WorldWideScience

Sample records for human ipsc-derived multistage

  1. Human iPSC Derived GABA Ergic Precursor Cell Therapy for Chronic Epilepsy

    Science.gov (United States)

    2016-10-01

    of hMGE progenitors (obtained from hPSCs expanded from human embryonic stem cells) that were transduced with DREADDs through CRISPR/Cas9 technology...regions and cell layers of the hippocampus, which include the subgranular zone and the dentate hilus in the dentate gyrus, and strata oriens and...have migrated extensively in the dentate hilus (A3) and into different layers of the CA1 subfield. DG, dentate gyrus; DH, dentate hilus; GCL, granule

  2. Reversible dual inhibitor against G9a and DNMT1 improves human iPSC derivation enhancing MET and facilitating transcription factor engagement to the genome.

    Directory of Open Access Journals (Sweden)

    Juan Roberto Rodriguez-Madoz

    Full Text Available The combination of defined factors with small molecules targeting epigenetic factors is a strategy that has been shown to enhance optimal derivation of iPSCs and could be used for disease modelling, high throughput screenings and/or regenerative medicine applications. In this study, we showed that a new first-in-class reversible dual G9a/DNMT1 inhibitor compound (CM272 improves the efficiency of human cell reprogramming and iPSC generation from primary cells of healthy donors and patient samples, using both integrative and non-integrative methods. Moreover, CM272 facilitates the generation of human iPSC with only two factors allowing the removal of the most potent oncogenic factor cMYC. Furthermore, we demonstrated that mechanistically, treatment with CM272 induces heterochromatin relaxation, facilitates the engagement of OCT4 and SOX2 transcription factors to OSKM refractory binding regions that are required for iPSC establishment, and enhances mesenchymal to epithelial transition during the early phase of cell reprogramming. Thus, the use of this new G9a/DNMT reversible dual inhibitor compound may represent an interesting alternative for improving cell reprogramming and human iPSC derivation for many different applications while providing interesting insights into reprogramming mechanisms.

  3. Reversible dual inhibitor against G9a and DNMT1 improves human iPSC derivation enhancing MET and facilitating transcription factor engagement to the genome.

    Science.gov (United States)

    Rodriguez-Madoz, Juan Roberto; San Jose-Eneriz, Edurne; Rabal, Obdulia; Zapata-Linares, Natalia; Miranda, Estibaliz; Rodriguez, Saray; Porciuncula, Angelo; Vilas-Zornoza, Amaia; Garate, Leire; Segura, Victor; Guruceaga, Elizabeth; Agirre, Xabier; Oyarzabal, Julen; Prosper, Felipe

    2017-01-01

    The combination of defined factors with small molecules targeting epigenetic factors is a strategy that has been shown to enhance optimal derivation of iPSCs and could be used for disease modelling, high throughput screenings and/or regenerative medicine applications. In this study, we showed that a new first-in-class reversible dual G9a/DNMT1 inhibitor compound (CM272) improves the efficiency of human cell reprogramming and iPSC generation from primary cells of healthy donors and patient samples, using both integrative and non-integrative methods. Moreover, CM272 facilitates the generation of human iPSC with only two factors allowing the removal of the most potent oncogenic factor cMYC. Furthermore, we demonstrated that mechanistically, treatment with CM272 induces heterochromatin relaxation, facilitates the engagement of OCT4 and SOX2 transcription factors to OSKM refractory binding regions that are required for iPSC establishment, and enhances mesenchymal to epithelial transition during the early phase of cell reprogramming. Thus, the use of this new G9a/DNMT reversible dual inhibitor compound may represent an interesting alternative for improving cell reprogramming and human iPSC derivation for many different applications while providing interesting insights into reprogramming mechanisms.

  4. Physiological Aβ Concentrations Produce a More Biomimetic Representation of the Alzheimer's Disease Phenotype in iPSC Derived Human Neurons.

    Science.gov (United States)

    Berry, Bonnie J; Smith, Alec S T; Long, Christopher J; Martin, Candace C; Hickman, James J

    2018-05-22

    Alzheimer's disease (AD) is characterized by slow, progressive neurodegeneration leading to severe neurological impairment, but current drug development efforts are limited by the lack of robust, human-based disease models. Amyloid-β (Aβ) is known to play an integral role in AD progression as it has been shown to interfere with neurological function. However, studies into AD pathology commonly apply Aβ to neurons for short durations at nonphysiological concentrations to induce an exaggerated dysfunctional phenotype. Such methods are unlikely to elucidate early stage disease dysfunction, when treatment is still possible, since damage to neurons by these high concentrations is extensive. In this study, we investigated chronic, pathologically relevant Aβ oligomer concentrations to induce an electrophysiological phenotype that is more representative of early AD progression compared to an acute high-dose application in human cortical neurons. The high, acute oligomer dose resulted in severe neuronal toxicity as well as upregulation of tau and phosphorylated tau. Chronic, low-dose treatment produced significant functional impairment without increased cell death or accumulation of tau protein. This in vitro phenotype more closely mirrors the status of early stage neural decline in AD pathology and could provide a valuable tool to further understanding of early stage AD pathophysiology and for screening potential therapeutic compounds.

  5. Single-Cell Detection of Secreted Aβ and sAPPα from Human IPSC-Derived Neurons and Astrocytes.

    Science.gov (United States)

    Liao, Mei-Chen; Muratore, Christina R; Gierahn, Todd M; Sullivan, Sarah E; Srikanth, Priya; De Jager, Philip L; Love, J Christopher; Young-Pearse, Tracy L

    2016-02-03

    Secreted factors play a central role in normal and pathological processes in every tissue in the body. The brain is composed of a highly complex milieu of different cell types and few methods exist that can identify which individual cells in a complex mixture are secreting specific analytes. By identifying which cells are responsible, we can better understand neural physiology and pathophysiology, more readily identify the underlying pathways responsible for analyte production, and ultimately use this information to guide the development of novel therapeutic strategies that target the cell types of relevance. We present here a method for detecting analytes secreted from single human induced pluripotent stem cell (iPSC)-derived neural cells and have applied the method to measure amyloid β (Aβ) and soluble amyloid precursor protein-alpha (sAPPα), analytes central to Alzheimer's disease pathogenesis. Through these studies, we have uncovered the dynamic range of secretion profiles of these analytes from single iPSC-derived neuronal and glial cells and have molecularly characterized subpopulations of these cells through immunostaining and gene expression analyses. In examining Aβ and sAPPα secretion from single cells, we were able to identify previously unappreciated complexities in the biology of APP cleavage that could not otherwise have been found by studying averaged responses over pools of cells. This technique can be readily adapted to the detection of other analytes secreted by neural cells, which would have the potential to open new perspectives into human CNS development and dysfunction. We have established a technology that, for the first time, detects secreted analytes from single human neurons and astrocytes. We examine secretion of the Alzheimer's disease-relevant factors amyloid β (Aβ) and soluble amyloid precursor protein-alpha (sAPPα) and present novel findings that could not have been observed without a single-cell analytical platform. First, we

  6. Generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Zhouhui Geng

    Full Text Available Fidelity in pluripotent stem cell differentiation protocols is necessary for the therapeutic and commercial use of cells derived from embryonic and induced pluripotent stem cells. Recent advances in stem cell technology, especially the widespread availability of a range of chemically defined media, substrates and differentiation components, now allow the design and implementation of fully defined derivation and differentiation protocols intended for replication across multiple research and manufacturing locations. In this report we present an application of these criteria to the generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration. Primary conjunctival cells from human donors aged 70-85 years were reprogrammed to derive multiple iPSC lines that were differentiated into functional RPE using a rapid and defined differentiation protocol. The combination of defined iPSC derivation and culture with a defined RPE differentiation protocol, reproducibly generated functional RPE from each donor without requiring protocol adjustments for each individual. This successful validation of a standardized, iPSC derivation and RPE differentiation process demonstrates a practical approach for applications requiring the cost-effective generation of RPE from multiple individuals such as drug testing, population studies or for therapies requiring patient-specific RPE derivations. In addition, conjunctival cells are identified as a practical source of somatic cells for deriving iPSCs from elderly individuals.

  7. Sirt6 Promotes DNA End Joining in iPSCs Derived from Old Mice

    Directory of Open Access Journals (Sweden)

    Wen Chen

    2017-03-01

    Full Text Available Induced pluripotent stem cells (iPSCs have great potential for treating age-related diseases, but the genome integrity of iPSCs is critically important. Here, we demonstrate that non-homologous end joining (NHEJ, rather than homologous recombination (HR, is less efficient in iPSCs from old mice than young mice. We further find that Sirt6 is downregulated in iPSCs from old mice. Sirt6 directly binds to Ku80 and facilitates the Ku80/DNA-PKcs interaction, thus promoting DNA-PKcs phosphorylation at residue S2056, leading to efficient NHEJ. Rescue experiments show that introducing a combination of Sirt6 and the Yamanaka factors during reprogramming significantly promotes DNA double-strand break (DSB repair by activating NHEJ in iPSCs derived from old mice. Thus, our study suggests a strategy to improve the quality of iPSCs derived from old donors by activating NHEJ and stabilizing the genome.

  8. Variable behavior of iPSCs derived from CML patients for response to TKI and hematopoietic differentiation.

    Directory of Open Access Journals (Sweden)

    Aurélie Bedel

    Full Text Available Chronic myeloid leukemia disease (CML found effective therapy by treating patients with tyrosine kinase inhibitors (TKI, which suppress the BCR-ABL1 oncogene activity. However, the majority of patients achieving remission with TKI still have molecular evidences of disease persistence. Various mechanisms have been proposed to explain the disease persistence and recurrence. One of the hypotheses is that the primitive leukemic stem cells (LSCs can survive in the presence of TKI. Understanding the mechanisms leading to TKI resistance of the LSCs in CML is a critical issue but is limited by availability of cells from patients. We generated induced pluripotent stem cells (iPSCs derived from CD34⁺ blood cells isolated from CML patients (CML-iPSCs as a model for studying LSCs survival in the presence of TKI and the mechanisms supporting TKI resistance. Interestingly, CML-iPSCs resisted to TKI treatment and their survival did not depend on BCR-ABL1, as for primitive LSCs. Induction of hematopoietic differentiation of CML-iPSC clones was reduced compared to normal clones. Hematopoietic progenitors obtained from iPSCs partially recovered TKI sensitivity. Notably, different CML-iPSCs obtained from the same CML patients were heterogeneous, in terms of BCR-ABL1 level and proliferation. Thus, several clones of CML-iPSCs are a powerful model to decipher all the mechanisms leading to LSC survival following TKI therapy and are a promising tool for testing new therapeutic agents.

  9. Induced pluripotent stem cells (iPSCs) derived from different cell sources and their potential for regenerative and personalized medicine.

    Science.gov (United States)

    Shtrichman, R; Germanguz, I; Itskovitz-Eldor, J

    2013-06-01

    Human induced pluripotent stem cells (hiPSCs) have great potential as a robust source of progenitors for regenerative medicine. The novel technology also enables the derivation of patient-specific cells for applications to personalized medicine, such as for personal drug screening and toxicology. However, the biological characteristics of iPSCs are not yet fully understood and their similarity to human embryonic stem cells (hESCs) is still unresolved. Variations among iPSCs, resulting from their original tissue or cell source, and from the experimental protocols used for their derivation, significantly affect epigenetic properties and differentiation potential. Here we review the potential of iPSCs for regenerative and personalized medicine, and assess their expression pattern, epigenetic memory and differentiation capabilities in relation to their parental tissue source. We also summarize the patient-specific iPSCs that have been derived for applications in biological research and drug discovery; and review risks that must be overcome in order to use iPSC technology for clinical applications.

  10. Health and Human Rights in Chin State, Western Burma: A Population-Based Assessment Using Multistaged Household Cluster Sampling

    Science.gov (United States)

    Sollom, Richard; Richards, Adam K.; Parmar, Parveen; Mullany, Luke C.; Lian, Salai Bawi; Iacopino, Vincent; Beyrer, Chris

    2011-01-01

    Background The Chin State of Burma (also known as Myanmar) is an isolated ethnic minority area with poor health outcomes and reports of food insecurity and human rights violations. We report on a population-based assessment of health and human rights in Chin State. We sought to quantify reported human rights violations in Chin State and associations between these reported violations and health status at the household level. Methods and Findings Multistaged household cluster sampling was done. Heads of household were interviewed on demographics, access to health care, health status, food insecurity, forced displacement, forced labor, and other human rights violations during the preceding 12 months. Ratios of the prevalence of household hunger comparing exposed and unexposed to each reported violation were estimated using binomial regression, and 95% confidence intervals (CIs) were constructed. Multivariate models were done to adjust for possible confounders. Overall, 91.9% of households (95% CI 89.7%–94.1%) reported forced labor in the past 12 months. Forty-three percent of households met FANTA-2 (Food and Nutrition Technical Assistance II project) definitions for moderate to severe household hunger. Common violations reported were food theft, livestock theft or killing, forced displacement, beatings and torture, detentions, disappearances, and religious and ethnic persecution. Self reporting of multiple rights abuses was independently associated with household hunger. Conclusions Our findings indicate widespread self-reports of human rights violations. The nature and extent of these violations may warrant investigation by the United Nations or International Criminal Court. Please see later in the article for the Editors' Summary PMID:21346799

  11. Efficient differentiation of steroidogenic and germ-like cells from epigenetically-related iPSCs derived from ovarian granulosa cells.

    Directory of Open Access Journals (Sweden)

    Raymond Anchan

    Full Text Available To explore restoration of ovarian function using epigenetically-related, induced pluripotent stem cells (iPSCs, we functionally evaluated the epigenetic memory of novel iPSC lines, derived from mouse and human ovarian granulosa cells (GCs using c-Myc, Klf4, Sox2 and Oct4 retroviral vectors. The stem cell identity of the mouse and human GC-derived iPSCs (mGriPSCs, hGriPSCs was verified by demonstrating embryonic stem cell (ESC antigen expression using immunocytochemistry and RT-PCR analysis, as well as formation of embryoid bodies (EBs and teratomas that are capable of differentiating into cells from all three germ layers. GriPSCs' gene expression profiles associate more closely with those of ESCs than of the originating GCs as demonstrated by genome-wide analysis of mRNA and microRNA. A comparative analysis of EBs generated from three different mouse cell lines (mGriPSCs; fibroblast-derived iPSC, mFiPSCs; G4 embryonic stem cells, G4 mESCs revealed that differentiated mGriPSC-EBs synthesize 10-fold more estradiol (E2 than either differentiated FiPSC- or mESC-EBs under identical culture conditions. By contrast, mESC-EBs primarily synthesize progesterone (P4 and FiPSC-EBs produce neither E2 nor P4. Differentiated mGriPSC-EBs also express ovarian markers (AMHR, FSHR, Cyp19a1, ER and Inha as well as markers of early gametogenesis (Mvh, Dazl, Gdf9, Boule and Zp1 more frequently than EBs of the other cell lines. These results provide evidence of preferential homotypic differentiation of mGriPSCs into ovarian cell types. Collectively, our data support the hypothesis that generating iPSCs from the desired tissue type may prove advantageous due to the iPSCs' epigenetic memory.

  12. An integrated practical implementation of continuous aqueous two-phase systems for the recovery of human IgG: From the microdevice to a multistage bench-scale mixer-settler device.

    Science.gov (United States)

    Espitia-Saloma, Edith; Vâzquez-Villegas, Patricia; Rito-Palomares, Marco; Aguilar, Oscar

    2016-05-01

    Aqueous two-phase systems (ATPS) are a liquid-liquid extraction technology with clear process benefits; however, its lack of industrial embracement is still a challenge to overcome. Antibodies are a potential product to be recovered by ATPS in a commercial context. The objective of this work is to present a more integral approach of the different isolated strategies that have arisen in order to enable a practical, generic implementation of ATPS, using human immunoglobulin G (IgG) as experimental model. A microfluidic device is used for ATPS parameters preselection for product recovery. ATPS were continuously operated in a mixer-settler device in one stage, multistage and multistage with recirculation configuration. Single-stage pure IgG extraction with a polyethylene glycol (PEG) 3350-phophates ATPS within continuous operation allowed a 65% recovery. Further implementation of a multistage platform promoted a higher particle partitioning reaching a 90% recovery. The processing of IgG from a cell supernatant culture harvest in a multistage system with top phase recirculation resulted in 78% IgG recovery in bottom phase. This work conjugates three not widely spread methodologies for ATPS: microfluidics, continuous and multistage operation. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Multistage stochastic optimization

    CERN Document Server

    Pflug, Georg Ch

    2014-01-01

    Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization.  It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book

  14. Multistage cancer models of bone cancer induction in beagles and mice by radium and plutonium, compared to humans

    Energy Technology Data Exchange (ETDEWEB)

    Bijwaard, H.; Brugmans, M. [RIVM-National Inst. for Public Health and the Environment, Lab. for Radiation Research, MA Bilthoven (Netherlands)

    2005-07-01

    Two-mutation carcinogenesis models of mice injected with Pu-239 and Ra-226 have been derived as an extension of previous modellings of beagle dogs injected with Pu-239 and Ra-226 and dial painters that ingested radium. In all cases the data could be fitted adequately using no more than five free model parameters. Apart from three parameters for the background, these include two dose-related parameters: a linear mutation coefficient that is equal in both mutational steps and a usually non-zero cell-killing coefficient in the second mutational step. After a simple scaling the animal models compare reasonably well with each other and with the model for the radium dial painters. From the toxicity ratio of beagle models for Pu-239 and Ra-226, together with the human model for Ra-226, an approximate model for the exposure of humans to Pu-239 has been constructed. Relative risk calculations with this approximate model are in good agreement with epidemiological findings for the plutonium-exposed Mayak workers. This promising result may indicate new possibilities for estimating risks for humans from animal experiments. (orig.)

  15. Coupling methods for multistage sampling

    OpenAIRE

    Chauvet, Guillaume

    2015-01-01

    Multistage sampling is commonly used for household surveys when there exists no sampling frame, or when the population is scattered over a wide area. Multistage sampling usually introduces a complex dependence in the selection of the final units, which makes asymptotic results quite difficult to prove. In this work, we consider multistage sampling with simple random without replacement sampling at the first stage, and with an arbitrary sampling design for further stages. We consider coupling ...

  16. Radiation and multistage carcinogenesis

    International Nuclear Information System (INIS)

    Day, N.E.

    1984-01-01

    Epidemiological data are insufficient at present to define with much precision the shape of the dose-response curve for radiation carcinogenesis at low or moderate dose levels, for different organs. The available data have to be supplemented with theoretical models for the mode of action. These models, however, often seem not to take into account the complex nature of the process of carcinogenesis. They relate more to mutational events, rather than the long process of cancer induction. In addition, they ignore the fact that in the human situation radiation is one among a large number of exposures, and even the basic form of the dose response may be dependent on the presence or absence of other factors. Information on modes of action usually comes from experimental results, where the requisite combination of exposures can be chosen in advance. Epidemiology, however, also provides information on mechanisms. The purpose of this paper is to consider some of the information that epidemiology provides on the role of radiation in increasing cancer risk in humans

  17. Interconnected Levels of Multi-Stage Marketing

    DEFF Research Database (Denmark)

    Vedel, Mette; Geersbro, Jens; Ritter, Thomas

    2012-01-01

    different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. The results from the case study indicate that multi-stage marketing exists on different levels. Thus, managers...... must not only decide in general on the merits of multi-stage marketing for their firm, but must also decide on which level they will engage in multi-stage marketing. The triadic perspective enables a rich and multi-dimensional understanding of how different business relationships influence each other...... in a multi-stage marketing context. This understanding assists managers in assessing and balancing different aspects of multi- stage marketing. The triadic perspective also offers avenues for further research....

  18. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  19. Health and human rights in eastern Myanmar prior to political transition: a population-based assessment using multistaged household cluster sampling.

    Science.gov (United States)

    Parmar, Parveen K; Benjamin-Chung, Jade; Smith, Linda S; Htoo, Saw Nay; Laeng, Sai; Lwin, Aye; Mahn, Mahn; Maung, Cynthia; Reh, Daniel; Shwe Oo, Eh Kalu; Lee, Thomas; Richards, Adam K

    2014-05-05

    Myanmar/Burma has received increased development and humanitarian assistance since the election in November 2010. Monitoring the impact of foreign assistance and economic development on health and human rights requires knowledge of pre-election conditions. From October 2008-January 2009, community-based organizations conducted household surveys using three-stage cluster sampling in Shan, Kayin, Bago, Kayah, Mon and Tanintharyi areas of Myanmar. Data was collected from 5,592 heads of household on household demographics, reproductive health, diarrhea, births, deaths, malaria, and acute malnutrition of children 6-59 months and women aged 15-49 years. A human rights focused survey module evaluated human rights violations (HRVs) experienced by household members during the previous year. Estimated infant and under-five rates were 77 (95% CI 56 to 98) and 139 (95% CI 107 to 171) deaths per 1,000 live births; and the crude mortality rate was 13 (95% CI 11 to 15) deaths per thousand persons. The leading respondent-reported cause of death was malaria, followed by acute respiratory infection and diarrhea, causing 21.2% (95% CI 16.5 to 25.8), 16.6% (95% CI 11.8 to 21.4), and 12.3% (95% CI 8.7 to 15.8), respectively. Over a third of households suffered at least one human rights violation in the preceding year (36.2%; 30.7 to 41.7). Household exposure to forced labor increased risk of death among infants (rate ratio (RR) = 2.2; 95% CI 1.1 to 4.4) and children under five (RR = 2.1; 95% CI 1.3 to 3.6). The proportion of children suffering from moderate to severe acute malnutrition was higher among households that were displaced (prevalence ratio (PR) = 3.3; 95% CI 1.9 to 5.6). Prior to the 2010 election, populations of eastern Myanmar experienced high rates of disease and death and high rates of HRVs. These population-based data provide a baseline that can be used to monitor national and international efforts to improve the health and human rights situation in the

  20. Health and human rights in eastern Myanmar after the political transition: a population-based assessment using multistaged household cluster sampling.

    Directory of Open Access Journals (Sweden)

    Parveen Kaur Parmar

    Full Text Available Myanmar transitioned to a nominally civilian parliamentary government in March 2011. Qualitative reports suggest that exposure to violence and displacement has declined while international assistance for health services has increased. An assessment of the impact of these changes on the health and human rights situation has not been published.Five community-based organizations conducted household surveys using two-stage cluster sampling in five states in eastern Myanmar from July 2013-September 2013. Data was collected from 6, 178 households on demographics, mortality, health outcomes, water and sanitation, food security and nutrition, malaria, and human rights violations (HRV. Among children aged 6-59 months screened, the prevalence of global acute malnutrition (representing moderate or severe malnutrition was 11.3% (8.0-14.7. A total of 250 deaths occurred during the year prior to the survey. Infant deaths accounted for 64 of these (IMR 94.2; 95% CI 66.5-133.5 and there were 94 child deaths (U5MR 141.9; 95% CI 94.8-189.0. 10.7% of households (95% CI 7.0-14.5 experienced at least one HRV in the past year, while four percent reported 2 or more HRVs. Household exposure to one or more HRVs was associated with moderate-severe malnutrition among children (14.9 vs. 6.8%; prevalence ratio 2.2, 95% CI 1.2-4.2. Household exposure to HRVs was associated with self-reported fair or poor health status among respondents (PR 1.3; 95% CI 1.1-1.5.This large survey of health and human rights demonstrates that two years after political transition, vulnerable populations of eastern Myanmar are less likely to experience human rights violations compared to previous surveys. However, access to health services remains constrained, and risk of disease and death remains higher than the country as a whole. Efforts to address these poor health indicators should prioritize support for populations that remain outside the scope of most formal government and donor programs.

  1. Health and human rights in eastern Myanmar after the political transition: a population-based assessment using multistaged household cluster sampling.

    Science.gov (United States)

    Parmar, Parveen Kaur; Barina, Charlene C; Low, Sharon; Tun, Kyaw Thura; Otterness, Conrad; Mhote, Pue P; Htoo, Saw Nay; Kyaw, Saw Win; Lwin, Nai Aye; Maung, Cynthia; Moo, Naw Merry; Oo, Eh Kalu Shwe; Reh, Daniel; Mon, Nai Chay; Singh, Nakul; Goyal, Ravi; Richards, Adam K

    2015-01-01

    Myanmar transitioned to a nominally civilian parliamentary government in March 2011. Qualitative reports suggest that exposure to violence and displacement has declined while international assistance for health services has increased. An assessment of the impact of these changes on the health and human rights situation has not been published. Five community-based organizations conducted household surveys using two-stage cluster sampling in five states in eastern Myanmar from July 2013-September 2013. Data was collected from 6, 178 households on demographics, mortality, health outcomes, water and sanitation, food security and nutrition, malaria, and human rights violations (HRV). Among children aged 6-59 months screened, the prevalence of global acute malnutrition (representing moderate or severe malnutrition) was 11.3% (8.0-14.7). A total of 250 deaths occurred during the year prior to the survey. Infant deaths accounted for 64 of these (IMR 94.2; 95% CI 66.5-133.5) and there were 94 child deaths (U5MR 141.9; 95% CI 94.8-189.0). 10.7% of households (95% CI 7.0-14.5) experienced at least one HRV in the past year, while four percent reported 2 or more HRVs. Household exposure to one or more HRVs was associated with moderate-severe malnutrition among children (14.9 vs. 6.8%; prevalence ratio 2.2, 95% CI 1.2-4.2). Household exposure to HRVs was associated with self-reported fair or poor health status among respondents (PR 1.3; 95% CI 1.1-1.5). This large survey of health and human rights demonstrates that two years after political transition, vulnerable populations of eastern Myanmar are less likely to experience human rights violations compared to previous surveys. However, access to health services remains constrained, and risk of disease and death remains higher than the country as a whole. Efforts to address these poor health indicators should prioritize support for populations that remain outside the scope of most formal government and donor programs.

  2. Fuzzy-like multiple objective multistage decision making

    CERN Document Server

    Xu, Jiuping

    2014-01-01

    Decision has inspired reflection of many thinkers since the ancient times. With the rapid development of science and society, appropriate dynamic decision making has been playing an increasingly important role in many areas of human activity including engineering, management, economy and others. In most real-world problems, decision makers usually have to make decisions sequentially at different points in time and space, at different levels for a component or a system, while facing multiple and conflicting objectives and a hybrid uncertain environment where fuzziness and randomness co-exist in a decision making process. This leads to the development of fuzzy-like multiple objective multistage decision making. This book provides a thorough understanding of the concepts of dynamic optimization from a modern perspective and presents the state-of-the-art methodology for modeling, analyzing and solving the most typical multiple objective multistage decision making practical application problems under fuzzy-like un...

  3. Split-plot designs for multistage experimentation

    DEFF Research Database (Denmark)

    Kulahci, Murat; Tyssedal, John

    2016-01-01

    at the same time will be more efficient. However, there have been only a few attempts in the literature to provide an adequate and easy-to-use approach for this problem. In this paper, we present a novel methodology for constructing two-level split-plot and multistage experiments. The methodology is based...... be accommodated in each stage. Furthermore, split-plot designs for multistage experiments with good projective properties are also provided....

  4. Experiments for Multi-Stage Processes

    DEFF Research Database (Denmark)

    Tyssedal, John; Kulahci, Murat

    2015-01-01

    Multi-stage processes are very common in both process and manufacturing industries. In this article we present a methodology for designing experiments for multi-stage processes. Typically in these situations the design is expected to involve many factors from different stages. To minimize...... the required number of experimental runs, we suggest using mirror image pairs of experiments at each stage following the first. As the design criterion, we consider their projectivity and mainly focus on projectivity 3 designs. We provide the methodology for generating these designs for processes with any...

  5. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells

    Science.gov (United States)

    Kim, Kitai; Zhao, Rui; Doi, Akiko; Ng, Kitwa; Unternaehrer, Juli; Cahan, Patrick; Hongguang, Huo; Loh, Yuin-Han; Aryee, Martin J.; Lensch, M. William; Li, Hu; Collins, James J.; Feinberg, Andrew P.; Daley, George Q.

    2012-01-01

    We compared bona-fide human induced pluripotent stem cells (iPSC) derived from umbilical cord blood (CB) and neonatal keratinocytes (K). As a consequence of both incomplete erasure of tissue-specific methylation and aberrant de novo methylation, CB-iPSC and K-iPSC are distinct in genome-wide DNA methylation profiles and differentiation potential. Extended passage of some iPSC clones in culture didn't improve their epigenetic resemblance to ESC, implying that some human iPSC retain a residual “epigenetic memory” of their tissue of origin. PMID:22119740

  6. Multistage feature extraction for accurate face alignment

    NARCIS (Netherlands)

    Zuo, F.; With, de P.H.N.

    2004-01-01

    We propose a novel multistage facial feature extraction approach using a combination of 'global' and 'local' techniques. At the first stage, we use template matching, based on an Edge-Orientation-Map for fast feature position estimation. Using this result, a statistical framework applying the Active

  7. Interconnected levels of multi-stage marketing: A triadic approach

    OpenAIRE

    Vedel, Mette; Geersbro, Jens; Ritter, Thomas

    2012-01-01

    Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. ...

  8. Multistage carcinogenesis in cell culture.

    Science.gov (United States)

    Rubin, H

    2001-01-01

    Rodent fibroblasts explanted from embryos to culture undergo a period of declining growth rate in serial passages leading to crisis, followed by the appearance of variants which can multiply indefinitely. If the "immortal" cell line was established by low density passage, i.e., 3T3 cells, it has a low saturation density and is non-tumorigenic. If it was established by high density passage, it has a high saturation density and is tumorigenic. The establishment of cells goes through successive stages, including increased capacity to multiply in low serum concentration, growth to high saturation density, growth in suspension, assisted tumour formation in susceptible hosts and unassisted tumour formation. Chromosome aberrations and aneuploidy occur long before the capacity to produce tumours appears. Contrary to conventional belief, human fibroblast populations also undergo a continuous loss of capacity to multiply from the time of explantation, with only the longest surviving clone reaching the Hayflick limit. Neoplastic transformation of rodent cells is strongly favoured by maintaining them in a quiescent state at confluence for prolonged periods, which results in genetic damage to the cells. It also produces a large variety of chromosomal aberrations in human cells and extends their replicative lifespan. Individual clones are more susceptible to spontaneous transformation than their heterogeneous parental cultures. The implications of these results for tumour development in vivo are that oncogenic genetic changes may be common under stressful conditions which restrict replication, and that such changes are maximized when a rogue clone reaches a critical size that reduces stabilizing interactions with neighbouring clones. An alternative explanation, described in the Addendum, which we retrospectively favor is that the easily transformed clones are a minority in the uncloned parental population. The reason they transform before the parental population is that when

  9. Multistage Stochastic Programming via Autoregressive Sequences

    Czech Academy of Sciences Publication Activity Database

    Kaňková, Vlasta

    2007-01-01

    Roč. 15, č. 4 (2007), s. 99-110 ISSN 0572-3043 R&D Projects: GA ČR GA402/07/1113; GA ČR(CZ) GA402/06/0990; GA ČR GD402/03/H057 Institutional research plan: CEZ:AV0Z10750506 Keywords : Economic proceses * Multistage stochastic programming * autoregressive sequences * individual probability constraints Subject RIV: BB - Applied Statistics, Operational Research

  10. Handling Imbalanced Data Sets in Multistage Classification

    Science.gov (United States)

    López, M.

    Multistage classification is a logical approach, based on a divide-and-conquer solution, for dealing with problems with a high number of classes. The classification problem is divided into several sequential steps, each one associated to a single classifier that works with subgroups of the original classes. In each level, the current set of classes is split into smaller subgroups of classes until they (the subgroups) are composed of only one class. The resulting chain of classifiers can be represented as a tree, which (1) simplifies the classification process by using fewer categories in each classifier and (2) makes it possible to combine several algorithms or use different attributes in each stage. Most of the classification algorithms can be biased in the sense of selecting the most populated class in overlapping areas of the input space. This can degrade a multistage classifier performance if the training set sample frequencies do not reflect the real prevalence in the population. Several techniques such as applying prior probabilities, assigning weights to the classes, or replicating instances have been developed to overcome this handicap. Most of them are designed for two-class (accept-reject) problems. In this article, we evaluate several of these techniques as applied to multistage classification and analyze how they can be useful for astronomy. We compare the results obtained by classifying a data set based on Hipparcos with and without these methods.

  11. Reducing Delay in Diagnosis: Multistage Recommendation Tracking.

    Science.gov (United States)

    Wandtke, Ben; Gallagher, Sarah

    2017-11-01

    The purpose of this study was to determine whether a multistage tracking system could improve communication between health care providers, reducing the risk of delay in diagnosis related to inconsistent communication and tracking of radiology follow-up recommendations. Unconditional recommendations for imaging follow-up of all diagnostic imaging modalities excluding mammography (n = 589) were entered into a database and tracked through a multistage tracking system for 13 months. Tracking interventions were performed for patients for whom completion of recommended follow-up imaging could not be identified 1 month after the recommendation due date. Postintervention compliance with the follow-up recommendation required examination completion or clinical closure (i.e., biopsy, limited life expectancy or death, or subspecialist referral). Baseline radiology information system checks performed 1 month after the recommendation due date revealed timely completion of 43.1% of recommended imaging studies at our institution before intervention. Three separate tracking interventions were studied, showing effectiveness between 29.0% and 57.8%. The multistage tracking system increased the examination completion rate to 70.5% (a 52% increase) and reduced the rate of unknown follow-up compliance and the associated risk of delay in diagnosis to 13.9% (a 74% decrease). Examinations completed after tracking intervention generated revenue of 4.1 times greater than the labor cost. Performing sequential radiology recommendation tracking interventions can substantially reduce the rate of unknown follow-up compliance and add value to the health system. Unknown follow-up compliance is a risk factor for delay in diagnosis, a form of preventable medical error commonly identified in malpractice claims involving radiologists and office-based practitioners.

  12. Multi-stage wake-field accelerator

    International Nuclear Information System (INIS)

    Gai, Wei.

    1989-01-01

    In this paper we propose a multi-stage wake field acceleration scheme to overcome the low transformer ratio problem and still provide high accelerating gradients. The idea is very simple. We use a train of several electron bunches from a linear accelerator (main linac) with well defined separations between the bunches (tens of ns) to drive wake field devices. Here we have made the assumption that the wake field devices are available, whether plasma, iris-loaded metallic or dielectric wake field structures. 10 refs

  13. Multi-Stage System for Automatic Target Recognition

    Science.gov (United States)

    Chao, Tien-Hsin; Lu, Thomas T.; Ye, David; Edens, Weston; Johnson, Oliver

    2010-01-01

    A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feedforward back-propagation neural network (NN) is then trained to classify each feature vector and to remove false positives. The system parameter optimizations process has been developed to adapt to various targets and datasets. The objective was to design an efficient computer vision system that can learn to detect multiple targets in large images with unknown backgrounds. Because the target size is small relative to the image size in this problem, there are many regions of the image that could potentially contain the target. A cursory analysis of every region can be computationally efficient, but may yield too many false positives. On the other hand, a detailed analysis of every region can yield better results, but may be computationally inefficient. The multi-stage ATR system was designed to achieve an optimal balance between accuracy and computational efficiency by incorporating both models. The detection stage first identifies potential ROIs where the target may be present by performing a fast Fourier domain OT-MACH filter-based correlation. Because threshold for this stage is chosen with the goal of detecting all true positives, a number of false positives are also detected as ROIs. The verification stage then transforms the regions of interest into feature space, and eliminates false positives using an

  14. Multistage switched inductor boost converter for renewable energy application

    DEFF Research Database (Denmark)

    Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Bhaskar, Mahajan Sagar

    2017-01-01

    In this paper Multistage Switched Inductor Boost Converter (Multistage SIBC) is uttered for renewable energy applications. The projected converter is derived from an amalgamation of the conventional step-up converter and inductor stack. The number of inductor and duty ratio decides the overall...

  15. Exposure Control Using Adaptive Multi-Stage Item Bundles.

    Science.gov (United States)

    Luecht, Richard M.

    This paper presents a multistage adaptive testing test development paradigm that promises to handle content balancing and other test development needs, psychometric reliability concerns, and item exposure. The bundled multistage adaptive testing (BMAT) framework is a modification of the computer-adaptive sequential testing framework introduced by…

  16. 40 CFR 600.316-78 - Multistage manufacture.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Multistage manufacture. 600.316-78 Section 600.316-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY... and Later Model Year Automobiles-Labeling § 600.316-78 Multistage manufacture. Where more than one...

  17. Multistage centrifugal extractor of E92 model

    International Nuclear Information System (INIS)

    Wang Houheng; Xing Zhifu; Liu Xiangyan; Liu Shi; Wan Yi; Liang Kui; Hu Benyue

    1987-01-01

    The E92 Model multistage centrifugal extractor has been developed for the recovery of uranium and plutonium from spent nuclear reactor fuel. It offers the following advantages: shorter residence time, low hlod-up, less space required, and simplified startup and shutdown procedures, etc. Experiments on performaces of hydraulics, mass-transfer and crud discharging have proved that this unit provides a wide range of operation. The total flow rate can very from 300 to 450 L/h at organic to aqueous flow ratio of 1 to 5. The unit is designed for ratio of oranic to aqueous phase densities at a range of 0.75 to 0.85. Overall extraction and back-extraction efficiencies which is great than 99.99% were achieved using natural uranium as feed. Experiments showed that mechanical assembling and disassembling of the unit could be rapidly carried out. A run continuning up to 500 hours was stable

  18. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    Science.gov (United States)

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  19. A multistage framework for dismount spectral verification in the VNIR

    Science.gov (United States)

    Rosario, Dalton

    2013-05-01

    A multistage algorithm suite is proposed for a specific target detection/verification scenario, where a visible/near infrared hyperspectral (HS) sample is assumed to be available as the only cue from a reference image frame. The target is a suspicious dismount. The suite first applies a biometric based human skin detector to focus the attention of the search. Using as reference all of the bands in the spectral cue, the suite follows with a Bayesian Lasso inference stage designed to isolate pixels representing the specific material type cued by the user and worn by the human target (e.g., hat, jacket). In essence, the search focuses on testing material types near skin pixels. The third stage imposes an additional constraint through RGB color quantization and distance metric checking, limiting even further the search for material types in the scene having visible color similar to the target visible color. Using the proposed cumulative evidence strategy produced some encouraging range-invariant results on real HS imagery, dramatically reducing to zero the false alarm rate on the example dataset. These results were in contrast to the results independently produced by each one of the suite's stages, as the spatial areas of each stage's high false alarm outcome were mutually exclusive in the imagery. These conclusions also apply to results produced by other standard methods, in particular the kernel SVDD (support vector data description) and matched filter, as shown in the paper.

  20. Multi-stage internal gear/turbine fuel pump

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Eugen; Raney, Michael Raymond

    2004-07-06

    A multi-stage internal gear/turbine fuel pump for a vehicle includes a housing having an inlet and an outlet and a motor disposed in the housing. The multi-stage internal gear/turbine fuel pump also includes a shaft extending axially and disposed in the housing. The multi-stage internal gear/turbine fuel pump further includes a plurality of pumping modules disposed axially along the shaft. One of the pumping modules is a turbine pumping module and another of the pumping modules is a gerotor pumping module for rotation by the motor to pump fuel from the inlet to the outlet.

  1. Aerodynamics and flow characterisation of multistage rockets

    Science.gov (United States)

    Srinivas, G.; Prakash, M. V. S.

    2017-05-01

    The main objective of this paper is to conduct a systematic flow analysis on single, double and multistage rockets using ANSYS software. Today non-air breathing propulsion is increasing dramatically for the enhancement of space exploration. The rocket propulsion is playing vital role in carrying the payload to the destination. Day to day rocket aerodynamic performance and flow characterization analysis has becoming challenging task to the researchers. Taking this task as motivation a systematic literature is conducted to achieve better aerodynamic and flow characterization on various rocket models. The analyses on rocket models are very little especially in numerical side and experimental area. Each rocket stage analysis conducted for different Mach numbers and having different flow varying angle of attacks for finding the critical efficiency performance parameters like pressure, density and velocity. After successful completion of the analysis the research reveals that flow around the rocket body for Mach number 4 and 5 best suitable for designed payload. Another major objective of this paper is to bring best aerodynamics flow characterizations in both aero and mechanical features. This paper also brings feature prospectus of rocket stage technology in the field of aerodynamic design.

  2. Computational analysis of a multistage axial compressor

    Science.gov (United States)

    Mamidoju, Chaithanya

    Turbomachines are used extensively in Aerospace, Power Generation, and Oil & Gas Industries. Efficiency of these machines is often an important factor and has led to the continuous effort to improve the design to achieve better efficiency. The axial flow compressor is a major component in a gas turbine with the turbine's overall performance depending strongly on compressor performance. Traditional analysis of axial compressors involves throughflow calculations, isolated blade passage analysis, Quasi-3D blade-to-blade analysis, single-stage (rotor-stator) analysis, and multi-stage analysis involving larger design cycles. In the current study, the detailed flow through a 15 stage axial compressor is analyzed using a 3-D Navier Stokes CFD solver in a parallel computing environment. Methodology is described for steady state (frozen rotor stator) analysis of one blade passage per component. Various effects such as mesh type and density, boundary conditions, tip clearance and numerical issues such as turbulence model choice, advection model choice, and parallel processing performance are analyzed. A high sensitivity of the predictions to the above was found. Physical explanation to the flow features observed in the computational study are given. The total pressure rise verses mass flow rate was computed.

  3. Simulations of multistage intense ion beam acceleration

    International Nuclear Information System (INIS)

    Slutz, S.A.; Poukey, J.W.

    1992-01-01

    An analytic theory for magnetically insulated, multistage acceleration of high intensity ion beams, where the diamagnetic effect due to electron flow is important, has been presented by Slutz and Desjarlais. The theory predicts the existence of two limiting voltages called V 1 (W) and V 2 (W), which are both functions of the injection energy qW of ions entering the accelerating gap. As the voltage approaches V 1 (W), unlimited beam-current density can penetrate the gap without the formation of a virtual anode because the dynamic gap goes to zero. Unlimited beam current density can penetrate an accelerating gap above V 2 (W), although a virtual anode is formed. It was found that the behavior of these limiting voltages is strongly dependent on the electron density profile. The authors have investigated the behavior of these limiting voltages numerically using the 2-D particle-in-cell (PIC) code MAGIC. Results of these simulations are consistent with the superinsulated analytic results. This is not surprising, since the ignored coordinate eliminates instabilities known to be important from studies of single stage magnetically insulated ion diodes. To investigate the effect of these instabilities the authors have simulated the problem with the 3-D PIC code QUICKSILVER, which indicates behavior that is consistent with the saturated model

  4. Unsteady Aerodynamics & Aeromechanics of Multi-Stage Turbomachinery Blading

    National Research Council Canada - National Science Library

    Fleeter, Sanford

    2002-01-01

    .... A benchmark-standard multistage transonic research compressor was developed by modifying the Purdue High-Speed Axial Compressor to feature new IGV and stator rows representative of modern high pressure compressors...

  5. Some design aspects of multistage flash distillation process

    International Nuclear Information System (INIS)

    Ahmad, Mohammad.

    1975-01-01

    The purpose of this paper is to examine the effect of the design variables of multistage flash (MSF) process on the performance and/or the cost of the desalting plant, and to establish certain design trends

  6. Multistage Magnetic Separator of Cells and Proteins

    Science.gov (United States)

    Barton, Ken; Ainsworth, Mark; Daily, Bruce; Dunn, Scott; Metz, Bill; Vellinger, John; Taylor, Brock; Meador, Bruce

    2005-01-01

    The multistage electromagnetic separator for purifying cells and magnetic particles (MAGSEP) is a laboratory apparatus for separating and/or purifying particles (especially biological cells) on the basis of their magnetic susceptibility and magnetophoretic mobility. Whereas a typical prior apparatus based on similar principles offers only a single stage of separation, the MAGSEP, as its full name indicates, offers multiple stages of separation; this makes it possible to refine a sample population of particles to a higher level of purity or to categorize multiple portions of the sample on the basis of magnetic susceptibility and/or magnetophoretic mobility. The MAGSEP includes a processing unit and an electronic unit coupled to a personal computer. The processing unit includes upper and lower plates, a plate-rotation system, an electromagnet, an electromagnet-translation system, and a capture-magnet assembly. The plates are bolted together through a roller bearing that allows the plates to rotate with respect to each other. An interface between the plates acts as a seal for separating fluids. A lower cuvette can be aligned with as many as 15 upper cuvette stations for fraction collection during processing. A two-phase stepping motor drives the rotation system, causing the upper plate to rotate for the collection of each fraction of the sample material. The electromagnet generates a magnetic field across the lower cuvette, while the translation system translates the electromagnet upward along the lower cuvette. The current supplied to the electromagnet, and thus the magnetic flux density at the pole face of the electromagnet, can be set at a programmed value between 0 and 1,400 gauss (0.14 T). The rate of translation can be programmed between 5 and 2,000 m/s so as to align all sample particles in the same position in the cuvette. The capture magnet can be a permanent magnet. It is mounted on an arm connected to a stepping motor. The stepping motor rotates the arm to

  7. Human finger-prick induced pluripotent stem cells facilitate the development of stem cell banking.

    Science.gov (United States)

    Tan, Hong-Kee; Toh, Cheng-Xu Delon; Ma, Dongrui; Yang, Binxia; Liu, Tong Ming; Lu, Jun; Wong, Chee-Wai; Tan, Tze-Kai; Li, Hu; Syn, Christopher; Tan, Eng-Lee; Lim, Bing; Lim, Yoon-Pin; Cook, Stuart A; Loh, Yuin-Han

    2014-05-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients can be a good model for studying human diseases and for future therapeutic regenerative medicine. Current initiatives to establish human iPSC (hiPSC) banking face challenges in recruiting large numbers of donors with diverse diseased, genetic, and phenotypic representations. In this study, we describe the efficient derivation of transgene-free hiPSCs from human finger-prick blood. Finger-prick sample collection can be performed on a "do-it-yourself" basis by donors and sent to the hiPSC facility for reprogramming. We show that single-drop volumes of finger-prick samples are sufficient for performing cellular reprogramming, DNA sequencing, and blood serotyping in parallel. Our novel strategy has the potential to facilitate the development of large-scale hiPSC banking worldwide.

  8. Demand management in Multi-Stage Distribution Chain

    NARCIS (Netherlands)

    de Kok, T.; Janssen, F.B.S.L.P.

    1996-01-01

    In this paper we discuss demand management problems in a multi-stage distribution chain.We focus on distribution chains where demand processes have high variability due to a few large customer orders.We give a possible explanation, and suggest two simple procedures that help to smooth demand.It is

  9. Bio-inspired approach to multistage image processing

    Science.gov (United States)

    Timchenko, Leonid I.; Pavlov, Sergii V.; Kokryatskaya, Natalia I.; Poplavska, Anna A.; Kobylyanska, Iryna M.; Burdenyuk, Iryna I.; Wójcik, Waldemar; Uvaysova, Svetlana; Orazbekov, Zhassulan; Kashaganova, Gulzhan

    2017-08-01

    Multistage integration of visual information in the brain allows people to respond quickly to most significant stimuli while preserving the ability to recognize small details in the image. Implementation of this principle in technical systems can lead to more efficient processing procedures. The multistage approach to image processing, described in this paper, comprises main types of cortical multistage convergence. One of these types occurs within each visual pathway and the other between the pathways. This approach maps input images into a flexible hierarchy which reflects the complexity of the image data. The procedures of temporal image decomposition and hierarchy formation are described in mathematical terms. The multistage system highlights spatial regularities, which are passed through a number of transformational levels to generate a coded representation of the image which encapsulates, in a computer manner, structure on different hierarchical levels in the image. At each processing stage a single output result is computed to allow a very quick response from the system. The result is represented as an activity pattern, which can be compared with previously computed patterns on the basis of the closest match.

  10. Test Information Targeting Strategies for Adaptive Multistage Testing Designs.

    Science.gov (United States)

    Luecht, Richard M.; Burgin, William

    Adaptive multistage testlet (MST) designs appear to be gaining popularity for many large-scale computer-based testing programs. These adaptive MST designs use a modularized configuration of preconstructed testlets and embedded score-routing schemes to prepackage different forms of an adaptive test. The conditional information targeting (CIT)…

  11. Information Overload in Multi-Stage Selection Procedures

    NARCIS (Netherlands)

    S.S. Ficco (Stefano); V.A. Karamychev (Vladimir)

    2004-01-01

    textabstractThe paper studies information processing imperfections in a fully rational decision-making network. It is shown that imperfect information transmission and imperfect information acquisition in a multi-stage selection game yield information overload. The paper analyses the mechanisms

  12. Optimal testlet pool assembly for multistage testing designs

    NARCIS (Netherlands)

    Ariel, A.; Veldkamp, Bernard P.; Breithaupt, Krista

    2006-01-01

    Computerized multistage testing (MST) designs require sets of test questions (testlets) to be assembled to meet strict, often competing criteria. Rules that govern testlet assembly may dictate the number of questions on a particular subject or may describe desirable statistical properties for the

  13. Analysis of multi-stage open shop processing systems

    NARCIS (Netherlands)

    Eggermont, C.E.J.; Schrijver, A.; Woeginger, G.J.; Schwentick, T.; Dürr, C.

    2011-01-01

    We study algorithmic problems in multi-stage open shop processing systems that are centered around reachability and deadlock detection questions. We characterize safe and unsafe system states. We show that it is easy to recognize system states that can be reached from the initial state (where the

  14. Multi-stage decoding of multi-level modulation codes

    Science.gov (United States)

    Lin, Shu; Kasami, Tadao; Costello, Daniel J., Jr.

    1991-01-01

    Various types of multi-stage decoding for multi-level modulation codes are investigated. It is shown that if the component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. Particularly, it is shown that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum soft-decision decoding of the code is very small, only a fraction of dB loss in signal to noise ratio at a bit error rate (BER) of 10(exp -6).

  15. Various multistage ensembles for prediction of heating energy consumption

    Directory of Open Access Journals (Sweden)

    Radisa Jovanovic

    2015-04-01

    Full Text Available Feedforward neural network models are created for prediction of daily heating energy consumption of a NTNU university campus Gloshaugen using actual measured data for training and testing. Improvement of prediction accuracy is proposed by using neural network ensemble. Previously trained feed-forward neural networks are first separated into clusters, using k-means algorithm, and then the best network of each cluster is chosen as member of an ensemble. Two conventional averaging methods for obtaining ensemble output are applied; simple and weighted. In order to achieve better prediction results, multistage ensemble is investigated. As second level, adaptive neuro-fuzzy inference system with various clustering and membership functions are used to aggregate the selected ensemble members. Feedforward neural network in second stage is also analyzed. It is shown that using ensemble of neural networks can predict heating energy consumption with better accuracy than the best trained single neural network, while the best results are achieved with multistage ensemble.

  16. Performance prediction method for a multi-stage Knudsen pump

    Science.gov (United States)

    Kugimoto, K.; Hirota, Y.; Kizaki, Y.; Yamaguchi, H.; Niimi, T.

    2017-12-01

    In this study, the novel method to predict the performance of a multi-stage Knudsen pump is proposed. The performance prediction method is carried out in two steps numerically with the assistance of a simple experimental result. In the first step, the performance of a single-stage Knudsen pump was measured experimentally under various pressure conditions, and the relationship of the mass flow rate was obtained with respect to the average pressure between the inlet and outlet of the pump and the pressure difference between them. In the second step, the performance of a multi-stage pump was analyzed by a one-dimensional model derived from the mass conservation law. The performances predicted by the 1D-model of 1-stage, 2-stage, 3-stage, and 4-stage pumps were validated by the experimental results for the corresponding number of stages. It was concluded that the proposed prediction method works properly.

  17. Multi-Stage Transportation Problem With Capacity Limit

    Directory of Open Access Journals (Sweden)

    I. Brezina

    2010-06-01

    Full Text Available The classical transportation problem can be applied in a more general way in practice. Related problems as Multi-commodity transportation problem, Transportation problems with different kind of vehicles, Multi-stage transportation problems, Transportation problem with capacity limit is an extension of the classical transportation problem considering the additional special condition. For solving such problems many optimization techniques (dynamic programming, linear programming, special algorithms for transportation problem etc. and heuristics approaches (e.g. evolutionary techniques were developed. This article considers Multi-stage transportation problem with capacity limit that reflects limits of transported materials (commodity quantity. Discussed issues are: theoretical base, problem formulation as way as new proposed algorithm for that problem.

  18. Fuel system for diesel engine with multi-stage heated

    Science.gov (United States)

    Ryzhov, Yu N.; Kuznetsov, Yu A.; Kolomeichenko, A. V.; Kuznetsov, I. S.; Solovyev, R. Yu; Sharifullin, S. N.

    2017-09-01

    The article describes a fuel system of a diesel engine with a construction tractor multistage heating, allowing the use of pure rapeseed oil as a diesel engine fuel. The paper identified the kinematic viscosity depending on the temperature and composition of the mixed fuel, supplemented by the existing recommendations on the use of mixed fuels based on vegetable oils and developed the device allowing use as fuel for diesel engines of biofuels based on vegetable oils.

  19. Multi-Stage Transportation Problem With Capacity Limit

    OpenAIRE

    I. Brezina; Z. Čičková; J. Pekár; M. Reiff

    2010-01-01

    The classical transportation problem can be applied in a more general way in practice. Related problems as Multi-commodity transportation problem, Transportation problems with different kind of vehicles, Multi-stage transportation problems, Transportation problem with capacity limit is an extension of the classical transportation problem considering the additional special condition. For solving such problems many optimization techniques (dynamic programming, linear programming, special algor...

  20. Integral performance optimum design for multistage solid propellant rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongtao (Shaanxi Power Machinery Institute (China))

    1989-04-01

    A mathematical model for integral performance optimization of multistage solid propellant rocket motors is presented. A calculation on a three-stage, volume-fixed, solid propellant rocket motor is used as an example. It is shown that the velocity at burnout of intermediate-range or long-range ballistic missile calculated using this model is four percent greater than that using the usual empirical method.

  1. A remark on empirical estimates in multistage stochastic programming

    Czech Academy of Sciences Publication Activity Database

    Kaňková, Vlasta

    2002-01-01

    Roč. 9, č. 17 (2002), s. 31-50 ISSN 1212-074X R&D Projects: GA ČR GA402/01/0539; GA ČR GA402/02/1015; GA ČR GA402/01/0034 Institutional research plan: CEZ:AV0Z1075907 Keywords : multistage stochastic programming * empirical estimates * Markov dependence Subject RIV: BB - Applied Statistics, Operational Research

  2. Multistage models of carcinogenesis and their implications for dose-response models and risk projections

    International Nuclear Information System (INIS)

    Hoel, D.G.

    1992-01-01

    Multistage models are used to both describe the biological steps in developing a cancer and as a mathematical description of the relationship of exposure to tumor incidence. With the rapid development of molecular biology the stages of tumor development are becoming understood. Specifically, the effect and role of proto-oncogenes and suppressor genes are exciting developments in the field of carcinogenesis. Mathematically the field has moved from the original Armitage-Doll multistage model to the more current cell kinetic models. These latter models attempt to describe both the rate of cell mutation and the birth-death process involved in clonal expansion. This then allows modeling of both initiation and promotion or cellular proliferation. The field of radiation carcinogenesis has a considerable body of data and knowledge. Unfortunately, relatively little work has been done with the cell kinetic models as to estimation of tumor incidence. This may be due to the newness of kinetic models in general. The field holds promise and it is essential if we are to develop better human risk estimates from exposure to ionizing radiation. (author)

  3. Immunogenicity and in vitro Protective Efficacy of a Recombinant Multistage Plasmodium falciparum Candidate Vaccine

    Science.gov (United States)

    Shi, Ya Ping; Hasnain, Seyed E.; Sacci, John B.; Holloway, Brian P.; Fujioka, Hisashi; Kumar, Nirbhay; Wohlhueter, Robert; Hoffman, Stephen L.; Collins, William E.; Lal, Altaf A.

    1999-02-01

    Compared with a single-stage antigen-based vaccine, a multistage and multivalent Plasmodium falciparum vaccine would be more efficacious by inducing "multiple layers" of immunity. We have constructed a synthetic gene that encodes for 12 B cell, 6 T cell proliferative, and 3 cytotoxic T lymphocyte epitopes derived from 9 stage-specific P. falciparum antigens corresponding to the sporozoite, liver, erythrocytic asexual, and sexual stages. The gene was expressed in the baculovirus system, and a 41-kDa antigen, termed CDC/NIIMALVAC-1, was purified. Immunization in rabbits with the purified protein in the presence of different adjuvants generated antibody responses that recognized vaccine antigen, linear peptides contained in the vaccine, and all stages of P. falciparum. In vitro assays of protection revealed that the vaccine-elicited antibodies strongly inhibited sporozoite invasion of hepatoma cells and growth of blood-stage parasites in the presence of monocytes. These observations demonstrate that a multicomponent, multistage malaria vaccine can induce immune responses that inhibit parasite development at multiple stages. The rationale and approach used in the development of a multicomponent P. falciparum vaccine will be useful in the development of a multispecies human malaria vaccine and vaccines against other infectious diseases.

  4. Interconnected levels of Multi-Stage Marketing – A Triadic approach

    DEFF Research Database (Denmark)

    Vedel, Mette; Geersbro, Jens; Ritter, Thomas

    2012-01-01

    must not only decide in general on the merits of multi-stage marketing for their firm, but must also decide on which level they will engage in multi-stage marketing. The triadic perspective enables a rich and multi-dimensional understanding of how different business relationships influence each other......Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes...... different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. The results from the case study indicate that multi-stage marketing exists on different levels. Thus, managers...

  5. Fundamentals of reliability engineering applications in multistage interconnection networks

    CERN Document Server

    Gunawan, Indra

    2014-01-01

    This book presents fundamentals of reliability engineering with its applications in evaluating reliability of multistage interconnection networks. In the first part of the book, it introduces the concept of reliability engineering, elements of probability theory, probability distributions, availability and data analysis.  The second part of the book provides an overview of parallel/distributed computing, network design considerations, and more.  The book covers a comprehensive reliability engineering methods and its practical aspects in the interconnection network systems. Students, engineers, researchers, managers will find this book as a valuable reference source.

  6. Multistage charged particle accelerator, with high-vacuum insulation

    International Nuclear Information System (INIS)

    Holl, P.

    1976-01-01

    A multistage charged-particle accelerator for operating with accelerating voltages higher than 150 kV is described. The device consists essentially of a high-voltage insulator, a source for producing charged particles, a Wehnelt cylinder, an anode, and a post-accelerating tube containing stack-wise positioned post-accelerating electrodes. A high vacuum is used for insulating the parts carrying the high voltages, and at least one cylindrical screen surrounding these parts is interposed between them and the vacuum vessel, which can itself also function as a cylindrical screen

  7. Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Hassan Saberi Nik

    2014-01-01

    Full Text Available We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results.

  8. Study on multi-stage hydropyrolysis of coal in fixed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, N.; Li, W.; Li, B.-Q. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab of Coal Conversion

    1999-07-01

    The composition and quantity of the oil in hydropyrolysis (HyPy) and multi-stage HyPy with high and slow heating rate were compared and the effect of multistage HyPy process on desulfurization was investigated. Multistage HyPy of lignite and high sulphur coal were investigated and the effects of residence time, heating rate and pressure on product yields were studied. 6 refs., 4 figs., 2 tabs.

  9. Hierarchical Cu precipitation in lamellated steel after multistage heat treatment

    Science.gov (United States)

    Liu, Qingdong; Gu, Jianfeng

    2017-09-01

    The hierarchical distribution of Cu-rich precipitates (CRPs) and related partitioning and segregation behaviours of solute atoms were investigated in a 1.54 Cu-3.51 Ni (wt.%) low-carbon high-strength low-alloy (HSLA) steel after multistage heat treatment by using the combination of electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and atom probe tomography (APT). Intercritical tempering at 725 °C of as-quenched lathlike martensitic structure leads to the coprecipitation of CRPs at the periphery of a carbide precipitate which is possibly in its paraequilibrium state due to distinct solute segregation at the interface. The alloyed carbide and CRPs provide constituent elements for each other and make the coprecipitation thermodynamically favourable. Meanwhile, austenite reversion occurs to form fresh secondary martensite (FSM) zone where is rich in Cu and pertinent Ni and Mn atoms, which gives rise to a different distributional morphology of CRPs with large size and high density. In addition, conventional tempering at 500 °C leads to the formation of nanoscale Cu-rich clusters in α-Fe matrix. As a consequence, three populations of CRPs are hierarchically formed around carbide precipitate, at FSM zone and in α-Fe matrix. The formation of different precipitated features can be turned by controlling diffusion pathways of related solute atoms and further to tailor mechanical properties via proper multistage heat treatments.

  10. A multi-stage stochastic transmission expansion planning method

    International Nuclear Information System (INIS)

    Akbari, Tohid; Rahimikian, Ashkan; Kazemi, Ahad

    2011-01-01

    Highlights: → We model a multi-stage stochastic transmission expansion planning problem. → We include available transfer capability (ATC) in our model. → Involving this criterion will increase the ATC between source and sink points. → Power system reliability will be increased and more money can be saved. - Abstract: This paper presents a multi-stage stochastic model for short-term transmission expansion planning considering the available transfer capability (ATC). The ATC can have a huge impact on the power market outcomes and the power system reliability. The transmission expansion planning (TEP) studies deal with many uncertainties, such as system load uncertainties that are considered in this paper. The Monte Carlo simulation method has been applied for generating different scenarios. A scenario reduction technique is used for reducing the number of scenarios. The objective is to minimize the sum of investment costs (IC) and the expected operation costs (OC). The solution technique is based on the benders decomposition algorithm. The N-1 contingency analysis is also done for the TEP problem. The proposed model is applied to the IEEE 24 bus reliability test system and the results are efficient and promising.

  11. Multi-stage fuzzy load frequency control using PSO

    International Nuclear Information System (INIS)

    Shayeghi, H.; Jalili, A.; Shayanfar, H.A.

    2008-01-01

    In this paper, a particle swarm optimization (PSO) based multi-stage fuzzy (PSOMSF) controller is proposed for solution of the load frequency control (LFC) problem in a restructured power system that operate under deregulation based on the bilateral policy scheme. In this strategy the control is tuned on line from the knowledge base and fuzzy inference, which request fewer sources and has two rule base sets. In the proposed method, for achieving the desired level of robust performance, exact tuning of membership functions is very important. Thus, to reduce the design effort and find a better fuzzy system control, membership functions are designed automatically by PSO algorithm, that has a strong ability to find the most optimistic results. The motivation for using the PSO technique is to reduce fuzzy system effort and take large parametric uncertainties into account. This newly developed control strategy combines the advantage of PSO and fuzzy system control techniques and leads to a flexible controller with simple stricture that is easy to implement. The proposed PSO based MSF (PSOMSF) controller is tested on a three-area restructured power system under different operating conditions and contract variations. The results of the proposed PSOMSF controller are compared with genetic algorithm based multi-stage fuzzy (GAMSF) control through some performance indices to illustrate its robust performance for a wide range of system parameters and load changes

  12. Multi-stage fuzzy load frequency control using PSO

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H. [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran); Jalili, A. [Islamic Azad University, Ardabil Branch, Ardabil (Iran); Shayanfar, H.A. [Center of Excellence for Power Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran)

    2008-10-15

    In this paper, a particle swarm optimization (PSO) based multi-stage fuzzy (PSOMSF) controller is proposed for solution of the load frequency control (LFC) problem in a restructured power system that operate under deregulation based on the bilateral policy scheme. In this strategy the control is tuned on line from the knowledge base and fuzzy inference, which request fewer sources and has two rule base sets. In the proposed method, for achieving the desired level of robust performance, exact tuning of membership functions is very important. Thus, to reduce the design effort and find a better fuzzy system control, membership functions are designed automatically by PSO algorithm, that has a strong ability to find the most optimistic results. The motivation for using the PSO technique is to reduce fuzzy system effort and take large parametric uncertainties into account. This newly developed control strategy combines the advantage of PSO and fuzzy system control techniques and leads to a flexible controller with simple stricture that is easy to implement. The proposed PSO based MSF (PSOMSF) controller is tested on a three-area restructured power system under different operating conditions and contract variations. The results of the proposed PSOMSF controller are compared with genetic algorithm based multi-stage fuzzy (GAMSF) control through some performance indices to illustrate its robust performance for a wide range of system parameters and load changes. (author)

  13. Multi-stage circulating fluidized bed syngas cooling

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang

    2016-10-11

    A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.

  14. Multistage Stochastic Programming and its Applications in Energy Systems Modeling and Optimization

    Science.gov (United States)

    Golari, Mehdi

    Electric energy constitutes one of the most crucial elements to almost every aspect of life of people. The modern electric power systems face several challenges such as efficiency, economics, sustainability, and reliability. Increase in electrical energy demand, distributed generations, integration of uncertain renewable energy resources, and demand side management are among the main underlying reasons of such growing complexity. Additionally, the elements of power systems are often vulnerable to failures because of many reasons, such as system limits, weak conditions, unexpected events, hidden failures, human errors, terrorist attacks, and natural disasters. One common factor complicating the operation of electrical power systems is the underlying uncertainties from the demands, supplies and failures of system components. Stochastic programming provides a mathematical framework for decision making under uncertainty. It enables a decision maker to incorporate some knowledge of the intrinsic uncertainty into the decision making process. In this dissertation, we focus on application of two-stage and multistage stochastic programming approaches to electric energy systems modeling and optimization. Particularly, we develop models and algorithms addressing the sustainability and reliability issues in power systems. First, we consider how to improve the reliability of power systems under severe failures or contingencies prone to cascading blackouts by so called islanding operations. We present a two-stage stochastic mixed-integer model to find optimal islanding operations as a powerful preventive action against cascading failures in case of extreme contingencies. Further, we study the properties of this problem and propose efficient solution methods to solve this problem for large-scale power systems. We present the numerical results showing the effectiveness of the model and investigate the performance of the solution methods. Next, we address the sustainability issue

  15. Pathological classification of human iPSC-derived neural stem/progenitor cells towards safety assessment of transplantation therapy for CNS diseases.

    Science.gov (United States)

    Sugai, Keiko; Fukuzawa, Ryuji; Shofuda, Tomoko; Fukusumi, Hayato; Kawabata, Soya; Nishiyama, Yuichiro; Higuchi, Yuichiro; Kawai, Kenji; Isoda, Miho; Kanematsu, Daisuke; Hashimoto-Tamaoki, Tomoko; Kohyama, Jun; Iwanami, Akio; Suemizu, Hiroshi; Ikeda, Eiji; Matsumoto, Morio; Kanemura, Yonehiro; Nakamura, Masaya; Okano, Hideyuki

    2016-09-19

    The risk of tumorigenicity is a hurdle for regenerative medicine using induced pluripotent stem cells (iPSCs). Although teratoma formation is readily distinguishable, the malignant transformation of iPSC derivatives has not been clearly defined due to insufficient analysis of histology and phenotype. In the present study, we evaluated the histology of neural stem/progenitor cells (NSPCs) generated from integration-free human peripheral blood mononuclear cell (PBMC)-derived iPSCs (iPSC-NSPCs) following transplantation into central nervous system (CNS) of immunodeficient mice. We found that transplanted iPSC-NSPCs produced differentiation patterns resembling those in embryonic CNS development, and that the microenvironment of the final site of migration affected their maturational stage. Genomic instability of iPSCs correlated with increased proliferation of transplants, although no carcinogenesis was evident. The histological classifications presented here may provide cues for addressing potential safety issues confronting regenerative medicine involving iPSCs.

  16. A Methodology for Optimization in Multistage Industrial Processes: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Piotr Jarosz

    2015-01-01

    Full Text Available The paper introduces a methodology for optimization in multistage industrial processes with multiple quality criteria. Two ways of formulation of optimization problem and four different approaches to solve the problem are considered. Proposed methodologies were tested first on a virtual process described by benchmark functions and next were applied in optimization of multistage lead refining process.

  17. Novel methodology for wide-ranged multistage morphing waverider based on conical theory

    Science.gov (United States)

    Liu, Zhen; Liu, Jun; Ding, Feng; Xia, Zhixun

    2017-11-01

    This study proposes the wide-ranged multistage morphing waverider design method. The flow field structure and aerodynamic characteristics of multistage waveriders are also analyzed. In this method, the multistage waverider is generated in the same conical flowfield, which contains a free-stream surface and different compression-stream surfaces. The obtained results show that the introduction of the multistage waverider design method can solve the problem of aerodynamic performance deterioration in the off-design state and allow the vehicle to always maintain the optimal flight state. The multistage waverider design method, combined with transfiguration flight strategy, can lead to greater design flexibility and the optimization of hypersonic wide-ranged waverider vehicles.

  18. Multistage switching hardware and software implementations for student experiment purpose

    Science.gov (United States)

    Sani, A.; Suherman

    2018-02-01

    Current communication and internet networks are underpinned by the switching technologies that interconnect one network to the others. Students’ understanding on networks rely on how they conver the theories. However, understanding theories without touching the reality may exert spots in the overall knowledge. This paper reports the progress of the multistage switching design and implementation for student laboratory activities. The hardware and software designs are based on three stages clos switching architecture with modular 2x2 switches, controlled by an arduino microcontroller. The designed modules can also be extended for batcher and bayan switch, and working on circuit and packet switching systems. The circuit analysis and simulation show that the blocking probability for each switch combinations can be obtained by generating random or patterned traffics. The mathematic model and simulation analysis shows 16.4% blocking probability differences as the traffic generation is uniform. The circuits design components and interfacing solution have been identified to allow next step implementation.

  19. Multistage audiovisual integration of speech: dissociating identification and detection.

    Science.gov (United States)

    Eskelund, Kasper; Tuomainen, Jyrki; Andersen, Tobias S

    2011-02-01

    Speech perception integrates auditory and visual information. This is evidenced by the McGurk illusion where seeing the talking face influences the auditory phonetic percept and by the audiovisual detection advantage where seeing the talking face influences the detectability of the acoustic speech signal. Here, we show that identification of phonetic content and detection can be dissociated as speech-specific and non-specific audiovisual integration effects. To this end, we employed synthetically modified stimuli, sine wave speech (SWS), which is an impoverished speech signal that only observers informed of its speech-like nature recognize as speech. While the McGurk illusion only occurred for informed observers, the audiovisual detection advantage occurred for naïve observers as well. This finding supports a multistage account of audiovisual integration of speech in which the many attributes of the audiovisual speech signal are integrated by separate integration processes.

  20. Nonlinear dynamics modelling of multistage micro-planetary gear transmission

    Directory of Open Access Journals (Sweden)

    Li Jianying

    2018-01-01

    Full Text Available The transmission structure of a 2K-H multistage micro-planetary gear transmission reducer is described in detail, and three assumptions are supposed in dynamic modelling. On basis of these assumptions, a three stages 2K-H micro-planetary gear transmission dynamic model is established, in which the relative displacement each meshing gear pairs can be obtained after including the comprehensive transmission error. According to gear kinematics, the friction arms between the sun gear, the ring gear and the nth planet are also obtained, and the friction coefficient in the mixed elastohydrodynamic lubrication is considered, the transmission system motion differential equations are obtained, including above factors and the time-varying meshing stiffness, damping and backlash, inter-stage coupling stiffness, it can be provided an theoretical foundation for further analysing the parameter sensitivity, dynamic stability and designing.

  1. Desulfurization and denitrogenation of coal during multi-stage hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, N.; Li, W.; Li, B. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab of Coal Conversion

    2001-02-01

    The elemental composition of char of high sulfur Hongmiao coal in multi-stage hydropyrolysis (MHyPy) with different heating rates were analysed and compared with that from normal hydropyrolysis (HyPy). The results illustrated that the sulfur removal in MHyPy was greater than that in HyPy, and more sulfur was evolved as the easily recycled gas H{sub 2}S. Similar with the situation of sulfur, more nitrogen transferred to the gas phase easily to be dealt with and the clean char was obtained. During MHyPy the extent of desulfurization and denitrogenation was more remarkable at high rate than that at slow heating rate. 8 refs., 2 figs., 2 tabs.

  2. Thermogravimetric analysis of multi-stage hydropyrolysis of different coals

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Wang, N.; Li, B [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion

    2001-09-01

    Based on the characteristic of hydropyrolysis (HyPy), a multi-stage MHyPy of different coals was investigated using thermogravimetry. The results show that keeping the near peak temperature for some time in HyPy process can obviously increase the conversion rate, which is believed due to the full match between formation rate of free radicals and supply of hydrogen. The fast heating in MHyPy process results in the same conversion rate as that of the slow heating in HyPy process, which leads to the less reaction time and high yield of oil. The effect of MHyPy depends on the coal structure itself and it is notable for the coal with high H/C ratio. This suggests that the external hydrogen promotes the reaction between intrinsic hydrogen and free radicals. The MHyPy improves the removal of sulfur and nitrogen. 5 refs., 7 figs., 2 tabs.

  3. Process analysis of catalytic multi-stage hydropyrolysis of lignite

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Wang, N.; Li, B. [Chinese Academy of Sciences, Taiyuan (China). Inst. of Coal Chemistry, State Key Laboratory of Coal Conversion

    2002-08-01

    The process and the mechanism of multi-stage hydropyrolysis (MHyPy) of coal were investigated by analyzing the products of different MHyPy processes in detail. The results showed that the suitable holding temperature was near the peak temperature (350-500{degree}C) at which more free radicals were produced rapidly, thus more oil was formed and the hydrogen utilization efficiency was increased. The cleavage of organic functional groups in char from MHyPy was mostly affected by the pyrolysis temperature. The effect of retention was to change the product distribution through stabilization of the free radicals and hydrogenation of the heavier products. In the holding stage the specific surface area and average pore volume of the char were increased due to the escape of more hydrogenation products. 18 refs., 8 figs., 3 tabs.

  4. Silicon nanowire networks for multi-stage thermoelectric modules

    International Nuclear Information System (INIS)

    Norris, Kate J.; Garrett, Matthew P.; Zhang, Junce; Coleman, Elane; Tompa, Gary S.; Kobayashi, Nobuhiko P.

    2015-01-01

    Highlights: • Fabricated flexible single, double, and quadruple stacked Si thermoelectric modules. • Measured an enhanced power production of 27%, showing vertical stacking is scalable. • Vertically scalable thermoelectric module design of semiconducting nanowires. • Design can utilize either p or n-type semiconductors, both types are not required. • ΔT increases with thickness therefore power/area can increase as modules are stacked. - Abstract: We present the fabrication and characterization of single, double, and quadruple stacked flexible silicon nanowire network based thermoelectric modules. From double to quadruple stacked modules, power production increased 27%, demonstrating that stacking multiple nanowire thermoelectric devices in series is a scalable method to generate power by supplying larger temperature gradient. We present a vertically scalable multi-stage thermoelectric module design using semiconducting nanowires, eliminating the need for both n-type and p-type semiconductors for modules

  5. Multistage audiovisual integration of speech: dissociating identification and detection

    DEFF Research Database (Denmark)

    Eskelund, Kasper; Tuomainen, Jyrki; Andersen, Tobias

    2011-01-01

    Speech perception integrates auditory and visual information. This is evidenced by the McGurk illusion where seeing the talking face influences the auditory phonetic percept and by the audiovisual detection advantage where seeing the talking face influences the detectability of the acoustic speech...... signal. Here we show that identification of phonetic content and detection can be dissociated as speech-specific and non-specific audiovisual integration effects. To this end, we employed synthetically modified stimuli, sine wave speech (SWS), which is an impoverished speech signal that only observers...... informed of its speech-like nature recognize as speech. While the McGurk illusion only occurred for informed observers the audiovisual detection advantage occurred for naïve observers as well. This finding supports a multi-stage account of audiovisual integration of speech in which the many attributes...

  6. Applying a punch with microridges in multistage deep drawing processes.

    Science.gov (United States)

    Lin, Bor-Tsuen; Yang, Cheng-Yu

    2016-01-01

    The developers of high aspect ratio components aim to minimize the processing stages in deep drawing processes. This study elucidates the application of microridge punches in multistage deep drawing processes. A microridge punch improves drawing performance, thereby reducing the number of stages required in deep forming processes. As an example, the original eight-stage deep forming process for a copper cylindrical cup with a high aspect ratio was analyzed by finite element simulation. Microridge punch designs were introduced in Stages 4 and 7 to replace the original punches. In addition, Stages 3 and 6 were eliminated. Finally, these changes were verified through experiments. The results showed that the microridge punches reduced the number of deep drawing stages yielding similar thickness difference percentages. Further, the numerical and experimental results demonstrated good consistency in the thickness distribution.

  7. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, S.; Lawless, P.B. [Purdue Univ., West Lafayette, IN (United States)

    1995-10-01

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  8. Robust modified GA based multi-stage fuzzy LFC

    International Nuclear Information System (INIS)

    Shayeghi, H.; Jalili, A.; Shayanfar, H.A.

    2007-01-01

    In this paper, a robust genetic algorithm (GA) based multi-stage fuzzy (MSF) controller is proposed for solution of the load frequency control (LFC) problem in a restructured power system that operates under deregulation based on the bilateral policy scheme. In this strategy, the control signal is tuned online from the knowledge base and the fuzzy inference, which request fewer sources and has two rule base sets. In the proposed method, for achieving the desired level of robust performance, exact tuning of the membership functions is very important. Thus, to reduce the design effort and find a better fuzzy system control, membership functions are designed automatically by modified genetic algorithms. The classical genetic algorithms are powerful search techniques to find the global optimal area. However, the global optimum value is not guaranteed using this method, and the speed of the algorithm's convergence is extremely reduced too. To overcome this drawback, a modified genetic algorithm is being used to tune the membership functions of the proposed MSF controller. The effectiveness of the proposed method is demonstrated on a three area restructured power system with possible contracted scenarios under large load demand and area disturbances in comparison with the multi-stage fuzzy and classical fuzzy PID controllers through FD and ITAE performance indices. The results evaluation shows that the proposed control strategy achieves good robust performance for a wide range of system parameters and load changes in the presence of system nonlinearities and is superior to the other controllers. Moreover, this newly developed control strategy has a simple structure, does not require an accurate model of the plant and is fairly easy to implement, which can be useful for the real world complex power systems

  9. Robust modified GA based multi-stage fuzzy LFC

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H. [Technical Engineering Department, The University of Mohaghegh Ardebili, Daneshkah St., Ardebil (Iran); Jalili, A. [Electrical Engineering Group, Islamic Azad University, Ardebil Branch, Ardebil (Iran); Shayanfar, H.A. [Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran)

    2007-05-15

    In this paper, a robust genetic algorithm (GA) based multi-stage fuzzy (MSF) controller is proposed for solution of the load frequency control (LFC) problem in a restructured power system that operates under deregulation based on the bilateral policy scheme. In this strategy, the control signal is tuned online from the knowledge base and the fuzzy inference, which request fewer sources and has two rule base sets. In the proposed method, for achieving the desired level of robust performance, exact tuning of the membership functions is very important. Thus, to reduce the design effort and find a better fuzzy system control, membership functions are designed automatically by modified genetic algorithms. The classical genetic algorithms are powerful search techniques to find the global optimal area. However, the global optimum value is not guaranteed using this method, and the speed of the algorithm's convergence is extremely reduced too. To overcome this drawback, a modified genetic algorithm is being used to tune the membership functions of the proposed MSF controller. The effectiveness of the proposed method is demonstrated on a three area restructured power system with possible contracted scenarios under large load demand and area disturbances in comparison with the multi-stage fuzzy and classical fuzzy PID controllers through FD and ITAE performance indices. The results evaluation shows that the proposed control strategy achieves good robust performance for a wide range of system parameters and load changes in the presence of system nonlinearities and is superior to the other controllers. Moreover, this newly developed control strategy has a simple structure, does not require an accurate model of the plant and is fairly easy to implement, which can be useful for the real world complex power systems. (author)

  10. Feet swelling in a multistage ultraendurance triathlete: a case study

    Directory of Open Access Journals (Sweden)

    Knechtle B

    2015-10-01

    Full Text Available Beat Knechtle,1 Matthias Alexander Zingg,2 Patrizia Knechtle,1 Thomas Rosemann,2 Christoph Alexander Rüst2 1Gesundheitszentrum St Gallen, St Gallen, 2Institute of Primary Care, University of Zurich, Zurich, Switzerland Abstract: Recent studies investigating ultraendurance athletes showed an association between excessive fluid intake and swelling of the lower limbs such as the feet. To date, this association has been investigated in single-stage ultraendurance races, but not in multistage ultraendurance races. In this case study, we investigated a potential association between fluid intake and feet swelling in a multistage ultraendurance race such as a Deca Iron ultratriathlon with ten Ironman triathlons within 10 consecutive days. A 49-year-old well-experienced ultratriathlete competed in autumn 2013 in the Deca Iron ultratriathlon held in Lonata del Garda, Italy, and finished the race as winner within 129:33 hours:minutes. Changes in body mass (including body fat and lean body mass, foot volume, total body water, and laboratory measurements were assessed. Food and fluid intake during rest and competing were recorded, and energy and fluid turnovers were estimated. During the ten stages, the volume of the feet increased, percentage body fat decreased, creatinine and urea levels increased, hematocrit and hemoglobin values decreased, and plasma [Na+] remained unchanged. The increase in foot volume was significantly and positively related to fluid intake during the stages. The poststage volume of the foot was related to poststage total body water, poststage creatinine, and poststage urea. This case report shows that the volume of the foot increased during the ten stages, and the increase in volume was significantly and positively related to fluid intake during the stages. Furthermore, the poststage volume of the foot was related to poststage total body water, poststage creatinine, and poststage urea. The continuous feet swelling during the race was

  11. Particle swarm optimization of ascent trajectories of multistage launch vehicles

    Science.gov (United States)

    Pontani, Mauro

    2014-02-01

    Multistage launch vehicles are commonly employed to place spacecraft and satellites in their operational orbits. If the rocket characteristics are specified, the optimization of its ascending trajectory consists of determining the optimal control law that leads to maximizing the final mass at orbit injection. The numerical solution of a similar problem is not trivial and has been pursued with different methods, for decades. This paper is concerned with an original approach based on the joint use of swarming theory and the necessary conditions for optimality. The particle swarm optimization technique represents a heuristic population-based optimization method inspired by the natural motion of bird flocks. Each individual (or particle) that composes the swarm corresponds to a solution of the problem and is associated with a position and a velocity vector. The formula for velocity updating is the core of the method and is composed of three terms with stochastic weights. As a result, the population migrates toward different regions of the search space taking advantage of the mechanism of information sharing that affects the overall swarm dynamics. At the end of the process the best particle is selected and corresponds to the optimal solution to the problem of interest. In this work the three-dimensional trajectory of the multistage rocket is assumed to be composed of four arcs: (i) first stage propulsion, (ii) second stage propulsion, (iii) coast arc (after release of the second stage), and (iv) third stage propulsion. The Euler-Lagrange equations and the Pontryagin minimum principle, in conjunction with the Weierstrass-Erdmann corner conditions, are employed to express the thrust angles as functions of the adjoint variables conjugate to the dynamics equations. The use of these analytical conditions coming from the calculus of variations leads to obtaining the overall rocket dynamics as a function of seven parameters only, namely the unknown values of the initial state

  12. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2018-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  13. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2017-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  14. NDDP multi-stage flash desalination process simulator design

    International Nuclear Information System (INIS)

    Chatterjee, M.; Sashi Kumar, G.N.; Mahendra, A.K.; Sanyal, A.; Gouthaman, G.

    2006-05-01

    A majority of large-scale desalination plants all over the world employ multi-stage flash (MSF) distillation process. Many of these MSF desalination plants have been set up near to nuclear power plants (generally called as nuclear desalination plants) to effectively utilize the low-grade steam from the power plants as the source of energy. A computer program called MSFSIM has been developed to simulate the MSF desalination plant operation both for steady state and various transients including start up. This code predicts the effect of number of stages, flashing temperature, velocity of brine flowing through the tubes of brine heater and evaporators, temperature of the condensing thin film etc. on the plant performance ratio. Such a code can be used for the design of a new plant and to predict its operating and startup characteristics. The code has been extensively validated with available start up data from the pilot MSF desalination plant of 425-m3/day capacity at Trombay, Mumbai. A MSF desalination plant of 4500-m3/day capacity is under construction by BARC at Kalpakkam, which will utilize the steam from Madras Atomic Power Station (MAPS). In this present work extensive parametric study of the 4500-m3/day capacity desalination plant at Kalpakkam has been done using the code MSFSIM for optimizing the operating parameters in order to maximize the performance ratio for stable plant operation. The aim of the work is prediction of plant performance under different operating conditions. (author)

  15. Design procedure of capsule with multistage heater control (named MUSTAC)

    International Nuclear Information System (INIS)

    Someya, Hiroyuki; Endoh, Yasuichi; Hoshiya, Taiji; Niimi, Motoji; Harayama, Yasuo

    1990-11-01

    A capsule with electric heaters at multistage (named MUSTAC) is a type of capsule used in JMTR. The heaters are assembled in the capsule. Supply electric current to the heaters can be independently adjusted with a control systems that keeps irradiation specimens to constant temperature. The capsule being used, the irradiation specimen are inserted into specimen holders. Gas-gap size, between outer surface of specimen holders and inner surface of capsule casing, is calculated and determined to be flatten temperature of loaded specimens over the region. The rise or drop of specimen temperature in accordance with reactor power fluctuations is corrected within the target temperature of specimen by using the heaters filled into groove at specimen holder surface. The present report attempts to propose a reasonable design procedure of the capsules by means of compiling experience for designs, works and irradiation data of the capsules and to prepare for useful informations against onward capsule design. The key point of the capsule lies on thermal design. Now design thermal calculations are complicated in case of specimen holder with multihole. Resolving these issues, it is considered from new on that an emphasis have to placed on settling a thermal calculation device, for an example, a computer program on calculation specimen temperature. (author)

  16. ''Theta gun,'' a multistage, coaxial, magnetic induction projectile accelerator

    International Nuclear Information System (INIS)

    Burgess, T.J.; Duggin, B.W.; Cowan, M. Jr.

    1985-11-01

    We experimentally and theoretically studied a multistage coaxial magnetic induction projectile accelerator. We call this system a ''theta gun'' to differentiate it from other coaxial accelerator concepts such as the mass driver. We conclude that this system can theoretically attain railgun performance only for large caliber or very high injection velocity and, even then, only for long coil geometry. Our experiments with a three-stage, capactor bank-driven accelerator are described. The experiments are modeled with a 1-1/2 dimensional equivalent circuit-hydrodynamics code which is also described. We derive an expression for the conditions of coaxial accelerator-railgun ''velocity breakeven'' in the absence of ohmic and hydrodynamic effects. This, in conjunction with an expression for the magnetic coupling coefficient, defines a set of geometric relations which the coaxial system must simultaneously satisfy. Conclusions concerning both the existence and configuration of a breakeven coaxial system follow from this requirement. The relative advantages and disadvantages of the coaxial induction projectile accelerator, previously cited in the literature, are critiqued from the viewpoint of our analysis and experimental results. We find that the advantages vis-a-vis the railgun have been overstated. 13 refs., 17 figs

  17. Synthetic Multiple-Imputation Procedure for Multistage Complex Samples

    Directory of Open Access Journals (Sweden)

    Zhou Hanzhi

    2016-03-01

    Full Text Available Multiple imputation (MI is commonly used when item-level missing data are present. However, MI requires that survey design information be built into the imputation models. For multistage stratified clustered designs, this requires dummy variables to represent strata as well as primary sampling units (PSUs nested within each stratum in the imputation model. Such a modeling strategy is not only operationally burdensome but also inferentially inefficient when there are many strata in the sample design. Complexity only increases when sampling weights need to be modeled. This article develops a generalpurpose analytic strategy for population inference from complex sample designs with item-level missingness. In a simulation study, the proposed procedures demonstrate efficient estimation and good coverage properties. We also consider an application to accommodate missing body mass index (BMI data in the analysis of BMI percentiles using National Health and Nutrition Examination Survey (NHANES III data. We argue that the proposed methods offer an easy-to-implement solution to problems that are not well-handled by current MI techniques. Note that, while the proposed method borrows from the MI framework to develop its inferential methods, it is not designed as an alternative strategy to release multiply imputed datasets for complex sample design data, but rather as an analytic strategy in and of itself.

  18. Multistage principal component analysis based method for abdominal ECG decomposition

    International Nuclear Information System (INIS)

    Petrolis, Robertas; Krisciukaitis, Algimantas; Gintautas, Vladas

    2015-01-01

    Reflection of fetal heart electrical activity is present in registered abdominal ECG signals. However this signal component has noticeably less energy than concurrent signals, especially maternal ECG. Therefore traditionally recommended independent component analysis, fails to separate these two ECG signals. Multistage principal component analysis (PCA) is proposed for step-by-step extraction of abdominal ECG signal components. Truncated representation and subsequent subtraction of cardio cycles of maternal ECG are the first steps. The energy of fetal ECG component then becomes comparable or even exceeds energy of other components in the remaining signal. Second stage PCA concentrates energy of the sought signal in one principal component assuring its maximal amplitude regardless to the orientation of the fetus in multilead recordings. Third stage PCA is performed on signal excerpts representing detected fetal heart beats in aim to perform their truncated representation reconstructing their shape for further analysis. The algorithm was tested with PhysioNet Challenge 2013 signals and signals recorded in the Department of Obstetrics and Gynecology, Lithuanian University of Health Sciences. Results of our method in PhysioNet Challenge 2013 on open data set were: average score: 341.503 bpm 2 and 32.81 ms. (paper)

  19. Multi-stage low-pressure avalanche chamber

    International Nuclear Information System (INIS)

    Zanevskij, Yu.V.; Peshekhonov, V.D.; Smykov, L.P.

    1985-01-01

    A multi-stage avalanche-chamber filled with isobutane operating at the pressure of 6 torr is described. The chamber comprises an amplifying gap, drift gap and multiwire proportional chamber with interelectrode gaps equal to 4 mm. The anode plane of the proportional chamber is winded of wire 2 μm in diameter with 2 mm pitch. The cathode are winded orthogonally to anode wires of wire 50 μm in diameter with 1 mm pitch. Drift and preamplifier gaps are formed by grid electrodes made of wire 50 μm in diameter with dimension of the cell equal to 1x1 mm. Width of the drift gap is 5 mm, width of the preamplification gap is 3 or 9 mm. Coordinate data are removed from the cathodes of the proportional chamber by means of delay lines. Sensitive square of the chamber equals 240x180 mm. Gas gain coefficient is 3x10 6 at its square nonuniformity equal to approximately 3%. Spatial resolution by both coordinates equals 170 μm; spatial resolution for isotropic α-emitters located close to the preamplifier gap is equal to 500 μm

  20. Product analysis of catalytic multi-stage hydropyrolysis of lignite

    Energy Technology Data Exchange (ETDEWEB)

    Wen Li; Na Wang; Baoqing Li [Chinese Academy of Science, Taiyuan (China). State Key Lab of Coal Conversion, Institute of Coal Chemistry

    2003-03-01

    A lignite added with 0.2% MoS{sub 2} as catalyst was pyrolyzed under H{sub 2} using multi-stage heating method (MHyPy) which means holding a suitable time near the peak temperature. The product distribution and detailed analysis of products were performed. The results show that the tar yield increased to 63.9% during MHyPy compared with that of 51.8% in traditional hydropyrolysis (HyPy), while the gas yield decreased to a half. This suggests the effective utilization of hydrogen during MHyPy. The light aromatics in the tar from MHyPy increased remarkably 42, 37.8 and 115.4% for BTX, PCX and naphthalenes, respectively. Biphenyls were also observed in the tar from MHyPy, which indicated the effective hydrogenation occurs during catalytic MHyPy. The rich pore structure of the char from MHyPy hints its high reactivity in the subsequent conversion process such as gasification and combustion. 15 refs., 7 figs., 2 tabs.

  1. Product analysis of catalytic multi-stage hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Wang, N.; Li, B. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion

    2002-05-01

    Multi-stage hydropyrolysis (MHyPy) and hydropyrolysis (HyPy) of Xundian lignite, with MoS{sub 2} as the catalyst, were performed in a fixed bed reactor. The product distribution and property were investigated in detail. The results show that the tar yield increases to 63.9% during MHyPy compared with that of 51.8% in HyPy, while the gas yield decreases by 50%. The tar composition does not make big difference between MHyPy and HyPy. However, the light aromatics in the tar from MHyPy increase remarkably by 42%, 37.8% and 115.4% for BTX, PCX and naphthalene respectively. The specific surface area of char from MHyPy is larger than that from HyPy. The average pore diameter of char from MHyPy is smaller than that from HyPy, while the pore volume increases by 100% compared with that from HyPy. The catalytic MHyPy has an obvious advantage over HyPy. 10 refs., 8 figs., 3 tabs.

  2. Computer Adaptive Multistage Testing: Practical Issues, Challenges and Principles

    Directory of Open Access Journals (Sweden)

    Halil Ibrahim SARI

    2016-12-01

    Full Text Available The purpose of many test in the educational and psychological measurement is to measure test takers’ latent trait scores from responses given to a set of items. Over the years, this has been done by traditional methods (paper and pencil tests. However, compared to other test administration models (e.g., adaptive testing, traditional methods are extensively criticized in terms of producing low measurement accuracy and long test length. Adaptive testing has been proposed to overcome these problems. There are two popular adaptive testing approaches. These are computerized adaptive testing (CAT and computer adaptive multistage testing (ca-MST. The former is a well-known approach that has been predominantly used in this field. We believe that researchers and practitioners are fairly familiar with many aspects of CAT because it has more than a hundred years of history. However, the same thing is not true for the latter one. Since ca-MST is relatively new, many researchers are not familiar with features of it. The purpose of this study is to closely examine the characteristics of ca-MST, including its working principle, the adaptation procedure called the routing method, test assembly, and scoring, and provide an overview to researchers, with the aim of drawing researchers’ attention to ca-MST and encouraging them to contribute to the research in this area. The books, software and future work for ca-MST are also discussed.

  3. Multi-stage combustion using nitrogen-enriched air

    Science.gov (United States)

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  4. A cascaded three-phase symmetrical multistage voltage multiplier

    International Nuclear Information System (INIS)

    Iqbal, Shahid; Singh, G K; Besar, R; Muhammad, G

    2006-01-01

    A cascaded three-phase symmetrical multistage Cockcroft-Walton voltage multiplier (CW-VM) is proposed in this report. It consists of three single-phase symmetrical voltage multipliers, which are connected in series at their smoothing columns like string of batteries and are driven by three-phase ac power source. The smoothing column of each voltage multiplier is charged twice every cycle independently by respective oscillating columns and discharged in series through load. The charging discharging process completes six times a cycle and therefore the output voltage ripple's frequency is of sixth order of the drive signal frequency. Thus the proposed approach eliminates the first five harmonic components of load generated voltage ripples and sixth harmonic is the major ripple component. The proposed cascaded three-phase symmetrical voltage multiplier has less than half the voltage ripple, and three times larger output voltage and output power than the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the laboratory prototype are given to show the feasibility of proposed cascaded three-phase symmetrical CW-VM

  5. A multi-stage color model revisited: implications for a gene therapy cure for red-green colorblindness.

    Science.gov (United States)

    Mancuso, Katherine; Mauck, Matthew C; Kuchenbecker, James A; Neitz, Maureen; Neitz, Jay

    2010-01-01

    In 1993, DeValois and DeValois proposed a 'multi-stage color model' to explain how the cortex is ultimately able to deconfound the responses of neurons receiving input from three cone types in order to produce separate red-green and blue-yellow systems, as well as segregate luminance percepts (black-white) from color. This model extended the biological implementation of Hurvich and Jameson's Opponent-Process Theory of color vision, a two-stage model encompassing the three cone types combined in a later opponent organization, which has been the accepted dogma in color vision. DeValois' model attempts to satisfy the long-remaining question of how the visual system separates luminance information from color, but what are the cellular mechanisms that establish the complicated neural wiring and higher-order operations required by the Multi-stage Model? During the last decade and a half, results from molecular biology have shed new light on the evolution of primate color vision, thus constraining the possibilities for the visual circuits. The evolutionary constraints allow for an extension of DeValois' model that is more explicit about the biology of color vision circuitry, and it predicts that human red-green colorblindness can be cured using a retinal gene therapy approach to add the missing photopigment, without any additional changes to the post-synaptic circuitry.

  6. Multistage Effort and the Equity Structure of Venture Investment Based on Reciprocity Motivation

    OpenAIRE

    Ding, Chuan; Chen, Jiacheng; Liu, Xin; Zheng, Junjun

    2015-01-01

    For venture capitals, it is a long process from an entry to its exit. In this paper, the activity of venture investment will be divided into multistages. And, according to the effort level entrepreneurs will choose, the venture capitalists will provide an equity structure at the very beginning. As a benchmark for comparison, we will establish two game models on multistage investment under perfect rationality: a cooperative game model and a noncooperative one. Further, as a cause of pervasive ...

  7. Multi-Stage Recognition of Speech Emotion Using Sequential Forward Feature Selection

    Directory of Open Access Journals (Sweden)

    Liogienė Tatjana

    2016-07-01

    Full Text Available The intensive research of speech emotion recognition introduced a huge collection of speech emotion features. Large feature sets complicate the speech emotion recognition task. Among various feature selection and transformation techniques for one-stage classification, multiple classifier systems were proposed. The main idea of multiple classifiers is to arrange the emotion classification process in stages. Besides parallel and serial cases, the hierarchical arrangement of multi-stage classification is most widely used for speech emotion recognition. In this paper, we present a sequential-forward-feature-selection-based multi-stage classification scheme. The Sequential Forward Selection (SFS and Sequential Floating Forward Selection (SFFS techniques were employed for every stage of the multi-stage classification scheme. Experimental testing of the proposed scheme was performed using the German and Lithuanian emotional speech datasets. Sequential-feature-selection-based multi-stage classification outperformed the single-stage scheme by 12–42 % for different emotion sets. The multi-stage scheme has shown higher robustness to the growth of emotion set. The decrease in recognition rate with the increase in emotion set for multi-stage scheme was lower by 10–20 % in comparison with the single-stage case. Differences in SFS and SFFS employment for feature selection were negligible.

  8. Deleterious effect of Usutu virus on human neural cells.

    Directory of Open Access Journals (Sweden)

    Sara Salinas

    2017-09-01

    Full Text Available In the last decade, the number of emerging Flaviviruses described worldwide has increased considerably. Among them Zika virus (ZIKV and Usutu virus (USUV are African mosquito-borne viruses that recently emerged. Recently, ZIKV has been intensely studied due to major outbreaks associated with neonatal death and birth defects, as well as neurological symptoms. USUV pathogenesis remains largely unexplored, despite significant human and veterinary associated disorders. Circulation of USUV in Africa was documented more than 50 years ago, and it emerged in Europe two decades ago, causing massive bird mortality. More recently, USUV has been described to be associated with neurological disorders in humans such as encephalitis and meningoencephalitis, highlighting USUV as a potential health threat. The aim of this study was to evaluate the ability of USUV to infect neuronal cells. Our results indicate that USUV efficiently infects neurons, astrocytes, microglia and IPSc-derived human neuronal stem cells. When compared to ZIKV, USUV led to a higher infection rate, viral production, as well as stronger cell death and anti-viral response. Our results highlight the need to better characterize the physiopathology related to USUV infection in order to anticipate the potential threat of USUV emergence.

  9. Lymphoma diagnosis in histopathology using a multi-stage visual learning approach

    Science.gov (United States)

    Codella, Noel; Moradi, Mehdi; Matasar, Matt; Sveda-Mahmood, Tanveer; Smith, John R.

    2016-03-01

    This work evaluates the performance of a multi-stage image enhancement, segmentation, and classification approach for lymphoma recognition in hematoxylin and eosin (H and E) stained histopathology slides of excised human lymph node tissue. In the first stage, the original histology slide undergoes various image enhancement and segmentation operations, creating an additional 5 images for every slide. These new images emphasize unique aspects of the original slide, including dominant staining, staining segmentations, non-cellular groupings, and cellular groupings. For the resulting 6 total images, a collection of visual features are extracted from 3 different spatial configurations. Visual features include the first fully connected layer (4096 dimensions) of the Caffe convolutional neural network trained from ImageNet data. In total, over 200 resultant visual descriptors are extracted for each slide. Non-linear SVMs are trained over each of the over 200 descriptors, which are then input to a forward stepwise ensemble selection that optimizes a late fusion sum of logistically normalized model outputs using local hill climbing. The approach is evaluated on a public NIH dataset containing 374 images representing 3 lymphoma conditions: chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and mantle cell lymphoma (MCL). Results demonstrate a 38.4% reduction in residual error over the current state-of-art on this dataset.

  10. A Multi-stage Method to Extract Road from High Resolution Satellite Image

    International Nuclear Information System (INIS)

    Zhijian, Huang; Zhang, Jinfang; Xu, Fanjiang

    2014-01-01

    Extracting road information from high-resolution satellite images is complex and hardly achieves by exploiting only one or two modules. This paper presents a multi-stage method, consisting of automatic information extraction and semi-automatic post-processing. The Multi-scale Enhancement algorithm enlarges the contrast of human-made structures with the background. The Statistical Region Merging segments images into regions, whose skeletons are extracted and pruned according to geometry shape information. Setting the start and the end skeleton points, the shortest skeleton path is constructed as a road centre line. The Bidirectional Adaptive Smoothing technique smoothens the road centre line and adjusts it to right position. With the smoothed line and its average width, a Buffer algorithm reconstructs the road region easily. Seen from the last results, the proposed method eliminates redundant non-road regions, repairs incomplete occlusions, jumps over complete occlusions, and reserves accurate road centre lines and neat road regions. During the whole process, only a few interactions are needed

  11. Comprehensive study for Anammox process via multistage anaerobic baffled reactors

    Science.gov (United States)

    Ismail, Sherif; Tawfik, Ahmed

    2017-11-01

    Continuous anaerobic ammonia oxidation (Anammox) process in multistage anaerobic baffled (MABR) reactor was investigated. The reactor was operated for approximately 150 days at constant hydraulic retention time (HRT) of 48 h and was fed with synthetic wastewater containing nitrite and ammonium as main substrates. The MABR was inoculated with mixed culture bacteria collected from activated sludge plant (41.6 g MLSS/L and 19.1 g MLVSS/L). The MABR reactor exhibited excellent performance for the start-up of Anammox process within a period of 35 days. The start-up period was divided into four successive phases; cell lysis, lag, activity elevation and steady state. Total inorganic nitrogen (TIN) removal efficiency of 96.8± 0.9% was achieved at steady state conditions, corresponding to nitrogen removal rate (NRR) of 50.2±1.7 mg N/L·d. Moreover, the effect of HRT on the Anammox process was assessed with applying five different HRTs of (48, 38.4, 28.8, 19.2 and 9.6 h). Decreasing HRT from 48 to 9.6 h reduced the removal efficiencies of NH4-N, NO2-N and TIN from 97.7±2.2 to 49.0±9.8%, from 95.7±1.9 to 71.0±8.5% and from 96.8±0.9 to 57.9±9.1%, respectively, that corresponding to reduction in NRR from 50.8±1.2 mg N/L·d at HRT of 48 h to 32.5±5.0 mg N/L·d at HRT of 9.6 h.

  12. Phase-I monitoring of standard deviations in multistage linear profiles

    Science.gov (United States)

    Kalaei, Mahdiyeh; Soleimani, Paria; Niaki, Seyed Taghi Akhavan; Atashgar, Karim

    2018-03-01

    In most modern manufacturing systems, products are often the output of some multistage processes. In these processes, the stages are dependent on each other, where the output quality of each stage depends also on the output quality of the previous stages. This property is called the cascade property. Although there are many studies in multistage process monitoring, there are fewer works on profile monitoring in multistage processes, especially on the variability monitoring of a multistage profile in Phase-I for which no research is found in the literature. In this paper, a new methodology is proposed to monitor the standard deviation involved in a simple linear profile designed in Phase I to monitor multistage processes with the cascade property. To this aim, an autoregressive correlation model between the stages is considered first. Then, the effect of the cascade property on the performances of three types of T 2 control charts in Phase I with shifts in standard deviation is investigated. As we show that this effect is significant, a U statistic is next used to remove the cascade effect, based on which the investigated control charts are modified. Simulation studies reveal good performances of the modified control charts.

  13. Experience in North America Tight Oil Reserves Development. Horizontal Wells and Multistage Hydraulic Fracturing

    Directory of Open Access Journals (Sweden)

    R.R. Ibatullin

    2017-09-01

    Full Text Available The accelerated development of horizontal drilling technology in combination with the multistage hydraulic fracturing of the reservoir has expanded the geological conditions for commercial oil production from tight reservoirs in North America. Geological and physical characteristics of tight reservoirs in North America are presented, as well as a comparison of the geological and physical properties of the reservoirs of the Western Canadian Sedimentary Basin and the Volga-Ural oil and gas province, in particular, in the territory of Tatarstan. The similarity of these basins is shown in terms of formation and deposition. New drilling technologies for horizontal wells (HW and multistage hydraulic fracturing are considered. The drilling in tight reservoirs is carried out exclusively on hydrocarbon-based muds The multi-stage fracturing technology with the use of sliding sleeves, and also slick water – a low-viscous carrier for proppant is the most effective solution for conditions similar to tight reservoirs in the Devonian formation of Tatarstan. Tax incentives which are actively used for the development of HW and multistage fracturing technologies in Canada are described. wells, multistage fracturing

  14. Experimental Investigation of Inlet Distortion in a Multistage Axial Compressor

    Science.gov (United States)

    Rusu, Razvan

    The primary objective of this research is to present results and methodologies used to study total pressure inlet distortion in a multi-stage axial compressor environment. The study was performed at the Purdue 3-Stage Axial Compressor Facility (P3S) which models the final three stages of a production turbofan engine's high-pressure compressor (HPC). The goal of this study was twofold; first, to design, implement, and validate a circumferentially traversable total pressure inlet distortion generation system, and second, to demonstrate data acquisition methods to characterize the inter-stage total pressure flow fields to study the propagation and attenuation of a one-per-rev total pressure distortion. The datasets acquired for this study are intended to support the development and validation of novel computational tools and flow physics models for turbomachinery flow analysis. Total pressure inlet distortion was generated using a series of low-porosity wire gauze screens placed upstream of the compressor in the inlet duct. The screens are mounted to a rotatable duct section that can be precisely controlled. The P3S compressor features fixed instrumentation stations located at the aerodynamic interface plane (AIP) and downstream and upstream of each vane row. Furthermore, the compressor features individually indexable stator vanes which can be traverse by up to two vane passages. Using a series of coordinated distortion and vane traverses, the total pressure flow field at the AIP and subsequent inter-stage stations was characterized with a high circumferential resolution. The uniformity of the honeycomb carrier was demonstrated by characterizing the flow field at the AIP while no distortion screens where installed. Next, the distortion screen used for this study was selected following three iterations of porosity reduction. The selected screen consisted of a series of layered screens with a 100% radial extent and a 120° circumferential extent. A detailed total

  15. Influence of dispatching rules on average production lead time for multi-stage production systems.

    Science.gov (United States)

    Hübl, Alexander; Jodlbauer, Herbert; Altendorfer, Klaus

    2013-08-01

    In this paper the influence of different dispatching rules on the average production lead time is investigated. Two theorems based on covariance between processing time and production lead time are formulated and proved theoretically. Theorem 1 links the average production lead time to the "processing time weighted production lead time" for the multi-stage production systems analytically. The influence of different dispatching rules on average lead time, which is well known from simulation and empirical studies, can be proved theoretically in Theorem 2 for a single stage production system. A simulation study is conducted to gain more insight into the influence of dispatching rules on average production lead time in a multi-stage production system. We find that the "processing time weighted average production lead time" for a multi-stage production system is not invariant of the applied dispatching rule and can be used as a dispatching rule independent indicator for single-stage production systems.

  16. Strategies and limits in multi-stage single-point incremental forming

    DEFF Research Database (Denmark)

    Skjødt, Martin; Silva, M.B.; Martins, P. A. F.

    2010-01-01

    paths. The results also reveal that the sequence of multi-stage forming has a large effect on the location of strain points in the principal strain space. Strain paths are linear in the first stage and highly non-linear in the subsequent forming stages. The overall results show that the experimentally......Multi-stage single-point incremental forming (SPIF) is a state-of-the-art manufacturing process that allows small-quantity production of complex sheet metal parts with vertical walls. This paper is focused on the application of multi-stage SPIF with the objective of producing cylindrical cups......-limit curves and fracture forming-limit curves (FFLCs), numerical simulation, and experimentation, namely the evaluation of strain paths and fracture strains in actual multi-stage parts. Assessment of numerical simulation with experimentation shows good agreement between computed and measured strain and strain...

  17. Preliminary study on functional performance of compound type multistage safety injection tank

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo

    2015-01-01

    Highlights: • Functional performance of compound type multistage safety injection tanks is studied. • Effects of key design parameters are scrutinized. • Distinctive flow features in compound type safety injection tanks are explored. - Abstract: A parametric study is carried out to evaluate the functional performance of a compound type multistage safety injection tank that would be considered one of the components for the passive safety injection systems in nuclear power plants. The effects of key design parameters such as the initial volume fraction and charging pressure of gas, tank elevation, vertical location of a sparger, resistance coefficient, and operating condition on the injection flow rate are scrutinized along with a discussion of the relevant flow features. The obtained results indicate that the compound type multistage safety injection tank can effectively control the injection flow rate in a passive manner, by switching the driving force for the safety injection from gas pressure to gravity during the refill and reflood phases, respectively

  18. Design of intermediate die shape of multistage profile drawing for linear motion guide

    International Nuclear Information System (INIS)

    Lee, Sang Kon; Lee, Jae Eun; Kim, Sung Min; Kim, Byung Min

    2010-01-01

    The design of an intermediate die shape is very important in multistage profile drawing. In this study, two design methods for the intermediate die shape of a multistage profile drawing for producing a linear motion guide (LM) guide is proposed. One is the electric field analysis method using the equipotential lines generated by electric field analysis, and the other is the virtual die method using a virtual drawing die constructed from the initial material and the final product shape. In order to design the intermediate die shapes of a multistage profile drawing for producing LM guide, the proposed design methods are applied, and then FE analysis and profile drawing experiment are performed. As a result, based on the measurement of dimensional accuracy, it can be known that the intermediate die shape can be designed effectively

  19. Enhanced anticancer efficacy of paclitaxel through multistage tumor-targeting liposomes modified with RGD and KLA peptides

    Directory of Open Access Journals (Sweden)

    Sun J

    2017-02-01

    Full Text Available Jiawei Sun,1 Lei Jiang,2 Yi Lin,3 Ethan Michael Gerhard,4 Xuehua Jiang,1 Li Li,3 Jian Yang,4 Zhongwei Gu3 1West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 2Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, 3National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 4Department of Biomedical Engineering Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA, USA Abstract: Mitochondria serve as both “energy factories” and “suicide weapon stores” of cells. Targeted delivery of cytotoxic drugs to the mitochondria of tumor cells and tumor vascular cells is a promising strategy to improve the efficacy of chemotherapy. Here, multistage tumor-targeting liposomes containing two targeted peptide-modified lipids, cRGD-PEG2000-DSPE and KLA-PEG2000-DSPE, were developed for encapsulation of the anticancer drug paclitaxel (PTX, RGD-KLA/PTX-Lips. Compared with Taxol (free PTX, RGD/PTX-Lips and KLA/PTX-Lips, the half-maximal inhibitory concentration (IC50 value of RGD-KLA/PTX-Lips in vitro was 1.9-, 36.7- and 22.7-fold lower with 4T1 cells, respectively, because of higher levels of cellular uptake. Similar results were also observed with human umbilical vascular endothelial cells (HUVECs. An apoptosis assay showed that the total apoptotic ratio of RGD-KLA/PTX-Lips was the highest because of the mitochondria-targeted drug delivery and the activation of mitochondrial apoptosis pathways, as evidenced by visible mitochondrial localization, decreased mitochondrial membrane potential, release of cytochrome c and increased activities of caspase-9 and caspase-3. The strongest tumor growth inhibition (TGI; 80.6% and antiangiogenesis effects without systemic toxicity were also observed in RGD-KLA/PTX-Lip-treated 4T1 tumor xenograft BALB/c mice. In conclusion, these multistage

  20. Configuration of management accounting information system for multi-stage manufacturing

    Science.gov (United States)

    Mkrtychev, S. V.; Ochepovsky, A. V.; Enik, O. A.

    2018-05-01

    The article presents an approach to configuration of a management accounting information system (MAIS) that provides automated calculations and the registration of normative production losses in multi-stage manufacturing. The use of MAIS with the proposed configuration at the enterprises of textile and woodworking industries made it possible to increase the accuracy of calculations for normative production losses and to organize accounting thereof with the reference to individual stages of the technological process. Thus, high efficiency of multi-stage manufacturing control is achieved.

  1. Hydrogen enriched gas production in a multi-stage downdraft gasification process

    International Nuclear Information System (INIS)

    Dutta, A.; Jarungthammachote, S.

    2009-01-01

    To achieve hydrogen enriched and low-tar producer gas, multi-stage air-blown and air-steam gasification were studied in this research. Results showed that the tar content from multi-stage air-blown and air-steam gasification was lower compared to the average value of that from downdraft gasification. It was also seen that an air-steam gasification process could potentially increase the hydrogen concentration in the producer gas in the expense of carbon monoxide; however, the summation of hydrogen and carbon monoxide in the producer gas was increased. (author)

  2. The Expected Loss in the Discretization of Multistage Stochastic Programming Problems - Estimation and Convergence Rate

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Martin

    2009-01-01

    Roč. 165, č. 1 (2009), s. 29-45 ISSN 0254-5330 R&D Projects: GA ČR GA402/04/1294 Institutional research plan: CEZ:AV0Z10750506 Keywords : multistage stochastic programming problems * approximation * discretization * Monte Carlo Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.961, year: 2009 http://library.utia.cas.cz/separaty/2008/E/smid-the expected loss in the discretization of multistage stochastic programming problems - estimation and convergence rate.pdf

  3. Effectiveness of multi-stage scrubbers in reducing emissions of air pollutants from pig houses

    OpenAIRE

    Zhao, Y.; Aarnink, A.J.A.; Jong, de, M.C.M.; Ogink, N.W.M.; Groot Koerkamp, P.W.G.

    2011-01-01

    Emissions of air pollutants from livestock houses may raise environmental problems and pose hazards to public health. They can be reduced by scrubbers installed at the air outlets of livestock houses. In this study, three multi-stage scrubbers were evaluated in terms of their effectiveness in reducing emissions of airborne dust, total bacteria, ammonia, and CO2 from pig houses in winter. The three multi-stage scrubbers were one double-stage scrubber (acid stage+ bio-filter), one double-stage ...

  4. Simplified Multi-Stage and Per Capita Convergence: an analysis of two climate regimes for differentiation of commitments

    NARCIS (Netherlands)

    Elzen MGJ den; Berk MM; Lucas P; KMD

    2004-01-01

    This report describes and analyses in detail two climate regimes for differentiating commitments: the simplified Multi-Stage and Per Capita Convergence approaches. The Multi-Stage approach consists of a system to divide countries into groups with different types of commitments (stages). The Per

  5. Generation of Functional Cardiomyocytes from Efficiently Generated Human iPSCs and a Novel Method of Measuring Contractility.

    Directory of Open Access Journals (Sweden)

    Sheeja Rajasingh

    Full Text Available Human induced pluripotent stem cells (iPSCs derived cardiomyocytes (iCMCs would provide an unlimited cell source for regenerative medicine and drug discoveries. The objective of our study is to generate functional cardiomyocytes from human iPSCs and to develop a novel method of measuring contractility of CMCs. In a series of experiments, adult human skin fibroblasts (HSF and human umbilical vein endothelial cells (HUVECs were treated with a combination of pluripotent gene DNA and mRNA under specific conditions. The iPSC colonies were identified and differentiated into various cell lineages, including CMCs. The contractile activity of CMCs was measured by a novel method of frame-by-frame cross correlation (particle image velocimetry-PIV analysis. Our treatment regimen transformed 4% of HSFs into iPSC colonies at passage 0, a significantly improved efficiency compared with use of either DNA or mRNA alone. The iPSCs were capable of differentiating both in vitro and in vivo into endodermal, ectodermal and mesodermal cells, including CMCs with >88% of cells being positive for troponin T (CTT and Gata4 by flow cytometry. We report a highly efficient combination of DNA and mRNA to generate iPSCs and functional iCMCs from adult human cells. We also report a novel approach to measure contractility of iCMCs.

  6. Generation of Functional Cardiomyocytes from Efficiently Generated Human iPSCs and a Novel Method of Measuring Contractility.

    Science.gov (United States)

    Rajasingh, Sheeja; Thangavel, Jayakumar; Czirok, Andras; Samanta, Saheli; Roby, Katherine F; Dawn, Buddhadeb; Rajasingh, Johnson

    2015-01-01

    Human induced pluripotent stem cells (iPSCs) derived cardiomyocytes (iCMCs) would provide an unlimited cell source for regenerative medicine and drug discoveries. The objective of our study is to generate functional cardiomyocytes from human iPSCs and to develop a novel method of measuring contractility of CMCs. In a series of experiments, adult human skin fibroblasts (HSF) and human umbilical vein endothelial cells (HUVECs) were treated with a combination of pluripotent gene DNA and mRNA under specific conditions. The iPSC colonies were identified and differentiated into various cell lineages, including CMCs. The contractile activity of CMCs was measured by a novel method of frame-by-frame cross correlation (particle image velocimetry-PIV) analysis. Our treatment regimen transformed 4% of HSFs into iPSC colonies at passage 0, a significantly improved efficiency compared with use of either DNA or mRNA alone. The iPSCs were capable of differentiating both in vitro and in vivo into endodermal, ectodermal and mesodermal cells, including CMCs with >88% of cells being positive for troponin T (CTT) and Gata4 by flow cytometry. We report a highly efficient combination of DNA and mRNA to generate iPSCs and functional iCMCs from adult human cells. We also report a novel approach to measure contractility of iCMCs.

  7. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Deepak A Lamba

    2010-01-01

    Full Text Available Inherited and acquired retinal degenerations are frequent causes of visual impairment and photoreceptor cell replacement therapy may restore visual function to these individuals. To provide a source of new retinal neurons for cell based therapies, we developed methods to derive retinal progenitors from human ES cells.In this report we have used a similar method to direct induced pluripotent stem cells (iPS from human fibroblasts to a retinal progenitor fate, competent to generate photoreceptors. We also found we could purify the photoreceptors derived from the iPS cells using fluorescence activated cell sorting (FACS after labeling photoreceptors with a lentivirus driving GFP from the IRBP cis-regulatory sequences. Moreover, we found that when we transplanted the FACS purified iPSC derived photoreceptors, they were able to integrate into a normal mouse retina and express photoreceptor markers.This report provides evidence that enriched populations of human photoreceptors can be derived from iPS cells.

  8. A semi-analytical modelling of multistage bunch compression with collective effects

    International Nuclear Information System (INIS)

    Zagorodnov, Igor; Dohlus, Martin

    2010-07-01

    In this paper we introduce an analytical solution (up to the third order) for a multistage bunch compression and acceleration system without collective effects. The solution for the system with collective effects is found by an iterative procedure based on this analytical result. The developed formalism is applied to the FLASH facility at DESY. Analytical estimations of RF tolerances are given. (orig.)

  9. A semi-analytical modelling of multistage bunch compression with collective effects

    Energy Technology Data Exchange (ETDEWEB)

    Zagorodnov, Igor; Dohlus, Martin

    2010-07-15

    In this paper we introduce an analytical solution (up to the third order) for a multistage bunch compression and acceleration system without collective effects. The solution for the system with collective effects is found by an iterative procedure based on this analytical result. The developed formalism is applied to the FLASH facility at DESY. Analytical estimations of RF tolerances are given. (orig.)

  10. Multi-stage decoding for multi-level block modulation codes

    Science.gov (United States)

    Lin, Shu

    1991-01-01

    In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.

  11. Effectiveness of multi-stage scrubbers in reducing emissions of air pollutants from pig houses

    NARCIS (Netherlands)

    Zhao, Y.; Aarnink, A.J.A.; Jong, de M.C.M.; Ogink, N.W.M.; Groot Koerkamp, P.W.G.

    2011-01-01

    Emissions of air pollutants from livestock houses may raise environmental problems and pose hazards to public health. They can be reduced by scrubbers installed at the air outlets of livestock houses. In this study, three multi-stage scrubbers were evaluated in terms of their effectiveness in

  12. Research on EMI Reduction of Multi-stage Interleaved Bridgeless Power Factor Corrector

    DEFF Research Database (Denmark)

    Li, Qingnan; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    Working as an electronic pollution eliminator, the Power Factor Corrector's (PFC) own Electromagnetic Interference (EMI) problems have been blocking its performance improvement for long. In this paper, a systematic research on EMI generation of a multi-stage Two-Boost-Circuit Interleaved Bridgeless...

  13. Setting safety stocks in multi-stage inventory systems under rolling horizon mathematical programming models

    NARCIS (Netherlands)

    Boulaksil, Y.; Fransoo, J.C.; van Halm, E.N.G.

    2009-01-01

    This paper considers the problem of determining safety stocks in multi-item multi-stage inventory systems that face demand uncertainties. Safety stocks are necessary to make the supply chain, which is driven by forecasts of customer orders, responsive to (demand) uncertainties and to achieve

  14. A Multi-Stage Maturity Model for Long-Term IT Outsourcing Relationship Success

    Science.gov (United States)

    Luong, Ming; Stevens, Jeff

    2015-01-01

    The Multi-Stage Maturity Model for Long-Term IT Outsourcing Relationship Success, a theoretical stages-of-growth model, explains long-term success in IT outsourcing relationships. Research showed the IT outsourcing relationship life cycle consists of four distinct, sequential stages: contract, transition, support, and partnership. The model was…

  15. A New Feature Ensemble with a Multistage Classification Scheme for Breast Cancer Diagnosis

    Directory of Open Access Journals (Sweden)

    Idil Isikli Esener

    2017-01-01

    Full Text Available A new and effective feature ensemble with a multistage classification is proposed to be implemented in a computer-aided diagnosis (CAD system for breast cancer diagnosis. A publicly available mammogram image dataset collected during the Image Retrieval in Medical Applications (IRMA project is utilized to verify the suggested feature ensemble and multistage classification. In achieving the CAD system, feature extraction is performed on the mammogram region of interest (ROI images which are preprocessed by applying a histogram equalization followed by a nonlocal means filtering. The proposed feature ensemble is formed by concatenating the local configuration pattern-based, statistical, and frequency domain features. The classification process of these features is implemented in three cases: a one-stage study, a two-stage study, and a three-stage study. Eight well-known classifiers are used in all cases of this multistage classification scheme. Additionally, the results of the classifiers that provide the top three performances are combined via a majority voting technique to improve the recognition accuracy on both two- and three-stage studies. A maximum of 85.47%, 88.79%, and 93.52% classification accuracies are attained by the one-, two-, and three-stage studies, respectively. The proposed multistage classification scheme is more effective than the single-stage classification for breast cancer diagnosis.

  16. Multi-Stage Admission Control for Load Balancing in Next Generation Systems

    DEFF Research Database (Denmark)

    Mihovska, Albena D.; Anggorojati, Bayu; Luo, Jijun

    2008-01-01

    This paper describes a load-dependent multi-stage admission control suitable for next generation systems. The concept uses decision polling in entities located at different levels of the architecture hierarchy and based on the load to activate a sequence of actions related to the admission...

  17. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G

    2011-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results of st...

  18. Influence of perforation erosion on multiple growing hydraulic fractures in multi-stage fracturing

    Directory of Open Access Journals (Sweden)

    Yongming Li

    2018-02-01

    Full Text Available In multi-stage hydraulic fracturing, the limited-entry method is widely used to promote uniform growth of multiple fractures. However, this method's effectiveness may be lost because the perforations will be eroded gradually during the fracturing period. In order to study the influence of perforation erosion on multiple growing hydraulic fractures, we combined the solid–fluid coupled model of hydraulic fracture growth with an empirical model of perforation erosion to implement numerical simulation. The simulations show clearly that the erosion of perforation will significantly deteriorate the non-uniform growth of multiple fractures. Based on the numerical model, we also studied the influences of proppant concentration and injection rates on perforation erosion in multi-stage hydraulic fracturing. The results indicate that the initial erosion rates become higher with the rising proppant concentration, but the growth of multiple hydraulic fractures is not sensitive to the varied proppant concentration. In addition, higher injection rates are beneficial significantly to the limited-entry design, leading to more uniform growth of fractures. Thus, in multi-stage hydraulic fracturing enough high injection rates are proposed to keep uniform growths. Keywords: Unconventional oil and gas reservoir, Horizontal well, Perforation friction, Perforation erosion, Multi-stage hydraulic fracturing, Numerical simulation, Mathematic model, Uniform growth of fractures

  19. Multi-Stage Selective Catalytic Reduction of NOx in Lean-Burn Engine Exhaust

    National Research Council Canada - National Science Library

    Penetrante, B

    1997-01-01

    .... A plasma can also be used to oxidize NO to NO2. This paper compares the multi-stage catalytic scheme with the plasma-assisted catalytic scheme for reduction of NOx in lean-burn engine exhausts. The advantages of plasma oxidation over catalytic oxidation are presented.

  20. Automated simultaneous assembly of multi-stage testing for the uniform CPA examination

    NARCIS (Netherlands)

    Breithaupt, Krista; Ariel, A.; Veldkamp, Bernard P.

    2004-01-01

    Some solutions used in the assembly of the computerized Uniform Certified Public Accountancy (CPA) licensing examination are offered as practical alternatives for operational programs producing large numbers of forms. The Uniform CPA examination will be offered as an adaptive multi-stage test (MST)

  1. The effect of tooling deformation on process control in multistage metal forming

    NARCIS (Netherlands)

    Havinga, Gosse Tjipke; van den Boogaard, Antonius H.; Chinesta, F; Cueto, E; Abisset-Chavanne, E.

    2016-01-01

    Forming of high-strength steels leads to high loads within the production process. In multistage metal forming, the loads in different process stages are transferred to the other stages through elastic deformation of the stamping press. This leads to interactions between process steps, affecting the

  2. The multi-stage proportional chamber in the detection of Cherenkov rings for particle recognition

    International Nuclear Information System (INIS)

    Sauli, F.

    1979-01-01

    The multi-stage proportional chamber enables very high gains of 10 6 or more to be reached in gaseous mixtures offering a very good quantum efficiency in the far ultra-violet range. This makes it an ideal instrument for detecting and locating the photons emitted by Cerenkov effect in appropriate radiators [fr

  3. Multi-stage Optimization of Matchings in Trees with Application to Kidney Exchange

    KAUST Repository

    Mankowski, Michal; Moshkov, Mikhail

    2017-01-01

    In this paper, we propose a method for multi-stage optimization of matchings in trees relative to different weight functions that assign positive weights to the edges of the trees. This method can be useful in transplantology where nodes of the tree

  4. Finite Element Analysis and Optimization for the Multi-stage Deep Drawing of Molybdenum Sheet

    International Nuclear Information System (INIS)

    Kim, Heung-Kyu; Hong, Seok Kwan; Kang, Jeong Jin; Heo, Young-moo; Lee, Jong-Kil; Jeon, Byung-Hee

    2005-01-01

    Molybdenum, a bcc refractory metal with a melting point of about 2600 deg. C, has a high heat and electrical conductivity. In addition, it remains strong mechanically at high temperatures as well as at low temperatures. Therefore it is a technologically very important material for the applications operating at high temperatures. However, a multi-stage process is required due to the low drawability for making a deep drawn part from the molybdenum sheet. In this study, a multi-stage deep drawing process for a molybdenum circular cup was designed by combining the drawing with the ironing, which was effective for the low drawability materials. A parametric study by FE analysis for the multi-stage deep drawing was conducted for evaluation of the design variables effect. Based on the FE analysis result, the multi-stage deep drawing process was parameterized by the design variables, and an optimum process design was obtained by the process optimization based on the FE simulation at each stage

  5. Metabolite Identification Using Automated Comparison of High-Resolution Multistage Mass Spectral Trees

    NARCIS (Netherlands)

    Rojas-Cherto, M.; Peironcely, J.E.; Kasper, P.T.; Hooft, van der J.J.J.; Vos, de R.C.H.; Vreeken, R.; Hankemeier, T.; Reijmers, T.

    2012-01-01

    Multistage mass spectrometry (MSn) generating so-called spectral trees is a powerful tool in the annotation and structural elucidation of metabolites and is increasingly used in the area of accurate mass LC/MS-based metabolomics to identify unknown, but biologically relevant, compounds. As a

  6. Interaction between Gaming and Multistage Guiding Strategies on Students' Field Trip Mobile Learning Performance and Motivation

    Science.gov (United States)

    Chen, Chih-Hung; Liu, Guan-Zhi; Hwang, Gwo-Jen

    2016-01-01

    In this study, an integrated gaming and multistage guiding approach was proposed for conducting in-field mobile learning activities. A mobile learning system was developed based on the proposed approach. To investigate the interaction between the gaming and guiding strategies on students' learning performance and motivation, a 2 × 2 experiment was…

  7. A study of routing algorithms for SCI-Based multistage networks

    International Nuclear Information System (INIS)

    Wu Bin; Kristiansen, E.; Skaali, B.; Bogaerts, A.; )

    1994-03-01

    The report deals with a particular class of multistage Scalable Coherent Interface (SCI) network systems and two important routing algorithms, namely self-routing and table-look up routing. The effect of routing delay on system performance is investigated by simulations. Adaptive routing and deadlock-free routing are studied. 8 refs., 11 figs., 1 tab

  8. Multistage Effort and the Equity Structure of Venture Investment Based on Reciprocity Motivation

    Directory of Open Access Journals (Sweden)

    Chuan Ding

    2015-01-01

    Full Text Available For venture capitals, it is a long process from an entry to its exit. In this paper, the activity of venture investment will be divided into multistages. And, according to the effort level entrepreneurs will choose, the venture capitalists will provide an equity structure at the very beginning. As a benchmark for comparison, we will establish two game models on multistage investment under perfect rationality: a cooperative game model and a noncooperative one. Further, as a cause of pervasive psychological preference behavior, reciprocity motivation will influence the behavior of the decision-makers. Given this situation, Rabin’s reciprocity motivation theory will be applied to the multistage game model of the venture investment, and multistage behavior game model will be established as well, based on the reciprocity motivation. By looking into the theoretical derivations and simulation studies, we find that if venture capitalists and entrepreneurs both have reciprocity preferences, their utility would have been Pareto improvement compared with those under perfect rationality.

  9. Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions.

    Science.gov (United States)

    Hunt, James E; Cassidy, Michael; Talling, Peter J

    2018-01-18

    Volcanic flank collapses and explosive eruptions are among the largest and most destructive processes on Earth. Events at Mount St. Helens in May 1980 demonstrated how a relatively small (300 km 3 ), but can also occur in complex multiple stages. Here, we show that multistage retrogressive landslides on Tenerife triggered explosive caldera-forming eruptions, including the Diego Hernandez, Guajara and Ucanca caldera eruptions. Geochemical analyses were performed on volcanic glasses recovered from marine sedimentary deposits, called turbidites, associated with each individual stage of each multistage landslide. These analyses indicate only the lattermost stages of subaerial flank failure contain materials originating from respective coeval explosive eruption, suggesting that initial more voluminous submarine stages of multi-stage flank collapse induce these aforementioned explosive eruption. Furthermore, there are extended time lags identified between the individual stages of multi-stage collapse, and thus an extended time lag between the initial submarine stages of failure and the onset of subsequent explosive eruption. This time lag succeeding landslide-generated static decompression has implications for the response of magmatic systems to un-roofing and poses a significant implication for ocean island volcanism and civil emergency planning.

  10. Mechanical and mathematical models of multi-stage horizontal fracturing strings and their application

    Directory of Open Access Journals (Sweden)

    Zhanghua Lian

    2015-03-01

    Full Text Available Multi-stage SRV fracturing in horizontal wells is a new technology developed at home and abroad in recent years to effectively develop shale gas or low-permeability reservoirs, but on the other hand makes the mechanical environment of fracturing strings more complicated at the same time. In view of this, based on the loading features of tubing strings during the multi-stage fracturing of a horizontal well, mechanical models were established for three working cases of multiple packer setting, open differential-pressure sliding sleeve, and open ball-injection sliding sleeve under a hold-down packer. Moreover, mathematical models were respectively built for the above three cases. According to the Lame formula and Von Mises stress calculation formula for the thick-walled cylinder in the theory of elastic mechanics, a mathematical model was also established to calculate the equivalent stress for tubing string safety evaluation when the fracturing string was under the combined action of inner pressure, external squeezing force and axial stress, and another mathematical model was built for the mechanical strength and safety evaluation of multi-stage fracturing strings. In addition, a practical software was developed for the mechanical safety evaluation of horizontal well multi-stage fracturing strings according to the mathematical model developed for the mechanical calculation of the multi-packer string in horizontal wells. The research results were applied and verified in a gas well of Tahe Oilfield in the Tarim Basin with excellent effects, providing a theoretical basis and a simple and reliable technical means for optimal design and safety evaluation of safe operational parameters of multi-stage fracturing strings in horizontal wells.

  11. Awareness and Uptake of Human Papilloma Virus Vaccination and ...

    African Journals Online (AJOL)

    Awareness and Uptake of Human Papilloma Virus Vaccination and Cervical ... Multistage sampling was used to select 400 female undergraduate students that ... None of the respondents knew that sexual exposure to HPV could result in ...

  12. A single or multistage mycobacterium avium subsp. paratuberculosis subunit vaccine

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention provides one or more immunogenic polypeptides for use in a preventive or therapeutic vaccine against latent or active infection in a human or animal caused by a Mycobacterium species, e.g. Mycobacterium avium subsp. paratuberculosis. Furthermore a single or multi-phase vaccine...... comprising the one or more immunogenic polypeptides is provided for administration for the prevention or treatment of infection with a Mycobacterium species, e.g. Mycobacterium avium subsp. paratuberculosis. Additionally, nucleic acid vaccines, capable of in vivo expression of the multi-phase vaccine...

  13. Optimizing the method for generation of integration-free induced pluripotent stem cells from human peripheral blood.

    Science.gov (United States)

    Gu, Haihui; Huang, Xia; Xu, Jing; Song, Lili; Liu, Shuping; Zhang, Xiao-Bing; Yuan, Weiping; Li, Yanxin

    2018-06-15

    Generation of induced pluripotent stem cells (iPSCs) from human peripheral blood provides a convenient and low-invasive way to obtain patient-specific iPSCs. The episomal vector is one of the best approaches for reprogramming somatic cells to pluripotent status because of its simplicity and affordability. However, the efficiency of episomal vector reprogramming of adult peripheral blood cells is relatively low compared with cord blood and bone marrow cells. In the present study, integration-free human iPSCs derived from peripheral blood were established via episomal technology. We optimized mononuclear cell isolation and cultivation, episomal vector promoters, and a combination of transcriptional factors to improve reprogramming efficiency. Here, we improved the generation efficiency of integration-free iPSCs from human peripheral blood mononuclear cells by optimizing the method of isolating mononuclear cells from peripheral blood, by modifying the integration of culture medium, and by adjusting the duration of culture time and the combination of different episomal vectors. With this optimized protocol, a valuable asset for banking patient-specific iPSCs has been established.

  14. Calculation of recovery plasticity in multistage hot forging under isothermal conditions.

    Science.gov (United States)

    Zhbankov, Iaroslav G; Perig, Alexander V; Aliieva, Leila I

    2016-01-01

    A widely used method for hot forming steels and alloys, especially heavy forging, is the process of multistage forging with pauses between stages. The well-known effect which accompanies multistage hot forging is metal plasticity recovery in comparison with monotonic deformation. A method which takes into consideration the recovery of plasticity in pauses between hot deformations of a billet under isothermal conditions is proposed. This method allows the prediction of billet forming limits as a function of deformation during the forging stage and the duration of the pause between the stages. This method takes into account the duration of pauses between deformations and the magnitude of subdivided deformations. A hot isothermal upsetting process with pauses was calculated by the proposed method. Results of the calculations have been confirmed with experimental data.

  15. Fractional Multistage Hydrothermal Liquefaction of Biomass and Catalytic Conversion into Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cortright, Randy [Virent, Inc., Madison, WI (United States); Rozmiarek, Robert [Virent, Inc., Madison, WI (United States); Dally, Brice [Virent, Inc., Madison, WI (United States); Holland, Chris [Virent, Inc., Madison, WI (United States)

    2017-08-31

    The objective of this project was to develop an improved multistage process for the hydrothermal liquefaction (HTL) of biomass to serve as a new front-end, deconstruction process ideally suited to feed Virent’s well-proven catalytic technology, which is already being scaled up. This process produced water soluble, partially de-oxygenated intermediates that are ideally suited for catalytic finishing to fungible distillate hydrocarbons. Through this project, Virent, with its partners, demonstrated the conversion of pine wood chips to drop-in hydrocarbon distillate fuels using a multi-stage fractional conversion system that is integrated with Virent’s BioForming® process. The majority of work was in the liquefaction task and included temperature scoping, solvent optimization, and separations.

  16. Stage-dependent hierarchy of criteria in multiobjective multistage decision processes

    Directory of Open Access Journals (Sweden)

    Tadeusz Trzaskalik

    2017-01-01

    Full Text Available This paper will consider a multiobjective, multistage discrete dynamic process with a changeable, state-dependent hierarchy of stage criteria determined by the decision maker. The goal of this paper is to answer the question of how to control a multistage process while taking into account both the tendency to achieve multiobjective optimization of the entire process and the time-varying hierarchy of stage criteria. We consider in detail possible situations, where the hierarchy of stage criteria changes over time in individual stages and is stage dependent. We present an interactive proposal to solving the problem, where the decision maker actively participates in finding the final realization of the process. The algorithm proposed is illustrated using a numerical example.

  17. A multi-stage noise adaptive switching filter for extremely corrupted images

    Science.gov (United States)

    Dinh, Hai; Adhami, Reza; Wang, Yi

    2015-07-01

    A multi-stage noise adaptive switching filter (MSNASF) is proposed for the restoration of images extremely corrupted by impulse and impulse-like noise. The filter consists of two steps: noise detection and noise removal. The proposed extrema-based noise detection scheme utilizes the false contouring effect to get better over detection rate at low noise density. It is adaptive and will detect not only impulse but also impulse-like noise. In the noise removal step, a novel multi-stage filtering scheme is proposed. It replaces corrupted pixel with the nearest uncorrupted median to preserve details. When compared with other methods, MSNASF provides better peak signal to noise ratio (PSNR) and structure similarity index (SSIM). A subjective evaluation carried out online also demonstrates that MSNASF yields higher fidelity.

  18. Limitations Of The Current State Space Modelling Approach In Multistage Machining Processes Due To Operation Variations

    Science.gov (United States)

    Abellán-Nebot, J. V.; Liu, J.; Romero, F.

    2009-11-01

    The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.

  19. Distributed activation energy model for kinetic analysis of multi-stage hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Li, W.; Wang, N.; Li, B. [Chinese Academy of Sciences, Taiyuan (China). Inst. of Coal Chemistry

    2003-07-01

    Based on the new analysis of distributed activation energy model, a bicentral distribution model was introduced to the analysis of multi-stage hydropyrolysis of coal. The hydropyrolysis for linear temperature programming with and without holding stage were mathematically described and the corresponding kinetic expressions were achieved. Based on the kinetics, the hydropyrolysis (HyPr) and multi-stage hydropyrolysis (MHyPr) of Xundian brown coal was simulated. The results shows that both Mo catalyst and 2-stage holding can lower the apparent activation energy of hydropyrolysis and make activation energy distribution become narrow. Besides, there exists an optimum Mo loading of 0.2% for HyPy of Xundian lignite. 10 refs.

  20. The effect of hot multistage drawing on molecular structure and optical properties of polyethylene terephthalate fibers

    Directory of Open Access Journals (Sweden)

    Aminoddin Haji

    2012-08-01

    Full Text Available In this work, mechanical and structural parameters related to the optical properties of polyethylene terephthalate (PET fibers drawn at hot multistage have been investigated. The changes in optical parameters upon changing draw ratio are used to obtain the mechanical orientation factors and , various orientation functions f2(θ, f4(θ and f6(θ, and amorphous and crystalline orientation functions (f a and f c. Also, the numbers of random links between the network junction points (N1, the average optical orientation (Fav, and the distribution function of segment ω(cos θ were calculated. In addition, an empirical formula was suggested to correlate changes in the birefringence with the draw ratio and its constants were determined. The study demonstrated change on the molecular orientation functions and structural parameters upon hot multistage drawing. Significant variations in the characteristic properties of the drawn PET fibers were due to reorientation of the molecules caused by applied heat and external tension.

  1. Comparative study of multistage cemented liner and openhole system completion technologies in the Montney resource play

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Brad; Lui, David; Klim, James [Murphy Oil Company Ltd (United States); Kenyon, Mike [Society of Petroleum Engineers (Canada); McCaffrey, Matt [Packers Plus Energy Services (Canada)

    2011-07-01

    This work highlights hydraulic fracturing technologies implemented in the Lower Montney formation. The goal of the study is to compare two multistage hydraulic fracturing techniques: the cemented liner and the open hole multistage system (OHMS) and to investigate the effects each has on production rates and performance in general. The overall field was separated into two geographical areas and a total of 15 wells were investigated, some of which were subjected to cemented liner fracturing and others to OHMS. Various physical, mechanical, and financial data were collected. These data included: oil production rates, well spacing, pumping rates, stage times, and operational costs. In general, it was shown that OHMS proved to be the more suitable fracturing technique for the Montney formation, yielding higher initial and cumulative production rates. Moreover, average fracturing costs per stage were lower and time to complete was less than with the cemented liner technique.

  2. Continuous-data diagnostic tests for paratuberculosis as a multistage disease

    DEFF Research Database (Denmark)

    Toft, Nils; Nielsen, Søren Saxmose; Jørgensen, Erik

    2005-01-01

    We devised a general method for interpretation of multistage diseases using continuous-data diagnostic tests. As an example, we used paratuberculosis as a multistage infection with 2 stages of infection as well as a noninfected state. Using data from a Danish research project, a fecal culture...... testing scheme was linked to an indirect ELISA and adjusted for covariates (parity, age at first calving, and days in milk). We used the log-transformed optical densities in a Bayesian network to obtain the probabilities for each of the 3 infection stages for a given optical density (adjusted...... for covariates). The strength of this approach was that the uncertainty associated with a test was imposed directly on the individual test result rather than aggregated into the population-based measures of test properties (i.e., sensitivity and specificity)...

  3. Threat Assessment for Multistage Cyber Attacks in Smart Grid Communication Networks

    OpenAIRE

    He, Xiaobing

    2017-01-01

    In smart grids, managing and controlling power operations are supported by information and communication technology (ICT) and supervisory control and data acquisition (SCADA) systems. The increasing adoption of new ICT assets in smart grids is making smart grids vulnerable to cyber threats, as well as raising numerous concerns about the adequacy of current security approaches. As a single act of penetration is often not sufficient for an attacker to achieve his/her goal, multistage cyb...

  4. Multistage electrodeposition of supported platinum-based nanostructured systems for electrocatalytic applications

    CSIR Research Space (South Africa)

    Mkwizu, TS

    2011-05-01

    Full Text Available .R. Modibedi and Mkhulu K. Mathe* *kmathe@csir.co.za 219th ECS Meeting, 1 ? 6 May, 2011, Montreal, Canada Multistage Electrodeposition of Supported Platinum-based Nanostructured Systems for Electrocatalytic Applications Overview ? Acknowledgements... of constituent elements of the given electrode surface. ? Applications areas: Fuel cells, electrochemical sensors, electrolyzers Introduction e- A B 5 Introduction Atomic-level processes during electrocatalysis www...

  5. Multi-stage Optimization of Matchings in Trees with Application to Kidney Exchange

    KAUST Repository

    Mankowski, Michal

    2017-07-22

    In this paper, we propose a method for multi-stage optimization of matchings in trees relative to different weight functions that assign positive weights to the edges of the trees. This method can be useful in transplantology where nodes of the tree correspond to pairs (donor, recipient) and two nodes (pairs) are connected by an edge if these pairs can exchange kidneys. Weight functions can characterize the number of exchanges, the importance of exchanges, or their compatibility.

  6. Multi-stage LLC resonant converters designed for wide output voltage ranges

    OpenAIRE

    Tsang, C.-W.; Bingham, C. M.; Foster, M. P.; Stone, D. A.; Leech, J. M.

    2016-01-01

    The paper describes a novel multi-stage LLC resonant converter topology for facilitating wide output voltage ranges. This is achieved by combining the gain range of a capacitor-diode clamped LLC resonant converter with that of a traditional LLC resonant converter. A prototype converter is designed and commissioned to illustrate the design procedure and demonstrate resulting operational characteristics. Experimental results are used to show operational characteristics of the proposed conver...

  7. Multi-stage phase retrieval algorithm based upon the gyrator transform.

    Science.gov (United States)

    Rodrigo, José A; Duadi, Hamootal; Alieva, Tatiana; Zalevsky, Zeev

    2010-01-18

    The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and experimental results.

  8. Multi-stage phase retrieval algorithm based upon the gyrator transform

    OpenAIRE

    Rodrigo Martín-Romo, José Augusto; Duadi, Hamootal; Alieva, Tatiana Krasheninnikova; Zalevsky, Zeev

    2010-01-01

    The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and exp...

  9. Hydrodynamic and mechanical tests of a newly improved counter-current multi-stage centrifugal extractor

    International Nuclear Information System (INIS)

    Ionita, Gheorghe; Mirica, Dumitru; Croitoru, Cornelia; Stefanescu, Ioan; Retegan, Teodora

    2003-01-01

    Total actinide recovery, lanthanide/actinide separation and the selective partitioning of actinide from high level waste (HLW) are nowadays of major interest. Actinide partitioning with a view to safe disposing of HLW or utilization in many other applications of recovered elements involves an extraction process usually carried out by means of a mixer-settler, pulse column or centrifugal contactor. This last, presents some doubtless advantages and responds to the above mentioned goals. A new type of counter-current multistage centrifugal extractor has been designed and built. Similar apparatus was not found in the literature published to-date. The counter-current multi-stage centrifugal extractor is a stainless steel cylinder with an effective length of 346 mm, the effective diameter of 100 mm and a volume of 1.5 liters, working in horizontal position. The new internal structure and geometry of the new advanced centrifugal extractor consisting of nine cells (units), five rotation units, two mixing units, two propelling units and two final plates, ensures the counter-current running of the two phases.The central shaft having the rotation cells fixed on it is coupled by an intermediary connection to a electric motor of high rotation speed. Conceptual layout of the advanced counter-current multi-stage centrifugal extractor is presented. The newly designed extractor has been tested at 1000-3000 rot/min for a ratio of the aqueous/organic phase =1 to examine the mechanical behavior and the hydrodynamics of the two phases in countercurrent. The results showed that the performances have been generally good and the design requirements were fulfilled. The newly designed counter-current multistage centrifugal extractor appears to be a promising way to increase extraction rate of radionuclides and metals from liquid effluents. (authors)

  10. Multi-stage pulsed laser deposition of aluminum nitride at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Stroescu, H.; Gartner, M.; Anastasescu, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Fogarassy, Zs. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, Konkoly Thege Miklos u. 29-33, H-1121 Budapest (Hungary); Mihailescu, N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A., E-mail: szekeres@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Bakalova, S. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania)

    2016-06-30

    Highlights: • Multi-stage pulsed laser deposition of aluminum nitride at different temperatures. • 800 °C seed film boosts the next growth of crystalline structures at lower temperature. • Two-stage deposited AlN samples exhibit randomly oriented wurtzite structures. • Band gap energy values increase with deposition temperature. • Correlation was observed between single- and multi-stage AlN films. - Abstract: We report on multi-stage pulsed laser deposition of aluminum nitride (AlN) on Si (1 0 0) wafers, at different temperatures. The first stage of deposition was carried out at 800 °C, the optimum temperature for AlN crystallization. In the second stage, the deposition was conducted at lower temperatures (room temperature, 350 °C or 450 °C), in ambient Nitrogen, at 0.1 Pa. The synthesized structures were analyzed by grazing incidence X-ray diffraction (GIXRD), transmission electron microscopy (TEM), atomic force microscopy and spectroscopic ellipsometry (SE). GIXRD measurements indicated that the two-stage deposited AlN samples exhibited a randomly oriented wurtzite structure with nanosized crystallites. The peaks were shifted to larger angles, indicative for smaller inter-planar distances. Remarkably, TEM images demonstrated that the high-temperature AlN “seed” layers (800 °C) promoted the growth of poly-crystalline AlN structures at lower deposition temperatures. When increasing the deposition temperature, the surface roughness of the samples exhibited values in the range of 0.4–2.3 nm. SE analyses showed structures which yield band gap values within the range of 4.0–5.7 eV. A correlation between the results of single- and multi-stage AlN depositions was observed.

  11. A Systematic Approach to Quality Oriented Product Sequencing for Multistage Manufacturing Systems

    OpenAIRE

    Zhang, Faping; Butt, Shahid Ikramullah

    2016-01-01

    Product sequencing is one way to reduce cost and improve product quality for multistage manufacturing systems (MMS). However, systematically evaluating the influence of product sequence on quality performance for MMS is still a challenge. By considering the rate of incoming conforming product, manufacturing system quality transition between batch to batch, and quality propagation along stages, this paper investigates the appropriate batch policies and product sequencing for MMS so that satisf...

  12. Il ritorno di Bertoldo. Il campionamento multi-stage a raggio d’azione

    OpenAIRE

    Catania, Danilo

    2016-01-01

    The article proposes a new multi-stage sampling procedure in face to face surveys at national and regional level. This proposal foresees to assign to each interviewer a range of action where to realise their interviews, thus widening their concerning area, which isn’t anymore identifiable with a sampling point (often corresponding to the interviewer’s residence municipality), but with a sampling area where n municipalities are located and may be reached by the interviewer. The idea is to pass...

  13. Aerodynamic Optimization Design of a Multistage Centrifugal Steam Turbine and Its Off-Design Performance Analysis

    OpenAIRE

    Hui Li; Dian-Gui Huang

    2017-01-01

    Centrifugal turbine which has less land occupation, simple structure, and high aerodynamic efficiency is suitable to be used as small to medium size steam turbines or waste heat recovery plant. In this paper, one-dimensional design of a multistage centrifugal steam turbine was performed by using in-house one-dimensional aerodynamic design program. In addition, three-dimensional numerical simulation was also performed in order to analyze design and off-design aerodynamic performance of the pro...

  14. Investments in the LNG Value Chain: A Multistage Stochastic Optimization Model focusing on Floating Liquefaction Units

    OpenAIRE

    Røstad, Lars Dybsjord; Erichsen, Jeanette Christine

    2012-01-01

    In this thesis, we have developed a strategic optimization model of investments in infrastructure in the LNG value chain. The focus is on floating LNG production units: when they are a viable solution and what value they add to the LNG value chain. First a deterministic model is presented with focus on describing the value chain, before it is expanded to a multistage stochastic model with uncertain field sizes and gas prices. The objective is to maximize expected discounted profits through op...

  15. Multiwire proportional chamber and multistage avalanche chamber with low concentration photoionization gas

    International Nuclear Information System (INIS)

    Zhao Pingde; Xu Zhiqing; Tang Xiaowei

    1986-01-01

    The characteristics of multiwire proportional chamber and multistage avalanche chamber filled with argon and photoionization gas (C 2 H 5 ) 3 N were measured. The spatial resolution curves and output pulse height spectra were measured as well. Low concentration (C 2 H 5 ) 3 N can play an effective part in quenching. At very low concentration, the phenomena of avalanche transverse expansion was observed obviously

  16. New improved counter - current multi-stage centrifugal extractor for solvent extraction process

    International Nuclear Information System (INIS)

    Gheorghe, Ionita; Mirica, Dumitru; Croitoru, Cornelia; Stefanescu, Ioan; Retegan, Teodora; Kitamoto, Asashi

    2003-01-01

    Total actinide recovery, lanthanide/actinide separation and selective partitioning of actinide from high level waste (HLW) are nowadays of a major interest. Actinide partitioning with a view to safe disposing of HLW or utilization in many other applications of recovered elements involves an extraction process usually by means of mixer-settler, pulse column or centrifugal contactor. The latter, presents some doubtless advantages and responds to the above mentioned goals. A new type of counter-current multistage centrifugal extractor has been designed and performed. A similar apparatus was not found from in other published papers as yet. The counter-current multi-stage centrifugal extractor was a cylinder made of stainless steel with an effective length of 346 mm, the effective diameter of 100 mm and a volume of 1.5 liters, working in a horizontal position. The new internal structure and geometry of the new advanced centrifugal extractor consisting of nine cells (units), five rotation units, two mixing units, two propelling units and two final plates, ensures the counter-current running of the two phases.The central shaft having the rotation cells fixed on it is coupled by an intermediary connection to a electric motor of high rotation speed. The conceptual layout of the advanced counter-current multi-stage centrifugal extractor is presented. The newly designed extractor has been tested at 500-2800 rot/min for a ratio of the aqueous/organic phase =1 to examine the mechanical behavior and the hydrodynamics of the two phases in countercurrent. The results showed that the performances have been generally good and the design requirements were fulfilled. The newly designed counter-current multistage centrifugal extractor appears to be a promising way to increase extraction rate of radionuclides and metals from liquid effluents. (authors)

  17. Efficiency increase in ship's primal energy system using a multistage compression with intercooling

    Directory of Open Access Journals (Sweden)

    Landeka Petar

    2016-01-01

    Full Text Available This paper focuses on an analysis of the potential increase of efficiency in ship's primal energy system using a turbocharger with multistage compression with intercooling, and diverting a greater flow of exhaust gases to power turbine of waste heat recovery system (WHR. Analysis of potential efficiency increase has been made for various stages of compression for a 100 % main engine load, and an analysis of five stage compression with intercooling for a main engine load between 50% and 100%.

  18. A Multistage Sulphidisation Flotation Procedure for a Low Grade Malachite Copper Ore

    OpenAIRE

    Tebogo P. Phetla; Edison Muzenda

    2010-01-01

    This study was carried out to develop a flotation procedure for an oxide copper ore from a Region in Central Africa for producing an 18% copper concentrate for downstream processing at maximum recovery from a 4% copper feed grade. The copper recoveries achieved from the test work were less than 50% despite changes in reagent conditions (multistage sulphidisation, use of RCA emulsion and mixture, use of AM 2, etc). The poor recoveries were attributed to the mineralogy of t...

  19. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  20. A surrogate based multistage-multilevel optimization procedure for multidisciplinary design optimization

    OpenAIRE

    Yao, W.; Chen, X.; Ouyang, Q.; Van Tooren, M.

    2011-01-01

    Optimization procedure is one of the key techniques to address the computational and organizational complexities of multidisciplinary design optimization (MDO). Motivated by the idea of synthetically exploiting the advantage of multiple existing optimization procedures and meanwhile complying with the general process of satellite system design optimization in conceptual design phase, a multistage-multilevel MDO procedure is proposed in this paper by integrating multiple-discipline-feasible (M...

  1. Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions

    OpenAIRE

    Hunt, James E.; Cassidy, Michael; Talling, Peter J.

    2018-01-01

    Volcanic flank collapses and explosive eruptions are among the largest and most destructive processes on Earth. Events at Mount St. Helens in May 1980 demonstrated how a relatively small (<5 km3) flank collapse on a terrestrial volcano could immediately precede a devastating eruption. The lateral collapse of volcanic island flanks, such as in the Canary Islands, can be far larger (>300 km3), but can also occur in complex multiple stages. Here, we show that multistage retrogressive lands...

  2. Numerical Analysis of Unsteady Cavitating Flow around Balancing Drum of Multistage Pump

    Czech Academy of Sciences Publication Activity Database

    Sedlář, M.; Krátký, T.; Zima, Patrik

    2016-01-01

    Roč. 9, č. 2 (2016), s. 119-128 ISSN 1882-9554. [Asian International Conference on Fluid Machinery /13./ (AICFM. Tokyo, 07.09.2015-10.09.2015] R&D Projects: GA ČR GA13-23550S Institutional support: RVO:61388998 Keywords : cavitation erosion * numerical simulation * multistage pump Subject RIV: BK - Fluid Dynamics https://www.jstage.jst.go.jp/article/ijfms/9/2/9_119/_article

  3. Aerodynamic Analysis and Three-Dimensional Redesign of a Multi-Stage Axial Flow Compressor

    Directory of Open Access Journals (Sweden)

    Tao Ning

    2016-04-01

    Full Text Available This paper describes the introduction of three-dimension (3-D blade designs into a 5-stage axial compressor with multi-stage computational fluid dynamic (CFD methods. Prior to a redesign, a validation study is conducted for the overall performance and flow details based on full-scale test data, proving that the multi-stage CFD applied is a relatively reliable tool for the analysis of the follow-up redesign. Furthermore, at the near stall point, the aerodynamic analysis demonstrates that significant separation exists in the last stator, leading to the aerodynamic redesign, which is the focus of the last stator. Multi-stage CFD methods are applied throughout the three-dimensional redesign process for the last stator to explore their aerodynamic improvement potential. An unconventional asymmetric bow configuration incorporated with leading edge re-camber and re-solidity is employed to reduce the high loss region dominated by the mainstream. The final redesigned version produces a 13% increase in the stall margin while maintaining the efficiency at the design point.

  4. Development of JSTAMP-Works/NV and HYSTAMP for Multipurpose Multistage Sheet Metal Forming Simulation

    International Nuclear Information System (INIS)

    Umezu, Yasuyoshi; Watanabe, Yuko; Ma, Ninshu

    2005-01-01

    Since 1996, Japan Research Institute Limited (JRI) has been providing a sheet metal forming simulation system called JSTAMP-Works packaged the FEM solvers of LS-DYNA and JOH/NIKE, which might be the first multistage system at that time and has been enjoying good reputation among users in Japan. To match the recent needs, 'faster, more accurate and easier', of process designers and CAE engineers, a new metal forming simulation system JSTAMP-Works/NV is developed. The JSTAMP-Works/NV packaged the automatic healing function of CAD and had much more new capabilities such as prediction of 3D trimming lines for flanging or hemming, remote control of solver execution for multi-stage forming processes and shape evaluation between FEM and CAD.On the other way, a multi-stage multi-purpose inverse FEM solver HYSTAMP is developed and will be soon put into market, which is approved to be very fast, quite accurate and robust.Lastly, authors will give some application examples of user defined ductile damage subroutine in LS-DYNA for the estimation of material failure and springback in metal forming simulation

  5. Development of JSTAMP-Works/NV and HYSTAMP for Multipurpose Multistage Sheet Metal Forming Simulation

    Science.gov (United States)

    Umezu, Yasuyoshi; Watanabe, Yuko; Ma, Ninshu

    2005-08-01

    Since 1996, Japan Research Institute Limited (JRI) has been providing a sheet metal forming simulation system called JSTAMP-Works packaged the FEM solvers of LS-DYNA and JOH/NIKE, which might be the first multistage system at that time and has been enjoying good reputation among users in Japan. To match the recent needs, "faster, more accurate and easier", of process designers and CAE engineers, a new metal forming simulation system JSTAMP-Works/NV is developed. The JSTAMP-Works/NV packaged the automatic healing function of CAD and had much more new capabilities such as prediction of 3D trimming lines for flanging or hemming, remote control of solver execution for multi-stage forming processes and shape evaluation between FEM and CAD. On the other way, a multi-stage multi-purpose inverse FEM solver HYSTAMP is developed and will be soon put into market, which is approved to be very fast, quite accurate and robust. Lastly, authors will give some application examples of user defined ductile damage subroutine in LS-DYNA for the estimation of material failure and springback in metal forming simulation.

  6. Time stamp technique using a nuclear emulsion multi-stage shifter for gamma-ray telescope

    International Nuclear Information System (INIS)

    Takahashi, Satoru; Aoki, Shigeki; Rokujo, Hiroki; Hamada, Kaname; Komatsu, Masahiro; Morishima, Kunihiro; Nakamura, Mitsuhiro; Nakano, Toshiyuki; Niwa, Kimio; Sato, Osamu; Yoshioka, Teppei; Kodama, Koichi

    2010-01-01

    Nuclear emulsion has a potential use as a gamma-ray telescope with high angular resolution. For this application it is necessary to know the time when each track was recorded in the emulsion. In previous experiments using nuclear emulsion, various efforts were used to associate time to nuclear emulsion tracks and to improve the time resolution. Using a high speed readout system for nuclear emulsion together with a clock-based multi-stage emulsion shifter, we invented a technique to give a time-stamp to emulsion tracks and greatly improve the time resolution. A test experiment with a 2-stage shifter was used to demonstrate the principle of multi-stage shifting, and we achieved a time resolution 1.5 s for 12.1 h (about 1 part in 29 000) with the time stamp reliability 97% and the time stamp efficiency 98%. This multi-stage shifter can achieve the time resolution required for a gamma-ray telescope and can also be applied to another cosmic ray observations and accelerator experiments using nuclear emulsion.

  7. Inexact Multistage Stochastic Chance Constrained Programming Model for Water Resources Management under Uncertainties

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2017-01-01

    Full Text Available In order to formulate water allocation schemes under uncertainties in the water resources management systems, an inexact multistage stochastic chance constrained programming (IMSCCP model is proposed. The model integrates stochastic chance constrained programming, multistage stochastic programming, and inexact stochastic programming within a general optimization framework to handle the uncertainties occurring in both constraints and objective. These uncertainties are expressed as probability distributions, interval with multiply distributed stochastic boundaries, dynamic features of the long-term water allocation plans, and so on. Compared with the existing inexact multistage stochastic programming, the IMSCCP can be used to assess more system risks and handle more complicated uncertainties in water resources management systems. The IMSCCP model is applied to a hypothetical case study of water resources management. In order to construct an approximate solution for the model, a hybrid algorithm, which incorporates stochastic simulation, back propagation neural network, and genetic algorithm, is proposed. The results show that the optimal value represents the maximal net system benefit achieved with a given confidence level under chance constraints, and the solutions provide optimal water allocation schemes to multiple users over a multiperiod planning horizon.

  8. Analysis of multistage chains in public transport: The case of Quito, Ecuador

    Energy Technology Data Exchange (ETDEWEB)

    Bastidas Zelaya, E.

    2016-07-01

    Because of the growth of cities in size and population, people get used to perform several stage trips involving transfers due to advantages such as time or price paid, being multistage trips more attractive compared to single stage trips. In Quito, Ecuador, nowadays multistage trips represent one third of total daily trips. This paper seeks to identify main characteristics of multistage trips as well as find relationships and inferences that allow recommendations regarding best practices to policy makers and transport managers. The information used belong to the data collected in the Household Survey Mobility held in Quito in 2011. Based on these data, the present work starts using an analysis with descriptive statistics. The next phase of this research involves the search for a methodology in order to identify correlations between demographic, socioeconomic and transport variables related with traveler´s choice for making or not a transfer. Best methodology found was the use of Binary Logistic Regression (Logit) and specific computer software, with which different statistic's models were performed to find the strongest correlation. The paper ends with conclusions and recommendations as well as suggestions for future research. (Author)

  9. A development of time-resolved emulsion detector by multi-stage shifter

    International Nuclear Information System (INIS)

    Takahashi, Satoru; Aoki, Shigeki

    2017-01-01

    Nuclear emulsion is a powerful tracking device that can record the three-dimensional trajectory of charged particles within 1 μm spatial resolution. We are promoting GRAINE project which is 10 MeV-100 GeV cosmic γ-ray observations with a precise (0.08deg at 1-2 GeV) and polarization-sensitive large-aperture-area (∼10 m 2 ) emulsion telescope by repeating long duration balloon flights. We are developing multi-stage shifter which allows us to give a timing information to emulsion tracks with ∼seconds or below. The multi-stage shifter opened feasibilities of precise cosmic γ-ray observations, GRAINE, as well as precise measurements of ν-N interactions, J-PARC T60. ∼Millisecond time resolution in a balloon-borne experiment, ∼second time resolution for 126.7 days in an accelerator ν experiment and ∼10 6 time-resolved numbers are being achieved. New model of multi-stage shifter is also being developed for future experiments. (author)

  10. Health condition identification of multi-stage planetary gearboxes using a mRVM-based method

    Science.gov (United States)

    Lei, Yaguo; Liu, Zongyao; Wu, Xionghui; Li, Naipeng; Chen, Wu; Lin, Jing

    2015-08-01

    Multi-stage planetary gearboxes are widely applied in aerospace, automotive and heavy industries. Their key components, such as gears and bearings, can easily suffer from damage due to tough working environment. Health condition identification of planetary gearboxes aims to prevent accidents and save costs. This paper proposes a method based on multiclass relevance vector machine (mRVM) to identify health condition of multi-stage planetary gearboxes. In this method, a mRVM algorithm is adopted as a classifier, and two features, i.e. accumulative amplitudes of carrier orders (AACO) and energy ratio based on difference spectra (ERDS), are used as the input of the classifier to classify different health conditions of multi-stage planetary gearboxes. To test the proposed method, seven health conditions of a two-stage planetary gearbox are considered and vibration data is acquired from the planetary gearbox under different motor speeds and loading conditions. The results of three tests based on different data show that the proposed method obtains an improved identification performance and robustness compared with the existing method.

  11. Dynamic solar-powered multi-stage direct contact membrane distillation system: Concept design, modeling and simulation

    KAUST Repository

    Lee, Jung Gil; Kim, Woo-Seung; Choi, June-Seok; Ghaffour, NorEddine; Kim, Young-Deuk

    2017-01-01

    This paper presents a theoretical analysis of the monthly average daily and hourly performances of a solar-powered multi-stage direct contact membrane distillation (SMDCMD) system with an energy recovery scheme and dynamic operating system. Mid

  12. CRISPR/Cas9 system and its applications in human hematopoietic cells.

    Science.gov (United States)

    Hu, Xiaotang

    2016-11-01

    Since 2012, the CRISPR-Cas9 system has been quickly and successfully tested in a broad range of organisms and cells including hematopoietic cells. The application of CRISPR-Cas9 in human hematopoietic cells mainly involves the genes responsible for HIV infection, β-thalassemia and sickle cell disease (SCD). The successful disruption of CCR5 and CXCR4 genes in T cells by CRISPR-Cas9 promotes the prospect of the technology in the functional cure of HIV. More recently, eliminating CCR5 and CXCR4 in induced pluripotent stem cells (iPSCs) derived from patients and targeting the HIV genome have been successfully carried out in several laboratories. The outcome from these approaches bring us closer to the goal of eradicating HIV infection. For hemoglobinopathies the ability to produce iPSC-derived from patients with the correction of hemoglobin (HBB) mutations by CRISPR-Cas9 has been tested in a number of laboratories. These corrected iPSCs also show the potential to differentiate into mature erythrocytes expressing high-level and normal HBB. In light of the initial success of CRESPR-Cas9 in target mutated gene(s) in the iPSCs, a combination of genomic editing and autogenetic stem cell transplantation would be the best strategy for root treatment of the diseases, which could replace traditional allogeneic stem cell transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Multi-stage crypto ransomware attacks: A new emerging cyber threat to critical infrastructure and industrial control systems

    OpenAIRE

    Aaron Zimba; Zhaoshun Wang; Hongsong Chen

    2018-01-01

    The inevitable integration of critical infrastructure to public networks has exposed the underlying industrial control systems to various attack vectors. In this paper, we model multi-stage crypto ransomware attacks, which are today an emerging cyber threat to critical infrastructure. We evaluate our modeling approach using multi-stage attacks by the infamous WannaCry ransomware. The static malware analysis results uncover the techniques employed by the ransomware to discover vulnerable nodes...

  14. Immunogenic multistage recombinant protein vaccine confers partial protection against experimental toxoplasmosis mimicking natural infection in murine model

    Directory of Open Access Journals (Sweden)

    Yaprak Gedik

    2016-01-01

    To generate a protective vaccine against toxoplasmosis, multistage vaccines and usage of challenging models mimicking natural route of infection are critical cornerstones. In this study, we generated a BAG1 and GRA1 multistage vaccine that induced strong immune response in which the protection was not at anticipated level. In addition, the murine model was orally challenged with tissue cysts to mimic natural route of infection.

  15. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA.

    Science.gov (United States)

    Warren, Luigi; Manos, Philip D; Ahfeldt, Tim; Loh, Yuin-Han; Li, Hu; Lau, Frank; Ebina, Wataru; Mandal, Pankaj K; Smith, Zachary D; Meissner, Alexander; Daley, George Q; Brack, Andrew S; Collins, James J; Cowan, Chad; Schlaeger, Thorsten M; Rossi, Derrick J

    2010-11-05

    Clinical application of induced pluripotent stem cells (iPSCs) is limited by the low efficiency of iPSC derivation and the fact that most protocols modify the genome to effect cellular reprogramming. Moreover, safe and effective means of directing the fate of patient-specific iPSCs toward clinically useful cell types are lacking. Here we describe a simple, nonintegrating strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate antiviral responses. We show that this approach can reprogram multiple human cell types to pluripotency with efficiencies that greatly surpass established protocols. We further show that the same technology can be used to efficiently direct the differentiation of RNA-induced pluripotent stem cells (RiPSCs) into terminally differentiated myogenic cells. This technology represents a safe, efficient strategy for somatic cell reprogramming and directing cell fate that has broad applicability for basic research, disease modeling, and regenerative medicine. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family

    Directory of Open Access Journals (Sweden)

    Eriona Hysolli

    2016-07-01

    Full Text Available Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4, and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in induced pluripotent stem cells (iPSCs have been shown to be highly similar to embryonic stem cells (ESCs. However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern when using iPSCs in a clinical setting. Thus, it is critical to find factors that regulate DNA methylation states in reprogramming. Here, we found that the miR-29 family is an important epigenetic regulator during human somatic cell reprogramming. Our global DNA methylation and hydroxymethylation analysis shows that DNA demethylation is a major event mediated by miR-29a depletion during early reprogramming, and that iPSCs derived from miR-29a depletion are epigenetically closer to ESCs. Our findings uncover an important miRNA-based approach to generate clinically robust iPSCs.

  17. Direct Numerical Simulation of Turbulent Multi-Stage Autoignition Relevant to Engine Conditions

    Science.gov (United States)

    Chen, Jacqueline

    2017-11-01

    Due to the unrivaled energy density of liquid hydrocarbon fuels combustion will continue to provide over 80% of the world's energy for at least the next fifty years. Hence, combustion needs to be understood and controlled to optimize combustion systems for efficiency to prevent further climate change, to reduce emissions and to ensure U.S. energy security. In this talk I will discuss recent progress in direct numerical simulations of turbulent combustion focused on providing fundamental insights into key `turbulence-chemistry' interactions that underpin the development of next generation fuel efficient, fuel flexible engines for transportation and power generation. Petascale direct numerical simulation (DNS) of multi-stage mixed-mode turbulent combustion in canonical configurations have elucidated key physics that govern autoignition and flame stabilization in engines and provide benchmark data for combustion model development under the conditions of advanced engines which operate near combustion limits to maximize efficiency and minimize emissions. Mixed-mode combustion refers to premixed or partially-premixed flames propagating into stratified autoignitive mixtures. Multi-stage ignition refers to hydrocarbon fuels with negative temperature coefficient behavior that undergo sequential low- and high-temperature autoignition. Key issues that will be discussed include: 1) the role of mixing in shear driven turbulence on the dynamics of multi-stage autoignition and cool flame propagation in diesel environments, 2) the role of thermal and composition stratification on the evolution of the balance of mixed combustion modes - flame propagation versus spontaneous ignition - which determines the overall combustion rate in autoignition processes, and 3) the role of cool flames on lifted flame stabilization. Finally prospects for DNS of turbulent combustion at the exascale will be discussed in the context of anticipated heterogeneous machine architectures. sponsored by DOE

  18. Rapid Growth of Large Single-Crystalline Graphene via Second Passivation and Multistage Carbon Supply.

    Science.gov (United States)

    Lin, Li; Sun, Luzhao; Zhang, Jincan; Sun, Jingyu; Koh, Ai Leen; Peng, Hailin; Liu, Zhongfan

    2016-06-01

    A second passivation and a multistage carbon-source supply (CSS) allow a 50-fold enhancement of the growth rate of large single-crystalline graphene with a record growth rate of 101 μm min(-1) , almost 10 times higher than for pure copper. To this end the CSS is tailored at separate stages of graphene growth on copper foil, combined with an effective suppression of new spontaneous nucleation via second passivation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhanced Multistage Homotopy Perturbation Method: Approximate Solutions of Nonlinear Dynamic Systems

    Directory of Open Access Journals (Sweden)

    Daniel Olvera

    2014-01-01

    Full Text Available We introduce a new approach called the enhanced multistage homotopy perturbation method (EMHPM that is based on the homotopy perturbation method (HPM and the usage of time subintervals to find the approximate solution of differential equations with strong nonlinearities. We also study the convergence of our proposed EMHPM approach based on the value of the control parameter h by following the homotopy analysis method (HAM. At the end of the paper, we compare the derived EMHPM approximate solutions of some nonlinear physical systems with their corresponding numerical integration solutions obtained by using the classical fourth order Runge-Kutta method via the amplitude-time response curves.

  20. The multistage homotopy-perturbation method: A powerful scheme for handling the Lorenz system

    International Nuclear Information System (INIS)

    Chowdhury, M.S.H.; Hashim, I.; Momani, S.

    2009-01-01

    In this paper, a new reliable algorithm based on an adaptation of the standard homotopy-perturbation method (HPM) is presented. The HPM is treated as an algorithm in a sequence of intervals (i.e. time step) for finding accurate approximate solutions to the famous Lorenz system. Numerical comparisons between the multistage homotopy-perturbation method (MHPM) and the classical fourth-order Runge-Kutta (RK4) method reveal that the new technique is a promising tool for the nonlinear systems of ODEs.

  1. Modeling and simulation of a multistage-contactor for solvent extraction

    International Nuclear Information System (INIS)

    Oh, W.J.; Kim, C.; Lee, T.H.

    1977-01-01

    The hydrodynamic characteristics of Multistage Mixer-Settlers were studied by establishing a mathematical model based on the assumptions of complete mixing in the mixer and plug flow with CSTR recirculation in the settler. The model parameters were determined by the moment and time lag matching and experiments were carried out with a water-kerosene system by obtaining residence time distributions for both phases using impulse response technique. The suggested model well predicated the experimental results within the experimental error range, while the other existing models were found to be too idealized to depict the dynamic characteristics of this equipment. (author)

  2. A theoretical analysis of price elasticity of energy demand in multistage energy conversion systems

    International Nuclear Information System (INIS)

    Lowe, R.

    2003-01-01

    The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases. (author)

  3. A theoretical analysis of price elasticity of energy demand in multi-stage energy conversion systems

    International Nuclear Information System (INIS)

    Lowe, Robert

    2003-01-01

    The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases

  4. Multi-Stage Adaptive Noise Cancellation Technique for Synthetic Hard-α Inclusion

    International Nuclear Information System (INIS)

    Kim, Jae Joon

    2003-01-01

    Adaptive noise cancellation techniques are ideally suitable for reducing spatially varying noise due to the grain structure of material in ultrasonic nondestructive evaluation. Grain noises have an un-correlation property, while flaw echoes are correlated. Thus, adaptive filtering algorithms use the correlation properties of signals to enhance the signal-to-noise ratio (SNR) of the output signal. In this paper, a multi-stage adaptive noise cancellation (MANC) method using adaptive least mean square error (LMSE) filter for enhancing flaw detection in ultrasonic signals is proposed

  5. Changes in Cartilage Biomarker Levels During a Transcontinental Multistage Footrace Over 4486 km.

    Science.gov (United States)

    Mündermann, Annegret; Klenk, Christopher; Billich, Christian; Nüesch, Corina; Pagenstert, Geert; Schmidt-Trucksäss, Arno; Schütz, Uwe

    2017-09-01

    Cartilage turnover and load-induced tissue changes are frequently assessed by quantifying concentrations of cartilage biomarkers in serum. To date, information on the effects of ultramarathon running on articular cartilage is scarce. Serum concentrations of cartilage oligomeric matrix protein (COMP), matrix metalloproteinase (MMP)-1, MMP-3, MMP-9, COL2-3/4C long mono (C2C), procollagen type II C-terminal propeptide (CPII), and C2C:CPII will increase throughout a multistage ultramarathon. Descriptive laboratory study. Blood samples were collected from 36 runners (4 female; mean age, 49.0 ± 10.7 years; mean body mass index, 23.1 ± 2.3 kg/m 2 [start] and 21.4 ± 1.9 kg/m 2 [finish]) before (t 0 ) and during (t 1 : 1002 km; t 2 : 2132 km; t 3 : 3234 km; t 4 : 4039 km) a 4486-km multistage ultramarathon. Serum COMP, MMP-1, MMP-3, MMP-9, C2C, and CPII levels were assessed using commercial enzyme-linked immunosorbent assays. Linear mixed models were used to detect significant changes in serum biomarker levels over time with the time-varying covariates of body weight, running speed, and daily running time. Serum concentrations of COMP, MMP-9, and MMP-3 changed significantly throughout the multistage ultramarathon. On average, concentrations increased during the first measurement interval (MI1: t 1 -t 0 ) by 22.5% for COMP (95% CI, 0.29-0.71 ng/mL), 22.3% for MMP-3 (95% CI, 0.24-15.37 ng/mL), and 95.6% for MMP-9 (95% CI, 81.7-414.5 ng/mL) and remained stable throughout MI2, MI3, and MI4. Serum concentrations of MMP-1, C2C, CPII, and C2C:CPII did not change significantly throughout the multistage ultramarathon. Changes in MMP-3 were statistically associated with changes in COMP throughout the ultramarathon race (MMP-3: Wald Z = 3.476, P = .001). Elevated COMP levels indicate increased COMP turnover in response to extreme running, and the association between load-induced changes in MMP-3 and changes in COMP suggests the possibility that MMP-3 may be involved in the

  6. A Predictive Model of Multi-Stage Production Planning for Fixed Time Orders

    Directory of Open Access Journals (Sweden)

    Kozłowski Edward

    2014-09-01

    Full Text Available The traditional production planning model based upon a deterministic approach is well described in the literature. Due to the uncertain nature of manufacturing processes, such model can however incorrectly represent actual situations on the shop floor. This study develops a mathematical modeling framework for generating production plans in a multistage manufacturing process. The devised model takes into account the stochastic model for predicting the occurrence of faulty products. The aim of the control model is to determine the number of products which should be manufactured in each planning period to minimize both manufacturing costs and potential financial penalties for failing to fulfill the order completely.

  7. Analisis Performansi Pompa Multistage Pengisi Air Umpan Ketel Yang Digerakkan Oleh Turbin Uap Dibanding Dengan Elektromotor

    OpenAIRE

    Nasution, Asril Habibi

    2012-01-01

    The pump is a fluid machinery that serves to move the fluid from the fluid incompressible / low pressure to the place / higher pressure. In principle, the pump convert mechanical energy into fluid energy. Centrifugal pump is included into the type of dynamic pressure pumps, which pump impeller type has a function to remove fluid from a low place to place a higher or lower than the pressure to higher pressure. In this analysis the pump used is a multistage centrifugal pump is driven by the ste...

  8. Modeling of changes in particle size distribution of solids in multistage separation systems

    Directory of Open Access Journals (Sweden)

    Lagereva E.A.

    2016-09-01

    Full Text Available The presented method of calculation of the separation of solid particles from gas streams to multistage separation sys-tems, consisting of a number of sequentially installed separational devices of various design and principle of operation. It is based on a separate analysis of the sequential processes of capture and transmission of individual fractions of solid particles of a polydisperse structure. The technique provides information about changes in particle size distribution of solids with the passage of the gas flow in the treatment system and allows you to specifically select the effective combination of different types of separators.

  9. Hydrogen iodide processing section in a thermochemical water-splitting iodine-sulfur process using a multistage hydrogen iodide decomposer

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sakaba, Nariaki; Imai, Yoshiyuki; Kubo, Shinji; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Kato, Ryoma

    2009-01-01

    A multistage hydrogen iodide (HI) decomposer (repetition of HI decomposition reaction and removal of product iodine by a HIx solution) in a thermochemical water-splitting iodine-sulfur process for hydrogen production using high-temperature heat from the high-temperature gas-cooled reactor was numerically evaluated, especially in terms of the flow rate of undecomposed HI and product iodine at the outlet of the decomposer, in order to reduce the total heat transfer area of heat exchangers for the recycle of undecomposed HI and to eliminate components for the separation. A suitable configuration of the multistage HI decomposer was countercurrent rather than concurrent, and the HIx solution from an electro-electro dialysis at a low temperature was a favorable feed condition for the multistage HI decomposer. The flow rate of undecomposed HI and product iodine at the outlet of the multistage HI decomposer was significantly lower than that of the conventional HI decomposer, because the conversion was increased, and HI and iodine were removed by the HIx solution. Based on this result, an alternative HI processing section using the multistage HI decomposer and eliminating some recuperators, coolers, and components for the separation was proposed and evaluated. The total heat transfer area of heat exchangers in the proposed HI processing section could be reduced to less than about 1/2 that in the conventional HI processing section. (author)

  10. Inspection logistics planning for multi-stage production systems with applications to semiconductor fabrication lines

    Science.gov (United States)

    Chen, Kyle Dakai

    Since the market for semiconductor products has become more lucrative and competitive, research into improving yields for semiconductor fabrication lines has lately received a tremendous amount of attention. One of the most critical tasks in achieving such yield improvements is to plan the in-line inspection sampling efficiently so that any potential yield problems can be detected early and eliminated quickly. We formulate a multi-stage inspection planning model based on configurations in actual semiconductor fabrication lines, specifically taking into account both the capacity constraint and the congestion effects at the inspection station. We propose a new mixed First-Come-First-Serve (FCFS) and Last-Come-First-Serve (LCFS) discipline for serving the inspection samples to expedite the detection of potential yield problems. Employing this mixed FCFS and LCFS discipline, we derive approximate expressions for the queueing delays in yield problem detection time and develop near-optimal algorithms to obtain the inspection logistics planning policies. We also investigate the queueing performance with this mixed type of service discipline under different assumptions and configurations. In addition, we conduct numerical tests and generate managerial insights based on input data from actual semiconductor fabrication lines. To the best of our knowledge, this research is novel in developing, for the first time in the literature, near-optimal results for inspection logistics planning in multi-stage production systems with congestion effects explicitly considered.

  11. Multistage A-O Activated Sludge Process for Paraformaldehyde Wastewater Treatment and Microbial Community Structure Analysis

    Directory of Open Access Journals (Sweden)

    Danyang Zheng

    2016-01-01

    Full Text Available In recent years, the effect of formaldehyde on microorganisms and body had become a global public health issue. The multistage combination of anaerobic and aerobic process was adopted to treat paraformaldehyde wastewater. Microbial community structure in different reaction stages was analyzed through high-throughput sequencing. Results showed that multistage A-O activated sludge process positively influenced polyformaldehyde wastewater. The removal rates of formaldehyde were basically stable at more than 99% and those of COD were about 89%. Analysis of the microbial diversity index indicated that the microbial diversity of the reactor was high, and the treatment effect was good. Moreover, microbial community had certain similarity in the same system. Microbial communities in different units also showed typical representative characteristics affected by working conditions and influent concentrations. Proteobacteria, Firmicutes, and Bacteroidetes were the dominant fungal genera in the phylum level of community composition. As to family and genus levels, Peptostreptococcaceae was distributed at various stages and the dominant in this system. This bacterium also played an important role in organic matter removal, particularly decomposition of the acidified middle metabolites. In addition, Rhodobacteraceae and Rhodocyclaceae were the formaldehyde-degrading bacteria found in the reactor.

  12. A novel multi-stage direct contact membrane distillation module: Design, experimental and theoretical approaches

    KAUST Repository

    Lee, Jung Gil

    2016-10-24

    An economic desalination system with a small scale and footprint for remote areas, which have a limited and inadequate water supply, insufficient water treatment and low infrastructure, is strongly demanded in the desalination markets. Here, a direct contact membrane distillation (DCMD) process has the simplest configuration and potentially the highest permeate flux among all of the possible MD processes. This process can also be easily instituted in a multi-stage manner for enhanced compactness, productivity, versatility and cost-effectiveness. In this study, an innovative, multi-stage, DCMD module under countercurrent-flow configuration is first designed and then investigate both theoretically and experimentally to identify its feasibility and operability for desalination application. Model predictions and measured data for mean permeate flux are compared and shown to be in good agreement. The effect of the number of module stages on the mean permeate flux, performance ratio and daily water production of the MDCMD system has been theoretically identified at inlet feed and permeate flow rates of 1.5 l/min and inlet feed and permeate temperatures of 70 °C and 25 °C, respectively. The daily water production of a three-stage DCMD module with a membrane area of 0.01 m2 at each stage is found to be 21.5 kg.

  13. Modelling and Control of the Multi-Stage Cable Pulley-Driven Flexible-Joint Robot

    Directory of Open Access Journals (Sweden)

    Phongsaen Pitakwatchara

    2014-07-01

    Full Text Available This work is concerned with the task space impedance control of a robot driven through a multi-stage nonlinear flexible transmission system. Specifically, a two degrees-of-freedom cable pulley-driven flexible-joint robot is considered. Realistic modelling of the system is developed within the bond graph modelling framework. The model captures the nonlinear compliance behaviour of the multi-stage cable pulley transmission system, the spring effect of the augmented counterbalancing mechanism, the major loss throughout the system elements, and the typical inertial dynamics of the robot. Next, a task space impedance controller based on limited information about the angle and the current of the motors is designed. The motor current is used to infer the transmitted torque, by which the motor inertia may be modulated. The motor angle is employed to estimate the stationary distal robot link angle and the robot joint velocity. They are used in the controller to generate the desired damping force and to shape the potential energy of the flexible joint robot system to the desired configuration. Simulation and experimental results of the controlled system signify the competency of the proposed control law.

  14. Multi-stage fuzzy PID power system automatic generation controller in deregulated environments

    International Nuclear Information System (INIS)

    Shayeghi, H.; Shayanfar, H.A.; Jalili, A.

    2006-01-01

    In this paper, a multi-stage fuzzy proportional integral derivative (PID) type controller is proposed to solve the automatic generation control (AGC) problem in a deregulated power system that operates under deregulation based on the bilateral policy scheme. In each control area, the effects of the possible contracts are treated as a set of new input signals in a modified traditional dynamical model. The multi-stage controller uses the fuzzy switch to blend a proportional derivative (PD) fuzzy logic controller with an integral fuzzy logic input. The proposed controller operates on fuzzy values passing the consequence of a prior stage on to the next stage as fact. The salient advantage of this strategy is its high insensitivity to large load changes and disturbances in the presence of plant parameter variations and system nonlinearities. This newly developed strategy leads to a flexible controller with simple structure that is easy to implement, and therefore, it can be useful for the real world power systems. The proposed method is tested on a three area power system with different contracted scenarios under various operating conditions. The results of the proposed controller are compared with those of the classical fuzzy PID type controller and classical PID controller through some performance indices to illustrate its robust performance

  15. Simulation and analysis of multi-stage centrifugal fractional extraction process of 4-nitrobenzene glycine enantiomers☆

    Institute of Scientific and Technical Information of China (English)

    Ping Wen; Kewen Tang; Jicheng Zhou; Panliang Zhang

    2015-01-01

    Based on the interfacial ligand exchange model and the law of conservation of mass, the multi-stage enantioselective liquid–liquid extraction model has been established to analyze and discuss on multi-stage centrifugal fractional extraction process of 4-nitrobenzene glycine (PGL) enantiomers. The influence of phase ratio, extractant concentra-tion, and PF6−concentration on the concentrations of enantiomers in the extract and raffinate was investigated by experiment and simulation. A good agreement between model and experiment was obtained. On this basis, the influence of many parameters such as location of stage, concentration levels, extractant excess, and number of stages on the symmetric separation performance was simulated. The optimal location of feed stage is the middle of fractional extraction equipment. The feed flow must satisfy a restricted relationship on flow ratios and the liquid throughout of centrifugal device. For desired purity specification, the required flow ratios decrease with extractant concentration and increase with PF6−concentration. When the number of stages is 18 stages at extractant excess of 1.0 or 14 stages at extractant excess of 2.0, the eeeq (equal enantiomeric excess) can reach to 99%.

  16. A novel multi-stage direct contact membrane distillation module: Design, experimental and theoretical approaches.

    Science.gov (United States)

    Lee, Jung-Gil; Kim, Woo-Seung; Choi, June-Seok; Ghaffour, Noreddine; Kim, Young-Deuk

    2016-12-15

    An economic desalination system with a small scale and footprint for remote areas, which have a limited and inadequate water supply, insufficient water treatment and low infrastructure, is strongly demanded in the desalination markets. Here, a direct contact membrane distillation (DCMD) process has the simplest configuration and potentially the highest permeate flux among all of the possible MD processes. This process can also be easily instituted in a multi-stage manner for enhanced compactness, productivity, versatility and cost-effectiveness. In this study, an innovative, multi-stage, DCMD module under countercurrent-flow configuration is first designed and then investigate both theoretically and experimentally to identify its feasibility and operability for desalination application. Model predictions and measured data for mean permeate flux are compared and shown to be in good agreement. The effect of the number of module stages on the mean permeate flux, performance ratio and daily water production of the MDCMD system has been theoretically identified at inlet feed and permeate flow rates of 1.5 l/min and inlet feed and permeate temperatures of 70 °C and 25 °C, respectively. The daily water production of a three-stage DCMD module with a membrane area of 0.01 m 2  at each stage is found to be 21.5 kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A Dynamic Multistage Hybrid Swarm Intelligence Optimization Algorithm for Function Optimization

    Directory of Open Access Journals (Sweden)

    Daqing Wu

    2012-01-01

    Full Text Available A novel dynamic multistage hybrid swarm intelligence optimization algorithm is introduced, which is abbreviated as DM-PSO-ABC. The DM-PSO-ABC combined the exploration capabilities of the dynamic multiswarm particle swarm optimizer (PSO and the stochastic exploitation of the cooperative artificial bee colony algorithm (CABC for solving the function optimization. In the proposed hybrid algorithm, the whole process is divided into three stages. In the first stage, a dynamic multiswarm PSO is constructed to maintain the population diversity. In the second stage, the parallel, positive feedback of CABC was implemented in each small swarm. In the third stage, we make use of the particle swarm optimization global model, which has a faster convergence speed to enhance the global convergence in solving the whole problem. To verify the effectiveness and efficiency of the proposed hybrid algorithm, various scale benchmark problems are tested to demonstrate the potential of the proposed multistage hybrid swarm intelligence optimization algorithm. The results show that DM-PSO-ABC is better in the search precision, and convergence property and has strong ability to escape from the local suboptima when compared with several other peer algorithms.

  18. Short-Term Wind Electric Power Forecasting Using a Novel Multi-Stage Intelligent Algorithm

    Directory of Open Access Journals (Sweden)

    Haoran Zhao

    2018-03-01

    Full Text Available As the most efficient renewable energy source for generating electricity in a modern electricity network, wind power has the potential to realize sustainable energy supply. However, owing to its random and intermittent instincts, a high permeability of wind power into a power network demands accurate and effective wind energy prediction models. This study proposes a multi-stage intelligent algorithm for wind electric power prediction, which combines the Beveridge–Nelson (B-N decomposition approach, the Least Square Support Vector Machine (LSSVM, and a newly proposed intelligent optimization approach called the Grasshopper Optimization Algorithm (GOA. For data preprocessing, the B-N decomposition approach was employed to disintegrate the hourly wind electric power data into a deterministic trend, a cyclic term, and a random component. Then, the LSSVM optimized by the GOA (denoted GOA-LSSVM was applied to forecast the future 168 h of the deterministic trend, the cyclic term, and the stochastic component, respectively. Finally, the future hourly wind electric power values can be obtained by multiplying the forecasted values of these three trends. Through comparing the forecasting performance of this proposed method with the LSSVM, the LSSVM optimized by the Fruit-fly Optimization Algorithm (FOA-LSSVM, and the LSSVM optimized by Particle Swarm Optimization (PSO-LSSVM, it is verified that the established multi-stage approach is superior to other models and can increase the precision of wind electric power prediction effectively.

  19. Numerical simulation and performance prediction in multi-stage submersible centrifugal pump

    International Nuclear Information System (INIS)

    Wang, W J; Li, G D; Wang, Y; Cui, Y R; Yin, G; Peng, S

    2013-01-01

    In order to study the inner flow field of multi-stage submersible centrifugal pump, the model named QD3-60/4-1.1 was selected. Steady turbulence characteristics of impellers, diffusers and return channel were calculated by Fluent software, the SIMPLEC algorithm and RNG κ-ε turbulence model with sliding mesh technology. Then, the distributions of pressure, velocity and Turbulence kinetic energy was obtained and the distributions of velocity field of a channel were analysed. The results show that the static pressure in impeller is increasing with the increasing of radius. The circumferential component of relative velocity is in the opposite direction of impeller rotating. At the same radius, the component value of pressure surface is larger than suction surface. With the increasing of flow rate, absolute velocity and relative velocity flow angle are becoming small, in opposite of the relative velocity and absolute velocity flow angle. The high turbulent zone of impeller is located in the gap of impellers and diffusers. Flow similarity and structure similarity of the multi-stage submersible pump are confirmed

  20. Multi-staged robotic stereotactic radiosurgery for large cerebral arteriovenous malformations

    International Nuclear Information System (INIS)

    Ding, Chuxiong; Solberg, Timothy D.; Hrycushko, Brian; Medin, Paul; Whitworth, Louis; Timmerman, Robert D.

    2013-01-01

    Purpose: To investigate a multi-staged robotic stereotactic radiosurgery (SRS) delivery technique for the treatment of large cerebral arteriovenous malformations (AVMs). The treatment planning process and strategies to optimize both individual and composite dosimetry are discussed. Methods: Eleven patients with large (30.7 ± 19.2 cm 3 ) AVMs were selected for this study. A fiducial system was designed for fusion of targets between planar angiograms and simulation CT scans. AVMs were contoured based on single contrast CT, MRI and orthogonal angiogram images. AVMs were divided into 3–8 sub-target volumes (3–7 cm 3 ) for sequential treatment at 1–4 week intervals to a prescription dose of 16–20 Gy. Forward and inversely developed treatment plans were optimized for 95% coverage of the total AVM volume by dose summation from each sub-volume, while minimizing dose to surrounding tissues. Dose-volume analysis was used to evaluate the PTV coverage, dose conformality (CI), and R 50 and V 12Gy parameters. Results: The treatment workflow was commissioned and able to localize within 1 mm. Inverse optimization outperformed forward planning for most patients for each index considered. Dose conformality was shown comparable to staged Gamma Knife treatments. Conclusion: The CyberKnife system is shown to be a practical delivery platform for multi-staged treatments of large AVMs using forward or inverse planning techniques

  1. CFD-Modeling of the Multistage Gasifier Capacity of 30 KW

    Science.gov (United States)

    Levin, A. A.; Kozlov, A. N.; Svishchev, D. A.; Donskoy, I. G.

    2017-11-01

    Single-stage fuel gasification processes have been developed and widely studied in Russia and abroad throughout the 20th century. They are fundamental to the creation and design of modern gas generator equipment. Many studies have shown that single-stage gasification process, have already reached the limit of perfection, which was a significant improvement in their performance becomes impossible and unprofitable. The most fully meet modern technical requirements of multistage gasification technology. In the first step of the process, is organized allothermic biomass pyrolysis using heat of exhaust gas and generating power plant. At this stage, the yield of volatile products (gas and tar) of fuel. In the second step, the layer of fuel is, the tar is decomposed by the action of hot air and steam, steam-gas mixture is formed further reacts with the charcoal in the third process stage. The paper presents a model developed by the authors of the multi-stage gasifier for wood chips. The model is made with the use of CFD-modeling software package (COMSOL Multiphisics). To describe the kinetics of wood pyrolysis and gasification of charcoal studies were carried out using a set of simultaneous thermal analysis. For this complex developed original methods of interpretation of measurements, including methods of technical analysis of fuels and determine the parameters of the detailed kinetics and mechanism of pyrolysis.

  2. Benchmarking and performance enhancement framework for multi-staging object-oriented languages

    Directory of Open Access Journals (Sweden)

    Ahmed H. Yousef

    2013-06-01

    Full Text Available This paper focuses on verifying the readiness, feasibility, generality and usefulness of multi-staging programming in software applications. We present a benchmark designed to evaluate the performance gain of different multi-staging programming (MSP languages implementations of object oriented languages. The benchmarks in this suite cover different tests that range from classic simple examples (like matrix algebra to advanced examples (like encryption and image processing. The benchmark is applied to compare the performance gain of two different MSP implementations (Mint and Metaphor that are built on object oriented languages (Java and C# respectively. The results concerning the application of this benchmark on these languages are presented and analysed. The measurement technique used in benchmarking leads to the development of a language independent performance enhancement framework that allows the programmer to select which code segments need staging. The framework also enables the programmer to verify the effectiveness of staging on the application performance. The framework is applied to a real case study. The case study results showed the effectiveness of the framework to achieve significant performance enhancement.

  3. A novel multi-stage subunit vaccine against paratuberculosis induces significant immunity and reduces bacterial burden in tissues (P4304)

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Aagaard, Claus; Riber, Ulla

    2013-01-01

    Effective control of paratuberculosis is hindered by lack of a vaccine preventing infection, transmission and without diagnostic interference with tuberculosis. We have developed a novel multi-stage recombinant subunit vaccine in which a fusion of four early expressed MAP antigens is combined...... characterized by a significant containment of bacterial burden in gut tissues compared to non-vaccinated animals. There was no cross-reaction with bovine tuberculosis in vaccinated animals. This novel multi-stage vaccine has the potential to become a marker vaccine for paratuberculosis....

  4. Induced pluripotent stem cells (iPSCs) derived from a patient with frontotemporal dementia caused by a R406W mutation in microtubule-associated protein tau (MAPT)

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel A.; Hjermind, Lena E.; Hasholt, Lis F.

    2016-01-01

    Skin fibroblasts were obtained from a 59-year-old woman diagnosed with frontotemporal dementia. The disease is caused by a R406W mutation in microtubule-associated protein tau (MAPT). Induced pluripotent stem cells (iPSCs) were established by electroporation with episomal plasmids containing hOCT4...

  5. Lipid Supplement in the Cultural Condition Facilitates the Porcine iPSC Derivation through cAMP/PKA/CREB Signal Pathway

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-02-01

    Full Text Available Large numbers of lipids exist in the porcine oocytes and early embryos and have the positive effects on their development, suggesting that the lipids may play an important role in pluripotency establishment and maintenance in pigs. However, the effects of lipids and their metabolites, such as fatty acids on reprogramming and the pluripotency gene expression of porcine-induced pluripotent stem cells (iPSCs, are unclear. Here, we generated the porcine iPSCs that resemble the mouse embryonic stem cells (ESCs under lipid and fatty-acid-enriched cultural conditions (supplement of AlbuMAX. These porcine iPSCs show positive for the ESCs pluripotency markers and have the differentiation abilities to all three germ layers, and importantly, have the capability of aggregation into the inner cell mass (ICM of porcine blastocysts. We further confirmed that lipid and fatty acid enriched condition can promote the cell proliferation and improve reprogramming efficiency by elevating cAMP levels. Interestingly, this lipids supplement promotes mesenchymal–epithelial transition (MET through the cAMP/PKA/CREB signal pathway and upregulates the E-cadherin expression during porcine somatic cell reprogramming. The lipids supplement also makes a contribution to lipid droplets accumulation in the porcine iPSCs that resemble porcine preimplantation embryos. These findings may facilitate understanding of the lipid metabolism in porcine iPSCs and lay the foundation of bona fide porcine embryonic stem cell derivation.

  6. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Götz Pilarczyk

    2016-01-01

    Full Text Available The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds.

  7. Emergence of a Stage-Dependent Human Liver Disease Signature with Directed Differentiation of Alpha-1 Antitrypsin-Deficient iPS Cells

    Directory of Open Access Journals (Sweden)

    Andrew A. Wilson

    2015-05-01

    Full Text Available Induced pluripotent stem cells (iPSCs provide an inexhaustible source of cells for modeling disease and testing drugs. Here we develop a bioinformatic approach to detect differences between the genomic programs of iPSCs derived from diseased versus normal human cohorts as they emerge during in vitro directed differentiation. Using iPSCs generated from a cohort carrying mutations (PiZZ in the gene responsible for alpha-1 antitrypsin (AAT deficiency, we find that the global transcriptomes of PiZZ iPSCs diverge from normal controls upon differentiation to hepatic cells. Expression of 135 genes distinguishes PiZZ iPSC-hepatic cells, providing potential clues to liver disease pathogenesis. The disease-specific cells display intracellular accumulation of mutant AAT protein, resulting in increased autophagic flux. Furthermore, we detect beneficial responses to the drug carbamazepine, which further augments autophagic flux, but adverse responses to known hepatotoxic drugs. Our findings support the utility of iPSCs as tools for drug development or prediction of toxicity.

  8. Genetic progress in multistage dairy cattle breeding schemes using genetic markers.

    Science.gov (United States)

    Schrooten, C; Bovenhuis, H; van Arendonk, J A M; Bijma, P

    2005-04-01

    The aim of this paper was to explore general characteristics of multistage breeding schemes and to evaluate multistage dairy cattle breeding schemes that use information on quantitative trait loci (QTL). Evaluation was either for additional genetic response or for reduction in number of progeny-tested bulls while maintaining the same response. The reduction in response in multistage breeding schemes relative to comparable single-stage breeding schemes (i.e., with the same overall selection intensity and the same amount of information in the final stage of selection) depended on the overall selection intensity, the selection intensity in the various stages of the breeding scheme, and the ratio of the accuracies of selection in the various stages of the breeding scheme. When overall selection intensity was constant, reduction in response increased with increasing selection intensity in the first stage. The decrease in response was highest in schemes with lower overall selection intensity. Reduction in response was limited in schemes with low to average emphasis on first-stage selection, especially if the accuracy of selection in the first stage was relatively high compared with the accuracy in the final stage. Closed nucleus breeding schemes in dairy cattle that use information on QTL were evaluated by deterministic simulation. In the base scheme, the selection index consisted of pedigree information and own performance (dams), or pedigree information and performance of 100 daughters (sires). In alternative breeding schemes, information on a QTL was accounted for by simulating an additional index trait. The fraction of the variance explained by the QTL determined the correlation between the additional index trait and the breeding goal trait. Response in progeny test schemes relative to a base breeding scheme without QTL information ranged from +4.5% (QTL explaining 5% of the additive genetic variance) to +21.2% (QTL explaining 50% of the additive genetic variance). A

  9. Multistage and multiobjective formulations of globally optimal upgradable expansions for electric power distribution systems

    Science.gov (United States)

    Vaziri Yazdi Pin, Mohammad

    Electric power distribution systems are the last high voltage link in the chain of production, transport, and delivery of the electric energy, the fundamental goals of which are to supply the users' demand safely, reliably, and economically. The number circuit miles traversed by distribution feeders in the form of visible overhead or imbedded underground lines, far exceed those of all other bulk transport circuitry in the transmission system. Development and expansion of the distribution systems, similar to other systems, is directly proportional to the growth in demand and requires careful planning. While growth of electric demand has recently slowed through efforts in the area of energy management, the need for a continued expansion seems inevitable for the near future. Distribution system and expansions are also independent of current issues facing both the suppliers and the consumers of electrical energy. For example, deregulation, as an attempt to promote competition by giving more choices to the consumers, while it will impact the suppliers' planning strategies, it cannot limit the demand growth or the system expansion in the global sense. Curiously, despite presence of technological advancements and a 40-year history of contributions in the area, many of the major utilities still relay on experience and resort to rudimentary techniques when planning expansions. A comprehensive literature review of the contributions and careful analyses of the proposed algorithms for distribution expansion, confirmed that the problem is a complex, multistage and multiobjective problem for which a practical solution remains to be developed. In this research, based on the 15-year experience of a utility engineer, the practical expansion problem has been clearly defined and the existing deficiencies in the previous work identified and analyzed. The expansion problem has been formulated as a multistage planning problem in line with a natural course of development and industry

  10. Multistage stereotactic radiosurgery for large cerebral arteriovenous malformations using the Gamma Knife platform.

    Science.gov (United States)

    Ding, Chuxiong; Hrycushko, Brian; Whitworth, Louis; Li, Xiang; Nedzi, Lucien; Weprin, Bradley; Abdulrahman, Ramzi; Welch, Babu; Jiang, Steve B; Wardak, Zabi; Timmerman, Robert D

    2017-10-01

    Radiosurgery is an established technique to treat cerebral arteriovenous malformations (AVMs). Obliteration of larger AVMs (> 10-15 cm 3 or diameter > 3 cm) in a single session is challenging with current radiosurgery platforms due to toxicity. We present a novel technique of multistage stereotactic radiosurgery (SRS) for large intracranial arteriovenous malformations (AVM) using the Gamma Knife system. Eighteen patients with large (> 10-15 cm 3 or diameter > 3 cm) AVMs, which were previously treated using a staged SRS technique on the Cyberknife platform, were retrospectively selected for this study. The AVMs were contoured and divided into 3-8 subtargets to be treated sequentially in a staged approach at half to 4 week intervals. The prescription dose ranged from 15 Gy to 20 Gy, depending on the subtarget number, volume, and location. Gamma Knife plans using multiple collimator settings were generated and optimized. The coordinates of each shot from the initial plan covering the total AVM target were extracted based on their relative positions within the frame system. The shots were regrouped based on their location with respect to the subtarget contours to generate subplans for each stage. The delivery time of each shot for a subtarget was decay corrected with 60 Co for staging the treatment course to generate the same dose distribution as that planned for the total AVM target. Conformality indices and dose-volume analysis were performed to evaluate treatment plans. With the shot redistribution technique, the composite dose for the multistaged treatment of multiple subtargets is equivalent to the initial plan for total AVM target. Gamma Knife plans resulted in an average PTV coverage of 96.3 ± 0.9% and a PITV of 1.23 ± 0.1. The resulting Conformality indices, V 12Gy and R 50 dose spillage values were 0.76 ± 0.05, 3.4 ± 1.8, and 3.1 ± 0.5 respectively. The Gamma Knife system can deliver a multistaged conformal dose to treat large AVMs when correcting for

  11. Availability and mean life time prediction of multistage degraded system with partial repairs

    International Nuclear Information System (INIS)

    Pham, Hoang; Suprasad, A.; Misra, R.B.

    1997-01-01

    In some environments, components might not always fail fully, but can degrade, and there can be multiple stages of degradation. In such cases, the efficiency of the system may decrease. After a certain stage of degradation the efficiency of the system may decrease to an unacceptable limit and can be considered as a total failure. However, the system can fail randomly from any stage. and can be repaired. Further, the repair action cannot bring the system to the good stage, but can make it operational and the failure rate of the system will, therefore, remain the same as before the failure. In this study, we present a model for predicting the reliability, availability, mean life time, and mean time to first failure of multistage degraded systems with partial repairs. In the analysis, state dependent transition rates for the degradation process, as well as repair processes, are considered. A numerical example is provided to illustrate the results

  12. A New Multistage Lattice Vector Quantization with Adaptive Subband Thresholding for Image Compression

    Directory of Open Access Journals (Sweden)

    J. Soraghan

    2007-01-01

    Full Text Available Lattice vector quantization (LVQ reduces coding complexity and computation due to its regular structure. A new multistage LVQ (MLVQ using an adaptive subband thresholding technique is presented and applied to image compression. The technique concentrates on reducing the quantization error of the quantized vectors by “blowing out” the residual quantization errors with an LVQ scale factor. The significant coefficients of each subband are identified using an optimum adaptive thresholding scheme for each subband. A variable length coding procedure using Golomb codes is used to compress the codebook index which produces a very efficient and fast technique for entropy coding. Experimental results using the MLVQ are shown to be significantly better than JPEG 2000 and the recent VQ techniques for various test images.

  13. A New Multistage Lattice Vector Quantization with Adaptive Subband Thresholding for Image Compression

    Directory of Open Access Journals (Sweden)

    Salleh MFM

    2007-01-01

    Full Text Available Lattice vector quantization (LVQ reduces coding complexity and computation due to its regular structure. A new multistage LVQ (MLVQ using an adaptive subband thresholding technique is presented and applied to image compression. The technique concentrates on reducing the quantization error of the quantized vectors by "blowing out" the residual quantization errors with an LVQ scale factor. The significant coefficients of each subband are identified using an optimum adaptive thresholding scheme for each subband. A variable length coding procedure using Golomb codes is used to compress the codebook index which produces a very efficient and fast technique for entropy coding. Experimental results using the MLVQ are shown to be significantly better than JPEG 2000 and the recent VQ techniques for various test images.

  14. Beneath Still Waters - Multistage Aquatic Exploitation of Euryale ferox (Salisb. during the Acheulian

    Directory of Open Access Journals (Sweden)

    Naama Goren-Inbar1

    2014-09-01

    Full Text Available Remains of the highly nutritious aquatic plant Fox nut – Euryale ferox Salisb. (Nymphaeaceae – were found at the Acheulian site of Gesher Benot Ya'aqov, Israel. Here, we present new evidence for complex cognitive strategies of hominins as seen in their exploitation of E. ferox nuts. We draw on excavated data and on parallels observed in traditional collecting and processing practices from Bihar, India. We suggest that during the early Middle Pleistocene, hominins implemented multistage procedures comprising underwater gathering and subsequent processing (drying, roasting and popping of E. ferox nuts. Hierarchical processing strategies are observed in the Acheulian lithic reduction sequences and butchering of game at this and other sites, but are poorly understood as regards the exploitation of aquatic plant resources. We highlight the ability of Acheulian hominins to resolve issues related to underwater gathering of E. ferox nuts during the plant's life cycle and to adopt strategies to enhance their nutritive value.

  15. Numerical simulation of 3-D turbulent flow through entire stage in a multistage centrifugal pump

    International Nuclear Information System (INIS)

    Huang, S.; Islam, M.F.; Liu, P.

    2005-01-01

    A three-dimensional turbulent flow through a multistage centrifugal pump is numerically simulated using a commercial CFD software package. The simulation and analysis include flow fields in rotating impeller and stationary diffuser and is completed in a multiple reference frame. The standard k-ε turbulence model is applied. The analysis of the simulation reveals that the reverse flows exist in the zone near the impeller exit and diffuser entrance, resulting in flow field asymmetric and unsteady. There is a considerable interference on velocity field at impeller exit due to the interaction between impeller blades and diffuser vanes. The hydraulic performance is connected and evaluated with the 3-D computational flow field. The current computation is verified by comparing predicted and measured head. (author)

  16. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex

    Science.gov (United States)

    Lafer-Sousa, Rosa; Conway, Bevil R.

    2014-01-01

    Visual-object processing culminates in inferior temporal (IT) cortex. To assess the organization of IT, we measured fMRI responses in alert monkey to achromatic images (faces, fruit, bodies, places) and colored gratings. IT contained multiple color-biased regions, which were typically ventral to face patches and, remarkably, yoked to them, spaced regularly at four locations predicted by known anatomy. Color and face selectivity increased for more anterior regions, indicative of a broad hierarchical arrangement. Responses to non-face shapes were found across IT, but were stronger outside color-biased regions and face patches, consistent with multiple parallel streams. IT also contained multiple coarse eccentricity maps: face patches overlapped central representations; color-biased regions spanned mid-peripheral representations; and place-biased regions overlapped peripheral representations. These results suggest that IT comprises parallel, multi-stage processing networks subject to one organizing principle. PMID:24141314

  17. Make or buy decision model with multi-stage manufacturing process and supplier imperfect quality

    Science.gov (United States)

    Pratama, Mega Aria; Rosyidi, Cucuk Nur

    2017-11-01

    This research develops an make or buy decision model considering supplier imperfect quality. This model can be used to help companies make the right decision in case of make or buy component with the best quality and the least cost in multistage manufacturing process. The imperfect quality is one of the cost component that must be minimizing in this model. Component with imperfect quality, not necessarily defective. It still can be rework and used for assembly. This research also provide a numerical example and sensitivity analysis to show how the model work. We use simulation and help by crystal ball to solve the numerical problem. The sensitivity analysis result show that percentage of imperfect generally not affect to the model significantly, and the model is not sensitive to changes in these parameters. This is because the imperfect cost are smaller than overall total cost components.

  18. Simulated dynamic response of a multi-stage compressor with variable molecular weight flow medium

    Science.gov (United States)

    Babcock, Dale A.

    1995-01-01

    A mathematical model of a multi-stage compressor with variable molecular weight flow medium is derived. The modeled system consists of a five stage, six cylinder, double acting, piston type compressor. Each stage is followed by a water cooled heat exchanger which serves to transfer the heat of compression from the gas. A high molecular weight gas (CFC-12) mixed with air in varying proportions is introduced to the suction of the compressor. Condensation of the heavy gas may occur in the upper stage heat exchangers. The state equations for the system are integrated using the Advanced Continuous Simulation Language (ACSL) for determining the system's dynamic and steady state characteristics under varying operating conditions.

  19. Multi-stage full waveform inversion strategy for 2D elastic VTI media

    KAUST Repository

    Oh, Juwon

    2015-08-19

    One of the most important issues in the multi-parametric full waveform inversion (FWI) is to find an optimal parameterization, which helps us recover the subsurface anisotropic parameters as well as seismic velocities, with minimal tradeoff. As a result, we analyze three different parameterizations for elastic VTI media in terms of the influence of the S-waves on the gradient direction for c13, the spatial coverage of gradient direction and the degree of trade-offs between the parameters. Based on the dependency results, we design a multi-stage elastic VTI FWI strategy to enhance both the spatial coverage of the FWI and the robustness to the trade-offs among the parameters as well as FWI for the c13 structure.

  20. PENENTUAN PRODUCTION LOT SIZES DAN TRANSFER BATCH SIZES DENGAN PENDEKATAN MULTISTAGE

    Directory of Open Access Journals (Sweden)

    Purnawan Adi W

    2012-02-01

    Full Text Available Pengendalian dan perawatan inventori merupakan suatu permasalahan yang sering dihadapi seluruh organisasi dalam berbagai sektor ekonomi. Salah satu tantangan yang yang harus dihadapi dalam pengendalian inventori adalah bagaimana menentukan ukuran lot yang optimal pada suatu sistem produksi dengan berbagai tipe. Analisis batch produksi (production lot dengan pendekatan hybrid simulasi analitik merupakan salah satu penelitian mengenai ukuran lot optimal. Penelitian tersebut menggunakan pendekatan sistem singlestage dimana tidak adanya hubungan antar proses di setiap stage atau dengan kata lain, proses yang satu independen terhadap proses yang lain. Dengan menggunakan objek penelitian yang sama dengan objek penelitian diatas, penelitian ini kemudian mengangkat permasalahan penentuan ukuran production lot dengan pendekatan multistage. Pertama, dengan menggunakan data-data yang sama dengan penelitian sebelumnya ditentukan ukuran production lot yang optimal dengan metode programa linier. Selanjutnya ukuran production lot digunakan sebegai input simulasi untuk menentukan ukuran transfer batch. Rata-rata panjang antrian dan waktu tunggu menjadi ukuran performansi yang digunakan sebagai acuan penentuan ukuran transfer batch dari beberapa alternatif ukuran yang ada. Pada penelitian ini, ukuran production lot yang dihasilkan sama besarnya dengan demand tiap periode. Sedangkan untuk ukuran transfer batch, hasil penentuan dengan menggunakan simulasi kemudian dimplementasikan ke dalam model. Hasilnya adalah adanya penurunan inventori yang terjadi sebesar 76,35% untuk produk connector dan 50,59% untuk produk box connector dari inventori yang dihasilkan dengan pendekatan singlestage. Kata kunci : multistage, production lot, transfer batch     Abstract   Inventory maintenance and inventory control is a problem that often faced by all organization in many economic sectors. One of challenges that must be faced in inventory control is how to determine the

  1. A computer code simulating multistage chemical exchange column under wide range of operating conditions

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Okuno, Kenji

    1996-09-01

    A computer code has been developed to simulate a multistage CECE(Combined Electrolysis Chemical Exchange) column. The solution of basic equations can be found out by the Newton-Raphson method. The independent variables are the atom fractions of D and T in each stage for the case where H is dominant within the column. These variables are replaced by those of H and T under the condition that D is dominant. Some effective techniques have also been developed to get a set of solutions of the basic equations: a setting procedure of initial values of the independent variables; and a procedure for the convergence of the Newton-Raphson method. The computer code allows us to simulate the column behavior under a wide range of the operating conditions. Even for a severe case, where the dominant species changes along the column height, the code can give a set of solutions of the basic equations. (author)

  2. An approach to eliminate stepped features in multistage incremental sheet forming process: Experimental and FEA analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nirala, Harish Kumar; Jain, Prashant K.; Tandon, Puneet [PDPM Indian Institute of Information Technology, Design and Manufacturing Jabalpur Jabalpur-482005, Madhya Pradesh (India); Roy, J. J.; Samal, M. K. [Bhabha Atomic Research Centre, Mumbai (India)

    2017-02-15

    Incremental sheet forming (ISF) is a recently developed manufacturing technique. In ISF, forming is done by applying deformation force through the motion of Numerically controlled (NC) single point forming tool on the clamped sheet metal blank. Single Point Incremental sheet forming (SPISF) is also known as a die-less forming process because no die is required to fabricate any component by using this process. Now a day it is widely accepted for rapid manufacturing of sheet metal components. The formability of SPISF process improves by adding some intermediate stages into it, which is known as Multi-stage SPISF (MSPISF) process. However during forming in MSPISF process because of intermediate stages stepped features are generated. This paper investigates the generation of stepped features with simulation and experimental results. An effective MSPISF strategy is proposed to remove or eliminate this generated undesirable stepped features.

  3. Analysis of fatigue reliability for high temperature and high pressure multi-stage decompression control valve

    Science.gov (United States)

    Yu, Long; Xu, Juanjuan; Zhang, Lifang; Xu, Xiaogang

    2018-03-01

    Based on stress-strength interference theory to establish the reliability mathematical model for high temperature and high pressure multi-stage decompression control valve (HMDCV), and introduced to the temperature correction coefficient for revising material fatigue limit at high temperature. Reliability of key dangerous components and fatigue sensitivity curve of each component are calculated and analyzed by the means, which are analyzed the fatigue life of control valve and combined with reliability theory of control valve model. The impact proportion of each component on the control valve system fatigue failure was obtained. The results is shown that temperature correction factor makes the theoretical calculations of reliability more accurate, prediction life expectancy of main pressure parts accords with the technical requirements, and valve body and the sleeve have obvious influence on control system reliability, the stress concentration in key part of control valve can be reduced in the design process by improving structure.

  4. Research and development on the hydraulic design system of the guide vanes of multistage centrifugal pumps

    International Nuclear Information System (INIS)

    Zhang, Q H; Xu, Y; Shi, W D; Lu, W G

    2012-01-01

    To improve the hydraulic design accuracy and efficiency of the guide vanes of the multistage centrifugal pumps, four different-structured guide vanes are investigated, and the design processes of those systems are established. The secondary development platforms of the ObjectArx2000 and the UG/NX OPEN are utilized to develop the hydraulic design systems of the guide vanes. The error triangle method is adopted to calculate the coordinates of the vanes, the profiles of the vanes are constructed by Bezier curves, and then the curves of the flow areas along the flow-path are calculated. Two-dimensional and three-dimensional hydraulic models can be developed by this system.

  5. A multistage, semi-automated procedure for analyzing the morphology of nanoparticles

    KAUST Repository

    Park, Chiwoo

    2012-07-01

    This article presents a multistage, semi-automated procedure that can expedite the morphology analysis of nanoparticles. Material scientists have long conjectured that the morphology of nanoparticles has a profound impact on the properties of the hosting material, but a bottleneck is the lack of a reliable and automated morphology analysis of the particles based on their image measurements. This article attempts to fill in this critical void. One particular challenge in nanomorphology analysis is how to analyze the overlapped nanoparticles, a problem not well addressed by the existing methods but effectively tackled by the method proposed in this article. This method entails multiple stages of operations, executed sequentially, and is considered semi-automated due to the inclusion of a semi-supervised clustering step. The proposed method is applied to several images of nanoparticles, producing the needed statistical characterization of their morphology. © 2012 "IIE".

  6. Decomposition and (importance) sampling techniques for multi-stage stochastic linear programs

    Energy Technology Data Exchange (ETDEWEB)

    Infanger, G.

    1993-11-01

    The difficulty of solving large-scale multi-stage stochastic linear programs arises from the sheer number of scenarios associated with numerous stochastic parameters. The number of scenarios grows exponentially with the number of stages and problems get easily out of hand even for very moderate numbers of stochastic parameters per stage. Our method combines dual (Benders) decomposition with Monte Carlo sampling techniques. We employ importance sampling to efficiently obtain accurate estimates of both expected future costs and gradients and right-hand sides of cuts. The method enables us to solve practical large-scale problems with many stages and numerous stochastic parameters per stage. We discuss the theory of sharing and adjusting cuts between different scenarios in a stage. We derive probabilistic lower and upper bounds, where we use importance path sampling for the upper bound estimation. Initial numerical results turned out to be promising.

  7. Simulation studies of a possible multi-stage XFEL at ELETTRA

    International Nuclear Information System (INIS)

    Fawley, William M.; Barletta, William A.; Bocchetta, Carlo J.; Bonifacio, Rodolfo

    2002-01-01

    Presently there is strong interest in developing a 4th generation light source at VUV and soft x-ray wavelengths at the ELETTRA facility at Trieste. One proposal centers around using the existing linac at 1.0 GeV energy with a new photocathode and bunch compression to achieve an output beam at 600 Amp current, 2-4 mm-mrad normalized emittance, and 0.05 percent instantaneous energy spread. To achieve output radiation in the 10- to 40-nm wavelength region, we consider a multi-stage device which is initiated by a coherent seed laser operating at 200 nm. We present numerical simulations of various undulator/optical-klystron configurations, seeking to optimize the overall output power level while minimizing the total length of undulator sections needed. Our results suggest multi-MW instantaneous powers are possible at 10-nm wavelengths

  8. A multistage, semi-automated procedure for analyzing the morphology of nanoparticles

    KAUST Repository

    Park, Chiwoo; Huang, Jianhua Z.; Huitink, David; Kundu, Subrata; Mallick, Bani K.; Liang, Hong; Ding, Yu

    2012-01-01

    This article presents a multistage, semi-automated procedure that can expedite the morphology analysis of nanoparticles. Material scientists have long conjectured that the morphology of nanoparticles has a profound impact on the properties of the hosting material, but a bottleneck is the lack of a reliable and automated morphology analysis of the particles based on their image measurements. This article attempts to fill in this critical void. One particular challenge in nanomorphology analysis is how to analyze the overlapped nanoparticles, a problem not well addressed by the existing methods but effectively tackled by the method proposed in this article. This method entails multiple stages of operations, executed sequentially, and is considered semi-automated due to the inclusion of a semi-supervised clustering step. The proposed method is applied to several images of nanoparticles, producing the needed statistical characterization of their morphology. © 2012 "IIE".

  9. Study on hydrodynamics and mass transfer of the critically safe multistage mixer-settler

    International Nuclear Information System (INIS)

    Zhang Weibo; Jiao Rongzhou; Liu Bingren

    1992-08-01

    The study on structure of critically safe multistage mixer-settler for the extraction process of high enriched uranium and plutonium has been completed. The mixer-settler has simple structure, good critical safety, flexibility in operation (O/A from 0.5 to 5) and high extraction efficiency (E x > 90%). These performances have been proved in the hydrodynamics and mass transfer experiments at a three stages cascade mixer-settler. Based on the others experience, a trapezoidal impeller combined with half-open turbine is developed which has stronger pumping and well mixing function at low rotating speed. The optimal rotating speed is 250 to 280 r/min obtained by experiments

  10. Application of Multistage Homotopy Perturbation Method to the Chaotic Genesio System

    Directory of Open Access Journals (Sweden)

    M. S. H. Chowdhury

    2012-01-01

    Full Text Available Finding accurate solution of chaotic system by using efficient existing numerical methods is very hard for its complex dynamical behaviors. In this paper, the multistage homotopy-perturbation method (MHPM is applied to the Chaotic Genesio system. The MHPM is a simple reliable modification based on an adaptation of the standard homotopy-perturbation method (HPM. The HPM is treated as an algorithm in a sequence of intervals for finding accurate approximate solutions to the Chaotic Genesio system. Numerical comparisons between the MHPM and the classical fourth-order Runge-Kutta (RK4 solutions are made. The results reveal that the new technique is a promising tool for the nonlinear chaotic systems of ordinary differential equations.

  11. An integrated multi-stage supply chain inventory model with imperfect production process

    Directory of Open Access Journals (Sweden)

    Soumita Kundu

    2015-09-01

    Full Text Available This paper deals with an integrated multi-stage supply chain inventory model with the objective of cost minimization by synchronizing the replenishment decisions for procurement, production and delivery activities. The supply chain structure examined here consists of a single manufacturer with multi-buyer where manufacturer orders a fixed quantity of raw material from outside suppliers, processes the materials and delivers the finished products in unequal shipments to each customer. In this paper, we consider an imperfect production system, which produces defective items randomly and assumes that all defective items could be reworked. A simple algorithm is developed to obtain an optimal production policy, which minimizes the expected average total cost of the integrated production-inventory system.

  12. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels

    Science.gov (United States)

    Luo, J.; Chen, M.; Wu, W. Y.; Weng, S. M.; Sheng, Z. M.; Schroeder, C. B.; Jaroszynski, D. A.; Esarey, E.; Leemans, W. P.; Mori, W. B.; Zhang, J.

    2018-04-01

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

  13. Detailed molecular characterization of castor oil ethoxylates by liquid chromatography multistage mass spectrometry.

    Science.gov (United States)

    Nasioudis, Andreas; van Velde, Jan W; Heeren, Ron M A; van den Brink, Oscar F

    2011-10-07

    The molecular characterization of castor oil ethoxylates (CASEOs) was studied by reverse-phase liquid chromatography (RPLC) mass spectrometry (MS) and multistage mass spectrometry (MS(n)). The developed RPLC method allowed the separation of the various CASEO components, and especially, the baseline separation of multiple nominal isobars (same nominal mass) and isomers (same exact mass). MS and MS(n) were used for the determination and structure elucidation of various structures and for the discrimination of the isobars and isomers. Different ionization techniques and adduct ions were also tested for optimization of the MS detection and the MS(n) fragmentation. A unique fragmentation pathway of ricinoleic acid is proposed, which can be used as a marker of the polymerization process and the topology of ethoxylation in the CASEO. In addition, characteristic neutral losses of ricinoleic acid reveal its (terminal or internal) position in the molecule. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Optimal design of multistage chemostats in series using different microbial growth kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Qasim, Muhammad [Petroleum Engineering Technology, Abu Dhabi Polytechnic (United Arab Emirates)

    2013-07-01

    In this paper, the optimum design of multistage chemostats (CSTRs) was investigated. The optimal design was based on the minimum overall reactor volume using different volume for each chemostat. The paper investigates three different microbial growth kinetics; Monod kinetics, Contois kinetics and the Logistic equation. The total dimensionless residence time (theta Total) was set as the optimization objective function that was minimized by varying the intermediate dimensionless substrate concentration (alfa i). The effect of inlet substrate concentration (S0) to the first reactor on the optimized total dimensionless residence time was investigated at a constant conversion of 0.90. In addition, the effect of conversion on the optimized total dimensionless residence time was also investigated at constant inlet substrate concentration (S0). For each case, optimization was done using up to five chemostats in series.

  15. A Numerical Study on the Impeller Meridional Curvature of High Pressure Multistage Pump

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Deok Su; Jean, Sang Gyu; Mamatov, Sanjar [Hyosung Goodsprings, Inc., Busan (Korea, Republic of); Park, Warn Gyu [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-07-15

    This paper presents the hydraulic design an impeller and radial diffuser of a high-pressure multistage pump for reverse osmosis. The flow distribution and hydraulic performance for the meridional design of the impeller were analyzed numerically. Optimization was conducted based on the response surface method by varying the hub and shroud meridional curvatures, while maintaining the impeller outlet diameter, outlet width, and eye diameter constant. The analysis results of the head and efficiency with the variation in the impeller meridional profile showed that angle of the front shroud near the impeller outlet (εDs) had the highest effect on head increase, while the hub inlet length (d1i) and shroud curvature (Rds) had the highest effect on efficiency. From the meridional profile variation, an approximately 0.5% increase in efficiency was observed compared with the base model (case 25).

  16. Single-Staged Compared With Multi-Staged PCI in Multivessel NSTEMI Patients: The SMILE Trial.

    Science.gov (United States)

    Sardella, Gennaro; Lucisano, Luigi; Garbo, Roberto; Pennacchi, Mauro; Cavallo, Erika; Stio, Rocco Edoardo; Calcagno, Simone; Ugo, Fabrizio; Boccuzzi, Giacomo; Fedele, Francesco; Mancone, Massimo

    2016-01-26

    A lack of clarity exists about the role of complete coronary revascularization in patients presenting with non-ST-segment elevation myocardial infarction. The aim of our study was to compare long-term outcomes in terms of major adverse cardiovascular and cerebrovascular events of 2 different complete coronary revascularization strategies in patients with non-ST-segment elevation myocardial infarction and multivessel coronary artery disease: 1-stage percutaneous coronary intervention (1S-PCI) during the index procedure versus multistage percutaneous coronary intervention (MS-PCI) complete coronary revascularization during the index hospitalization. In the SMILE (Impact of Different Treatment in Multivessel Non ST Elevation Myocardial Infarction Patients: One Stage Versus Multistaged Percutaneous Coronary Intervention) trial, 584 patients were randomly assigned in a 1:1 manner to 1S-PCI or MS-PCI. The primary study endpoint was the incidence of major adverse cardiovascular and cerebrovascular events, which were defined as cardiac death, death, reinfarction, rehospitalization for unstable angina, repeat coronary revascularization (target vessel revascularization), and stroke at 1 year. The occurrence of the primary endpoint was significantly lower in the 1-stage group (1S-PCI: n = 36 [13.63%] vs. MS-PCI: n = 61 [23.19%]; hazard ratio [HR]: 0.549 [95% confidence interval (CI): 0.363 to 0.828]; p = 0.004). The 1-year rate of target vessel revascularization was significantly higher in the MS-PCI group (1S-PCI: n = 22 [8.33%] vs. MS-PCI: n = 40 [15.20%]; HR: 0.522 [95% CI: 0.310 to 0.878]; p = 0.01; p log-rank = 0.013). When the analyses were limited to cardiac death (1S-PCI: n = 9 [3.41%] vs. MS-PCI: n = 14 [5.32%]; HR: 0.624 [95% CI: 0.270 to 1.441]; p = 0.27) and myocardial infarction (1S-PCI: n = 7 [2.65%] vs. MS-PCI: n = 10 [3.80%]; HR: 0.678 [95% CI: 0.156 to 2.657]; p = 0.46), no significant differences were observed between groups. In multivessel

  17. Advanced counter-current multi-stage centrifugal extractor for solvent extraction process

    International Nuclear Information System (INIS)

    Ionita, Gheorghe; Mirica, Dumitru; Croitoru, Cornelia; Stefanescu, Ioan; Steflea, Dumitru; Mihaila, V.; Peteu, Gh.

    2002-01-01

    Total actinide recovery, lanthanide/actinide separation and the selective partitioning of actinide from high level waste (HLW) are nowadays of a major interest. Actinide partitioning with a view to safe disposing of HLW or utilization in many other applications of recovered elements involve an extraction process usually by means of mixer-settler, pulse column or centrifugal contactor. The latter, presents some doubtless advantages and responds to the above mentioned goals. A new type of counter-current multistage centrifugal extractor has been designed and built. The counter-current multi-stage centrifugal extractor is a stainless steel cylinder with an effective length of 346 mm, the effective diameter of 100 mm and a volume of 1.5 liters, having horizontal position as working position. The new internal structure and geometry of the new advanced centrifugal extractor is shown. It consists of nine cells (units): five rotation units, two mixing units, two propelling units and two final plates which ensures the counter-current running of the two phases. The central shaft having the rotation cells fixed on it is connected to an electric motor of high rotation speed. The extractor has been tested at 1000-3000 rot/min for a ratio of the aqueous/organic phase = 1. The mechanical and hydrodynamic behavior of the two phases in counter-current are described. The results showed that the performances have been generally good. The new facility appears to be a promising idea to increase extraction rate of radionuclides and metals from liquid effluents. (authors)

  18. Design and optimization of a multistage turbine for helium cooled reactor

    International Nuclear Information System (INIS)

    Braembussche, R.A. van den; Brouckaert, J.F.; Paniagua, G.; Briottet, L.

    2008-01-01

    This paper describes the aerodynamic design and explores the performance limits of a 600 MWt multistage helium turbine for a high temperature nuclear reactor closed cycle gas turbine. The design aims for maximum performance while limiting the number of stages for reasons of rotor dynamics and weight. A first part discusses the arguments that allow a preliminary selection of the overall dimensions by means of performance prediction correlations and simplified stress considerations. The rotational speed being fixed at 3000 rpm, the only degrees of freedom for the design are: the impeller diameter, number of stages and stage loading. The optimum load distribution of the different stages, the main flow parameters and the blade overall dimensions are defined by means of a 2D through-flow analysis method. The resulting absolute and relative flow angles and span-wise velocity variation are the input for a first detailed design by an inverse method. The latter defines the different 2D blade sections corresponding to prescribed optimum velocity distributions. The final 3D blade definition is made by means of a computer based 3D-DESIGN system developed at the von Karman Institute. This method combines a 3D Navier-Stokes (NS) solver, Database, Artificial Neural Network and Genetic Algorithm into a two level optimization technique for compressor and turbine stages. The use of 3D Navier-Stokes solvers allows full accounting of the secondary flow losses and optimization of the compound leaning of the stator vanes. The performance of the individual stages is used to define the multistage operating curves. The last part of the paper describes an evaluation of the cooling requirements of the first turbine rotor

  19. An examination of adaptive cellular protective mechanisms using a multi-stage carcinogenesis model

    International Nuclear Information System (INIS)

    Schollnberger, H.; Stewart, R. D.; Mitchel, R. E. J.; Hofmann, W.

    2004-01-01

    A multi-stage cancer model that describes the putative rate-limiting steps in carcinogenesis was developed and used to investigate the potential impact on lung cancer incidence of the hormesis mechanisms suggested by Feinendegen and Pollycove. In this deterministic cancer model, radiation and endogenous processes damage the DNA of target cells in the lung. Some fraction of the misrepaired our unrepaired DNA damage induces genomic instability and, ultimately, leads to the accumulation of malignant cells. The model accounts for cell birth and death processes. Ita also includes a rate of malignant transformation and a lag period for tumour formation. Cellular defence mechanisms are incorporated into the model by postulating dose and dose rate dependent radical scavenging. The accuracy of DNA damage repair also depends on dose and dose rate. Sensitivity studies were conducted to identify critical model inputs and to help define the shapes of the cumulative lung cancer incidence curves that may arise when dose and dose rate dependent cellular defence mechanisms are incorporated into a multi-stage cancer model. For lung cancer, both linear no-threshold (LNT) and non-LNT shaped responses can be obtained. The reported studied clearly show that it is critical to know whether or not and to what extent multiply damaged DNA sites are formed by endogenous processes. Model inputs that give rise to U-shaped responses are consistent with an effective cumulative lung cancer incidence threshold that may be as high as 300 mGy (4 mGy per year for 75 years). (Author) 11 refs

  20. Multi-stage mixing in subduction zone: Application to Merapi volcano, Indonesia

    Science.gov (United States)

    Debaille, V.; Doucelance, R.; Weis, D.; Schiano, P.

    2003-04-01

    Basalts sampling subduction zone volcanism (IAB) often show binary mixing relationship in classical Sr-Nd, Pb-Pb, Sr-Pb isotopic diagrams, generally interpreted as reflecting the involvement of two components in their source. However, several authors have highlighted the presence of minimum three components in such a geodynamical context: mantle wedge, subducted and altered oceanic crust and subducted sediments. The overlying continental crust can also contribute by contamination and assimilation in magma chambers and/or during magma ascent. Here we present a multi-stage model to obtain a two end-member mixing from three components (mantle wedge, altered oceanic crust and sediments). The first stage of the model considers the metasomatism of the mantle wedge by fluids and/or melts released by subducted materials (altered oceanic crust and associated sediments), considering mobility and partition coefficient of trace elements in hydrated fluids and silicate melts. This results in the generation of two distinct end-members, reducing the number of components (mantle wedge, oceanic crust, sediments) from three to two. The second stage of the model concerns the binary mixing of the two end-members thus defined: mantle wedge metasomatized by slab-derived fluids and mantle wedge metasomatized by sediment-derived fluids. This model has been applied on a new isotopic data set (Sr, Nd and Pb, analyzed by TIMS and MC-ICP-MS) of Merapi volcano (Java island, Indonesia). Previous studies have suggested three distinct components in the source of indonesian lavas: mantle wedge, subducted sediments and altered oceanic crust. Moreover, it has been shown that crustal contamination does not significantly affect isotopic ratios of lavas. The multi-stage model proposed here is able to reproduce the binary mixing observed in lavas of Merapi, and a set of numerical values of bulk partition coefficient is given that accounts for the genesis of lavas.

  1. Design of an electron injector for multi-stages laser wakefield acceleration

    International Nuclear Information System (INIS)

    Audet, T.

    2016-01-01

    Laser wakefield acceleration (LWFA) is a particle acceleration process relying on the interaction between high intensity laser pulses, of the order of 10 18 W/cm 2 and a plasma. The plasma wave generated in the laser wake sustain high amplitude electric fields (1- 100 GV/m). Those electric fields are 3 orders of magnitude higher than maximum electric fields in radio frequency cavities and represent the main benefit of LWFA, allowing more compact acceleration. However improvements of the LWFA-produced electron bunches properties, stability and repetition rate are mandatory for LWFA to be usable for applications. A scheme to improve electron bunches properties and to potentially increase the repetition rate is multi-stage LWFA. The laser plasma electron source, called the injector, has to produce relatively low energy (50 - 100 MeV), but high charge, small size and low divergence electron bunches. Produced electron bunches then have to be transported and injected into a second stage to increase electron kinetic energy. The subject of this thesis is to study and design a laser wakefield electron injector for multistage LWFA. In the frame of CILEX and the two-stages LWFA program, a prototype of the injector was built : ELISA consisting in a variable length gas cell. The plasma electronic density, which is a critical parameter for the control of the electron bunches properties, was characterized both experimentally and numerically. ELISA was used at 2 different laser facilities and physical mechanisms linked to electron bunches properties were studied in function of experimental parameters. A range of experimental parameters suitable for a laser wakefield injector was determined. A magnetic transport and diagnostic line was also built, implemented and tested at the UHI100 laser facility of the CEA Saclay. It allowed a more precise characterization of electron bunches generated with ELISA as well as an estimation of the quality of transported electron bunches for their

  2. Simplified Multi-Stage and Per Capita Convergence: an analysis of two climate regimes for differentiation of commitments

    NARCIS (Netherlands)

    Elzen MGJ den; Berk MM; Lucas P; KMD

    2004-01-01

    Dit rapport beschrijft een analyse van twee post-Kyoto regimes voor lastenverdeling in het internationale klimaatbeleid: 1. de Multi-stage benadering, waarbij landen op grond van hoofdelijk inkomen en emissies worden ingedeeld in groepen met verschillende typen van doelstellingen (stadia). 2. de

  3. A Multistage Fluidized Bed for the Deep Removal of Sour Gases : Proof of Concept and Tray Efficiencies

    NARCIS (Netherlands)

    Driessen, Rick T.; Bos, Martin J.; Brilman, Derk W. F.

    2018-01-01

    Currently there are significant amounts of natural gas that cannot be produced and treated to meet pipeline specifications, because that would not be economically viable. This work investigates a bench scale multistage fluidized bed (MSFB) with shallow beds for sour gas removal from natural gas

  4. Effectiveness of Item Response Theory (IRT) Proficiency Estimation Methods under Adaptive Multistage Testing. Research Report. ETS RR-15-11

    Science.gov (United States)

    Kim, Sooyeon; Moses, Tim; Yoo, Hanwook Henry

    2015-01-01

    The purpose of this inquiry was to investigate the effectiveness of item response theory (IRT) proficiency estimators in terms of estimation bias and error under multistage testing (MST). We chose a 2-stage MST design in which 1 adaptation to the examinees' ability levels takes place. It includes 4 modules (1 at Stage 1, 3 at Stage 2) and 3 paths…

  5. Genetic Correction and Hepatic Differentiation of Hemophilia B-specific Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    He, Qiong; Wang, Hui-Hui; Cheng, Tao; Yuan, Wei-Ping; Ma, Yu-Po; Jiang, Yong-Ping; Ren, Zhi-Hua

    2017-09-27

    Objective To genetically correct a disease-causing point mutation in human induced pluripotent stem cells (iPSCs) derived from a hemophilia B patient. Methods First, the disease-causing mutation was detected by sequencing the encoding area of human coagulation factor IX (F IX) gene. Genomic DNA was extracted from the iPSCs, and the primers were designed to amplify the eight exons of F IX. Next, the point mutation in those iPSCs was genetically corrected using CRISPR/Cas9 technology in the presence of a 129-nucleotide homologous repair template that contained two synonymous mutations. Then, top 8 potential off-target sites were subsequently analyzed using Sanger sequencing. Finally, the corrected clones were differentiated into hepatocyte-like cells, and the secretion of F IX was validated by immunocytochemistry and ELISA assay. Results The cell line bore a missense mutation in the 6 th coding exon (c.676 C>T) of F IX gene. Correction of the point mutation was achieved via CRISPR/Cas9 technology in situ with a high efficacy at about 22% (10/45) and no off-target effects detected in the corrected iPSC clones. F IX secretion, which was further visualized by immunocytochemistry and quantified by ELISA in vitro, reached about 6 ng/ml on day 21 of differentiation procedure. Conclusions Mutations in human disease-specific iPSCs could be precisely corrected by CRISPR/Cas9 technology, and corrected cells still maintained hepatic differentiation capability. Our findings might throw a light on iPSC-based personalized therapies in the clinical application, especially for hemophilia B.

  6. European dominance in multistage ultramarathons: an analysis of finisher rate and performance trends from 1992 to 2010

    Directory of Open Access Journals (Sweden)

    Abou Shoak M

    2013-01-01

    Full Text Available Mohannad Abou Shoak,1 Beat Knechtle,1,2 Christoph Alexander Rüst,1 Romuald Lepers,3 Thomas Rosemann11Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland; 2Gesundheitszentrum St Gallen, St Gallen, Switzerland; 3INSERM U1093, Faculty of Sport Sciences, University of Burgundy, Dijon, FranceBackground: Participation and performance trends regarding the nationality of ultraendurance athletes have been investigated in the triathlon, but not in running. The present study aimed to identify the countries in which multistage ultramarathons were held around the world and the nationalities of successful finishers.Methods: Finisher rates and performance trends of finishers in multistage ultramarathons held worldwide between 1992 and 2010 were investigated.Results: Between 1992 and 2010, the bulk of multistage ultramarathons were held in Germany and France, with more than 30 races organized in each country. Completion rates for men and women increased exponentially, with women representing on average 16.4% of the total field. Since 1992, 6480 athletes have competed in Morocco, 2538 in Germany, and 1842 in France. A total of 81.9% of athletes originated from Europe, and more specifically from France (22.9%, Great Britain (18.0%, and Germany (13.4%.Conclusion: European ultramarathoners dominated the athletes who completed multistage ultramarathons worldwide, with specific dominance of French, British, and German athletes. Future studies should investigate social aspects, such as sport tourism, among European athletes to understand why European athletes are so interested in participating in multistage ultramarathons.Keywords: ultraendurance, run, nationality, distance, stage

  7. Three Dimensional Human Neuro-Spheroid Model of Alzheimer’s Disease Based on Differentiated Induced Pluripotent Stem Cells

    Science.gov (United States)

    Lee, Han-Kyu; Velazquez Sanchez, Clara; Chen, Mei; Morin, Peter J.; Wells, John M.; Hanlon, Eugene B.

    2016-01-01

    The testing of candidate drugs to slow progression of Alzheimer’s disease (AD) requires clinical trials that are lengthy and expensive. Efforts to model the biochemical milieu of the AD brain may be greatly facilitated by combining two cutting edge technologies to generate three-dimensional (3D) human neuro-spheroid from induced pluripotent stem cells (iPSC) derived from AD subjects. We created iPSC from blood cells of five AD patients and differentiated them into 3D human neuronal culture. We characterized neuronal markers of our 3D neurons by immunocytochemical staining to validate the differentiation status. To block the generation of pathologic amyloid β peptides (Aβ), the 3D-differentiated AD neurons were treated with inhibitors targeting β-secretase (BACE1) and γ-secretases. As predicted, both BACE1 and γ-secretase inhibitors dramatically decreased Aβ generation in iPSC-derived neural cells derived from all five AD patients, under standard two-dimensional (2D) differentiation conditions. However, BACE1 and γ-secretase inhibitors showed less potency in decreasing Aβ levels in neural cells differentiated under 3D culture conditions. Interestingly, in a single subject AD1, we found that BACE1 inhibitor treatment was not able to significantly reduce Aβ42 levels. To investigate underlying molecular mechanisms, we performed proteomic analysis of 3D AD human neuronal cultures including AD1. Proteomic analysis revealed specific reduction of several proteins that might contribute to a poor inhibition of BACE1 in subject AD1. To our knowledge, this is the first iPSC-differentiated 3D neuro-spheroid model derived from AD patients’ blood. Our results demonstrate that our 3D human neuro-spheroid model can be a physiologically relevant and valid model for testing efficacy of AD drug. PMID:27684569

  8. Modulation of human allogeneic and syngeneic pluripotent stem cells and immunological implications for transplantation.

    Science.gov (United States)

    Sackett, S D; Brown, M E; Tremmel, D M; Ellis, T; Burlingham, W J; Odorico, J S

    2016-04-01

    Tissues derived from induced pluripotent stem cells (iPSCs) are a promising source of cells for building various regenerative medicine therapies; from simply transplanting cells to reseeding decellularized organs to reconstructing multicellular tissues. Although reprogramming strategies for producing iPSCs have improved, the clinical use of iPSCs is limited by the presence of unique human leukocyte antigen (HLA) genes, the main immunologic barrier to transplantation. In order to overcome the immunological hurdles associated with allogeneic tissues and organs, the generation of patient-histocompatible iPSCs (autologous or HLA-matched cells) provides an attractive platform for personalized medicine. However, concerns have been raised as to the fitness, safety and immunogenicity of iPSC derivatives because of variable differentiation potential of different lines and the identification of genetic and epigenetic aberrations that can occur during the reprogramming process. In addition, significant cost and regulatory barriers may deter commercialization of patient specific therapies in the short-term. Nonetheless, recent studies provide some evidence of immunological benefit for using autologous iPSCs. Yet, more studies are needed to evaluate the immunogenicity of various autologous and allogeneic human iPSC-derived cell types as well as test various methods to abrogate rejection. Here, we present perspectives of using allogeneic vs. autologous iPSCs for transplantation therapies and the advantages and disadvantages of each related to differentiation potential, immunogenicity, genetic stability and tumorigenicity. We also review the current literature on the immunogenicity of syngeneic iPSCs and discuss evidence that questions the feasibility of HLA-matched iPSC banks. Finally, we will discuss emerging methods of abrogating or reducing host immune responses to PSC derivatives. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Lung cancer from radon and smoking: a multistage model for the WISMUT uranium miners

    International Nuclear Information System (INIS)

    Dillen, Teun van; Bijwaard, Harmen; Schnelzer, Maria; Kreuzer, Michaela; Grosche, Bernd

    2008-01-01

    Full text: In the world's third-largest uranium-mining province located in areas of Saxony and Thuringia in the former German Democratic Republic, the WISMUT Company conducted extensive uranium mining starting in 1946. Up to 1990, when mining activities were discontinued, most of the 400,000 employees had been exposed to uranium ore dust and radon and its progeny. It is well established that, besides smoking, such exposures are associated with an increased risk of lung cancer. From about 130,000 known miners a huge cohort of 59,000 miners has been formed and in an epidemiological analysis lung cancer risks have been evaluated (Grosche et al., 2006). We will present an alternative approach using a biologically-based multistage carcinogenesis model quantifying the lung-cancer risk related to both the exposure to radon and smoking habits. This mechanistic technique allows for extrapolation to the low exposures that are important for present-day radiation protection purposes and the transfer of risk across populations. The model is applied to a sub-cohort of about 35,000 persons who were employed at WISMUT after 1955, with known annual exposures estimated from the job-exposure matrix (Lehmann et al., 2004). Unfortunately, detailed information on smoking is missing for most miners. However, this information has been retrieved in two case-control studies, one of which was nested in the cohort while the other was not (Brueske-Hohlfeld et al., 2006). For these studies, the relevant smoking parameters are assembled in so-called smoking spectra that are next projected onto the entire cohort using a Monte-Carlo sampling method. Individual smoking habits that are randomly assigned to the cohort members, together with the information on annual exposure to radon, is used as an input for the multistage model. Model parameters related to radon and tobacco exposure are fitted with a maximum-likelihood technique. We will show results of the observed and expected lung

  10. APC targeting enhances immunogenicity of a novel multistage Fc-fusion tuberculosis vaccine in mice.

    Science.gov (United States)

    Soleimanpour, Saman; Farsiani, Hadi; Mosavat, Arman; Ghazvini, Kiarash; Eydgahi, Mohammad Reza Akbari; Sankian, Mojtaba; Sadeghian, Hamid; Meshkat, Zahra; Rezaee, Seyed Abdolrahim

    2015-12-01

    Numerous studies have demonstrated that targeting immunogens to FcγR on antigen-presenting cells (APCs) can selectively uptake and increase cellular immunity in vitro and in vivo. Therefore, the present study was conducted to evaluate immunogenicity of a novel multistage tuberculosis vaccine, a combination of an early and a dormant immunogenic protein, ESAT6 and HspX, fused to Fcγ2a fragment of mouse IgG2a to target all forms of tuberculosis. Codon-optimized genes consisting of ESAT6, a linker, and HspX fused either to mouse Fcγ2a (ESAT6:HspX:mFcγ2a) or 6× His-tag (ESAT6:HspX:His) were synthesized. The resulting proteins were then produced in Pichia pastoris. The fusion proteins were separately emulsified in dimethyldioctadecylammonium bromide(DDA)-trehalose-6,6-dibehenate(TDB) adjuvant, and their immunogenicity with and without bacille Calmette-Guérin (BCG) was assessed in C57BL/6 mice. Th1, Th2, Th17, and T-reg cytokine patterns were evaluated using the ELISA method. Both multistage vaccines induced very strong IL-12 and IFN-γ secretion from splenic cells; the Fc-tagged subunit vaccine induced a more effective Th1 immune response (IFN-γ, 910 pg/mL, and IL-12, 854 pg/mL) with a very low increase in IL-17 (∼0.1 pg/mL) and IL-4 (37 pg/mL) and a mild increase in TGF-β (543 pg/mL) compared to the BCG or ESAT6:HspX:His primed and boosted groups. The production of IFN-γ to ESAT6:HspX:Fcγ2a was very consistent and showed an increasing trend for IL-12 compared to the BCG or ESAT6:HspX:His primed and boosted groups. Fcγ2a used as a delivery vehicle supported the idea of selective uptake, inducing cross-presentation and forming a proper anti-tuberculosis response in context of Th1/Th2 and Th17/T-reg balances, which is important for protection and prevention of damage.

  11. Practice makes better - Learning effects of driving with a multi-stage collision warning.

    Science.gov (United States)

    Winkler, Susann; Kazazi, Juela; Vollrath, Mark

    2018-02-21

    Advanced driver assistance systems like (forward) collision warnings can increase traffic safety. As safety-critical situations (especially in urban traffic) can be diverse, integrated adaptive systems (such as multi-stage warnings) need to be developed and examined in a variety of use cases over time instead of the more common approach of testing only one-time effectiveness in the most relevant use case. Thus, this driving simulator experiment investigated a multi-stage collision warning in partially repetitive trials (T) of various safety-critical situations (scenarios confronting drivers with hazards in form of pedestrians, obstacles or preceding vehicles). Its output adapted according to the drivers' behavior in two warning stages (W1 - warning for moderate deceleration in less critical situations; W2 - urgent warning for strong, fast braking in more critical situations). To analyze how much drivers benefit from the assistance when allowed practice with it, the driving behavior and subjective ratings of 24 participants were measured over four trials. They comprised a baseline without assistance (T1) and three further trials with assistance - a learning phase repeating the scenarios from T1 twice (T2 + T3) and a concluding transfer drive with new scenarios (T4). As expected, the situation criticality in the urgent warning (W2) scenarios was rated higher than in the warning (W1) scenarios. While the brake reaction time differed more between the W1 scenarios, the applied brake force differed more between the W2 scenarios. However, the scenario factor often interacted with the trial factor. Since in later warning stages reaction time reductions become finite, the reaction strength gains importance. Overall the drivers benefited from the assistance. Both warning stages led to faster brake reactions (of similar strength) in all three assisted trials compared to the baseline, which additionally improved successively over time (T1-T3, T1 vs. T4, T2 vs. T4

  12. Performance Improvement of a Return Channel in a Multistage Centrifugal Compressor Using Multiobjective Optimization.

    Science.gov (United States)

    Nishida, Yoshifumi; Kobayashi, Hiromi; Nishida, Hideo; Sugimura, Kazuyuki

    2013-05-01

    The effect of the design parameters of a return channel on the performance of a multistage centrifugal compressor was numerically investigated, and the shape of the return channel was optimized using a multiobjective optimization method based on a genetic algorithm to improve the performance of the centrifugal compressor. The results of sensitivity analysis using Latin hypercube sampling suggested that the inlet-to-outlet area ratio of the return vane affected the total pressure loss in the return channel, and that the inlet-to-outlet radius ratio of the return vane affected the outlet flow angle from the return vane. Moreover, this analysis suggested that the number of return vanes affected both the loss and the flow angle at the outlet. As a result of optimization, the number of return vane was increased from 14 to 22 and the area ratio was decreased from 0.71 to 0.66. The radius ratio was also decreased from 2.1 to 2.0. Performance tests on a centrifugal compressor with two return channels (the original design and optimized design) were carried out using two-stage test apparatus. The measured flow distribution exhibited a swirl flow in the center region and a reversed swirl flow near the hub and shroud sides. The exit flow of the optimized design was more uniform than that of the original design. For the optimized design, the overall two-stage efficiency and pressure coefficient were increased by 0.7% and 1.5%, respectively. Moreover, the second-stage efficiency and pressure coefficient were respectively increased by 1.0% and 3.2%. It is considered that the increase in the second-stage efficiency was caused by the increased uniformity of the flow, and the rise in the pressure coefficient was caused by a decrease in the residual swirl flow. It was thus concluded from the numerical and experimental results that the optimized return channel improved the performance of the multistage centrifugal compressor.

  13. Experience with a three-axis side-located controller during a static and centrifuge simulation of the piloted launch of a manned multistage vehicle

    Science.gov (United States)

    Andrews, William H.; Holleman, Euclid C.

    1960-01-01

    An investigation was conducted to determine a human pilot's ability to control a multistage vehicle through the launch trajectory. The simulation was performed statically and dynamically by utilizing a human centrifuge. An interesting byproduct of the program was the three-axis side-located controller incorporated for pilot control inputs. This method of control proved to be acceptable for the successful completion of the tracking task during the simulation. There was no apparent effect of acceleration on the mechanical operation of the controller, but the pilot's control feel deteriorated as his dexterity decreased at high levels of acceleration. The application of control in a specific control mode was not difficult. However, coordination of more than one mode was difficult, and, in many instances, resulted in inadvertent control inputs. The acceptable control harmony at an acceleration level of 1 g became unacceptable at higher acceleration levels. Proper control-force harmony for a particular control task appears to be more critical for a three-axis controller than for conventional controllers. During simulations in which the pilot wore a pressure suit, the nature of the suit gloves further aggravated this condition.

  14. Vacuumed gap membrane distillation (vagmed) module, multi-stage vagmed systems, and vagmed processes

    KAUST Repository

    Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Francis, Lijo

    2016-01-01

    Vacuumed gap membrane distillation (VAGMED) modules, and multi-stage VAGMED systems and processes using the modules are provided. In an embodiment, the membrane distillation modules (10) can comprise: a) a condenser (12) including a condensation surface (15); b) a first passageway (13) having an inlet for receiving a first feed stream (14) and an outlet through which the first stream can pass out of the first passageway, the first passageway configured to bring the first feed stream into thermal communication with the condensation surface; c) an evaporator (17) including a permeable evaporation surface allowing condensable gas to pass there through; d) a second passageway (18) having an inlet for receiving a second feed stream (19) and an outlet through which the second feed stream can pass out of the second passageway, the second passageway configured to bring the second feed stream into communication with the permeable evaporation surface; and e) an enclosure (24) providing a vacuum compartment within which the condenser, the evaporator and the first and second passageways of the module are contained.

  15. Computer Program for Analysis, Design and Optimization of Propulsion, Dynamics, and Kinematics of Multistage Rockets

    Science.gov (United States)

    Lali, Mehdi

    2009-03-01

    A comprehensive computer program is designed in MATLAB to analyze, design and optimize the propulsion, dynamics, thermodynamics, and kinematics of any serial multi-staging rocket for a set of given data. The program is quite user-friendly. It comprises two main sections: "analysis and design" and "optimization." Each section has a GUI (Graphical User Interface) in which the rocket's data are entered by the user and by which the program is run. The first section analyzes the performance of the rocket that is previously devised by the user. Numerous plots and subplots are provided to display the performance of the rocket. The second section of the program finds the "optimum trajectory" via billions of iterations and computations which are done through sophisticated algorithms using numerical methods and incremental integrations. Innovative techniques are applied to calculate the optimal parameters for the engine and designing the "optimal pitch program." This computer program is stand-alone in such a way that it calculates almost every design parameter in regards to rocket propulsion and dynamics. It is meant to be used for actual launch operations as well as educational and research purposes.

  16. Identification of triacylglycerol using automated annotation of high resolution multistage mass spectral trees.

    Science.gov (United States)

    Wang, Xiupin; Peng, Qingzhi; Li, Peiwu; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen; Zhang, Liangxiao

    2016-10-12

    High complexity of identification for non-target triacylglycerols (TAGs) is a major challenge in lipidomics analysis. To identify non-target TAGs, a powerful tool named accurate MS(n) spectrometry generating so-called ion trees is used. In this paper, we presented a technique for efficient structural elucidation of TAGs on MS(n) spectral trees produced by LTQ Orbitrap MS(n), which was implemented as an open source software package, or TIT. The TIT software was used to support automatic annotation of non-target TAGs on MS(n) ion trees from a self-built fragment ion database. This database includes 19108 simulate TAG molecules from a random combination of fatty acids and corresponding 500582 self-built multistage fragment ions (MS ≤ 3). Our software can identify TAGs using a "stage-by-stage elimination" strategy. By utilizing the MS(1) accurate mass and referenced RKMD, the TIT software can discriminate unique elemental composition candidates. The regiospecific isomers of fatty acyl chains will be distinguished using MS(2) and MS(3) fragment spectra. We applied the algorithm to the selection of 45 TAG standards and demonstrated that the molecular ions could be 100% correctly assigned. Therefore, the TIT software could be applied to TAG identification in complex biological samples such as mouse plasma extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Vibration based condition monitoring of a multistage epicyclic gearbox in lifting cranes

    Science.gov (United States)

    Assaad, Bassel; Eltabach, Mario; Antoni, Jérôme

    2014-01-01

    This paper proposes a model-based technique for detecting wear in a multistage planetary gearbox used by lifting cranes. The proposed method establishes a vibration signal model which deals with cyclostationary and autoregressive models. First-order cyclostationarity is addressed by the analysis of the time synchronous average (TSA) of the angular resampled vibration signal. Then an autoregressive model (AR) is applied to the TSA part in order to extract a residual signal containing pertinent fault signatures. The paper also explores a number of methods commonly used in vibration monitoring of planetary gearboxes, in order to make comparisons. In the experimental part of this study, these techniques are applied to accelerated lifetime test bench data for the lifting winch. After processing raw signals recorded with an accelerometer mounted on the outside of the gearbox, a number of condition indicators (CIs) are derived from the TSA signal, the residual autoregressive signal and other signals derived using standard signal processing methods. The goal is to check the evolution of the CIs during the accelerated lifetime test (ALT). Clarity and fluctuation level of the historical trends are finally considered as a criteria for comparing between the extracted CIs.

  18. Low-cost multi-stage filtration enhanced by coagulation-flocculation in upflow gravel filtration

    Directory of Open Access Journals (Sweden)

    L. D. Sánchez

    2012-12-01

    Full Text Available This paper assesses the operational and design aspects of coagulation and flocculation in upflow gravel filters (CF-UGF in a multi-stage filtration (MSF plant. This study shows that CF-UGF units improve the performance of MSF considerably, when the system operates with turbidity above 30 NTU. It strongly reduces the load of particulate material before the water enters in the slow sand filters (SSF and therewith avoids short filter runs and prevents early interruption in SSF operations. The removal efficiency of turbidity in the CF-UGF with coagulant was between 85 and 96%, whereas the average efficiency without coagulant dosing was 46% (range: 21–76%. Operating with coagulant also improves the removal efficiency for total coliforms, E-coli and HPC. No reduction was observed in the microbial activity of the SSF, no obstruction of the SSF bed was demonstrated and SSF runs were maintained between 50 and 70 days for a maximum head loss of 0.70 m. The most important advantage is the flexibility of the system to operate with and without coagulant according to the influent turbidity. It was only necessary for 20% of the time to operate with the coagulant. The CF-UGF unit represented 7% of total construction costs and the O&M cost for the use of coagulant represented only 0.3%.

  19. Consolidation Theory for a Stone Column Composite Foundation under Multistage Loading

    Directory of Open Access Journals (Sweden)

    Shenggen Huang

    2016-01-01

    Full Text Available The consolidation theories considering instant load cannot fully reveal the consolidation mechanism of a stone column composite foundation used in the expressway embankments due to the time effect of loading; that is, the expressway embankments are often constructed in several stages for a long time. Meanwhile, owing to the special property that the pile-soil stress ratio is larger than 1, the consolidation theory for sand drain well foundation cannot be used directly in the consolidation analysis of stone column composite foundation. Based on the principle that the vertical load applied on the composite foundation is shared by the stone column and the surrounding soil, the governing solutions for the stone column composite foundation under a multistage load are established. By virtue of the separation of variables, the corresponding solutions of degree of consolidation for loading stage and maintaining load stage are derived separately. According to the Carrillo theorem, the solution for the average total degree of consolidation of entire composite foundation is also obtained. Finally, the reasonableness of the present solution has been verified by comparing the consolidation curve calculated by the present solution with that measured by site test.

  20. Computerized adaptive and multistage testing with R using packages catR and mstR

    CERN Document Server

    Magis, David; von Davier, Alina A

    2017-01-01

    The goal of this guide and manual is to provide a practical and brief overview of the theory on computerized adaptive testing (CAT) and multistage testing (MST) and to illustrate the methodologies and applications using R open source language and several data examples.  Implementation relies on the R packages catR and mstR that have been already or are being developed by the first author (with the team) and that include some of the newest research algorithms on the topic. The book covers many topics along with the R-code: the basics of R, theoretical overview of CAT and MST, CAT designs, CAT assembly methodologies, CAT simulations, catR package, CAT applications, MST designs, IRT-based MST methodologies, tree-based MST methodologies, mstR package, and MST applications.  CAT has been used in many large-scale assessments over recent decades, and MST has become very popular in recent years.  R open source language also has become one of the most useful tools for applications in almost all fields, including b...

  1. Thermodynamic performance of multi-stage gradational lead screw vacuum pump

    Science.gov (United States)

    Zhao, Fan; Zhang, Shiwei; Sun, Kun; Zhang, Zhijun

    2018-02-01

    As a kind of dry mechanical vacuum pump, the twin-screw vacuum pump has an outstanding pumping performance during operation, widely used in the semiconductor industry. Compared with the constant lead screw (CLS) vacuum pump, the gradational lead screw (GLS) vacuum pump is more popularly applied in recent years. Nevertheless, not many comparative studies on the thermodynamic performance of GLS vacuum pump can be found in the literature. Our study focuses on one type of GLS vacuum pump, the multi-stage gradational lead screw (MGLS) vacuum pump, gives a detailed description of its construction and illustrates it with the drawing. Based on the structural analysis, the thermodynamic procedure is divided into four distinctive processes, including sucking process, transferring (compressing) process, backlashing process and exhausting process. The internal mechanism of each process is qualitatively illustrated and the mathematical expressions of seven thermodynamic parameters are given under the ideal situation. The performance curves of MGLS vacuum pump are plotted by MATLAB software and compared with those of the CLS vacuum pump in the same case. The results can well explain why the MGLS vacuum pump has more favorable pumping performance than the CLS vacuum pump in saving energy, reducing noise and heat dissipation.

  2. Quality prediction modeling for multistage manufacturing based on classification and association rule mining

    Directory of Open Access Journals (Sweden)

    Kao Hung-An

    2017-01-01

    Full Text Available For manufacturing enterprises, product quality is a key factor to assess production capability and increase their core competence. To reduce external failure cost, many research and methodology have been introduced in order to improve process yield rate, such as TQC/TQM, Shewhart CycleDeming's 14 Points, etc. Nowadays, impressive progress has been made in process monitoring and industrial data analysis because of the Industry 4.0 trend. Industries start to utilize quality control (QC methodology to lower inspection overhead and internal failure cost. Currently, the focus of QC is mostly in the inspection of single workstation and final product, however, for multistage manufacturing, many factors (like equipment, operators, parameters, etc. can have cumulative and interactive effects to the final quality. When failure occurs, it is difficult to resume the original settings for cause analysis. To address these problems, this research proposes a combination of principal components analysis (PCA with classification and association rule mining algorithms to extract features representing relationship of multiple workstations, predict final product quality, and analyze the root-cause of product defect. The method is demonstrated on a semiconductor data set.

  3. Multistage dilute acid leaching of a medium grade iron ore to super-concentrate

    Directory of Open Access Journals (Sweden)

    Adeleke A.A.

    2014-01-01

    Full Text Available The phosphorous laden Koton Karfe iron ore is a medium grade iron ore deposit in Nigeria that can be upgraded as a super-concentrate for use at the Aladja Steel Midrex plant. The 75 μm size sample fraction of the ore was preconcentrated with shaking table and leached in the oven at atmospheric pressure with dilute hydrochloric acid in single and multistage leaching sequences of H2O-HCl-H2O and HCl-H2O-H2O. The as-received, as-tabled and asleached samples were then subjected to X-ray fluorescence and microscopic analyses. The results obtained showed that the H2O-HCl-H2O route produced a higher grade concentrate that assayed 68.54% Fe indicating about 58% upgrade in iron content; while the phosphorus and sulphur contents were reduced by about 77 and 99.6% respectively. In addition, the silicon, manganese, and titanium contents were drastically reduced, while potassium was completely eliminated. The upgrade of iron content in the ore to 68.54% and the drastic reduction in phosphorous and sulphur contents has thus rendered the Koton Karfe iron ore suitable for use as a super concentrate for the Aladja steel plant direct reduction iron making process.

  4. Fault Diagnosis for a Multistage Planetary Gear Set Using Model-Based Simulation and Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Guoyan Li

    2016-01-01

    Full Text Available The gear damage will induce modulation effects in vibration signals. A thorough analysis of modulation sidebands spectral structure is necessary for fault diagnosis of planetary gear set. However, the spectral characteristics are complicated in practice, especially for a multistage planetary gear set which contains close frequency components. In this study, a coupled lateral and torsional dynamic model is established to predict the modulation sidebands of a two-stage compound planetary gear set. An improved potential energy method is used to calculate the time-varying mesh stiffness of each gear pair, and the influence of crack propagation on the mesh stiffness is analyzed. The simulated signals of the gear set are obtained by using Runge-Kutta numerical analysis method. Meanwhile, the sidebands characteristics are summarized to exhibit the modulation effects caused by sun gear damage. At the end, the experimental signals collected from an industrial SD16 planetary gearbox are analyzed to verify the theoretical derivations. The results of experiment agree well with the simulated analysis.

  5. Vacuumed gap membrane distillation (vagmed) module, multi-stage vagmed systems, and vagmed processes

    KAUST Repository

    Ghaffour, Noreddine

    2016-06-30

    Vacuumed gap membrane distillation (VAGMED) modules, and multi-stage VAGMED systems and processes using the modules are provided. In an embodiment, the membrane distillation modules (10) can comprise: a) a condenser (12) including a condensation surface (15); b) a first passageway (13) having an inlet for receiving a first feed stream (14) and an outlet through which the first stream can pass out of the first passageway, the first passageway configured to bring the first feed stream into thermal communication with the condensation surface; c) an evaporator (17) including a permeable evaporation surface allowing condensable gas to pass there through; d) a second passageway (18) having an inlet for receiving a second feed stream (19) and an outlet through which the second feed stream can pass out of the second passageway, the second passageway configured to bring the second feed stream into communication with the permeable evaporation surface; and e) an enclosure (24) providing a vacuum compartment within which the condenser, the evaporator and the first and second passageways of the module are contained.

  6. INFLUENCE OF NANOFILTRATION PRETREATMENT ON SCALE DEPOSITION IN MULTI-STAGE FLASH THERMAL DESALINATION PLANTS

    Directory of Open Access Journals (Sweden)

    Aiman E Al-Rawajfeh

    2011-01-01

    Full Text Available Scale formation represents a major operational problem encountered in thermal desalination plants. In current installed plants, and to allow for a reasonable safety margin, sulfate scale deposition limits the top brine temperature (TBT in multi-stage flash (MSF distillers up to 110-112oC. This has significant effect on the unit capital, operational and water production cost. In this work, the influence of nanofiltration (NF pretreatment on the scale deposition potential and increasing TBT in MSF thermal desalination plants is modeled on the basis of mass transfer with chemical reaction of solutes in the brine. Full and partial NF-pretreatment of the feed water were investigated. TBT can be increased in MSF by increasing the percentage of NF-treated feed. Full NF pretreatment of the make-up allows TBT in the MSF plant to be raised up to 175oC in the case of di hybrid NF-MSF and up to 165oC in the case of tri hybrid NF-RO-MSF. The significant scale reduction is associated with increasing flashing range, unit recovery, unit performance, and will lead to reduction in heat transfer surface area, pumping power and therefore, water production cost.

  7. Efficacy of variational iteration method for chaotic Genesio system - Classical and multistage approach

    International Nuclear Information System (INIS)

    Goh, S.M.; Noorani, M.S.M.; Hashim, I.

    2009-01-01

    This is a case study of solving the Genesio system by using the classical variational iteration method (VIM) and a newly modified version called the multistage VIM (MVIM). VIM is an analytical technique that grants us a continuous representation of the approximate solution, which allows better information of the solution over the time interval. Unlike its counterpart, numerical techniques, such as the Runge-Kutta method, provide solutions only at two ends of the time interval (with condition that the selected time interval is adequately small for convergence). Furthermore, it offers approximate solutions in a discretized form, making it complicated in achieving a continuous representation. The explicit solutions through VIM and MVIM are compared with the numerical analysis of the fourth-order Runge-Kutta method (RK4). VIM had been successfully applied to linear and nonlinear systems of non-chaotic in nature and this had been testified by numerous scientists lately. Our intention is to determine whether VIM is also a feasible method in solving a chaotic system like Genesio. At the same time, MVIM will be applied to gauge its accuracy compared to VIM and RK4. Since, for most situations, the validity domain of the solutions is often an issue, we will consider a reasonably large time frame in our work.

  8. An FPGA-based DS-CDMA multiuser demodulator employing adaptive multistage parallel interference cancellation

    Science.gov (United States)

    Li, Xinhua; Song, Zhenyu; Zhan, Yongjie; Wu, Qiongzhi

    2009-12-01

    Since the system capacity is severely limited, reducing the multiple access interfere (MAI) is necessary in the multiuser direct-sequence code division multiple access (DS-CDMA) system which is used in the telecommunication terminals data-transferred link system. In this paper, we adopt an adaptive multistage parallel interference cancellation structure in the demodulator based on the least mean square (LMS) algorithm to eliminate the MAI on the basis of overviewing various of multiuser dectection schemes. Neither a training sequence nor a pilot signal is needed in the proposed scheme, and its implementation complexity can be greatly reduced by a LMS approximate algorithm. The algorithm and its FPGA implementation is then derived. Simulation results of the proposed adaptive PIC can outperform some of the existing interference cancellation methods in AWGN channels. The hardware setup of mutiuser demodulator is described, and the experimental results based on it demonstrate that the simulation results shows large performance gains over the conventional single-user demodulator.

  9. Aerodynamic Optimization Design of a Multistage Centrifugal Steam Turbine and Its Off-Design Performance Analysis

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-01-01

    Full Text Available Centrifugal turbine which has less land occupation, simple structure, and high aerodynamic efficiency is suitable to be used as small to medium size steam turbines or waste heat recovery plant. In this paper, one-dimensional design of a multistage centrifugal steam turbine was performed by using in-house one-dimensional aerodynamic design program. In addition, three-dimensional numerical simulation was also performed in order to analyze design and off-design aerodynamic performance of the proposed centrifugal steam turbine. The results exhibit reasonable flow field and smooth streamline; the aerodynamic performance of the designed turbine meets our initial expectations. These results indicate that the one-dimensional aerodynamic design program is reliable and effective. The off-design aerodynamic performance of centrifugal steam turbine was analyzed, and the results show that the mass flow increases with the decrease of the pressure ratio at a constant speed, until the critical mass flow is reached. The efficiency curve with the pressure ratio has an optimum efficiency point. And the pressure ratio of the optimum efficiency agrees well with that of the one-dimensional design. The shaft power decreases as the pressure ratio increases at a constant speed. Overall, the centrifugal turbine has a wide range and good off-design aerodynamic performance.

  10. Multistage morphological segmentation of bright-field and fluorescent microscopy images

    Science.gov (United States)

    Korzyńska, A.; Iwanowski, M.

    2012-06-01

    This paper describes the multistage morphological segmentation method (MSMA) for microscopic cell images. The proposed method enables us to study the cell behaviour by using a sequence of two types of microscopic images: bright field images and/or fluorescent images. The proposed method is based on two types of information: the cell texture coming from the bright field images and intensity of light emission, done by fluorescent markers. The method is dedicated to the image sequences segmentation and it is based on mathematical morphology methods supported by other image processing techniques. The method allows for detecting cells in image independently from a degree of their flattening and from presenting structures which produce the texture. It makes use of some synergic information from the fluorescent light emission image as the support information. The MSMA method has been applied to images acquired during the experiments on neural stem cells as well as to artificial images. In order to validate the method, two types of errors have been considered: the error of cell area detection and the error of cell position using artificial images as the "gold standard".

  11. Fluid-structure interaction analysis of annular seals and rotor systems in multi-stage pumps

    International Nuclear Information System (INIS)

    Jiang, Qinglei; Zhai, Lulu; Wang, Leqin; Wu, Dazhuan

    2013-01-01

    Annular seals play an important role in determining the vibrational behavior of rotors in multi-stage pumps. To determine the critical speeds and unbalanced responses of rotor systems which consider annular seals, a fluid-structure interaction (FSI) method was developed, and the numerical method was verified by experiments conducted on a model rotor. In a typical FSI process, rotor systems are modeled based on a node-element method, and the motion equations are expressed in a type of matrix. To consider the influence of annular seals, dynamic coefficients of annular seals were introduced into the motion equations through matrix transformation. The test results of the model rotor showed good agreement with the calculated results. Based on the FSI method proposed here, the governing equations of annular seals were solved in two different ways. The results showed that the Childs method is more accurate in predicting a rotor's critical speed. The critical speeds of the model rotor were calculated at different clearance sizes and length/diameter ratios. Tilting coefficients of long seals were added to the dynamic coefficients to consider the influence of tilting. The critical speeds reached their maximum value when the L/D ratio was around 1.25, and tilting enhanced the rotor's stability when long annular seals were located in either end of the shaft.

  12. Multistage Targeting Strategy Using Magnetic Composite Nanoparticles for Synergism of Photothermal Therapy and Chemotherapy.

    Science.gov (United States)

    Wang, Yi; Wei, Guoqing; Zhang, Xiaobin; Huang, Xuehui; Zhao, Jingya; Guo, Xing; Zhou, Shaobing

    2018-03-01

    Mitochondrial-targeting therapy is an emerging strategy for enhanced cancer treatment. In the present study, a multistage targeting strategy using doxorubicin-loaded magnetic composite nanoparticles is developed for enhanced efficacy of photothermal and chemical therapy. The nanoparticles with a core-shell-SS-shell architecture are composed of a core of Fe 3 O 4 colloidal nanocrystal clusters, an inner shell of polydopamine (PDA) functionalized with triphenylphosphonium (TPP), and an outer shell of methoxy poly(ethylene glycol) linked to the PDA by disulfide bonds. The magnetic core can increase the accumulation of nanoparticles at the tumor site for the first stage of tumor tissue targeting. After the nanoparticles enter the tumor cells, the second stage of mitochondrial targeting is realized as the mPEG shell is detached from the nanoparticles by redox responsiveness to expose the TPP. Using near-infrared light irradiation at the tumor site, a photothermal effect is generated from the PDA photosensitizer, leading to a dramatic decrease in mitochondrial membrane potential. Simultaneously, the loaded doxorubicin can rapidly enter the mitochondria and subsequently damage the mitochondrial DNA, resulting in cell apoptosis. Thus, the synergism of photothermal therapy and chemotherapy targeting the mitochondria significantly enhances the cancer treatment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Multi-Stage Reverse Logistics Network Problem by Using Hybrid Priority-Based Genetic Algorithm

    Science.gov (United States)

    Lee, Jeong-Eun; Gen, Mitsuo; Rhee, Kyong-Gu

    Today remanufacturing problem is one of the most important problems regarding to the environmental aspects of the recovery of used products and materials. Therefore, the reverse logistics is gaining become power and great potential for winning consumers in a more competitive context in the future. This paper considers the multi-stage reverse Logistics Network Problem (m-rLNP) while minimizing the total cost, which involves reverse logistics shipping cost and fixed cost of opening the disassembly centers and processing centers. In this study, we first formulate the m-rLNP model as a three-stage logistics network model. Following for solving this problem, we propose a Genetic Algorithm pri (GA) with priority-based encoding method consisting of two stages, and introduce a new crossover operator called Weight Mapping Crossover (WMX). Additionally also a heuristic approach is applied in the 3rd stage to ship of materials from processing center to manufacturer. Finally numerical experiments with various scales of the m-rLNP models demonstrate the effectiveness and efficiency of our approach by comparing with the recent researches.

  14. Design and beam transport simulations of a multistage collector for the Israeli EA-FEM

    Science.gov (United States)

    Tecimer, M.; Canter, M.; Efimov, S.; Gover, A.; Sokolowski, J.

    2001-12-01

    A four stage asymmetric type depressed collector has been designed for the Israeli mm-wave FEM that is driven by a 1.4 MeV, 1.5 A electron beam. After leaving the interaction section the spent beam has an energy spread of 120 keV and 75 π mm mrad normalized beam emittance. Simulations of the beam transport system from the undulator exit through the decelerator tube into the collector have been carried out using EGUN and GPT codes. The latter has also been employed to study trajectories of the primary and scattered particles within the collector, optimizing the asymmetrical collector geometry and the electrode potentials at the presence of a deflecting magnetic field. The estimated overall system and collector efficiencies reach 50% and 70%, respectively, with a beam recovery of 99.6%. The design is aimed to attain millisecond long pulse operation and subsequently 1 kW average power. Simulation results are implemented in a mechanical design that leads to a simple, cost efficient assembly eliminating ceramic insulator rings between collector stages and the associated brazing in the manufacturing process. Instead, each copper plate is supported by insulating posts and freely displaceable within the vacuum chamber. We report on the simulation results of the beam transport and recovery systems and on the mechanical aspects of the multistage collector design.

  15. Design and beam transport simulations of a multistage collector for the Israeli EA-FEM

    Energy Technology Data Exchange (ETDEWEB)

    Tecimer, M. E-mail: tecimer@post.tau.ac.il; Canter, M.; Efimov, S.; Gover, A.; Sokolowski, J

    2001-12-21

    A four stage asymmetric type depressed collector has been designed for the Israeli mm-wave FEM that is driven by a 1.4 MeV, 1.5 A electron beam. After leaving the interaction section the spent beam has an energy spread of 120 keV and 75 {pi} mm mrad normalized beam emittance. Simulations of the beam transport system from the undulator exit through the decelerator tube into the collector have been carried out using EGUN and GPT codes. The latter has also been employed to study trajectories of the primary and scattered particles within the collector, optimizing the asymmetrical collector geometry and the electrode potentials at the presence of a deflecting magnetic field. The estimated overall system and collector efficiencies reach 50% and 70%, respectively, with a beam recovery of 99.6%. The design is aimed to attain millisecond long pulse operation and subsequently 1 kW average power. Simulation results are implemented in a mechanical design that leads to a simple, cost efficient assembly eliminating ceramic insulator rings between collector stages and the associated brazing in the manufacturing process. Instead, each copper plate is supported by insulating posts and freely displaceable within the vacuum chamber. We report on the simulation results of the beam transport and recovery systems and on the mechanical aspects of the multistage collector design.

  16. Design and beam transport simulations of a multistage collector for the Israeli EA-FEM

    International Nuclear Information System (INIS)

    Tecimer, M.; Canter, M.; Efimov, S.; Gover, A.; Sokolowski, J.

    2001-01-01

    A four stage asymmetric type depressed collector has been designed for the Israeli mm-wave FEM that is driven by a 1.4 MeV, 1.5 A electron beam. After leaving the interaction section the spent beam has an energy spread of 120 keV and 75 π mm mrad normalized beam emittance. Simulations of the beam transport system from the undulator exit through the decelerator tube into the collector have been carried out using EGUN and GPT codes. The latter has also been employed to study trajectories of the primary and scattered particles within the collector, optimizing the asymmetrical collector geometry and the electrode potentials at the presence of a deflecting magnetic field. The estimated overall system and collector efficiencies reach 50% and 70%, respectively, with a beam recovery of 99.6%. The design is aimed to attain millisecond long pulse operation and subsequently 1 kW average power. Simulation results are implemented in a mechanical design that leads to a simple, cost efficient assembly eliminating ceramic insulator rings between collector stages and the associated brazing in the manufacturing process. Instead, each copper plate is supported by insulating posts and freely displaceable within the vacuum chamber. We report on the simulation results of the beam transport and recovery systems and on the mechanical aspects of the multistage collector design

  17. An Optimization Model for Kardeh Reservoir Operation Using Interval-Parameter, Multi-stage, Stochastic Programming

    Directory of Open Access Journals (Sweden)

    Fatemeh Rastegaripour

    2010-09-01

    Full Text Available The present study investigates water allocation of Kardeh Reservoir to domestic and agricultural users using an Interval Parameter, Multi-stage, Stochastic Programming (IMSLP under uncertainty. The advantages of the method include its dynamics nature, use of a pre-defined policy in its optimization process, and the use of interval parameter and probability under uncertainty conditions. Additionally, it offers different decision-making alternatives for different scenarios of water shortage. The required data were collected from Khorasan Razavi Regional Water Organization and from the Water and Wastewater Co. for the period 1988-2007. Results showed that, under the worst conditions, the water deficits expected to occur for each of the next 3 years will be 1.9, 2.55, and 3.11 million cubic meters for the domestic use and 0.22, 0.32, 0.75 million cubic meters for irrigation. Approximate reductions of 0.5, 0.7, and 1 million cubic meters in the monthly consumption of the urban community and enhanced irrigation efficiencies of about 6, 11, and 20% in the agricultural sector are recommended as approaches for combating the water shortage over the next 3 years.

  18. Multistage model for the action of cytotoxic T lymphocytes in multicellular conjugates

    International Nuclear Information System (INIS)

    Macken, C.A.; Perelson, A.S.

    1984-01-01

    The authors propose a multistage stochastic model to explain data on the kinetics of target cell lysis by cytotoxic T lymphocytes in multicellular conjugates. A novel feature of this model is that the authors explicitly consider both the lethal hitting stage and the target cell disintegration stage of the cytolytic process. Further, the authors allow for the possibility that target cell disintegration is itself a complex process composed of many events. The comparison of this model with the data of other investigators suggests that cytotoxic T cells deliver lethal hits at random to undamage target cells. Having received a lethal hit, the target cell disintegrates over a variable length of time. The disintegration times of target cells from different conjugates appear to be randomly distributed and to be consistent with a model in which disintegration occurs by at least two major, sequential, rate-limiting events. For conjugates containing one lymphocyte and multiple target cells, the mean rate at which a lethally hit target cell disintegrates is found to be independent of the total number of target cells in the conjugate. This model predicts that in such multicellular conjugates, individual target cells lyse one by one, on average at approximately 30-min intervals, thus agreeing closely with previously reported experimental observations. 35 references, 3 figures, 2 tables

  19. Dynamic multi-stage dispatch of isolated wind–diesel power systems

    International Nuclear Information System (INIS)

    Hu, Yu; Morales, Juan M.; Pineda, Salvador; Sánchez, María Jesús; Solana, Pablo

    2015-01-01

    Highlights: • Optimal decision-making model for isolated hybrid wind–diesel power system is proposed. • Wind power uncertainty and conditional operating cost are considered. • Battery wear cost of the energy storage system is included in the model. • The results are compared with deterministic dispatch strategies. - Abstract: An optimal dispatch strategy is crucial for an isolated wind–diesel power system to save diesel fuel and maintain the system stability. The uncertainty associated with the stochastic character of the wind is, though, a challenging problem for this optimization. In this paper, a dynamic multi-stage decision-making model is proposed to determine the diesel power output that minimizes the cost of running and maintaining the wind–diesel power system. Optimized operational decisions for each time period are generated dynamically considering the path-dependent nature of the optimal dispatch policy, given the plausible future realizations of the wind power production. A numerical case study is analyzed and it is demonstrated that the proposed stochastic dynamic optimization model significantly outperforms the traditional deterministic dispatch strategies

  20. A smart polymeric platform for multistage nucleus-targeted anticancer drug delivery.

    Science.gov (United States)

    Zhong, Jiaju; Li, Lian; Zhu, Xi; Guan, Shan; Yang, Qingqing; Zhou, Zhou; Zhang, Zhirong; Huang, Yuan

    2015-10-01

    Tumor cell nucleus-targeted delivery of antitumor agents is of great interest in cancer therapy, since the nucleus is one of the most frequent targets of drug action. Here we report a smart polymeric conjugate platform, which utilizes stimulus-responsive strategies to achieve multistage nuclear drug delivery upon systemic administration. The conjugates composed of a backbone based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer and detachable nucleus transport sub-units that sensitive to lysosomal enzyme. The sub-units possess a biforked structure with one end conjugated with the model drug, H1 peptide, and the other end conjugated with a novel pH-responsive targeting peptide (R8NLS) that combining the strength of cell penetrating peptide and nuclear localization sequence. The conjugates exhibited prolonged circulation time and excellent tumor homing ability. And the activation of R8NLS in acidic tumor microenvironment facilitated tissue penetration and cellular internalization. Once internalized into the cell, the sub-units were unleashed for nuclear transport through nuclear pore complex. The unique features resulted in 50-fold increase of nuclear drug accumulation relative to the original polymer-drug conjugates in vitro, and excellent in vivo nuclear drug delivery efficiency. Our report provides a strategy in systemic nuclear drug delivery by combining the microenvironment-responsive structure and detachable sub-units. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A Multistage Decision-Feedback Receiver Design for LTE Uplink in Mobile Time-Variant Environments

    Directory of Open Access Journals (Sweden)

    Juinn-Horng Deng

    2012-01-01

    Full Text Available Single-carrier-frequency division multiple access (SC-FDMA has recently become the preferred uplink transmission scheme in long-term evolution (LTE systems. Similar to orthogonal frequency division multiple access (OFDMA, SC-FDMA is highly sensitive to frequency offsets caused by oscillator inaccuracies and Doppler spread, which lead to intercarrier interference (ICI. This work proposes a multistage decision-feedback structure to mitigate the ICI effect and enhance system performance in time-variant environments. Based on the block-type pilot arrangement of the LTE uplink type 1 frame structure, the time-domain least squares (TDLS method and polynomial-based curve-fitting algorithm are employed for channel estimation. Instead of using a conventional equalizer, this work uses a group frequency-domain equalizer (GFDE to reduce computational complexity. Furthermore, this work utilizes a dual iterative structure of group parallel interference cancellation (GPIC and frequency-domain group parallel interference cancellation (FPIC to mitigate the ICI effect. Finally, to optimize system performance, this work applies a novel error-correction scheme. Simulation results demonstrate the bit error rate (BER performance is markedly superior to that of the conventional full-size receiver based on minimum mean square error (MMSE. This structure performs well and is a flexible choice in mobile environments using the SC-FDMA scheme.

  2. A Systematic Approach to Determining the Identifiability of Multistage Carcinogenesis Models.

    Science.gov (United States)

    Brouwer, Andrew F; Meza, Rafael; Eisenberg, Marisa C

    2017-07-01

    Multistage clonal expansion (MSCE) models of carcinogenesis are continuous-time Markov process models often used to relate cancer incidence to biological mechanism. Identifiability analysis determines what model parameter combinations can, theoretically, be estimated from given data. We use a systematic approach, based on differential algebra methods traditionally used for deterministic ordinary differential equation (ODE) models, to determine identifiable combinations for a generalized subclass of MSCE models with any number of preinitation stages and one clonal expansion. Additionally, we determine the identifiable combinations of the generalized MSCE model with up to four clonal expansion stages, and conjecture the results for any number of clonal expansion stages. The results improve upon previous work in a number of ways and provide a framework to find the identifiable combinations for further variations on the MSCE models. Finally, our approach, which takes advantage of the Kolmogorov backward equations for the probability generating functions of the Markov process, demonstrates that identifiability methods used in engineering and mathematics for systems of ODEs can be applied to continuous-time Markov processes. © 2016 Society for Risk Analysis.

  3. The Linear Quadratic Gaussian Multistage Game with Nonclassical Information Pattern Using a Direct Solution Method

    Science.gov (United States)

    Clemens, Joshua William

    Game theory has application across multiple fields, spanning from economic strategy to optimal control of an aircraft and missile on an intercept trajectory. The idea of game theory is fascinating in that we can actually mathematically model real-world scenarios and determine optimal decision making. It may not always be easy to mathematically model certain real-world scenarios, nonetheless, game theory gives us an appreciation for the complexity involved in decision making. This complexity is especially apparent when the players involved have access to different information upon which to base their decision making (a nonclassical information pattern). Here we will focus on the class of adversarial two-player games (sometimes referred to as pursuit-evasion games) with nonclassical information pattern. We present a two-sided (simultaneous) optimization solution method for the two-player linear quadratic Gaussian (LQG) multistage game. This direct solution method allows for further interpretation of each player's decision making (strategy) as compared to previously used formal solution methods. In addition to the optimal control strategies, we present a saddle point proof and we derive an expression for the optimal performance index value. We provide some numerical results in order to further interpret the optimal control strategies and to highlight real-world application of this game-theoretic optimal solution.

  4. Effects of Modified Multistage Field Test on Performance and Physiological Responses in Wheelchair Basketball Players

    Science.gov (United States)

    Weissland, Thierry; Faupin, Arnaud; Borel, Benoit; Berthoin, Serge; Leprêtre, Pierre-Marie

    2015-01-01

    A bioenergetical analysis of manoeuvrability and agility performance for wheelchair players is inexistent. It was aimed at comparing the physiological responses and performance obtained from the octagon multistage field test (MFT) and the modified condition in “8 form” (MFT-8). Sixteen trained wheelchair basketball players performed both tests in randomized condition. The levels performed (end-test score), peak values of oxygen uptake (VO2peak), minute ventilation (VEpeak), heart rate (HRpeak), peak and relative blood lactate (Δ[Lact−] = peak – rest values), and the perceived rating exertion (RPE) were measured. MFT-8 induced higher VO2peak and VEpeak values compared to MFT (VO2peak: 2.5 ± 0.6 versus 2.3 ± 0.6 L·min−1 and VEpeak: 96.3 ± 29.1 versus 86.6 ± 23.4 L·min−1; P physiological responses than MFT. It could be explained by demands of wheelchair skills occurring in 8 form during the modified condition. PMID:25802841

  5. Process analysis and mechanism of multi-stage hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Wang, N.; Li, B.Q. [Chinese Academy of Science, Taiyuan (China). Inst. of Coal Chemistry, State Key Laboratory of Coal Conversion

    2002-07-01

    The mechanism of multi-stage hydropyrolysis of coal was probed through detailed analysis of products of hydropyrolysis with different holding methods. The results showed that the holding method significantly affects the product distributions, thus making an apparent difference in hydrogen utilization efficiency. The holding temperature should be about 350-500{degree}C during which more free radicals are produced rapidly. Pore-riched structures are formed at the holding stage at 350{degree}C due to the evolution of large amount of volatiles, which is favorable to the subsequent hydrogenation reaction. The holding at a low temperature favors the reaction of hydrogen with oxygen-containing groups, leading to the formation of phenol and avoiding the formation of water at a high temperature. The cleavage of chemical bonds in the char is mainly dependent-on the pyrolysis temperature. The effect of holding stage is to change the distribution and components of products via stabilizing the free radicals and hydrogenating the heavier products.

  6. Multi-stage identification scheme for detecting damage in structures under ambient excitations

    International Nuclear Information System (INIS)

    Bao, Chunxiao; Li, Zhong-Xian; Hao, Hong

    2013-01-01

    Structural damage identification methods are critical to the successful application of structural health monitoring (SHM) systems to civil engineering structures. The dynamic response of civil engineering structures is usually characterized by high nonlinearity and non-stationarity. Accordingly, an improved Hilbert–Huang transform (HHT) method which is adaptive, output-only and applicable to system identification of in-service structures under ambient excitations is developed in this study. Based on this method, a multi-stage damage detection scheme including the detection of damage occurrence, damage existence, damage location and the estimation of damage severity is developed. In this scheme, the improved HHT method is used to analyse the structural acceleration response, the obtained instantaneous frequency detects the instant of damage occurrence, the instantaneous phase is sensitive to minor damage and provides reliable damage indication, and the damage indicator developed based on statistical analysis of the Hilbert marginal spectrum detects damage locations. Finally, the response sampled at the detected damage location is continuously analysed to estimate the damage severity. Numerical and experimental studies of frame structures under ambient excitations are performed. The results demonstrate that this scheme accomplishes the above damage detection functions within one flow. It is robust, time efficient, simply implemented and applicable to the real-time SHM of in-service structures. (paper)

  7. Optimal placement of water-lubricated rubber bearings for vibration reduction of flexible multistage rotor systems

    Science.gov (United States)

    Liu, Shibing; Yang, Bingen

    2017-10-01

    Flexible multistage rotor systems with water-lubricated rubber bearings (WLRBs) have a variety of engineering applications. Filling a technical gap in the literature, this effort proposes a method of optimal bearing placement that minimizes the vibration amplitude of a WLRB-supported flexible rotor system with a minimum number of bearings. In the development, a new model of WLRBs and a distributed transfer function formulation are used to define a mixed continuous-and-discrete optimization problem. To deal with the case of uncertain number of WLRBs in rotor design, a virtual bearing method is devised. Solution of the optimization problem by a real-coded genetic algorithm yields the locations and lengths of water-lubricated rubber bearings, by which the prescribed operational requirements for the rotor system are satisfied. The proposed method is applicable either to preliminary design of a new rotor system with the number of bearings unforeknown or to redesign of an existing rotor system with a given number of bearings. Numerical examples show that the proposed optimal bearing placement is efficient, accurate and versatile in different design cases.

  8. Multistage method and apparatus for separating substances of different atomic weights using a plasma centrifuge

    International Nuclear Information System (INIS)

    Hirshfield, J.L.; Krishnan, M.

    1986-01-01

    This invention provides a method and apparatus for separating isotopes using a plasma centrifuge; in particular, it provides a multistage method and apparatus wherein a laser-initiated vacuum arc is used to fully ionize and form a plasma of the substances to be separated. The substances to be separated are positioned in an evacuated vessel which has a longitudinal axis. A magnetic field is generated in the vessel parallel to the axis of the vessel, and a target comprised of the substances to be separated is positioned at one end of the vessel. Pulsed laser energy is focused on the substances, thereby completely ionizing at least a portion of the substances and forming a plasma. Immediately following the arrival of the laser energy, a current is passed through the substances to be separated, which causes further complete ionization. The plasma is rotated and moved from the target to the collector by the application of a magnetic field. A plurality of skimmers is positioned in the vessel between the target and the collector such that a portion of the rotating plasma strikes the skimmer and is collected thereon. The remainder of the plasma continues moving towards the collector. The material which finally strikes the collector is only a percentage of the starting material, but it is highly enriched or concentrated

  9. A Multistage Control Mechanism for Group-Based Machine-Type Communications in an LTE System

    Directory of Open Access Journals (Sweden)

    Wen-Chien Hung

    2013-01-01

    Full Text Available When machine-type communication (MTC devices perform the long-term evolution (LTE attach procedure without bit rate limitations, they may produce congestion in the core network. To prevent this congestion, the LTE standard suggests using group-based policing to regulate the maximum bit rate of all traffic generated by a group of MTC devices. However, previous studies on the access point name-aggregate maximum bit rate based on group-based policing are relatively limited. This study proposes a multistage control (MSC mechanism to process the operations of maximum bit rate allocation based on resource-use information. For performance evaluation, this study uses a Markov chain with to analyze MTC application in a 3GPP network. Traffic flow simulations in an LTE system indicate that the MSC mechanism is an effective bandwidth allocation method in an LTE system with MTC devices. Experimental results show that the MSC mechanism achieves a throughput 22.5% higher than that of the LTE standard model using the group-based policing, and it achieves a lower delay time and greater long-term fairness as well.

  10. A simple multistage closed-(box+reservoir model of chemical evolution

    Directory of Open Access Journals (Sweden)

    Caimmi R.

    2011-01-01

    Full Text Available Simple closed-box (CB models of chemical evolution are extended on two respects, namely (i simple closed-(box+reservoir (CBR models allowing gas outflow from the box into the reservoir (Hartwick 1976 or gas inflow into the box from the reservoir (Caimmi 2007 with rate proportional to the star formation rate, and (ii simple multistage closed-(box+reservoir (MCBR models allowing different stages of evolution characterized by different inflow or outflow rates. The theoretical differential oxygen abundance distribution (TDOD predicted by the model maintains close to a continuous broken straight line. An application is made where a fictitious sample is built up from two distinct samples of halo stars and taken as representative of the inner Galactic halo. The related empirical differential oxygen abundance distribution (EDOD is represented, to an acceptable extent, as a continuous broken line for two viable [O/H]-[Fe/H] empirical relations. The slopes and the intercepts of the regression lines are determined, and then used as input parameters to MCBR models. Within the errors (-+σ, regression line slopes correspond to a large inflow during the earlier stage of evolution and to low or moderate outflow during the subsequent stages. A possible inner halo - outer (metal-poor bulge connection is also briefly discussed. Quantitative results cannot be considered for applications to the inner Galactic halo, unless selection effects and disk contamination are removed from halo samples, and discrepancies between different oxygen abundance determination methods are explained.

  11. Experimental Investigation of a Forward Swept Rotor in a Multistage Fan with Inlet Distortion

    Directory of Open Access Journals (Sweden)

    Aspi R. Wadia

    2011-01-01

    Full Text Available Previous studies of transonic swept rotors in single stage fans have demonstrated the potential of significant improvements in both efficiency and stall margin with forward swept blading. This paper extends the assessment of the payoff derived from forward sweep to multistage configurations. The experimental investigation compare two builds of an advanced two-stage fan configuration tested alternately with a radial and a forward swept stage 1 blade. In the two-stage evaluations, the testing was extended to include the effect on inlet flow distortion. While the common second stage among the two builds prevented the overall fan from showing clean inlet performance and stability benefits with the forward swept rotor 1, this configuration did demonstrate superior front stage efficiency and tolerance to inlet distortion. Having obtained already low distortion sensitivity with the radial rotor 1 configuration relative to current production military fan standards, the sensitivity to inlet distortion was halved with the forward swept rotor 1 configuration. In the case of the 180-degree one-per-rev distortion pattern, the two-stage configuration was evaluated both with and without inlet guide vanes (IGVs. The presence of the inlet guide vanes had a profound impact in lowering the two-stage fan's sensitivity with inlet distortion.

  12. Lower-Order Compensation Chain Threshold-Reduction Technique for Multi-Stage Voltage Multipliers

    Directory of Open Access Journals (Sweden)

    Francesco Dell’ Anna

    2018-04-01

    Full Text Available This paper presents a novel threshold-compensation technique for multi-stage voltage multipliers employed in low power applications such as passive and autonomous wireless sensing nodes (WSNs powered by energy harvesters. The proposed threshold-reduction technique enables a topological design methodology which, through an optimum control of the trade-off among transistor conductivity and leakage losses, is aimed at maximizing the voltage conversion efficiency (VCE for a given ac input signal and physical chip area occupation. The conducted simulations positively assert the validity of the proposed design methodology, emphasizing the exploitable design space yielded by the transistor connection scheme in the voltage multiplier chain. An experimental validation and comparison of threshold-compensation techniques was performed, adopting 2N5247 N-channel junction field effect transistors (JFETs for the realization of the voltage multiplier prototypes. The attained measurements clearly support the effectiveness of the proposed threshold-reduction approach, which can significantly reduce the chip area occupation for a given target output performance and ac input signal.

  13. Design considerations for a pressure-driven multi-stage rocket

    Science.gov (United States)

    Sauerwein, Steven Craig

    2002-01-01

    The purpose of this study was to examine the feasibility of using propellant tank pressurization to eliminate the use of high-pressure turbopumps in multi-stage liquid-fueled satellite launchers. Several new technologies were examined to reduce the mass of such a rocket. Composite materials have a greater strength-to-weight ratio than metals and can be used to reduce the weight of rocket propellant tanks and structure. Catalytically combined hydrogen and oxygen can be used to heat pressurization gas, greatly reducing the amount of gas required. Ablatively cooled rocket engines can reduce the complexity and cost of the rocket. Methods were derived to estimate the mass of the various rocket components. These included a method to calculate the amount of gas needed to pressurize a propellant tank by modeling the behavior of the pressurization gas as the liquid propellant flows out of the tank. A way to estimate the mass and size of a ablatively cooled composite cased rocket engine. And a method to model the flight of such a rocket through the atmosphere in conjunction with optimization of the rockets trajectory. The results show that while a liquid propellant rocket using tank pressurization are larger than solid propellant rockets and turbopump driven liquid propellant rockets, they are not impractically large.

  14. Effects of modified multistage field test on performance and physiological responses in wheelchair basketball players.

    Science.gov (United States)

    Weissland, Thierry; Faupin, Arnaud; Borel, Benoit; Berthoin, Serge; Leprêtre, Pierre-Marie

    2015-01-01

    A bioenergetical analysis of manoeuvrability and agility performance for wheelchair players is inexistent. It was aimed at comparing the physiological responses and performance obtained from the octagon multistage field test (MFT) and the modified condition in "8 form" (MFT-8). Sixteen trained wheelchair basketball players performed both tests in randomized condition. The levels performed (end-test score), peak values of oxygen uptake (VO2peak), minute ventilation (VEpeak), heart rate (HRpeak), peak and relative blood lactate (Δ[Lact(-)] = peak--rest values), and the perceived rating exertion (RPE) were measured. MFT-8 induced higher VO2peak and VEpeak values compared to MFT (VO2peak: 2.5 ± 0.6 versus 2.3 ± 0.6 L · min(-1) and VEpeak: 96.3 ± 29.1 versus 86.6 ± 23.4 L · min(-1); P < 0.05) with no difference in other parameters. Significant relations between VEpeak and end-test score were correlated for both field tests (P < 0.05). At exhaustion, MFT attained incompletely VO2peak and VEpeak. Among experienced wheelchair players, MFT-8 had no effect on test performance but generates higher physiological responses than MFT. It could be explained by demands of wheelchair skills occurring in 8 form during the modified condition.

  15. Lower-Order Compensation Chain Threshold-Reduction Technique for Multi-Stage Voltage Multipliers.

    Science.gov (United States)

    Dell' Anna, Francesco; Dong, Tao; Li, Ping; Wen, Yumei; Azadmehr, Mehdi; Casu, Mario; Berg, Yngvar

    2018-04-17

    This paper presents a novel threshold-compensation technique for multi-stage voltage multipliers employed in low power applications such as passive and autonomous wireless sensing nodes (WSNs) powered by energy harvesters. The proposed threshold-reduction technique enables a topological design methodology which, through an optimum control of the trade-off among transistor conductivity and leakage losses, is aimed at maximizing the voltage conversion efficiency (VCE) for a given ac input signal and physical chip area occupation. The conducted simulations positively assert the validity of the proposed design methodology, emphasizing the exploitable design space yielded by the transistor connection scheme in the voltage multiplier chain. An experimental validation and comparison of threshold-compensation techniques was performed, adopting 2N5247 N-channel junction field effect transistors (JFETs) for the realization of the voltage multiplier prototypes. The attained measurements clearly support the effectiveness of the proposed threshold-reduction approach, which can significantly reduce the chip area occupation for a given target output performance and ac input signal.

  16. Contact force and mechanical loss of multistage cable under tension and bending

    Science.gov (United States)

    Ru, Yanyun; Yong, Huadong; Zhou, Youhe

    2016-10-01

    A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is complicated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.

  17. Multi-stage robust scheme for citrus identification from high resolution airborne images

    Science.gov (United States)

    Amorós-López, Julia; Izquierdo Verdiguier, Emma; Gómez-Chova, Luis; Muñoz-Marí, Jordi; Zoilo Rodríguez-Barreiro, Jorge; Camps-Valls, Gustavo; Calpe-Maravilla, Javier

    2008-10-01

    Identification of land cover types is one of the most critical activities in remote sensing. Nowadays, managing land resources by using remote sensing techniques is becoming a common procedure to speed up the process while reducing costs. However, data analysis procedures should satisfy the accuracy figures demanded by institutions and governments for further administrative actions. This paper presents a methodological scheme to update the citrus Geographical Information Systems (GIS) of the Comunidad Valenciana autonomous region, Spain). The proposed approach introduces a multi-stage automatic scheme to reduce visual photointerpretation and ground validation tasks. First, an object-oriented feature extraction process is carried out for each cadastral parcel from very high spatial resolution (VHR) images (0.5m) acquired in the visible and near infrared. Next, several automatic classifiers (decision trees, multilayer perceptron, and support vector machines) are trained and combined to improve the final accuracy of the results. The proposed strategy fulfills the high accuracy demanded by policy makers by means of combining automatic classification methods with visual photointerpretation available resources. A level of confidence based on the agreement between classifiers allows us an effective management by fixing the quantity of parcels to be reviewed. The proposed methodology can be applied to similar problems and applications.

  18. An inexact multistage fuzzy-stochastic programming for regional electric power system management constrained by environmental quality.

    Science.gov (United States)

    Fu, Zhenghui; Wang, Han; Lu, Wentao; Guo, Huaicheng; Li, Wei

    2017-12-01

    Electric power system involves different fields and disciplines which addressed the economic system, energy system, and environment system. Inner uncertainty of this compound system would be an inevitable problem. Therefore, an inexact multistage fuzzy-stochastic programming (IMFSP) was developed for regional electric power system management constrained by environmental quality. A model which concluded interval-parameter programming, multistage stochastic programming, and fuzzy probability distribution was built to reflect the uncertain information and dynamic variation in the case study, and the scenarios under different credibility degrees were considered. For all scenarios under consideration, corrective actions were allowed to be taken dynamically in accordance with the pre-regulated policies and the uncertainties in reality. The results suggest that the methodology is applicable to handle the uncertainty of regional electric power management systems and help the decision makers to establish an effective development plan.

  19. A bi-level programming for multistage co-expansion planning of the integrated gas and electricity system

    DEFF Research Database (Denmark)

    Zeng, Qing; Zhang, Baohua; Fang, Jiakun

    2017-01-01

    as the generation capacities, while the lower-level is formulated as an optimal economic dispatch under the operational constraints given by the upper-level decision. To solve the bi-level multi-stage programming problem, a hybrid algorithm is proposed combining the modified binary particle swarm optimization (BPSO...... power systems. The system operation is optimized and embedded in the planning horizon. A bi-level multi-stage programming problem is formulated to minimize the investment cost plus the operational cost. The upper-level optimizes the expansion plan and determines the network topology as well......) and the interior point method (IPM). The BPSO is used for the upper-level sub-problem, and the IPM is adopted for the lower-level sub-problem. Numerical case studies have been carried out on the practical gas and electricity transmission network in western Denmark. Simulation results demonstrate the effectiveness...

  20. Multi-stage crypto ransomware attacks: A new emerging cyber threat to critical infrastructure and industrial control systems

    Directory of Open Access Journals (Sweden)

    Aaron Zimba

    2018-03-01

    Full Text Available The inevitable integration of critical infrastructure to public networks has exposed the underlying industrial control systems to various attack vectors. In this paper, we model multi-stage crypto ransomware attacks, which are today an emerging cyber threat to critical infrastructure. We evaluate our modeling approach using multi-stage attacks by the infamous WannaCry ransomware. The static malware analysis results uncover the techniques employed by the ransomware to discover vulnerable nodes in different SCADA and production subnets, and for the subsequent network propagation. Based on the uncovered artifacts, we recommend a cascaded network segmentation approach, which prioritizes the security of production network devices. Keywords: Critical infrastructure, Cyber-attack, Industrial control system, Crypto ransomware, Vulnerability

  1. Influence of spatial beam inhomogeneities on the parameters of a petawatt laser system based on multi-stage parametric amplification

    International Nuclear Information System (INIS)

    Frolov, S A; Trunov, V I; Pestryakov, Efim V; Leshchenko, V E

    2013-01-01

    We have developed a technique for investigating the evolution of spatial inhomogeneities in high-power laser systems based on multi-stage parametric amplification. A linearised model of the inhomogeneity development is first devised for parametric amplification with the small-scale self-focusing taken into account. It is shown that the application of this model gives the results consistent (with high accuracy and in a wide range of inhomogeneity parameters) with the calculation without approximations. Using the linearised model, we have analysed the development of spatial inhomogeneities in a petawatt laser system based on multi-stage parametric amplification, developed at the Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences (ILP SB RAS). (control of laser radiation parameters)

  2. Multi-Stage Flotation for the Removal of Ash from Fine Graphite Using Mechanical and Centrifugal Forces

    OpenAIRE

    Xiangning Bu; Tuantuan Zhang; Yaoli Peng; Guangyuan Xie; Erdong Wu

    2018-01-01

    Graphite ore collected from Hunan province, south China was characterized by chemical analysis, X-ray diffraction, and optical microscopy. Rougher and multi-stage flotation tests using a mechanical flotation cell and a flotation column containing an additional centrifugal force field were carried out to promote its grade and economic value. In rougher flotation, both the mechanical flotation cell and flotation column reduced the ash content of the graphite ore from 15.43% to 10.8%, while the ...

  3. A study of Multistage/Multifunction Column for Fine Coal Cleaning CRADA PC93-005, Final Report; FINAL

    International Nuclear Information System (INIS)

    Ralph Lai; Shiao-Hung Chiang; Daxin He; Yuru Feng

    1998-01-01

    The overall objective of the this research project is to explore the potential applicability of a multistage column for fine coal cleaning and other applications in fluid particle separation. The research work identifies the design parameters and their effects on the performance of the separation device. The results of this study provide an engineering data basis for further development of this technology in coal cleaning and in general areas of fluid and particle separations

  4. The development of deep karst in the anticlinal aquifer structure based on the coupling of multistage flow systems

    Science.gov (United States)

    Xu, M.; Zhong, L.; Yang, Y.

    2017-12-01

    Under the background of neotectonics, the multistage underground flow system has been form due the different responses of main stream and tributaries to crust uplift. The coupling of multistage underground flow systems influences the development of karst thoroughly. At first, the research area is divided into vadose area, shunted area and exorheic area based on the development characteristics of transverse valley. Combining the controlling-drain action with topographic index and analyzing the coupling features of multistage underground flow system. And then, based on the coupling of multistage underground flow systems, the characteristics of deep karst development were verified by the lossing degree of surface water, water bursting and karst development characteristics of tunnels. The vadose area is regional water system based, whose deep karst developed well. It resulted the large water inflow of tunnels and the surface water drying up. The shunted area, except the region near the transverse valleys, is characterized by regional water system. The developed deep karst make the surface water connect with deep ground water well, Which caused the relatively large water flow of tunnels and the serious leakage of surface water. The deep karst relatively developed poor in the regions near transverse valleys which is characterized by local water system. The exorheic area is local water system based, whose the deep karst developed poor, as well as the connection among surface water and deep ground water. It has result in the poor lossing of the surface water under the tunnel construction. This study broadens the application field of groundwater flow systems theory, providing a new perspective for the study of Karst development theory. Meanwhile it provides theoretical guidance for hazard assessment and environmental negative effect in deep-buried Karst tunnel construction.

  5. Comparison Between 30-15 Intermittent Fitness Test and Multistage Field Test on Physiological Responses in Wheelchair Basketball Players

    OpenAIRE

    Weissland, Thierry; Faupin, Arnaud; Borel, Benoit; Leprêtre, Pierre-Marie

    2015-01-01

    The intermittent nature of wheelchair court sports suggests using a similar protocol to assess repeated shuttles and recovery abilities. This study aimed to compare performances, physiological responses and perceived rating exertion obtained from the continuous multistage field test (MFT) and the 30-15 intermittent field test (30-15IFT). Eighteen trained wheelchair basketball players (WBP) (WBP: 32.0 ? 5.7 y, IWBF classification: 2.9 ? 1.1 points) performed both incremental field tests in ran...

  6. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)] [and others

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff has been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.

  7. Thermodynamic analysis of single-stage and multi-stage adsorption refrigeration cycles with activated carbon–ammonia working pair

    International Nuclear Information System (INIS)

    Xu, S.Z.; Wang, L.W.; Wang, R.Z.

    2016-01-01

    Highlights: • Activated carbon–ammonia multi-stage adsorption refrigerator was analyzed. • COP, exergetic efficiency and entropy production of cycles were calculated. • Single-stage cycle usually has the advantages of simple structure and high COP. • Multi-stage cycles adapt to critical conditions better than single-stage cycle. • Boundary conditions for choosing optimal cycle were summarized as tables. - Abstract: Activated carbon–ammonia multi-stage adsorption refrigeration cycle was analyzed in this article, which realized deep-freezing for evaporating temperature under −18 °C with heating source temperature much lower than 100 °C. Cycle mathematical models for single, two and three-stage cycles were established on the basis of thorough thermodynamic analysis. According to simulation results of thermodynamic evaluation indicators such as COP (coefficient of performance), exergetic efficiency and cycle entropy production, multi-stage cycle adapts to high condensing temperature, low evaporating temperature and low heating source temperature well. Proposed cycle with selected working pair can theoretically work under very severe conditions, such as −25 °C evaporating temperature, 40 °C condensing temperature, and 70 °C heating source temperature, but under these working conditions it has the drawback of low cycle adsorption quantity. It was found that both COP and exergetic efficiency are of great reference value in the choice of cycle, whereas entropy production is not so useful for cycle stage selection. Finally, the application boundary conditions of single-stage, two-stage, and three-stage cycles were summarized as tables according to the simulation results, which provides reference for choosing optimal cycle under different conditions.

  8. Multi-Stage Flotation for the Removal of Ash from Fine Graphite Using Mechanical and Centrifugal Forces

    Directory of Open Access Journals (Sweden)

    Xiangning Bu

    2018-01-01

    Full Text Available Graphite ore collected from Hunan province, south China was characterized by chemical analysis, X-ray diffraction, and optical microscopy. Rougher and multi-stage flotation tests using a mechanical flotation cell and a flotation column containing an additional centrifugal force field were carried out to promote its grade and economic value. In rougher flotation, both the mechanical flotation cell and flotation column reduced the ash content of the graphite ore from 15.43% to 10.8%, while the yield of the flotation column (91.41% was much higher than that of the mechanical flotation cell (50%. In the presence of hydrophobic graphite, the seriously entrained gangue restricted further improvement in the quality and economic value of the graphite ore. Therefore, multi-stage flotation circuits were employed to diminish this entrainment. Multi-stage flotation circuits using the two flotation devices further decreased the ash content of the graphite ore to ~8%, while the yield when using the flotation column was much higher than that obtained from the mechanical flotation cell employed. On the other hand, the ash removal efficiency of the flotation column was 3.82-fold higher than that observed for the mechanical flotation cell. The Cleaner 3 flotation circuit using the flotation column decreased the ash content in graphite from 15.43% to 7.97% with a yield of 77.53%.

  9. Improved productivity of the MSF (multi-stage flashing) desalination plant by increasing the TBT (top brine temperature)

    International Nuclear Information System (INIS)

    Hanshik, Chung; Jeong, Hyomin; Jeong, Kwang-Woon; Choi, Soon-Ho

    2016-01-01

    The evaporating process is very important in the system concerned with liquid foods, seawater distillation and wastewater treatment, which is to concentrate the aqueous solution by evaporating the pure water usually at a vacuum state. In general, the liquid concentration is performed through the membrane, electro-dialysis, and evaporation; the former are separation process and the latter is the phase change process. In this study, only the thermal process was treated for evaluating the specific energy consumption by changing the operating conditions of an existing MSF (multi-stage flashing) desalination plant, which is still dominant for a large scale distillation plant. This study shows the quantitative energy saving strategy in sweater distillation process and, additionally, indicates that the performance of the multi-stage evaporating system can be increased with the elevation of a TBT (top brine temperature). The calculated results were based on the operating data of the currently installed plants and suggests the alternative to improve the performance of the MSF desalination plant, which means that the energy saving can be achieved only by changing the operating conditions of the existing MSF plants. - Highlights: • Detailed operating principles of an multi-stage flashing (MSF) desalting process. • Improved freshwater productivity by increasing the top brine temperature (TBT). • Increased energy efficiency of an existing MSF plants by the TBT increase.

  10. Removal of hazardous gaseous pollutants from industrial flue gases by a novel multi-stage fluidized bed desulfurizer.

    Science.gov (United States)

    Mohanty, C R; Adapala, Sivaji; Meikap, B C

    2009-06-15

    Sulfur dioxide and other sulfur compounds are generated as primary pollutants from the major industries such as sulfuric acid plants, cupper smelters, catalytic cracking units, etc. and cause acid rain. To remove the SO(2) from waste flue gas a three-stage counter-current multi-stage fluidized bed adsorber was developed as desulfurization equipment and operated in continuous bubbling fluidization regime for the two-phase system. This paper represents the desulfurization of gas mixtures by chemical sorption of sulfur dioxide on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of the multi-stage fluidized bed reactor are of high mass transfer and high gas-solid residence time that can enhance the removal of acid gas at low temperature by dry method. Experiments were carried out in the bubbling fluidization regime supported by visual observation. The effects of the operating parameters such as sorbent (lime) flow rate, superficial gas velocity, and the weir height on SO(2) removal efficiency in the multistage fluidized bed are reported. The results have indicated that the removal efficiency of the sulfur dioxide was found to be 65% at high solid flow rate (2.0 kg/h) corresponding to lower gas velocity (0.265 m/s), wier height of 70 mm and SO(2) concentration of 500 ppm at room temperature.

  11. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells

    Science.gov (United States)

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-07-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).

  12. Numerical simulations of single and multi-staged injection of H2 in a supersonic scramjet combustor

    Directory of Open Access Journals (Sweden)

    L. Abu-Farah

    2014-12-01

    Full Text Available Computational fluid dynamics (CFD simulations of a single staged injection of H2 through a central wedge shaped strut and a multi-staged injection through wall injectors are carried out by using Ansys CFX-12 code. Unstructured tetrahedral grids for narrow channel and quarter geometries of the combustor are generated by using ICEM CFD. Steady three-dimensional (3D Reynolds-averaged Navier-stokes (RANS simulations are carried out in the case of no H2 injection and compared with the simulations of single staged pilot and/or main H2 injections and multistage injection. Shear stress transport (SST based on k-ω turbulent model is adopted. Flow field visualization (complex shock waves interactions and static pressure distribution along the wall of the combustor are predicted and compared with the experimental schlieren images and measured wall static pressures for validation. A good agreement is found between the CFD predicted results and the measured data. The narrow and quarter geometries of the combustor give similar results with very small differences. Multi-staged injections of H2 enhance the turbulent H2/air mixing by forming vortices and additional shock waves (bow shocks.

  13. Effect Analysis of Geometric Parameters on Stainless Steel Stamping Multistage Pump by Experimental Test and Numerical Calculation

    Directory of Open Access Journals (Sweden)

    Chuan Wang

    2013-01-01

    Full Text Available In order to improve the efficiency of stainless steel stamping multistage pump, quadratic regression orthogonal test, hydraulic design, and computational fluid dynamics (CFD are used to analyze the effect of pump geometric parameters. Sixteen impellers are designed based on the quadratic regression orthogonal test, which have three factors including impeller outlet slope, impeller blade outlet stagger angle, and impeller blade outlet width. Through quadratic regression equation, the function relationship between efficiency values and three factors is established. The optimal combination of geometric parameters is found through the analysis of the regression equation. To further study the influence of blade thickness on the performance of multistage pump, numerical simulations of multistage pump with different blade thicknesses are carried out. The influence law of blade thickness on pump performance is built from the external characteristics and internal flow field. In conclusion, with the increase of blade thickness, the best efficiency point of the pump shifts to the small flow rate direction, and the vortex regions inside the pump at rated flow gradually increase, which is the main reason that pump efficiency decreases along with the increase of the blade thickness at rated flow.

  14. The influence of the “cage effect” on the mechanism of reversible bimolecular multistage chemical reactions in solutions

    International Nuclear Information System (INIS)

    Doktorov, Alexander B.

    2015-01-01

    Manifestations of the “cage effect” at the encounters of reactants are theoretically treated by the example of multistage reactions in liquid solutions including bimolecular exchange reactions as elementary stages. It is shown that consistent consideration of quasi-stationary kinetics of multistage reactions (possible only in the framework of the encounter theory) for reactions proceeding near reactants contact can be made on the basis of the concepts of a “cage complex.” Though mathematically such a consideration is more complicated, it is more clear from the standpoint of chemical notions. It is established that the presence of the “cage effect” leads to some important effects not inherent in reactions in gases or those in solutions proceeding in the kinetic regime, such as the appearance of new transition channels of reactant transformation that cannot be caused by elementary event of chemical conversion for the given mechanism of reaction. This results in that, for example, rate constant values of multistage reaction defined by standard kinetic equations of formal chemical kinetics from experimentally measured kinetics can differ essentially from real values of these constants

  15. The influence of the "cage effect" on the mechanism of reversible bimolecular multistage chemical reactions in solutions.

    Science.gov (United States)

    Doktorov, Alexander B

    2015-08-21

    Manifestations of the "cage effect" at the encounters of reactants are theoretically treated by the example of multistage reactions in liquid solutions including bimolecular exchange reactions as elementary stages. It is shown that consistent consideration of quasi-stationary kinetics of multistage reactions (possible only in the framework of the encounter theory) for reactions proceeding near reactants contact can be made on the basis of the concepts of a "cage complex." Though mathematically such a consideration is more complicated, it is more clear from the standpoint of chemical notions. It is established that the presence of the "cage effect" leads to some important effects not inherent in reactions in gases or those in solutions proceeding in the kinetic regime, such as the appearance of new transition channels of reactant transformation that cannot be caused by elementary event of chemical conversion for the given mechanism of reaction. This results in that, for example, rate constant values of multistage reaction defined by standard kinetic equations of formal chemical kinetics from experimentally measured kinetics can differ essentially from real values of these constants.

  16. The influence of the “cage effect” on the mechanism of reversible bimolecular multistage chemical reactions in solutions

    Energy Technology Data Exchange (ETDEWEB)

    Doktorov, Alexander B., E-mail: doktorov@kinetics.nsc.ru [Voevodsky Institute of Chemical Kinetics & Combustion, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia and Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2015-08-21

    Manifestations of the “cage effect” at the encounters of reactants are theoretically treated by the example of multistage reactions in liquid solutions including bimolecular exchange reactions as elementary stages. It is shown that consistent consideration of quasi-stationary kinetics of multistage reactions (possible only in the framework of the encounter theory) for reactions proceeding near reactants contact can be made on the basis of the concepts of a “cage complex.” Though mathematically such a consideration is more complicated, it is more clear from the standpoint of chemical notions. It is established that the presence of the “cage effect” leads to some important effects not inherent in reactions in gases or those in solutions proceeding in the kinetic regime, such as the appearance of new transition channels of reactant transformation that cannot be caused by elementary event of chemical conversion for the given mechanism of reaction. This results in that, for example, rate constant values of multistage reaction defined by standard kinetic equations of formal chemical kinetics from experimentally measured kinetics can differ essentially from real values of these constants.

  17. Pilot-scale multistage membrane process for the separation of CO2 from LNG-fired flue gas

    KAUST Repository

    Choi, Seung Hak

    2013-06-01

    In this study, a multistage pilot-scale membrane plant was constructed and operated for the separation of CO2 from Liquefied Natural Gas (LNG)-fired boiler flue gas of 1000 Nm3/day. The target purity and recovery of CO2 were 99 vol.% and 90%, respectively. For this purpose, asymmetric polyethersulfone (PES) hollow fibers membranes has been developed in our previous work and has evaluated the effects of operating pressure and feed concentration of CO2 on separation performance. The operating and permeation data obtained were also analyzed in relation with the numerical simulation data using countercurrent flow model. Based on these results, in this study, four-staged membrane process including dehumidification process has been designed, installed, and operated to demonstrate the feasibility of multistage membrane systems for removing CO2 from flue gases. The operation results using this plant were compared to the numerical simulation results on multistage membrane process. The experimental results matched well with the numerical simulation data. The concentration and the recovery of CO2 in the permeate stream of final stage were ranged from 95-99 vol.% and 70-95%, respectively, depending on the operating conditions. This study demonstrated the applicability of the membrane-based pilot plant for CO2 recovery from flue gas. © 2013 Elsevier B.V. All rights reserved.

  18. Venture Investment Incentive Mechanisms and Simulation with Venture Entrepreneurs Having Multistage Efforts Based on Fairness Preference Theory

    Directory of Open Access Journals (Sweden)

    Kaihong Wang

    2016-01-01

    Full Text Available When venture capital has been invested into venture companies, venture capitalists and venture entrepreneurs form a principal-agent relationship. Take into account the fact that the venture entrepreneur’s effort is a long process, because the effort is not the same at different stage. Therefore, efforts variables are seen as the multistage dynamic variable, and venture investment principal-agent model with venture entrepreneurs having multistage efforts is constructed on the basis of the classic principal-agent theory in the paper. Further, in the later stage effort of venture entrepreneurs is affected by the size of prestage benefit with venture capitalists and venture entrepreneurs; thus the fairness preference model is improved, and venture investment principal-agent model with venture entrepreneurs having multistage efforts is constructed on the basis of fairness preference theory. Both theoretical derivation and simulation have demonstrated that, under the condition of information asymmetry, if the fairness preference of venture entrepreneurs holds, then (1 venture capitalists provide venture entrepreneurs with level higher than that without fairness preference, (2 in every single stage venture entrepreneurs make efforts higher than those without fairness preference, and (3 in two periods both venture investors and venture entrepreneurs gain total real gains higher than those in two periods without fair preference.

  19. Human neural progenitors derived from integration-free iPSCs for SCI therapy

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2017-03-01

    Full Text Available As a potentially unlimited autologous cell source, patient induced pluripotent stem cells (iPSCs provide great capability for tissue regeneration, particularly in spinal cord injury (SCI. However, despite significant progress made in translation of iPSC-derived neural progenitor cells (NPCs to clinical settings, a few hurdles remain. Among them, non-invasive approach to obtain source cells in a timely manner, safer integration-free delivery of reprogramming factors, and purification of NPCs before transplantation are top priorities to overcome. In this study, we developed a safe and cost-effective pipeline to generate clinically relevant NPCs. We first isolated cells from patients' urine and reprogrammed them into iPSCs by non-integrating Sendai viral vectors, and carried out experiments on neural differentiation. NPCs were purified by A2B5, an antibody specifically recognizing a glycoganglioside on the cell surface of neural lineage cells, via fluorescence activated cell sorting. Upon further in vitro induction, NPCs were able to give rise to neurons, oligodendrocytes and astrocytes. To test the functionality of the A2B5+ NPCs, we grafted them into the contused mouse thoracic spinal cord. Eight weeks after transplantation, the grafted cells survived, integrated into the injured spinal cord, and differentiated into neurons and glia. Our specific focus on cell source, reprogramming, differentiation and purification method purposely addresses timing and safety issues of transplantation to SCI models. It is our belief that this work takes one step closer on using human iPSC derivatives to SCI clinical settings.

  20. Generating autologous hematopoietic cells from human-induced pluripotent stem cells through ectopic expression of transcription factors.

    Science.gov (United States)

    Hwang, Yongsung; Broxmeyer, Hal E; Lee, Man Ryul

    2017-07-01

    Hematopoietic cell transplantation (HCT) is a successful treatment modality for patients with malignant and nonmalignant disorders, usually when no other treatment option is available. The cells supporting long-term reconstitution after HCT are the hematopoietic stem cells (HSCs), which can be limited in numbers. Moreover, finding an appropriate human leukocyte antigen-matched donor can be problematic. If HSCs can be stably produced in large numbers from autologous or allogeneic cell sources, it would benefit HCT. Induced pluripotent stem cells (iPSCs) established from patients' own somatic cells can be differentiated into hematopoietic cells in vitro. This review will highlight recent methods for regulating human (h) iPSC production of HSCs and more mature blood cells. Advancements in transcription factor-mediated regulation of the developmental stages of in-vivo hematopoietic lineage commitment have begun to provide an understanding of the molecular mechanism of hematopoiesis. Such studies involve not only directed differentiation in which transcription factors, specifically expressed in hematopoietic lineage-specific cells, are overexpressed in iPSCs, but also direct conversion in which transcription factors are introduced into patient-derived somatic cells which are dedifferentiated to hematopoietic cells. As iPSCs derived from patients suffering from genetically mutated diseases would express the same mutated genetic information, CRISPR-Cas9 gene editing has been utilized to differentiate genetically corrected iPSCs into normal hematopoietic cells. IPSCs provide a model for molecular understanding of disease, and also may function as a cell population for therapy. Efficient differentiation of patient-specific iPSCs into HSCs and progenitor cells is a potential means to overcome limitations of such cells for HCT, as well as for providing in-vitro drug screening templates as tissue-on-a-chip models.

  1. The generation and functional characterization of induced pluripotent stem cells from human intervertebral disc nucleus pulposus cells.

    Science.gov (United States)

    Zhu, Yanxia; Liang, Yuhong; Zhu, Hongxia; Lian, Cuihong; Wang, Liang; Wang, Yiwei; Gu, Hongsheng; Zhou, Guangqian; Yu, Xiaoping

    2017-06-27

    Disc degenerative disease (DDD) is believed to originate in the nucleus pulposus (NP) region therefore, it is important to obtain a greater number of active NP cells for the study and therapy of DDD. Human induced pluripotent stem cells (iPSCs) are a powerful tool for modeling the development of DDD in humans, and have the potential to be applied in regenerative medicine. NP cells were isolated from DDD patients following our improved method, and then the primary NP cells were reprogramed into iPSCs with Sendai virus vectors encoding 4 factors. Successful reprogramming of iPSCs was verified by the expression of surface markers and presence of teratoma. Differentiation of iPSCs into NP-like cells was performed in a culture plate or in hydrogel, whereby skin fibroblast derived-iPSCs were used as a control. Results demonstrated that iPSCs derived from NP cells displayed a normal karyotype, expressed pluripotency markers, and formed teratoma in nude mice. NP induction of iPSCs resulted in the expression of NP cell specific matrix proteins and related genes. Non-induced NP derived-iPSCs also showed some NP-like phenotype. Furthermore, NP-derived iPSCs differentiate much better in hydrogel than that in a culture plate. This is a novel method for the generation of iPSCs from NP cells of DDD patients, and we have successfully differentiated these iPSCs into NP-like cells in hydrogel. This method provides a novel treatment of DDD by using patient-specific NP cells in a relatively simple and straightforward manner.

  2. Intelligent Search Method Based ACO Techniques for a Multistage Decision Problem EDP/LFP

    Directory of Open Access Journals (Sweden)

    Mostefa RAHLI

    2006-07-01

    Full Text Available The implementation of a numerical library of calculation based optimization in electrical supply networks area is in the centre of the current research orientations, thus, our project in a form given is centred on the development of platform NMSS1. It's a software environment which will preserve many efforts as regards calculations of charge, smoothing curves, losses calculation and economic planning of the generated powers [23].The operational research [17] in a hand and the industrial practice in the other, prove that the means and processes of simulation reached a level of very appreciable reliability and mathematical confidence [4, 5, 14]. It is of this expert observation that many processes make confidence to the results of simulation.The handicaps of this approach or methodology are that it makes base its judgments and handling on simplified assumptions and constraints whose influence was deliberately neglected to be added to the cost to spend [14].By juxtaposing the methods of simulation with artificial intelligence techniques, gathering set of numerical methods acquires an optimal reliability whose assurance can not leave doubt.Software environment NMSS [23] can be a in the field of the rallying techniques of simulation and electric network calculation via a graphic interface. In the same software integrate an AI capability via a module expert system.Our problem is a multistage case where are completely dependant and can't be performed separately.For a multistage problem [21, 22], the results obtained from a credible (large size problem calculation, makes the following question: Could choice of numerical methods set make the calculation of a complete problem using more than two treatments levels, a total error which will be the weakest one possible? It is well-known according to algorithmic policy; each treatment can be characterized by a function called mathematical complexity. This complexity is in fact a coast (a weight overloading

  3. Synthetic TLR4 agonists enhance functional antibodies and CD4+ T-cell responses against the Plasmodium falciparum GMZ2.6C multi-stage vaccine antigen

    DEFF Research Database (Denmark)

    Baldwin, Susan L; Roeffen, Will; Singh, Susheel K

    2016-01-01

    A subunit vaccine targeting both transmission and pathogenic asexual blood stages of Plasmodium falciparum, i.e., a multi-stage vaccine, could be a powerful tool to combat malaria. Here, we report production and characterization of the recombinant protein GMZ2.6C, which contains a fragment of the......-γ and TNF in response to GMZ2.6C. Both of these agonists have good safety records in humans....... of the sexual-stage protein Pfs48/45-6C genetically fused to GMZ2, an asexual vaccine antigen in advanced clinical development. To select the most suitable vaccine formulation for downstream clinical studies, GMZ2.6C was tested with various immune modulators in different adjuvant formulations (stable emulsions......, liposomes, and alum) in C57BL/6 mice. Some, but not all, formulations containing either the synthetic TLR4 agonist GLA or SLA elicited the highest parasite-specific antibody titers, the greatest IFN-γ responses in CD4+ TH1 cells, and the highest percentage of multifunctional CD4+ T cells expressing IFN...

  4. Computational analyses of spectral trees from electrospray multi-stage mass spectrometry to aid metabolite identification.

    Science.gov (United States)

    Cao, Mingshu; Fraser, Karl; Rasmussen, Susanne

    2013-10-31

    Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced dissociation (CID) fragmentation of selected precursor ions. These fragment ions can assist in structural inference for metabolites of low molecular weight. Computational investigations of fragmentation spectra have increasingly received attention in metabolomics and various public databases house such data. We have developed an R package "iontree" that can capture, store and analyze MS2 and MS3 mass spectral data from high throughput metabolomics experiments. The package includes functions for ion tree construction, an algorithm (distMS2) for MS2 spectral comparison, and tools for building platform-independent ion tree (MS2/MS3) libraries. We have demonstrated the utilization of the package for the systematic analysis and annotation of fragmentation spectra collected in various metabolomics platforms, including direct infusion mass spectrometry, and liquid chromatography coupled with either low resolution or high resolution mass spectrometry. Assisted by the developed computational tools, we have demonstrated that spectral trees can provide informative evidence complementary to retention time and accurate mass to aid with annotating unknown peaks. These experimental spectral trees once subjected to a quality control process, can be used for querying public MS2 databases or de novo interpretation. The putatively annotated spectral trees can be readily incorporated into reference libraries for routine identification of metabolites.

  5. Design of a multistage 250 kJ capacitor bank for ohmic transformer of tokamak ''ADITYA''

    International Nuclear Information System (INIS)

    Sathyanarayana, K.; Saxena, Y.C.; John, P.I.; Pujara, H.D.; Jain, K.K.

    1993-01-01

    Tokamaks require toroidal loop voltage for breakdown of the neutral gas, current rise, and the flat top phase. The temporal profile of the loop voltage established by the change of flux linked by the ohmic transformer has to be a noncosine waveform. In this paper a multistage capacitor bank is described which was used to energize the ohmic transformer in tokamak ADITYA with a major radius of 0.75 m, minor radius of 0.25 m, and a toroidal field of 1.5 T at the plasma center. A combination of capacitors charged to different voltages are switched in at appropriate times, to realize an experimental demand for initial high loop voltage followed by a lower sustaining loop voltage. Theoretical prediction for the duration of the secondary loop voltage as a function of circuit parameters, for a fast bank operation of 6 kV, slow bank, 4--4.5 kV, and slow bank, 2--2.5 kV yield t 0 =1.25 mS, t 1 =4.95 mS, and t 2 =24.1 mS. These values are in close agreement to the measured values of t 0 =1.39 mS, t 1 =5.7 mS, and t 2 =23.7 mS. The trigger delays to the various capacitor bank sections are parameter dependent. To avoid repetitive adjustments in the delays, a novel scheme for consistent triggering is also highlighted

  6. Multistage modeling of protein dynamics with monomeric Myc oncoprotein as an example.

    Science.gov (United States)

    Liu, Jiaojiao; Dai, Jin; He, Jianfeng; Niemi, Antti J; Ilieva, Nevena

    2017-03-01

    We propose to combine a mean-field approach with all-atom molecular dynamics (MD) into a multistage algorithm that can model protein folding and dynamics over very long time periods yet with atomic-level precision. As an example, we investigate an isolated monomeric Myc oncoprotein that has been implicated in carcinomas including those in colon, breast, and lungs. Under physiological conditions a monomeric Myc is presumed to be an example of intrinsically disordered proteins that pose a serious challenge to existing modeling techniques. We argue that a room-temperature monomeric Myc is in a dynamical state, it oscillates between different conformations that we identify. For this we adopt the Cα backbone of Myc in a crystallographic heteromer as an initial ansatz for the monomeric structure. We construct a multisoliton of the pertinent Landau free energy to describe the Cα profile with ultrahigh precision. We use Glauber dynamics to resolve how the multisoliton responds to repeated increases and decreases in ambient temperature. We confirm that the initial structure is unstable in isolation. We reveal a highly degenerate ground-state landscape, an attractive set towards which Glauber dynamics converges in the limit of vanishing ambient temperature. We analyze the thermal stability of this Glauber attractor using room-temperature molecular dynamics. We identify and scrutinize a particularly stable subset in which the two helical segments of the original multisoliton align in parallel next to each other. During the MD time evolution of a representative structure from this subset, we observe intermittent quasiparticle oscillations along the C-terminal α helix, some of which resemble a translating Davydov's Amide-I soliton. We propose that the presence of oscillatory motion is in line with the expected intrinsically disordered character of Myc.

  7. Determination of Process Parameters in Multi-Stage Hydro-Mechanical Deep Drawing by FE Simulation

    Science.gov (United States)

    Kumar, D. Ravi; Manohar, M.

    2017-09-01

    In this work, analysis has been carried to simulate manufacturing of a near hemispherical bottom part with large depth by hydro-mechanical deep drawing with an aim to reduce the number of forming steps and to reduce the extent of thinning in the dome region. Inconel 718 has been considered as the material due to its importance in aerospace industry. It is a Ni-based super alloy and it is one of the most widely used of all super alloys primarily due to large-scale applications in aircraft engines. Using Finite Element Method (FEM), numerical simulations have been carried out for multi-stage hydro-mechanical deep drawing by using the same draw ratios and design parameters as in the case of conventional deep drawing in four stages. The results showed that the minimum thickness in the final part can be increased significantly when compared to conventional deep drawing. It has been found that the part could be deep drawn to the desired height (after trimming at the final stage) without any severe wrinkling. Blank holding force (BHF) and peak counter pressure have been found to have a strong influence on thinning in the component. Decreasing the coefficient of friction has marginally increased the minimum thickness in the final component. By increasing the draw ratio and optimizing BHF, counter pressure and die corner radius in the simulations, it has been found that it is possible to draw the final part in three stages. It has been found that thinning can be further reduced by decreasing the initial blank size without any reduction in the final height. This reduced the draw ratio at every stage and optimum combination of BHF and counter pressure have been found for the 3-stage process also.

  8. Leaching characteristics of poultry litter in first phase of multistage anaerobic digestion

    Directory of Open Access Journals (Sweden)

    Surya P Sunkavalli

    2014-05-01

    Full Text Available Poultry litter is highly biodegradable in nature. Therefore, it could be subjected to biomethanation to produce valuable biogas and bio-manure as byproducts. Some studies have been conducted along these lines in India by utilizing the poultry litter as a substrate in batch type dung digesters of KVIC and DENABANDHU models. However, these reactors have the drawbacks of high residence time (30 – 35 days, scum formation problems etc. Moreover, these batch type plants are not suitable for the treatment of large quantities of solid waste. Multistage anaerobic digestion has the potential to overcome some of the aforesaid issues. Anaerobic leaching experiments were conducted at different total solids concentration and pH using poultry litter in order to evaluate the leachate quality for a period of 7 days. The increase in Total solids (TS % from 15 to 20% show inverse effect on VFA and Alkalinity. The change in pH from 8.5 to 5.5 didn’t show much impact on VFA but there is a small impact on alkalinity. It was also observed that the leaching of the organic matter in the solid to the liquid phase is very fast and it is taking place approximately in three to four days and subsequently leachate getting saturated. Therefore, reactor set up was made in the last phase to regularly remove the water from the reactor so that higher driving force is available for leaching. The study resulted in leaching of maximum organic content in the solid to liquid within three days. DOI: http://dx.doi.org/10.3126/ije.v3i2.10516 International Journal of the Environment Vol.3(2 2014: 76-82

  9. Multi-stage high cell continuous fermentation for high productivity and titer.

    Science.gov (United States)

    Chang, Ho Nam; Kim, Nag-Jong; Kang, Jongwon; Jeong, Chang Moon; Choi, Jin-dal-rae; Fei, Qiang; Kim, Byoung Jin; Kwon, Sunhoon; Lee, Sang Yup; Kim, Jungbae

    2011-05-01

    We carried out the first simulation on multi-stage continuous high cell density culture (MSC-HCDC) to show that the MSC-HCDC can achieve batch/fed-batch product titer with much higher productivity to the fed-batch productivity using published fermentation kinetics of lactic acid, penicillin and ethanol. The system under consideration consists of n-serially connected continuous stirred-tank reactors (CSTRs) with either hollow fiber cell recycling or cell immobilization for high cell-density culture. In each CSTR substrate supply and product removal are possible. Penicillin production is severely limited by glucose metabolite repression that requires multi-CSTR glucose feeding. An 8-stage C-HCDC lactic acid fermentation resulted in 212.9 g/L of titer and 10.6 g/L/h of productivity, corresponding to 101 and 429% of the comparable lactic acid fed-batch, respectively. The penicillin production model predicted 149% (0.085 g/L/h) of productivity in 8-stage C-HCDC with 40 g/L of cell density and 289% of productivity (0.165 g/L/h) in 7-stage C-HCDC with 60 g/L of cell density compared with referring batch cultivations. A 2-stage C-HCDC ethanol experimental run showed 107% titer and 257% productivity of the batch system having 88.8 g/L of titer and 3.7 g/L/h of productivity. MSC-HCDC can give much higher productivity than batch/fed-batch system, and yield a several percentage higher titer as well. The productivity ratio of MSC-HCDC over batch/fed-batch system is given as a multiplication of system dilution rate of MSC-HCDC and cycle time of batch/fed-batch system. We suggest MSC-HCDC as a new production platform for various fermentation products including monoclonal antibody.

  10. Nitrogen and phosphorus removed from a subsurface flow multi-stage filtration system purifying agricultural runoff.

    Science.gov (United States)

    Zhao, Yaqi; Huang, Lei; Chen, Yucheng

    2018-07-01

    Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.

  11. Does standard deviation matter? Using "standard deviation" to quantify security of multistage testing.

    Science.gov (United States)

    Wang, Chun; Zheng, Yi; Chang, Hua-Hua

    2014-01-01

    With the advent of web-based technology, online testing is becoming a mainstream mode in large-scale educational assessments. Most online tests are administered continuously in a testing window, which may post test security problems because examinees who take the test earlier may share information with those who take the test later. Researchers have proposed various statistical indices to assess the test security, and one most often used index is the average test-overlap rate, which was further generalized to the item pooling index (Chang & Zhang, 2002, 2003). These indices, however, are all defined as the means (that is, the expected proportion of common items among examinees) and they were originally proposed for computerized adaptive testing (CAT). Recently, multistage testing (MST) has become a popular alternative to CAT. The unique features of MST make it important to report not only the mean, but also the standard deviation (SD) of test overlap rate, as we advocate in this paper. The standard deviation of test overlap rate adds important information to the test security profile, because for the same mean, a large SD reflects that certain groups of examinees share more common items than other groups. In this study, we analytically derived the lower bounds of the SD under MST, with the results under CAT as a benchmark. It is shown that when the mean overlap rate is the same between MST and CAT, the SD of test overlap tends to be larger in MST. A simulation study was conducted to provide empirical evidence. We also compared the security of MST under the single-pool versus the multiple-pool designs; both analytical and simulation studies show that the non-overlapping multiple-pool design will slightly increase the security risk.

  12. Numerical identification of blade exit angle effect on the performance for a multistage centrifugal pump impeller

    Directory of Open Access Journals (Sweden)

    Babayigit Osman

    2015-01-01

    Full Text Available Nowadays, single and multistage centrifugal pumps are widely used in industrial and mining enterprises. One of the most important components of a centrifugal pump is the impeller. The performance characteristics are related to the pump comprising the head and the overall efficiency rely a great deal on the impeller geometry. In this work, effects of blade exit angle change on hydraulic efficiency of a multi stage pump impeller are investigated via Ansys-Fluent computational fluid dynamics software for constant width impeller entrance and exit gates, blade numbers and blade thickness. Firstly, the flow volume of a centrifugal pump impeller is generated and then mesh structure is formed for the full impeller flow volume. Secondly, rotational periodic flow model are adopted in order to examine the effect of periodic flow assumption on the performance predictions. Corresponding to the available experimental data, inlet mass flow rate, outlet static pressure and rotation of impeller are taken as 0.02m3s-1, 450 kPa and 2950 rpm, respectively for the water fluid. No slip boundary condition is exposed to all solid of surface in the flow volume. The continuity and Navier-Stokes equations with the k-ε turbulence model and the standard wall functions are used. During the study, numerical analyses are conducted for the blade exit angle values of 18°, 20°, 25°, 30° and 35°. In consequence of the performed analyses, it is determined that hydraulic efficiency of the pump impeller value is changed between 81.0-84.6%. The most convenient blade exit angle that yields 84.6% hydraulic efficiency at is 18°. The obtained results show that the blade exit angle range has an impact on the centrifugal pump performance describing the pump head and the hydraulic efficiency.

  13. Evaluating failure rate of fault-tolerant multistage interconnection networks using Weibull life distribution

    International Nuclear Information System (INIS)

    Bistouni, Fathollah; Jahanshahi, Mohsen

    2015-01-01

    Fault-tolerant multistage interconnection networks (MINs) play a vital role in the performance of multiprocessor systems where reliability evaluation becomes one of the main concerns in analyzing these networks properly. In many cases, the primary objective in system reliability analysis is to compute a failure distribution of the entire system according to that of its components. However, since the problem is known to be NP-hard, in none of the previous efforts, the precise evaluation of the system failure rate has been performed. Therefore, our goal is to investigate this parameter for different fault-tolerant MINs using Weibull life distribution that is one of the most commonly used distributions in reliability. In this paper, four important groups of fault-tolerant MINs will be examined to find the best fault-tolerance techniques in terms of failure rate; (1) Extra-stage MINs, (2) Parallel MINs, (3) Rearrangeable non-blocking MINs, and (4) Replicated MINs. This paper comprehensively analyzes all perspectives of the reliability (terminal, broadcast, and network reliability). Moreover, in this study, all reliability equations are calculated for different network sizes. - Highlights: • The failure rate of different MINs is analyzed by using Weibull life distribution. • This article tries to find the best fault-tolerance technique in the field of MINs. • Complex series-parallel RBDs are used to determine the reliability of the MINs. • All aspects of the reliability (i.e. terminal, broadcast, and network) are analyzed. • All reliability equations will be calculated for different size N×N.

  14. Uranium and plutonium extraction by N,N-dialkyl-amides using multistage mixer-settler extractors

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Y.; Hotoku, S.; Tsutsui, N.; Suzuki, A.; Tsubata, Y.; Matsumura, T.

    2016-07-01

    N,N-Dialkyl-amides (mono-amides) are known as extractants for U and Pu, and many studies have been carried out mainly by single-stage batch method. We have focused on two mono amides: N,N-di(2-ethylhexyl)-2,2-dimethylpropanamide (DEHDMPA) and N,N-di(2-ethylhexyl)butanamide (DEHBA), and proposed a multistage extraction process for recovering U and Pu by these mono-amides. A continuous counter-current experiment was carried out to demonstrate the validity of this process. This process consisted of two cycles, and the first cycle and the second cycle employed DEHDMPA and DEHBA as extractants, respectively. The feed solution for the first cycle was 5.1 mol/dm{sup 3} (M) nitric acid containing 0.92 M U, 1.6 mM Pu, and 0.6 mM Np. The raffinate collected in the first cycle was used as the feed for the second cycle. The ratios of U recovered in the U fraction and U-Pu fraction were 99.1% and 0.8%, respectively, and the ratios of U in the used solvents were <0.04%. The ratio of Pu recovered in the U-Pu fraction was 99.7%, and the ratio of Pu in the used solvents was in the order of 10{sup -3} - 10{sup -4}%. The concentration ratio of U with respect to Pu in the U-Pu fraction was 9, and this indicated that Pu was not isolated. The decontamination factor of U with respect to Pu in the U fraction was obtained as 4.5*10{sup 5}. These results supported the validity of the proposed process. (authors)

  15. Removal of heavy metals from water using multistage functionalized multiwall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Budimirović Dragoslav

    2017-01-01

    Full Text Available The multistage synthesis of the multi-wall carbon nanotubes (MWCNT modified with polyamidoamine dendrimers, A1/ and A2/MWCNT, capable of cation removal, is presented in this work, as well as novel adsorbents based on these precursor materials and modified with goethite nano-deposit, α-FeOOH, A1/ and A2/MWCNT–α-FeO(OH adsorbents used for As(V removal. In a batch test, the influence of pH, contact time, initial ion concentration and temperature on adsorption efficiency were studied. Adsorption data modelling by the Langmuir isotherm, revealed good adsorption capacities (in mg g-1 of 18.8 for As(V and 60.1 and 44.2 for Pb2+ and Cd2+ on A2/MWCNT, respectively. Also, 27.6 and 29.8 mg g-1 of As(V on A1/ and A2/MWCNT–α-FeO(OH, respectively, were removed. Thermodynamic parameters showed that the adsorption is spontaneous and endothermic processes. Results of the study of influences of competitive ions: bicarbonate, sulfate, phosphate, silicate, chromate, fluoride and natural organic matter (NOM, i.e., humic acid (HA, showed the highest effect of phosphate on the decrease of arsenate adsorption. Time-dependent adsorption was best described by pseudo-second-order kinetic model and Weber–Morris model which predicted intra-particle diffusion as a rate-controlling step. Also, activation energy (Ea / kJ mol-1: 8.85 for Cd2+, 9.25 for Pb2+ and 7.98 for As(V, were obtained from kinetic data. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III45019 and Grant no. OI 172057

  16. Analysis of experimental characteristics of multistage steam-jet electors of steam turbines

    Science.gov (United States)

    Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Brezgin, D. V.; Zhelonkin, N. V.; Murmanskii, I. B.

    2017-02-01

    A series of questions for specification of physical gas dynamics model in flow range of steam-jet unit and ejector computation methodology, as well as functioning peculiarities of intercoolers, was formulated based on analysis of experimental characteristics of multistage team-jet steam turbines. It was established that coefficient defining position of critical cross-section of injected flow depends on characteristics of the "sound tube" zone. Speed of injected flow within this tube may exceed that of sound, and pressure jumps in work-steam decrease at the same time. Characteristics of the "sound tube" define optimal axial sizes of the ejector. According to measurement results, the part of steam condensing in the first-stage coolant constitutes 70-80% of steam amount supplied into coolant and is almost independent of air content in steam. Coolant efficiency depends on steam pressure defined by operation of steam-jet unit of ejector of the next stage after coolant of steam-jet stage, temperature, and condensing water flow. As a rule, steam entering content of steam-air mixture supplied to coolant is overheated with respect to saturation temperature of steam in the mixture. This should be taken into account during coolant computation. Long-term operation causes changes in roughness of walls of the ejector's mixing chamber. The influence of change of wall roughness on ejector characteristic is similar to the influence of reverse pressure of the steam-jet stage. Until some roughness value, injection coefficient of the ejector stage operating in superlimiting regime hardly changed. After reaching critical roughness, the ejector switches to prelimiting operating regime.

  17. NDDP multi-stage flash desalination process simulator design process optimization

    International Nuclear Information System (INIS)

    Sashi Kumar, G.N.; Mahendra, A.K.; Sanyal, A.; Gouthaman, G.

    2009-03-01

    The improvement of NDDP-MSF plant's performance ratio (PR) from design value of 9.0 to 13.1 was achieved by optimizing the plant's operating parameters within the feasible zone of operation. This plant has 20% excess heat transfer area over the design condition which helped us to get a PR of 15.1 after optimization. Thus we have obtained, (1) A 45% increase in the output over design value by the optimization carried out with design heat transfer area. (2) A 68% increase in the output over design value by the optimization carried out with increased heat transfer area. This report discusses the approach, methodology and results of the optimization study carried out. A simulator, MSFSIM which predicts the performance of a multi-stage flash (MSF) desalination plant has been coupled with Genetic Algorithm (GA) optimizer. Exhaustive optimization case studies have been conducted on this plant with an objective to increase the performance ratio (PR). The steady state optimization performed was based on obtaining the best stage wise pressure profile to enhance thermal efficiency which in-turn improves the performance ratio. Apart from this, the recirculating brine flow rate was also optimized. This optimization study enabled us to increase the PR of NDDP-MSF plant from design value of 9.0 to an optimized value 13.1. The actual plant is provided with 20% additional heat transfer area over and above the design heat transfer area. Optimization with this additional heat transfer area has taken the PR to 15.1. A desire to maintain equal flashing rates in all of the stages (a feature required for long life of the plant and to avoid cascading effect of non-flashing triggered by any stage) of the MSF plant has also been achieved. The deviation in the flashing rates within stages has been reduced. The startup characteristic of the plant (i.e the variation of stage pressure and the variation of recirculation flow rate with time), have been optimized with a target to minimize the

  18. A multistage chronobiologic intervention for the treatment of depression: a pilot study.

    Science.gov (United States)

    Moscovici, Lucian; Kotler, Moshe

    2009-08-01

    Most antidepressant medications in current use have several disadvantages: a delayed therapeutic effect, side effects, stigmatization and concerns about safety for the developing fetus during pregnancy. Several chronobiologic techniques which are free of these disadvantages were proposed as an alternative. The current article reports the design and the initial outcome results of a new chronobiologic multistage intervention (CMI) that is comprised of the following techniques: (i) partial sleep deprivation during the second half of the night (wake therapy--WT), (ii) medium (green) wavelength light in combination with dawn simulation (DS), (iii) bright light therapy (BLT), and (iv) sleep phase advance (SPA). The study was conducted as a set of 12 single-case designs with moderate-to-severe depressive volunteering patients. Depression, anxiety and tension measurements were taken on a daily basis beginning with a baseline measurement (T0), followed by a set of four consecutive morning measurements during the therapeutic intervention (T1-T4),and with a final measurement carried out at the end of 4 weeks of follow-up (T5). A clinically significant rapid improvement of the depressive symptoms was demonstrated and maintained for at least 4 weeks after the end of the intervention. No dropouts or compliance difficulties were observed. Patient satisfaction was high, and other than having to sleep for four nights at the Research and Development Unit, participants were not inconvenienced by the nature of the therapeutic design. Sleepiness in the late afternoon hours was reported by several of the participants, but did not reach a level that interfered with their ability to function. Levels of tension did not show a consistent improvement along the intervention procedure and were not maintained in follow-up. There was some unexpected improvement in the level of anxiety that persisted at follow-up. This latter finding requires further validation by additional studies. These

  19. Aerobic biodegradation of a sulfonated phenylazonaphthol dye by a bacterial community immobilized in a multistage packed-bed BAC reactor.

    Science.gov (United States)

    Ruiz-Arias, Alfredo; Juárez-Ramírez, Cleotilde; de los Cobos-Vasconcelos, Daniel; Ruiz-Ordaz, Nora; Salmerón-Alcocer, Angélica; Ahuatzi-Chacón, Deifilia; Galíndez-Mayer, Juvencio

    2010-11-01

    A microbial community able to aerobically degrade the azo dye Acid Orange 7 was selected from riparian or lacustrine sediments collected at sites receiving textile wastewaters. Three bacterial strains, pertaining to the genera Pseudomonas, Arthrobacter, and Rhizobium, constitute the selected community. The biodegradation of AO7 was carried out in batch-suspended cell culture and in a continuously operated multistage packed-bed BAC reactor. The rapid decolorization observed in batch culture, joined to a delay of about 24 h in COD removal and cell growth, suggests that enzymes involved in biodegradation of the aromatic amines generated after AO7 azo-bond cleavage (1-amino-2-naphthol [1-A2N] and 4-aminobenzenesulfonic acid [4-ABS]), are inducible in this microbial consortium. After this presumptive induction period, the accumulated byproducts, measured through COD, were partially metabolized and transformed in cell mass. At all azo dye loading rates used, complete removal of AO7 and 1-A2N was obtained in the multistage packed-bed BAC reactor (PBR).; however, the overall COD (eta ( COD )) and 4-ABS (eta ( ABS )) removal efficiencies obtained in steady state continuous culture were about 90%. Considering the toxicity of 1-A2N, its complete removal has particular relevance. In the first stages of the packed-bed BAC reactor (Fig. 4a-c), major removal was observed. In the last stage, only a slight removal of COD and 4-ABS was obtained. Comparing to several reported studies, the continuously operated multistage packed-bed BAC reactor showed similar or superior results. In addition, the operation of large-packed-bed BAC reactors could be improved by using several shallow BAC bed stages, because the pressure drop caused by bed compaction of a support material constituted by small and fragile particles can be reduced.

  20. Approximate Solutions of Delay Differential Equations with Constant and Variable Coefficients by the Enhanced Multistage Homotopy Perturbation Method

    Directory of Open Access Journals (Sweden)

    D. Olvera

    2015-01-01

    Full Text Available We expand the application of the enhanced multistage homotopy perturbation method (EMHPM to solve delay differential equations (DDEs with constant and variable coefficients. This EMHPM is based on a sequence of subintervals that provide approximate solutions that require less CPU time than those computed from the dde23 MATLAB numerical integration algorithm solutions. To address the accuracy of our proposed approach, we examine the solutions of several DDEs having constant and variable coefficients, finding predictions with a good match relative to the corresponding numerical integration solutions.

  1. Multi-stage IT project evaluation: The flexibility value obtained by implementing and resolving Berk, Green and Naik (2004) model

    Science.gov (United States)

    Abid, Fathi; Guermazi, Dorra

    2009-11-01

    In this paper, we evaluate a multi-stage information technology investment project, by implementing and resolving Berk, Green and Naik's (2004) model, which takes into account specific features of IT projects and considers the real option to suspend investment at each stage. We present a particular case of the model where the project value is the solution of an optimal control problem with a single state variable. In this case, the model is more intuitive and tractable. The case study confirms the practical potential of the model and highlights the importance of the real-option approach compared to classical discounted cash flow techniques in the valuation of IT projects.

  2. A multi-stage stochastic program for supply chain network redesign problem with price-dependent uncertain demands

    DEFF Research Database (Denmark)

    Fattahi, Mohammad; Govindan, Kannan; Keyvanshokooh, Esmaeil

    2018-01-01

    In this paper, we address a multi-period supply chain network redesign problem in which customer zones have price-dependent stochastic demand for multiple products. A novel multi-stage stochastic program is proposed to simultaneously make tactical decisions including products' prices and strategic...... redesign decisions. Existing uncertainty in potential demands of customer zones is modeled through a finite set of scenarios, described in the form of a scenario tree. The scenarios are generated using a Latin Hypercube Sampling method and then a forward scenario construction technique is employed...

  3. Large-scale multi-stage constructed wetlands for secondary effluents treatment in northern China: Carbon dynamics.

    Science.gov (United States)

    Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan

    2018-02-01

    Multi-stage constructed wetlands (CWs) have been proved to be a cost-effective alternative in the treatment of various wastewaters for improving the treatment performance as compared with the conventional single-stage CWs. However, few long-term full-scale multi-stage CWs have been performed and evaluated for polishing effluents from domestic wastewater treatment plants (WWTP). This study investigated the seasonal and spatial dynamics of carbon and the effects of the key factors (input loading and temperature) in the large-scale seven-stage Wu River CW polishing domestic WWTP effluents in northern China. The results indicated a significant improvement in water quality. Significant seasonal and spatial variations of organics removal were observed in the Wu River CW with a higher COD removal efficiency of 64-66% in summer and fall. Obvious seasonal and spatial variations of CH 4 and CO 2 emissions were also found with the average CH 4 and CO 2 emission rates of 3.78-35.54 mg m -2 d -1 and 610.78-8992.71 mg m -2 d -1 , respectively, while the higher CH 4 and CO 2 emission flux was obtained in spring and summer. Seasonal air temperatures and inflow COD loading rates significantly affected organics removal and CH 4 emission, but they appeared to have a weak influence on CO 2 emission. Overall, this study suggested that large-scale Wu River CW might be a potential source of GHG, but considering the sustainability of the multi-stage CW, the inflow COD loading rate of 1.8-2.0 g m -2 d -1 and temperature of 15-20 °C may be the suitable condition for achieving the higher organics removal efficiency and lower greenhouse gases (GHG) emission in polishing the domestic WWTP effluent. The obtained knowledge of the carbon dynamics in large-scale Wu River CW will be helpful for understanding the carbon cycles, but also can provide useful field experience for the design, operation and management of multi-stage CW treatments. Copyright © 2017 Elsevier Ltd. All rights

  4. Optimum design of a multi-stage dye-laser amplifier pumped with Cu-vapor lasers

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Uchiumi, Michihiro

    1990-01-01

    A numerical simulation code, based on the one-dimensional photon transport equation, was developed and analyzed to evaluate the performances of Rhodamine 6G dye laser amplifiers pumped with Cu-vapor lasers. The upper singlet-state absorption played an important role to determine the efficiency. The simulation code was applied to optimize a multi-stage amplifier system with a pulsed or a CW dye-laser oscillator. The analytical results gave a useful guideline to design a high-power pulsed dye-laser system for atomic uranium enrichment. (author)

  5. The application of the consecutive-Woehler-curve-concept in computation of the life values for multi-stage creep

    International Nuclear Information System (INIS)

    Schott, G.

    1991-01-01

    It is known that at multi-stage creep load there cannot be calculated any reliable life values by means of linear damage accumulation hypotheses. A practicable non-linear statement was proposed by Pantelakis. Besides the one-stage creep life curve, results from two-stage tests are required for determining the damage exponent. With this exponent, which is a function of temperature and stress in the load stage applied first, the life values can be calculated only for two-stage sequences whose stress stages have to be identical to those of the two-stage tests. For the application of the consecutive Woehler curve concept described in the following there is required the knowledge of the one-stage creep life curve and of the creep function for increasing and decreasing stress sequences derived from two-stage tests. Then, the life values can be calculated for the most different multi-stage loads. The stress stages should lie within the stress range used in the two-stage tests. (orig.) [de

  6. Utilization of desulfurization gypsum to producing SO{sub 2} and CaO in multi-stage fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhu; Wang, Tao; Yang, Hairui; Zhang, Hai; Zhang, Zuyi [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    With emission control becomes more and more stringent, flue gas desulphurization (FGD) is commonly employed for desulfurization. However, the product of FGD, gypsum, causes the unexpected environmental problems. How to utilize the byproduct of FGD effectively and economically is a challenging task. This paper proposed the new technical process to produce SO{sub 2} and CaO by reducing the gypsum in multi-stage fluidized bed reactor with different atmosphere. In addition, some preliminary experiments were carried out in PTGA. The results show that CO concentration has little effect on the initial decomposing temperature, but affect the decomposing rate of phosphogypsum obviously. The decomposing product composed of CaS and CaO simultaneously. The ratio of the two products was determined by CO concentration. Lower CO content benefits to produce more CO product and more SO{sub 2}. The decomposition reaction of phosphogypsum in reducing atmosphere is parallel competition reaction. Therefore, it is necessary to eliminate the effect of CaS and other byproduct efficiently by the new technology, which utilize multi-atmosphere in multistage fluidized bed reactors.

  7. Studies of the impact of prerotation problem of the secondary impeller on performance of multi-stage centrifugal pumps

    International Nuclear Information System (INIS)

    Zhai, L L; Wu, P; Jiang, Q L; Wang, L Q

    2012-01-01

    In engineering practice, part of the multi-stage centrifugal pumps is designed without space guide vanes due to the size restrictions and the volute is distorted much in shape. In these pumps, tangential velocity of the fluid at the outlet of the first-stage impeller is so great that it has caused a prerotation problem which will affect the inlet flow conditions of the secondary impeller leading to serious efficiency and head decline of the secondary impeller. The head problem of the second stage in multi-stage centrifugal pumps caused by prerotation at the entrance of the second stage was analyzed and the internal hydraulic performance was optimized by setting clapboards in the volute in this paper. CFD numerical simulation method combined with experiment was applied to predict the effect of internal clapboards on the performance of the centrifugal pump. The original prototype was transformed according to the simulation result and tested to verify the optimization work. The experiment result shows that hydraulic performance is remarkably improved compared with the original one and the prerotation problem is basically solved.

  8. Multistage bioassociation of uranium onto an extremely halophilic archaeon revealed by a unique combination of spectroscopic and microscopic techniques.

    Science.gov (United States)

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Drobot, Björn; Schmidt, Matthias; Musat, Niculina; Swanson, Juliet S; Reed, Donald T; Stumpf, Thorsten; Cherkouk, Andrea

    2017-04-05

    The interactions of two extremely halophilic archaea with uranium were investigated at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, the involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization. Copyright © 2016. Published by Elsevier B.V.

  9. A MULTISTAGE GRADUAL NITROGENREDUCTION STRATEGY FOR INCREASED LIPID PRODUCTIVITY AND NITROGEN REMOVAL IN WASTEWATER USING Chlorella vulgaris AND Scenedesmus obliquus

    Directory of Open Access Journals (Sweden)

    J. C. Robles-Heredia

    2015-06-01

    Full Text Available AbstractChlorella vulgaris and Scenedesmus obliquuswere grown in artificial-wastewater using a new nitrogen-limitation strategy aimed at increasing lipid productivity. This strategy consisted in a multi-stage process with sequential reduction of N-NH4 concentration (from 90 to 60, 40, and 20 mg.L-1 to promote a balance between cell growth and lipid accumulation. Lipid productivity was compared against a reference process consisting of nitrogen reduction in two stages, where the nitrogen concentration was suddenly reduced from 90 mg.L-1 to three different concentrations (10, 20, and 30 mg.L-1. In the multi-stage mode, only C. vulgaris exhibited a net lipid-productivity increase. Lipid content of S. obliquus did not present a significant increase, thus decreasing lipid productivity. The highest lipid productivities were observed in the two-stage mode for both S. obliquus and C. vulgaris (194.9 and 133.5 mg.L-1.d-1, respectively, and these values are among the highest reported in the literature to date.

  10. Performance assessment and microbial diversity of two pilot scale multi-stage sub-surface flow constructed wetland systems.

    Science.gov (United States)

    Babatunde, A O; Miranda-CasoLuengo, Raul; Imtiaz, Mehreen; Zhao, Y Q; Meijer, Wim G

    2016-08-01

    This study assessed the performance and diversity of microbial communities in multi-stage sub-surface flow constructed wetland systems (CWs). Our aim was to assess the impact of configuration on treatment performance and microbial diversity in the systems. Results indicate that at loading rates up to 100gBOD5/(m(2)·day), similar treatment performances can be achieved using either a 3 or 4 stage configuration. In the case of phosphorus (P), the impact of configuration was less obvious and a minimum of 80% P removal can be expected for loadings up to 10gP/(m(2)·day) based on the performance results obtained within the first 16months of operation. Microbial analysis showed an increased bacterial diversity in stage four compared to the first stage. These results indicate that the design and configuration of multi-stage constructed wetland systems may have an impact on the treatment performance and the composition of the microbial community in the systems, and such knowledge can be used to improve their design and performance. Copyright © 2016. Published by Elsevier B.V.

  11. Application of multi-stage, multi-disk type downhole seismic source; Tadanshiki taso enbangata koseinai shingen no tekiyosei

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, N [Japan National Oil Corp., Tokyo (Japan); Shoji, Y [Oyo Corp., Tokyo (Japan)

    1997-05-27

    A multi-stage, multi-disk type seismic source was developed as a downhole seismic source. The seismic source is an improved version of the downhole seismic source of a system in which an elastic wave is generated by a weight accelerated by restitutive force of a spring striking the upper part of a laminated structure consisted of metal disks and elastic bodies installed in water in a well. Enhancing the vibration exciting efficiency requires impedance radiated from the disks to be increased. The multi-disk structure was adopted because of restrictions on the disk area under the limiting condition of being inside the well. Further limitation has still existed, which led to finally structuring the multi-disk type to a multi-stage construction to increase the radiated impedance. In order to increase average velocity on the radiation surface, mass relationship between the hammer and the anvil was sought so that the maximum velocity is achieved at the process of converting motion energies among the hammer, anvil and disks. The anvil mass may sufficiently be 50% to 100% of the hammer mass. The equipment was installed in an actual oil well for testing. This seismic source was verified to have sufficient applicability in the cross hole measurement. 5 refs., 7 figs., 1 tab.

  12. Multi area and multistage expansion-planning of electricity supply with sustainable energy development criteria: a multi objective model

    Energy Technology Data Exchange (ETDEWEB)

    Unsihuay-Vila, Clodomiro; Marangon-Lima, J.W.; Souza, A.C Zambroni de [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)], emails: clodomirounsihuayvila @gmail.com, marangon@unifei.edu.br, zambroni@unifei.edu.br; Perez-Arriaga, I.J. [Universidad Pontificia Comillas, Madrid (Spain)], email: ipa@mit.edu

    2010-07-01

    A novel multi objective, multi area and multistage model to long-term expansion-planning of integrated generation and transmission corridors incorporating sustainable energy developing is presented in this paper. The proposed MESEDES model is a multi-regional multi-objective and 'bottom-up' energy model which considers the electricity generation/transmission value-chain, i.e., power generation alternatives including renewable, nuclear and traditional thermal generation along with transmission corridors. The model decides the optimal location and timing of the electricity generation/transmission abroad the multistage planning horizon. The MESEDES model considers three objectives belonging to sustainable energy development criteria such as: a) the minimization of investments and operation costs of : power generation, transmission corridors, energy efficiency (demand side management (DSM) programs) considering CO2 capture technologies; b) minimization of Life Cycle Greenhouse Gas Emissions (LC GHG); c) maximization of the diversification of electricity generation mix. The proposed model consider aspects of the carbon abatement policy under the CDM - Clean Development Mechanism or European Union Greenhouse Gas Emission Trading Scheme. A case study is used to illustrate the proposed framework. (author)

  13. An Experimental Characterization of Tip Leakage Flows and Corresponding Effects on Multistage Compressor Performance

    Science.gov (United States)

    Berdanier, Reid Adam

    The effect of rotor tip clearances in turbomachinery applications has been a primary research interest for nearly 80 years. Over that time, studies have shown increased tip clearance in axial flow compressors typically has a detrimental effect on overall pressure rise capability, isentropic efficiency, and stall margin. With modern engine designs trending toward decreased core sizes to increase propulsive efficiency (by increasing bypass ratio) or additional compression stages to increase thermal efficiency by increasing the overall pressure ratio, blade heights in the rear stages of the high pressure compressor are expected to decrease. These rear stages typically feature smaller blade aspect ratios, for which endwall flows are more important, and the rotor tip clearance height represents a larger fraction of blade span. As a result, data sets collected with large relative rotor tip clearance heights are necessary to facilitate these future small core design goals. This research seeks to characterize rotor tip leakage flows for three tip clearance heights in the Purdue three-stage axial compressor facility (1.5%, 3.0%, and 4.0% as a percentage of overall annulus height). The multistage environment of this compressor provides the unique opportunity to examine tip leakage flow effects due to stage matching, stator-rotor interactions, and rotor-rotor interactions. The important tip leakage flow effects which develop as a result of these interactions are absent for previous studies which have been conducted using single-stage machines or isolated rotors. A series of compressor performance maps comprise points at four corrected speeds for each of the three rotor tip clearance heights. Steady total pressure and total temperature measurements highlight the effects of tip leakage flows on radial profiles and wake shapes throughout the compressor. These data also evaluate tip clearance effects on efficiency, stall margin, and peak pressure rise capability. An emphasis of

  14. An investigation of rotor tip leakage flows in the rear-block of a multistage compressor

    Science.gov (United States)

    Brossman, John Richard

    measurements during this investigation. A detailed investigation and sensitivity analysis of the inlet flow field found the influence by the inlet total temperature profile was important to performance calculations. This finding was significant and original as previous investigations have been conducted on low-speed machines where there is minimal temperature rise. The steady state performance of the baseline 1.5% tip clearance case was outlined at design speed and three off-design speeds. The leakage flow from the rear seal, the inlet flow field and a thermal boundary condition over the casing was recorded at each operating point. Stage 1 was found to be the limiting stage independent of speed. Few datasets exist on multistage compressor performance with full boundary condition definitions, especially with off-design operating points presenting this as a unique dataset for CFD comparison. The detailed unsteady pressure measurements were conducted over Rotor 1 at design and a near-stall operating condition to characterize the leakage trajectory and position. The leakage flow initial point closer to the leading edge and trajectory angle increased at the higher loading condition. The over-the-rotor static pressure field on Rotor 1 indicated similar trends between the computational model and the leakage trajectory.

  15. The influence of the "cage" effect on the mechanism of reversible bimolecular multistage chemical reactions proceeding from different sites in solutions.

    Science.gov (United States)

    Doktorov, Alexander B

    2016-08-28

    Manifestations of the "cage" effect at the encounters of reactants have been theoretically treated on the example of multistage reactions (including bimolecular exchange reactions as elementary stages) proceeding from different active sites in liquid solutions. It is shown that for reactions occurring near the contact of reactants, consistent consideration of quasi-stationary kinetics of such multistage reactions (possible in the framework of the encounter theory only) can be made on the basis of chemical concepts of the "cage complex," just as in the case of one-site model described in the literature. Exactly as in the one-site model, the presence of the "cage" effect gives rise to new channels of reactant transformation that cannot result from elementary event of chemical conversion for the given reaction mechanism. Besides, the multisite model demonstrates new (as compared to one-site model) features of multistage reaction course.

  16. Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels.

    Science.gov (United States)

    Sim, Tae Seok; Kwon, Kiho; Park, Jae Chan; Lee, Jeong-Gun; Jung, Hyo-Il

    2011-01-07

    Previously we introduced a novel hydrodynamic method using a multi-orifice microchannel for size-based particle separation, which is called a multi-orifice flow fractionation (MOFF). The MOFF has several advantages such as continuous, non-intrusive, and minimal power consumption. However, it has a limitation that the recovery yield is relatively low. Although the recovery may be increased by adjusting parameters such as the Reynolds number and central collecting region, poor purity inevitably followed. We newly designed and fabricated a microfluidic channel for multi-stage multi-orifice flow fractionation (MS-MOFF), which is made by combining three multi-orifice segments, and consists of 3 inlets, 3 filters, 3 multi-orifice segments and 5 outlets. The structure and dimensions of the MS-MOFF were determined by the hydrodynamic principles to have constant Reynolds numbers at each multi-orifice segment. Polystyrene microspheres of two different sizes (7 μm and 15 μm) were tested. With this device, we made an attempt to improve recovery and minimize loss of purity by collecting and re-separating non-selected particles of the first separation. The final recovery successfully increased from 73.2% to 88.7% while the final purity slightly decreased from 91.4% to 89.1% (for 15 μm). These values were never achievable with the single-stage MOFF (SS-MOFF) having only one multi-orifice segment in our previous work. The MS-MOFF channel will be useful for clinical applications, such as separation of circulating tumor cells (CTC) or rare cells from human blood samples.

  17. A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype.

    Science.gov (United States)

    Rohnalter, Verena; Roth, Katrin; Finkernagel, Florian; Adhikary, Till; Obert, Julia; Dorzweiler, Kristina; Bensberg, Maike; Müller-Brüsselbach, Sabine; Müller, Rolf

    2015-11-24

    DNA-damaging drugs induce a plethora of molecular and cellular alterations in tumor cells, but their interrelationship is largely obscure. Here, we show that carboplatin treatment of human ovarian carcinoma SKOV3 cells triggers an ordered sequence of events, which precedes the emergence of mitotic chemoresistant cells. The initial phase of cell death after initiation of carboplatin treatment is followed around day 14 by the emergence of a mixed cell population consisting of cycling, cell cycle-arrested and senescent cells. At this stage, giant cells make up >80% of the cell population, p21 (CDKN1A) in strongly induced, and cell numbers remain nearly static. Subsequently, cell death decreases, p21 expression drops to a low level and cell divisions increase, including regular mitoses of giant cells and depolyploidization by multi-daughter divisions. These events are accompanied by the upregulation of stemness markers and a pro-inflammatory secretory phenotype, peaking after approximately 14 days of treatment. At the same time the cells initiate epithelial to mesenchymal transition, which over the subsequent weeks continuously increases, concomitantly with the emergence of highly proliferative, migratory, dedifferentiated, pro-inflammatory and chemoresistant cells (SKOV3-R). These cells are anchorage-independent and grow in a 3D collagen matrix, while cells on day 14 do not survive under these conditions, indicating that SKOV3-R cells were generated thereafter by the multi-stage process described above. This process was essentially recapitulated with the ovarian carcinoma cell line IGROV-1. Our observations suggest that transitory cells characterized by polyploidy, features of stemness and a pro-inflammatory secretory phenotype contribute to the acquisition of chemoresistance.

  18. Multistage open-tube trap for enrichment of part-per-trillion trace components of low-pressure (below 27-kPa) air samples

    Science.gov (United States)

    Ohara, D.; Vo, T.; Vedder, J. F.

    1985-01-01

    A multistage open-tube trap for cryogenic collection of trace components in low-pressure air samples is described. The open-tube design allows higher volumetric flow rates than densely packed glass-bead traps commonly reported and is suitable for air samples at pressures below 27 kPa with liquid nitrogen as the cryogen. Gas blends containing 200 to 2500 parts per trillion by volume each of ethane and ethene were sampled and hydrocarbons were enriched with 100 + or - 4 percent trap efficiency. The multistage design is more efficient than equal-length open-tube traps under the conditions of the measurements.

  19. Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions.

    Science.gov (United States)

    Slamecka, Jaroslav; Salimova, Lilia; McClellan, Steven; van Kelle, Mathieu; Kehl, Debora; Laurini, Javier; Cinelli, Paolo; Owen, Laurie; Hoerstrup, Simon P; Weber, Benedikt

    2016-01-01

    Amniotic fluid stem cells (AFSC) represent an attractive potential cell source for fetal and pediatric cell-based therapies. However, upgrading them to pluripotency confers refractoriness toward senescence, higher proliferation rate and unlimited differentiation potential. AFSC were observed to rapidly and efficiently reacquire pluripotency which together with their easy recovery makes them an attractive cell source for reprogramming. The reprogramming process as well as the resulting iPSC epigenome could potentially benefit from the unspecialized nature of AFSC. iPSC derived from AFSC also have potential in disease modeling, such as Down syndrome or β-thalassemia. Previous experiments involving AFSC reprogramming have largely relied on integrative vector transgene delivery and undefined serum-containing, feeder-dependent culture. Here, we describe non-integrative oriP/EBNA-1 episomal plasmid-based reprogramming of AFSC into iPSC and culture in fully chemically defined xeno-free conditions represented by vitronectin coating and E8 medium, a system that we found uniquely suited for this purpose. The derived AF-iPSC lines uniformly expressed a set of pluripotency markers Oct3/4, Nanog, Sox2, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 in a pattern typical for human primed PSC. Additionally, the cells formed teratomas, and were deemed pluripotent by PluriTest, a global expression microarray-based in-silico pluripotency assay. However, we found that the PluriTest scores were borderline, indicating a unique pluripotent signature in the defined condition. In the light of potential future clinical translation of iPSC technology, non-integrating reprogramming and chemically defined culture are more acceptable.

  20. A new method in predicting productivity of multi-stage fractured horizontal well in tight gas reservoirs

    Directory of Open Access Journals (Sweden)

    Yunsheng Wei

    2016-10-01

    Full Text Available The generally accomplished technique for horizontal wells in tight gas reservoirs is by multi-stage hydraulic fracturing, not to mention, the flow characteristics of a horizontal well with multiple transverse fractures are very intricate. Conventional methods, well as an evaluation unit, are difficult to accurately predict production capacity of each fracture and productivity differences between wells with a different number of fractures. Thus, a single fracture sets the minimum evaluation unit, matrix, fractures, and lateral wellbore model that are then combined integrally to approximate horizontal well with multiple transverse hydraulic fractures in tight gas reservoirs. This paper presents a new semi-analytical methodology for predicting the production capacity of a horizontal well with multiple transverse hydraulic fractures in tight gas reservoirs. Firstly, a mathematical flow model used as a medium, which is disturbed by finite conductivity vertical fractures and rectangular shaped boundaries, is established and explained by the Fourier integral transform. Then the idea of a single stage fracture analysis is incorporated to establish linear flow model within a single fracture with a variable rate. The Fredholm integral numerical solution is applicable for the fracture conductivity function. Finally, the pipe flow model along the lateral wellbore is adapted to couple multi-stages fracture mathematical models, and the equation group of predicting productivity of a multi-stage fractured horizontal well. The whole flow process from the matrix to bottom-hole and production interference between adjacent fractures is also established. Meanwhile, the corresponding iterative algorithm of the equations is given. In this case analysis, the productions of each well and fracture are calculated under the different bottom-hole flowing pressure, and this method also contributes to obtaining the distribution of pressure drop and production for every

  1. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms

    Science.gov (United States)

    Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs’ production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture

  2. Multi-stage 3D-2D registration for correction of anatomical deformation in image-guided spine surgery

    Science.gov (United States)

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Jacobson, M. W.; Goerres, J.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2017-06-01

    A multi-stage image-based 3D-2D registration method is presented that maps annotations in a 3D image (e.g. point labels annotating individual vertebrae in preoperative CT) to an intraoperative radiograph in which the patient has undergone non-rigid anatomical deformation due to changes in patient positioning or due to the intervention itself. The proposed method (termed msLevelCheck) extends a previous rigid registration solution (LevelCheck) to provide an accurate mapping of vertebral labels in the presence of spinal deformation. The method employs a multi-stage series of rigid 3D-2D registrations performed on sets of automatically determined and increasingly localized sub-images, with the final stage achieving a rigid mapping for each label to yield a locally rigid yet globally deformable solution. The method was evaluated first in a phantom study in which a CT image of the spine was acquired followed by a series of 7 mobile radiographs with increasing degree of deformation applied. Second, the method was validated using a clinical data set of patients exhibiting strong spinal deformation during thoracolumbar spine surgery. Registration accuracy was assessed using projection distance error (PDE) and failure rate (PDE  >  20 mm—i.e. label registered outside vertebra). The msLevelCheck method was able to register all vertebrae accurately for all cases of deformation in the phantom study, improving the maximum PDE of the rigid method from 22.4 mm to 3.9 mm. The clinical study demonstrated the feasibility of the approach in real patient data by accurately registering all vertebral labels in each case, eliminating all instances of failure encountered in the conventional rigid method. The multi-stage approach demonstrated accurate mapping of vertebral labels in the presence of strong spinal deformation. The msLevelCheck method maintains other advantageous aspects of the original LevelCheck method (e.g. compatibility with standard clinical workflow, large

  3. A multi-stage oil-water-separating process design for the sea oil spill recovery robot

    Science.gov (United States)

    Zhang, Min-ge; Wu, Jian-guo; Lin, Xinhua; Wang, Xiao-ming

    2018-03-01

    Oil spill have the most common pollution to the marine ecological environment. In the late stage of physical method recovery, because of the thin oil and the strong sea breeze, the recovery vessels has low efficiency and high energy consumption. This paper develops a multi-stage oil-water-separating process carried by the sea oil spill recovery robot in severe conditions. This design consists of three separation process, among which both the first and third process adopt corrugated sheets horizontal oil-water separator, while the second is hydraulic rotary breaker. This design also equiptment with rectifier and cyclone separator and other important components. This process has high flexibility and high recovery efficiency. The implement effect is significant.

  4. High-efficiency helical traveling-wave tube with dynamic velocity taper and advanced multistage depressed collector

    Science.gov (United States)

    Curren, Arthur N.; Palmer, Raymond W.; Force, Dale A.; Dombro, Louis; Long, James A.

    A NASA-sponsored research and development contract has been established with the Watkins-Johnson Company to fabricate high-efficiency 20-watt helical traveling wave tubes (TWTs) operating at 8.4 to 8.43 GHz. The TWTs employ dynamic velocity tapers (DVTs) and advanced multistage depressed collectors (MDCs) having electrodes with low secondary electron emission characteristics. The TWT designs include two different DVTs; one for maximum efficiency and the other for minimum distortion and phase shift. The MDC designs include electrodes of untreated and ion-textured graphite as well as copper which has been treated for secondary electron emission suppression. Objectives of the program include achieving at least 55 percent overall efficiency. Tests with the first TWTs (with undepressed collectors) indicate good agreement between predicted and measured RF efficiencies with as high as 30 percent improvement in RF efficiency over conventional helix designs.

  5. Modular Adaptive System Based on a Multi-Stage Neural Structure for Recognition of 2D Objects of Discontinuous Production

    Directory of Open Access Journals (Sweden)

    I. Topalova

    2005-03-01

    Full Text Available This is a presentation of a new system for invariant recognition of 2D objects with overlapping classes, that can not be effectively recognized with the traditional methods. The translation, scale and partial rotation invariant contour object description is transformed in a DCT spectrum space. The obtained frequency spectrums are decomposed into frequency bands in order to feed different BPG neural nets (NNs. The NNs are structured in three stages - filtering and full rotation invariance; partial recognition; general classification. The designed multi-stage BPG Neural Structure shows very good accuracy and flexibility when tested with 2D objects used in the discontinuous production. The reached speed and the opportunuty for an easy restructuring and reprogramming of the system makes it suitable for application in different applied systems for real time work.

  6. Design study and performance analysis of a high-speed multistage variable-geometry fan for a variable cycle engine

    Science.gov (United States)

    Sullivan, T. J.; Parker, D. E.

    1979-01-01

    A design technology study was performed to identify a high speed, multistage, variable geometry fan configuration capable of achieving wide flow modulation with near optimum efficiency at the important operating condition. A parametric screening study of the front and rear block fans was conducted in which the influence of major fan design features on weight and efficiency was determined. Key design parameters were varied systematically to determine the fan configuration most suited for a double bypass, variable cycle engine. Two and three stage fans were considered for the front block. A single stage, core driven fan was studied for the rear block. Variable geometry concepts were evaluated to provide near optimum off design performance. A detailed aerodynamic design and a preliminary mechanical design were carried out for the selected fan configuration. Performance predictions were made for the front and rear block fans.

  7. Multistage 8.2 kyr event revealed through high-resolution XRF core scanning of Cuban sinkhole sediments

    Science.gov (United States)

    Peros, Matthew; Collins, Shawn; G'Meiner, Anna Agosta; Reinhardt, Eduard; Pupo, Felipe Matos

    2017-07-01

    We use sediments from a flooded sinkhole (Cenote Jennifer) in northern Cuba to provide new, well-dated, high-resolution evidence for the 8.2 kyr event. From 7600 to 8700 cal yr B.P. the sinkhole contained shallow, low-salinity water, which supported a marsh dominated by cattail and grass. Peaks in Cl and Br—occurring at 8150, 8200, and 8250 cal yr B.P.—are attributable to increased evaporation due to regional drying associated with the 8.2 kyr event. The three peaks in these elements also closely correspond to the greyscale record from the Cariaco Basin, indicative of increased upwelling in the southern Caribbean Sea at this time, supporting the notion of a multistage 8.2 kyr event. Our work provides new data that help to clarify the initiation, behavior, and impacts of the 8.2 kyr event in the northern tropics.

  8. Multi-stage optimization of decision and inhibitory trees for decision tables with many-valued decisions

    KAUST Repository

    Azad, Mohammad

    2017-06-16

    We study problems of optimization of decision and inhibitory trees for decision tables with many-valued decisions. As cost functions, we consider depth, average depth, number of nodes, and number of terminal/nonterminal nodes in trees. Decision tables with many-valued decisions (multi-label decision tables) are often more accurate models for real-life data sets than usual decision tables with single-valued decisions. Inhibitory trees can sometimes capture more information from decision tables than decision trees. In this paper, we create dynamic programming algorithms for multi-stage optimization of trees relative to a sequence of cost functions. We apply these algorithms to prove the existence of totally optimal (simultaneously optimal relative to a number of cost functions) decision and inhibitory trees for some modified decision tables from the UCI Machine Learning Repository.

  9. Flexible Design and Operation of Multi-Stage Flash (MSF Desalination Process Subject to Variable Fouling and Variable Freshwater Demand

    Directory of Open Access Journals (Sweden)

    Said Alforjani Said

    2013-10-01

    Full Text Available This work describes how the design and operation parameters of the Multi-Stage Flash (MSF desalination process are optimised when the process is subject to variation in seawater temperature, fouling and freshwater demand throughout the day. A simple polynomial based dynamic seawater temperature and variable freshwater demand correlations are developed based on actual data which are incorporated in the MSF mathematical model using gPROMS models builder 3.0.3. In addition, a fouling model based on stage temperature is considered. The fouling and the effect of noncondensable gases are incorporated into the calculation of overall heat transfer co-efficient for condensers. Finally, an optimisation problem is developed where the total daily operating cost of the MSF process is minimised by optimising the design (no of stages and the operating (seawater rejected flowrate and brine recycle flowrate parameters.

  10. GPU-Based Computation of Formation Pressure for Multistage Hydraulically Fractured Horizontal Wells in Tight Oil and Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Rongwang Yin

    2018-01-01

    Full Text Available A mathematical model for multistage hydraulically fractured horizontal wells (MFHWs in tight oil and gas reservoirs was derived by considering the variations in the permeability and porosity of tight oil and gas reservoirs that depend on formation pressure and mixed fluid properties and introducing the pseudo-pressure; analytical solutions were presented using the Newman superposition principle. The CPU-GPU asynchronous computing model was designed based on the CUDA platform, and the analytic solution was decomposed into infinite summation and integral forms for parallel computation. Implementation of this algorithm on an Intel i5 4590 CPU and NVIDIA GT 730 GPU demonstrates that computation speed increased by almost 80 times, which meets the requirement for real-time calculation of the formation pressure of MFHWs.

  11. High-efficiency helical traveling-wave tube with dynamic velocity taper and advanced multistage depressed collector

    Science.gov (United States)

    Curren, Arthur N.; Palmer, Raymond W.; Force, Dale A.; Dombro, Louis; Long, James A.

    1987-01-01

    A NASA-sponsored research and development contract has been established with the Watkins-Johnson Company to fabricate high-efficiency 20-watt helical traveling wave tubes (TWTs) operating at 8.4 to 8.43 GHz. The TWTs employ dynamic velocity tapers (DVTs) and advanced multistage depressed collectors (MDCs) having electrodes with low secondary electron emission characteristics. The TWT designs include two different DVTs; one for maximum efficiency and the other for minimum distortion and phase shift. The MDC designs include electrodes of untreated and ion-textured graphite as well as copper which has been treated for secondary electron emission suppression. Objectives of the program include achieving at least 55 percent overall efficiency. Tests with the first TWTs (with undepressed collectors) indicate good agreement between predicted and measured RF efficiencies with as high as 30 percent improvement in RF efficiency over conventional helix designs.

  12. Erratum to: A multi-stage genome-wide association study of uterine fibroids in African Americans.

    Science.gov (United States)

    Hellwege, Jacklyn N; Jeff, Janina M; Wise, Lauren A; Gallagher, C Scott; Wellons, Melissa; Hartmann, Katherine E; Jones, Sarah F; Torstenson, Eric S; Dickinson, Scott; Ruiz-Narváez, Edward A; Rohland, Nadin; Allen, Alexander; Reich, David; Tandon, Arti; Pasaniuc, Bogdan; Mancuso, Nicholas; Im, Hae Kyung; Hinds, David A; Palmer, Julie R; Rosenberg, Lynn; Denny, Joshua C; Roden, Dan M; Stewart, Elizabeth A; Morton, Cynthia C; Kenny, Eimear E; Edwards, Todd L; Velez Edwards, Digna R

    2017-11-01

    The article "A multi-stage genome-wide association study of uterine fibroids in African Americans", written by Jacklyn N. Hellwege, was originally published Online First without open access. After publication in volume 136, issue 10, page 1363-1373 the author decided to opt for Open Choice and to make the article an open access publication. Therefore, the copyright of the article has been changed to © The Author(s) 2017 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

  13. PATIENT-CENTRED SCREENING FOR PRIMARY IMMUNODEFICIENCY, A MULTI-STAGE DIAGNOSTIC PROTOCOL DESIGNED FOR NONIMMUNOLOGISTS: 2011 UPDATE

    Directory of Open Access Journals (Sweden)

    E. de Vries

    2013-01-01

    Full Text Available Abstract. Members of the European Society for Immunodeficiencies (ESID and other colleagues have updated themulti-stage expert-opinion-based diagnostic protocol for non-immunologists incorporating newly defined primary immunodeficiency diseases (PIDs. The protocol presented here aims to increase the awareness of PIDs among doctors working in different fields. Prompt identification of PID is important for prognosis, but this may not be an easy task. The protocol therefore starts from the clinical presentation of the patient. Because PIDs may present at all ages, this protocol is aimed at both adult and paediatric physicians. The multi-stage design allows cost-effective screening for PID of the large number of potential cases in the early phases, with more expensive tests reserved for definitive classification in collaboration with a specialist in the field of immunodeficiency at a later stage.

  14. Modular Adaptive System Based on a Multi-Stage Neural Structure for Recognition of 2D Objects of Discontinuous Production

    Directory of Open Access Journals (Sweden)

    I. Topalova

    2008-11-01

    Full Text Available This is a presentation of a new system for invariant recognition of 2D objects with overlapping classes, that can not be effectively recognized with the traditional methods. The translation, scale and partial rotation invariant contour object description is transformed in a DCT spectrum space. The obtained frequency spectrums are decomposed into frequency bands in order to feed different BPG neural nets (NNs. The NNs are structured in three stages - filtering and full rotation invariance; partial recognition; general classification. The designed multi-stage BPG Neural Structure shows very good accuracy and flexibility when tested with 2D objects used in the discontinuous production. The reached speed and the opportunuty for an easy restructuring and reprogramming of the system makes it suitable for application in different applied systems for real time work.

  15. Multi-stage optimization of decision and inhibitory trees for decision tables with many-valued decisions

    KAUST Repository

    Azad, Mohammad; Moshkov, Mikhail

    2017-01-01

    We study problems of optimization of decision and inhibitory trees for decision tables with many-valued decisions. As cost functions, we consider depth, average depth, number of nodes, and number of terminal/nonterminal nodes in trees. Decision tables with many-valued decisions (multi-label decision tables) are often more accurate models for real-life data sets than usual decision tables with single-valued decisions. Inhibitory trees can sometimes capture more information from decision tables than decision trees. In this paper, we create dynamic programming algorithms for multi-stage optimization of trees relative to a sequence of cost functions. We apply these algorithms to prove the existence of totally optimal (simultaneously optimal relative to a number of cost functions) decision and inhibitory trees for some modified decision tables from the UCI Machine Learning Repository.

  16. Multistage bioassociation of uranium onto an extremely halophilic archaeon revealed by a unique combination of spectroscopic and microscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Drobot, Björn [Helmholtz-Zentrum Dresden – Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden (Germany); Schmidt, Matthias; Musat, Niculina [Helmholtz Centre for Environmental Research–UFZ, Department of Isotope Biogeochemistry, Permoserstraße 15, 04318 Leipzig (Germany); Swanson, Juliet S.; Reed, Donald T. [Los Alamos National Laboratory, Repository Science and Operations, 1400 University Drive, Carlsbad, NM, 88220 (United States); Stumpf, Thorsten [Helmholtz-Zentrum Dresden – Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden (Germany); Cherkouk, Andrea, E-mail: a.cherkouk@hzdr.de [Helmholtz-Zentrum Dresden – Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden (Germany)

    2017-04-05

    Highlights: • First prolonged kinetics study of uranium to halophilic archaea was performed. • An atypical time-dependent bioassociation behavior of uranium was observed. • Unique combination of spectroscopic and microscopic methods was used. • In situ ATR FT-IR showed association of U(VI) to phosphoryl and carboxylate groups. • Time-dependent changes of U(VI) localization could be monitored by SEM/EDX. - Abstract: The interactions of two extremely halophilic archaea with uranium were investigated at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, the involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.

  17. Total water production capacity inversion phenomenon in multi-stage direct contact membrane distillation: A theoretical study

    KAUST Repository

    Lee, Jung Gil

    2017-09-09

    The low thermal efficiency and low water production are among the major challenges that prevent membrane distillation (MD) process from being commercialized. In an effort to design an efficient multi-stage direct contact MD (DCMD) unit through mathematical simulation, a new phenomenon that we refer to as total water production capacity inversion (WPI) has been detected. It is represented by a decrease in the total water production beyond a number of stages or a certain module length. WPI phenomenon, which was confirmed by using two different mathematical models validated experimentally, was found to take place due to the decrease in water vapor flux across the membrane as well as the increase in heat loss by conduction as the membrane length increases. Therefore, WPI should be considered as a critical MD design-criterion, especially for large scale units. Investigations conducted for a simulated multi-stage DCMD process showed that inlet feed and permeate temperatures difference, feed and permeate flow rates, and feed salinity have different effects on WPI. The number of stages (or module length at constant width) that leads to a maximum water production has been determined for different operating parameters. Decreasing inlet feed and permeate temperatures difference, or inlet feed and permeate flow rates and increasing inlet feed temperature at constant temperature difference or inlet feed salinity cause the WPI to take place at lower number of stages. Even though the feed salinity affects negligibly the mean permeate flux, it was clearly shown that it can affect WPI. The results presented herein unveil a hidden phenomenon that is likely to occur during process scale-up procedures and should be considered by process engineers for a proper choice of system design and operating conditions.

  18. Multistage bioassociation of uranium onto an extremely halophilic archaeon revealed by a unique combination of spectroscopic and microscopic techniques

    International Nuclear Information System (INIS)

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Drobot, Björn; Schmidt, Matthias; Musat, Niculina; Swanson, Juliet S.; Reed, Donald T.; Stumpf, Thorsten; Cherkouk, Andrea

    2017-01-01

    Highlights: • First prolonged kinetics study of uranium to halophilic archaea was performed. • An atypical time-dependent bioassociation behavior of uranium was observed. • Unique combination of spectroscopic and microscopic methods was used. • In situ ATR FT-IR showed association of U(VI) to phosphoryl and carboxylate groups. • Time-dependent changes of U(VI) localization could be monitored by SEM/EDX. - Abstract: The interactions of two extremely halophilic archaea with uranium were investigated at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, the involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.

  19. Solvent-assisted multistage nonequilibrium electron transfer in rigid supramolecular systems: Diabatic free energy surfaces and algorithms for numerical simulations

    Science.gov (United States)

    Feskov, Serguei V.; Ivanov, Anatoly I.

    2018-03-01

    An approach to the construction of diabatic free energy surfaces (FESs) for ultrafast electron transfer (ET) in a supramolecule with an arbitrary number of electron localization centers (redox sites) is developed, supposing that the reorganization energies for the charge transfers and shifts between all these centers are known. Dimensionality of the coordinate space required for the description of multistage ET in this supramolecular system is shown to be equal to N - 1, where N is the number of the molecular centers involved in the reaction. The proposed algorithm of FES construction employs metric properties of the coordinate space, namely, relation between the solvent reorganization energy and the distance between the two FES minima. In this space, the ET reaction coordinate zn n' associated with electron transfer between the nth and n'th centers is calculated through the projection to the direction, connecting the FES minima. The energy-gap reaction coordinates zn n' corresponding to different ET processes are not in general orthogonal so that ET between two molecular centers can create nonequilibrium distribution, not only along its own reaction coordinate but along other reaction coordinates too. This results in the influence of the preceding ET steps on the kinetics of the ensuing ET. It is important for the ensuing reaction to be ultrafast to proceed in parallel with relaxation along the ET reaction coordinates. Efficient algorithms for numerical simulation of multistage ET within the stochastic point-transition model are developed. The algorithms are based on the Brownian simulation technique with the recrossing-event detection procedure. The main advantages of the numerical method are (i) its computational complexity is linear with respect to the number of electronic states involved and (ii) calculations can be naturally parallelized up to the level of individual trajectories. The efficiency of the proposed approach is demonstrated for a model

  20. Do Human-Figure Drawings of Children and Adolescents Mirror Their Cognitive Style and Self-Esteem?

    Science.gov (United States)

    Dey, Anindita; Ghosh, Paromita

    2016-01-01

    The investigation probed relationships among human-figure drawing, field-dependent-independent cognitive style and self-esteem of 10-15 year olds. It also attempted to predict human-figure drawing scores of participants based on their field-dependence-independence and self-esteem. Area, stratified and multi-stage random sampling were used to…

  1. Multi-stage Continuous Culture Fermentation of Glucose-Xylose Mixtures to Fuel Ethanol using Genetically Engineered Saccharomyces cerevisiae 424A

    Science.gov (United States)

    Multi-stage continuous (chemostat) culture fermentation (MCCF) with variable fermentor volumes was carried out to study utilizing glucose and xylose for ethanol production by means of mixed sugar fermentation (MSF). Variable fermentor volumes were used to enable enhanced sugar u...

  2. Accuracy of a Classical Test Theory-Based Procedure for Estimating the Reliability of a Multistage Test. Research Report. ETS RR-17-02

    Science.gov (United States)

    Kim, Sooyeon; Livingston, Samuel A.

    2017-01-01

    The purpose of this simulation study was to assess the accuracy of a classical test theory (CTT)-based procedure for estimating the alternate-forms reliability of scores on a multistage test (MST) having 3 stages. We generated item difficulty and discrimination parameters for 10 parallel, nonoverlapping forms of the complete 3-stage test and…

  3. Synthetic TLR4 agonists enhance functional antibodies and CD4+ T-cell responses against the Plasmodium falciparum GMZ2.6C multi-stage vaccine antigen

    NARCIS (Netherlands)

    Baldwin, S.L.; Roeffen, W.; Singh, S.K; Tiendrebeogo, R.W.; Christiansen, M.; Beebe, E.; Carter, D.; Fox, C.B.; Howard, R.F.; Reed, S.G.; Sauerwein, R.; Theisen, M.

    2016-01-01

    A subunit vaccine targeting both transmission and pathogenic asexual blood stages of Plasmodium falciparum, i.e., a multi-stage vaccine, could be a powerful tool to combat malaria. Here, we report production and characterization of the recombinant protein GMZ2.6C, which contains a fragment of the

  4. A multistage decision support framework to guide tree species management under climate change via habitat suitability and colonization models, and a knowledge-based scoring system

    Science.gov (United States)

    Anantha M. Prasad; Louis R. Iverson; Stephen N. Matthews; Matthew P. Peters

    2016-01-01

    Context. No single model can capture the complex species range dynamics under changing climates--hence the need for a combination approach that addresses management concerns. Objective. A multistage approach is illustrated to manage forested landscapes under climate change. We combine a tree species habitat model--DISTRIB II, a species colonization model--SHIFT, and...

  5. Thermal modelling of the multi-stage heating system with variable boundary conditions in the wafer based precision glass moulding process

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard

    2012-01-01

    pressures. Finally, the three-dimensional modelling of the multi-stage heating system in the wafer based glass moulding process is simulated with the FEM software ABAQUS for a particular industrial application for mobile phone camera lenses to obtain the temperature distribution in the glass wafer...

  6. Multi-stage En/decoders integrated in low loss Si3N4-SiO2 for incoherent spectral amplitude OCDMA on PON

    NARCIS (Netherlands)

    Huiszoon, B.; Leinse, Arne; Geuzebroek, D.H.; Augustin, L.M.; Klein, E.J.; de Waardt, H.; Khoe, G.D.; Koonen, A.M.J.; Emplit, Ph.; Delqué, M.; Gorza, S.-P.; Kockaert, P.; Leijtens, X

    2007-01-01

    In this paper, we show and analyze, for the first time, the static performance of integrated multi-stage cascade and tree spectral amplitude OCDMA en/decoders (E/Ds) which are fabricated in the low loss Si3N4–SiO2 material system. Combined with incoherent broad spectral sources these E/Ds enable

  7. The task of validation of gas-dynamic characteristics of a multistage centrifugal compressor for a natural gas booster compressor station

    Science.gov (United States)

    Danilishin, A. M.; Kozhukhov, Y. V.; Neverov, V. V.; Malev, K. G.; Mironov, Y. R.

    2017-08-01

    The aim of this work is the validation study for the numerical modeling of characteristics of a multistage centrifugal compressor for natural gas. In the research process was the analysis used grid interfaces and software systems. The result revealed discrepancies between the simulated and experimental characteristics and outlined the future work plan.

  8. Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy

    DEFF Research Database (Denmark)

    Fontana, Flavia; Shahbazi, Mohammad Ali; Liu, Dongfei

    2017-01-01

    nanoparticles presented high monodispersity due to the efficient mixing produced in the microfluidic device and were shown to be highly cytocompatible over two human immortalized cell lines, KG1 and BDCM. Moreover, the nanoparticles induced the expression of co-stimulatory signals both in the immortal cell...

  9. The novel Candida albicans transporter Dur31 Is a multi-stage pathogenicity factor.

    Directory of Open Access Journals (Sweden)

    François L Mayer

    Full Text Available Candida albicans is the most frequent cause of oral fungal infections. However, the exact pathogenicity mechanisms that this fungus employs are largely unknown and many of the genes expressed during oral infection are uncharacterized. In this study we sought to functionally characterize 12 previously unknown function genes associated with oral candidiasis. We generated homozygous knockout mutants for all 12 genes and analyzed their interaction with human oral epithelium in vitro. Eleven mutants caused significantly less epithelial damage and, of these, deletion of orf19.6656 (DUR31 elicited the strongest reduction in pathogenicity. Interestingly, DUR31 was not only involved in oral epithelial damage, but in multiple stages of candidiasis, including surviving attack by human neutrophils, endothelial damage and virulence in vivo. In silico analysis indicated that DUR31 encodes a sodium/substrate symporter with 13 transmembrane domains and no human homologue. We provide evidence that Dur31 transports histatin 5. This is one of the very first examples of microbial driven import of this highly cytotoxic antimicrobial peptide. Also, in contrast to wild type C. albicans, dur31Δ/Δ was unable to actively increase local environmental pH, suggesting that Dur31 lies in the extracellular alkalinization hyphal auto-induction pathway; and, indeed, DUR31 was required for morphogenesis. In agreement with this observation, dur31Δ/Δ was unable to assimilate the polyamine spermidine.

  10. The Novel Candida albicans Transporter Dur31 Is a Multi-Stage Pathogenicity Factor

    Science.gov (United States)

    Mayer, François L.; Wilson, Duncan; Jacobsen, Ilse D.; Miramón, Pedro; Große, Katharina; Hube, Bernhard

    2012-01-01

    Candida albicans is the most frequent cause of oral fungal infections. However, the exact pathogenicity mechanisms that this fungus employs are largely unknown and many of the genes expressed during oral infection are uncharacterized. In this study we sought to functionally characterize 12 previously unknown function genes associated with oral candidiasis. We generated homozygous knockout mutants for all 12 genes and analyzed their interaction with human oral epithelium in vitro. Eleven mutants caused significantly less epithelial damage and, of these, deletion of orf19.6656 (DUR31) elicited the strongest reduction in pathogenicity. Interestingly, DUR31 was not only involved in oral epithelial damage, but in multiple stages of candidiasis, including surviving attack by human neutrophils, endothelial damage and virulence in vivo. In silico analysis indicated that DUR31 encodes a sodium/substrate symporter with 13 transmembrane domains and no human homologue. We provide evidence that Dur31 transports histatin 5. This is one of the very first examples of microbial driven import of this highly cytotoxic antimicrobial peptide. Also, in contrast to wild type C. albicans, dur31Δ/Δ was unable to actively increase local environmental pH, suggesting that Dur31 lies in the extracellular alkalinization hyphal auto-induction pathway; and, indeed, DUR31 was required for morphogenesis. In agreement with this observation, dur31Δ/Δ was unable to assimilate the polyamine spermidine. PMID:22438810

  11. Integrating organizational and human behavior perspectives on mergers and acquisitions: Looking inside the black box

    NARCIS (Netherlands)

    Weber, Yaakov; Drori, Israel

    2011-01-01

    This article presents a conceptual framework for investigating merger and acquisition (M&A) performance through a multistage and multilevel approach. First, human resource challenges during the integration process following a merger are explored to help explain the inconsistencies among empirical

  12. Performance of an effectively integrated biomass multi-stage gasification system and a steel industry heat treatment furnace

    International Nuclear Information System (INIS)

    Gunarathne, Duleeka Sandamali; Mellin, Pelle; Yang, Weihong; Pettersson, Magnus; Ljunggren, Rolf

    2016-01-01

    Highlights: • Multi-stage biomass gasification is integrated with steel heat treatment furnace. • Fossil fuel derived CO_2 emission is eliminated by replacing natural gas with syngas. • The integrated system uses waste heat from the furnace for biomass gasification. • Up to 13% increment of the gasifier system energy efficiency is observed. • Fuel switching results in 10% lower flue gas loss and improved furnace efficiency. - Abstract: The challenges of replacing fossil fuel with renewable energy in steel industry furnaces include not only reducing CO_2 emissions but also increasing the system energy efficiency. In this work, a multi-stage gasification system is chosen for the integration with a heat treatment furnace in the steel powder industry to recover different rank/temperature waste heat back to the biomass gasification system, resulting higher system energy efficiency. A system model based on Aspen Plus was developed for the proposed integrated system considering all steps, including biomass drying, pyrolysis, gasification and the combustion of syngas in the furnace. Both low temperature (up to 400 °C) and high temperature (up to 700 °C) heat recovery possibilities were analysed in terms of energy efficiency by optimizing the biomass pretreatment temperature. The required process conditions of the furnace can be achieved by using syngas. No major changes to the furnace, combustion technology or flue gas handling system are necessary for this fuel switching. Only a slight revamp of the burner system and a new waste heat recovery system from the flue gases are required. Both the furnace efficiency and gasifier system efficiency are improved by integration with the waste heat recovery. The heat recovery from the hot furnace flue gas for biomass drying and steam superheating is the most promising option from an energy efficiency point of view. This option recovers two thirds of the available waste heat, according to the pinch analysis performed

  13. Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production.

    Science.gov (United States)

    Tapia, Felipe; Vázquez-Ramírez, Daniel; Genzel, Yvonne; Reichl, Udo

    2016-03-01

    With an increasing demand for efficacious, safe, and affordable vaccines for human and animal use, process intensification in cell culture-based viral vaccine production demands advanced process strategies to overcome the limitations of conventional batch cultivations. However, the use of fed-batch, perfusion, or continuous modes to drive processes at high cell density (HCD) and overextended operating times has so far been little explored in large-scale viral vaccine manufacturing. Also, possible reductions in cell-specific virus yields for HCD cultivations have been reported frequently. Taking into account that vaccine production is one of the most heavily regulated industries in the pharmaceutical sector with tough margins to meet, it is understandable that process intensification is being considered by both academia and industry as a next step toward more efficient viral vaccine production processes only recently. Compared to conventional batch processes, fed-batch and perfusion strategies could result in ten to a hundred times higher product yields. Both cultivation strategies can be implemented to achieve cell concentrations exceeding 10(7) cells/mL or even 10(8) cells/mL, while keeping low levels of metabolites that potentially inhibit cell growth and virus replication. The trend towards HCD processes is supported by development of GMP-compliant cultivation platforms, i.e., acoustic settlers, hollow fiber bioreactors, and hollow fiber-based perfusion systems including tangential flow filtration (TFF) or alternating tangential flow (ATF) technologies. In this review, these process modes are discussed in detail and compared with conventional batch processes based on productivity indicators such as space-time yield, cell concentration, and product titers. In addition, options for the production of viral vaccines in continuous multi-stage bioreactors such as two- and three-stage systems are addressed. While such systems have shown similar virus titers compared to

  14. Detection of Botnet Command and Control Traffic by the Multistage Trust Evaluation of Destination Identifiers

    Directory of Open Access Journals (Sweden)

    Pieter Burghouwt

    2015-10-01

    Full Text Available Network-based detection of botnet Command and Control communication is a difficult task if the traffic has a relatively low volume and if popular protocols, such as HTTP, are used to resemble normal traffic. We present a new network-based detection approach that is capable of detecting this type of Command and Control traffic in an enterprise network by estimating the trustworthiness of the traffic destinations. If the destination identifier of a traffic flow origins directly from: human input, prior traffic from a trusted destination, or a defined set of legitimate applications, the destination is trusted and its associated traffic is classified as normal. Advantages of this approach are: the ability of zero day malicious traffic detection, low exposure to malware by passive host-external traffic monitoring, and the applicability for real-time filtering. Experimental evaluation demonstrates successful detection of diverse types of Command and Control Traffic.

  15. Multi-stage ranking of emergency technology alternatives for water source pollution accidents using a fuzzy group decision making tool.

    Science.gov (United States)

    Qu, Jianhua; Meng, Xianlin; You, Hong

    2016-06-05

    Due to the increasing number of unexpected water source pollution events, selection of the most appropriate disposal technology for a specific pollution scenario is of crucial importance to the security of urban water supplies. However, the formulation of the optimum option is considerably difficult owing to the substantial uncertainty of such accidents. In this research, a multi-stage technical screening and evaluation tool is proposed to determine the optimal technique scheme, considering the areas of pollutant elimination both in drinking water sources and water treatment plants. In stage 1, a CBR-based group decision tool was developed to screen available technologies for different scenarios. Then, the threat degree caused by the pollution was estimated in stage 2 using a threat evaluation system and was partitioned into four levels. For each threat level, a corresponding set of technique evaluation criteria weights was obtained using Group-G1. To identify the optimization alternatives corresponding to the different threat levels, an extension of TOPSIS, a multi-criteria interval-valued trapezoidal fuzzy decision making technique containing the four arrays of criteria weights, to a group decision environment was investigated in stage 3. The effectiveness of the developed tool was elaborated by two actual thallium-contaminated scenarios associated with different threat levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Optimization of material flow in the nuclear fuel cycle using a cyclic multi-stage production-to-inventory model

    International Nuclear Information System (INIS)

    DePorter, E.L.

    1977-01-01

    The nuclear fuel cycle is modelled as a cyclic, multi-stage production-to-inventory system. The objective is to meet a known deterministic demand for energy while minimizing acquisition, production, and inventory holding costs for all stages of the fuel cycle. The model allows for cyclic flow (feedback) of materials, material flow conversion factors at each stage, production lag times at each stage, and for escalating costs of uranium ore. It does not allow shortages to occur in inventories. The model is optimized by the application of the calculus of variations and specifically through recently developed theorems on the solution of functionals constrained by inequalities. The solution is a set of optimal cumulative production trajectories which define the stagewise production rates. Analysis of these production rates reveals the optimal nuclear fuel cycle costs and that inventories (stockpiles) occur in uranium fields, enriched uranium hexafluoride, and fabricated fuel assemblies. An analysis of the sensitivity of the model to variation in three important parameters is performed

  17. Minimizing coupling loss by selection of twist pitch lengths in multi-stage cable-in-conduit conductors

    International Nuclear Information System (INIS)

    Rolando, G; Nijhuis, A; Devred, A

    2014-01-01

    The numerical code JackPot-ACDC (van Lanen et al 2010 Cryogenics 50 139–48, van Lanen et al 2011 IEEE Trans. Appl. Supercond. 21 1926–9, van Lanen et al 2012 Supercond. Sci. Technol. 25 025012) allows fast parametric studies of the electro-magnetic performance of cable-in-conduit conductors (CICCs). In this paper the code is applied to the analysis of the relation between twist pitch length sequence and coupling loss in multi-stage ITER-type CICCs. The code shows that in the analysed conductors the coupling loss is at its minimum when the twist pitches of the successive cabling stages have a length ratio close to one. It is also predicted that by careful selection of the stage-to-stage twist pitch ratio, CICCs cabled according to long twist schemes in the initial stages can achieve lower coupling loss than conductors with shorter pitches. The result is validated by AC loss measurements performed on prototype conductors for the ITER Central Solenoid featuring different twist pitch sequences. (paper)

  18. Generation of Composite Dose and Biological Effective Dose (BED) Over Multiple Treatment Modalities and Multistage Planning Using Deformable Image Registration

    International Nuclear Information System (INIS)

    Zhang, Geoffrey; Huang, T-C; Feygelman, Vladimir; Stevens, Craig; Forster, Kenneth

    2010-01-01

    Currently there are no commercially available tools to generate composite plans across different treatment modalities and/or different planning image sets. Without a composite plan, it may be difficult to perform a meaningful dosimetric evaluation of the overall treatment course. In this paper, we introduce a method to generate composite biological effective dose (BED) plans over multiple radiotherapy treatment modalities and/or multistage plans, using deformable image registration. Two cases were used to demonstrate the method. Case I was prostate cancer treated with intensity-modulated radiation therapy (IMRT) and a permanent seed implant. Case II involved lung cancer treated with two treatment plans generated on two separate computed tomography image sets. Thin-plate spline or optical flow methods were used as appropriate to generate deformation matrices. The deformation matrices were then applied to the dose matrices and the resulting physical doses were converted to BED and added to yield the composite plan. Cell proliferation and sublethal repair were considered in the BED calculations. The difference in BED between normal tissues and tumor volumes was accounted for by using different BED models, α/β values, and cell potential doubling times. The method to generate composite BED plans presented in this paper provides information not available with the traditional simple dose summation or physical dose summation. With the understanding of limitations and uncertainties of the algorithms involved, it may be valuable for the overall treatment plan evaluation.

  19. Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Mariela Cerrada

    2015-09-01

    Full Text Available There are growing demands for condition-based monitoring of gearboxes, and techniques to improve the reliability, effectiveness and accuracy for fault diagnosis are considered valuable contributions. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance in the diagnosis system. The main aim of this research is to propose a multi-stage feature selection mechanism for selecting the best set of condition parameters on the time, frequency and time-frequency domains, which are extracted from vibration signals for fault diagnosis purposes in gearboxes. The selection is based on genetic algorithms, proposing in each stage a new subset of the best features regarding the classifier performance in a supervised environment. The selected features are augmented at each stage and used as input for a neural network classifier in the next step, while a new subset of feature candidates is treated by the selection process. As a result, the inherent exploration and exploitation of the genetic algorithms for finding the best solutions of the selection problem are locally focused. The Sensors 2015, 15 23904 approach is tested on a dataset from a real test bed with several fault classes under different running conditions of load and velocity. The model performance for diagnosis is over 98%.

  20. Free-face-Assisted Rock Breaking Method Based on the Multi-stage Tunnel Boring Machine (TBM) Cutterhead

    Science.gov (United States)

    Geng, Qi; Wei, Zhengying; Meng, Hao; Macias, Francisco Javier; Bruland, Amund

    2016-11-01

    In order to improve the rock breaking efficiency of hard rock tunnel boring, many innovative rock breaking methods have been proposed (e.g., the water jet cutting, the high-power laser cutting, the impact-rotary drilling, and the undercutting method). However, most of the methods are not applicable to TBMs due to some structural reasons. Aiming on this problem, a free-face-assisted rock breaking method based on the multi-stage TBM cutterhead has been proposed. Series of proof-of-concept tests includes (1) the static compression test with vertical free face and (2) the rotary cutting tests in different free surface conditions were designed and carried out. The results show that the rock breaking force and efficiency can be significantly reduced and improved, respectively, with the assistance of the free face, due to the failure of the rock close to the free face is tensile-dominated failure. The influencing distance of the free face in the radial direction is at least 330 mm which covers about 5 disk cutters. Finally, the general structure of a small two-stage cutterhead (4 m in diameter) was tentatively designed in order to provide a possible approach to apply the free-face effect to TBMs.

  1. NOx removal from the flue gas of oil-fired boiler using a multistage plasma-catalyst hybrid system

    International Nuclear Information System (INIS)

    Park, Sung Youl; Deshwal, Bal Raj; Moon, Seung Hyun

    2008-01-01

    The study on removal of NO x from the flue gas of oil-fired boiler has been carried out using non-thermal plasma cum catalyst hybrid reactor at 150 C. Propylene (C 3 H 6 ) was used as a reducing agent. A multistage plasma-catalyst hybrid reactor was newly designed and successfully operated to clean up the flue gas stream having a flow rate of 30 Nm 3 /h. TiO 2 and Pd/ZrO 2 wash-coated on cordierite honeycomb were used as catalysts in the present study. Though the plasma-catalyst hybrid reactor with TiO 2 showed good activity on the removal of NO yet it removed only 50-60% of NO x because a significant portion of NO oxidized to NO 2 . On the contrary, the plasma-catalyst hybrid reactor with Pd/ZrO 2 removed about 50% of inlet NO with a negligible amount of NO oxidation into NO 2 . The plasma/dual-catalysts hybrid system (front two units of plasma-Pd/ZrO 2 + rear two units of plasma/TiO 2 ) proved to be very promising in NO x removal in the presence of C 3 H 6 . DeNO x efficiency of about 74% has been achieved at a space velocity of 3300/h at 150 C. (author)

  2. A Risk-Constrained Multi-Stage Decision Making Approach to the Architectural Analysis of Mars Missions

    Science.gov (United States)

    Kuwata, Yoshiaki; Pavone, Marco; Balaram, J. (Bob)

    2012-01-01

    This paper presents a novel risk-constrained multi-stage decision making approach to the architectural analysis of planetary rover missions. In particular, focusing on a 2018 Mars rover concept, which was considered as part of a potential Mars Sample Return campaign, we model the entry, descent, and landing (EDL) phase and the rover traverse phase as four sequential decision-making stages. The problem is to find a sequence of divert and driving maneuvers so that the rover drive is minimized and the probability of a mission failure (e.g., due to a failed landing) is below a user specified bound. By solving this problem for several different values of the model parameters (e.g., divert authority), this approach enables rigorous, accurate and systematic trade-offs for the EDL system vs. the mobility system, and, more in general, cross-domain trade-offs for the different phases of a space mission. The overall optimization problem can be seen as a chance-constrained dynamic programming problem, with the additional complexity that 1) in some stages the disturbances do not have any probabilistic characterization, and 2) the state space is extremely large (i.e, hundreds of millions of states for trade-offs with high-resolution Martian maps). To this purpose, we solve the problem by performing an unconventional combination of average and minimax cost analysis and by leveraging high efficient computation tools from the image processing community. Preliminary trade-off results are presented.

  3. Numerical and Experimental Approach to Investigate Plane-view Shape and Crop Loss in Multistage Plate Rolling

    International Nuclear Information System (INIS)

    Byon, Sang Min

    2013-01-01

    A finite element based approach that can be used to investigate the plane-view shape and crop loss of a material during plate rolling is presented. We employed a three-dimensional finite element model to continuously simulate the shape change of the head and tail of a plate as the number of rolling passes increases. The main feature of the proposed model lies in the fact that the multistage rolling can be simulated without a break because the rolling direction of the material is reversibly controlled as the roll gap sequentially decreases. The material constants required in the finite element analysis were experimentally obtained by hot tensile tests. We also performed a pilot hot plate rolling test to verify the usefulness of the proposed finite element model. Results reveal that the computed plane-view shapes as well as crop losses by the proposed finite element model were in good agreement with the measured ones. The crop losses predicted by the proposed model were within 5% of those measured from the pilot hot plate rolling test

  4. Multistage treadmill exercise testing with a multiple unipolar precordial lead system in the evaluation of effort angina pectoris

    International Nuclear Information System (INIS)

    Shiki, Kazuhito; Tsuzuki, Masato; Kawai, Naoki; Kondo, Teruo; Sotobata, Iwao

    1984-01-01

    Sixty-one patients who had angina pectoris without prior myocardial infarction and 24 healthy men were studied by multistage treadmill exercise testing with 20 unipolar leads covering the left anterolateral hemithorax. Exercise-induced ST- segment changes were compared with the results of stress thallium-201 myocardial images and also with coronary arteriographic fingings. All patients had more than 75% narrowing of at least one major coronary artery. Fifty-one of the 61 patients had diagnostically significant exercise-induced ischemic ST-segment depression (sensitivity 83.6%) and all of the 24 controls showed a negative exercise test (specificity 100%). The exercise-induced ST-segment depressions appeared most often in the area just below V 5 . The number of leads with ST-segment depression and the sum of the depths of ST-segment depressions significantly correlated with the number of regions-of-interest of stress-induced hypoperfusion of myocardial scintigraphy (r = 0.62 and r = 0.61, respectively). These parameters increased as the number of diseased coronary arteries increased, but were not influenced by the presence or absence of coronary collateral circulation. The maximum depth of ST-segment depression was greater in triple vessel disease than in single or double vessel disease (p 5 . (J.P.N.)

  5. Dynamic solar-powered multi-stage direct contact membrane distillation system: Concept design, modeling and simulation

    KAUST Repository

    Lee, Jung Gil

    2017-04-26

    This paper presents a theoretical analysis of the monthly average daily and hourly performances of a solar-powered multi-stage direct contact membrane distillation (SMDCMD) system with an energy recovery scheme and dynamic operating system. Mid-latitude meteorological data from Busan, Korea is employed, featuring large climate variation over the course of one year. The number of module stages used by the dynamic operating scheme changes dynamically based on the inlet feed temperature of the successive modules, which results in an improvement of the water production and thermal efficiency. The simulations of the SMDCMD system are carried out to investigate the spatial and temporal variations in the feed and permeate temperatures and permeate flux. The monthly average daily water production increases from 0.37m3/day to 0.4m3/day and thermal efficiency increases from 31% to 45% when comparing systems both without and with dynamic operation in December. The water production with respect to collector area ranged from 350m2 to 550m2 and the seawater storage tank volume ranged from 16m3 to 28.8m3, and the solar fraction at various desired feed temperatures from 50°C to 80°C have been investigated in October and December.

  6. A multi-stage traveling-wave thermoacoustically-driven refrigeration system operating at liquefied natural gas temperature

    Science.gov (United States)

    Luo, K.; Sun, D. M.; Zhang, J.; Shen, Q.; Zhang, N.

    2017-12-01

    This study proposes a multi-stage travelling-wave thermoacoustically refrigeration system (TAD-RS) operating at liquefied natural gas temperature, which consists of two thermoacoustic engines (TAE) and one thermoacoustic refrigerator (TAR) in a closed-loop configuration. Three thermoacoustic units connect each other through a resonance tube of small cross-sectional area, achieving “self-matching” for efficient thermoacoustic conversion. Based on the linear thermoacoustic theory, a model of the proposed system has been built by using DeltaEC program to show the acoustic field characteristics and performance. It is shown that with pressurized 5 MPa helium as working gas, the TAEs are able to build a stable and strong acoustic field with a frequency of about 85 Hz. When hot end temperature reaches 923 K, this system can provide about 1410 W cooling power at 110 K with an overall exergy efficiency of 15.5%. This study indicates a great application prospect of TAD-RS in the field of natural gas liquefaction with a large cooling capacity and simple structure.

  7. Analysis of oversulfation in biglycan chondroitin/dermatan sulfate oligosaccharides by chip-based nanoelectrospray ionization multistage mass spectrometry.

    Science.gov (United States)

    Flangea, Corina; Sisu, Eugen; Seidler, Daniela G; Zamfir, Alina D

    2012-01-15

    Biglycan (BGN) is a small proteoglycan that consists of a protein core containing leucine-rich repeat regions and two glycosaminoglycan (GAG) chains of either chondroitin sulfate (CS) or dermatan sulfate (DS) type. The development of novel, highly efficient analytical methods for structural identification of BGN-derived CS/DS motifs, possibly implicated in biological events, is currently the focus of research. In this work, an improved analytical method based on fully automated chip-nanoelectrospray ionization (nanoESI) in conjunction with high-capacity ion trap (HCT) multistage mass spectrometry (MS) by collision-induced dissociation (CID) was for the first time applied to BGN CS/DS oligosaccharide analysis. The CS/DS chains were released from transfected 293 BGN by β-elimination. The chain was digested with AC I lyase, and the resulting mixture was purified and subsequently separated by size exclusion chromatography (SEC). Di- and tetrasaccharide fractions were pooled and characterized in detail using the developed chip-nanoESI protocol. The chip-nanoESI MS profile in the negative ion mode revealed the presence of under-, regularly, and oversulfated species in both di- and tetrasaccharide fractions. CID MS(2)-MS(3) yielded sequence patterns consistent with unusual oversulfated 4,5-Δ-GlcA(2S)-GalNAc(4S) and 4,5-Δ-GlcA(2S)-GalNAc(6S)-IdoA(2S)-GalNAc(6S) motifs. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Sealing Failure Analysis on V-Shaped Sealing Rings of an Inserted Sealing Tool Used for Multistage Fracturing Processes

    Directory of Open Access Journals (Sweden)

    Gang Hu

    2018-06-01

    Full Text Available The inserted sealing tool is a critical downhole implement that is used to balance the downhole pressure in multistage fracturing operations and prevent fracturing fluid from overflow and/or backward flow. The sealing ring of an inserted sealing tool plays an important role in downhole sealing since a sealing failure would ail the fracturing operation. In order to improve the sealing performance and reduce the potential fracturing failures, this research aims to investigate the influence of V-shaped sealing ring geometries on sealing performance. Constitutive experiments of rubber materials were carried out and the parameters of the constitutive relationship of rubber materials were obtained. A two-dimensional axisymmetric model considering the sealing ring has been established and influences are investigated with considerations of various system parameters and operating conditions. It is found that the stresses concentrated at the shoulder and inner vertex of the sealing ring have direct impact on the damage of the sealing rings under operational conditions. Moreover, the sealing interference, among several other factors, greatly affects the life of the sealing ring. A new design of the sealing ring is suggested with optimized geometric parameters. Its geometric parameters are the edge height of 5 mm, the vertex angle of 90°–100°, and the interference of 0.1 mm, which show a better performance and prolonged operation life of the sealing ring.

  9. New concepts in the management of diffuse low-grade glioma: Proposal of a multistage and individualized therapeutic approach.

    Science.gov (United States)

    Duffau, Hugues; Taillandier, Luc

    2015-03-01

    Diffuse low-grade glioma grows, migrates along white matter tracts, and progresses to high-grade glioma. Rather than a "wait and see" policy, an aggressive attitude is now recommended, with early surgery as the first therapy. Intraoperative mapping, with maximal resection according to functional boundaries, is associated with a longer overall survival (OS) while minimizing morbidity. However, most studies have investigated the role of only one specific treatment (surgery, radiotherapy, chemotherapy) without taking a global view of managing the cumulative time while preserving quality of life (QoL) versus time to anaplastic transformation. Our aim is to switch towards a more holistic concept based upon the anticipation of a personalized and long-term multistage therapeutic approach, with online adaptation of the strategy over the years using feedback from clinical, radiological, and histomolecular monitoring. This dynamic strategy challenges the traditional approach by proposing earlier therapy, by repeating treatments, and by reversing the classical order of therapies (eg, neoadjuvant chemotherapy when maximal resection is impossible, no early radiotherapy) to improve OS and QoL. New individualized management strategies should deal with the interactions between the course of this chronic disease, reaction brain remapping, and oncofunctional modulation elicited by serial treatments. This philosophy supports a personalized, functional, and preventive neuro-oncology. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Performance of a modified multi-stage bubble column reactor for lead(II) and biological oxygen demand removal from wastewater using activated rice husk

    International Nuclear Information System (INIS)

    Sahu, J.N.; Agarwal, S.; Meikap, B.C.; Biswas, M.N.

    2009-01-01

    The excessive release of wastewater into the environment is a major concern worldwide. Adsorption is the one of the most effective technique for treatment of wastewater. In this work activated carbon prepared from rice husk has been used as an adsorbent. In the present investigation a three phase modified multi-stage bubble column reactor (MMBCR) has been designed to remove lead and biochemical oxygen demand (BOD) from wastewater by means of its adsorption onto the surface of activated rice husk. The multi-staging has been achieved by hydrodynamically induced continuous bubble generation, breakup and regeneration. Under optimum conditions, maximum lead and BOD reduction achieved using activated rice husk was 77.15% and 19.05%, respectively. Results showed MMBCR offered appreciated potential benefits for lead removal from wastewater and BOD removal, even this extent of removal is encouraging and the MMBCR can be used a pretreatment unit before subjecting the wastewater to biological treatment

  11. General theory of the multistage geminate reactions of the isolated pairs of reactants. II. Detailed balance and universal asymptotes of kinetics.

    Science.gov (United States)

    Kipriyanov, Alexey A; Doktorov, Alexander B

    2014-10-14

    The analysis of general (matrix) kinetic equations for the mean survival probabilities of any of the species in a sample (or mean concentrations) has been made for a wide class of the multistage geminate reactions of the isolated pairs. These kinetic equations (obtained in the frame of the kinetic approach based on the concept of "effective" particles in Paper I) take into account various possible elementary reactions (stages of a multistage reaction) excluding monomolecular, but including physical and chemical processes of the change in internal quantum states carried out with the isolated pairs of reactants (or isolated reactants). The general basic principles of total and detailed balance have been established. The behavior of the reacting system has been considered on macroscopic time scales, and the universal long-term kinetics has been determined.

  12. Performance of a modified multi-stage bubble column reactor for lead(II) and biological oxygen demand removal from wastewater using activated rice husk.

    Science.gov (United States)

    Sahu, J N; Agarwal, S; Meikap, B C; Biswas, M N

    2009-01-15

    The excessive release of wastewater into the environment is a major concern worldwide. Adsorption is the one of the most effective technique for treatment of wastewater. In this work activated carbon prepared from rice husk has been used as an adsorbent. In the present investigation a three phase modified multi-stage bubble column reactor (MMBCR) has been designed to remove lead and biochemical oxygen demand (BOD) from wastewater by means of its adsorption onto the surface of activated rice husk. The multi-staging has been achieved by hydrodynamically induced continuous bubble generation, breakup and regeneration. Under optimum conditions, maximum lead and BOD reduction achieved using activated rice husk was 77.15% and 19.05%, respectively. Results showed MMBCR offered appreciated potential benefits for lead removal from wastewater and BOD removal, even this extent of removal is encouraging and the MMBCR can be used a pretreatment unit before subjecting the wastewater to biological treatment.

  13. Multi-stage classification method oriented to aerial image based on low-rank recovery and multi-feature fusion sparse representation.

    Science.gov (United States)

    Ma, Xu; Cheng, Yongmei; Hao, Shuai

    2016-12-10

    Automatic classification of terrain surfaces from an aerial image is essential for an autonomous unmanned aerial vehicle (UAV) landing at an unprepared site by using vision. Diverse terrain surfaces may show similar spectral properties due to the illumination and noise that easily cause poor classification performance. To address this issue, a multi-stage classification algorithm based on low-rank recovery and multi-feature fusion sparse representation is proposed. First, color moments and Gabor texture feature are extracted from training data and stacked as column vectors of a dictionary. Then we perform low-rank matrix recovery for the dictionary by using augmented Lagrange multipliers and construct a multi-stage terrain classifier. Experimental results on an aerial map database that we prepared verify the classification accuracy and robustness of the proposed method.

  14. Multi-stage open peer review: scientific evaluation integrating the strengths of traditional peer review with the virtues of transparency and self-regulation

    Directory of Open Access Journals (Sweden)

    Ulrich ePöschl

    2012-07-01

    Full Text Available The traditional forms of scientific publishing and peer review do not live up to the demands of efficient communication and quality assurance in today’s highly diverse and rapidly evolving world of science. They need to be advanced and complemented by interactive and transparent forms of review, publication, and discussion that are open to the scientific community and to the public.The advantages of open access, public peer review and interactive discussion can be efficiently and flexibly combined with the strengths of traditional scientific peer review. Since 2001 the benefits and viability of this approach are clearly demonstrated by the highly successful interactive open access journal Atmo¬sphe¬ric Chemistry and Physics (ACP and a growing number of sister journals launched and operated by the European Geosciences Union (EGU and the open access publisher Copernicus.The interactive open access journals are practicing an integrative multi-stage process of publication and peer review combined with interactive public discussion, which effectively resolves the dilemma between rapid scientific exchange and thorough quality assurance. The high efficiency and predictive validity of multi-stage open peer review have been confirmed in a series of dedicated studies by evaluation experts from the social sciences, and the same or similar concepts have recently also been adopted in other disciplines, including the life sciences and economics. Multi-stage open peer review can be flexibly adjusted to the needs and peculiarities of different scientific communities. Due to the flexibility and compatibility with traditional structures of scientific publishing and peer review, the multi-stage open peer review concept enables efficient evolution in scientific communication and quality assurance. It has the potential for swift replacement of hidden peer review as the standard of scientific quality assurance, and it provides a basis for open evaluation in

  15. Long-term Outcomes With Planned Multistage Reduced Dose Repeat Stereotactic Radiosurgery for Treatment of Inoperable High-Grade Arteriovenous Malformations: An Observational Retrospective Cohort Study.

    Science.gov (United States)

    Marciscano, Ariel E; Huang, Judy; Tamargo, Rafael J; Hu, Chen; Khattab, Mohamed H; Aggarwal, Sameer; Lim, Michael; Redmond, Kristin J; Rigamonti, Daniele; Kleinberg, Lawrence R

    2017-07-01

    There is no consensus regarding the optimal management of inoperable high-grade arteriovenous malformations (AVMs). This long-term study of 42 patients with high-grade AVMs reports obliteration and adverse event (AE) rates using planned multistage repeat stereotactic radiosurgery (SRS). To evaluate the efficacy and safety of multistage SRS with treatment of the entire AVM nidus at each treatment session to achieve complete obliteration of high-grade AVMs. Patients with high-grade Spetzler-Martin (S-M) III-V AVMs treated with at least 2 multistage SRS treatments from 1989 to 2013. Clinical outcomes of obliteration rate, minor/major AEs, and treatment characteristics were collected. Forty-two patients met inclusion criteria (n = 26, S-M III; n = 13, S-M IV; n = 3, S-M V) with a median follow-up was 9.5 yr after first SRS. Median number of SRS treatment stages was 2, and median interval between stages was 3.5 yr. Twenty-two patients underwent pre-SRS embolization. Complete AVM obliteration rate was 38%, and the median time to obliteration was 9.7 yr. On multivariate analysis, higher S-M grade was significantly associated ( P = .04) failure to achieve obliteration. Twenty-seven post-SRS AEs were observed, and the post-SRS intracranial hemorrhage rate was 0.027 events per patient year. Treatment of high-grade AVMs with multistage SRS achieves AVM obliteration in a meaningful proportion of patients with acceptable AE rates. Lower obliteration rates were associated with higher S-M grade and pre-SRS embolization. This approach should be considered with caution, as partial obliteration does not protect from hemorrhage. Copyright © 2017 by the Congress of Neurological Surgeons

  16. Comparing a single-stage geocoding method to a multi-stage geocoding method: how much and where do they disagree?

    Directory of Open Access Journals (Sweden)

    Rice Kenneth

    2007-03-01

    Full Text Available Abstract Background Geocoding methods vary among spatial epidemiology studies. Errors in the geocoding process and differential match rates may reduce study validity. We compared two geocoding methods using 8,157 Washington State addresses. The multi-stage geocoding method implemented by the state health department used a sequence of local and national reference files. The single-stage method used a single national reference file. For each address geocoded by both methods, we measured the distance between the locations assigned by each method. Area-level characteristics were collected from census data, and modeled as predictors of the discordance between geocoded address coordinates. Results The multi-stage method had a higher match rate than the single-stage method: 99% versus 95%. Of 7,686 addresses were geocoded by both methods, 96% were geocoded to the same census tract by both methods and 98% were geocoded to locations within 1 km of each other by the two methods. The distance between geocoded coordinates for the same address was higher in sparsely populated and low poverty areas, and counties with local reference files. Conclusion The multi-stage geocoding method had a higher match rate than the single-stage method. An examination of differences in the location assigned to the same address suggested that study results may be most sensitive to the choice of geocoding method in sparsely populated or low-poverty areas.

  17. Evaluation of advanced turbomachinery for underground pumped hydroelectric storage. Part 3. Multistage unregulated pump/turbines for operating heads of 1000 to 1500 m

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, A.A.; Pistner, C.

    1980-08-01

    This is the final report in a series of three on studies of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. All three reports address Francis-type, reversible pump/turbines. The first report covered single-stage regulated units; the second report covered two-stage regulated units; the present report covers multistage unregulated units. Multistage unregulated pump/turbines offer an economically attractive option for heads of 1000 to 1500 m. The feasibility of developing such machines for capacities up to 500 MW and operating heads up to 1500 m has been evaluated. Preliminary designs have been generated for six multistage pump/turbines. The designs are for nominal capacities of 350 and 500 MW and for operating heads of 1000, 1250, and 1500 m. Mechanical, hydraulic, and economic analyses indicate that these machines will behave according to the criteria used to design them and that they can be built at a reasonable cost with no unsolvable problems. Efficiencies of 85.8% and 88.5% in the generating and pumping modes, respectively, can be expected for the 500-MW, 1500-m unit. Performances of the other five machines are at least comparable, and usually better. Over a 1000 to 1500-m head range, specific $/kW costs of the pump/turbines in mid-1978 US dollars vary from 19.0 to 23.1 for the 500-MW machines, and from 21.0 to 24.1 for the 350-MW machines.

  18. Improvement of a multi-stage model for the modeling of a functionalized nursing bed as support for the sensor-assisted function-alization of furniture in the hospital and care sector

    Directory of Open Access Journals (Sweden)

    Kitzig Andreas

    2017-09-01

    Full Text Available Development of preparation-free functionalized furniture based patient monitoring systems for use in the area of home- or stationary- care is often empirically driven. In particular, functionalization of furniture by means of different sensors is strongly affected by this development methodology. As a result, the systems are often not extensive-ly extendable or cannot be optimized because basic mechanisms are not comprehensible. In order to support development or optimization, a modelling approach is often useful. Thus, using a more comprehensive approach the required sensitivity of the sensors as well as their position in the system can be derived from a simulation model. In order to solve this problem, a multi-stage model was introduced at the BMT conference in 2014 by the authors, which allows the designer to model the entire system. The model has been extended and improved in the meantime and the achieved progress is presented in this work. The presented modelling approach can be divided into three main components. These are the person under supervision, the furniture (in our case a nursing bed and the sensors (force measuring cells which are modelled separately. In this work the main focus will be on improving the modelling of the human movement process and its implementation. Furthermore, the modelling of the sensor behavior in the nursing bed is described in detail with regard to their oscillation behavior and the influence on the model.

  19. Protocol for a multicentre, multistage, prospective study in China using system-based approaches for consistent improvement in surgical safety.

    Science.gov (United States)

    Yu, Xiaochu; Jiang, Jingmei; Liu, Changwei; Shen, Keng; Wang, Zixing; Han, Wei; Liu, Xingrong; Lin, Guole; Zhang, Ye; Zhang, Ying; Ma, Yufen; Bo, Haixin; Zhao, Yupei

    2017-06-15

    Surgical safety has emerged as a crucial global health issue in the past two decades. Although several safety-enhancing tools are available, the pace of large-scale improvement remains slow, especially in developing countries such as China. The present project (Modern Surgery and Anesthesia Safety Management System Construction and Promotion) aims to develop and validate system-based integrated approaches for reducing perioperative deaths and complications using a multicentre, multistage design. The project involves collection of clinical and outcome information for 1 20 000 surgical inpatients at four regionally representative academic/teaching general hospitals in China during three sequential stages: preparation and development, effectiveness validation and improvement of implementation for promotion. These big data will provide the evidence base for the formulation, validation and improvement processes of a system-based stratified safety intervention package covering the entire surgical pathway. Attention will be directed to managing inherent patient risks and regulating medical safety behaviour. Information technology will facilitate data collection and intervention implementation, provide supervision mechanisms and guarantee transfer of key patient safety messages between departments and personnel. Changes in rates of deaths, surgical complications during hospitalisation, length of stay, system adoption and implementation rates will be analysed to evaluate effectiveness and efficiency. This study was approved by the institutional review boards of Peking Union Medical College Hospital, First Hospital of China Medical University, Qinghai Provincial People's Hospital, Xiangya Hospital Central South University and the Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences. Study findings will be disseminated via peer-reviewed journals, conference presentations and patent papers. © Article author(s) (or their employer(s) unless otherwise

  20. Determining quantitative road safety targets by applying statistical prediction techniques and a multi-stage adjustment procedure.

    Science.gov (United States)

    Wittenberg, P; Sever, K; Knoth, S; Sahin, N; Bondarenko, J

    2013-01-01

    Due to substantial progress made in road safety in the last ten years, the European Union (EU) renewed the ambitious agreement of halving the number of persons killed on the roads within the next decade. In this paper we develop a method that aims at finding an optimal target for each nation, in terms of being as achievable as possible, and with the cumulative EU target being reached. Targets as an important component in road safety policy are given as reduction rate or as absolute number of road traffic deaths. Determination of these quantitative road safety targets (QRST) is done by a top-down approach, formalized in a multi-stage adjustment procedure. Different QRST are derived under consideration of recent research. The paper presents a method to break the national target further down to regional targets in case of the German Federal States. Generalized linear models are fitted to data in the period 1991-2010. Our model selection procedure chooses various models for the EU and solely log-linear models for the German Federal States. If the proposed targets for the EU Member States are attained, the sum of fatalities should not exceed the total value of 15,465 per year by 2020. Both, the mean level and the range of mortality rates within the EU could be lowered from 28-113 in 2010 to 17-41 per million inhabitants in 2020. This study provides an alternative to the determination of safety targets by political commitments only, taking the history of road fatalities trends and population into consideration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Experimental Results of the First Two Stages of an Advanced Transonic Core Compressor Under Isolated and Multi-Stage Conditions

    Science.gov (United States)

    Prahst, Patricia S.; Kulkarni, Sameer; Sohn, Ki H.

    2015-01-01

    NASA's Environmentally Responsible Aviation (ERA) Program calls for investigation of the technology barriers associated with improved fuel efficiency of large gas turbine engines. Under ERA the task for a High Pressure Ratio Core Technology program calls for a higher overall pressure ratio of 60 to 70. This mean that the HPC would have to almost double in pressure ratio and keep its high level of efficiency. The challenge is how to match the corrected mass flow rate of the front two supersonic high reaction and high corrected tip speed stages with a total pressure ratio of 3.5. NASA and GE teamed to address this challenge by using the initial geometry of an advanced GE compressor design to meet the requirements of the first 2 stages of the very high pressure ratio core compressor. The rig was configured to run as a 2 stage machine, with Strut and IGV, Rotor 1 and Stator 1 run as independent tests which were then followed by adding the second stage. The goal is to fully understand the stage performances under isolated and multi-stage conditions and fully understand any differences and provide a detailed aerodynamic data set for CFD validation. Full use was made of steady and unsteady measurement methods to isolate fluid dynamics loss source mechanisms due to interaction and endwalls. The paper will present the description of the compressor test article, its predicted performance and operability, and the experimental results for both the single stage and two stage configurations. We focus the detailed measurements on 97 and 100 of design speed at 3 vane setting angles.

  2. Design of the South East Asian Nutrition Survey (SEANUTS): a four-country multistage cluster design study.

    Science.gov (United States)

    Schaafsma, Anne; Deurenberg, Paul; Calame, Wim; van den Heuvel, Ellen G H M; van Beusekom, Christien; Hautvast, Jo; Sandjaja; Bee Koon, Poh; Rojroongwasinkul, Nipa; Le Nguyen, Bao Khanh; Parikh, Panam; Khouw, Ilse

    2013-09-01

    Nutrition is a well-known factor in the growth, health and development of children. It is also acknowledged that worldwide many people have dietary imbalances resulting in over- or undernutrition. In 2009, the multinational food company FrieslandCampina initiated the South East Asian Nutrition Survey (SEANUTS), a combination of surveys carried out in Indonesia, Malaysia, Thailand and Vietnam, to get a better insight into these imbalances. The present study describes the general study design and methodology, as well as some problems and pitfalls encountered. In each of these countries, participants in the age range of 0·5-12 years were recruited according to a multistage cluster randomised or stratified random sampling methodology. Field teams took care of recruitment and data collection. For the health status of children, growth and body composition, physical activity, bone density, and development and cognition were measured. For nutrition, food intake and food habits were assessed by questionnaires, whereas in subpopulations blood and urine samples were collected to measure the biochemical status parameters of Fe, vitamins A and D, and DHA. In Thailand, the researchers additionally studied the lipid profile in blood, whereas in Indonesia iodine excretion in urine was analysed. Biochemical data were analysed in certified laboratories. Study protocols and methodology were aligned where practically possible. In December 2011, data collection was finalised. In total, 16,744 children participated in the present study. Information that will be very relevant for formulating nutritional health policies, as well as for designing innovative food and nutrition research and development programmes, has become available.

  3. Performance evaluation of a once-through multi-stage flash distillation system: Impact of brine heater fouling

    International Nuclear Information System (INIS)

    Baig, Hasan; Antar, Mohamed A.; Zubair, Syed M.

    2011-01-01

    Multi-stage flash distillation (MSF) system modeling involves a number of process variables. An estimation of all these process variables requires both analytical solutions and experimental/field analysis. However, the accurate estimate of variables related to the brine heater operation in a MSF system is very important for a reliable operation of the system. For example, steam operating conditions as well as the brine properties including fouling of the brine heater tubes have a significant effect on the heat transfer characteristics of the brine heater, which in turn influence the distillate output from the system. In this study, the effect of various design as well as operating conditions on the performance ratio (PR), brine temperature and salinity as it leaves the last flash stage are investigated in a once-through system. Increasing the number of stages from 24 to 32 has a significant effect on the PR, it ranges between 79% (for ΔT = 1.5) and 327% (for ΔT = 2.3) for a top-brine temperature of 106 o C. This value increase as the top-brine temperature increases. Increasing the stage-to-stage temperature difference increases the water salinity as it leaves the final stage and reduces its temperature that would imply better energy utilization within the plant. Results show that brine side heat exchanger fouling has a significant effect in decreasing the overall heat transfer coefficient, which reduces the production rate as the fouling increases with time. A sensitivity analysis to identify the key parameters, which can have a significant influence on the desalination plant performance, is carried out in an attempt to contribute a better understanding and operation of MSF desalination processes.

  4. Performance assessment and transient optimization of air precooling in multi-stage solid desiccant air conditioning systems

    International Nuclear Information System (INIS)

    Gadalla, Mohamed; Saghafifar, Mohammad

    2016-01-01

    Highlights: • Studying three two-stage solid desiccant cooling systems using Maisotsenko cooler. • Proposing precooling to improve two-stage desiccant systems’ COP for humid climates. • Performing transient analysis for a two-stage solid desiccant cooler in UAE. • Optimizing daily performance of a two-stage solid desiccant cooler for UAE. - Abstract: Renewable energy is one of the most promising solutions to both energy and global warming crisis. Energy consumption can be minimized considerably by utilizing solar energy in air conditioning systems operation. One of the popular solar air conditioning technologies is desiccant air conditioning. Nonetheless, conventional desiccant air conditioning systems have a relatively low coefficient of performance (COP). In consequence, two-stage desiccant air-conditioning systems are proposed to improve desiccant air conditioning systems’ COP. Moreover, a recently commercialized cooling method named Maisotsenko cooling cycle which is capable of cooling air near to its dew point temperature is considered to be integrated within the proposed multi-stage desiccant cooling systems. In this paper, three new two-stage desiccant air conditioning systems incorporating Maisotsenko cooling cycle are proposed and investigated in details for hot and humid climates such as UAE. Furthermore, air precooling is considered to improve two stage desiccant air conditioning systems’ COP. Moreover, full transient analysis and optimization are carried out in UAE within June–October. The proposed system can minimize the required solar heating during noon time as the ambient air dry bulb temperature rises. Average COP of the system during electricity load peak hours (10:00–14:00) for all five considered and combined months is 1.77. Average rate of heat input required to operate the system and average building cooling load are determined to be 100.3 kW and 46.2 kW, respectively. Therefore, system average COP is computed to be 0.46.

  5. Purification and Quantification of an Isomeric Compound in a Mixture by Collisional Excitation in Multistage Mass Spectrometry Experiments.

    Science.gov (United States)

    Jeanne Dit Fouque, Dany; Maroto, Alicia; Memboeuf, Antony

    2016-11-15

    The differentiation, characterization, and quantification of isomers and/or isobars in mixtures is a recurrent problem in mass spectrometry and more generally in analytical chemistry. Here we present a new strategy to assess the purity of a compound that is susceptible to be contaminated with another isomeric side-product in trace levels. Providing one of the isomers is available as pure sample, this new strategy allows the detection of isomeric contamination. This is done thanks to a "gas-phase collisional purification" inside an ion trap mass spectrometer paving the way for an improved analysis of at least similar samples. This strategy consists in using collision induced dissociation (CID) multistage mass spectrometry (MS 2 and MS 3 ) experiments and the survival yield (SY) technique. It has been successfully applied to mixtures of cyclic poly( L -lactide) (PLA) with increasing amounts of its linear topological isomer. Purification in gas phase of PLA mixtures was established based on SY curves obtained in MS 3 mode: all samples gave rise to the same SY curve corresponding then to the pure cyclic component. This new strategy was sensitive enough to detect traces of linear PLA (<3%) in a sample of cyclic PLA that was supposedly pure according to other characterization techniques ( 1 H NMR, MALDI-HRMS, and size-exclusion chromatography). Moreover, in this case, the presence of linear isomer was undetectable according to MS/MS or MS/MS/MS analysis only as fragment ions are also of the same m/z values. This type of approach could easily be implemented in hyphenated mass spectrometric techniques to improve the structural and quantitative analysis of complex samples.

  6. Investigation of multi-stage cold forward extrusion process using coupled thermo-mechanical finite element analysis

    Science.gov (United States)

    Görtan, Mehmet Okan

    2018-05-01

    Cold extrusion processes are distinguished by their low material usage as well as great efficiency in the production of mid-range and large component series. Although majority of the cold extruded parts are produced using die systems containing multiple forming stages, this subject has rarely been investigated so far. Therefore, the characteristics of multi-stage cold forward rod extrusion is studied in the current work using thermo-mechanically coupled finite element (FE) analysis. A case hardening steel, 16MnCr5 (1.7131) was used as experimental material. Its strain, strain rate and temperature dependent mechanical characteristics were determined using compression testing and modeled in FE simulations via a Johnson-Cook material model. Friction coefficients for the same material while in contact with a tool steel (1.2379) were determined dependent on temperature and contact pressure using sliding compression test (SCT) and modeled by an adaptive friction model developed by the author. In the first set of simulations, rod material with a diameter of 14.9 mm was extruded down to a diameter of 9.6 mm in a single step using three different die opening angles (2α); 20°, 40° and 60°. In the second set of investigations, the same rod was reduced first to 12 mm and then to 9.6 mm in two steps within the same forming die. Press forces, contact normal stresses between extruded material and forming die, material temperature and axial stresses are compared in these two set of simulations and the differences are discussed.

  7. Analysis of a Multi-component Multi-stage Malaria Vaccine Candidate--Tackling the Cocktail Challenge.

    Directory of Open Access Journals (Sweden)

    Alexander Boes

    Full Text Available Combining key antigens from the different stages of the P. falciparum life cycle in the context of a multi-stage-specific cocktail offers a promising approach towards the development of a malaria vaccine ideally capable of preventing initial infection, the clinical manifestation as well as the transmission of the disease. To investigate the potential of such an approach we combined proteins and domains (11 in total from the pre-erythrocytic, blood and sexual stages of P. falciparum into a cocktail of four different components recombinantly produced in plants. After immunization of rabbits we determined the domain-specific antibody titers as well as component-specific antibody concentrations and correlated them with stage specific in vitro efficacy. Using purified rabbit immune IgG we observed strong inhibition in functional in vitro assays addressing the pre-erythrocytic (up to 80%, blood (up to 90% and sexual parasite stages (100%. Based on the component-specific antibody concentrations we calculated the IC50 values for the pre-erythrocytic stage (17-25 μg/ml, the blood stage (40-60 μg/ml and the sexual stage (1.75 μg/ml. While the results underline the feasibility of a multi-stage vaccine cocktail, the analysis of component-specific efficacy indicates significant differences in IC50 requirements for stage-specific antibody concentrations providing valuable insights into this complex scenario and will thereby improve future approaches towards malaria vaccine cocktail development regarding the selection of suitable antigens and the ratios of components, to fine tune overall and stage-specific efficacy.

  8. Testing multistage gain and offset trimming in a single photon counting IC with a charge sharing elimination algorithm

    International Nuclear Information System (INIS)

    Krzyżanowska, A.; Gryboś, P.; Szczygieł, R.; Maj, P.

    2015-01-01

    Designing a hybrid pixel detector readout electronics operating in a single photon counting mode is a very challenging process, where many main parameters are optimized in parallel (e.g. gain, noise, and threshold dispersion). Additional requirements for a smaller pixel size with extended functionality push designers to use new deep sub-micron technologies. Minimizing the channel size is possible, however, with a decreased pixel size, the charge sharing effect becomes a more important issue. To overcome this problem, we designed an integrated circuit prototype produced in CMOS 40 nm technology, which has an extended functionality of a single pixel. A C8P1 algorithm for the charge sharing effect compensation was implemented. In the algorithm's first stage the charge is rebuilt in a signal rebuilt hub fed by the CSA (charge sensitive amplifier) outputs from four neighbouring pixels. Then, the pixel with the biggest amount of charge is chosen, after a comparison with all the adjacent ones. In order to process the data in such a complicated way, a certain architecture of a single channel was proposed, which allows for: ⋅ processing the signal with the possibility of total charge reconstruction (by connecting with the adjacent pixels), ⋅ a comparison of certain pixel amplitude to its 8 neighbours, ⋅ the extended testability of each block inside the channel to measure CSA gain dispersion, shaper gain dispersion, threshold dispersion (including the simultaneous generation of different pulse amplitudes from different pixels), ⋅ trimming all the necessary blocks for proper operation. We present a solution for multistage gain and offset trimming implemented in the IC prototype. It allows for minimization of the total charge extraction errors, minimization of threshold dispersion in the pixel matrix and minimization of errors of comparison of certain pixel pulse amplitudes with all its neighbours. The detailed architecture of a single channel is presented

  9. Induced pluripotent stem cells (iPSCs) derived from a symptomatic carrier of a S305I mutation in the microtubule-associated protein tau (MAPT)-gene causing frontotemporal dementia

    DEFF Research Database (Denmark)

    Nimsanor, Natakarn; Jørring, Ida; Rasmussen, Mikkel A.

    2016-01-01

    Frontotemporal dementia with parkinsonism linked to chromosome 17q21.2 (FTDP-17) is an autosomal-dominant neurodegenerative disorder. Mutations in the gene coding the microtubule-associated protein tau (MAPT) can cause FTDP-17 but the underlying mechanisms of the disease are still unknown. Induced...

  10. Induced pluripotent stem cells (iPSCs) derived from af pre-symptomatic carrier of a R406W mutation in microtubule-associated protein tau (MAPT) causing frontotemporal dementia

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel A.; Hjermind, Lena Elisabeth; Hasholt, Lis Frydenreich

    2016-01-01

    Skin fibroblasts were obtained from a 28-year-old pre-symptomatic woman carrying a R406W mutation in microtubule-associated protein tau (MAPT), known to cause frontotemporal dementia. Induced pluripotent stem cell (iPSCs) were established by electroporation with episomal plasmids containing hOCT4...

  11. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    Science.gov (United States)

    Liu, Ying; Deng, Wenbin

    2016-05-01

    With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control

  12. Comparison between 30-15 Intermittent Fitness Test and Multistage Field Test on physiological responses in wheelchair basketball players

    Directory of Open Access Journals (Sweden)

    Thierry eWeissland

    2015-12-01

    Full Text Available The intermittent nature of wheelchair court sports suggests using a similar protocol to assess repeated shuttles and recovery abilities. This study aimed to compare performances, physiological responses and perceived rating exertion obtained from the continuous multistage field test (MFT and the 30-15 intermittent field test (30-15IFT. Eighteen trained wheelchair basketball players (WBP (WBP: 32.0±5.7y, IWBF classification: 2.9±1.1points performed both incremental field tests in randomized order. Time to exhaustion, maximal rolling velocity (MRV, VO2peak and the peak values of minute ventilation (VEpeak, respiratory frequency (RF and heart rate (HRpeak were measured throughout both tests; peak and net blood lactate (Δ [Lact-] = peak–rest values and perceived rating exertion (RPE values at the end of each exercise. No significant difference in VO2peak, VEpeak and RF was found between both tests. 30-15IFT was shorter (12.4±2.4 vs. 14.9±5.1min, P<0.05 but induced higher values of MRV and Δ [Lact-] compared to MFT (14.2±1.8 vs. 11.1±1.9km•h-1 and 8.3±4.2 vs. 6.9±3.3mmol•L-1, P<0.05. However, HRpeak and RPE values were higher during MFT than 30-15IFT (172.8±14.0 vs. 166.8±13.8bpm and 15.3±3.8 vs.13.8±3.5, respectively, P<0.05. The intermittent shuttles intercepted with rest period occurred during the 30-15IFT could explain a greater anaerobic solicitation. The higher HR and overall RPE values measured at the end of MFT could be explained by its longer duration and a continuous load stress compared to 30-15IFT. In conclusion, 30-15IFT has some advantages over MFT for assess in addition physical fitness and technical performance in WBP.

  13. [NH4+-N removal stability of zeolite media packed multistage-biofilm system for coke-plant wastewater treatment].

    Science.gov (United States)

    Zhao, Wen-Tao; Huang, Xia; He, Miao; Zhang, Peng-Yi; Zuo, Chen-Yan

    2009-02-15

    The practical ammonia stripping effectiveness of coke-plant wastewater treatment may vary widely, and high NH4+-N shock loading will lead to the fluctuation of residual NH4+-N concentration of biological effluent. A zeolite media packed multistage-biofilm system (ZMBS) was used for coke-plant wastewater treatment for enhancing the NH4+-N treatment ability of the bio-system to shock loading, as well as achieving high COD removal efficiency. Treatment performance during steady-state and shock loading and transformation of organic pollutants in the system were investigated systematically. The experiment results indicated that when the system was operated at NH4+-N loading 0.21 kg/(m3 x d) and COD loading NH4+-N and COD concentrations were (2.2 +/- 1.2) mg/L, (228 +/- 60) mg/L with average removal efficiencies of (99.1 +/- 0.5)% and (86.0 +/- 2.6)%. During the twice NH4+-N shock loadings [0.03 kg/(m3 x d) and 0.06 kg/(m3 x d)], ZMBS showed a strong resisting ability with average removal efficiencies of 99.0% and 92.9% higher than those of a compared system's 96.8% and 89.3%. By monitoring the change of water quality along the length of the ZMBS's cells, two function zones for different pollutant removal were found to exist, named as decarbonization/nitrification (C/N) zone and nitrification (N) zone, and the NH4+-N removal rate in N zone was 2-8 times as that in C/N zone. TOC concentrations of organic matters with relative molecular weight 1 x 10(4), were 227.6, 104.8 and 35.0 mg/L in raw wastewater, and 31.2, 22.9 and 31.5 mg/L in the effluent, respectively. Organic matters with relative molecular weight 1x 10(3) were the main remained substances in the effluent.

  14. A multi-stage heuristic algorithm for matching problem in the modified miniload automated storage and retrieval system of e-commerce

    Science.gov (United States)

    Wang, Wenrui; Wu, Yaohua; Wu, Yingying

    2016-05-01

    E-commerce, as an emerging marketing mode, has attracted more and more attention and gradually changed the way of our life. However, the existing layout of distribution centers can't fulfill the storage and picking demands of e-commerce sufficiently. In this paper, a modified miniload automated storage/retrieval system is designed to fit these new characteristics of e-commerce in logistics. Meanwhile, a matching problem, concerning with the improvement of picking efficiency in new system, is studied in this paper. The problem is how to reduce the travelling distance of totes between aisles and picking stations. A multi-stage heuristic algorithm is proposed based on statement and model of this problem. The main idea of this algorithm is, with some heuristic strategies based on similarity coefficients, minimizing the transportations of items which can not arrive in the destination picking stations just through direct conveyors. The experimental results based on the cases generated by computers show that the average reduced rate of indirect transport times can reach 14.36% with the application of multi-stage heuristic algorithm. For the cases from a real e-commerce distribution center, the order processing time can be reduced from 11.20 h to 10.06 h with the help of the modified system and the proposed algorithm. In summary, this research proposed a modified system and a multi-stage heuristic algorithm that can reduce the travelling distance of totes effectively and improve the whole performance of e-commerce distribution center.

  15. Novel product ions of 2-aminoanilide and benzimidazole Ag(I) complexes using electrospray ionization with multi-stage tandem mass spectrometry.

    Science.gov (United States)

    Johnson, Byron S; Burinsky, David J; Burova, Svetlana A; Davis, Roman; Fitzgerald, Russ N; Matsuoka, Richard T

    2012-05-15

    The 2-aminoaniline scaffold is of significant value to the pharmaceutical industry and is embedded in a number of pharmacophores including 2-aminoanilides and benzimidazoles. A novel application of coordination ion spray mass spectrometry (CIS-MS) for interrogating the silver ion (Ag(+)) complexes of a homologous series of these compounds using multi-stage tandem mass spectrometry is described. Unlike the ubiquitous alkali metal ion complexes, Ag(+) complexes of 2-aminoanilides and benzimidazoles were found to yield [M - H](+) ions in significant abundance via gas-phase elimination of the metal hydride (AgH) resulting in unique product ion cascades. Sample introduction was by liquid chromatography with mass spectrometry analysis performed on a hybrid linear ion trap/orbitrap instrument capable of high-resolution measurements. Rigorous structural characterization by multi-stage tandem mass spectrometry using [M +  H](+), [M - H](-) and [M - H](+) precursor ions derived from ESI and CIS experiments was performed for the homologous series of 2-aminoanilide and benzimidazole compounds. A full tabular comparison of structural information resulting from these product ion cascades was produced. Multi-stage tandem mass spectrometry of [M - H](+) ions resulting from Ag(+) complexes of 2-aminoanilides and benzimidazoles in CIS-MS experiments produced unique product ion cascades that exhibited complementary structural information to that obtained from tandem mass spectrometry of [M  +  H](+) and [M - H](-) ions by electrospray ionization (ESI). These observations may be broadly applicable to other compounds that are observed to form Ag(+) complexes and eliminate AgH. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Modifications of ORNL's computer programs MSF-21 and VTE-21 for the evaluation and rapid optimization of multistage flash and vertical tube evaporators

    Energy Technology Data Exchange (ETDEWEB)

    Glueckstern, P.; Wilson, J.V.; Reed, S.A.

    1976-06-01

    Design and cost modifications were made to ORNL's Computer Programs MSF-21 and VTE-21 originally developed for the rapid calculation and design optimization of multistage flash (MSF) and multieffect vertical tube evaporator (VTE) desalination plants. The modifications include additional design options to make possible the evaluation of desalting plants based on current technology (the original programs were based on conceptual designs applying advanced and not yet proven technological developments and design features) and new materials and equipment costs updated to mid-1975.

  17. Multi-Stage Open Peer Review: Scientific Evaluation Integrating the Strengths of Traditional Peer Review with the Virtues of Transparency and Self-Regulation

    Science.gov (United States)

    Pöschl, Ulrich

    2012-01-01

    The traditional forms of scientific publishing and peer review do not live up to all demands of efficient communication and quality assurance in today’s highly diverse and rapidly evolving world of science. They need to be advanced and complemented by interactive and transparent forms of review, publication, and discussion that are open to the scientific community and to the public. The advantages of open access, public peer review, and interactive discussion can be efficiently and flexibly combined with the strengths of traditional scientific peer review. Since 2001 the benefits and viability of this approach are clearly demonstrated by the highly successful interactive open access journal Atmospheric Chemistry and Physics (ACP, www.atmos-chem-phys.net) and a growing number of sister journals launched and operated by the European Geosciences Union (EGU, www.egu.eu) and the open access publisher Copernicus (www.copernicus.org). The interactive open access journals are practicing an integrative multi-stage process of publication and peer review combined with interactive public discussion, which effectively resolves the dilemma between rapid scientific exchange and thorough quality assurance. Key features and achievements of this approach are: top quality and impact, efficient self-regulation and low rejection rates, high attractivity and rapid growth, low costs, and financial sustainability. In fact, ACP and the EGU interactive open access sister journals are by most if not all standards more successful than comparable scientific journals with traditional or alternative forms of peer review (editorial statistics, publication statistics, citation statistics, economic costs, and sustainability). The high efficiency and predictive validity of multi-stage open peer review have been confirmed in a series of dedicated studies by evaluation experts from the social sciences, and the same or similar concepts have recently also been adopted in other disciplines, including

  18. Dimensioning of 10 Gbit/s all-optical packet switched networks based on optical label swapping routers with multistage 2R regeneration.

    Science.gov (United States)

    Puerto, G; Ortega, B; Manzanedo, M D; Martínez, A; Pastor, D; Capmany, J; Kovacs, G

    2006-10-30

    This paper describes both the experimental and theoretical investigations on the cascadability of all-optical routers in optical label swapping networks incorporating a multistage wavelength conversion with 2R regeneration. A full description of a novel experimental setup allows the packet by packet measurement up to 16 hops with 10 Gb/s payload showing 1 dB penalty with 10(-12) bit error rate. Similarly, the simulations on the system allow a prediction on the cascadability of the router up to 64 hops.

  19. A Novel Protocol for Directed Differentiation of C9orf72-Associated Human Induced Pluripotent Stem Cells Into Contractile Skeletal Myotubes.

    Science.gov (United States)

    Swartz, Elliot W; Baek, Jaeyun; Pribadi, Mochtar; Wojta, Kevin J; Almeida, Sandra; Karydas, Anna; Gao, Fen-Biao; Miller, Bruce L; Coppola, Giovanni

    2016-11-01

    : Induced pluripotent stem cells (iPSCs) offer an unlimited resource of cells to be used for the study of underlying molecular biology of disease, therapeutic drug screening, and transplant-based regenerative medicine. However, methods for the directed differentiation of skeletal muscle for these purposes remain scarce and incomplete. Here, we present a novel, small molecule-based protocol for the generation of multinucleated skeletal myotubes using eight independent iPSC lines. Through combinatorial inhibition of phosphoinositide 3-kinase (PI3K) and glycogen synthase kinase 3β (GSK3β) with addition of bone morphogenic protein 4 (BMP4) and fibroblast growth factor 2 (FGF2), we report up to 64% conversion of iPSCs into the myogenic program by day 36 as indicated by MYOG + cell populations. These cells began to exhibit spontaneous contractions as early as 34 days in vitro in the presence of a serum-free medium formulation. We used this protocol to obtain iPSC-derived muscle cells from frontotemporal dementia (FTD) patients harboring C9orf72 hexanucleotide repeat expansions (rGGGGCC), sporadic FTD, and unaffected controls. iPSCs derived from rGGGGCC carriers contained RNA foci but did not vary in differentiation efficiency when compared to unaffected controls nor display mislocalized TDP-43 after as many as 120 days in vitro. This study presents a rapid, efficient, and transgene-free method for generating multinucleated skeletal myotubes from iPSCs and a resource for further modeling the role of skeletal muscle in amyotrophic lateral sclerosis and other motor neuron diseases. Protocols to produce skeletal myotubes for disease modeling or therapy are scarce and incomplete. The present study efficiently generates functional skeletal myotubes from human induced pluripotent stem cells using a small molecule-based approach. Using this strategy, terminal myogenic induction of up to 64% in 36 days and spontaneously contractile myotubes within 34 days were achieved

  20. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling.

    Science.gov (United States)

    Amulya, K; Jukuri, Srinivas; Venkata Mohan, S

    2015-01-01

    Polyhydroxyalkanoates (PHA) production was evaluated in a multistage operation using food waste as a renewable feedstock. The first step involved the production of bio-hydrogen (bio-H2) via acidogenic fermentation. Volatile fatty acid (VFA) rich effluent from bio-H2 reactor was subsequently used for PHA production, which was carried out in two stages, Stage II (culture enrichment) and Stage III (PHA production). PHA-storing microorganisms were enriched in a sequencing batch reactor (SBR), operated at two different cycle lengths (CL-24; CL-12). Higher polymer recovery as well as VFA removal was achieved in CL-12 operation both in Stage II (16.3% dry cell weight (DCW); VFA removal, 84%) and Stage III (23.7% DCW; VFA removal, 88%). The PHA obtained was a co-polymer [P(3HB-co-3HV)] of PHB and PHV. The results obtained indicate that this integrated multistage process offers new opportunities to further leverage large scale PHA production with simultaneous waste remediation in the framework of biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Tracking fluorescent dissolved organic matter in multistage rivers using EEM-PARAFAC analysis: implications of the secondary tributary remediation for watershed management.

    Science.gov (United States)

    Nie, Zeyu; Wu, Xiaodong; Huang, Haomin; Fang, Xiaomin; Xu, Chen; Wu, Jianyu; Liang, Xinqiang; Shi, Jiyan

    2016-05-01

    Profound understanding of behaviors of organic matter from sources to multistage rivers assists watershed management for improving water quality of river networks in rural areas. Ninety-one water samples were collected from the three orders of receiving rivers in a typical combined polluted subcatchment (diffuse agricultural pollutants and domestic sewage) located in China. Then, the fluorescent dissolved organic matter (FDOM) information for these samples was determined by the excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Consequently, two typical humic-like (C1 and C2) and other two protein-like (C3 and C4) components were separated. Their fluorescence peaks were located at λ ex/em = 255(360)/455, 60 %). Principal component analysis (PCA) further demonstrated that, except for the autochthonous produced C4, the allochthonous components (C1 and C2) had the same terrestrial origins, but C3 might possess the separate anthropogenic and biological sources. Moreover, the spatial heterogeneity of contamination levels was noticeable in multistage rivers, and the allochthonous FDOM was gradually homogenized along the migration directions. Interestingly, the average content of the first three PARAFAC components in secondary tributaries and source pollutants had significantly higher levels than that in subsequent receiving rivers, thus suggesting that the supervision and remediation for secondary tributaries would play a prominent role in watershed management works.

  2. The general theory of multistage geminate reactions of isolated pairs of reactants. III. Two-stage reversible dissociation in geminate reaction A + A↔C↔B + B

    Energy Technology Data Exchange (ETDEWEB)

    Kipriyanov, Alexey A.; Kipriyanov, Alexander A.; Doktorov, Alexander B. [Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia and Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-04-14

    Specific two-stage reversible reaction A + A↔C↔B + B of the decay of species C reactants by two independent transition channels is considered on the basis of the general theory of multistage reactions of isolated pairs of reactants. It is assumed that at the initial instant of time, the reacting system contains only reactants C. The employed general approach has made it possible to consider, in the general case, the inhomogeneous initial distribution of reactants, and avoid application of model concepts of a reaction system structure (i.e., of the structure of reactants and their molecular mobility). Slowing of multistage reaction kinetics as compared to the kinetics of elementary stages is established and physically interpreted. To test approximations (point approximation) used to develop a universal kinetic law, a widely employed specific model of spherical particles with isotropic reactivity diffusing in solution is applied. With this particular model as an example, ultimate kinetics of chemical conversion of reactants is investigated. The question concerning the depths of chemical transformation at which long-term asymptotes are reached is studied.

  3. Rapid profiling of polymeric phenolic acids in Salvia miltiorrhiza by hybrid data-dependent/targeted multistage mass spectrometry acquisition based on expected compounds prediction and fragment ion searching.

    Science.gov (United States)

    Shen, Yao; Feng, Zijin; Yang, Min; Zhou, Zhe; Han, Sumei; Hou, Jinjun; Li, Zhenwei; Wu, Wanying; Guo, De-An

    2018-04-01

    Phenolic acids are the major water-soluble components in Salvia miltiorrhiza (>5%). According to previous studies, many of them contribute to the cardiovascular effects and antioxidant effects of S. miltiorrhiza. Polymeric phenolic acids can be considered as the tanshinol derived metabolites, e.g., dimmers, trimers, and tetramers. A strategy combined with tanshinol-based expected compounds prediction, total ion chromatogram filtering, fragment ion searching, and parent list-based multistage mass spectrometry acquisition by linear trap quadropole-orbitrap Velos mass spectrometry was proposed to rapid profile polymeric phenolic acids in S. miltiorrhiza. More than 480 potential polymeric phenolic acids could be screened out by this strategy. Based on the fragment information obtained by parent list-activated data dependent multistage mass spectrometry acquisition, 190 polymeric phenolic acids were characterized by comparing their mass information with literature data, and 18 of them were firstly detected from S. miltiorrhiza. Seven potential compounds were tentatively characterized as new polymeric phenolic acids from S. miltiorrhiza. This strategy facilitates identification of polymeric phenolic acids in complex matrix with both selectivity and sensitivity, which could be expanded for rapid discovery and identification of compounds from complex matrix. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Kinetics of the pyrolysis of arundo, sawdust, corn stover and switch grass biomass by thermogravimetric analysis using a multi-stage model.

    Science.gov (United States)

    Biney, Paul O; Gyamerah, Michael; Shen, Jiacheng; Menezes, Bruna

    2015-03-01

    A new multi-stage kinetic model has been developed for TGA pyrolysis of arundo, corn stover, sawdust and switch grass that accounts for the initial biomass weight (W0). The biomass were decomposed in a nitrogen atmosphere from 23°C to 900°C in a TGA at a single 20°C/min ramp rate in contrast with the isoconversion technique. The decomposition was divided into multiple stages based on the absolute local minimum values of conversion derivative, (dx/dT), obtained from DTG curves. This resulted in three decomposition stages for arundo, corn stover and sawdust and four stages for switch grass. A linearized multi-stage model was applied to the TGA data for each stage to determine the pre-exponential factor, activation energy, and reaction order. The activation energies ranged from 54.7 to 60.9 kJ/mol, 62.9 to 108.7 kJ/mol, and 18.4 to 257.9 kJ/mol for the first, second and the third decomposition stages respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The general theory of multistage geminate reactions of isolated pairs of reactants. III. Two-stage reversible dissociation in geminate reaction A + A ↔ C ↔ B + B.

    Science.gov (United States)

    Kipriyanov, Alexey A; Kipriyanov, Alexander A; Doktorov, Alexander B

    2016-04-14

    Specific two-stage reversible reaction A + A ↔ C ↔ B + B of the decay of species C reactants by two independent transition channels is considered on the basis of the general theory of multistage reactions of isolated pairs of reactants. It is assumed that at the initial instant of time, the reacting system contains only reactants C. The employed general approach has made it possible to consider, in the general case, the inhomogeneous initial distribution of reactants, and avoid application of model concepts of a reaction system structure (i.e., of the structure of reactants and their molecular mobility). Slowing of multistage reaction kinetics as compared to the kinetics of elementary stages is established and physically interpreted. To test approximations (point approximation) used to develop a universal kinetic law, a widely employed specific model of spherical particles with isotropic reactivity diffusing in solution is applied. With this particular model as an example, ultimate kinetics of chemical conversion of reactants is investigated. The question concerning the depths of chemical transformation at which long-term asymptotes are reached is studied.

  6. The multistage nature of labour migration from Eastern and Central Europe (experience of Ukraine, Poland, United Kingdom and Germany during the 2002-2011 period

    Directory of Open Access Journals (Sweden)

    Khrystyna FOGEL

    2015-12-01

    Full Text Available This article examines the consequences of the biggest round of EU Enlargement in 2004 on the labour migration flows from the new accession countries (A8 of the Eastern and Central Europe to Western Europe. The main focus of our research is the unique multistage nature of labour migration in the region. As a case study, we take labour migration from Poland to the United Kingdom and Germany and similar processes taking place in the labour migration from Ukraine to Poland. In particular, a new type of migration structure developed reflecting new features of integration stages of new EU Member States. This allows us to apprehend how this type of labour migration, within the multistage model, includes periods of time that take into account the inertia of labour movement. This article examines not only the character of A8 migration flows but also the potential drivers of this migration such as economic, institutional, etc. All processes are examined in the 2002 - 2011 time frame.

  7. Stall/surge dynamics of a multi-stage air compressor in response to a load transient of a hybrid solid oxide fuel cell-gas turbine system

    Science.gov (United States)

    Azizi, Mohammad Ali; Brouwer, Jacob

    2017-10-01

    A better understanding of turbulent unsteady flows in gas turbine systems is necessary to design and control compressors for hybrid fuel cell-gas turbine systems. Compressor stall/surge analysis for a 4 MW hybrid solid oxide fuel cell-gas turbine system for locomotive applications is performed based upon a 1.7 MW multi-stage air compressor. Control strategies are applied to prevent operation of the hybrid SOFC-GT beyond the stall/surge lines of the compressor. Computational fluid dynamics tools are used to simulate the flow distribution and instabilities near the stall/surge line. The results show that a 1.7 MW system compressor like that of a Kawasaki gas turbine is an appropriate choice among the industrial compressors to be used in a 4 MW locomotive SOFC-GT with topping cycle design. The multi-stage radial design of the compressor enhances the ability of the compressor to maintain air flow rate during transient step-load changes. These transient step-load changes are exhibited in many potential applications for SOFC/GT systems. The compressor provides sustained air flow rate during the mild stall/surge event that occurs due to the transient step-load change that is applied, indicating that this type of compressor is well-suited for this hybrid application.

  8. Tribal Odisha Eye Disease Study (TOES # 2 Rayagada school screening program: efficacy of multistage screening of school teachers in detection of impaired vision and other ocular anomalies

    Directory of Open Access Journals (Sweden)

    Panda L

    2018-06-01

    Full Text Available Lapam Panda,1 Taraprasad Das,1 Suryasmita Nayak,1 Umasankar Barik,2 Bikash C Mohanta,1 Jachin Williams,3 Vivekanand Warkad,4 Guha Poonam Tapas Kumar,5 Rohit C Khanna3 1Indian Oil Center for Rural Eye Health, GPR ICARE, L V Prasad Eye Institute, MTC Campus, Bhubaneswar, India; 2Naraindas Morbai Budhrani Eye Centre, L V Prasad Eye Institute, Rayagada, India; 3Gullapalli Pratibha Rao International Center for Advancement of Rural Eye Care, L V Prasad Eye Institute, KAR Campus, Hyderabad, India; 4Miriam Hyman Children Eye Care Center, L V Prasad Eye Institute, MTC Campus, Bhubaneswar, India; 5District Administration, Government of Odisha, Rayagada, India Purpose: To describe program planning and effectiveness of multistage school eye screening and assess accuracy of teachers in vision screening and detection of other ocular anomalies in Rayagada District School Sight Program, Odisha, India.Methods: This multistage screening of students included as follows: stage I: screening for vision and other ocular anomalies by school teachers in the school; stage II: photorefraction, subjective correction and other ocular anomaly confirmation by optometrists in the school; stage III: comprehensive ophthalmologist examination in secondary eye center; and stage IV: pediatric ophthalmologist examination in tertiary eye center. Sensitivity, specificity, positive predictive value (PPV and negative predictive value (NPV of teachers for vision screening and other ocular anomaly detection were calculated vis-à-vis optometrist (gold standard.Results: In the study, 216 teachers examined 153,107 (95.7% of enrolled students aged 5–15 years. Teachers referred 8,363 (5.4% of examined students and 5,990 (71.6% of referred were examined in stage II. After prescribing spectacles to 443, optometrists referred 883 students to stage III. The sensitivity (80.51% and PPV (93.05% of teachers for vision screening were high, but specificity (53.29% and NPV (26.02% were low. The

  9. Permian-Triassic maturation and multistage migration of hydrocarbons in the Assistência Formation (Irati Subgroup, Paraná Basin, Brazil: implications for the exploration model

    Directory of Open Access Journals (Sweden)

    António Mateus

    Full Text Available New lines of geological evidence strongly suggest that the main period of hydrocarbon maturation within Assistência Formation should be Permian-Triassic, stimulated by a high geothermal gradient that also sustained various manifestations of hydrothermal activity. Three main stages of fluid/hydrocarbon migration can also be inferred on the basis of multiscale observations: confined flow in late Permian to Triassic times, depending on the local build-up of fluid pressures; heterogeneous flow in Lower Cretaceous, triggered by a rejuvenated temperature gradient assisted by the early developed permeability conditions; and a late flow possibly driven by local pressure gradients, after complete cooling of dolerite dykes/sills. The early maturation and multistage migration of hydrocarbons have significant consequences in the design of exploration models to be applied in Paraná Basin.

  10. Comparisons of angularly and spectrally resolved Bremsstrahlung measurements to two-dimensional multi-stage simulations of short-pulse laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. D.; Kemp, A. J.; Pérez, F.; Link, A.; Key, M. H.; McLean, H.; Ping, Y.; Patel, P. K. [Lawrence Livermore National Laboratory (United States); Beg, F. N.; Chawla, S.; Sorokovikova, A.; Westover, B. [University of California, San Diego (United States); Morace, A. [University of Milan (Italy); Stephens, R. B. [General Atomics (United States); Streeter, M. [Imperial College London (United Kingdom)

    2013-05-15

    A 2-D multi-stage simulation model incorporating realistic laser conditions and a fully resolved electron distribution handoff has been developed and compared to angularly and spectrally resolved Bremsstrahlung measurements from high-Z planar targets. For near-normal incidence and 0.5-1 × 10{sup 20} W/cm{sup 2} intensity, particle-in-cell (PIC) simulations predict the existence of a high energy electron component consistently directed away from the laser axis, in contrast with previous expectations for oblique irradiation. Measurements of the angular distribution are consistent with a high energy component when directed along the PIC predicted direction, as opposed to between the target normal and laser axis as previously measured.

  11. Implementation of vertical multistage centrifugal pump system for villages at an altitude of ± 1200m above sea level in Sipahutar - North Sumatera area

    Science.gov (United States)

    Parde de, Marincan; Simangunsong, Riyanto; Hedwig, Rinda

    2017-12-01

    Clean water supply is rare in most villages at an altitude of ±1200m above the sea level in North Sumatera due to the topography of the village. The idea to help villagers fulfilling their basic needs in the situation makes this research important. Many experiments had been done previously, such as implementing drilled well but none was successful until we developed a vertical multistage centrifugal pump system. The natural water spring in the area targeted was found in 86 meters depth and would be distributed as far as 500m with area of 1.5km2 from the water tank. The main problem happened was the electric supplies which was always lower than it was expected in that area. Therefore, the successful of the system was happily accepted by the villagers and this research is highly expected to be developed and implemented to other villages, not only in Sipahutar area but also in all Tarutung area.

  12. Factors Affecting Choice in A Multi-Stage Model: The Influence of Saliency and Similarity on Retrieval Set and the Implication of Context Effect on Consideration Set

    Directory of Open Access Journals (Sweden)

    Eric Santosa

    2009-09-01

    Full Text Available While it is considered a new paradigm in consumer research, the multi-stage model of consumer decision-making remains unclear as to whether brands are easily retrieved. Likewise, the process of consideration, after particular brands are successfully retrieved, is still in question. This study purports to investigate the effects of saliency and similarity on the ease of retrieval. In addition, referring to some studies of context effect, the effects of attraction, compromise, and assimilation are examined to observe whether they contribute to consideration. A within-subject design is employed in this study. Previously, three preliminary studies are arranged to determine the dominants, new entrants, attributes, and other criteria nominated in the experimental study. The results turn out to be supporting the hypotheses.

  13. Enzyme-regulated the changes of pH values for assembling a colorimetric and multistage interconnection logic network with multiple readouts

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanyan; Ran, Xiang; Lin, Youhui [Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Graduate School of University of Chinese Academy of Sciences, Beijing 100039 (China); Ren, Jinsong, E-mail: jren@ciac.ac.cn [Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Qu, Xiaogang [Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2015-04-22

    Highlights: • A colorimetric and multistage biological network has been developed. • This system was on the basis of the enzyme-regulated changes of pH values. • This enzyme-based system could assemble large biological circuit. • Two signal transducers (DNA/AuNPs and acid–base indicators) were used. • The compositions of samples could be detected through visual output signals. - Abstract: Based on enzymatic reactions-triggered changes of pH values and biocomputing, a novel and multistage interconnection biological network with multiple easy-detectable signal outputs has been developed. Compared with traditional chemical computing, the enzyme-based biological system could overcome the interference between reactions or the incompatibility of individual computing gates and offer a unique opportunity to assemble multicomponent/multifunctional logic circuitries. Our system included four enzyme inputs: β-galactosidase (β-gal), glucose oxidase (GOx), esterase (Est) and urease (Ur). With the assistance of two signal transducers (gold nanoparticles and acid–base indicators) or pH meter, the outputs of the biological network could be conveniently read by the naked eyes. In contrast to current methods, the approach present here could realize cost-effective, label-free and colorimetric logic operations without complicated instrument. By designing a series of Boolean logic operations, we could logically make judgment of the compositions of the samples on the basis of visual output signals. Our work offered a promising paradigm for future biological computing technology and might be highly useful in future intelligent diagnostics, prodrug activation, smart drug delivery, process control, and electronic applications.

  14. A multistage framework for reliability-based distribution expansion planning considering distributed generations by a self-adaptive global-based harmony search algorithm

    International Nuclear Information System (INIS)

    Shivaie, Mojtaba; Ameli, Mohammad T.; Sepasian, Mohammad S.; Weinsier, Philip D.; Vahidinasab, Vahid

    2015-01-01

    In this paper, the authors present a new multistage framework for reliability-based Distribution Expansion Planning (DEP) in which expansion options are a reinforcement and/or installation of substations, feeders, and Distributed Generations (DGs). The proposed framework takes into account not only costs associated with investment, maintenance, and operation, but also expected customer interruption cost in the optimization as four problem objectives. At the same time, operational restrictions, Kirchhoff's laws, radial structure limitation, voltage limits, and capital expenditure budget restriction are considered as problem constraints. The proposed model is a non-convex optimization problem having a non-linear, mixed-integer nature. Hence, a hybrid Self-adaptive Global-based Harmony Search Algorithm (SGHSA) and Optimal Power Flow (OPF) were used and followed by a fuzzy satisfying method in order to obtain the final optimal solution. The SGHSA is a recently developed optimization algorithm which imitates the music improvisation process. In this process, the harmonists improvise their instrument pitches, searching for the perfect state of harmony. The planning methodology was demonstrated on the 27-node, 13.8-kV test system in order to demonstrate the feasibility and capability of the proposed model. Simulation results illustrated the sufficiency and profitableness of the newly developed framework, when compared with other methods. - Highlights: • A new multistage framework is presented for reliability-based DEP problem. • In this paper, DGs are considered as an expansion option to increase the flexibility of the proposed model. • In this paper, effective factors of DEP problem are incorporated as a multi-objective model. • In this paper, three new algorithms HSA, IHSA and SGHSA are proposed. • Results obtained by the proposed SGHSA algorithm are better than others

  15. Enzyme-regulated the changes of pH values for assembling a colorimetric and multistage interconnection logic network with multiple readouts

    International Nuclear Information System (INIS)

    Huang, Yanyan; Ran, Xiang; Lin, Youhui; Ren, Jinsong; Qu, Xiaogang

    2015-01-01

    Highlights: • A colorimetric and multistage biological network has been developed. • This system was on the basis of the enzyme-regulated changes of pH values. • This enzyme-based system could assemble large biological circuit. • Two signal transducers (DNA/AuNPs and acid–base indicators) were used. • The compositions of samples could be detected through visual output signals. - Abstract: Based on enzymatic reactions-triggered changes of pH values and biocomputing, a novel and multistage interconnection biological network with multiple easy-detectable signal outputs has been developed. Compared with traditional chemical computing, the enzyme-based biological system could overcome the interference between reactions or the incompatibility of individual computing gates and offer a unique opportunity to assemble multicomponent/multifunctional logic circuitries. Our system included four enzyme inputs: β-galactosidase (β-gal), glucose oxidase (GOx), esterase (Est) and urease (Ur). With the assistance of two signal transducers (gold nanoparticles and acid–base indicators) or pH meter, the outputs of the biological network could be conveniently read by the naked eyes. In contrast to current methods, the approach present here could realize cost-effective, label-free and colorimetric logic operations without complicated instrument. By designing a series of Boolean logic operations, we could logically make judgment of the compositions of the samples on the basis of visual output signals. Our work offered a promising paradigm for future biological computing technology and might be highly useful in future intelligent diagnostics, prodrug activation, smart drug delivery, process control, and electronic applications

  16. Validity and reliability of an application review process using dedicated reviewers in one stage of a multi-stage admissions model.

    Science.gov (United States)

    Zeeman, Jacqueline M; McLaughlin, Jacqueline E; Cox, Wendy C

    2017-11-01

    With increased emphasis placed on non-academic skills in the workplace, a need exists to identify an admissions process that evaluates these skills. This study assessed the validity and reliability of an application review process involving three dedicated application reviewers in a multi-stage admissions model. A multi-stage admissions model was utilized during the 2014-2015 admissions cycle. After advancing through the academic review, each application was independently reviewed by two dedicated application reviewers utilizing a six-construct rubric (written communication, extracurricular and community service activities, leadership experience, pharmacy career appreciation, research experience, and resiliency). Rubric scores were extrapolated to a three-tier ranking to select candidates for on-site interviews. Kappa statistics were used to assess interrater reliability. A three-facet Many-Facet Rasch Model (MFRM) determined reviewer severity, candidate suitability, and rubric construct difficulty. The kappa statistic for candidates' tier rank score (n = 388 candidates) was 0.692 with a perfect agreement frequency of 84.3%. There was substantial interrater reliability between reviewers for the tier ranking (kappa: 0.654-0.710). Highest construct agreement occurred in written communication (kappa: 0.924-0.984). A three-facet MFRM analysis explained 36.9% of variance in the ratings, with 0.06% reflecting application reviewer scoring patterns (i.e., severity or leniency), 22.8% reflecting candidate suitability, and 14.1% reflecting construct difficulty. Utilization of dedicated application reviewers and a defined tiered rubric provided a valid and reliable method to effectively evaluate candidates during the application review process. These analyses provide insight into opportunities for improving the application review process among schools and colleges of pharmacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Investigating Robustness of Item Response Theory Proficiency Estimators to Atypical Response Behaviors under Two-Stage Multistage Testing. ETS GRE® Board Research Report. ETS GRE®-16-03. ETS Research Report No. RR-16-22

    Science.gov (United States)

    Kim, Sooyeon; Moses, Tim

    2016-01-01

    The purpose of this study is to evaluate the extent to which item response theory (IRT) proficiency estimation methods are robust to the presence of aberrant responses under the "GRE"® General Test multistage adaptive testing (MST) design. To that end, a wide range of atypical response behaviors affecting as much as 10% of the test items…

  18. HOLA: Human-like Orthogonal Network Layout.

    Science.gov (United States)

    Kieffer, Steve; Dwyer, Tim; Marriott, Kim; Wybrow, Michael

    2016-01-01

    Over the last 50 years a wide variety of automatic network layout algorithms have been developed. Some are fast heuristic techniques suitable for networks with hundreds of thousands of nodes while others are multi-stage frameworks for higher-quality layout of smaller networks. However, despite decades of research currently no algorithm produces layout of comparable quality to that of a human. We give a new "human-centred" methodology for automatic network layout algorithm design that is intended to overcome this deficiency. User studies are first used to identify the aesthetic criteria algorithms should encode, then an algorithm is developed that is informed by these criteria and finally, a follow-up study evaluates the algorithm output. We have used this new methodology to develop an automatic orthogonal network layout method, HOLA, that achieves measurably better (by user study) layout than the best available orthogonal layout algorithm and which produces layouts of comparable quality to those produced by hand.

  19. Long-term mental wellbeing of adolescents and young adults diagnosed with venous thromboembolism: results from a multistage mixed methods study.

    Science.gov (United States)

    Højen, A A; Sørensen, E E; Dreyer, P S; Søgaard, M; Larsen, T B

    2017-12-01

    Essentials Long-term mental wellbeing of adolescents and young adults with venous thromboembolism is unclear. This multistage mixed methods study was based on Danish nationwide registry data and interviews. Mental wellbeing is negatively impacted in the long-term and uncertainty of recurrence is pivotal. The perceived health threat is more important than disease severity for long-term mental wellbeing. Background Critical and chronic illness in youth can lead to impaired mental wellbeing. Venous thromboembolism (VTE) is a potentially traumatic and life-threatening condition. Nonetheless, the long-term mental wellbeing of adolescents and young adults (AYAS) with VTE is unclear. Objectives To investigate the long-term mental wellbeing of AYAS (aged 13-33 years) diagnosed with VTE. Methods We performed a multistage mixed method study based on data from the Danish nationwide health registries, and semistructured interviews with 12 AYAS diagnosed with VTE. An integrated mixed methods interpretation of the findings was conducted through narrative weaving and joint displays. Results The integrated mixed methods interpretation showed that the mental wellbeing of AYAS with VTE had a chronic perspective, with a persistently higher risk of psychotropic drug purchase among AYAS with a first-time diagnosis of VTE than among sex-matched and age-matched population controls and AYAS with a first-time diagnosis of insulin-dependent diabetes mellitus. Impaired mental wellbeing was largely connected to a fear of recurrence and concomitant uncertainty. Therefore, it was important for the long-term mental wellbeing to navigate uncertainty. The perceived health threat played a more profound role in long-term mental wellbeing than disease severity, as the potential life threat was the pivot which pointed back to the initial VTE and forward to the perception of future health threat and the potential risk of dying of a recurrent event. Conclusion Our findings show that the long

  20. Profiling of ornithine lipids in bacterial extracts of Rhodobacter sphaeroides by reversed-phase liquid chromatography with electrospray ionization and multistage mass spectrometry (RPLC-ESI-MS(n)).

    Science.gov (United States)

    Granafei, Sara; Losito, Ilario; Trotta, Massimo; Italiano, Francesca; de Leo, Vincenzo; Agostiano, Angela; Palmisano, Francesco; Cataldi, Tommaso R I

    2016-01-15

    Ornithine lipids (OLs), a sub-group of the large (and of emerging interest) family of lipoamino acids of bacterial origin, contain a 3-hydroxy fatty acyl chain linked via an amide bond to the α-amino group of ornithine and via an ester bond to a second fatty acyl chain. OLs in extracts of Rhodobacter sphaeroides (R. sphaeroides) were investigated by high-performance reversed phase liquid chromatography (RPLC) with electrospray ionization mass spectrometry (ESI-MS) in negative ion mode using a linear ion trap (LIT). The presence of OLs bearing both saturated (i.e, 16:0, 17:0, 18:0, 19:0 and 20:0) and unsaturated chains (i.e., 18:1, 19:1, 19:2 and 20:1) was ascertained and their identification, even for isomeric, low abundance and partially co-eluting species, was achieved by low-energy collision induced dissociation (CID) multistage mass spectrometry (MS(n), n = 2-4). OLs signatures found in two R. sphaeroides strains, i.e., wild type 2.4.1 and mutant R26, were examined and up to 16 and 17 different OL species were successfully identified, respectively. OLs in both bacterial strains were characterized by several combinations of fatty chains on ester-linked and amide-linked 3-OH fatty acids. Multistage MS spectra of monoenoic amide-linked 3-OH acyl chains, allowed the identification of positional isomer of OL containing 18:1 (i.e. 9-octadecenoic) and 20:1 (i.e. 11-eicosenoic) fatty acids. The most abundant OL ([M-H](-) at m/z 717.5) in R. sphaeroides R26 was identified as OL 3-OH 20:1/19:1 (i.e., 3-OH-eicosenoic acid amide-linked to ornithine and esterified to a nonadecenoic chain containing a cyclopropane ring). An unusual OL (m/z 689.5 for the [M-H](-) ion), most likely containing a cyclopropene ester-linked acyl chain (i.e., OL 3-OH 18:0/19:2), was retrieved only in the carotenoidless mutant strain R26. Based on the biosynthetic pathways already known for cyclopropa(e)ne ring-including acyl chains, a plausible explanation was invoked for the enzymatic

  1. Eclogite facies relics and a multistage breakdown in metabasites of the KTB pilot hole, NE Bavaria: implications for the Variscan tectonometamorphic evolution of the NW Bohemian Massif

    Science.gov (United States)

    O'Brien, Patrick J.; Röhr, Christian; Okrusch, Martin; Patzak, Margarete

    1992-11-01

    Complex reaction textures in coronitic metagabbros and retrograded eclogites of the KTB pilot and an adjacent drilling provide evidence for a multistage metamorphic history in the Variscan basement of the NW Bohemian Massif. The eclogites show complete metamorphic recrystallization leaving no textural or mineral relics of their igneous precursors. In contrast, textural relics of the igneous protolith are still preserved in the metagabbros where the metamorphic overprint under high pressure conditions achieved only partial replacement of the initial assemblage plagioclase + augite + amphibole (+olivine or orthopyroxene?) + ilmenite to form the eclogite facies assemblage garnet + omphacite + kyanite + zoisite + quartz+rutile. The garnets in the metagabbros occur in the typical ‘necklace’ fashion at the borders between the original plagioclase and mafic phase domains. In the same rocks, omphacite formed by a topotactic reaction mechanism replacing igneous augite as well as in smaller grains at the margins of the texturally igneous clinopyroxene where it occurs without fixed orientation with respect to the relict phase. Both eclogites and metagabbros show a partial breakdown under high pressure granulite (transitional to high pressure amphibolite) facies conditions during which omphacite broke down to vermicular symplectites of diopside + plagioclase. A later pervasive medium pressure metamorphism under amphibolite facies conditions led to the development of assemblages dominated by hornblende + plagioclase+titanite: phases prevailing in the overwhelming majority of the surrounding metabasites. Subsequent vein-associated retrogression produced minerals typical of the greenschist to zeolite facies. All metamorphic stages may be represented in a single thin section but although the overall reaction sequence is apparent, the obvious disequilibrium in the rocks makes the use of conventional geothermobarometry difficult. However, calculations made by assuming an

  2. Beyond visualization of big data: a multi-stage data exploration approach using visualization, sonification, and storification

    Science.gov (United States)

    Rimland, Jeffrey; Ballora, Mark; Shumaker, Wade

    2013-05-01

    As the sheer volume of data grows exponentially, it becomes increasingly difficult for existing visualization techniques to keep pace. The sonification field attempts to address this issue by enlisting our auditory senses to detect anomalies or complex events that are difficult to detect via visualization alone. Storification attempts to improve analyst understanding by converting data streams into organized narratives describing the data at a higher level of abstraction than the input stream that they area derived from. While these techniques hold a great deal of promise, they also each have a unique set of challenges that must be overcome. Sonification techniques must represent a broad variety of distributed heterogeneous data and present it to the analyst/listener in a manner that doesn't require extended listening - as visual "snapshots" are useful but auditory sounds only exist over time. Storification still faces many human-computer interface (HCI) challenges as well as technical hurdles related to automatically generating a logical narrative from lower-level data streams. This paper proposes a novel approach that utilizes a service oriented architecture (SOA)-based hybrid visualization/ sonification / storification framework to enable distributed human-in-the-loop processing of data in a manner that makes optimized usage of both visual and auditory processing pathways while also leveraging the value of narrative explication of data streams. It addresses the benefits and shortcomings of each processing modality and discusses information infrastructure and data representation concerns required with their utilization in a distributed environment. We present a generalizable approach with a broad range of applications including cyber security, medical informatics, facilitation of energy savings in "smart" buildings, and detection of natural and man-made disasters.

  3. Start-up of a multi-stage system for biogas production and solid waste treatment in low-tech countries.

    Science.gov (United States)

    Biey, E M; Musibono, E D; Verstraete, W

    2003-01-01

    Vegetable fruit garden wastes were treated anaerobically using a multistage Dranco system. The digesters were composed of three 50 L vessels kept in mesophilic conditions. They were operating at 14.5-17% TS. By controlling the pH in the system, the start-up for biogas production was shortened to 60 days. The pH correction was a buffering which enhanced methanogenic activity in the digesters. With a loading rate of 4.1 kg VS/m3 reactor/day, the production of biogas was 5 m3/m3 reactor/ day, and 60-70% methane content. This allowed making a multisystem by starting every 3 weeks with new vessels in order to maintain biogas production, to be used in industries or in local communities in low-tech countries. The designed model was started in Kinshasa (Congo) where a project is expected to treat one ton of solid waste on a daily basis, for a production of 100 m3 biogas. This cost effectiveness of the system is demonstrated and presents the opportunity for biowaste treatment coupled with environmental protection and substantial energy recovery.

  4. Loss of p19(Arf facilitates the angiogenic switch and tumor initiation in a multi-stage cancer model via p53-dependent and independent mechanisms.

    Directory of Open Access Journals (Sweden)

    Danielle B Ulanet

    2010-08-01

    Full Text Available The Arf tumor suppressor acts as a sensor of oncogenic signals, countering aberrant proliferation in large part via activation of the p53 transcriptional program, though a number of p53-independent functions have been described. Mounting evidence suggests that, in addition to promoting tumorigenesis via disruptions in the homeostatic balance between cell proliferation and apoptosis of overt cancer cells, genetic alterations leading to tumor suppressor loss of function or oncogene gain of function can also incite tumor development via effects on the tumor microenvironment. In a transgenic mouse model of multi-stage pancreatic neuroendocrine carcinogenesis (PNET driven by inhibition of the canonical p53 and Rb tumor suppressors with SV40 large T-antigen (Tag, stochastic progression to tumors is limited in part by a requirement for initiation of an angiogenic switch. Despite inhibition of p53 by Tag in this mouse PNET model, concomitant disruption of Arf via genetic knockout resulted in a significantly accelerated pathway to tumor formation that was surprisingly not driven by alterations in tumor cell proliferation or apoptosis, but rather via earlier activation of the angiogenic switch. In the setting of a constitutional p53 gene knockout, loss of Arf also accelerated tumor development, albeit to a lesser degree. These findings demonstrate that Arf loss of function can promote tumorigenesis via facilitating angiogenesis, at least in part, through p53-independent mechanisms.

  5. Enzyme-regulated the changes of pH values for assembling a colorimetric and multistage interconnection logic network with multiple readouts.

    Science.gov (United States)

    Huang, Yanyan; Ran, Xiang; Lin, Youhui; Ren, Jinsong; Qu, Xiaogang

    2015-04-22

    Based on enzymatic reactions-triggered changes of pH values and biocomputing, a novel and multistage interconnection biological network with multiple easy-detectable signal outputs has been developed. Compared with traditional chemical computing, the enzyme-based biological system could overcome the interference between reactions or the incompatibility of individual computing gates and offer a unique opportunity to assemble multicomponent/multifunctional logic circuitries. Our system included four enzyme inputs: β-galactosidase (β-gal), glucose oxidase (GOx), esterase (Est) and urease (Ur). With the assistance of two signal transducers (gold nanoparticles and acid-base indicators) or pH meter, the outputs of the biological network could be conveniently read by the naked eyes. In contrast to current methods, the approach present here could realize cost-effective, label-free and colorimetric logic operations without complicated instrument. By designing a series of Boolean logic operations, we could logically make judgment of the compositions of the samples on the basis of visual output signals. Our work offered a promising paradigm for future biological computing technology and might be highly useful in future intelligent diagnostics, prodrug activation, smart drug delivery, process control, and electronic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Simulation of a multistage fractured horizontal well in a water-bearing tight fractured gas reservoir under non-Darcy flow

    Science.gov (United States)

    Zhang, Rui-Han; Zhang, Lie-Hui; Wang, Rui-He; Zhao, Yu-Long; Huang, Rui

    2018-06-01

    Reservoir development for unconventional resources such as tight gas reservoirs is in increasing demand due to the rapid decline of production in conventional reserves. Compared with conventional reservoirs, fluid flow in water-bearing tight gas reservoirs is subject to more nonlinear multiphase flow and gas slippage in nano/micro matrix pores because of the strong collisions between rock and gas molecules. Economic gas production from tight gas reservoirs depends on extensive application of water-based hydraulic fracturing of horizontal wells, associated with non-Darcy flow at a high flow rate, geomechanical stress sensitivity of un-propped natural fractures, complex flow geometry and multiscale heterogeneity. How to efficiently and accurately predict the production performance of a multistage fractured horizontal well (MFHW) is challenging. In this paper, a novel multicontinuum, multimechanism, two-phase simulator is established based on unstructured meshes and the control volume finite element method to analyze the production performance of MFHWs. The multiple interacting continua model and discrete fracture model are coupled to integrate the unstimulated fractured reservoir, induced fracture networks (stimulated reservoir volumes, SRVs) and irregular discrete hydraulic fractures. Several simulations and sensitivity analyses are performed with the developed simulator for determining the key factors affecting the production performance of MFHWs. Two widely applied fracturing models, classic hydraulic fracturing which generates long double-wing fractures and the volumetric fracturing aimed at creating large SRVs, are compared to identify which of them can make better use of tight gas reserves.

  7. Biological nutrient removal and molecular biological characteristics in an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater.

    Science.gov (United States)

    Huang, Xiao; Dong, Wenyi; Wang, Hongjie; Jiang, Shilong

    2017-10-01

    This study aimed to present an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater. The average COD, NH 4 + -N, TN, and TP removal efficiency were 91.81%, 96.26%, 83.73% and 94.49%, respectively. Temperature plunge and C/N decrease have a certain impact on the modified process. Characteristics of microbial community, function microorganism, and correlation of microbial community with environmental variables in five compartments were carried out by Illumina Miseq high-throughput sequencing. The differences of microbial community were observed and Blastocatella, Flavobacterium and Pseudomonas were the dominant genus. Nitrosomonas and Nitrospira occupied a dominant position in AOB and NOB, respectively. Rhodospirillaceae and Rhodocyclaceae owned a considerable proportion in phosphorus removal bacteria. DO and COD played significant roles on affecting the microbial components. The A-MAO process in this study demonstrated a high potential for nutrient removal from municipal wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Machine Learning Multi-Stage Classification and Regression in the Search for Vector-like Quarks and the Neyman Construction in Signal Searches

    CERN Document Server

    Leone, Robert Matthew

    A search for vector-like quarks (VLQs) decaying to a Z boson using multi-stage machine learning was compared to a search using a standard square cuts search strategy. VLQs are predicted by several new theories beyond the Standard Model. The searches used 20.3 inverse femtobarns of proton-proton collisions at a center-of-mass energy of 8 TeV collected with the ATLAS detector in 2012 at the CERN Large Hadron Collider. CLs upper limits on production cross sections of vector-like top and bottom quarks were computed for VLQs produced singly or in pairs, Tsingle, Bsingle, Tpair, and Bpair. The two stage machine learning classification search strategy did not provide any improvement over the standard square cuts strategy, but for Tpair, Bpair, and Tsingle, a third stage of machine learning regression was able to lower the upper limits of high signal masses by as much as 50%. Additionally, new test statistics were developed for use in the Neyman construction of confidence regions in order to address deficiencies in c...

  9. A multi-stage approach to maximizing geocoding success in a large population-based cohort study through automated and interactive processes

    Directory of Open Access Journals (Sweden)

    Jennifer S. Sonderman

    2012-05-01

    Full Text Available To enable spatial analyses within a large, prospective cohort study of nearly 86,000 adults enrolled in a 12-state area in the southeastern United States of America from 2002-2009, a multi-stage geocoding protocol was developed to efficiently maximize the proportion of participants assigned an address level geographic coordinate. Addresses were parsed, cleaned and standardized before applying a combination of automated and interactive geocoding tools. Our full protocol increased the non-Post Office (PO Box match rate from 74.5% to 97.6%. Overall, we geocoded 99.96% of participant addresses, with only 5.2% at the ZIP code centroid level (2.8% PO Box and 2.3% non-PO Box addresses. One key to reducing the need for interactive geocoding was the use of multiple base maps. Still, addresses in areas with population density 920 persons/km2 (odds ratio (OR = 5.24; 95% confidence interval (CI = 4.23, 6.49, as were addresses collected from participants during in-person interviews compared with mailed questionnaires (OR = 1.83; 95% CI = 1.59, 2.11. This study demonstrates that population density and address ascertainment method can influence automated geocoding results and that high success in address level geocoding is achievable for large-scale studies covering wide geographical areas.

  10. Cu deficiency in multi-stage co-evaporated Cu(In,Ga)Se{sub 2} for solar cells applications: Microstructure and Ga in-depth alloying

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, R., E-mail: raquel.caballero@helmholtz-berlin.de [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Izquierdo-Roca, V. [M-2E/XaRMAE/IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain); Fontane, X. [IREC, Catalonia Institute for Energy Research, C. Joseph Pla 2 B2, 08019 Barcelona (Spain); Kaufmann, C.A. [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Alvarez-Garcia, J. [Centre de Recerca i Investigacio de Catalunya (CRIC), Trav. de Gracia 108, 08012 Barcelona (Spain); Eicke, A. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung, Industriestrasse 6, 70565 Stuttgart (Germany); Calvo-Barrio, L. [Lab. Analisis de Superficies, SCT, Universitat de Barcelona, Lluis Sole i Sabaris 1-3, 08028 Barcelona (Spain); Perez-Rodriguez, A. [M-2E/XaRMAE/IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain)] [IREC, Catalonia Institute for Energy Research, C. Joseph Pla 2 B2, 08019 Barcelona (Spain); Schock, H.W. [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Morante, J.R. [M-2E/XaRMAE/IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain)] [IREC, Catalonia Institute for Energy Research, C. Joseph Pla 2 B2, 08019 Barcelona (Spain)

    2010-05-15

    The objective of this work is to study the influence of the maximum Cu content during the deposition of Cu(In,Ga)Se{sub 2} (CIGSe) by multi-stage co-evaporation on the phases present in the final film, the film structure and the electrical properties of resulting solar cell devices. The variation of the composition is controlled by the Cu content in stage 2 of the deposition process. The different phases are identified by Raman spectroscopy. The in-depth Ga gradient distribution is investigated by in-depth resolved Raman scattering and secondary neutral mass spectroscopy. The morphology of the devices is studied by scanning electron microscopy. Efficiencies of 9.2% are obtained for ordered-vacancy-compound-based cells with a Cu/(In + Ga) ratio = 0.35, showing the system's flexibility. This work supports the current growth model: a small amount of Cu excess during the absorber process is required to obtain a quality microstructure and high performance devices.

  11. Modeling of Combined Heat and Power Plant Based on a Multi-Stage Gasifier and Internal Combustion Engines of Various Power Outputs

    Science.gov (United States)

    Khudyakova, G. I.; Kozlov, A. N.; Svishchev, D. A.

    2017-11-01

    The paper is concerned with an integrated system of internal combustion engine and mini combined heat and power plant (ICE-CHP). The system is based on multi-stage wood biomass gasification. The use of producer gas in the system affects negatively the internal combustion engine performance and, therefore, reduces the efficiency of the ICE-CHP plant. A mathematical model of an internal combustion engine running on low-calorie producer gas was developed using an overview of Russian and foreign manufacturers of reciprocating units, that was made in the research. A thermal calculation was done for four-stroke gas engines of different rated power outputs (30, 100 and 250 kW), running on producer gas (CO2 - 10.2, CO - 45.8, N2 - 38.8%). Thermal calculation demonstrates that the engine exhaust gas temperature reaches 500 - 600°C at the rated power level and with the lower engine power, the temperature gets higher. For example, for an internal combustion engine power of 1000 kW the temperature of exhaust gases equals 400°C. A comparison of the efficiency of engine operation on natural gas and producer gas shows that with the use of producer gas the power output declines from 300 to 250 kWe. The reduction in the effective efficiency in this case makes up 2%. The measures are proposed to upgrade the internal combustion engine to enable it to run on low-calorie producer gas.

  12. Multi-stage thermal-economical optimization of compact heat exchangers: A new evolutionary-based design approach for real-world problems

    International Nuclear Information System (INIS)

    Yousefi, Moslem; Darus, Amer Nordin; Yousefi, Milad; Hooshyar, Danial

    2015-01-01

    The complicated task of design optimization of compact heat exchangers (CHEs) have been effectively performed by using evolutionary algorithms (EAs) in the recent years. However, mainly due to difficulties of handling extra variables, the design approach has been based on constant rates of heat duty in the available literature. In this paper, a new design strategy is presented where variable operating conditions, which better represent real-world problems, are considered. The proposed strategy is illustrated using a case study for design of a plate-fin heat exchanger though it can be employed for all types of heat exchangers without much change. Learning automata based particle swarm optimization (LAPSO), is employed for handling nine design variables while satisfying various equality and inequality constraints. For handling the constraints, a novel feasibility based ranking strategy (FBRS) is introduced. The numerical results indicate that the design based on variable heat duties yields in more cost savings and superior thermodynamics efficiency comparing to a conventional design approach. Furthermore, the proposed algorithm has shown a superior performance in finding the near-optimum solution for this task when it is compared to the most popular evolutionary algorithms in engineering applications, i.e. genetic algorithm (GA) and particle swarm optimization (PSO). - Highlights: • Multi-stage design of heat exchangers is presented. • Feasibility based ranking strategy is employed for constraint handling. • Learning abilities added to particle swarm optimization

  13. Advances in single- and multi-stage Stirling-type pulse tube cryocoolers for space applications in NLIP/SITP/CAS

    Science.gov (United States)

    Dang, Haizheng; Tan, Jun; Zha, Rui; Li, Jiaqi; Zhang, Lei; Zhao, Yibo; Gao, Zhiqian; Bao, Dingli; Li, Ning; Zhang, Tao; Zhao, Yongjiang; Zhao, Bangjian

    2017-12-01

    This paper presents a review of recent advances in single- and multi-stage Stirling-type pulse tube cryocoolers (SPTCs) for space applications developed at the National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences (NLIP/SITP/CAS). A variety of single-stage SPTCs operating at 25-150 K have been developed, including several mid-sized ones operating at 80-110 K. Significant progress has been achieved in coolers operating at 30-40 K which use common stainless steel meshes as regenerator matrices. Another important advance is the micro SPTCs with an overall mass of 300-800 g operating at high frequencies varying from 100 Hz to 400 Hz. The main purpose of developing two-stage SPTCs is to simultaneously acquire cooling capacities at both stages, obviating the need for auxiliary precooling in various applications. The three-stage SPTCs are developed mainly for applications at around 10 K, which are also used for precooling the J-T coolers to achieve further lower temperatures. The four-stage SPTCs are developed to directly achieve the liquid helium temperature for cooling space low-Tc superconducting devices and for the deep space exploration as well. Several typical development programs are described and an overview of the cooler performances is presented.

  14. Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery.

    Science.gov (United States)

    Liu, Dongfei; Zhang, Hongbo; Herranz-Blanco, Bárbara; Mäkilä, Ermei; Lehto, Vesa-Pekka; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-05-28

    We report an advanced drug delivery platform for combination chemotherapy by concurrently incorporating two different drugs into microcompoistes with ratiometric control over the loading degree. Atorvastatin and celecoxib were selected as model drugs due to their different physicochemical properties and synergetic effect on colorectal cancer prevention and inhibition. To be effective in colorectal cancer prevention and inhibition, the produced microcomposite contained hypromellose acetate succinate, which is insoluble in acidic conditions but highly dissolving at neutral or alkaline pH conditions. Taking advantage of the large pore volume of porous silicon (PSi), atorvastatin was firstly loaded into the PSi matrix, and then encapsulated into the pH-responsive polymer microparticles containing celecoxib by microfluidics in order to obtain multi-drug loaded polymer/PSi microcomposites. The prepared microcomposites showed monodisperse size distribution, multistage pH-response, precise ratiometric controlled loading degree towards the simultaneously loaded drug molecules, and tailored release kinetics of the loaded cargos. This attractive microcomposite platform protects the payloads from being released at low pH-values, and enhances their release at higher pH-values, which can be further used for colon cancer prevention and treatment. Overall, the pH-responsive polymer/PSi-based microcomposite can be used as a universal platform for the delivery of different drug molecules for combination therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. SU-E-T-480: Radiobiological Dose Comparison of Single Fraction SRS, Multi-Fraction SRT and Multi-Stage SRS of Large Target Volumes Using the Linear-Quadratic Formula

    International Nuclear Information System (INIS)

    Ding, C; Hrycushko, B; Jiang, S; Meyer, J; Timmerman, R

    2014-01-01

    Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm 3 ) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan, the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment

  16. pH multistage responsive micellar system with charge-switch and PEG layer detachment for co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells.

    Science.gov (United States)

    Yang, Zhe; Sun, Na; Cheng, Rui; Zhao, Chenyang; Liu, Zerong; Li, Xian; Liu, Jie; Tian, Zhongmin

    2017-12-01

    Several studies have demonstrated that cancer stem cells (CSCs) are responsible for replenishing bulk tumor cells, generating new tumors and causing metastasis and relapse. Although combination therapy with multiple chemotherapeutics is considered to be a promising approach for simultaneously eliminating non-CSCs and CSCs, it is difficult to deliver drugs into the inner region of a solid tumor where the CSCs are located due to a lack of capillaries. Here, we synthesized a pH-sensitive polymer, poly(ethylene glycol)-benzoic imine-poly(γ-benzyl-l-aspartate)-b-poly(1-vinylimidazole) block copolymer (PPBV), to develop a pH multistage responsive micellar system for co-delivering paclitaxel and curcumin and synergistically eliminating breast cancer stem cells (bCSCs) and non-bCSCs. This pH multistage responsive micellar system could intelligently switch its surface charge from neutral to positive, de-shield its PEG layer and reduce its size after long-circulation and extravasation from leaky blood vessels at tumor sites, thus facilitating their cellular uptake and deep tumor penetration. These advantages were also beneficial for the combinational therapy efficacy of PTX and CUR to reach the maximum level and achieve superior tumor inhibition activity and effective bCSCs-killing capacity in vivo. Consequently, this pH multistage responsive micellar system is a powerful platform for collaborative therapy with PTX and CUR to simultaneously eliminate bCSCs and non-CSCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept.

    Science.gov (United States)

    Hughes, Stephen R; López-Núñez, Juan Carlos; Jones, Marjorie A; Moser, Bryan R; Cox, Elby J; Lindquist, Mitch; Galindo-Leva, Luz Angela; Riaño-Herrera, Néstor M; Rodriguez-Valencia, Nelson; Gast, Fernando; Cedeño, David L; Tasaki, Ken; Brown, Robert C; Darzins, Al; Brunner, Lane

    2014-10-01

    The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to

  18. Comprehensive multi-stage linkage analyses identify a locus for adult height on chromosome 3p in a healthy Caucasian population.

    Science.gov (United States)

    Ellis, Justine A; Scurrah, Katrina J; Duncan, Anna E; Lamantia, Angela; Byrnes, Graham B; Harrap, Stephen B

    2007-04-01

    There have been a number of genome-wide linkage studies for adult height in recent years. These studies have yielded few well-replicated loci, and none have been further confirmed by the identification of associated gene variants. The inconsistent results may be attributable to the fact that few studies have combined accurate phenotype measures with informative statistical modelling in healthy populations. We have performed a multi-stage genome-wide linkage analysis for height in 275 adult sibling pairs drawn randomly from the Victorian Family Heart Study (VFHS), a healthy population-based Caucasian cohort. Height was carefully measured in a standardised fashion on regularly calibrated equipment. Following genome-wide identification of a peak Z-score of 3.14 on chromosome 3 at 69 cM, we performed a fine-mapping analysis of this region in an extended sample of 392 two-generation families. We used a number of variance components models that incorporated assortative mating and shared environment effects, and we observed a peak LOD score of approximately 3.5 at 78 cM in four of the five models tested. We also demonstrated that the most prevalent model in the literature gave the worst fit, and the lowest LOD score (2.9) demonstrating the importance of appropriate modelling. The region identified in this study replicates the results of other genome-wide scans of height and bone-related phenotypes, strongly suggesting the presence of a gene important in bone growth on chromosome 3p. Association analyses of relevant candidate genes should identify the genetic variants responsible for the chromosome 3p linkage signal in our population.

  19. Mycobacterium tuberculosis Latent Antigen Rv2029c from the Multistage DNA Vaccine A39 Drives TH1 Responses via TLR-mediated Macrophage Activation

    Directory of Open Access Journals (Sweden)

    Haibo Su

    2017-11-01

    Full Text Available Targeting of Mycobacterium tuberculosis (MTB latent antigens comprises a crucial strategy for the development of alternative tuberculosis (TB vaccine(s that protects against TB reactivation. Here, we generated a multistage DNA vaccine, A39, containing the early antigens Ag85A and Rv3425 as well as the latency-associated protein Rv2029c, which conferred protective immunity in a pre-exposure mouse model. Moreover, administration of the A39 vaccination after MTB exposure inhibited reactivation and resulted in significantly lower bacterial loads in the lungs and spleen of mice, compared to those in the control population. Subsequently, we investigated the effect of Rv2029c on innate immunity and characterized the molecular details of the interaction of this protein with the host via iTRAQ proteomic and biochemical assay analyses. Rv2029c activated macrophages, triggered the production of pro-inflammatory cytokines, and promoted toll-like receptor/mitogen-activated protein kinase (TLR/MAPK-dependent macrophage apoptosis. Furthermore, Rv2029c treatment enhanced the ability of Mycobacterium bovis Bacillus Calmette-Guérin (BCG-infected macrophages to present antigens to CD4+ T cells in vitro, which correlated with an increase in MHC-II expression. Lastly, Rv2029c-treated macrophages activated T cells, effectively polarized CD4+ and CD8+ T cells to secrete IFN-γ and IL-2, and specifically expanded a population of CD44highCD62LlowCD4+/CD8+ effector/memory cells, indicating that Rv2029c, as a specific recall antigen, contributes to Th1 polarization in T cell immunity. These results suggest that Rv2029c and A39 comprise promising targets for the development of next-generation clinical TB therapeutic vaccines.

  20. Secondary-electron-emission losses in multistage depressed collectors and traveling-wave-tube efficiency improvements with carbon collector electrode surfaces

    Science.gov (United States)

    Ramins, P.; Ebihara, B. T.

    1986-01-01

    Secondary-electron-emission losses in multistage depressed collectors (MDC's) and their effects on overall traveling-wave-tube (TWT) efficiency were investigated. Two representative TWT's and several computer-modeled MDC's were used. The experimental techniques provide the measurement of both the TWT overall and the collector efficiencies. The TWT-MDC performance was optimized and measured over a wide range of operating conditions, with geometrically identical collectors, which utilized different electrode surface materials. Comparisons of the performance of copper electrodes to that of various forms of carbon, including pyrolytic and iisotropic graphites, were stressed. The results indicate that: (1) a significant improvement in the TWT overall efficiency was obtained in all cases by the use of carbon, rather than copper electrodes, and (2) that the extent of this efficiency enhancement depended on the characteristics of the TWT, the TWT operating point, the MDC design, and collector voltages. Ion textured graphite was found to be particularly effective in minimizing the secondary-electron-emission losses. Experimental and analytical results, however, indicate that it is at least as important to provide a maximum amount of electrostatic suppression of secondary electrons by proper MDC design. Such suppression, which is obtained by ensuring that a substantial suppressing electric field exists over the regions of the electrodes where most of the current is incident, was found to be very effective. Experimental results indicate that, with proper MDC design and the use of electrode surfaces with low secondary-electron yield, degradation of the collector efficiency can be limited to a few percent.