each cell line. Summarizing our study, we can conclude thatEP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells.

  12. ETM study of electroporation influence on cell morphology in human malignant melanoma and human primary gingival fibroblast cells.

    Science.gov (United States)

    Skolucka, Nina; Daczewska, Malgorzata; Saczko, Jolanta; Chwilkowska, Agnieszka; Choromanska, Anna; Kotulska, Malgorzata; Kaminska, Iwona; Kulbacka, Julita

    2011-04-01

    To estimate electroporation (EP) influence on malignant and normal cells. Two cell lines including human malignant melanoma (Me-45) and normal human gingival fibroblast (HGFs) were used. EP parameters were the following: 250, 1 000, 1 750, 2 500 V/cm; 50 µs by 5 impulses for every case. The viability of cells after EP was estimated by MTT assay. The ultrastructural analysis was observed by transmission electron microscope (Zeiss EM 900). In the current study we observed the intracellular effect following EP on Me-45 and HGF cells. At the conditions applied, we did not observe any significant damage of mitochondrial activity in both cell lines treated by EP. Conversely, we showed that EP in some conditions can stimulate cells to proliferation. Some changes induced by EP were only visible in electron microscopy. In fibroblast cells we observed significant changes in lower parameters of EP (250 and 1 000 V/cm). After applying higher electric field intensities (2 500 V/cm) we detected many vacuoles, myelin-like bodies and swallowed endoplasmic reticulum. In melanoma cells such strong pathological modifications after EP were not observed, in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters of EP. We can claim that EP conditions are cell line dependent. In terms of the intracellular morphology, human fibroblasts are more sensitive to electric field as compared with melanoma cells. Optimal conditions should be determined for each cell line. Summarizing our study, we can conclude that EP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells.

  13. EFFECT OF SOMATOSTATIN ON THE CELL CYCLE OF HUMAN GALLBLADDER CANCER CELL

    Institute of Scientific and Technical Information of China (English)

    李济宇; 全志伟; 张强; 刘建文

    2005-01-01

    Objective To explore the effect of somatostatin on the cell cycle of human gallbladder cancer cell. Methods Growth curve of gallbladder cancer cell was measured after somatostatin treated on gradient concentration. Simultaneously, the change of gallbladder cancer cell cycle was detected using flow cytometry.Results Concentration-dependent cell growth inhibition caused by somatostatin was detected in gallbladder cancer cell(P<0.05). Cell growth was arrested in S phase since 12h after somatostatin treated, which reached its peak at 24h, then fell down. The changes in apoptosis index of gallbladder cancer cell caused by somatostatin correlated with that's in cell cycle. Conclusion Somatostatin could inhibit the cell growth of human gallbladder cancer cell in vitro on higher concentration. It might result from inducing growth arrest in S phase in early stage and inducing apoptosis in the late stage.

  14. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  15. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaolan, E-mail: huxiaolan1998@yahoo.com.cn [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Zhang, Xianqi [The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou (China); Qiu, Shuifeng [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Yu, Daihua; Lin, Shuxin [Fourth Military Medical University, Xi' an (China)

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  16. Cell shape regulates global histone acetylation in human mammaryepithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Beyec, Johanne; Xu, Ren; Lee, Sun-Young; Nelson, Celeste M.; Rizki, Aylin; Alcaraz, Jordi; Bissell, Mina J.

    2007-02-28

    Extracellular matrix (ECM) regulates cell morphology and gene expression in vivo; these relationships are maintained in three-dimensional (3D) cultures of mammary epithelial cells. In the presence of laminin-rich ECM (lrECM), mammary epithelial cells round up and undergo global histone deacetylation, a process critical for their functional differentiation. However, it remains unclear whether lrECM-dependent cell rounding and global histone deacetylation are indeed part of a common physical-biochemical pathway. Using 3D cultures as well as nonadhesive and micropatterned substrata, here we showed that the cell 'rounding' caused by lrECM was sufficient to induce deacetylation of histones H3 and H4 in the absence of biochemical cues. Microarray and confocal analysis demonstrated that this deacetylation in 3D culture is associated with a global increase in chromatin condensation and a reduction in gene expression. Whereas cells cultured on plastic substrata formed prominent stress fibers, cells grown in 3D lrECM or on micropatterns lacked these structures. Disruption of the actin cytoskeleton with cytochalasin D phenocopied the lrECM-induced cell rounding and histone deacetylation. These results reveal a novel link between ECM-controlled cell shape and chromatin structure, and suggest that this link is mediated by changes in the actin cytoskeleton.

  17. Hematopoietic and nature killer cell development from human pluripotent stem cells.

    Science.gov (United States)

    Ni, Zhenya; Knorr, David A; Kaufman, Dan S

    2013-01-01

    Natural killer (NK) cells are key effectors of the innate immune system, protecting the host from a variety of infections, as well as malignant cells. Recent advances in the field of NK cell biology have led to a better understanding of how NK cells develop. This progress has directly translated to improved outcomes in patients receiving hematopoietic stem cell transplants to treat potentially lethal malignancies. However, key differences between mouse and human NK cell development and biology limits the use of rodents to attain a more in depth understanding of NK cell development. Therefore, a readily accessible and genetically tractable cell source to study human NK cell development is warranted. Our lab has pioneered the development of lymphocytes, specifically NK cells, from human embryonic stem cells (hESCs) and more recently induced pluripotent stem cells (iPSCs). This chapter describes a reliable method to generate NK cells from hESCs and iPSCs using murine stromal cell lines. Additionally, we include an updated approach using a spin-embryoid body (spin-EB) differentiation system that allows for human NK cell development completely defined in vitro conditions.

  18. Alteration of Cell Cycle Mediated by Zinc in Human Bronchial ...

    Science.gov (United States)

    Zinc (Zn2+), a ubiquitous ambient air contaminant, presents an oxidant challenge to the human lung and is linked to adverse human health effects. To further elucidate the adaptive and apoptotic cellular responses of human airway cells to Zn2+, we performed pilot studies to examine cell cycle perturbation upon exposure using a normal human bronchial epithelial cell culture (BEAS-2B). BEAS-2B cells were treated with low (0, 1, 2 µM) and apoptotic (3 µM) doses of Zn2+ plus 1 µM pyrithione, a Zn2+-specific ionophore facilitating cellular uptake, for up to 24 h. Fixed cells were then stained with propidium iodine (PI) and cell cycle phase was determined by fluorescent image cytometry. Initial results report the percentage of cells in the S phase after 18 h exposure to 1, 2, and 3 µM Zn2+ were similar (8%, 7%, and 12%, respectively) compared with 7% in controls. Cells exposed to 3 µM Zn2+ increased cell populations in G2/M phase (76% versus 68% in controls). Interestingly, exposure to 1 µM Zn2+ resulted in decreased (59%) cells in G2/M. While preliminary, these pilot studies suggest Zn2+ alters cell cycle in BEAS-2B cells, particularly in the G2/M phase. The G2/M checkpoint maintains DNA integrity by enabling initiation of DNA repair or apoptosis. Our findings suggest that the adaptive and apoptotic responses to Zn2+ exposure may be mediated via perturbation of the cell cycle at the G2/M checkpoint. This work was a collaborative summer student project. The st

  19. Characteristics of Mitochondrial Transformation into Human Cells.

    Science.gov (United States)

    Kesner, E E; Saada-Reich, A; Lorberboum-Galski, H

    2016-01-01

    Mitochondria can be incorporated into mammalian cells by simple co-incubation of isolated mitochondria with cells, without the need of transfection reagents or any other type of intervention. This phenomenon was termed mitochondrial transformation, and although it was discovered in 1982, currently little is known regarding its mechanism(s). Here we demonstrate that mitochondria can be transformed into recipient cells very quickly, and co-localize with endogenous mitochondria. The isolated mitochondria interact directly with cells, which engulf the mitochondria with cellular extensions in a way, which may suggest the involvement of macropinocytosis or macropinocytosis-like mechanisms in mitochondrial transformation. Indeed, macropinocytosis inhibitors but not clathrin-mediated endocytosis inhibition-treatments, blocks mitochondria transformation. The integrity of the mitochondrial outer membrane and its proteins is essential for the transformation of the mitochondria into cells; cells can distinguish mitochondria from similar particles and transform only intact mitochondria. Mitochondrial transformation is blocked in the presence of the heparan sulfate molecules pentosan polysulfate and heparin, which indicate crucial involvement of cellular heparan sulfate proteoglycans in the mitochondrial transformation process.

  20. Characteristics of Mitochondrial Transformation into Human Cells

    Science.gov (United States)

    Kesner, E. E.; Saada-Reich, A.; Lorberboum-Galski, H.

    2016-01-01

    Mitochondria can be incorporated into mammalian cells by simple co-incubation of isolated mitochondria with cells, without the need of transfection reagents or any other type of intervention. This phenomenon was termed mitochondrial transformation, and although it was discovered in 1982, currently little is known regarding its mechanism(s). Here we demonstrate that mitochondria can be transformed into recipient cells very quickly, and co-localize with endogenous mitochondria. The isolated mitochondria interact directly with cells, which engulf the mitochondria with cellular extensions in a way, which may suggest the involvement of macropinocytosis or macropinocytosis-like mechanisms in mitochondrial transformation. Indeed, macropinocytosis inhibitors but not clathrin-mediated endocytosis inhibition-treatments, blocks mitochondria transformation. The integrity of the mitochondrial outer membrane and its proteins is essential for the transformation of the mitochondria into cells; cells can distinguish mitochondria from similar particles and transform only intact mitochondria. Mitochondrial transformation is blocked in the presence of the heparan sulfate molecules pentosan polysulfate and heparin, which indicate crucial involvement of cellular heparan sulfate proteoglycans in the mitochondrial transformation process. PMID:27184109

  1. Characterizing human herpes virus 6 following hematopoietic stem cell transplantation.

    Science.gov (United States)

    Perissinotti, Anthony J; Gulbis, Alison; Shpall, Elizabeth J; Howell, Joshua

    2015-04-01

    Human herpes virus 6 reactivation occurs in approximately 50% of patients following hematopoietic stem cell transplant, however, the significance of human herpes virus 6 reactivation remains uncertain. A retrospective study was conducted analyzing clinical data of patients testing positive for human herpes virus 6 by quantitative polymerase chain reaction following hematopoietic stem cell transplant from 1 January 1998 to 1 October 2011. Data retrieved were used to describe the clinical course and outcome of human herpes virus 6 positive hematopoietic stem cell transplant patients. Sixty patients were identified who tested positive for human herpes virus 6 by polymerase chain reaction following hematopoietic stem cell transplant. A high proportion of patients were identified in this cohort with acute myeloid leukemia (28.3%), active disease (65%), transplanted with a matched unrelated donor (30%), ≥ 1 antigen mismatched (28.3%) matched unrelated donor, or an umbilical cord graft (25%), and those who received antithymocyte globulin (42.4%). Thirty-eight (63.3%) patients were treated for human herpes virus 6 with foscarnet alone or in combination with intravenous immunoglobulin, whereas 18 (30%) did not require treatment survival at Day 100 was 73.3%. This study suggests human herpes virus 6 reactivation occurs shortly after hematopoietic stem cell transplant (median of 25 days (interquartile range, 20-31.75) after hematopoietic stem cell transplant). Many potential risk factors are described in this report. Treatment of human herpes virus 6 predominately consisted of foscarnet with or without intravenous immunoglobulin; however, treatment of human herpes virus 6 was not always warranted. Furthermore, the effect of treatment on patient outcomes is uncertain. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Chestnut extract induces apoptosis in AGS human gastric cancer cells.

    Science.gov (United States)

    Lee, Hyun Sook; Kim, Eun Ji; Kim, Sun Hyo

    2011-06-01

    In Korea, chestnut production is increasing each year, but consumption is far below production. We investigated the effect of chestnut extracts on antioxidant activity and anticancer effects. Ethanol extracts of raw chestnut (RCE) or chestnut powder (CPE) had dose-dependent superoxide scavenging activity. Viable numbers of MDA-MD-231 human breast cancer cells, DU145 human prostate cancer cells, and AGS human gastric cancer cells decreased by 18, 31, and 69%, respectively, following treatment with 200 µg/mL CPE for 24 hr. CPE at various concentrations (0-200 µg/mL) markedly decreased AGS cell viability and increased apoptotic cell death dose and time dependently. CPE increased the levels of cleaved caspase-8, -7, -3, and poly (ADP-ribose) polymerase in a dose-dependent manner but not cleaved caspase-9. CPE exerted no effects on Bcl-2 and Bax levels. The level of X-linked inhibitor of apoptosis protein decreased within a narrow range following CPE treatment. The levels of Trail, DR4, and Fas-L increased dose-dependently in CPE-treated AGS cells. These results show that CPE decreases growth and induces apoptosis in AGS gastric cancer cells and that activation of the death receptor pathway contributes to CPE-induced apoptosis in AGS cells. In conclusion, CPE had more of an effect on gastric cancer cells than breast or prostate cancer cells, suggesting that chestnuts would have a positive effect against gastric cancer.

  3. Protein dynamics in individual human cells: experiment and theory.

    Directory of Open Access Journals (Sweden)

    Ariel Aharon Cohen

    Full Text Available A current challenge in biology is to understand the dynamics of protein circuits in living human cells. Can one define and test equations for the dynamics and variability of a protein over time? Here, we address this experimentally and theoretically, by means of accurate time-resolved measurements of endogenously tagged proteins in individual human cells. As a model system, we choose three stable proteins displaying cell-cycle-dependant dynamics. We find that protein accumulation with time per cell is quadratic for proteins with long mRNA life times and approximately linear for a protein with short mRNA lifetime. Both behaviors correspond to a classical model of transcription and translation. A stochastic model, in which genes slowly switch between ON and OFF states, captures measured cell-cell variability. The data suggests, in accordance with the model, that switching to the gene ON state is exponentially distributed and that the cell-cell distribution of protein levels can be approximated by a Gamma distribution throughout the cell cycle. These results suggest that relatively simple models may describe protein dynamics in individual human cells.

  4. Opiate receptor blockade on human granulosa cells inhibits VEGF release.

    Science.gov (United States)

    Lunger, Fabian; Vehmas, Anni P; Fürnrohr, Barbara G; Sopper, Sieghart; Wildt, Ludwig; Seeber, Beata

    2016-03-01

    The objectives of this study were to determine whether the main opioid receptor (OPRM1) is present on human granulosa cells and if exogenous opiates and their antagonists can influence granulosa cell vascular endothelial growth factor (VEGF) production via OPRM1. Granulosa cells were isolated from women undergoing oocyte retrieval for IVF. Complementary to the primary cells, experiments were conducted using COV434, a well-characterized human granulosa cell line. Identification and localization of opiate receptor subtypes was carried out using Western blot and flow cytometry. The effect of opiate antagonist on granulosa cell VEGF secretion was assessed by enzyme-linked immunosorbent assay. For the first time, the presence of OPRM1 on human granulosa cells is reported. Blocking of opiate signalling using naloxone, a specific OPRM1 antagonist, significantly reduced granulosa cell-derived VEGF levels in both COV434 and granulosa-luteal cells (P opiate receptors and opiate signalling in granulosa cells suggest a possible role in VEGF production. Targeting this signalling pathway could prove promising as a new clinical option in the prevention and treatment of ovarian hyperstimulation syndrome.

  5. Distinct Pattern of Human Vδ1 T Cells Recognizing MICA

    Institute of Scientific and Technical Information of China (English)

    Jianqiang Li; Lianxian Cui; Wei He

    2005-01-01

    γδ T cells represent one unique recognition pattern, the limited recognition, which distinguishes from the specific recognition for αβ T cells and pattern recognition for macrophages. Vδ1 γδ T cell is the major subset of human γδT cells, which predominates in mucosal tissue including the intestinal epithelia. Presently, a few antigens that human Vδ1TCR can recognize have been identified. Among them, MHC class Ⅰ chain-related molecules A (MICA)have been studied most intensively. Besides Vδ1TCR, MICA is also the ligand of NKG2D, a C-type lectin-like activating immunoreceptor. In human, only Vδ1 cells can simultaneously express both types of receptors of MICA while NK cells, αβ T cells and other subsets of γδ T cells likewise express NKG2D. Although the precise mechanisms are still enigmatic, this distinct pattern of Vδ1 cells recognizing MICA predicts unique biological significance of Vδ1 cells in immune defense. Recent years, some progresses have been made in this issue. In this review we summarize the related reports and put forward some novel views based on our group's studies.

  6. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  7. Melatonin and Doxorubicin synergistically induce cell apoptosis in human hepatoma cell lines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To investigate whether Melatonin has synergistic effects with Doxorubicin in the growth-inhibition and apoptosis-induction of human hepatoma cell lines HepG2 and Bel-7402.METHODS:The synergism of Melatonin and Doxorubicin inhibited the cell growth and induced cell apoptosis in human hepatoma cell lines HepG2 and Bel-7402.Cell viability was analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide(MTT)assay.Cell apoptosis was evaluated using TUNEL method and flow cytometry.Apoptosis-r...

  8. Derivation of the human embryonic stem cell line RCM1

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCM-1 was derived from a failed to fertilise egg undergoing parthenogenetic stimulation. The cell line shows normal pluripotency marker expression and differentiation to three germ layers in vitro and in vivo. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  9. In vitro radiosensitivity of human leukemia cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Weichselbaum, R.R.; Greenberger, J.S.; Schmidt, A.; Karpas, A.; Moloney, W.C.; Little, J.B.

    1981-05-01

    The in vitro radiobiologic survival values (anti n, D/sub 0/) of four tumor lines derived from human hematopoietic tumors were studied. These cell lines were HL60 promyelocytic leukemia; K562 erythroleukemia; 45 acute lymphocytic leukemia; and 176 acute monomyelogenous leukemia. More cell lines must be examined before the exact relationship between in vitro radiosensitivity and clinical radiocurability is firmly established.

  10. Cobalt uptake and binding in human red blood cells

    DEFF Research Database (Denmark)

    Simonsen, Lars Ole; Brown, Anthony M; Harbak, Henrik

    2011-01-01

    The basal uptake and cytoplasmic binding of cobalt was studied in human red cells using (57)Co as tracer. The basal uptake is linear with time, at a rate of about 10 µmol (l cells)(-1) h(-1) at 100 µM [Co(2+)](o), and is almost irreversible, as there is hardly any efflux into excess EDTA. Ionophore...

  11. Phosphorylation dynamics during early differentiation of human embryonic stem cells

    NARCIS (Netherlands)

    van Hoof, D.; Munoz, J.; Braam, S.R.; Pinkse, M.W.H.; Linding, R.; Heck, A.J.R.; Mummery, C.L.; Krijgsveld, J.

    2009-01-01

    Pluripotent stem cells self-renew indefinitely and possess characteristic protein-protein networks that remodel during differentiation. How this occurs is poorly understood. Using quantitative mass spectrometry, we analyzed the (phospho)proteome of human embryonic stem cells (hESCs) during

  12. Phosphorylation dynamics during early differentiation of human embryonic stem cells

    NARCIS (Netherlands)

    van Hoof, D.; Munoz, J.; Braam, S.R.; Pinkse, M.W.H.; Linding, R.; Heck, A.J.R.; Mummery, C.L.; Krijgsveld, J.

    2009-01-01

    Pluripotent stem cells self-renew indefinitely and possess characteristic protein-protein networks that remodel during differentiation. How this occurs is poorly understood. Using quantitative mass spectrometry, we analyzed the (phospho)proteome of human embryonic stem cells (hESCs) during different

  13. Improved genetic manipulation of human embryonic stem cells.

    NARCIS (Netherlands)

    Braam, S.R.; Denning, C.; van den Brink, S.; Kats, P.; Hochstenbach, R.; Passier, R.; Mummery, C.L.

    2008-01-01

    Low efficiency of transfection limits the ability to genetically manipulate human embryonic stem cells (hESCs), and differences in cell derivation and culture methods require optimization of transfection protocols. We transiently transferred multiple independent hESC lines with different growth requ

  14. Endogenous collagen influences differentiation of human multipotent mesenchymal stromal cells

    NARCIS (Netherlands)

    Fernandes, H.; Mentink, A.; Bank, R.; Stoop, R.; Blitterswijk, C. van; Boer, J. de

    2010-01-01

    Human multipotent mesenchymal stromal cells (hMSCs) are multipotent cells that, in the presence of appropriate stimuli, can differentiate into different lineages such as the osteogenic, chondrogenic, and adipogenic lineages. In the presence of ascorbic acid, MSCs secrete an extracellular matrix main

  15. Human tissue legislation in South Africa: Focus on stem cell ...

    African Journals Online (AJOL)

    2015-08-10

    Aug 10, 2015 ... The development of legislation is preceded by a policy document detailing the ... Most other stem cell types can be included in this broad definition. Pepper, ... appropriate legislative model in the fields of stem cell research and therapy. .... material for the purpose of reproductive cloning of a human being.

  16. Phosphorylation dynamics during early differentiation of human embryonic stem cells

    DEFF Research Database (Denmark)

    Van Hoof, Dennis; Muñoz, Javier; Braam, Stefan R

    2009-01-01

    Pluripotent stem cells self-renew indefinitely and possess characteristic protein-protein networks that remodel during differentiation. How this occurs is poorly understood. Using quantitative mass spectrometry, we analyzed the (phospho)proteome of human embryonic stem cells (hESCs) during...

  17. Human mast cell mediator cocktail excites neurons in human and guinea-pig enteric nervous system.

    Science.gov (United States)

    Schemann, M; Michel, K; Ceregrzyn, M; Zeller, F; Seidl, S; Bischoff, S C

    2005-04-01

    Neuroimmune interactions are an integral part of gut physiology and involved in the pathogenesis of inflammatory and functional bowel disorders. Mast cells and their mediators are important conveyors in the communication from the innate enteric immune system to the enteric nervous system (ENS). However, it is not known whether a mediator cocktail released from activated human mast cells affects neural activity in the ENS. We used the Multi-Site Optical Recording Technique to image single cell activity in guinea-pig and human ENS after application of a mast cell mediator cocktail (MCMC) that was released from isolated human intestinal mucosa mast cells stimulated by IgE-receptor cross-linking. Local application of MCMC onto individual ganglia evoked an excitatory response consisting of action potential discharge. This excitatory response occurred in 31%, 38% or 11% neurons of guinea-pig submucous plexus, human submucous plexus, or guinea-pig myenteric plexus, respectively. Compound action potentials from nerve fibres or fast excitatory synaptic inputs were not affected by MCMC. This study demonstrates immunoneural signalling in the human gut and revealed for the first time that an MCMC released from stimulated human intestinal mast cells induces excitatory actions in the human and guinea-pig ENS.

  18. Generation of human pluripotent stem cell-derived hepatocyte-like cells for drug toxicity screening.

    Science.gov (United States)

    Takayama, Kazuo; Mizuguchi, Hiroyuki

    2017-02-01

    Because drug-induced liver injury is one of the main reasons for drug development failures, it is important to perform drug toxicity screening in the early phase of pharmaceutical development. Currently, primary human hepatocytes are most widely used for the prediction of drug-induced liver injury. However, the sources of primary human hepatocytes are limited, making it difficult to supply the abundant quantities required for large-scale drug toxicity screening. Therefore, there is an urgent need for a novel unlimited, efficient, inexpensive, and predictive model which can be applied for large-scale drug toxicity screening. Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are able to replicate indefinitely and differentiate into most of the body's cell types, including hepatocytes. It is expected that hepatocyte-like cells generated from human ES/iPS cells (human ES/iPS-HLCs) will be a useful tool for drug toxicity screening. To apply human ES/iPS-HLCs to various applications including drug toxicity screening, homogenous and functional HLCs must be differentiated from human ES/iPS cells. In this review, we will introduce the current status of hepatocyte differentiation technology from human ES/iPS cells and a novel method to predict drug-induced liver injury using human ES/iPS-HLCs.

  19. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1979-01-01

    Efforts were directed towards maintenance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro. The production of human growth hormone (hGH) by this means would be of benefit for the treatment of certain human hypopituitary diseases such as dwarfism. One of the primary approaches was the testing of agents which may logically be expected to increase hGH release. The progress towards this goal is summarized. Results from preliminary experiments dealing with electrophoresis of pituitary cell for the purpose of somatotroph separation are described.

  20. Growth in Agarose of Human Cells Infected with Cytomegalovirus

    Science.gov (United States)

    Lang, David J.; Montagnier, Luc; Latarjet, Raymond

    1974-01-01

    After infection by human cytomegalovirus (CMV), human diploid fibroblasts could grow in agarose medium for several generations. Clones of infected cells grew for weeks, although in every case they ultimately underwent lysis owing to the cytopathic effect of the virus. Virus was inoculated at high dilution and after UV irradiation in an effort to derive cells infected with noninfectious defective particles still capable of inducing cell stimulation. Dilute or irradiated virus occasionally yielded large colonies of replicating cells, although permanent transformation was not observed. One clone derived from UV-CMV-infected cells was passaged four times before undergoing lysis. During these passages the cells exhibited alterations in morphology and orientation. Images PMID:4367907

  1. Risedronate inhibits human osteosarcoma cell invasion

    Directory of Open Access Journals (Sweden)

    Jung Sung

    2009-07-01

    Full Text Available Abstract Background Osteosarcoma is a highly malignant bone tumor and is the most commonly encountered malignant bone tumor in children and adolescents. Furthermore, significant numbers of patients eventually develop pulmonary metastases and succumb to the disease even after conventional multi-agent chemotherapy and surgical excision. Several solid tumors display enhanced expression of matrix metalloproteinases (MMPs, and recently clinical trials have been initiated on MMP-inhibitors. On the other hand, bisphosphonates (BPs, which have a profound effect on bone resorption, are widely used to treat osteoclast-mediated bone diseases. BPs are also known to inhibit tumor growths and metastases in some tumors such as breast cancer, renal cell carcinoma, and prostate cancer. Methods Two osteosarcoma cell lines (SaOS-2 and U2OS were treated with risedronate (0, 0.1, 1, 10 μM for 48 hours. Cell viabilities were determined using MTT assay, the mRNA levels of MMP-2 and MMP-9 were analyzed by reverse-transcription polymerase chain reaction, the amount of MMP-2 and MMP-9 protein were analyzed by Westernblot, the activities of MMP-2 and MMP-9 were observed by Gelatin zymography, and Matrigel invasion assays were used to investigate the invasive potential of osteosarcoma cell lines before and after risedronate treatment. Results The invasiveness of osteosarcoma cell lines (SaOS-2, U2OS were reduced in a dose dependent manner follow 48 hour treatment of up to 10 μM of the risedronate at which concentration no cytotoxicity occurred. Furthermore, the gelatinolytic activities and protein and mRNA levels of MMP-2 and MMP-9 were also suppressed by increasing risedronate concentrations. Conclusion Given that MMP-2 and MMP-9 are instrumental in tumor cell invasion, our results suggest the risedronate could reduce osteosarcoma cell invasion.

  2. Novel synthetic organosulfur compounds induce apoptosis of human leukemic cells.

    Science.gov (United States)

    Wong, W W; Macdonald, S; Langler, R F; Penn, L Z

    2000-01-01

    It has been well documented that natural organosulfur compounds (OSCs) derived from plants such as garlic, onions and mahogany trees possess antiproliferative properties; however, the essential chemical features of the active OSC compounds remain unclear. To investigate the association between OSC structure and growth inhibitory activity, we synthesized novel relatives of dysoxysulfone, a natural OSC derived from the Fijian medicinal plant, Dysoxylum richii. In this study, we have examined the antiproliferative effects of these novel OSCs on a model human leukemic cell system and show that the compounds segregate into three groups. Group I, consisting of compounds A, B, G and J, did not affect either cell proliferation or the cell cycle profile of the leukemic cell lines. Group II, consisting of compounds F and H, induced the cells to undergo apoptosis from the G2/M phase of the cell cycle. Group III, consisting of compounds C, D, E and I, decreased cell proliferation and induced apoptosis throughout the cell cycle. The apoptotic agonists of Group II and III shared a common disulfide moiety, essential for leukemic cell cytotoxicity. Interestingly, Group II compounds did not affect cell viability of normal human diploid cells, suggesting the regions flanking the disulfide group contributes to the specificity of cell killing. Thus, we provide evidence that structure-activity analysis of natural products can identify novel compounds for the development of new therapeutics that can trigger apoptosis in a tumor-specific manner.

  3. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells

    Institute of Scientific and Technical Information of China (English)

    Donghui Zhang; Wei Jiang; Meng Liu; Xin Sui; Xiaolei Yin; Song Chen; Yan Shi; Hongkui Deng

    2009-01-01

    Human pluripotent stem cells represent a potentially unlimited source of functional pancreatic endocrine lineage cells. Here we report a highly efficient approach to induce human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells to differentiate into mature insulin-producing cells in a chemical-defined culture system. The differentiated human ES cells obtained by this approach comprised nearly 25% insulin-positive cells as assayed by flow cytometry analysis, which released insulin/C-peptide in response to glucose stimuli in a manner comparable to that of adult human islets. Most of these insulin-producing cells co-expressed mature β cell-specific markers such as NKX6-1 and PDX1, indicating a similar gene expression pattern to adult islet β cells in vivo. In this study, we also demonstrated that EGF facilitates the expansion of PDX1-positive pancreatic progenitors. Moreover, our protocol also succeeded in efficiently inducing human iPS cells to differentiate into insulin-producing cells. Therefore, this work not only provides a new model to study the mechanism of human pancreatic specialization and maturation in vitro, but also enhances the possibility of utilizing patient-specific iPS cells for the treatment of diabetes.

  4. Probing Human NK Cell Biology Using Human Immune System (HIS) Mice.

    Science.gov (United States)

    Li, Yan; Di Santo, James P

    2016-01-01

    Our incomplete understanding of the mechanisms that orchestrate human lymphocyte differentiation and condition human immune responses is in part due to the limited access to normal human tissue samples that can inform on these complex processes. In addition, in vitro culture conditions fail to recapitulate the three-dimensional microenvironments that influence cell-cell interactions and impact on immune outcomes. Small animals provide a preclinical model to dissect and probe immunity and over the past decades, development of immunodeficient hosts that can be engrafted with human hematopoietic precursors and mature cells have led to the development of new in vivo models to study human lymphocyte development and function. Natural killer (NK) cells are implicated in the recognition and elimination of pathogen-infected and transformed cells and belong to a family of diverse innate lymphoid cells (ILCs) that provide early immune defense against disease. Here, we summarize the use of humanized mouse models for the study of NK cell and group 1 ILCs and their respective roles in immunity and tissue homeostasis.

  5. Effect of anthralin on cell viability in human prostate adenocarcinoma.

    Science.gov (United States)

    Raevskaya, A A; Gorbunova, S L; Savvateeva, M V; Severin, S E; Kirpichnikov, M P

    2012-07-01

    The study revealed the key role of serine protease hepsin activity in transition of in situ prostate adenocarcinoma into the metastasizing form. Inhibition of hepsin activity suppresses the invasive growth of the tumor. Hepsin is an convenient target for pharmacological agents, so the study of its inhibitory mechanisms is a promising avenue in drug development. Assay of proteolytic activity in various tumor cell lines in vitro showed that this activity in prostate adenocarcinoma cells significantly surpasses proteolytic activity in other examined tumor cell lines. Selective cytotoxic action of anthralin, an inhibitor of hepsin activity, on human adenocarcinoma cells was demonstrated in comparison with other tumor cell lines.

  6. Renal cell apoptosis in human lupus nephritis: a histological study

    DEFF Research Database (Denmark)

    Faurschou, M; Penkowa, Milena; Andersen, C B

    2009-01-01

    Nuclear autoantigens from apoptotic cells are believed to drive the immunological response in systemic lupus erythematosus (SLE). Conflicting data exist as to the possible renal origin of apoptotic cells in SLE patients with nephritis. We assessed the level of renal cell apoptosis in kidney...... biopsies from 35 patients with lupus nephritis by means of terminal deoxynucleotidyl-transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-digoxigenin nick end labeling (TUNEL). Five samples of normal kidney tissue served as control specimens. We did not observe apoptotic glomerular cells in any...... cells constitute a quantitatively important source of auto-antibody-inducing nuclear auto-antigens in human lupus nephritis....

  7. In vitro Study on Human Trophoblast Cells Infected with HCMV

    Institute of Scientific and Technical Information of China (English)

    肖娟; 张丹丹; 陈娟娟; 尹宗智; 刘涛; 艾继辉; 陈素华

    2010-01-01

    Human trophoblast cells were isolated and cultured in vitro in order to investigate possible pathogenesis of intrauterine infection caused by HCMV.Trophoblast cells were obtained by compound enzymes digestion and discontinuous percoll gradient.Cells and purity were identified by using immunocytochemistry assay with anti-CK7,Vim and β-hCG antibodies.HCMV AD169 strain replication in isolated trophoblast cells and cell apoptosis were detected at different time points post infection(p.i.).The results showed tha...

  8. Absence of C-type virus production in human leukemic B cell, T cell and null cell lines.

    Directory of Open Access Journals (Sweden)

    Ogura,Hajime

    1978-06-01

    Full Text Available Electron microscope observation of cultured human leukemic B cell, T cell and null cell lines and reverse transcriptase assay of the culture supernatants were all negative for the presence of C-type virus. Bat cell line, which propagates primate C-type viruses well, was cocultivated with the human leukemic cell lines, in the hope of amplification of virus if present. Three weeks after mixed culture, the culture supernatants were again examined for reverse transcriptase activity and the cells were tested for syncytia formation by cocultivation with rat XC, human KC and RSb cell lines. All these tests, except for the positive control using a simian sarcoma virus, were negative, suggesting that no C-type was produced from these human leukemic cell lines.

  9. Differentiation Potential of O Bombay Human-Induced Pluripotent Stem Cells and Human Embryonic Stem Cells into Fetal Erythroid-Like Cells

    OpenAIRE

    2015-01-01

    Objective: There is constant difficulty in obtaining adequate supplies of blood components, as well as disappointing performance of "universal" red blood cells. Advances in somatic cell reprogramming of human-induced pluripotent stem cells (hiPSCs) have provided a valuable alternative source to differentiate into any desired cell type as a therapeutic promise to cure many human disease. Materials and Methods: In this experimental study, we examined the erythroid differentiation potential of n...

  10. Impairment of cell cycle progression by sterigmatocystin in human pulmonary cells in vitro.

    Science.gov (United States)

    Huang, Shujuan; Wang, Juan; Xing, Lingxiao; Shen, Haitao; Yan, Xia; Wang, Junling; Zhang, Xianghong

    2014-04-01

    Sterigmatocystin (ST) is a carcinogenic mycotoxin that is commonly found in human food, animal feed and in the indoor environment. Although the correlation between ST exposure and lung cancer has been widely reported in many studies, the cytotoxicity of ST on human pulmonary cells is not yet fully understood. In the current study, we found that ST could induce DNA double-strand breaks in a human immortalized bronchial epithelial cell line (BEAS-2B cells) and a human lung cancer cell line (A549 cells). In addition, the effects of ST on cell cycle arrest were complex and dependent on the tested ST concentration and cell type. Low concentrations of ST arrested cells in the G2/M phase in BEAS-2B cells and in the S phase in A549 cells, while at high concentration both cells lines were arrested in S and G2/M phases. Furthermore, we observed that the modulation of cyclins and CDK expression showed concomitant changes with cell cycle arrest upon ST exposure in BEAS-2B and A549 cells. In conclusion, ST induced DNA damage and affected key proteins involved in cell cycle regulation to trigger genomic instability, which may be a potential mechanism underlying the developmental basis of lung carcinogenesis.

  11. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells

    Directory of Open Access Journals (Sweden)

    Jimin Xiong

    2016-01-01

    Full Text Available The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population.

  12. In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells.

    Science.gov (United States)

    Amabile, Giovanni; Welner, Robert S; Nombela-Arrieta, Cesar; D'Alise, Anna Morena; Di Ruscio, Annalisa; Ebralidze, Alexander K; Kraytsberg, Yevgenya; Ye, Min; Kocher, Olivier; Neuberg, Donna S; Khrapko, Konstantin; Silberstein, Leslie E; Tenen, Daniel G

    2013-02-21

    Lineage-restricted cells can be reprogrammed to a pluripotent state known as induced pluripotent stem (iPS) cells through overexpression of 4 transcription factors. iPS cells are similar to human embryonic stem (hES) cells and have the same ability to generate all the cells of the human body, including blood cells. However, this process is extremely inefficient and to date has been unsuccessful at differentiating iPS into hematopoietic stem cells (HSCs). We hypothesized that iPS cells, injected into NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ immunocompromised (NSG) mice could give rise to hematopoietic stem/progenitor cells (HSPCs) during teratoma formation. Here, we report a novel in vivo system in which human iPS cells differentiate within teratomas to derive functional myeloid and lymphoid cells. Similarly, HSPCs can be isolated from teratoma parenchyma and reconstitute a human immune system when transplanted into immunodeficient mice. Our data provide evidence that in vivo generation of patient customized cells is feasible, providing materials that could be useful for transplantation, human antibody generation, and drug screening applications.

  13. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxia; Cui, Ruina [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Xuejiang [State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029 (China); Hu, Jiayue [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Dai, Jiayin, E-mail: daijy@ioz.ac.cn [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China)

    2016-08-05

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  14. A Human Corneal Epithelial Cell Line Model for Limbal Stem Cell Biology and Limbal Immunobiology.

    Science.gov (United States)

    Shaharuddin, Bakiah; Ahmad, Sajjad; Md Latar, Nani; Ali, Simi; Meeson, Annette

    2016-10-14

    : Limbal stem cell (LSC) deficiency is a visually debilitating condition caused by abnormal maintenance of LSCs. It is treated by transplantation of donor-derived limbal epithelial cells (LECs), the success of which depends on the presence and quality of LSCs within the transplant. Understanding the immunobiological responses of these cells within the transplants could improve cell engraftment and survival. However, human corneal rings used as a source of LSCs are not always readily available for research purposes. As an alternative, we hypothesized that a human telomerase-immortalized corneal epithelial cell (HTCEC) line could be used as a model for studying LSC immunobiology. HTCEC constitutively expressed human leukocyte antigen (HLA) class I but not class II molecules. However, when stimulated by interferon-γ, HTCECs then expressed HLA class II antigens. Some HTCECs were also migratory in response to CXCL12 and expressed stem cell markers, Nanog, Oct4, and Sox2. In addition because both HTCECs and LECs contain side population (SP) cells, which are an enriched LSC population, we used these SP cells to show that some HTCEC SP cells coexpressed ABCG2 and ABCB5. HTCEC SP and non-side population (NSP) cells also expressed CXCR4, but the SP cells expressed higher levels. Both were capable of colony formation, but the NSP colonies were smaller and contained fewer cells. In addition, HTCECs expressed ΔNp63α. These results suggest the HTCEC line is a useful model for further understanding LSC biology by using an in vitro approach without reliance on a supply of human tissue. Limbal stem cell deficiency is a painful eye condition caused by abnormal maintenance of limbal stem cells. It is treated by transplantation of limbal epithelial cells derived from human tissue. The success of this treatment depends of the quality of the cells transplanted; however, some transplants fail. Understanding more about the immunobiology of these cells within the transplants could

  15. Yeast cell-based analysis of human lactate dehydrogenase isoforms.

    Science.gov (United States)

    Mohamed, Lulu Ahmed; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2015-12-01

    Human lactate dehydrogenase (LDH) has attracted attention as a potential target for cancer therapy and contraception. In this study, we reconstituted human lactic acid fermentation in Saccharomyces cerevisiae, with the goal of constructing a yeast cell-based LDH assay system. pdc null mutant yeast (mutated in the endogenous pyruvate decarboxylase genes) are unable to perform alcoholic fermentation; when grown in the presence of an electron transport chain inhibitor, pdc null strains exhibit a growth defect. We found that introduction of the human gene encoding LDHA complemented the pdc growth defect; this complementation depended on LDHA catalytic activity. Similarly, introduction of the human LDHC complemented the pdc growth defect, even though LDHC did not generate lactate at the levels seen with LDHA. In contrast, the human LDHB did not complement the yeast pdc null mutant, although LDHB did generate lactate in yeast cells. Expression of LDHB as a red fluorescent protein (RFP) fusion yielded blebs in yeast, whereas LDHA-RFP and LDHC-RFP fusion proteins exhibited cytosolic distribution. Thus, LDHB exhibits several unique features when expressed in yeast cells. Because yeast cells are amenable to genetic analysis and cell-based high-throughput screening, our pdc/LDH strains are expected to be of use for versatile analyses of human LDH. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  16. DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

    Science.gov (United States)

    Luo, Li Z.; Park, Sang-Won; Bates, Steven E.; Zeng, Xianmin; Iverson, Linda E.; O'Connor, Timothy R.

    2012-01-01

    The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use. PMID:22412831

  17. A Progenitor Cell Expressing Transcription Factor RORγt Generates All Human Innate Lymphoid Cell Subsets.

    Science.gov (United States)

    Scoville, Steven D; Mundy-Bosse, Bethany L; Zhang, Michael H; Chen, Li; Zhang, Xiaoli; Keller, Karen A; Hughes, Tiffany; Chen, Luxi; Cheng, Stephanie; Bergin, Stephen M; Mao, Hsiaoyin C; McClory, Susan; Yu, Jianhua; Carson, William E; Caligiuri, Michael A; Freud, Aharon G

    2016-05-17

    The current model of murine innate lymphoid cell (ILC) development holds that mouse ILCs are derived downstream of the common lymphoid progenitor through lineage-restricted progenitors. However, corresponding lineage-restricted progenitors in humans have yet to be discovered. Here we identified a progenitor population in human secondary lymphoid tissues (SLTs) that expressed the transcription factor RORγt and was unique in its ability to generate all known ILC subsets, including natural killer (NK) cells, but not other leukocyte populations. In contrast to murine fate-mapping data, which indicate that only ILC3s express Rorγt, these human progenitor cells as well as human peripheral blood NK cells and all mature ILC populations expressed RORγt. Thus, all human ILCs can be generated through an RORγt(+) developmental pathway from a common progenitor in SLTs. These findings help establish the developmental signals and pathways involved in human ILC development.

  18. Human thymic epithelial cells express functional HLA-DP molecules

    DEFF Research Database (Denmark)

    Jørgensen, A; Röpke, C; Nielsen, M

    1996-01-01

    T lymphocytes, we examined whether human thymic epithelial cells (TEC) expressed HLA-DP molecules. We present evidence that TEC obtained from short time culture express low but significant levels of HLA-DP molecules. The expression of HLA-DP molecules was comparable to or higher than the expression...... of HLA-DP allospecific primed lymphocyte typing (PLT) CD4 T cell lines. IFN-gamma treatment strongly upregulated the HLA-DP allospecific PLT responses whereas other PLT responses remained largely unchanged. In conclusion, these data indicate that human thymus epithelial cells express significant levels...

  19. Ethanol inhibits human bone cell proliferation and function in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Friday, K.E.; Howard, G.A. (University of Washington, Seattle (USA))

    1991-06-01

    The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantly reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.

  20. Human pluripotent stem cells: an emerging model in developmental biology.

    Science.gov (United States)

    Zhu, Zengrong; Huangfu, Danwei

    2013-02-01

    Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development 'in a dish'. We also summarize some of the recently developed genetic tools that greatly facilitate the interrogation of gene function during hPSC differentiation. With the development of high-throughput screening technologies, hPSCs have the potential to revolutionize gene discovery in mammalian development.

  1. Human embryonic stem cell therapies for neurodegenerative diseases.

    Science.gov (United States)

    Tomaskovic-Crook, Eva; Crook, Jeremy M

    2011-06-01

    There is a renewed enthusiasm for the clinical translation of human embryonic stem (hES) cells. This is abetted by putative clinically-compliant strategies for hES cell maintenance and directed differentiation, greater understanding of and accessibility to cells through formal cell registries and centralized cell banking for distribution, the revised US government policy on funding hES cell research, and paradoxically the discovery of induced pluripotent stem (iPS) cells. Additionally, as we consider the constraints (practical and fiscal) of delivering cell therapies for global healthcare, the more efficient and economical application of allogeneic vs autologous treatments will bolster the clinical entry of hES cell derivatives. Neurodegenerative disorders such as Parkinson's disease are primary candidates for hES cell therapy, although there are significant hurdles to be overcome. The present review considers key advances and challenges to translating hES cells into novel therapies for neurodegenerative diseases, with special consideration given to Parkinson's disease and Alzheimer's disease. Importantly, despite the focus on degenerative brain disorders and hES cells, many of the issues canvassed by this review are relevant to systemic application of hES cells and other pluripotent stem cells such as iPS cells.

  2. Acquired resistance to auranofin in cultured human cells.

    Science.gov (United States)

    Glennås, A; Rugstad, H E

    1985-01-01

    A substrain (HEAF) of cultured human epithelial cells, grown as monolayers, was selected for resistance to auranofin (AF), a gold-containing anti-arthritic drug, by growing the parental HE cells with stepwise increased concentrations of AF in the medium. HEAF cells acquired resistance to 2 mumol AF/l, twice the concentration tolerated by the sensitive HE cells. Resistance to AF was also demonstrated in another substrain (HE100) originally selected for by its cadmium resistance, and characterized by a high cytosolic metallothionein (MT) content. Following continuous exposure to 2 mumol AF/l for 4 days, 58% of the HEAF cells, 67% of the HE100 cells, and 16% of the HE cells remained adherent to the flasks, compared with non-treated controls. Following 24 h AF exposure to living cells, HEAF cells had one-half and HE100 cells twice the cellular and cytosolic gold concentration per mg protein, as compared with HE cells. Gel filtration of cell cytosols revealed gold-binding proteins with a mol. wt. of about 10 000 apparently occurring on AF exposure in HEAF and HE cells. They bound 10-15% of cytosolic gold. MT in HE100 cells bound AF-gold to about the same extent. We suggest that the ability of cells to maintain the gold concentration at a low level (HEAF) and trapping of gold by MT (HE100) or low molecular weight proteins occurring on AF treatment (HEAF) may be mechanisms contributing to the observed cellular resistance to AF.

  3. Cell-based microfluidic platform for mimicking human olfactory system.

    Science.gov (United States)

    Lee, Seung Hwan; Oh, Eun Hae; Park, Tai Hyun

    2015-12-15

    Various attempts have been made to mimic the human olfactory system using human olfactory receptors (hORs). In particular, OR-expressed cell-based odorant detection systems mimic the smell sensing mechanism of humans, as they exploit endogenous cellular signaling pathways. However, the majority of such cell-based studies have been performed in the liquid phase to maintain cell viability, and liquid odorants were used as detection targets. Here, we present a microfluidic device for the detection of gaseous odorants which more closely mimics the human olfactory system. Cells expressing hOR were cultured on a porous membrane. The membrane was then flipped over and placed between two compartments. The upper compartment is the gaseous part where gaseous odorants are supplied, while the lower compartment is the aqueous part where viable cells are maintained in the liquid medium. Using this simple microfluidic device, we were able to detect gaseous odorant molecules by a fluorescence signal. The fluorescence signal was generated by calcium influx resulting from the interaction between odorant molecules and the hOR. The system allowed detection of gaseous odorant molecules in real-time, and the findings showed that the fluorescence responses increased dose-dependently in the range of 0-2 ppm odorant. In addition, the system can discriminate among gaseous odorant molecules. This microfluidic system closely mimics the human olfactory system in the sense that the submerged cells detect gaseous odorants.

  4. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells.

    Science.gov (United States)

    Zhang, Kai; Pang, Kunpeng; Wu, Xinyi

    2014-06-15

    The maintenance of corneal dehydration and transparency depends on barrier and pump functions of corneal endothelial cells (CECs). The human CECs have no proliferation capacity in vivo and the ability to divide in vitro under culture conditions is dramatically limited. Thus, the acquisition of massive cells analogous to normal human CECs is extremely necessary whether from the perspective of cellular basic research or from clinical applications. Here we report the derivation of CEC-like cells from human embryonic stem cells (hESCs) through the periocular mesenchymal precursor (POMP) phase. Using the transwell coculture system of hESCs with differentiated human corneal stromal cells, we induced hESCs to differentiate into POMPs. Then, CEC-like cells were derived from POMPs with lens epithelial cell-conditioned medium. Within 1 week, CEC-like cells that expressed the corneal endothelium (CE) differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2 were detectable. Fluorescence-activated cell sorting (FACS)-based isolation of the N-cadherin/vimentin dual-positive population enriches for CEC-like cells. The isolated CEC-like cells were labeled with carboxyfluorescein diacetate, succinimidyl ester (CFDA SE) and seeded onto posterior acellular porcine corneal matrix lamellae to construct the CEC-like cell sheets. Pump function parameters of the CEC-like cell sheets approximated those of human donor corneas. Importantly, when the CEC-like cell sheets were transplanted into the eyes of rabbit CE dysfunction models, the corneal transparency was restored gradually. In conclusion, CEC-like cells derived from hESCs displayed characteristics of native human CECs. This renewable source of human CECs offers massive cells for further studies of human CEC biological characteristics and potential applications of replacement therapies as substitution for donor CECs in the future.

  5. Limited Gene Expression Variation in Human Embryonic Stem Cell and Induced Pluripotent Stem Cell Derived Endothelial Cells

    OpenAIRE

    2013-01-01

    Recent evidence suggests human embryonic stem cell (hESC) and induced pluripotent stem (iPS) cell lines have differences in their epigenetic marks and transcriptomes, yet the impact of these differences on subsequent terminally differentiated cells is less well understood. Comparison of purified, homogeneous populations of somatic cells derived from multiple independent human iPS and ES lines will be required to address this critical question. Here, we report a differentiation protocol based ...

  6. Gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells

    Institute of Scientific and Technical Information of China (English)

    胡庆柳; 朴英杰; 邹飞

    2003-01-01

    Objective To study the gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells.Methods Total RNA extracted from human bone marrow derived mesenchymal stem cells and tendon cells underwent reverse transcription, and the products were labeled with α-32P dCTP. The cDNA probes of total RNA were hybridized to cDNA microarray with 1176 genes, and then the signals were analyzed by AtlasImage analysis software Version 1.01a.Results Fifteen genes associated with cell proliferation and signal transduction were up-regulated, and one gene that takes part in cell-to-cell adhesion was down-regulated in tendon cells.Conclusion The 15 up-regulated and one down-regulated genes may be beneficial to the orientational differentiation of mesenchymal stem cells into tendon cells.

  7. Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells.

    Directory of Open Access Journals (Sweden)

    Yanting Xue

    Full Text Available Induced pluripotent stem cell (iPS cell holds great potential for applications in regenerative medicine, drug discovery, and disease modeling. We describe here a practical method to generate human iPS cells from urine-derived cells (UCs under feeder-free, virus-free, serum-free condition and without oncogene c-MYC. We showed that this approach could be applied in a large population with different genetic backgrounds. UCs are easily accessible and exhibit high reprogramming efficiency, offering advantages over other cell types used for the purpose of iPS generation. Using the approach described in this study, we have generated 93 iPS cell lines from 20 donors with diverse genetic backgrounds. The non-viral iPS cell bank with these cell lines provides a valuable resource for iPS cells research, facilitating future applications of human iPS cells.

  8. Characterization of Human Mammary Epithelial Stem Cells

    Science.gov (United States)

    2010-10-01

    breast is highly expressed by luminal epithelial cells and is less expressed by basal cells19,20. In contrast, CD49f (a6 integrin) has an inverse pattern...mouse stretched on its back. The hose and nose cone from the anesthetic vaporizer are securely attached to one side of the plate, and a heated pad is...the mouse by a nose cone. Check that the mouse has reached surgical anesthesia by loss of pedal withdrawal reflex . ! cautIon Institutional review

  9. Alteration of Cell Cycle Mediated by Zinc in Human Bronchial Epithelial Cells In Vitro

    Science.gov (United States)

    Zinc (Zn2+), a ubiquitous ambient air contaminant, presents an oxidant challenge to the human lung and is linked to adverse human health effects. To further elucidate the adaptive and apoptotic cellular responses of human airway cells to Zn2+, we performed pilot studies to examin...

  10. Alteration of Cell Cycle Mediated by Zinc in Human Bronchial Epithelial Cells In Vitro

    Science.gov (United States)

    Zinc (Zn2+), a ubiquitous ambient air contaminant, presents an oxidant challenge to the human lung and is linked to adverse human health effects. To further elucidate the adaptive and apoptotic cellular responses of human airway cells to Zn2+, we performed pilot studies to examin...

  11. Memory regulatory T cells reside in human skin.

    Science.gov (United States)

    Sanchez Rodriguez, Robert; Pauli, Mariela L; Neuhaus, Isaac M; Yu, Siegrid S; Arron, Sarah T; Harris, Hobart W; Yang, Sara Hsin-Yi; Anthony, Bryan A; Sverdrup, Francis M; Krow-Lucal, Elisabeth; MacKenzie, Tippi C; Johnson, David S; Meyer, Everett H; Löhr, Andrea; Hsu, Andro; Koo, John; Liao, Wilson; Gupta, Rishu; Debbaneh, Maya G; Butler, Daniel; Huynh, Monica; Levin, Ethan C; Leon, Argentina; Hoffman, William Y; McGrath, Mary H; Alvarado, Michael D; Ludwig, Connor H; Truong, Hong-An; Maurano, Megan M; Gratz, Iris K; Abbas, Abul K; Rosenblum, Michael D

    2014-03-01

    Regulatory T cells (Tregs), which are characterized by expression of the transcription factor Foxp3, are a dynamic and heterogeneous population of cells that control immune responses and prevent autoimmunity. We recently identified a subset of Tregs in murine skin with properties typical of memory cells and defined this population as memory Tregs (mTregs). Due to the importance of these cells in regulating tissue inflammation in mice, we analyzed this cell population in humans and found that almost all Tregs in normal skin had an activated memory phenotype. Compared with mTregs in peripheral blood, cutaneous mTregs had unique cell surface marker expression and cytokine production. In normal human skin, mTregs preferentially localized to hair follicles and were more abundant in skin with high hair density. Sequence comparison of TCRs from conventional memory T helper cells and mTregs isolated from skin revealed little homology between the two cell populations, suggesting that they recognize different antigens. Under steady-state conditions, mTregs were nonmigratory and relatively unresponsive; however, in inflamed skin from psoriasis patients, mTregs expanded, were highly proliferative, and produced low levels of IL-17. Taken together, these results identify a subset of Tregs that stably resides in human skin and suggest that these cells are qualitatively defective in inflammatory skin disease.

  12. CD34-positive interstitial cells of the human detrusor

    DEFF Research Database (Denmark)

    Rasmussen, Helle; Hansen, Alastair; Smedts, Frank;

    2007-01-01

    Interstitial cells of Cajal (ICC) are well described in the bowel wall. They are c-kit positive and play a role as pacemaker cells. Similar c-kit-positive cells have recently been described in the human bladder. The aim of this study was to characterize interstitial cells of the bladder detrusor...... using a panel of antibodies directed against CD117/c-kit, CD34, CD31, S100, tryptase, neurofilament, NSE, Factor-VIII and GFAP. A striking finding was an interstitial type of cell which is CD34 immunoreactive (CD34-ir) but CD117/c-kit negative. The cells have a tentacular morphology, enveloping...... and intermingling with individual muscle fasicles. Morphologically and immunohistochemically, they show no neurogenic, endothelial or mast cell differentiation. Transmission electron microscopy (TEM) showed the presence of interstitial cells with a round-to-oval nucleus, sparse perinuclear cytoplasm and long...

  13. Senegenin promotes in vitro proliferation of human neural progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Fang Shi; Zhigang Liang; Zixuan Guo; Ran Li; Fen Yu; Zhanjun Zhang; Xuan Wang; Xiaomin Wang

    2011-01-01

    Senegenin, an effective component of Polygala tenuifolia root extract, promotes proliferation and differentiation of neural progenitor cells in the hippocampus.However, the effects of senegenin on mesencephalon-derived neural progenitor cells remain poorly understood.Cells from a ventral mesencephalon neural progenitor cell line (ReNcell VM) were utilized as models for pharmaceutical screening.The effects of various senegenin concentrations on cell proliferation were analyzed,demonstrating that high senegenin concentrations (5, 10, 50, and 100 pmo/L), particularly 50 pmol/L, significantly promoted proliferation of ReNcell VM cells.In the mitogen-activated protein kinase signal transduction pathway, senegenin significantly increased phosphorylation levels of extracellular signal-regulated kinases.Moreover, cell proliferation was suppressed by extracellular signal-regulated kinase inhibitors.Results suggested that senegenin contributed to in vitro proliferation of human neural progenitor cells by upregulating phosphorylation of extracellular signal-regulated kinase.

  14. Comparative genomics of human stem cell factor (SCF

    Directory of Open Access Journals (Sweden)

    Moein Dehbashi

    2017-03-01

    Full Text Available Stem cell factor (SCF is a critical protein with key roles in the cell such as hematopoiesis, gametogenesis and melanogenesis. In the present study a comparative analysis on nucleotide sequences of SCF was performed in Humanoids using bioinformatics tools including NCBI-BLAST, MEGA6, and JBrowse. Our analysis of nucleotide sequences to find closely evolved organisms with high similarity by NCBI-BLAST tools and MEGA6 showed that human and Chimpanzee (Pan troglodytes were placed into the same cluster. By using JBrowse, we found that SCF in Neanderthal had a single copy number similar to modern human and partly conserved nucleotide sequences. Together, the results approved the gene flow and genetics similarity of SCF among human and P. troglodytes. This may suggest that during evolution, SCF gene transferred partly intact either on the basis of sequence or function from the same ancestors to P. troglodytes, the ancient human like Neanderthal, and then to the modern human.

  15. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.

    Science.gov (United States)

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-11-17

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells.

  16. Spermatozoa-like cell invaders (nuclear vlimata) in human neoplasia.

    Science.gov (United States)

    Logothetou-Rella, H

    1993-07-01

    Spermatozoa-like cells (nuclear vlimata) have been identified in malignant cell cultures and embryonic cells, also common in the cytology and histology of all types of human neoplasia even after chemotherapy. A new mechanism of invasion of malignant cells has been described, according to which neoplastic cells behave and function as parasites using host-cells to divide, survive and eventually produce nuclear vlimata (bullets). Nuclear vlimata are the end cell products of incomplete, unequal, assymetrical division of neoplastic cells. The nuclear vlima exhibits similar morphology to spermatozoa and virus (head with, or without, tail) and invades the cytoplasm and/or nucleus of surrounding host-cells by a similar mechanism to sperm-oocyte interaction (fertilization) or viral cell infection, in the events of nuclear vlima-->tumor-->nuclear vlima-->tumor. The nuclear vlima head contains and transfers DNA, and when incorporated into the host-nucleus is indistinguishable from nucleoli and when in the cytoplasm is similar to sperm pronucleus, observed after sperm penetration of the oocyte. Function of nuclear vlimata is directly dependent on the specific extracellular matrix produced by malignant cells, consisting of glycosaminoglycans-protease-membranes. This mechanism of invasion constitutes the link of all scientific information concerning human neoplasia.

  17. Single-Cell Transcriptomics of the Human Endocrine Pancreas.

    Science.gov (United States)

    Wang, Yue J; Schug, Jonathan; Won, Kyoung-Jae; Liu, Chengyang; Naji, Ali; Avrahami, Dana; Golson, Maria L; Kaestner, Klaus H

    2016-10-01

    Human pancreatic islets consist of multiple endocrine cell types. To facilitate the detection of rare cellular states and uncover population heterogeneity, we performed single-cell RNA sequencing (RNA-seq) on islets from multiple deceased organ donors, including children, healthy adults, and individuals with type 1 or type 2 diabetes. We developed a robust computational biology framework for cell type annotation. Using this framework, we show that α- and β-cells from children exhibit less well-defined gene signatures than those in adults. Remarkably, α- and β-cells from donors with type 2 diabetes have expression profiles with features seen in children, indicating a partial dedifferentiation process. We also examined a naturally proliferating α-cell from a healthy adult, for which pathway analysis indicated activation of the cell cycle and repression of checkpoint control pathways. Importantly, this replicating α-cell exhibited activated Sonic hedgehog signaling, a pathway not previously known to contribute to human α-cell proliferation. Our study highlights the power of single-cell RNA-seq and provides a stepping stone for future explorations of cellular heterogeneity in pancreatic endocrine cells. © 2016 by the American Diabetes Association.

  18. Telmisartan inhibits human urological cancer cell growth through early apoptosis

    Science.gov (United States)

    MATSUYAMA, MASAHIDE; FUNAO, KIYOAKI; KURATSUKURI, KATSUYUKI; TANAKA, TOMOAKI; KAWAHITO, YUTAKA; SANO, HAJIME; CHARGUI, JAMEL; TOURAINE, JEAN-LOUIS; YOSHIMURA, NORIO; YOSHIMURA, RIKIO

    2010-01-01

    Angiotensin II receptor blockers (ARBs) are widely used as hypertensive therapeutic agents. In addition, studies have provided evidence that ARBs have the potential to inhibit the growth of several types of cancer cells. It was reported that telmisartan (a type of ARB) has peroxisome proliferator-activated receptor (PPAR)-γ activation activity. We previously reported that the PPAR-γ ligand induces growth arrest in human urological cancer cells through apoptosis. In this study, we evaluated the effects of telmisartan and other ARBs on cell proliferation in renal cell carcinoma (RCC), bladder cancer (BC), prostate cancer (PC) and testicular cancer (TC) cell lines. The inhibitory effects of telmisartan and other ARBs (candesartan, valsartan, irbesartan and losartan) on the growth of the RCC, BC, PC and TC cell lines was investigated using an MTT assay. Flow cytometry and Hoechst staining were used to determine whether the ARBs induced apoptosis. Telmisartan caused marked growth inhibition in the urological cancer cells in a dose- and time-dependent manner. Urological cancer cells treated with 100 μM telmisartan underwent early apoptosis and DNA fragmentation. However, the other ARBs had no effect on cell proliferation in any of the urological cancer cell lines. Telmisartan may mediate potent anti-proliferative effects in urological cancer cells through PPAR-γ. Thus, telmisartan is a potent target for the prevention and treatment of human urological cancer. PMID:22993542

  19. Human natural killer cell development in secondary lymphoid tissues.

    Science.gov (United States)

    Freud, Aharon G; Yu, Jianhua; Caligiuri, Michael A

    2014-04-01

    For nearly a decade it has been appreciated that critical steps in human natural killer (NK) cell development likely occur outside of the bone marrow and potentially necessitate distinct microenvironments within extramedullary tissues. The latter include the liver and gravid uterus as well as secondary lymphoid tissues such as tonsils and lymph nodes. For as yet unknown reasons these tissues are naturally enriched with NK cell developmental intermediates (NKDI) that span a maturation continuum starting from an oligopotent CD34(+)CD45RA(+) hematopoietic precursor cell to a cytolytic mature NK cell. Indeed despite the detection of NKDI within the aforementioned tissues, relatively little is known about how, why, and when these tissues may be most suited to support NK cell maturation and how this process fits in with other components of the human immune system. With the discovery of other innate lymphoid subsets whose immunophenotypes overlap with those of NKDI, there is also need to revisit and potentially re-characterize the basic immunophenotypes of the stages of the human NK cell developmental pathway in vivo. In this review, we provide an overview of human NK cell development in secondary lymphoid tissues and discuss the many questions that remain to be answered in this exciting field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Human natural killer cell development in secondary lymphoid tissues

    Science.gov (United States)

    Freud, Aharon G.; Yu, Jianhua; Caligiuri, Michael A.

    2014-01-01

    For nearly a decade it has been appreciated that critical steps in human natural killer (NK) cell development likely occur outside of the bone marrow and potentially necessitate distinct microenvironments within extramedullary tissues. The latter include the liver and gravid uterus as well as secondary lymphoid tissues such as tonsils and lymph nodes. For as yet unknown reasons these tissues are naturally enriched with NK cell developmental intermediates (NKDI) that span a maturation continuum starting from an oligopotent CD34+CD45RA+ hematopoietic precursor cell to a cytolytic mature NK cell. Indeed despite the detection of NKDI within the aforementioned tissues, relatively little is known about how, why, and when these tissues may be most suited to support NK cell maturation and how this process fits in with other components of the human immune system. With the discovery of other innate lymphoid subsets whose immunophenotypes overlap with those of NKDI, there is also need to revisit and potentially re-characterize the basic immunophenotypes of the stages of the human NK cell developmental pathway in vivo. In this review, we provide an overview of human NK cell development in secondary lymphoid tissues and discuss the many questions that remain to be answered in this exciting field. PMID:24661538

  1. Human pluripotent stem cells: applications and challenges in neurological diseases

    Directory of Open Access Journals (Sweden)

    Youssef eHIBAOUI

    2012-07-01

    Full Text Available The ability to generate human pluripotent stem cells (hPSCs holds great promise for the understanding and the treatment of human neurological diseases in modern medicine. The hPSCs are considered for their in vitro use as research tools to provide relevant cellular model for human diseases, drug discovery and toxicity assays and for their in vivo use in regenerative medicine applications. In this review, we highlight recent progress, promises and challenges of hPSC applications in human neurological disease modelling and therapies.

  2. The known unknowns of the human dendritic cell network

    Directory of Open Access Journals (Sweden)

    Mélanie eDurand

    2015-03-01

    Full Text Available Dendritic cells (DC initiate and orient immune responses and comprise several subsets that display distinct phenotypes and properties. Most of our knowledge of DC subsets biology is based on mouse studies. In the past few years, the alignment of the human DC network with the mouse DC network has been the focus of much attention. Although comparative phenotypic and transcriptomic analysis have shown a high level of homology between mouse and human DC subsets, significant differences in phenotype and function have also been evidenced. Here we review recent advances in our understanding of the human DC network and discuss some remaining gaps and future challenges of the human DC field.

  3. Vascular potential of human pluripotent stem cells

    Science.gov (United States)

    Cardiovascular disease is the number one cause of death and disability in the US. Understanding the biological activity of stem and progenitor cells, and their ability to contribute to the repair, regeneration and remodeling of the heart and blood vessels affected by pathological processes is an ess...

  4. Genetic Expeditions with Haploid Human Cells

    NARCIS (Netherlands)

    Jae, L.T.

    2015-01-01

    Random mutagenesis followed by phenotypic selection (forward genetics) is among the most powerful tools to elucidate the molecular basis of intricate biological processes and has been used in a suite of model organisms throughout the last century. However, its application to cultured mammalian cells

  5. Biobanking human embryonic stem cell lines

    DEFF Research Database (Denmark)

    Holm, Søren

    2016-01-01

    are curiously absent from the particular stem cell banking policy discourse. This to some extent artificially isolates this discourse from the broader discussions about the flows of reproductive materials and tissues in modern society, and such isolation may lead to the interests of important actors being...

  6. GENETIC STUDY OF HUMAN CELLS IN VITRO

    Science.gov (United States)

    Chang, R. Shihman

    1960-01-01

    The isolation of carbohydrate variants from cultures of HeLa and conjunctival cells was described. Factors inherent in the cell culture system, such as parent populations and dialyzed serums, have been shown to influence the outcome of variant isolations. Established stable variants incorporated significantly more pentoses or lactate into various cell fractions than the parent cultures. Besides their abilities to propagate continuously in the selecting environments, the variants multiplied slower, were more susceptible to sub-zero preservation and the cytotoxic effect of D-2-deoxyglucose, showed lower cloning efficiencies and were less susceptible to the deleterious effect of glucose oxidase. The ribose variants also differed from the parent cultures in morphological appearance such as formation of multinucleated cells and ring-shaped colonies. They converted more ribose into other component sugars of mucopolysaccharides than the parent cultures. Preliminary analyses of the mucopolysaccharides extracted from the ribose variants and parent cultures showed large difference in their carbohydrate (Molisch-positive materials) and DNA ratios. Evidence suggests that a sequence of interrelated events from genetic selection to primitive morphogenesis has been established. PMID:13692337

  7. Genetic Expeditions with Haploid Human Cells

    NARCIS (Netherlands)

    Jae, L.T.

    2015-01-01

    Random mutagenesis followed by phenotypic selection (forward genetics) is among the most powerful tools to elucidate the molecular basis of intricate biological processes and has been used in a suite of model organisms throughout the last century. However, its application to cultured mammalian cells

  8. Melanopsin expressing human retinal ganglion cells

    DEFF Research Database (Denmark)

    Hannibal, Jens; Christensen, Anders Tolstrup; Heegaard, Steffen

    2017-01-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin belong to a heterogenic population of RGCs which regulate the circadian clock, masking behavior, melatonin suppression, the pupillary light reflex and sleep/wake cycles. The different functions seem...

  9. MUC1 in human milk blocks transmission of human immunodeficiency virus from dendritic cells to T cells

    NARCIS (Netherlands)

    Saeland, E.; Jong, de M.A.W.P.; Nabatov, A.; Kalay, H.; Kooijk, van Y.; Geijtenbeek, T.B.H.

    2009-01-01

    Mother-to-child transmission of human immunodeficiency virus-1 (HIV-1) occurs frequently via breast-feeding. HIV-1 targets DC-SIGN+ dendritic cells (DCs) in mucosal areas that allow efficient transmission of the virus to T cells. Here, we demonstrate that the epithelial mucin MUC1, abundant in milk,

  10. MUC1 in human milk blocks transmission of human immunodeficiency virus from dendritic cells to T cells

    NARCIS (Netherlands)

    Saeland, E.; Jong, de M.A.W.P.; Nabatov, A.; Kalay, H.; Kooijk, van Y.; Geijtenbeek, T.B.H.

    2009-01-01

    Mother-to-child transmission of human immunodeficiency virus-1 (HIV-1) occurs frequently via breast-feeding. HIV-1 targets DC-SIGN+ dendritic cells (DCs) in mucosal areas that allow efficient transmission of the virus to T cells. Here, we demonstrate that the epithelial mucin MUC1, abundant in milk,

  11. Genome editing of human pluripotent stem cells to generate human cellular disease models

    Directory of Open Access Journals (Sweden)

    Kiran Musunuru

    2013-07-01

    Full Text Available Disease modeling with human pluripotent stem cells has come into the public spotlight with the awarding of the Nobel Prize in Physiology or Medicine for 2012 to Drs John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent. This discovery has opened the door for the generation of pluripotent stem cells from individuals with disease and the differentiation of these cells into somatic cell types for the study of disease pathophysiology. The emergence of genome-editing technology over the past few years has made it feasible to generate and investigate human cellular disease models with even greater speed and efficiency. Here, recent technological advances in genome editing, and its utility in human biology and disease studies, are reviewed.

  12. Genome editing of human pluripotent stem cells to generate human cellular disease models.

    Science.gov (United States)

    Musunuru, Kiran

    2013-07-01

    Disease modeling with human pluripotent stem cells has come into the public spotlight with the awarding of the Nobel Prize in Physiology or Medicine for 2012 to Drs John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent. This discovery has opened the door for the generation of pluripotent stem cells from individuals with disease and the differentiation of these cells into somatic cell types for the study of disease pathophysiology. The emergence of genome-editing technology over the past few years has made it feasible to generate and investigate human cellular disease models with even greater speed and efficiency. Here, recent technological advances in genome editing, and its utility in human biology and disease studies, are reviewed.

  13. Mercury induces inflammatory mediator release from human mast cells

    Directory of Open Access Journals (Sweden)

    Peterson Erika

    2010-03-01

    Full Text Available Abstract Background Mercury is known to be neurotoxic, but its effects on the immune system are less well known. Mast cells are involved in allergic reactions, but also in innate and acquired immunity, as well as in inflammation. Many patients with Autism Spectrum Disorders (ASD have "allergic" symptoms; moreover, the prevalence of ASD in patients with mastocytosis, characterized by numerous hyperactive mast cells in most tissues, is 10-fold higher than the general population suggesting mast cell involvement. We, therefore, investigated the effect of mercuric chloride (HgCl2 on human mast cell activation. Methods Human leukemic cultured LAD2 mast cells and normal human umbilical cord blood-derived cultured mast cells (hCBMCs were stimulated by HgCl2 (0.1-10 μM for either 10 min for beta-hexosaminidase release or 24 hr for measuring vascular endothelial growth factor (VEGF and IL-6 release by ELISA. Results HgCl2 induced a 2-fold increase in β-hexosaminidase release, and also significant VEGF release at 0.1 and 1 μM (311 ± 32 pg/106 cells and 443 ± 143 pg/106 cells, respectively from LAD2 mast cells compared to control cells (227 ± 17 pg/106 cells, n = 5, p 2 (0.1 μM to the proinflammatory neuropeptide substance P (SP, 0.1 μM had synergestic action in inducing VEGF from LAD2 mast cells. HgCl2 also stimulated significant VEGF release (360 ± 100 pg/106 cells at 1 μM, n = 5, p 6 cells, and IL-6 release (466 ± 57 pg/106 cells at 0.1 μM compared to untreated cells (13 ± 25 pg/106 cells, n = 5, p 2 (0.1 μM to SP (5 μM further increased IL-6 release. Conclusions HgCl2 stimulates VEGF and IL-6 release from human mast cells. This phenomenon could disrupt the blood-brain-barrier and permit brain inflammation. As a result, the findings of the present study provide a biological mechanism for how low levels of mercury may contribute to ASD pathogenesis.

  14. Human BLyS facilitates engraftment of human PBL derived B cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Madelyn R Schmidt

    Full Text Available The production of fully immunologically competent humanized mice engrafted with peripheral lymphocyte populations provides a model for in vivo testing of new vaccines, the durability of immunological memory and cancer therapies. This approach is limited, however, by the failure to efficiently engraft human B lymphocytes in immunodeficient mice. We hypothesized that this deficiency was due to the failure of the murine microenvironment to support human B cell survival. We report that while the human B lymphocyte survival factor, B lymphocyte stimulator (BLyS/BAFF enhances the survival of human B cells ex vivo, murine BLyS has no such protective effect. Although human B cells bound both human and murine BLyS, nuclear accumulation of NF-kappaB p52, an indication of the induction of a protective anti-apoptotic response, following stimulation with human BLyS was more robust than that induced with murine BLyS suggesting a fundamental disparity in BLyS receptor signaling. Efficient engraftment of both human B and T lymphocytes in NOD rag1(-/- Prf1(-/- immunodeficient mice treated with recombinant human BLyS is observed after adoptive transfer of human PBL relative to PBS treated controls. Human BLyS treated recipients had on average 40-fold higher levels of serum Ig than controls and mounted a de novo antibody response to the thymus-independent antigens in pneumovax vaccine. The data indicate that production of fully immunologically competent humanized mice from PBL can be markedly facilitated by providing human BLyS.

  15. Delocalized Claudin-1 promotes metastasis of human osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Yuekui; Chen, Changqiong; Li, Bo; Tian, Xiaobin, E-mail: drtxb_guiyang@sina.com

    2015-10-23

    Tight junction proteins (TJPs) including Claudins, Occludin and tight junction associated protein Zonula occludens-1 (ZO-1), are the most apical component of junctional complex that mediates cell–cell adhesion in epithelial and endothelial cells. In human malignancies, TJPs are often deregulated and affect cellular behaviors of tumor cells. In this study, we investigated alternations of TJPs and related biological characteristics in human osteosarcoma (OS). Claudin1 was increased in the metastatic OS cells (KRIB and KHOS) compared with the normal osteoblast cells (hFOB1.19) or primary tumor cells (HOS and U2OS), whereas no significant difference was found in Occludin and ZO-1. Immunohistochemistry, immunofluorescence and Western blotting revealed that Claudin1 was initially localized at cell junctions of normal osteoblasts, but substantially delocalized to the nucleus of metastatic OS cells. Phenotypically, inhibition of the nucleus Claudin1 expression compromised the metastatic potential of KRIB and KHOS cells. Moreover, we found that protein kinase C (PKC) but not PKA phosphorylation influenced Claudin1 expression and cellular functions, as PKC inhibitor (Go 6983 and Staurosporine) or genetic silencing of PKC reduced Claudin1 expression and decreased the motility of KRIB and KHOS cells. Taken together, our study implied that delocalization of claudin-1 induced by PKC phosphorylation contributes to metastatic capacity of OS cells. - Highlights: • Claudin1 is increased during the malignant transformation of human OS. • Delocalization of Claudin1 in metastatic OS cells. • Silencing nuclear Claudin1 expression inhibits cell invasion of OS. • Deregulated Claudin1 is regulated by PKC.

  16. Live cell imaging of in vitro human trophoblast syncytialization.

    Science.gov (United States)

    Wang, Rui; Dang, Yan-Li; Zheng, Ru; Li, Yue; Li, Weiwei; Lu, Xiaoyin; Wang, Li-Juan; Zhu, Cheng; Lin, Hai-Yan; Wang, Hongmei

    2014-06-01

    Human trophoblast syncytialization, a process of cell-cell fusion, is one of the most important yet least understood events during placental development. Investigating the fusion process in a placenta in vivo is very challenging given the complexity of this process. Application of primary cultured cytotrophoblast cells isolated from term placentas and BeWo cells derived from human choriocarcinoma formulates a biphasic strategy to achieve the mechanism of trophoblast cell fusion, as the former can spontaneously fuse to form the multinucleated syncytium and the latter is capable of fusing under the treatment of forskolin (FSK). Live-cell imaging is a powerful tool that is widely used to investigate many physiological or pathological processes in various animal models or humans; however, to our knowledge, the mechanism of trophoblast cell fusion has not been reported using a live- cell imaging manner. In this study, a live-cell imaging system was used to delineate the fusion process of primary term cytotrophoblast cells and BeWo cells. By using live staining with Hoechst 33342 or cytoplasmic dyes or by stably transfecting enhanced green fluorescent protein (EGFP) and DsRed2-Nuc reporter plasmids, we observed finger-like protrusions on the cell membranes of fusion partners before fusion and the exchange of cytoplasmic contents during fusion. In summary, this study provides the first video recording of the process of trophoblast syncytialization. Furthermore, the various live-cell imaging systems used in this study will help to yield molecular insights into the syncytialization process during placental development. © 2014 by the Society for the Study of Reproduction, Inc.

  17. Regulated expression of erythropoietin by two human hepatoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, M.A.; Glass, G.A.; Cunningham, J.M.; Bunn, H.F.

    1987-11-01

    The development of a cell culture system that produces erythropoietin (Epo) in a regulated manner has been the focus of much effort. The authors have screened multiple renal and hepatic cell lines for either constitutive or regulated expression of Epo. Only the human hepatoma cell lines, Hep3B and HepG2, made significant amounts of Epo as measured both by radioimmunoassay and in vitro bioassay (as much as 330 milliunits per 10/sup 6/ cells in 24 hr). The constitutive production of Epo increased dramatically as a function of cell density in both cell lines. At cell densities < 3.3 x 10/sup 5/ cells per cm/sup 2/, there was little constitutive release of Epo in the medium. With Hep3B cells grown at low cell densities, a mean 18-fold increase in Epo expression was seen in response to hypoxia and a 6-fold increase was observed in response to incubation in medium containing 50 ..mu..M cobalt(II) chloride. At similar low cell densities, Epo production in HepG2 cells could be enhanced an average of about 3-fold by stimulation with either hypoxia or cobalt(II) chloride. Upon such stimulation, both cell lines demonstrated markedly elevated levels of Epo mRNA. Hence, both Hep3B and HepG2 cell lines provide an excellent in vitro system in which to study the physiological regulation of Epo expression.

  18. Teplizumab induces human gut-tropic regulatory cells in humanized mice and patients.

    Science.gov (United States)

    Waldron-Lynch, Frank; Henegariu, Octavian; Deng, Songyan; Preston-Hurlburt, Paula; Tooley, James; Flavell, Richard; Herold, Kevan C

    2012-01-25

    The development and optimization of immune therapies in patients has been hampered by the lack of preclinical models in which their effects on human immune cells can be studied. As a result, observations that have been made in preclinical studies have suggested mechanisms of drug action in murine models that have not been confirmed in clinical studies. Here, we used a humanized mouse reconstituted with human hematopoietic stem cells to study the mechanism of action of teplizumab, an Fc receptor nonbinding humanized monoclonal antibody to CD3 being tested in clinical trials for the treatment of patients with type 1 diabetes mellitus. In this model, human gut-tropic CCR6(+) T cells exited the circulation and secondary lymph organs and migrated to the small intestine. These cells then produced interleukin-10 (IL-10), a regulatory cytokine, in quantities that could be detected in the peripheral circulation. Blocking T cell migration to the small intestine with natalizumab, which prevents cellular adhesion by inhibiting α(4) integrin binding, abolished the treatment effects of teplizumab. Moreover, IL-10 expression by CD4(+)CD25(high)CCR6(+)FoxP3 cells returning to the peripheral circulation was increased in patients with type 1 diabetes treated with teplizumab. These findings demonstrate that humanized mice may be used to identify novel immunologic mechanisms that occur in patients treated with immunomodulators.

  19. Generation of human female reproductive tract epithelium from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Louie Ye

    Full Text Available BACKGROUND: Recent studies have identified stem/progenitor cells in human and mouse uterine epithelium, which are postulated to be responsible for tissue regeneration and proliferative disorders of human endometrium. These progenitor cells are thought to be derived from Müllerian duct (MD, the primordial female reproductive tract (FRT. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a model of human reproductive tract development in which inductive neonatal mouse uterine mesenchyme (nMUM is recombined with green fluorescent protein (GFP-tagged human embryonic stem cells (hESCs; GFP-hESC (ENVY. We demonstrate for the first time that hESCs can be differentiated into cells with a human FRT epithelial cell phenotype. hESC derived FRT epithelial cells emerged from cultures containing MIXL1(+ mesendodermal precursors, paralleling events occurring during normal organogenesis. Following transplantation, nMUM treated embryoid bodies (EBs generated epithelial structures with a typical MD phenotype that expressed the MD markers PAX2, HOXA10. Functionally, the hESCs derived FRT epithelium responded to exogenous estrogen by proliferating and secreting uterine-specific glycodelin A (GdA. CONCLUSIONS/SIGNIFICANCE: These data show nMUM can induce differentiation of hESC to form the FRT epithelium. This may provide a model to study early developmental events of the human FRT.

  20. Nuclear responses to depletion of mitochondrial DNA in human cells.

    Science.gov (United States)

    Li, K; Neufer, P D; Williams, R S

    1995-11-01

    The derivation of human cell lines devoid of mitochondrial (mt) DNA (rho 0) provides an opportunity to study nuclear responses to a chronic impairment of mitochondrial oxidative phosphorylation. Expression of several nuclear genes is induced in human rho 0 cells, including those encoding integral proteins of the mitochondrial inner membrane, intermediate filaments, and ribosomes. In contrast to conditions in which mitochondrial respiration is altered acutely, expression of heat shock proteins and immediate early genes is not induced. Mitochondria from rho 0 cells maintain a transmembrane electrochemical potential and are distributed within the cytoplasm of these cells in a manner indistinguishable from that of wild-type cells. We conclude that a chronic deficiency of mitochondrial oxidative phosphorylation produced by elimination of mtDNA is associated with a different pattern of gene induction than that provoked by other acute or subacute conditions that impair mitochondrial respiration or create energy demands in excess of mitochondrial respiratory capacity.

  1. [Development of human embryonic stem cell model for toxicity evaluation].

    Science.gov (United States)

    Yu, Guang-yan; Cao, Tong; Ouyang, Hong-wei; Peng, Shuang-qing; Deng, Xu-liang; Li, Sheng-lin; Liu, He; Zou, Xiao-hui; Fu, Xin; Peng, Hui; Wang, Xiao-ying; Zhan, Yuan

    2013-02-18

    The current international standard for toxicity screening of biomedical devices and materials recommend the use of immortalized cell lines because of their homogeneous morphologies and infinite proliferation which provide good reproducibility for in vitro cytotoxicity screening. However, most of the widely used immortalized cell lines are derived from animals and may not be representative of normal human cell behavior in vivo, in particular in terms of the cytotoxic and genotoxic response. Therefore, It is vital to develop a model for toxicity evaluation. In our studies, two Chinese human embryonic stem cell (hESC) lines as toxicity model were established. hESC derived tissue/organ cell model for tissue/organ specific toxicity evaluation were developed. The efficiency and accuracy of using hESC model for cytoxicity, embryotoxicity and genotoxicity evaluation were confirmed. The results indicated that hESCs might be good tools for toxicity testing and biosafety evaluation in vitro.

  2. Biology and relevance of human acute myeloid leukemia stem cells.

    Science.gov (United States)

    Thomas, Daniel; Majeti, Ravindra

    2017-03-23

    Evidence of human acute myeloid leukemia stem cells (AML LSCs) was first reported nearly 2 decades ago through the identification of rare subpopulations of engrafting cells in xenotransplantation assays. These AML LSCs were shown to reside at the apex of a cellular hierarchy that initiates and maintains the disease, exhibiting properties of self-renewal, cell cycle quiescence, and chemoresistance. This cancer stem cell model offers an explanation for chemotherapy resistance and disease relapse and implies that approaches to treatment must eradicate LSCs for cure. More recently, a number of studies have both refined and expanded our understanding of LSCs and intrapatient heterogeneity in AML using improved xenotransplant models, genome-scale analyses, and experimental manipulation of primary patient cells. Here, we review these studies with a focus on the immunophenotype, biological properties, epigenetics, genetics, and clinical associations of human AML LSCs and discuss critical questions that need to be addressed in future research. © 2017 by The American Society of Hematology.

  3. Human mast cell tryptase in biology and medicine.

    Science.gov (United States)

    Vitte, Joana

    2015-01-01

    The most abundant prestored enzyme of human mast cell secretory granules is the serine-protease tryptase. In humans, there are four tryptase isoforms, but only two of them, namely the alpha and beta tryptases, are known as medically important. Low levels of continuous tryptase production as an immature monomer makes up the major part of the baseline serum tryptase levels, while transient release of mature tetrameric tryptase upon mast cell degranulation accounts for the anaphylactic rise of serum tryptase levels. Serum tryptase determination contributes to the diagnosis or monitoring of mast cell disorders including mast cell activation - induced anaphylaxis, mastocytosis and a number of myeloproliferative conditions with mast cell lineage involvement. Baseline serum tryptase levels are predictive of the severity risk in some allergic conditions.

  4. Motoneuron differentiation of immortalized human spinal cord cell lines.

    Science.gov (United States)

    Li, R; Thode, S; Zhou, J; Richard, N; Pardinas, J; Rao, M S; Sah, D W

    2000-02-01

    Human motoneuron cell lines will be valuable tools for spinal cord research and drug discovery. To create such cell lines, we immortalized NCAM(+)/neurofilament(+) precursors from human embryonic spinal cord with a tetracycline repressible v-myc oncogene. Clonal NCAM(+)/neurofilament(+) cell lines differentiated exclusively into neurons within 1 week. These neurons displayed extensive processes, exhibited immunoreactivity for mature neuron-specific markers such as tau and synaptophysin, and fired action potentials upon current injection. Moreover, a clonal precursor cell line gave rise to multiple types of spinal cord neurons, including ChAT(+)/Lhx3(+)/Lhx4(+) motoneurons and GABA(+) interneurons. These neuronal restricted precursor cell lines will expedite the elucidation of molecular mechanisms that regulate the differentiation, maturation and survival of specific subsets of spinal cord neurons, and the identification and validation of novel drug targets for motoneuron diseases and spinal cord injury.

  5. [Nuclear transfer of goat somatic cells transgenic for human lactoferrin].

    Science.gov (United States)

    Li, Lan; Shen, Wei; Pan, Qing-Yu; Min, Ling-Jiang; Sun, Yu-Jiang; Fang, Yong-Wei; Deng, Ji-Xian; Pan, Qing-Jie

    2006-12-01

    Transgenic animal mammary gland bioreactors are being used to produce recombinant proteins with appropriate post-translational modifications, and nuclear transfer of transgenic somatic cells is a more powerful method to produce mammary gland bioreactor. Here we describe efficient gene transfer and nuclear transfer in goat somatic cells. Gene targeting vector pGBC2LF was constructed by cloning human lactoferrin (LF) gene cDNA into exon 2 of the milk goat beta-casein gene, and the endogenous start condon was replaced by that of human LF gene. Goat fetal fibroblasts were transfected with linearized pGBC2LF and 14 cell lines were positive according to PCR and Southern blot. The transgenic cells were used as donor cells of nuclear transfer, and some of reconstructed embryos could develop to blastocyst in vitro.

  6. Natural Killer Cells Differentiate Human Adipose-Derived Stem Cells and Modulate Their Adipogenic Potential.

    Science.gov (United States)

    Rezzadeh, Kameron S; Hokugo, Akishige; Jewett, Anahid; Kozlowska, Anna; Segovia, Luis Andres; Zuk, Patricia; Jarrahy, Reza

    2015-09-01

    Natural killer cells are thought to represent more than 30 percent of all lymphocytes within the stromal vascular fraction of lipoaspirates. However, their physiologic interaction with adipocytes and their precursors has never been specifically examined. The authors hypothesized that natural killer cells, by means of cytokine secretion, are capable of promoting the differentiation of adipose-derived stem cells. Human natural killer cells purified from healthy donors' peripheral blood mononuclear cells were activated with a combination of interleukin-2 and anti-CD16 monoclonal antibody; natural killer cell supernatant was collected. Adipose-derived stem cells isolated from raw human lipoaspirates from healthy patients were treated with growth media, growth media with natural killer cell supernatant, adipogenic media, and adipogenic media with natural killer cells supernatant. Flow cytometric analysis was performed on cells using antibodies against B7H1, CD36, CD44, CD34, CD29, and MHC-1. Adipogenic-related gene expression (PPAR-γ, LPL, GPD-1, and aP2) was assessed. Oil Red O staining was performed as a functional assay of adipocyte differentiation and adipogenesis. Adipose-derived stem cells maintained in growth media with natural killer cell supernatant lost markers of "stemness," including CD44, CD34, and CD29; and expressed markers of differentiation, including B7H1 and MHC-1. Adipose-derived stem cells treated with natural killer cell supernatant accumulated small amounts of lipid after 10 days of natural killer cell supernatant treatment. Adipose-derived stem cells treated with natural killer cell supernatant showed altered expression of adipogenesis-associated genes compared with cells maintained in growth media. Adipose-derived stem cells maintained in adipogenic media with natural killer cell supernatant accumulated less lipid than those cells in adipogenic media alone. The authors demonstrate that, through secreted factors, natural killer cells are capable

  7. Lipopolysaccharide induces IFN-γ production in human NK cells

    Directory of Open Access Journals (Sweden)

    Leonid M Kanevskiy

    2013-01-01

    Full Text Available NK cells have been shown to play a regulatory role in sepsis. According to the current view, NK cells become activated via macrophages or dendritic cells primed by lipopolysaccharide (LPS. Recently TLR4 gene expression was detected in human NK cells suggesting the possibility of a direct action of LPS on NK cells. In this study, effects of LPS on NK cell cytokine production and cytotoxicity were studied using highly purified human NK cells. LPS induced IFN-γ production in the presence of IL-2 in cell populations containing >98% CD56+ cells. Surprisingly, in the same experiments LPS decreased NK cell degranulation. No significant expression of markers related to blood dendritic cells, monocytes or T or B lymphocytes in the NK cell preparations was observed; the portions of HLA-DRbright, CD14+, CD3+ and CD20+ cells amounted to less than 0.1% within the cell populations. No more than 0.2% of NK cells were shown to be slightly positive for surface TLR4 in our experimental system, although intracellular staining revealed moderate amounts of TLR4 inside the NK cell population. These cells were negative for surface CD14, the receptor participating in LPS recognition by TLR4. Incubation of NK cells with IL-2 or/and LPS did not lead to an increase in TLR4 surface expression. TLR4–CD56+ NK cells isolated by cell sorting secreted IFN-γ in response to LPS. Antibody to TLR4 did not block the LPS-induced increase in IFN-γ production. We have also shown that Re-form of LPS lacking outer core oligosaccharide and O-antigen induces less cytokine production in NK cells than full length LPS. We speculate that the polysaccharide fragments of LPS molecule may take part in LPS-induced IFN-γ production by NK cells. Collectively our data suggest the existence of a mechanism of LPS direct action on NK cells distinct from established TLR4-mediated signaling.

  8. Immunohistochemistry of Programmed Cell Death in Archival Human Pathology Specimens

    Directory of Open Access Journals (Sweden)

    Takami Matsuyama

    2012-05-01

    Full Text Available Immunohistochemistry (IHC for detecting key signal molecules involved in programmed cell death (PCD in archival human pathology specimens is fairly well established. Detection of cleaved caspase-3 in lymphocytes in rheumatoid arthritis (RA and gastric surface foveolar glandular epithelia but not in synoviocytes in RA, gastric fundic glandular epithelia, or nasal NK/T-cell lymphoma (NKTCL cells suggests anti-apoptotic mechanisms in cell differentiation and in oncogenesis such as the induction of survivin. Enzymatically pretreated and ultra-super sensitive detection of beclin-1 in synoviocytes in RA and gastric fundic glandular epithelia suggests enhanced autophagy. The deposition of beclin-1 in fibrinoid necrosis in RA and expression of beclin-1 in detached gastric fundic glandular cells suggest that enhanced autophagy undergoes autophagic cell death (ACD. NKTCL exhibited enhanced autophagy through LC3 labeling and showed densely LC3 labeled cell-debris in regions of peculiar necrosis without deposition of beclin-1, indicating massive ACD in NKTCL and the alternative pathway enhancing autophagy following autophagic vesicle nucleation. Autophagy progression was monitored by labeling aggregated mitochondria and cathepsin D. The cell-debris in massive ACD in NKTCL were positive for 8-hydroxydeoxyguanosine, suggesting DNA oxidation occurred in ACD. Immunohistochemical autophagy and PCD analysis in archival human pathology specimens may offer new insights into autophagy in humans.

  9. Immortalization of human normal and NF1 neurofibroma Schwann cells.

    Science.gov (United States)

    Li, Hua; Chang, Lung-Ji; Neubauer, Debbie R; Muir, David F; Wallace, Margaret R

    2016-10-01

    Neurofibromas, which are benign Schwann cell tumors, are the hallmark feature in the autosomal dominant condition neurofibromatosis 1 (NF1) and are associated with biallelic loss of NF1 gene function. There is a need for effective therapies for neurofibromas, particularly the larger, plexiform neurofibromas. Tissue culture is an important tool for research. However, it is difficult to derive enriched human Schwann cell cultures, and most enter replicative senescence after 6-10 passages, impeding cell-based research in NF1. Through exogenous expression of human telomerase reverse transcriptase and murine cyclin-dependent kinase (mCdk4), normal (NF1 wild-type), neurofibroma-derived Schwann cells heterozygous for NF1 mutation, and neurofibroma-derived Schwann cells homozygous for NF1 mutation were immortalized, including some matched samples from the same NF1 patient. Initial experiments employed retroviral vectors, while subsequent work utilized lentiviral vectors carrying these genes because of improved efficiency. Expression of both transgenes was required for immortalization. Molecular and immunohistochemical analysis indicated that these cell lines are of Schwann cell lineage and have a range of phenotypes, many of which are consistent with their primary cultures. This is the first report of immortalization and detailed characterization of multiple human NF1 normal nerve and neurofibroma-derived Schwann cell lines, which will be highly useful research tools to study NF1 and other Schwann tumor biology and conditions.

  10. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  11. Hematopoietic development from human induced pluripotent stem cells.

    Science.gov (United States)

    Lengerke, Claudia; Grauer, Matthias; Niebuhr, Nina I; Riedt, Tamara; Kanz, Lothar; Park, In-Hyun; Daley, George Q

    2009-09-01

    A decade of research on human embryonic stem cells (ESC) has paved the way for the discovery of alternative approaches to generating pluripotent stem cells. Combinatorial overexpression of a limited number of proteins linked to pluripotency in ESC was recently found to reprogram differentiated somatic cells back to a pluripotent state, enabling the derivation of isogenic (patient-specific) pluripotent stem cell lines. Current research is focusing on improving reprogramming protocols (e.g., circumventing the use of retroviral technology and oncoproteins), and on methods for differentiation into transplantable tissues of interest. In mouse ESC, we have previously shown that the embryonic morphogens BMP4 and Wnt3a direct blood formation via activation of Cdx and Hox genes. Ectopic expression of Cdx4 and HoxB4 enables the generation of mouse ESC-derived hematopoietic stem cells (HSC) capable of multilineage reconstitution of lethally irradiated adult mice. Here, we explore hematopoietic development from human induced pluripotent stem (iPS) cells generated in our laboratory. Our data show robust differentiation of iPS cells to mesoderm and to blood lineages, as shown by generation of CD34(+)CD45(+) cells, hematopoietic colony activity, and gene expression data, and suggest conservation of blood patterning pathways between mouse and human hematopoietic development.

  12. Relation of cell proliferation to expression of peripheral benzodiazepine receptors in human breast cancer cell lines.

    Science.gov (United States)

    Beinlich, A; Strohmeier, R; Kaufmann, M; Kuhl, H

    2000-08-01

    Peripheral benzodiazepine receptor (PBR) agonist [(3)H]Ro5-4864 has been shown to bind with high affinity to the human breast cancer cell line BT-20. Therefore, we investigated different human breast cancer cell lines with regard to binding to [(3)H]Ro5-4864 and staining with the PBR-specific monoclonal antibody 8D7. Results were correlated with cell proliferation characteristics. In flow cytometric analysis, the estrogen receptor (ER)-negative breast cancer cell lines BT-20, MDA-MB-435-S, and SK-BR-3 showed significantly higher PBR expression (relative fluorescence intensity) than the ER-positive cells T47-D, MCF-7 and BT-474 (Pdiazepam-binding inhibitor are possibly involved in the regulation of cell proliferation of human breast cancer cell lines.

  13. Stable radioresistance in ataxia-telangiectasia cells containing DNA from normal human cells

    Energy Technology Data Exchange (ETDEWEB)

    Kapp, L.N.; Painter, R.B. (California Univ., San Francisco, CA (USA). Lab. of Radiobiology)

    1989-11-01

    SV40-transformed ataxia-telangiectasia (AT) cells were transfected with a cosmid containing a normal human DNA library and selectable marker, the neo gene, which endows successfully transformed mammalian cells with resistance to the antibiotic G418. Cells from this line were irradiated with 50 Gy of X-rays and fused with non-transfected AT cells. Among the G418-resistant colonies recovered was one stably resistant to radiation. Resistance to ionizing radiation of both primary transfectant line and its fusion derivative was intermediate between that of AT cells and normal cells, as assayed by colony-forming ability and measurement of radiation-induced G{sub 2} chromatic aberrations; both cell lines retained AT-like radioresistant DNA synthesis. Results suggest that, because radioresistance in transfected cells was not as great as in normal human cells, two hallmarks of AT, radiosensitivity and radioresistant DNA synthesis, may still be the result of a single defective AT gene. (author).

  14. The use of human amniotic fluid mesenchymal stem cells as the feeder layer to establish human embryonic stem cell lines.

    Science.gov (United States)

    Soong, Yung-Kwei; Huang, Shang-Yu; Yeh, Chiu-Hsiang; Wang, Tzu-Hao; Chang, Kuo-Hsuan; Cheng, Po-Jen; Shaw, S W Steven

    2015-12-01

    Human embryonic stem cells (hESCs) are pluripotent cells that have the potential to differentiate into the three germ layers and possibly all tissues of the human body. To fulfil the clinical potentials for cell-based therapy, banks of hESC lines that express different combinations of the major histocompatibility genes should be established, preferably without exposing such cells to animal cells and proteins. In this study, we tested human amniotic fluid mesenchymal stem cells (AFMSCs) as feeder cells to support the growth of hESCs. Our results indicated that mitomycin-treated AFMSCs were able to support the newly established hESC lines CGLK-1 and CGLK-2. The hESC colonies cultured on AFMSCs expressed alkaline phosphatase (ALK-P), SSEA-4, TRA-1-60, TRA-1-81, Oct-4, Nanog and Sox-2, which are markers for undifferentiated hESCs. Chromosomal analyses of both hESC lines, CGLK-1 and CGLK-2, which were cultured on AFMSC feeders for 22 and 14 passages, respectively, were confirmed to be normal karyotypes (46, XX). The ability of AFMSCs as feeder cells to maintain the undifferentiated growth and pluripotency of hESCs was confirmed by in vivo formation of teratomas derived on AFMSC hESCs in severe combined immune-compromised mice. The use of AFMSCs for feeder cells to culture hESCs has several advantages, in that AFMSCs are not tumourigenic and can be expanded extensively with a short doubling time.

  15. Connective Tissue Growth Factor Expression in Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Amrita DOSANJH

    2006-01-01

    Connective tissue growth factor (CTGF) is a cysteine-rich protein that promotes extracellular matrix deposition. CTGF is selectively induced by transforming growth factor β and des-Arg kallidin in lung fibroblasts and increases steady-state mRNA levels of α type I collagen, 5α-integrin and fibronectin in fibroblasts. Bronchial epithelial cells have been proposed to functionally interact with lung fibroblasts. We therefore investigated if bronchial epithelial cells are able to synthesize CTGF. Human bronchial epithelial cells were grown to subconfluence in standard growth media. Proliferating cells grown in small airway growth media were harvested following starvation for up to 24 h. Expression of CTGF transcripts was measured by PCR. Immunocytochemistry was also completed using a commercially available antibody.The cells expressed readily detectable CTGF transcripts. Starvation of these cells resulted in a quantitative decline of CTGF transcripts. Direct sequencing of the PCR product identified human CTGF. Immunocytochemistry confirmed intracellular CTGF in the cells and none in negative control cells. We conclude that bronchial epithelial cells could be a novel source of CTGF. Bronchial epithelial cell-derived CTGF could thus directly influence the deposition of collagen in certain fibrotic lung diseases.

  16. Xeno-free culture of human periodontal ligament stem cells.

    Science.gov (United States)

    Trubiani, Oriana; Diomede, Francesca

    2015-01-01

    The possibility of transplanting adult stem cells into damaged organs has opened a new prospective for the treatment of several human pathologies. Currently, in vitro expansion and culture of mesenchymal stem cells is founded on supplementing cell culture and differentiation medium with fetal calf serum (FCS) or fetal bovine serum (FBS) that contain numerous growth factors inducing cell attachment to plastic surfaces, proliferation, and differentiation. Mesenchymal stem cells (MSCs) cultured with medium containing FCS or FBS are unusable in the cell therapy; in fact the central issues regarding limitations in using animal sera for cell therapy is that its components are highly variable and often unknown and may trigger a xenogenic immune response, immunological reactions, and the potential transmission of prion diseases and zoonoses. Here we describe the culture system protocols for the expansion and production of human Periodontal Ligament Stem Cells (hPDLSCs) using a new xeno-free medium formulation ensuring the maintenance of the stem cells features comprising the multiple passage expansion, mesengenic lineage differentiation, cellular phenotype, and genomic stability, essential elements for conforming to translation to cell therapy.

  17. Translational prospects for human induced pluripotent stem cells.

    Science.gov (United States)

    Csete, Marie

    2010-07-01

    The pace of research on human induced pluripotent stem (iPS) cells is frantic worldwide, based on the enormous therapeutic potential of patient-specific pluripotent cells free of the ethical and political issues that plagued human embryonic stem cell research. iPS cells are now relatively easy to isolate from somatic cells and reprogramming can be accomplished using nonmutagenic technologies. Access to iPS cells is already paying dividends in the form of new disease-in-a-dish models for drug discovery and as scalable sources of cells for toxicology. For translation of cell therapies, the major advantage of iPS cells is that they are autologous, but for many reasons, perfect immunologic tolerance of iPS-based grafts should not be assumed. This article focuses on the functional identity of iPS cells, anticipated safety and technical issues in their application, as well as a survey of the progress likely to be realized in clinical applications in the next decade.

  18. Apoptin induces apoptosis in human transformed and malignant cells but not in normal cells

    NARCIS (Netherlands)

    Dane-Oorschot, A.A.A.M. van; Fischer, D.F.; Grimbergen, J.M.; Klein, B.; Zhuang, S.M.; Falkenburg, J.H.F.; Backendorf, C.; Quax, P.H.A.; Eb, A.J. van der; Noteborn, M.H.M.

    1997-01-01

    The chicken anemia virus protein apoptin induces a p53-independent, Bcl- 2-insensitive type of apoptosis in various human tumor cells. Here, we show that, in vitro, apoptin fails to induce programmed cell death in normal lymphoid, dermal, epidermal, endothelial, and smooth-muscle cells. However, whe

  19. EXPLANTATION OF MESANGIAL CELL HILLOCKS - A METHOD FOR OBTAINING HUMAN MESANGIAL CELLS IN CULTURE

    NARCIS (Netherlands)

    MULLER, EW; KIM, Y; MICHAEL, AF; VERNIER, RL; VANDERHEM, GK; VANDERWOUDE, FJ

    1992-01-01

    A simple method is presented for selective cell culture of human mesangial cells using explanatation of mesangial cell hillocks. Glomeruli which had been incubated with collagenase were explanted on plastic tissue culture flasks. Three to 6 weeks after explantation, a rapidly growing multilayer of e

  20. On chip electrofusion of single human B cells and mouse myeloma cells for efficient hybridoma generation

    NARCIS (Netherlands)

    Kemna, Evelien; Wolbers, F.; van den Berg, Albert; Vermes, I.

    2011-01-01

    This article describes the development and full characterization of a microfluidic chip for electrofusion of human peripheral blood B-cells and mouse myeloma (NS-1) cells to generate hybridomas. The chip consists of an array of 783 traps, with dimensions that were optimized to obtain a final cell

  1. Wogonin Induces Reactive Oxygen Species Production and Cell Apoptosis in Human Glioma Cancer Cells

    Directory of Open Access Journals (Sweden)

    Dah-Yuu Lu

    2012-08-01

    Full Text Available Glioma is the most common primary adult brain tumor with poor prognosis because of the ease of spreading tumor cells to other regions of the brain. Cell apoptosis is frequently targeted for developing anti-cancer drugs. In the present study, we have assessed wogonin, a flavonoid compound isolated from Scutellaria baicalensis Georgi, induced ROS generation, endoplasmic reticulum (ER stress and cell apoptosis. Wogonin induced cell death in two different human glioma cells, such as U251 and U87 cells but not in human primary astrocytes (IC 50 > 100 μM. Wogonin-induced apoptotic cell death in glioma cells was measured by propidine iodine (PI analysis, Tunnel assay and Annexin V staining methods. Furthermore, wogonin also induced caspase-9 and caspase-3 activation as well as up-regulation of cleaved PARP expression. Moreover, treatment of wogonin also increased a number of signature ER stress markers glucose-regulated protein (GRP-78, GRP-94, Calpain I, and phosphorylation of eukaryotic initiation factor-2α (eIF2α. Treatment of human glioma cells with wogonin was found to induce reactive oxygen species (ROS generation. Wogonin induced ER stress-related protein expression and cell apoptosis was reduced by the ROS inhibitors apocynin and NAC (N-acetylcysteine. The present study provides evidence to support the fact that wogonin induces human glioma cell apoptosis mediated ROS generation, ER stress activation and cell apoptosis.

  2. Development of hematopoietic stem and progenitor cells from human pluripotent stem cells.

    Science.gov (United States)

    Chen, Tong; Wang, Fen; Wu, Mengyao; Wang, Zack Z

    2015-07-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), provide a new cell source for regenerative medicine, disease modeling, drug discovery, and preclinical toxicity screening. Understanding of the onset and the sequential process of hematopoietic cells from differentiated hPSCs will enable the achievement of personalized medicine and provide an in vitro platform for studying of human hematopoietic development and disease. During embryogenesis, hemogenic endothelial cells, a specified subset of endothelial cells in embryonic endothelium, are the primary source of multipotent hematopoietic stem cells. In this review, we discuss current status in the generation of multipotent hematopoietic stem and progenitor cells from hPSCs via hemogenic endothelial cells. We also review the achievements in direct reprogramming from non-hematopoietic cells to hematopoietic stem and progenitor cells. Further characterization of hematopoietic differentiation in hPSCs will improve our understanding of blood development and expedite the development of hPSC-derived blood products for therapeutic purpose.

  3. EXPLANTATION OF MESANGIAL CELL HILLOCKS - A METHOD FOR OBTAINING HUMAN MESANGIAL CELLS IN CULTURE

    NARCIS (Netherlands)

    MULLER, EW; KIM, Y; MICHAEL, AF; VERNIER, RL; VANDERHEM, GK; VANDERWOUDE, FJ

    1992-01-01

    A simple method is presented for selective cell culture of human mesangial cells using explanatation of mesangial cell hillocks. Glomeruli which had been incubated with collagenase were explanted on plastic tissue culture flasks. Three to 6 weeks after explantation, a rapidly growing multilayer of e

  4. Reconstruction of endometrium from human endometrial side population cell lines.

    Directory of Open Access Journals (Sweden)

    Irene Cervelló

    Full Text Available Endometrial regeneration is mediated, at least in part, by the existence of a specialized somatic stem cell (SSC population recently identified by several groups using the side population (SP technique. We previously demonstrated that endometrial SP displays genotypic, phenotypic and the functional capability to develop human endometrium after subcutaneous injection in NOD-SCID mice. We have now established seven human endometrial SP (hESP cell lines (ICE 1-7: four from the epithelial and three from the stromal fraction, respectively. SP cell lines were generated under hypoxic conditions based on their cloning efficiency ability, cultured for 12-15 passages (20 weeks and cryopreserved. Cell lines displayed normal 46XX karyotype, intermediate telomerase activity pattern and expressed mRNAs encoding proteins that are considered characteristic of undifferentiated cells (Oct-4, GDF3, DNMT3B, Nanog, GABR3 and those of mesodermal origin (WT1, Cardiac Actin, Enolase, Globin, REN. Phenotype analysis corroborated their epithelial (CD9+ or stromal (vimentin+ cell origin and mesenchymal (CD90+, CD73+ and CD45⁻ attributes. Markers considered characteristic of ectoderm or endoderm were not detected. Cells did not express either estrogen receptor alpha (ERα or progesterone receptor (PR. The hESP cell lines were able to differentiate in vitro into adipocytes and osteocytes, which confirmed their mesenchymal origin. Finally, we demonstrated their ability to generate human endometrium when transplanted beneath the renal capsule of NOD-SCID mice. These findings confirm that SP cells exhibit key features of human endometrial SSC and open up new possibilities for the understanding of gynecological disorders such as endometriosis or Asherman syndrome. Our cell lines can be a valuable model to investigate new targets for endometrium proliferation in endometriosis.

  5. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro.

    Directory of Open Access Journals (Sweden)

    Holger A Russ

    Full Text Available BACKGROUND: Expansion of beta cells from the limited number of adult human islet donors is an attractive prospect for increasing cell availability for cell therapy of diabetes. However, attempts at expanding human islet cells in tissue culture result in loss of beta-cell phenotype. Using a lineage-tracing approach we provided evidence for massive proliferation of beta-cell-derived (BCD cells within these cultures. Expansion involves dedifferentiation resembling epithelial-mesenchymal transition (EMT. Epigenetic analyses indicate that key beta-cell genes maintain open chromatin structure in expanded BCD cells, although they are not transcribed. Here we investigated whether BCD cells can be redifferentiated into beta-like cells. METHODOLOGY/PRINCIPAL FINDING: Redifferentiation conditions were screened by following activation of an insulin-DsRed2 reporter gene. Redifferentiated cells were characterized for gene expression, insulin content and secretion assays, and presence of secretory vesicles by electron microscopy. BCD cells were induced to redifferentiate by a combination of soluble factors. The redifferentiated cells expressed beta-cell genes, stored insulin in typical secretory vesicles, and released it in response to glucose. The redifferentiation process involved mesenchymal-epithelial transition, as judged by changes in gene expression. Moreover, inhibition of the EMT effector SLUG (SNAI2 using shRNA resulted in stimulation of redifferentiation. Lineage-traced cells also gave rise at a low rate to cells expressing other islet hormones, suggesting transition of BCD cells through an islet progenitor-like stage during redifferentiation. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate for the first time that expanded dedifferentiated beta cells can be induced to redifferentiate in culture. The findings suggest that ex-vivo expansion of adult human islet cells is a promising approach for generation of insulin-producing cells for

  6. Defining the nature of human pluripotent stem cell progeny

    Institute of Scientific and Technical Information of China (English)

    Michaela Patterson; David N Chan; Iris Ha; Dana Case; Yongyan Cui; Ben Van Handel; Hanna KA Mikkola; William E Lowry

    2012-01-01

    While it is clear that human pluripotent stem cells (hPSCs) can differentiate to generate a panoply of various cell types,it is unknown how closely in vitro development mirrors that which occurs in vivo.To determine whether human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) make equivalent progeny,and whether either makes cells that are analogous to tissue-derived cells,we performed comprehensive transcriptome profiling of purified PSC derivatives and their tissue-derived counterparts.Expression profiling demonstrated that hESCs and hiPSCs make nearly identical progeny for the neural,hepatic,and mesenchymal lineages,and an absence of re-expression from exogenous reprogramming factors in hiPSC progeny.However,when compared to a tissuederived counterpart,the progeny of both hESCs and hiPSCs maintained expression of a subset of genes normally associated with early mammalian development,regardless of the type of cell generated.While pluripotent genes (OCT4,SOX2,REX1,and NANOG) appeared to be silenced immediately upon differentiation from hPSCs,genes normally unique to early embryos (LIN28A,LIN28B,DPPA4,and others) were not fully silenced in hPSC derivatives.These data and evidence from expression patterns in early human fetal tissue (3-16 weeks of development) suggest that the differentiated progeny of hPSCs are reflective of very early human development (< 6 weeks).These findings provide support for the idea that hPSCs can serve as useful in vitro models of early human development,but also raise important issues for disease modeling and the clinical application of hPSC derivatives.

  7. Evaluating the Expression of Mesenchymal Stem Cells Markers in Human Hair Follicle Stem Cells

    Directory of Open Access Journals (Sweden)

    Mohammadreza Behvarz

    2014-12-01

    Full Text Available Background & objectives: Adult stem cells are undifferentiated cells that replace dead or injured cells. There are adult stem cells in some regions of human tissues and hair follicle is one of the tissues that have adult stem cell source and these cells have an important role in hair life cycle. In this study, we investigated the isolation of hair follicle stem cells (HFSCs and expression of mesenchymal stem cell markers on the isolated cells.   Methods : Human hair follicles obtained from men scalp tissue by micro punch technique. Hair follicles isolated and cultured in culture flasks in DMEM-F12 + FBS. After outgrowth of stem cells from hair bulges, they analyzed by flow cytometry for detection of stem cell markers.  Results: 23 to 27 days after isolation and culture of HFSCs in uncoated cell culture flasks, cell surface markers expression studied by flow cytometry. Flow cytometric analysis showed 25.26% Stro-1, 50.85% CD90, 45.24% CD105, 61.20% CD44, 8.20% CD45, 11.86% CD146, 2.72% CD106, 7.21% CD166 and 26.74% CD19 expression in HFSCs.   Conclusion: In this study, isolated stem cells significantly expressed some of the mesenchymal stem cell markers higher than other markers. These markers give certain characteristics to HFSCs, and introduce the cells as an alternative option for cell therapy, tissue engineering and regenerative medicine.

  8. Mechanism of human natural killer cell activation by Haemophilus ducreyi.

    Science.gov (United States)

    Li, Wei; Janowicz, Diane M; Fortney, Kate R; Katz, Barry P; Spinola, Stanley M

    2009-08-15

    The role of natural killer (NK) cells in the host response to Haemophilus ducreyi infection is unclear. In pustules obtained from infected human volunteers, there was an enrichment of CD56bright NK cells bearing the activation markers CD69 and HLA-DR, compared with peripheral blood. To study the mechanism by which H. ducreyi activated NK cells, we used peripheral blood mononuclear cells from uninfected volunteers. H. ducreyi activated NK cells only in the presence of antigen-presenting cells. H. ducreyi-infected monocytes and monocyte-derived macrophages activated NK cells in a contact- and interleukin-18 (IL-18)-dependent manner, whereas monocyte-derived dendritic cells induced NK activation through soluble IL-12. More lesional NK cells than peripheral blood NK cells produced IFN-gamma in response to IL-12 and IL-18. We conclude that NK cells are recruited to experimental lesions and likely are activated by infected macrophages and dendritic cells. IFN-gamma produced by lesional NK cells may facilitate phagocytosis of H. ducreyi.

  9. Effect of storage media on human periodontal ligament cell apoptosis.

    Science.gov (United States)

    Chamorro, Mónica M; Regan, John D; Opperman, Lynne A; Kramer, Phillip R

    2008-02-01

    The ability of storage media to preserve periodontal ligament (PDL) cell vitality has been previously evaluated. However, the mechanisms by which different storage conditions alter the functional status of PDL cells have not been determined. The purpose of the present study was to investigate, in vitro, the level of progr