WorldWideScience

Sample records for human gitr ligand

  1. Cancer immunoediting by GITR (glucocorticoid-induced TNF-related protein) ligand in humans: NK cell/tumor cell interactions.

    Science.gov (United States)

    Baltz, Katrin M; Krusch, Matthias; Bringmann, Anita; Brossart, Peter; Mayer, Frank; Kloss, Mercedes; Baessler, Tina; Kumbier, Ingrid; Peterfi, Andrea; Kupka, Susan; Kroeber, Stefan; Menzel, Dagmar; Radsak, Markus P; Rammensee, Hans-Georg; Salih, Helmut R

    2007-08-01

    Glucocorticoid-induced TNF-related protein (GITR) has been shown to stimulate T cell-mediated antitumor immunity in mice. However, the functional relevance of GITR and its ligand (GITRL) for non-T cells has yet to be fully explored. In addition, recent evidence suggests that GITR plays different roles in mice and humans. We studied the role of GITR-GITRL interaction in human tumor immunology and report for the first time that primary gastrointestinal cancers and tumor cell lines of different histological origin express substantial levels of GITRL. Signaling through GITRL down-regulated the expression of the immunostimulatory molecules CD40 and CD54 and the adhesion molecule EpCAM, and induced production of the immunosuppressive cytokine TGF-beta by tumor cells. On NK cells, GITR is constitutively expressed and up-regulated following activation. Blocking GITR-GITRL interaction in cocultures of tumor cells and NK cells substantially increased cytotoxicity and IFN-gamma production of NK cells demonstrating that constitutive expression of GITRL by tumor cells diminishes NK cell antitumor immunity. GITRL-Ig fusion protein or cell surface-expressed GITRL did not induce apoptosis in NK cells, but diminished nuclear localized c-Rel and RelB, indicating that GITR might negatively modulate NK cell NF-kappaB activity. Taken together, our data indicate that tumor-expressed GITRL mediates immunosubversion in humans.

  2. Glucocorticoid-induced tumour necrosis factor receptor (GITR) and its ligand (GITRL) in atopic dermatitis

    DEFF Research Database (Denmark)

    Baumgartner-Nielsen, Jane; Vestergaard, Christian; Thestrup-Pedersen, K.

    2006-01-01

    The glucocorticoid-induced tumour necrosis factor receptor-related gene (GITR) is expressed on regulatory T-cells (Treg), which are CD4+CD25+ lymphocytes. Binding of the GITR-ligand (GITRL) leads to downregulation of the regulatory function of Tregs. Patients suffering from a defect in their Treg......-cells are localized in the vicinity of GITRL-expressing cells in atopic dermatitis skin, the GITR/GITRL interaction may serve to perpetuate the inflammation locally....

  3. Glucocorticoid-induced TNF receptor family related protein ligand [GITR-L] is requisite for optimal functioning of regulatory CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Gongxian eLiao

    2014-02-01

    Full Text Available Glucocorticoid-Induced Tumor necrosis factor Receptor family-related protein (GITR, TNFRSF18, CD357 is constitutively expressed on regulatory T cells (Tregs and is inducible on effector T cells (Teffs. In this report, we examine the role of GITR-Ligand (GITR-L, which is expressed by antigen presenting cells, on the development and expansion of Tregs. We found that GITR-L is dispensable for the development of naturally occurring FoxP3+ Treg cells in the thymus. However, the expansion of Treg in GITR-L-/- mice is impaired after injection of the dendritic cells (DCs inducing factor Flt3 ligand. Furthermore, DCs from the liver of GITR-L-/- mice were less efficient in inducing proliferation of antigen-specific Treg cells in vitro than the same cells from WT littermates. Upon gene transfer of ovalbumin into hepatocytes of GITR-L-/- FoxP3(GFP reporter mice using adeno-associated virus (AAV8-OVA the number of antigen-specific Treg in liver and spleen is reduced. The reduced number of Tregs resulted in an increase in the number of ovalbumin specific CD8+ T effector cells. This is highly significant because proliferation of antigen specific CD8+ cells itself is dependent on the presence of GITR-L, as shown by in vitro experiments and by adoptive transfers into GITR-L-/-Rag-/- and Rag-/- mice that had received AAV8-OVA. Surprisingly, administering αCD3 significantly reduced the numbers of FoxP3+ Treg cells in the liver and spleen of GITR-L-/- but not WT mice. Because soluble Fc-GITR-L partially rescues αCD3 induced in vitro depletion of the CD103+ subset of FoxP3+CD4+ Treg cells, we conclude that expression of GITR-L by antigen presenting cells is requisite for optimal Treg-mediated regulation of immune responses including those in response during gene transfer.

  4. Glucocorticoid induced TNFR-related protein (GITR as marker of human regulatory T cells: expansion of the GITR+CD25- cell subset in patients with systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    E. Bartoloni Bocci

    2011-06-01

    Full Text Available Objectives: Regulatory T cells (TREG represent a T cell subset able to modulate immune response by suppressing autoreactive T-lymphocytes. The evidence of a reduced number and an impaired function of this cell population in autoimmune/ inflammatory chronic diseases led to the hypothesis of its involvement in the pathogenesis of these disorders. Glucocorticoid-induced TNFR-related protein (GITR is a well known marker of murine TREG cells, but little is known in humans. The aim of this study was to investigate the characteristics of TREG cells in systemic lupus erythematosus (SLE and the potential role of GITR as marker of human TREG. Methods: Nineteen SLE patients and 15 sex- and age-matched normal controls (NC were enrolled. CD4+ T cells were magnetic sorted from peripheral blood by negative selection. Cell phenotype was analyzed through flow-cytometry using primary and secondary antibodies and real time polymerase-chain reaction (PCR using TaqMan probes. Results: The CD25highGITRhigh subset was significantly decreased in SLE patients with respect to NC (0.37±0.21% vs 0.72±0.19%; p<0.05. On the opposite, the CD25-GITRhigh cell population was expanded in the peripheral blood of SLE patients (3.5±2.25 vs 0.70±0.32%, p<0.01. Interestingly, FoxP3 at mRNA level was expressed in both CD25- GITRhigh and CD25highGITRhigh cells, suggesting that both cell subsets have regulatory activity. Conclusions: CD4+CD25-GITRhigh cells are increased in SLE as compared to NC. The expression of high level of GITR, but not CD25, on FoxP3+ cells appears to point to a regulatory phenotype of this peculiar T cell subset.

  5. 1.8 Astroms Structure of Murine GITR Ligand Dimer Expressed in Drosophila Melanogaster S2 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, K.; Ramagopal, U; Nathenson, S; Almo, S

    2009-01-01

    Glucocorticoid-induced TNF receptor ligand (GITRL), a prominent member of the TNF superfamily, activates its receptor on both effector and regulatory T cells to generate critical costimulatory signals that have been implicated in a wide range of T-cell immune functions. The crystal structures of murine and human orthologs of GITRL recombinantly expressed in Escherichia coli have previously been determined. In contrast to all classical TNF structures, including the human GITRL structure, murine GITRL demonstrated a unique 'strand-exchanged' dimeric organization. Such a novel assembly behavior indicated a dramatic impact on receptor activation as well as on the signaling mechanism associated with the murine GITRL costimulatory system. In this present work, the 1.8 {angstrom} resolution crystal structure of murine GITRL expressed in Drosophila melanogaster S2 cells is reported. The eukaryotic protein-expression system allows transport of the recombinant protein into the extracellular culture medium, thus maximizing the possibility of obtaining correctly folded material devoid of any folding/assembly artifacts that are often suspected with E. coli-expressed proteins. The S2 cell-expressed murine GITRL adopts an identical 'strand-exchanged' dimeric structure to that observed for the E. coli-expressed protein, thus conclusively demonstrating the novel quaternary structure assembly behavior of murine GITRL.

  6. 1.8 Å structure of murine GITR ligand dimer expressed in Drosophila melanogaster S2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Kausik [Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Ramagopal, Udupi A. [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Nathenson, Stanley G., E-mail: nathenso@aecom.yu.edu [Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Almo, Steven C., E-mail: nathenso@aecom.yu.edu [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States)

    2009-05-01

    1.8 Å X-ray crystal structure of mouse GITRL expressed in D. melanogaster S2 cells shows an identical ‘strand-exchanged’ dimeric assembly similar to that observed previously for the E. coli-expressed protein. Glucocorticoid-induced TNF receptor ligand (GITRL), a prominent member of the TNF superfamily, activates its receptor on both effector and regulatory T cells to generate critical costimulatory signals that have been implicated in a wide range of T-cell immune functions. The crystal structures of murine and human orthologs of GITRL recombinantly expressed in Escherichia coli have previously been determined. In contrast to all classical TNF structures, including the human GITRL structure, murine GITRL demonstrated a unique ‘strand-exchanged’ dimeric organization. Such a novel assembly behavior indicated a dramatic impact on receptor activation as well as on the signaling mechanism associated with the murine GITRL costimulatory system. In this present work, the 1.8 Å resolution crystal structure of murine GITRL expressed in Drosophila melanogaster S2 cells is reported. The eukaryotic protein-expression system allows transport of the recombinant protein into the extracellular culture medium, thus maximizing the possibility of obtaining correctly folded material devoid of any folding/assembly artifacts that are often suspected with E. coli-expressed proteins. The S2 cell-expressed murine GITRL adopts an identical ‘strand-exchanged’ dimeric structure to that observed for the E. coli-expressed protein, thus conclusively demonstrating the novel quaternary structure assembly behavior of murine GITRL.

  7. GITR-GITRL System, A Novel Player in Shock and Inflammation

    Directory of Open Access Journals (Sweden)

    Ludovic Tibor Krausz

    2007-01-01

    Full Text Available Glucocorticoid-induced TNFR-Related (GITR protein is a member of the tumor necrosis factor receptor superfamily that modulates acquired and natural immune response. It is expressed in several cells and tissues, including T cells, natural killer cells, and, at lower levels, in cells of innate immunity. GITR is activated by its ligand, GITRL, mainly expressed on antigen presenting and endothelial cells. Recent evidence suggests that the GITR/GITRL system participates in the development of inflammatory responses, including shock, either due to early response of neutrophils and macrophages, or together with autoimmune/allergic pathogenesis. The pro-inflammatory role of the GITR/GITRL system is due to: 1 modulation of the extravasation process, 2 activation of innate immunity cells, 3 activation of effector T cells also favored by partial inhibition of suppressor T cells and modulation of dendritic function. This review summarizes the in vivo role of the GITR/GITRL system in inflammation and shock, explaining the mechanisms responsible for their effects, considering the interplay among the different cells of the immune system and transduction pathways activated by GITR and GITRL triggering. The hidden aspects about GITR/GITRL function, crucial for treatment planning of inflammatory diseases and shock by modulation of this system is stressed.

  8. GITR gene deletion and GITR-FC soluble protein administration inhibit multiple organ failure induced by zymosan.

    Science.gov (United States)

    Galuppo, Maria; Nocentini, Giuseppe; Mazzon, Emanuela; Ronchetti, Simona; Esposito, Emanuela; Riccardi, Luisa; Di Paola, Rosanna; Bruscoli, Stefano; Riccardi, Carlo; Cuzzocrea, Salvatore

    2011-09-01

    Multiple organ dysfunction syndrome (MODS) is a systemic inflammatory event that can result in organ damage, failure, and high risk of mortality. The aim of this study was to evaluate the possible role of glucocorticoid-induced TNFR-related (GITR) on zymosan-induced MODS. Mice were allocated into one GITR knockout (GITR-KO) and two GITR wild-type (GITR-WT) experimental groups. All the animals were treated with zymosan (500 mg/kg, suspended in saline solution, i.p.), and animals of one GITR-WT group received GITR-Fc (6.25 μg/mouse; 3 h after zymosan injection) by mini-osmotic pump. Moreover, three control groups were performed (one GITR-KO and two GITR-WT experimental groups), administering saline instead of zymosan and treating one of the GITR-WT group with GITR-Fc (6.25 μg/mouse; 3 h after saline injection) by mini-osmotic pump. A number of inflammatory parameters such as edema formation, histological damage, adhesion molecules expression, neutrophil infiltration, proinflammatory cytokines, nitrotyrosine, and iNOS production are significantly reduced in GITR-KO as compared with GITR-WT mice as well as in GITR-WT mice treated with GITR-Fc. We here show that GITR plays a role in the modulation of experimental MODS. In particular, we show that genetic inhibition of GITR expression, in GITR-KO mice, or administration of soluble GITR-Fc receptor in GITR-WT mice, reduces inflammation, organ tissue damage, and mortality. Results, while confirming the proinflammatory role of GITR, extend our observations indicating that GITR plays a role in zymosan-induced inflammation and MODS.

  9. Glucocorticoid-induced tumor necrosis factor receptor expression in patients with cervical human papillomavirus infection

    Directory of Open Access Journals (Sweden)

    Cacilda Tezelli Junqueira Padovani

    2013-06-01

    Full Text Available Introduction The progression of human papillomavirus (HPV infection in the anogenital tract has been associated with the involvement of cells with regulatory properties. Evidence has shown that glucocorticoid-induced tumor necrosis factor receptor (GITR is an important surface molecule for the characterization of these cells and proposes that GITR ligand may constitute a rational treatment for many cancer types. We aimed to detect the presence of GITR and CD25 in cervical stroma cells with and without pathological changes or HPV infection to better understand the immune response in the infected tissue microenvironment. Methods We subjected 49 paraffin-embedded cervical tissue samples to HPV DNA detection and histopathological analysis, and subsequently immunohistochemistry to detect GITR and CD25 in lymphocytes. Results We observed that 76.9% of all samples with high GITR expression were HPV-positive regardless of histopathological findings. High GITR expression (77.8% was predominant in samples with ≥1,000 RLU/PCB. Of the HPV-positive samples negative for intraepithelial lesion and malignancy, 62.5% had high GITR expression. High GITR expression was observed in both carcinoma and high-grade squamous intraepithelial lesion (HSIL samples (p = 0.16. CD25 was present in great quantities in all samples. Conclusions The predominance of high GITR expression in samples with high viral load that were classified as HSIL and carcinoma suggests that GITR+ cells can exhibit regulatory properties and may contribute to the progression of HPV-induced cervical neoplasia, emphasizing the importance of GITR as a potential target for immune therapy of cervical cancer and as a disease evolution biomarker.

  10. CD8+ T Cells: GITR Matters

    Directory of Open Access Journals (Sweden)

    Simona Ronchetti

    2012-01-01

    Full Text Available As many members of the tumor necrosis factor receptor superfamily, glucocorticoid-induced TNFR-related gene (GITR plays multiple roles mostly in the cells of immune system. CD8+ T cells are key players in the immunity against viruses and tumors, and GITR has been demonstrated to be an essential molecule for these cells to mount an immune response. The aim of this paper is to focus on GITR function in CD8+ cells, paying particular attention to numerous and recent studies that suggest its crucial role in mouse disease models.

  11. Correlation of Increased Blood Levels of GITR and GITRL with Disease Severity in Patients with Primary Sjögren’s Syndrome

    Directory of Open Access Journals (Sweden)

    Xiaoxia Gan

    2013-01-01

    Full Text Available Glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR is a type I transmembrane protein belonging to the TNFR superfamily. After activated by its ligand GITRL, GITR could influence the activity of effector and regulatory T cells, participating in the development of several autoimmune and inflammatory diseases included rheumatoid arthritis and autoimmune thyroid disease. We previously reported that serum GITRL levels are increased in systemic lupus erythematosus (SLE patients compared with healthy controls (HC. Here, we tested serum soluble GITR (sGITR and GITRL levels in 41 primary Sjögren’s syndrome (pSS patients and 29 HC by ELISA and correlated sGITR and GITRL levels with clinical and laboratory variables. GITR and GITRL expression in labial salivary glands was detected by immunohistochemistry. pSS patients had significantly increased serum levels of sGITR and GITRL compared with controls (GITR: 5.66 ± 3.56 ng/mL versus 0.50 ± 0.31 ng/mL; P<0.0001; GITRL: 6.17 ± 7.10 ng/mL versus 0.36 ± 0.28 ng/mL; P<0.0001. Serum sGITR and GITRL levels were positively correlated with IgG (GITRL: r=0.6084, P<0.0001; sGITR: r=0.6820, P<0.0001 and ESR (GITRL: r=0.8315,P<0.0001; sGITR: r=0.7448, P<0.0001. Moreover, GITR and GITRL are readily detected in the lymphocytic foci and periductal areas of the LSGs. In contrast, the LSGs of HC subjects did not express GITR or GITRL. Our findings indicate the possible involvement of GITR-GITRL pathway in the pathogenesis of pSS. Further studies may facilitate the development of targeting this molecule pathway for the treatment of pSS.

  12. Glucocorticoid-Induced TNFR family Related gene (GITR) enhances dendritic cell activity.

    Science.gov (United States)

    Ronchetti, Simona; Nocentini, Giuseppe; Petrillo, Maria Grazia; Bianchini, Rodolfo; Sportoletti, Paolo; Bastianelli, Alessandra; Ayroldi, Emira M; Riccardi, Carlo

    2011-03-30

    Glucocorticoid-Induced TNFR family Related gene (GITR), a Tumor Necrosis Factor Receptor Superfamily (TNFRSF) member involved in immune/inflammatory processes, has been previously shown to regulate T cell activation. To study GITR role in antigen presenting cells, we evaluated the capability of bone marrow derived dendritic cells (BMDC) from GITR(-/-) mice to stimulate the activation of CD4(+)CD25(-) T lymphocytes. We found that GITR(-/-) BMDC are weaker stimulators of T cell proliferation than GITR(+/+) BMDC, either in syngenic or allogenic BMDC/T cell co-cultures. Expression of GITR in GITR(-/-) BMDC restored their ability to activate T cells while GITR silencing in GITR(+/+) BMDC inhibited the capability to stimulate T cells. GITR(-/-) BMDC showed a reduced production of the pro-inflammatory cytokine IL-6 and an increased production of the anti-inflammatory cytokine IL-10. Notably, co-culture of CD4(+)CD25(-) cells with GITR(-/-) BMDC originated FoxP3(+) cells, secreting IL-10 and TGF-β. Finally, in vivo injection of GITR(-/-) OVA-loaded BMDC led to a lower cell number and a lower activated cell number in draining lymph nodes than in GITR(+/+) OVA-loaded BMDC injected mice. Together, these results indicate that GITR plays a role in regulating BMDC activity.

  13. GITR Activation Positively Regulates Immune Responses against Toxoplasma gondii

    Science.gov (United States)

    Costa, Frederico R. C.; Mota, Caroline M.; Santiago, Fernanda M.; Silva, Murilo V.; Ferreira, Marcela D.; Fonseca, Denise M.; Silva, João S.; Mineo, José R.; Mineo, Tiago W. P.

    2016-01-01

    Toxoplasma gondii is a widespread parasite responsible for causing clinical diseases especially in pregnant and immunosuppressed individuals. Glucocorticoid-induced TNF receptor (GITR), which is also known as TNFRS18 and belongs to the TNF receptor superfamily, is found to be expressed in various cell types of the immune system and provides an important costimulatory signal for T cells and myeloid cells. However, the precise role of this receptor in the context of T. gondii infection remains elusive. Therefore, the current study investigated the role of GITR activation in the immunoregulation mechanisms induced during the experimental infection of mice with T. gondii. Our data show that T. gondii infection slightly upregulates GITR expression in Treg cells and B cells, but the most robust increment in expression was observed in macrophages and dendritic cells. Interestingly, mice infected and treated with an agonistic antibody anti-GITR (DTA-1) presented a robust increase in pro-inflammatory cytokine production at preferential sites of parasite replication, which was associated with the decrease in latent brain parasitism of mice under treatment with DTA-1. Several in vivo and in vitro analysis were performed to identify the cellular mechanisms involved in GITR activation upon infection, however no clear alterations were detected in the phenotype/function of macrophages, Tregs and B cells under treatment with DTA-1. Therefore, GITR appears as a potential target for intervention during infection by the parasite Toxoplasma gondii, even though further studies are still necessary to better characterize the immune response triggered by GITR activation during T. gondii infection. PMID:27027302

  14. EXPRESSION OF Fas LIGAND IN HUMAN COLON CANCER CELL LINES

    Institute of Scientific and Technical Information of China (English)

    张建军; 丁尔迅; 王强; 陈学云; 付志仁

    2001-01-01

    To investigate the expression of Fas ligand in human colon carcinoma cell lines. Methods: A total of six human colon cancer cell lines were examined for the expression of Fas ligand mRNA and cell surface protein by using RT-PCR and flow cytometry respectively. Results: The results showed that Fas ligand mRNA was expressed in all of the six cancer cell lines and Fas ligand cell surface protein was expressed in part of them. Conclusion: These data suggest that Fas ligand was expressed, at least in part, in human colon cancer cell lines and might facilitate to escape from immune surveillance of the host.

  15. Dendritic cells combined with anti-GITR antibody produce antitumor effects in osteosarcoma.

    Science.gov (United States)

    Kawano, Masanori; Tanaka, Kazuhiro; Itonaga, Ichiro; Iwasaki, Tatsuya; Miyazaki, Masashi; Ikeda, Shinichi; Tsumura, Hiroshi

    2015-10-01

    We attempted to enhance the antitumor effects of tumor lysate-pulsed dendritic cells by eliminating regulatory T cells. The combinatorial effects of dendritic cells and agonist anti-glucocorticoid-induced tumor necrosis factor receptor (anti-GITR) antibodies were investigated with respect to enhancement of the systemic immune response, elimination of regulatory T cells, and inhibition of tumor growth. To determine whether the combination of dendritic cells and anti‑GITR antibodies could enhance systemic immune responses and inhibit primary tumor growth in a murine osteosarcoma (LM8) model. We established the following 4 groups of C3H mice (20 mice in total): i), control IgG-treated mice; ii), tumor lysate-pulsed dendritic cell‑treated mice; iii), agonist anti-GITR antibody-treated mice; and iv), agonist anti-GITR antibody- and tumor lysate-pulsed dendritic cell‑treated mice.The mice that received the agonist anti-GITR antibodies and tumor lysate-pulsed dendritic cells displayed inhibited primary growth, prolonged life time, reduced numbers of regulatory T lymphocytes in the spleen, elevated serum interferon-γ levels, increased number of CD8+ T lymphocytes. The mice that received combined therapy had reduced level of immunosuppressive cytokines in tumor tissue and serum. Combining agonist anti-GITR antibodies with tumor lysate-pulsed dendritic cells enhanced the systemic immune response. These findings provide further support for the continued development of agonist anti-GITR antibodies as an immunotherapeutic strategy for osteosarcoma. We suggest that our proposed immunotherapy could be developed further to improve osteosarcoma treatment.

  16. Specific activity of radioiodine-labelled human chorionic gonadotropin ligand

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M. (South African Inst. for Medical Research, Sandringham. National Inst. for Virology); Kay, G.W.; Van der Walt, L.A. (South African Inst. for Medical Research, Johannesburg. Dept. of Pathology)

    1983-10-01

    The article deals with the determination of the specific activity of radioiodine-labelled human chorionic gonadotropin ligand. The iodiation of human chorionic gonadotropin and the counting efficiency of /sup 125/I are discussed.

  17. TCR-mediated activation promotes GITR upregulation in T cells and resistance to glucocorticoid-induced death.

    Science.gov (United States)

    Zhan, Yifan; Funda, David P; Every, Alison L; Fundova, Petra; Purton, Jared F; Liddicoat, Douglas R; Cole, Timothy J; Godfrey, Dale I; Brady, Jamie L; Mannering, Stuart I; Harrison, Leonard C; Lew, Andrew M

    2004-09-01

    T lymphocytes (pivotal in many inflammatory pathologies) are targets for glucocorticoid hormone (GC). How TCR-mediated activation and GC signaling via glucocorticoid receptor (GR) impact on T-cell fates is not fully defined. We delineated here the expression of a recently identified glucocorticoid-induced TNF receptor (GITR) induced by GC and by TCR-mediated T-cell activation in GC receptor (GR)-deficient mice (GR-/-). We also compared the action of GC on GITR+ and GITR- T cells by monitoring apoptosis, proliferation and cytokine production stimulated by anti-CD3 antibody. By using GR-/- mice, we observed that the development of GITR+ T cells (both in thymus and periphery) is not dependent upon GR signaling. This contradicts the implication of GITR's name reflecting GC induction. TCR-mediated T-cell activation induced GITR expression in both GR+/+ and GR-/- cells. Somewhat unexpectedly, there was very modest GITR upregulation on GR+/+ T cells by a range of GC doses (10(-8) to 10(-6) M). Constitutive expression of GITR by a subset of CD4+ cells did not significantly render them resistant to GC-induced cell death. However, TCR-induced GITR upregulation on GR+/+ T cells was correlated with resistance to GC-mediated apoptosis suggesting that GITR, in conjunction with other (as yet unidentified) TCR-induced factors, protects T cells from apoptosis. Thus, even though GC is a potent inducer of apoptosis of T cells, activated T cells are resistant to GC-mediated killing. Meanwhile, although GC suppressed anti-CD3-induced cytokine production, cell proliferation was unaffected by GC in GR+/+ mice. GR deficiency has no effect on anti-CD3-induced cytokine production and proliferation. Our findings also have implications for GC treatment in that it would be more difficult to abrogate an ongoing T-cell mediated inflammatory response than to prevent its induction.

  18. GITR signaling potentiates airway hyperresponsiveness by enhancing Th2 cell activity in a mouse model of asthma

    Directory of Open Access Journals (Sweden)

    Van Oosterhout Antoon JM

    2009-10-01

    Full Text Available Abstract Background Allergic asthma is characterized by airway hyperresponsiveness (AHR and allergic inflammation of the airways, driven by allergen-specific Th2 cells. The asthma phenotypes and especially AHR are sensitive to the presence and activity of regulatory T (Treg cells in the lung. Glucocorticoid-induced tumor necrosis factor receptor (GITR is known to have a co-stimulatory function on effector CD4+ T cells, rendering these cells insensitive to Treg suppression. However, the effects of GITR signaling on polarized Th1 and Th2 cell effector functions are not well-established. We sought to evaluate the effect of GITR signaling on fully differentiated Th1 and Th2 cells and to determine the effects of GITR activation at the time of allergen provocation on AHR and airway inflammation in a Th2-driven mouse model of asthma. Methods CD4+CD25- cells were polarized in vitro into Th1 and Th2 effector cells, and re-stimulated in the presence of GITR agonistic antibodies to assess the effect on IFNγ and IL-4 production. To evaluate the effects of GITR stimulation on AHR and allergic inflammation in a mouse asthma model, BALB/c mice were sensitized to OVA followed by airway challenges in the presence or absence of GITR agonist antibodies. Results GITR engagement potentiated cytokine release from CD3/CD28-stimulated Th2 but not Th1 cells in vitro. In the mouse asthma model, GITR triggering at the time of challenge induced enhanced airway hyperresponsiveness, serum IgE and ex vivo Th2 cytokine release, but did not increase BAL eosinophilia. Conclusion GITR exerts a differential effect on cytokine release of fully differentiated Th1 and Th2 cells in vitro, potentiating Th2 but not Th1 cytokine production. This effect on Th2 effector functions was also observed in vivo in our mouse model of asthma, resulting in enhanced AHR, serum IgE responses and Th2 cytokine production. This is the first report showing the effects of GITR activation on cytokine

  19. Glycomimetic ligands for the human asialoglycoprotein receptor.

    Science.gov (United States)

    Mamidyala, Sreeman K; Dutta, Sanjay; Chrunyk, Boris A; Préville, Cathy; Wang, Hong; Withka, Jane M; McColl, Alexander; Subashi, Timothy A; Hawrylik, Steven J; Griffor, Matthew C; Kim, Sung; Pfefferkorn, Jeffrey A; Price, David A; Menhaji-Klotz, Elnaz; Mascitti, Vincent; Finn, M G

    2012-02-01

    The asialoglycoprotein receptor (ASGPR) is a high-capacity galactose-binding receptor expressed on hepatocytes that binds its native substrates with low affinity. More potent ligands are of interest for hepatic delivery of therapeutic agents. We report several classes of galactosyl analogues with varied substitution at the anomeric, C2-, C5-, and C6-positions. Significant increases in binding affinity were noted for several trifluoromethylacetamide derivatives without covalent attachment to the protein. A variety of new ligands were obtained with affinity for ASGPR as good as or better than that of the parent N-acetylgalactosamine, showing that modification on either side of the key C3,C4-diol moiety is well tolerated, consistent with previous models of a shallow binding pocket. The galactosyl pyranose motif therefore offers many opportunities for the attachment of other functional units or payloads while retaining low-micromolar or better affinity for the ASGPR.

  20. Fluorescent ligand for human progesterone receptor imaging in live cells.

    Science.gov (United States)

    Weinstain, Roy; Kanter, Joan; Friedman, Beth; Ellies, Lesley G; Baker, Michael E; Tsien, Roger Y

    2013-05-15

    We employed molecular modeling to design and then synthesize fluorescent ligands for the human progesterone receptor. Boron dipyrromethene (BODIPY) or tetramethylrhodamine were conjugated to the progesterone receptor antagonist RU486 (Mifepristone) through an extended hydrophilic linker. The fluorescent ligands demonstrated comparable bioactivity to the parent antagonist in live cells and triggered nuclear translocation of the receptor in a specific manner. The BODIPY labeled ligand was applied to investigate the dependency of progesterone receptor nuclear translocation on partner proteins and to show that functional heat shock protein 90 but not immunophilin FKBP52 activity is essential. A tissue distribution study indicated that the fluorescent ligand preferentially accumulates in tissues that express high levels of the receptor in vivo. The design and properties of the BODIPY-labeled RU486 make it a potential candidate for in vivo imaging of PR by positron emission tomography through incorporation of (18)F into the BODIPY core.

  1. Biotinylated recombinant human erythropoietins: Bioactivity and utility as receptor ligand

    Energy Technology Data Exchange (ETDEWEB)

    Wojchowski, D.M.; Caslake, L. (Pennsylvania State Univ., University Park (USA))

    1989-08-15

    Recombinant human erythropoietin labeled covalently with biotin at sialic acid moieties has been prepared, and has been shown to possess high biological activity plus utility as a receptor ligand. Initially, the effects on biological activity of covalently attaching biotin to erythropoietin alternatively at carboxylate, amino, or sialic acid groups were compared. Biotinylation of erythropoietin at carboxylate groups using biotin-amidocaproyl hydrazide plus 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide led to substantial biological inactivation, although biotinylated molecules retained detectable activity when prepared at low stoichiometries. Biotinylation at amino groups using sulfosuccinimidyl 6-(biotinamido) hexanoate resulted in a high level of biological inactivation with little, if any, retention of biological activity, regardless of labeling stoichiometries. Biotinylation at sialic acid moieties using periodate and biotinamidocaproyl hydrazide proceeded efficiently (greater than 95% and 80% labeling efficiencies for human urinary and recombinant erythropoietin, respectively) and yielded stably biotinylated erythropoietin molecules possessing comparably high biological activity (ie, 45% of the activity of unmodified hormone). Utility of recombinant biotin-(sialyl)-erythropoietin (in combination with 125I-streptavidin) in the assay of cell surface receptors was demonstrated using two distinct murine erythroleukemia cell lines, Friend 745 and Rauscher Red 1. The densities and affinities of specific hormone binding sites were 116 +/- 4 sites, 3.3 +/- 0.4 nmol/L kd and 164 +/- 5 sites, 2.7 +/- 0.4 nmol/L kd, respectively. It is predicted that the present development of biotin-(sialyl)-erythropoietin as a chemically and biologically stable, bioactive ligand will assist in advancing an understanding of the regulated expression and physicochemistry of the human and murine erythropoietin receptors.

  2. Is Lutein a Physiologically Important Ligand for Transthyretin in Humans?

    Energy Technology Data Exchange (ETDEWEB)

    Liwei Chen

    2003-05-31

    Lutein and zeaxanthin are the only carotenoids accumulated in the macula of the human retina and are known as the macular pigments (MP). These pigments account for the yellow color of the macula and appear to play an important role in protecting against age-related macular degeneration (AMD). The uptake of lutein and zeaxanthin in human eyes is remarkably specific. It is likely that specific transport or binding proteins are involved. The objective is to determine whether transthyretin (TTR) is a transport protein in human plasma and could thus deliver lutein from the blood to the retina. In this study, they used a biosynthetic {sup 13}C-lutein tracer and gas chromatography-combustion interfaced-isotope ratio mass spectrometry (GCC-IRMS) to gain the requisite sensitivity to detect the minute amounts of lutein expected as a physiological ligand for human transthyretin. The biosynthetic {sup 13}C-labeled lutein tracer was purified from algae. Healthy women (n = 4) each ingested 1 mg of {sup 13}C-labeled lutein daily for 3 days and a blood sample was collected 24 hours after the final dose. Plasma TTR was isolated by retinol-binding protein (RBP)-sepharose affinity chromatography and extracted with chloroform. The {sup 13}C/{sup 12}C ratio in the TTR extract was measured by GCC-IRMS. There was no {sup 13}C-lutein enrichment in the pure TTR extract. This result indicated that lutein is not associated with TTR in human plasma after ingestion in physiological amounts. Some hydrophobic compounds with yellow color may bind to human TTR in the plasma. However, this association needs to be further proved by showing specificity. The study provides a new approach for carotenoid-binding protein studies using a stable isotope tracer method combined with the high precision of GCC-IRMS. The mechanism of selective transport, uptake, and accumulation of lutein in human macula remain to be determined.

  3. Is Lutein a Physiologically Important Ligand for Transthyretin in Humans?

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liwei [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Lutein and zeaxanthin are the only carotenoids accumulated in the macula of the human retina and are known as the macular pigments (MP). These pigments account for the yellow color of the macula and appear to play an important role in protecting against age-related macular degeneration (AMD). The uptake of lutein and zeaxanthin in human eyes is remarkably specific. It is likely that specific transport or binding proteins are involved. The objective is to determine whether transthyretin (TTR) is a transport protein in human plasma and could thus deliver lutein from the blood to the retina. In this study, they used a biosynthetic 13C-lutein tracer and gas chromatography-combustion interfaced-isotope ratio mass spectrometry (GCC-IRMS) to gain the requisite sensitivity to detect the minute amounts of lutein expected as a physiological ligand for human transthyretin. The biosynthetic 13C-labeled lutein tracer was purified from algae. Healthy women (n = 4) each ingested 1 mg of 13C-labeled lutein daily for 3 days and a blood sample was collected 24 hours after the final dose. Plasma TTR was isolated by retinol-binding protein (RBP)-sepharose affinity chromatography and extracted with chloroform. The 13C/12C ratio in the TTR extract was measured by GCC-IRMS. There was no 13C-lutein enrichment in the pure TTR extract. This result indicated that lutein is not associated with TTR in human plasma after ingestion in physiological amounts. Some hydrophobic compounds with yellow color may bind to human TTR in the plasma. However, this association needs to be further proved by showing specificity. The study provides a new approach for carotenoid-binding protein studies using a stable isotope tracer method combined with the high precision of GCC-IRMS. The mechanism of selective transport, uptake, and accumulation of lutein in human macula remain to be determined.

  4. Bone morphogenetic proteins regulate osteoprotegerin and its ligands in human vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Knudsen, Kirsten Quyen Nguyen; Olesen, Ping; Ledet, Thomas

    2007-01-01

    in the transformation of human vascular smooth muscle cells (HVSMC) to osteoblast-like cells. In this study, we evaluated the effect of BMP-2, BMP-7 and transforming growth factor beta (TGF-beta1) on the secretion and mRNA expression of OPG and its ligands receptor activator of nuclear factor-kappabeta ligand (RANKL...

  5. Ligand induced conformational changes of the human serotonin transporter revealed by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Heidi Koldsø

    Full Text Available The competitive inhibitor cocaine and the non-competitive inhibitor ibogaine induce different conformational states of the human serotonin transporter. It has been shown from accessibility experiments that cocaine mainly induces an outward-facing conformation, while the non-competitive inhibitor ibogaine, and its active metabolite noribogaine, have been proposed to induce an inward-facing conformation of the human serotonin transporter similar to what has been observed for the endogenous substrate, serotonin. The ligand induced conformational changes within the human serotonin transporter caused by these three different types of ligands, substrate, non-competitive and competitive inhibitors, are studied from multiple atomistic molecular dynamics simulations initiated from a homology model of the human serotonin transporter. The results reveal that diverse conformations of the human serotonin transporter are captured from the molecular dynamics simulations depending on the type of the ligand bound. The inward-facing conformation of the human serotonin transporter is reached with noribogaine bound, and this state resembles a previously identified inward-facing conformation of the human serotonin transporter obtained from molecular dynamics simulation with bound substrate, but also a recently published inward-facing conformation of a bacterial homolog, the leucine transporter from Aquifex Aoelicus. The differences observed in ligand induced behavior are found to originate from different interaction patterns between the ligands and the protein. Such atomic-level understanding of how an inhibitor can dictate the conformational response of a transporter by ligand binding may be of great importance for future drug design.

  6. Ligand induced conformational changes of the human serotonin transporter revealed by molecular dynamics simulations.

    Science.gov (United States)

    Koldsø, Heidi; Autzen, Henriette Elisabeth; Grouleff, Julie; Schiøtt, Birgit

    2013-01-01

    The competitive inhibitor cocaine and the non-competitive inhibitor ibogaine induce different conformational states of the human serotonin transporter. It has been shown from accessibility experiments that cocaine mainly induces an outward-facing conformation, while the non-competitive inhibitor ibogaine, and its active metabolite noribogaine, have been proposed to induce an inward-facing conformation of the human serotonin transporter similar to what has been observed for the endogenous substrate, serotonin. The ligand induced conformational changes within the human serotonin transporter caused by these three different types of ligands, substrate, non-competitive and competitive inhibitors, are studied from multiple atomistic molecular dynamics simulations initiated from a homology model of the human serotonin transporter. The results reveal that diverse conformations of the human serotonin transporter are captured from the molecular dynamics simulations depending on the type of the ligand bound. The inward-facing conformation of the human serotonin transporter is reached with noribogaine bound, and this state resembles a previously identified inward-facing conformation of the human serotonin transporter obtained from molecular dynamics simulation with bound substrate, but also a recently published inward-facing conformation of a bacterial homolog, the leucine transporter from Aquifex Aoelicus. The differences observed in ligand induced behavior are found to originate from different interaction patterns between the ligands and the protein. Such atomic-level understanding of how an inhibitor can dictate the conformational response of a transporter by ligand binding may be of great importance for future drug design.

  7. Dimeric ligands for GPCRs involved in human reproduction : synthesis and biological evaluation

    NARCIS (Netherlands)

    Bonger, Kimberly Michelle

    2008-01-01

    Dimeric ligands for G-protein coupled receptors that are involved in human reproduction, namely the gonadotropin releasing hormone receptor, the luteinizing hormone receptor and the follicle-stimulating hormone receptor, were synthesized and biologically evaluated.

  8. Species difference of CD137 ligand signaling in human and murine monocytes.

    Directory of Open Access Journals (Sweden)

    Qianqiao Tang

    Full Text Available BACKGROUND: Stimulation of CD137 ligand on human monocytes has been shown to induce DC differentiation, and these CD137L-DCs are more potent than classical DCs, in stimulating T cell responses in vitro. To allow an in vivo evaluation of the potency of CD137L-DCs in murine models we aimed at generating murine CD137L-DCs. METHODOLOGY/PRINCIPAL FINDINGS: When stimulated through CD137 ligand murine monocytes responded just as human monocytes with an increased adherence, morphological changes, proliferation and an increase in viable cell numbers. But CD137 ligand signaling did not induce expression of inflammatory cytokines and costimulatory molecules in murine monocytes and these cells had no T cell stimulatory activity. Murine monocytes did not differentiate to inflammatory DCs upon CD137 ligand signaling. Furthermore, while CD137 ligand signaling induces maturation of human immature classical DCs it failed to do so with murine immature classical DCs. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that both human and murine monocytes become activated by CD137 ligand signaling but only human and not murine monocytes differentiate to inflammatory DCs.

  9. A Structural Switch between Agonist and Antagonist Bound Conformations for a Ligand-Optimized Model of the Human Aryl Hydrocarbon Receptor Ligand Binding Domain

    Directory of Open Access Journals (Sweden)

    Arden Perkins

    2014-10-01

    Full Text Available The aryl hydrocarbon receptor (AHR is a ligand-activated transcription factor that regulates the expression of a diverse group of genes. Exogenous AHR ligands include the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, which is a potent agonist, and the synthetic AHR antagonist N-2-(1H-indol-3ylethyl-9-isopropyl-2- (5-methylpyridin-3-yl-9H-purin-6-amine (GNF351. As no experimentally determined structure of the ligand binding domain exists, homology models have been utilized for virtual ligand screening (VLS to search for novel ligands. Here, we have developed an “agonist-optimized” homology model of the human AHR ligand binding domain, and this model aided in the discovery of two human AHR agonists by VLS. In addition, we performed molecular dynamics simulations of an agonist TCDD-bound and antagonist GNF351-bound version of this model in order to gain insights into the mechanics of the AHR ligand-binding pocket. These simulations identified residues 307–329 as a flexible segment of the AHR ligand pocket that adopts discrete conformations upon agonist or antagonist binding. This flexible segment of the AHR may act as a structural switch that determines the agonist or antagonist activity of a given AHR ligand.

  10. Human cytomegalovirus UL141 promotes efficient downregulation of the natural killer cell activating ligand CD112

    OpenAIRE

    Prod'homme, Virginie; Sugrue, Daniel M.; Stanton, Richard J.; Nomoto, Akio; Davies, James; Rickards, Carole R.; Cochrane, Daniel; Moore, Melanie; Wilkinson, Gavin W. G.; Tomasec, Peter

    2010-01-01

    Human cytomegalovirus (HCMV) UL141 induces protection against natural killer cell-mediated cytolysis by downregulating cell surface expression of CD155 (nectin-like molecule 5; poliovirus receptor), a ligand for the activating receptor DNAM-1 (CD226). However, DNAM-1 is also recognized to bind a second ligand, CD112 (nectin-2). We now show that HCMV targets CD112 for proteasome-mediated degradation by 48 h post-infection, thus removing both activating ligands for DNAM-1 from the cell surface ...

  11. Effects of peripheral benzodiazepine receptor ligands on proliferation and differentiation of human mesenchymal stem cells.

    Science.gov (United States)

    Lee, D H; Kang, S K; Lee, R H; Ryu, J M; Park, H Y; Choi, H S; Bae, Y C; Suh, K T; Kim, Y K; Jung, Jin Sup

    2004-01-01

    The peripheral benzodiazepine receptor (PBR) has been known to have many functions such as a role in cell proliferation, cell differentiation, steroidogenesis, calcium flow, cellular respiration, cellular immunity, malignancy, and apoptosis. However, the presence of PBR has not been examined in mesenchymal stem cells. In this study, we demonstrated the expression of PBR in human bone marrow stromal cells (hBMSCs) and human adipose stromal cells (hATSCs) by RT-PCR and immunocytochemistry. To determine the roles of PBR in cellular functions of human mesenchymal stem cells (hMSCs), effects of diazepam, PK11195, and Ro5-4864 were examined. Adipose differentiation of hMSCs was decreased by high concentration of PBR ligands (50 microM), whereas it was increased by low concentrations of PBR ligands (<10 microM). PBR ligands showed a biphasic effect on glycerol-3-phosphate dehydrogenase (GPDH) activity. High concentration of PBR ligands (from 25 to 75 microM) inhibited proliferation of hMSCs. However, clonazepam, which does not have an affinity to PBR, did not affect adipose differentiation and proliferation of hMSCs. The PBR ligands did not induce cell death in hMSCs. PK11195 (50 microM) and Ro5-5864 (50 microM) induced cell cycle arrest in the G(2)/M phase. These results indicate that PBR ligands play roles in adipose differentiation and proliferation of hMSCs.

  12. Impact of killer immunoglobulin-like receptor-human leukocyte antigens ligand incompatibility among renal transplantation.

    Science.gov (United States)

    Alam, S; Rangaswamy, D; Prakash, S; Sharma, R K; Khan, M I; Sonawane, A; Agrawal, S

    2015-01-01

    Killer immunoglobulin-like receptor (KIR) gene shows a high degree of polymorphism. Natural killer cell receptor gets activated once they bind to self-human leukocyte antigens (HLAs) with specific ligand. KIR gene and HLA ligand incompatibility due to the presence/absence of KIR in the recipient and the corresponding HLA ligand in the allograft may impact graft survival in solid organ transplantation. This study evaluates the effect of matches between KIR genes and known HLA ligands. KIR genotypes were determined using sequence specific primer polymerase chain reaction. Presence of certain KIR in a recipient, where the donor lacked the corresponding HLA ligand was considered a mismatch. The allograft was considered matched when both KIR receptor and HLA alloantigen reveald compatibility among recipient and donor. The data revealed better survival among individuals with matched inhibitory KIR receptors and their corresponding HLA ligands (KIR2DL2/DL3-HLAC2, KIR3DL1-HLABw4). On the contrary, no adverse effect was seen for matched activating KIR receptors and their corresponding HLA ligands. One of the activating gene KIR2DS4 showed risk (P = 0.0413, odds ratio = 1.91, 95% confidence interval = 1.02-3.57) association with renal allograft rejection. We conclude that the presence of inhibitory KIR gene leads to better survival; whereas activating motifs show no significant role in renal allograft survival.

  13. A structure-function approach to optimizing TLR4 ligands for human vaccines.

    Science.gov (United States)

    Carter, Darrick; Fox, Christopher B; Day, Tracey A; Guderian, Jeffrey A; Liang, Hong; Rolf, Tom; Vergara, Julie; Sagawa, Zachary K; Ireton, Greg; Orr, Mark T; Desbien, Anthony; Duthie, Malcolm S; Coler, Rhea N; Reed, Steven G

    2016-11-01

    Adjuvants are combined with vaccine antigens to enhance and modify immune responses, and have historically been primarily crude, undefined entities. Introducing toll-like receptor (TLR) ligands has led to a new generation of adjuvants, with TLR4 ligands being the most extensively used in human vaccines. The TLR4 crystal structures demonstrate extensive contact with their ligands and provide clues as to how they discriminate a broad array of molecules and activate or attenuate innate, as well as adaptive, responses resulting from these interactions. Leveraging this discerning ability, we made subtle chemical alterations to the structure of a synthetic monophosphoryl lipid-A molecule to produce SLA, a designer TLR4 ligand that had a number of desirable adjuvant effects. The SLA molecule stimulated human TLR4 and induced Th1 biasing cytokines and chemokines. On human cells, the activity of SLA plateaued at lower concentrations than the lipid A comparator, and induced cytokine profiles distinct from other known TLR4 agonists, indicating the potential for superior adjuvant performance. SLA was formulated in an oil-in-water emulsion, producing an adjuvant that elicited potent Th1-biased adaptive responses. This was verified using a recombinant Leishmania vaccine antigen, first in mice, then in a clinical study in which the antigen-specific Th1-biased responses observed in mice were recapitulated in humans. These results demonstrated that using structure-based approaches one can predictably design and produce modern adjuvant formulations for safe and effective human vaccines.

  14. Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation.

    Directory of Open Access Journals (Sweden)

    Adam D Cohen

    Full Text Available In vivo GITR ligation has previously been shown to augment T-cell-mediated anti-tumor immunity, yet the underlying mechanisms of this activity, particularly its in vivo effects on CD4+ foxp3+ regulatory T cells (Tregs, have not been fully elucidated. In order to translate this immunotherapeutic approach to the clinic it is important gain better understanding of its mechanism(s of action. Utilizing the agonist anti-GITR monoclonal antibody DTA-1, we found that in vivo GITR ligation modulates regulatory T cells (Tregs directly during induction of melanoma tumor immunity. As a monotherapy, DTA-1 induced regression of small established B16 melanoma tumors. Although DTA-1 did not alter systemic Treg frequencies nor abrogate the intrinsic suppressive activity of Tregs within the tumor-draining lymph node, intra-tumor Treg accumulation was significantly impaired. This resulted in a greater Teff:Treg ratio and enhanced tumor-specific CD8+ T-cell activity. The decreased intra-tumor Treg accumulation was due both to impaired infiltration, coupled with DTA-1-induced loss of foxp3 expression in intra-tumor Tregs. Histological analysis of B16 tumors grown in Foxp3-GFP mice showed that the majority of GFP+ cells had lost Foxp3 expression. These "unstable" Tregs were absent in IgG-treated tumors and in DTA-1 treated TDLN, demonstrating a tumor-specific effect. Impairment of Treg infiltration was lost if Tregs were GITR(-/-, and the protective effects of DTA-1 were reduced in reconstituted RAG1(-/- mice if either the Treg or Teff subset were GITR-negative and absent if both were negative. Our results demonstrate that DTA-1 modulates both Teffs and Tregs during effective tumor treatment. The data suggest that DTA-1 prevents intra-tumor Treg accumulation by altering their stability, and as a result of the loss of foxp3 expression, may modify their intra-tumor suppressive capacity. These findings provide further support for the continued development of agonist

  15. Somatostatin receptors and their ligands in the human immune system

    NARCIS (Netherlands)

    V.A.S.H. Dalm (Virgil)

    2003-01-01

    textabstractMaintenance of homeostasis is essential for survival of the mammalian organism. For a long time it was believed that the different systems in the human body act independently from each other to achieve this goal. However, during the last decades it has become more evident that the differ

  16. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin

    OpenAIRE

    1995-01-01

    Neutrophils roll on P-selectin expressed by activated platelets or endothelial cells under the shear stresses in the microcirculation. P- selectin glycoprotein ligand-1 (PSGL-1) is a high affinity ligand for P- selectin on myeloid cells. However, it has not been demonstrated that PSGL-1 contributes to the rolling of neutrophils on P-selectin. We developed two IgG mAbs, PL1 and PL2, that appear to recognize protein- dependent epitopes on human PSGL-1. The mAbs bound to PSGL-1 on all leukocytes...

  17. RANK and RANK ligand expression in primary human osteosarcoma

    Directory of Open Access Journals (Sweden)

    Daniel Branstetter

    2015-09-01

    Our results demonstrate RANKL expression was observed in the tumor element in 68% of human OS using IHC. However, the staining intensity was relatively low and only 37% (29/79 of samples exhibited≥10% RANKL positive tumor cells. RANK expression was not observed in OS tumor cells. In contrast, RANK expression was clearly observed in other cells within OS samples, including the myeloid osteoclast precursor compartment, osteoclasts and in giant osteoclast cells. The intensity and frequency of RANKL and RANK staining in OS samples were substantially less than that observed in GCTB samples. The observation that RANKL is expressed in OS cells themselves suggests that these tumors may mediate an osteoclastic response, and anti-RANKL therapy may potentially be protective against bone pathologies in OS. However, the absence of RANK expression in primary human OS cells suggests that any autocrine RANKL/RANK signaling in human OS tumor cells is not operative, and anti-RANKL therapy would not directly affect the tumor.

  18. Binding capacity of ER-α ligands and SERMs: comparison of the human, dog and cat.

    Science.gov (United States)

    Toniti, Waraphan; Suthiyotha, Nareuthorn; Puchadapirom, Pranom; Jenwitheesuk, Ekachai

    2011-01-01

    The estrogen molecule is the major risk factor related to mammary gland tumors, with estrogen receptor alpha (ER- α) as the important target stimulating growth. Therefore one alternative approach to treatment of breast cancer is to use selective estrogen receptor modulator (SERM), hormonal therapy. In this study, the structures of ER- α in humans, dogs and cats were predicted using the amino acid sequencing data bank and corrected for general protein structures, receptor sites and docking by adding 2,344 ligands with 15 SERMs into the database and calculating estimated inhibition constants (Ki). Thereby, ranking of best ligands of SERMs in humans, dogs and cats could be achieved. The results show that the shapes of ER- α differ between species but the major pocket sites are the same. Bazedoxifene, a new SERM proved to be the best estrogen antagonist and ER- α inhibitor in all species (human, dog, cat) with the lowest Ki. The other good ligands for dogs and cats are Neohesperidin, Dihydrochalcone, and Schreiber2. The differences in these protein structures may explain why there are only a few SERMs or other ligands which can be used as anti-cancer drugs.

  19. Human cytomegalovirus UL141 promotes efficient downregulation of the natural killer cell activating ligand CD112

    Science.gov (United States)

    Prod'homme, Virginie; Sugrue, Daniel M.; Stanton, Richard J.; Nomoto, Akio; Davies, James; Rickards, Carole R.; Cochrane, Daniel; Moore, Melanie; Wilkinson, Gavin W. G.; Tomasec, Peter

    2010-01-01

    Human cytomegalovirus (HCMV) UL141 induces protection against natural killer cell-mediated cytolysis by downregulating cell surface expression of CD155 (nectin-like molecule 5; poliovirus receptor), a ligand for the activating receptor DNAM-1 (CD226). However, DNAM-1 is also recognized to bind a second ligand, CD112 (nectin-2). We now show that HCMV targets CD112 for proteasome-mediated degradation by 48 h post-infection, thus removing both activating ligands for DNAM-1 from the cell surface during productive infection. Significantly, cell surface expression of both CD112 and CD155 was restored when UL141 was deleted from the HCMV genome. While gpUL141 alone is sufficient to mediate retention of CD155 in the endoplasmic reticulum, UL141 requires assistance from additional HCMV-encoded functions to suppress expression of CD112. PMID:20410314

  20. Novel chalcone-based fluorescent human histamine H3 receptor ligands as pharmacological tools

    Directory of Open Access Journals (Sweden)

    Holger eStark

    2012-03-01

    Full Text Available Novel fluorescent chalcone-based ligands at human histamine H3 receptors (hH3R have been designed, synthesized and characterized. Compounds described are non-imidazole analogues of ciproxifan with a tetralone motif. Tetralones as chemical precursors and related fluorescent chalcones exhibit affinities at hH3R in the same concentration range like that of the reference antagonist ciproxifan (hH3R pKi value of 7.2. Fluorescence characterization of our novel ligands shows emission maxima about 570 nm for yellow fluorescent chalcones and ≥600 nm for the red fluorescent derivatives. Interferences to cellular autofluorescence could be excluded. All synthesized chalcone compounds could be taken to visualize hH3R proteins in stably transfected HEK-293 cells using confocal laser scanning fluorescence microscopy. These novel fluorescent ligands possess high potential to be used as pharmacological tools for hH3R visualization in different tissues.

  1. TSPO PIGA Ligands Promote Neurosteroidogenesis and Human Astrocyte Well-Being

    Directory of Open Access Journals (Sweden)

    Eleonora Da Pozzo

    2016-06-01

    Full Text Available The steroidogenic 18 kDa translocator protein (TSPO is an emerging, attractive therapeutic tool for several pathological conditions of the nervous system. Here, 13 high affinity TSPO ligands belonging to our previously described N,N-dialkyl-2-phenylindol-3-ylglyoxylamide (PIGA class were evaluated for their potential ability to affect the cellular Oxidative Metabolism Activity/Proliferation index, which is used as a measure of astrocyte well-being. The most active PIGA ligands were also assessed for steroidogenic activity in terms of pregnenolone production, and the values were related to the metabolic index in rat and human models. The results showed a positive correlation between the increase in the Oxidative Metabolism Activity/Proliferation index and the pharmacologically induced stimulation of steroidogenesis. The specific involvement of steroid molecules in mediating the metabolic effects of the PIGA ligands was demonstrated using aminoglutethimide, a specific inhibitor of the first step of steroid biosynthesis. The most promising steroidogenic PIGA ligands were the 2-naphthyl derivatives that showed a long residence time to the target, in agreement with our previous data. In conclusion, TSPO ligand-induced neurosteroidogenesis was involved in astrocyte well-being.

  2. Anticancer actions of PPARγ ligands:Current state and future perspectives in human lung cancer

    Institute of Scientific and Technical Information of China (English)

    Jesse; Roman

    2010-01-01

    Peroxisome proliferator-activated receptors(PPARs) are ligand-dependent nuclear transcription factors and members of the nuclear receptor superfamily.Of the three PPARs identified to date(PPARγ,PPARβ/δ,and PPARα),PPARγ has been studied the most,in part because of the availability of PPARγagonists(also known as PPARγ ligands)and its significant effects on the management of several human diseases including type 2 diabetes,metabolic syndrome,cardiovascular disease and cancers.PPARγ is expressed in many tumors including lung cancer,and its function has been linked to the process of lung cancer development, progression and metastasis.Studies performed in gynogenic and xenograft models of lung cancer showed decreased tumor growth and metastasis in animals treated with PPARγ ligands.Furthermore,data are emerging from retrospective clinical studies that suggest a protective role for PPARγ ligands on the incidence of lung cancer.This review summarizes the research being conducted in this area and focuses on the mechanisms and potential therapeutic effects of PPARγ ligands as a novel anti-lung cancer treatment strategy.

  3. The intracellular portion of GITR enhances NGF-promoted neurite growth through an inverse modulation of Erk and NF-κB signalling

    Directory of Open Access Journals (Sweden)

    Laura McKelvey

    2012-08-01

    NF-κB transcription factors play a key role in regulating the growth of neural processes in the developing PNS. Although several secreted proteins have been shown to activate NF-κB to inhibit the growth of developing sympathetic neurons, it is unknown how the endogenous level of NF-κB activity present in these neurons is restricted to allow neurite growth to occur during their normal development. Here we show that activation of the glucocorticoid-induced tumour necrosis factor receptor (GITR inhibits NF-κB activation while promoting the activation of Erk in developing sympathetic neurons. Conversely, inhibition of GITR results in an increase in NF-κB dependent gene transcription and a decrease in Erk activation leading to a reduction in neurite growth. These findings show that GITR signalling can regulate the extent of sympathetic neurite growth through an inverse modulation of Erk and NF-κB signalling, which provides an optimal environment for NGF-promoted growth.

  4. The intracellular portion of GITR enhances NGF-promoted neurite growth through an inverse modulation of Erk and NF-κB signalling.

    Science.gov (United States)

    McKelvey, Laura; Gutierrez, Humberto; Nocentini, Giuseppe; Crampton, Sean J; Davies, Alun M; Riccardi, Carlo R; O'keeffe, Gerard W

    2012-10-15

    NF-κB transcription factors play a key role in regulating the growth of neural processes in the developing PNS. Although several secreted proteins have been shown to activate NF-κB to inhibit the growth of developing sympathetic neurons, it is unknown how the endogenous level of NF-κB activity present in these neurons is restricted to allow neurite growth to occur during their normal development. Here we show that activation of the glucocorticoid-induced tumour necrosis factor receptor (GITR) inhibits NF-κB activation while promoting the activation of Erk in developing sympathetic neurons. Conversely, inhibition of GITR results in an increase in NF-κB dependent gene transcription and a decrease in Erk activation leading to a reduction in neurite growth. These findings show that GITR signalling can regulate the extent of sympathetic neurite growth through an inverse modulation of Erk and NF-κB signalling, which provides an optimal environment for NGF-promoted growth.

  5. Anti-GITR Antibody Treatment Increases TCR Repertoire Diversity of Regulatory but not Effector T Cells Engaged in the Immune Response Against B16 Melanoma.

    Science.gov (United States)

    Scirka, Bozena; Szurek, Edyta; Pietrzak, Maciej; Rempala, Grzegorz; Kisielow, Pawel; Ignatowicz, Leszek; Miazek, Arkadiusz

    2017-06-21

    Crosslinking of glucocorticoid-induced TNF family-related receptor (GITR) with agonist antibodies restores cancer immunity by enhancing effector T cell (Teff) responses while interfering with intra-tumor regulatory T cell (Treg) stability and/or accumulation. However, how anti-GITR antibody infusion changes T cell receptor (TCR) repertoire of Teffs and Tregs engaged in anti-tumor immune response is unclear. Here, we used a transgenic mouse model (TCRmini) where T cells express naturally generated but limited TCR repertoire to trace the fate of individual T cells recognizing B16 melanoma in tumor-bearing mice, treated or non-treated with an anti-GITR monoclonal antibody DTA-1. Analysis of TCRs of CD4(+) T cells from these mice revealed that the TCR repertoire of dominant tumor-reactive Teff clones remained rather similar in treated and non-treated mice. In contrast, both tumor-associated and peripheral TCR repertoire of Tregs, which were mostly distinct from that of Teffs, underwent DTA-1 mediated remodeling characterized by depletion of dominant clones and an emergence of more diverse, low-frequency clones bearing increased numbers of TCRs shared with Teffs. We conclude that the DTA-1 infusion eliminates activated Tregs engaged in the initial maintenance of tolerogenic niche for tumor growth, but over time, it favors tumor replenishment by Tregs expressing an array of TCRs able to compete with Teffs for recognition of the same tumor antigens which may prevent its complete eradication.

  6. High resolution crystal structures of unliganded and liganded human liver ACBP reveal a new mode of binding for the acyl-CoA ligand

    DEFF Research Database (Denmark)

    Taskinen, Jukka P; van Aalten, Daan M; Knudsen, Jens;

    2007-01-01

    The acyl-CoA binding protein (ACBP) is essential for the fatty acid metabolism, membrane structure, membrane fusion, and ceramide synthesis. Here high resolution crystal structures of human cytosolic liver ACBP, unliganded and liganded with a physiological ligand, myristoyl-CoA are described....... The binding of the acyl-CoA molecule induces only few structural differences near the binding pocket. The crystal form of the liganded ACBP, which has two ACBP molecules in the asymmetric unit, shows that in human ACBP the same acyl-CoA binding pocket is present as previously described for the bovine...... and Plasmodium falciparum ACBP and the mode of binding of the 3'-phosphate-AMP moiety is conserved. Unexpectedly, in one of the acyl-CoA binding pockets the acyl moiety is bound in a reversed mode as compared with the bovine and P. falciparum structures. In this binding mode, the myristoyl-CoA molecule is fully...

  7. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells.

    Science.gov (United States)

    Wang, Kai; Li, Yan; Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S; Song, Jia-Sheng; Zheng, Jing

    2013-10-28

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer.

  8. FcRn expression, ligands binding properties and its regulation in human immune cells and hepatocytes

    OpenAIRE

    2007-01-01

    ABSTRACT Expression and diverse functions of MHC class I related neonatal Fc receptor in different tissues is continually reported. To contribute to the understanding of how the receptor functions according to cell type, we investigated the expression and ligands binding properties of FcRn in human immune cells and hepatocytes. Here, we report that heterodimeric FcRn is expressed in these cells as evidenced by RT-PCR, Western immunoblottting and flow cytometry. The receptor expression i...

  9. Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes.

    Science.gov (United States)

    Bončina, Matjaž; Podlipnik, Črtomir; Piantanida, Ivo; Eilmes, Julita; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Lah, Jurij

    2015-12-02

    Thermodynamic studies of ligand binding to human telomere (ht) DNA quadruplexes, as a rule, neglect the involvement of various ht-DNA conformations in the binding process. Therefore, the thermodynamic driving forces and the mechanisms of ht-DNA G-quadruplex-ligand recognition remain poorly understood. In this work we characterize thermodynamically and structurally binding of netropsin (Net), dibenzotetraaza[14]annulene derivatives (DP77, DP78), cationic porphyrin (TMPyP4) and two bisquinolinium ligands (Phen-DC3, 360A-Br) to the ht-DNA fragment (Tel22) AGGG(TTAGGG)3 using isothermal titration calorimetry, CD and fluorescence spectroscopy, gel electrophoresis and molecular modeling. By global thermodynamic analysis of experimental data we show that the driving forces characterized by contributions of specific interactions, changes in solvation and conformation differ significantly for binding of ligands with low quadruplex selectivity over duplexes (Net, DP77, DP78, TMPyP4; KTel22 ≈ KdsDNA). These contributions are in accordance with the observed structural features (changes) and suggest that upon binding Net, DP77, DP78 and TMPyP4 select hybrid-1 and/or hybrid-2 conformation while Phen-DC3 and 360A-Br induce the transition of hybrid-1 and hybrid-2 to the structure with characteristics of antiparallel or hybrid-3 type conformation.

  10. Interactions of human hemoglobin with charged ligand-functionalized iron oxide nanoparticles and effect of counterions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Goutam, E-mail: ghoshg@yahoo.com [UGC-DAE Consortium for Scientific Research, Mumbai Centre (India); Panicker, Lata [Bhabha Atomic Research Centre, Solid State Physics Division (India)

    2014-12-15

    Human hemoglobin is an important metalloprotein. It has tetrameric structure with each subunit containing a ‘heme’ group which carries oxygen and carbon dioxide in blood. In this work, we have investigated the interactions of human hemoglobin (Hb) with charged ligand-functionalized iron oxide nanoparticles and the effect of counterions, in aqueous medium. Several techniques like DLS and ζ-potential measurements, UV–vis, fluorescence, and CD spectroscopy have been used to characterize the interaction. The nanoparticle size was measured to be in the range of 20–30 nm. Our results indicated the binding of Hb with both positively as well as negatively charged ligand-functionalized iron oxide nanoparticles in neutral aqueous medium which was driven by the electrostatic and the hydrophobic interactions. The electrostatic binding interaction was not seen in phosphate buffer at pH 7.4. We have also observed that the ‘heme’ groups of Hb remained unaffected on binding with charged nanoparticles, suggesting the utility of the charged ligand-functionalized nanoparticles in biomedical applications.

  11. Ligand binding strategies of human serum albumin: how can the cargo be utilized?

    Science.gov (United States)

    Varshney, Ankita; Sen, Priyankar; Ahmad, Ejaz; Rehan, Mohd; Subbarao, Naidu; Khan, Rizwan Hasan

    2010-01-01

    Human serum albumin (HSA), being the most abundant carrier protein in blood and a modern day clinical tool for drug delivery, attracts high attention among biologists. Hence, its unfolding/refolding strategies and exogenous/endogenous ligand binding preference are of immense use in therapeutics and clinical biochemistry. Among its fellow proteins albumin is known to carry almost every small molecule. Thus, it is a potential contender for being a molecular cargo/or nanovehicle for clinical, biophysical and industrial purposes. Nonetheless, its structure and function are largely regulated by various chemical and physical factors to accommodate HSA to its functional purpose. This multifunctional protein also possesses enzymatic properties which may be used to convert prodrugs to active therapeutics. This review aims to highlight current overview on the binding strategies of protein to various ligands that may be expected to lead to significant clinical applications.

  12. Human insulin polymorphism upon ligand binding and pH variation: the case of 4-ethylresorcinol

    Directory of Open Access Journals (Sweden)

    S. Fili

    2015-09-01

    Full Text Available This study focuses on the effects of the organic ligand 4-ethylresorcinol on the crystal structure of human insulin using powder X-ray crystallography. For this purpose, systematic crystallization experiments have been conducted in the presence of the organic ligand and zinc ions within the pH range 4.50–8.20, while observing crystallization behaviour around the isoelectric point of insulin. High-throughput crystal screening was performed using a laboratory X-ray diffraction system. The most representative samples were selected for synchrotron X-ray diffraction measurements, which took place at the European Synchrotron Radiation Facility (ESRF and the Swiss Light Source (SLS. Four different crystalline polymorphs have been identified. Among these, two new phases with monoclinic symmetry have been found, which are targets for the future development of microcrystalline insulin drugs.

  13. Water-Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase.

    Science.gov (United States)

    Fox, Jerome M; Kang, Kyungtae; Sastry, Madhavi; Sherman, Woody; Sankaran, Banumathi; Zwart, Peter H; Whitesides, George M

    2017-03-27

    This study uses mutants of human carbonic anhydrase (HCAII) to examine how changes in the organization of water within a binding pocket can alter the thermodynamics of protein-ligand association. Results from calorimetric, crystallographic, and theoretical analyses suggest that most mutations strengthen networks of water-mediated hydrogen bonds and reduce binding affinity by increasing the enthalpic cost and, to a lesser extent, the entropic benefit of rearranging those networks during binding. The organization of water within a binding pocket can thus determine whether the hydrophobic interactions in which it engages are enthalpy-driven or entropy-driven. Our findings highlight a possible asymmetry in protein-ligand association by suggesting that, within the confines of the binding pocket of HCAII, binding events associated with enthalpically favorable rearrangements of water are stronger than those associated with entropically favorable ones. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.

  15. A targeting ligand enhances infectivity and cytotoxicity of an oncolytic adenovirus in human pancreatic cancer tissues.

    Science.gov (United States)

    Yamamoto, Yuki; Hiraoka, Nobuyoshi; Goto, Naoko; Rin, Yosei; Miura, Kazuki; Narumi, Kenta; Uchida, Hiroaki; Tagawa, Masatoshi; Aoki, Kazunori

    2014-10-28

    The addition of a targeting strategy is necessary to enhance oncolysis and secure safety of a conditionally replicative adenovirus (CRAd). We have constructed an adenovirus library displaying random peptides on the fiber, and have successfully identified a pancreatic cancer-targeting ligand (SYENFSA). Here, the usefulness of cancer-targeted CRAd for pancreatic cancer was examined as a preclinical study. First, we constructed a survivin promoter-regulated CRAd expressing enhanced green fluorescent protein gene (EGFP), which displayed the identified targeting ligand (AdSur-SYE). The AdSur-SYE resulted in higher gene transduction efficiency and oncolytic potency than the untargeted CRAd (AdSur) in several pancreatic cancer cell lines. An intratumoral injection of AdSur-SYE significantly suppressed the growth of subcutaneous tumors, in which AdSur-SYE effectively proliferated and spread. An ectopic infection in adjacent tissues and organs of intratumorally injected AdSur-SYE was decreased compared with AdSur. Then, to examine whether the targeting ligand actually enhanced the infectivity of CRAd in human pancreatic cancer tissues, tumor cells prepared from surgical specimens were infected with viruses. The AdSur-SYE increased gene transduction efficiency 6.4-fold higher than did AdSur in single cells derived from human pancreatic cancer, whereas the infectivity of both vectors was almost the same in the pancreas and other cancers. Immunostaining showed that most EGFP(+) cells were cytokeratin-positive in the sliced tissues, indicating that pancreatic cancer cells but not stromal cells were injected with AdSur-SYE. AdSur-SYE resulted in a stronger oncolysis in the primary pancreatic cancer cells co-cultured with mouse embryonic fibroblasts than AdSur did. CRAd in combination with a tumor-targeting ligand is promising as a next-generation of oncolytic virotherapy for pancreatic cancer.

  16. Distinct effects of EGFR ligands on human mammary epithelial cell differentiation.

    Directory of Open Access Journals (Sweden)

    Chandrani Mukhopadhyay

    Full Text Available Based on gene expression patterns, breast cancers can be divided into subtypes that closely resemble various developmental stages of normal mammary epithelial cells (MECs. Thus, understanding molecular mechanisms of MEC development is expected to provide critical insights into initiation and progression of breast cancer. Epidermal growth factor receptor (EGFR and its ligands play essential roles in normal and pathological mammary gland. Signals through EGFR is required for normal mammary gland development. Ligands for EGFR are over-expressed in a significant proportion of breast cancers, and elevated expression of EGFR is associated with poorer clinical outcome. In the present study, we examined the effect of signals through EGFR on MEC differentiation using the human telomerase reverse transcriptase (hTERT-immortalized human stem/progenitor MECs which express cytokeratin 5 but lack cytokeratin 19 (K5(+K19(- hMECs. As reported previously, these cells can be induced to differentiate into luminal and myoepithelial cells under appropriate culture conditions. K5(+K19(- hMECs acquired distinct cell fates in response to EGFR ligands epidermal growth factor (EGF, amphiregulin (AREG and transforming growth factor alpha (TGFα in differentiation-promoting MEGM medium. Specifically, presence of EGF during in vitro differentiation supported development into both luminal and myoepithelial lineages, whereas cells differentiated only towards luminal lineage when EGF was replaced with AREG. In contrast, substitution with TGFα led to differentiation only into myoepithelial lineage. Chemical inhibition of the MEK-Erk pathway, but not the phosphatidylinositol 3-kinase (PI3K-AKT pathway, interfered with K5(+K19(- hMEC differentiation. The present data validate the utility of the K5(+K19(- hMEC cells for modeling key features of human MEC differentiation. This system should be useful in studying molecular/biochemical mechanisms of human MEC differentiation.

  17. Biophysical and physicochemical methods differentiate highly ligand-efficient human D-amino acid oxidase inhibitors.

    Science.gov (United States)

    Lange, Jos H M; Venhorst, Jennifer; van Dongen, Maria J P; Frankena, Jurjen; Bassissi, Firas; de Bruin, Natasja M W J; den Besten, Cathaline; de Beer, Stephanie B A; Oostenbrink, Chris; Markova, Natalia; Kruse, Chris G

    2011-10-01

    Many early drug research efforts are too reductionist thereby not delivering key parameters such as kinetics and thermodynamics of target-ligand binding. A set of human D-Amino Acid Oxidase (DAAO) inhibitors 1-6 was applied to demonstrate the impact of key biophysical techniques and physicochemical methods in the differentiation of chemical entities that cannot be adequately distinguished on the basis of their normalized potency (ligand efficiency) values. The resulting biophysical and physicochemical data were related to relevant pharmacodynamic and pharmacokinetic properties. Surface Plasmon Resonance data indicated prolonged target-ligand residence times for 5 and 6 as compared to 1-4, based on the observed k(off) values. The Isothermal Titration Calorimetry-derived thermodynamic binding profiles of 1-6 to the DAAO enzyme revealed favorable contributions of both ΔH and ΔS to their ΔG values. Surprisingly, the thermodynamic binding profile of 3 elicited a substantially higher favorable contribution of ΔH to ΔG in comparison with the structurally closely related fused bicyclic acid 4. Molecular dynamics simulations and free energy calculations of 1, 3, and 4 led to novel insights into the thermodynamic properties of the binding process at an atomic level and in the different thermodynamic signatures of 3 and 4. The presented holistic approach is anticipated to facilitate the identification of compounds with best-in-class properties at an early research stage.

  18. Identification of novel human WW domain-containing proteins by cloning of ligand targets.

    Science.gov (United States)

    Pirozzi, G; McConnell, S J; Uveges, A J; Carter, J M; Sparks, A B; Kay, B K; Fowlkes, D M

    1997-06-06

    A recently described protein module consisting of 35-40 semiconserved residues, termed the WW domain, has been identified in a number of diverse proteins including dystrophin and Yes-associated protein (YAP). Two putative ligands of YAP, termed WBP-1 and WBP-2, have been found previously to contain several short peptide regions consisting of PPPPY residues (PY motif) that mediate binding to the WW domain of YAP. Although the function(s) of the WW domain remain to be elucidated, these observations strongly support a role for the WW domain in protein-protein interactions. Here we report the isolation of three novel human cDNAs encoding a total of nine WW domains, using a newly developed approach termed COLT (cloning of ligand targets), in which the rapid cloning of modular protein domains is accomplished by screening cDNA expression libraries with specific peptide ligands. Two of the new genes identified appear to be members of a family of proteins, including Rsp5 and Nedd-4, which have ubiquitin-protein ligase activity. In addition, we demonstrate that peptides corresponding to PY and PY-like motifs present in several known signaling or regulatory proteins, including RasGAP, AP-2, p53BP-2 (p53-binding protein-2), interleukin-6 receptor-alpha, chloride channel CLCN5, and epithelial sodium channel ENaC, can selectively bind to certain of these novel WW domains.

  19. Prolonged calcitonin receptor signaling by salmon, but not human calcitonin, reveals ligand bias.

    Directory of Open Access Journals (Sweden)

    Kim Vietz Andreassen

    Full Text Available Salmon calcitonin (sCT and human calcitonin (hCT are pharmacologically distinct. However, the reason for the differences is unclear. Here we analyze the differences between sCT and hCT on the human calcitonin receptor (CT(aR with respect to activation of cAMP signaling, β-arrestin recruitment, ligand binding kinetics and internalization. The study was conducted using mammalian cell lines heterologously expressing the human CT(a receptor. CT(aR downstream signaling was investigated with dose response profiles for cAMP production and β-arrestin recruitment for sCT and hCT during short term (<2 hours and prolonged (up to 72 hours stimulation. CT(aR kinetics and internalization was investigated with radio-labeled sCT and hCT ligands on cultured cells and isolated membrane preparations from the same cell line. We found that sCT and hCT are equipotent during short-term stimulations with differences manifesting themselves only during long-term stimulation with sCT inducing a prolonged activation up to 72 hours, while hCT loses activity markedly earlier. The prolonged sCT stimulation of both cAMP accumulation and β-arrestin recruitment was attenuated, but not abrogated by acid wash, suggesting a role for sCT activated internalized receptors. We have demonstrated a novel phenomenon, namely that two distinct CT(aR downstream signaling activation patterns are activated by two related ligands, thereby highlighting qualitatively different signaling responses in vitro that could have implications for sCT use in vivo.

  20. Prolonged calcitonin receptor signaling by salmon, but not human calcitonin, reveals ligand bias.

    Science.gov (United States)

    Andreassen, Kim Vietz; Hjuler, Sara Toftegaard; Furness, Sebastian G; Sexton, Patrick M; Christopoulos, Arthur; Nosjean, Olivier; Karsdal, Morten Asser; Henriksen, Kim

    2014-01-01

    Salmon calcitonin (sCT) and human calcitonin (hCT) are pharmacologically distinct. However, the reason for the differences is unclear. Here we analyze the differences between sCT and hCT on the human calcitonin receptor (CT(a)R) with respect to activation of cAMP signaling, β-arrestin recruitment, ligand binding kinetics and internalization. The study was conducted using mammalian cell lines heterologously expressing the human CT(a) receptor. CT(a)R downstream signaling was investigated with dose response profiles for cAMP production and β-arrestin recruitment for sCT and hCT during short term (<2 hours) and prolonged (up to 72 hours) stimulation. CT(a)R kinetics and internalization was investigated with radio-labeled sCT and hCT ligands on cultured cells and isolated membrane preparations from the same cell line. We found that sCT and hCT are equipotent during short-term stimulations with differences manifesting themselves only during long-term stimulation with sCT inducing a prolonged activation up to 72 hours, while hCT loses activity markedly earlier. The prolonged sCT stimulation of both cAMP accumulation and β-arrestin recruitment was attenuated, but not abrogated by acid wash, suggesting a role for sCT activated internalized receptors. We have demonstrated a novel phenomenon, namely that two distinct CT(a)R downstream signaling activation patterns are activated by two related ligands, thereby highlighting qualitatively different signaling responses in vitro that could have implications for sCT use in vivo.

  1. Mapping of the ligand-binding site on the b' domain of human PDI: interaction with peptide ligands and the x-linker region.

    Science.gov (United States)

    Byrne, Lee J; Sidhu, Ateesh; Wallis, A Katrine; Ruddock, Lloyd W; Freedman, Robert B; Howard, Mark J; Williamson, Richard A

    2009-09-25

    PDI (protein disulfide-isomerase) catalyses the formation of native disulfide bonds of secretory proteins in the endoplasmic reticulum. PDI consists of four thioredoxin-like domains, of which two contain redox-active catalytic sites (a and a'), and two do not (b and b'). The b' domain is primarily responsible for substrate binding, although the nature and specificity of the substrate-binding site is still poorly understood. In the present study, we show that the b' domain of human PDI is in conformational exchange, but that its structure is stabilized by the addition of peptide ligands or by binding the x-linker region. The location of the ligand-binding site in b' was mapped by NMR chemical shift perturbation and found to consist primarily of residues from the core beta-sheet and alpha-helices 1 and 3. This site is where the x-linker region binds in the X-ray structure of b'x and we show that peptide ligands can compete with x binding at this site. The finding that x binds in the principal ligand-binding site of b' further supports the hypothesis that x functions to gate access to this site and so modulates PDI activity.

  2. A new peptide ligand for targeting human carbonic anhydrase IX, identified through the phage display technology.

    Directory of Open Access Journals (Sweden)

    Vasileios Askoxylakis

    Full Text Available UNLABELLED: Carbonic anhydrase IX (CAIX is a transmembrane enzyme found to be overexpressed in various tumors and associated with tumor hypoxia. Ligands binding this target may be used to visualize hypoxia, tumor manifestation or treat tumors by endoradiotherapy. METHODS: Phage display was performed with a 12 amino acid phage display library by panning against a recombinant extracellular domain of human carbonic anhydrase IX. The identified peptide CaIX-P1 was chemically synthesized and tested in vitro on various cell lines and in vivo in Balb/c nu/nu mice carrying subcutaneously transplanted tumors. Binding, kinetic and competition studies were performed on the CAIX positive human renal cell carcinoma cell line SKRC 52, the CAIX negative human renal cell carcinoma cell line CaKi 2, the human colorectal carcinoma cell line HCT 116 and on human umbilical vein endothelial cells (HUVEC. Organ distribution studies were carried out in mice, carrying SKRC 52 tumors. RNA expression of CAIX in HCT 116 and HUVEC cells was investigated by quantitative real time PCR. RESULTS: In vitro binding experiments of (125I-labeled-CaIX-P1 revealed an increased uptake of the radioligand in the CAIX positive renal cell carcinoma cell line SKRC 52. Binding of the radioligand in the colorectal carcinoma cell line HCT 116 increased with increasing cell density and correlated with the mRNA expression of CAIX. Radioligand uptake was inhibited up to 90% by the unlabeled CaIX-P1 peptide, but not by the negative control peptide octreotide at the same concentration. No binding was demonstrated in CAIX negative CaKi 2 and HUVEC cells. Organ distribution studies revealed a higher accumulation in SKRC 52 tumors than in heart, spleen, liver, muscle, intestinum and brain, but a lower uptake compared to blood and kidney. CONCLUSIONS: These data indicate that CaIX-P1 is a promising candidate for the development of new ligands targeting human carbonic anhydrase IX.

  3. Parabens and Human Epidermal Growth Factor Receptor Ligand Cross-Talk in Breast Cancer Cells.

    Science.gov (United States)

    Pan, Shawn; Yuan, Chaoshen; Tagmount, Abderrahmane; Rudel, Ruthann A; Ackerman, Janet M; Yaswen, Paul; Vulpe, Chris D; Leitman, Dale C

    2016-05-01

    Xenoestrogens are synthetic compounds that mimic endogenous estrogens by binding to and activating estrogen receptors. Exposure to estrogens and to some xenoestrogens has been associated with cell proliferation and an increased risk of breast cancer. Despite evidence of estrogenicity, parabens are among the most widely used xenoestrogens in cosmetics and personal-care products and are generally considered safe. However, previous cell-based studies with parabens do not take into account the signaling cross-talk between estrogen receptor α (ERα) and the human epidermal growth factor receptor (HER) family. We investigated the hypothesis that the potency of parabens can be increased with HER ligands, such as heregulin (HRG). The effects of HER ligands on paraben activation of c-Myc expression and cell proliferation were determined by real-time polymerase chain reaction, Western blots, flow cytometry, and chromatin immunoprecipitation assays in ERα- and HER2-positive human BT-474 breast cancer cells. Butylparaben (BP) and HRG produced a synergistic increase in c-Myc mRNA and protein levels in BT-474 cells. Estrogen receptor antagonists blocked the synergistic increase in c-Myc protein levels. The combination of BP and HRG also stimulated proliferation of BT-474 cells compared with the effects of BP alone. HRG decreased the dose required for BP-mediated stimulation of c-Myc mRNA expression and cell proliferation. HRG caused the phosphorylation of serine 167 in ERα. BP and HRG produced a synergistic increase in ERα recruitment to the c-Myc gene. Our results show that HER ligands enhanced the potency of BP to stimulate oncogene expression and breast cancer cell proliferation in vitro via ERα, suggesting that parabens might be active at exposure levels not previously considered toxicologically relevant from studies testing their effects in isolation. Pan S, Yuan C, Tagmount A, Rudel RA, Ackerman JM, Yaswen P, Vulpe CD, Leitman DC. 2016. Parabens and human epidermal

  4. Parabens and Human Epidermal Growth Factor Receptor Ligand Cross-Talk in Breast Cancer Cells

    Science.gov (United States)

    Pan, Shawn; Yuan, Chaoshen; Tagmount, Abderrahmane; Rudel, Ruthann A.; Ackerman, Janet M.; Yaswen, Paul; Vulpe, Chris D.; Leitman, Dale C.

    2015-01-01

    Background: Xenoestrogens are synthetic compounds that mimic endogenous estrogens by binding to and activating estrogen receptors. Exposure to estrogens and to some xenoestrogens has been associated with cell proliferation and an increased risk of breast cancer. Despite evidence of estrogenicity, parabens are among the most widely used xenoestrogens in cosmetics and personal-care products and are generally considered safe. However, previous cell-based studies with parabens do not take into account the signaling cross-talk between estrogen receptor α (ERα) and the human epidermal growth factor receptor (HER) family. Objectives: We investigated the hypothesis that the potency of parabens can be increased with HER ligands, such as heregulin (HRG). Methods: The effects of HER ligands on paraben activation of c-Myc expression and cell proliferation were determined by real-time polymerase chain reaction, Western blots, flow cytometry, and chromatin immunoprecipitation assays in ERα- and HER2-positive human BT-474 breast cancer cells. Results: Butylparaben (BP) and HRG produced a synergistic increase in c-Myc mRNA and protein levels in BT-474 cells. Estrogen receptor antagonists blocked the synergistic increase in c-Myc protein levels. The combination of BP and HRG also stimulated proliferation of BT-474 cells compared with the effects of BP alone. HRG decreased the dose required for BP-mediated stimulation of c-Myc mRNA expression and cell proliferation. HRG caused the phosphorylation of serine 167 in ERα. BP and HRG produced a synergistic increase in ERα recruitment to the c-Myc gene. Conclusion: Our results show that HER ligands enhanced the potency of BP to stimulate oncogene expression and breast cancer cell proliferation in vitro via ERα, suggesting that parabens might be active at exposure levels not previously considered toxicologically relevant from studies testing their effects in isolation. Citation: Pan S, Yuan C, Tagmount A, Rudel RA, Ackerman JM

  5. Characterization of a ligand binding site in the human transient receptor potential ankyrin 1 pore.

    Science.gov (United States)

    Klement, Göran; Eisele, Lina; Malinowsky, David; Nolting, Andreas; Svensson, Mats; Terp, Gitte; Weigelt, Dirk; Dabrowski, Michael

    2013-02-19

    The pharmacology and regulation of Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel activity is intricate due to the physiological function as an integrator of multiple chemical, mechanical, and temperature stimuli as well as differences in species pharmacology. In this study, we describe and compare the current inhibition efficacy of human TRPA1 on three different TRPA1 antagonists. We used a homology model of TRPA1 based on Kv1.2 to select pore vestibule residues available for interaction with ligands entering the vestibule. Site-directed mutation constructs were expressed in Xenopus oocytes and their functionality and pharmacology assessed to support and improve our homology model. Based on the functional pharmacology results we propose an antagonist-binding site in the vestibule of the TRPA1 ion channel. We use the results to describe the proposed intravestibular ligand-binding site in TRPA1 in detail. Based on the single site substitutions, we designed a human TRPA1 receptor by substituting several residues in the vestibule and adjacent regions from the rat receptor to address and explain observed species pharmacology differences. In parallel, the lack of effect on HC-030031 inhibition by the vestibule substitutions suggests that this molecule interacts with TRPA1 via a binding site not situated in the vestibule.

  6. PPARγ ligand ciglitazone inhibits TNFα-induced ICAM-1 in human airway smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Chien-Da Huang

    2014-08-01

    Full Text Available Background: Modification of human airway smooth muscle (ASM function by proinflammatory cytokines has been regarded as a potential mechanism underlying bronchial hyperresponsiveness in asthma. Human ASM cells express intercellular adhesion molecule (ICAM-1 in response to cytokines. Synthetic ligands for peroxisome proliferator-activated receptor (PPARγ reportedly possess anti-inflammatory and immunomodulatory properties. In this study, we examined whether ciglitazone, a synthetic PPARγ ligand, can modulate the basal and tumor necrosis factor (TNFα-induced ICAM1 gene expression in human ASM cells. Methods: Human ASM cells were treated with TNFα. ICAM-1 expression was assessed by flow cytometry and reverse transcriptase-polymerase chain reaction (RT-PCR analysis. PPARγ activity was inhibited by target-specific small interfering (si RNA targeting PPARγ and GW9662, a PPARγ antagonist. Activity of nuclear factor (NF-κB was assessed by using immunoblot analysis, immune-confocal images, and electrophoretic mobility shift assay (EMSA. Results: By flow cytometry, ciglitazone alone had no effect on ICAM-1 expression in ASM cells, but inhibited ICAM-1 expression in response to TNFα (10 ng/ml in a dose-dependent manner (1-10 μM. It also inhibited TNFα-induced ICAM1 gene expression by RT-PCR analysis. Knockdown of PPARγ gene by target-specific siRNA targeting PPARγ enhanced ICAM-1 expression and the inhibitory effect of ciglitazone on TNFα-induced ICAM-1 expression was reversed by PPARγ siRNA and GW9662. SN-50 (10 μg/ml, an inhibitor for nuclear translocation of NF-κB, inhibited TNFα-induced ICAM-1 expression. Ciglitazone did not prevent TNFα-induced degradation of the cytosolic inhibitor of NF-κB (IκB, but inhibited the nuclear translocation of p65 induced by TNFα and suppressed the NF-κB/DNA binding activity. Conclusion: These findings suggest that ciglitazone inhibits TNFα-induced ICAM1 gene expression in human ASM cells through

  7. Optimization of a novel peptide ligand targeting human carbonic anhydrase IX.

    Directory of Open Access Journals (Sweden)

    Shoaib Rana

    Full Text Available BACKGROUND: Carbonic anhydrase IX (CA IX is a hypoxia-regulated transmembrane protein over-expressed in various types of human cancer. Recently, a new peptide with affinity for human carbonic anhydrase IX (CaIX-P1 was identified using the phage display technology. Aim of the present study is to characterize the binding site in the sequence of CaIX-P1, in order to optimize the binding and metabolic properties and use it for targeting purposes. METHODOLOGY/PRINCIPAL FINDINGS: Various fragments of CaIX-P1 were synthesized on solid support using Fmoc chemistry. Alanine scanning was performed for identification of the amino acids crucial for target binding. Derivatives with increased binding affinity were radiolabeled and in vitro studies were carried out on the CA IX positive human renal cell carcinoma cell line SKRC 52 and the CA IX negative human pancreatic carcinoma cell line BxPC3. Metabolic stability was investigated in cell culture medium and human serum. Organ distribution and planar scintigraphy studies were performed in Balb/c nu/nu mice carrying subcutaneously transplanted SKRC 52 tumors. The results of our studies clearly identified amino acids that are important for target binding. Among various fragments and derivatives the ligand CaIX-P1-4-10 (NHVPLSPy was found to possess increased binding potential in SKRC 52 cells, whereas no binding capacity for BxPC3 cells was observed. Binding of radiolabeled CaIX-P1-4-10 on CA IX positive cells could be inhibited by both the unlabeled and the native CaIX-P1 peptide but not by control peptides. Stability experiments indicated the degradation site in the sequence of CaIX-P1-4-10. Biodistribution studies showed a higher in vivo accumulation in the tumor than in most healthy tissues. CONCLUSIONS: Our data reveal modifications in the sequence of the CA IX affine ligand CaIX-P1 that might be favorable for improvement of target affinity and metabolic stability, which are necessary prior to the use of

  8. Regulatory T cells and human myeloid dendritic cells promote tolerance via programmed death ligand-1.

    Directory of Open Access Journals (Sweden)

    Shoba Amarnath

    2010-02-01

    Full Text Available Immunotherapy using regulatory T cells (Treg has been proposed, yet cellular and molecular mechanisms of human Tregs remain incompletely characterized. Here, we demonstrate that human Tregs promote the generation of myeloid dendritic cells (DC with reduced capacity to stimulate effector T cell responses. In a model of xenogeneic graft-versus-host disease (GVHD, allogeneic human DC conditioned with Tregs suppressed human T cell activation and completely abrogated posttransplant lethality. Tregs induced programmed death ligand-1 (PD-L1 expression on Treg-conditioned DC; subsequently, Treg-conditioned DC induced PD-L1 expression in vivo on effector T cells. PD-L1 blockade reversed Treg-conditioned DC function in vitro and in vivo, thereby demonstrating that human Tregs can promote immune suppression via DC modulation through PD-L1 up-regulation. This identification of a human Treg downstream cellular effector (DC and molecular mechanism (PD-L1 will facilitate the rational design of clinical trials to modulate alloreactivity.

  9. Inhibition of RNA Polymerase II Transcription in Human Cells by Synthetic DNA-Binding Ligands

    Science.gov (United States)

    Dickinson, Liliane A.; Gulizia, Richard J.; Trauger, John W.; Baird, Eldon E.; Mosier, Donald E.; Gottesfeld, Joel M.; Dervan, Peter B.

    1998-10-01

    Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole--imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located with RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.

  10. Alteration of Fas and Fas ligand expression during human visceral leishmaniasis

    Science.gov (United States)

    Eidsmo, L; Wolday, D; Berhe, N; Sabri, F; Satti, I; El Hassan, A M; Sundar, S; Chiodi, F; Akuffo, H

    2002-01-01

    Several studies in murine systems have suggested a role of apoptosis in the pathogenesis of leishmaniasis. However, the role of apoptosis in visceral leishmaniasis in man has not been explored. In this study, we show that patients with visceral leishmaniasis demonstrate significant dysregulation of Fas and Fas ligand. Levels of soluble Fas (sFas) and soluble Fas ligand (sFasL) were elevated in plasma of patients with active visceral leishmaniasis (VL) and individuals co-infected with VL-HIV-1 compared to healthy controls. The levels of sFas and sFasL were normalized 6 months after successful treatment. In VL patients, the expression of membrane bound Fas, and to a lower extent FasL, were up-regulated on Leishmania donovani-infected spleen cells, the site of parasite multiplication. Expression of Fas and FasL on peripheral blood mononuclear cells was within normal range, probably reflecting that the blood is not a normal site of L. donovani infection. Furthermore, this is suggested by the finding that in vitro infection of macrophages with L. donovani up-regulated Fas expression on the surface of infected cells and enhanced the levels of sFasL in supernatants from infected cultures. How this dysregulation may affect the pathogenesis of human visceral leishmaniasis is discussed. PMID:12390320

  11. Fluorescent pirenzepine derivatives as potential bitopic ligands of the human M1 muscarinic receptor.

    Science.gov (United States)

    Tahtaoui, Chouaib; Parrot, Isabelle; Klotz, Philippe; Guillier, Fabrice; Galzi, Jean-Luc; Hibert, Marcel; Ilien, Brigitte

    2004-08-12

    Following a recent description of fluorescence resonance energy transfer between enhanced green fluorescent protein (EGFP)-fused human muscarinic M1 receptors and Bodipy-labeled pirenzepine, we synthesized seven fluorescent derivatives of this antagonist in order to further characterize ligand-receptor interactions. These compounds carry Bodipy [558/568], Rhodamine Red-X [560/580], or Fluorolink Cy3 [550/570] fluorophores connected to pirenzepine through various linkers. All molecules reversibly bind with high affinity to M1 receptors (radioligand and energy transfer binding experiments) provided that the linker contains more than six atoms. The energy transfer efficiency exhibits modest variations among ligands, indicating that the distance separating EGFP from the fluorophores remains almost constant. This also supports the notion that the fluorophores may bind to the receptor protein. Kinetic analyses reveal that the dissociation of two Bodipy derivatives (10 or 12 atom long linkers) is sensitive to the presence of the allosteric modulator brucine, while that of all other molecules (15-24 atom long linkers) is not. The data favor the idea that these analogues might interact with both the acetylcholine and the brucine binding domains. Copyright 2004 American Chemical Society

  12. Identification of new human pregnane X receptor ligands among pesticides using a stable reporter cell system.

    Science.gov (United States)

    Lemaire, Géraldine; Mnif, Wissem; Pascussi, Jean-Marc; Pillon, Arnaud; Rabenoelina, Fanja; Fenet, Hélène; Gomez, Elena; Casellas, Claude; Nicolas, Jean-Claude; Cavaillès, Vincent; Duchesne, Marie-Josèphe; Balaguer, Patrick

    2006-06-01

    Pregnane X receptor (PXR, NR1I2) is activated by various chemically unrelated compounds, including environmental pollutants and drugs. We proceeded here to in vitro screening of 28 pesticides with a new reporter system that detects human pregnane X receptor (hPXR) activators. The cell line was obtained by a two-step stable transfection of cervical cancer HeLa cells. The first transfected cell line, HG5LN, contained an integrated luciferase reporter gene under the control of a GAL4 yeast transcription factor-binding site. The second cell line HGPXR was derived from HG5LN and stably expressed hPXR ligand-binding domain fused to GAL4 DNA-binding domain (DBD). The HG5LN cells were used as a control to detect nonspecific activities. Pesticides from various chemical classes were demonstrated, for the first time, to be hPXR activators: (1) herbicides: pretilachlor, metolachlor, and alachlor chloracetanilides, oxadiazon oxiconazole, and isoproturon urea; (2) fungicides: bupirimate and fenarimol pyrimidines, propiconazole, fenbuconazole, prochloraz conazoles, and imazalil triazole; and (3) insecticides: toxaphene organochlorine, permethrin pyrethroid, fipronil pyrazole, and diflubenzuron urea. Pretilachlor, metolachlor, bupirimate, and oxadiazon had an affinity for hPXR equal to or greater than the positive control rifampicin. Some of the newly identified hPXR activators were also checked for their ability to induce cytochrome P450 3A4 expression in a primary culture of human hepatocytes. HGPXR, with HG5LN as a reference, was grafted onto nude mice to assess compound bioavailability through in vivo quantification of hPXR activation. Altogether, our data indicate that HGPXR cells are an efficient tool for identifying hPXR ligands and establishing pesticides as hPXR activators.

  13. Ligand autoradiographical quantification of histamine H3 receptor in human dementia with Lewy bodies.

    Science.gov (United States)

    Lethbridge, Natasha L; Chazot, Paul L

    2016-11-01

    Dementia with Lewy bodies (DLB) is a serious age-dependent human neurodegenerative disease, with multiple debilitating symptoms, including dementia, psychosis and significant motor deficits, but with little or no effective treatments. This comparative ligand autoradiographical study has quantified histamine H3 receptors (H3R) in a series of major cortical and basal ganglia structures in human DLB and Alzheimer's (AD) post-mortem cases using the highly selective radioligand, [(3)H] GSK189254. In the main, the levels of H3 receptor were largely preserved in DLB cases when compared with aged-matched controls. However, we provide new evidence showing variable levels in the globus pallidus, and, moreover, raised levels of Pallidum H3 correlated with positive psychotic symptoms, in particular delusions and visual hallucinations, but not symptoms associated with depression. Furthermore, no correlation was detected for H3 receptor levels to MMSE or IUPRS symptom severity. This study suggests that H3R antagonists have scope for treating the psychotic symptomologies in DLB and other human brain disorders.

  14. Molecular Characterization of the Interactions between Vascular Selectins and Glycoprotein Ligands on Human Hematopoietic Stem/Progenitor Cells

    KAUST Repository

    Abusamra, Dina

    2016-12-01

    The human bone marrow vasculature constitutively expresses both E-selectin and P-selectin where they interact with the cell-surface glycan moiety, sialyl Lewis x, on circulating hematopoietic stem/progenitor cells (HSPCs) to mediate the essential tethering/rolling step. Although several E-selectin glycoprotein ligands (E-selLs) have been identified, the importance of each E-selL on human HSPCs is debatable and requires additional methodologies to advance their specific involvement. The first objective was to fill the knowledge gap in the in vitro characterization of the mechanisms used by selectins to mediate the initial step in the HSPCs homing by developing a real time immunoprecipitation-based assay on a surface plasmon resonance chip. This novel assay bypass the difficulties of purifying ligands, enables the use of natively glycosylated forms of selectin ligands from any model cell of interest and study its binding affinities under flow. We provide the first comprehensive quantitative binding kinetics of two well-documented ligands, CD44 and PSGL-1, with E-selectin. Both ligands bind monomeric E-selectin transiently with fast on- and off-rates while they bind dimeric E-selectin with remarkably slow on- and off-rates with the on-rate, but not the off-rate, is dependent on salt concentration. Thus, suggest a mechanism through which monomeric selectins mediate initial fast-on and -off binding to capture the circulating cells out of shear-flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to slow rolling significantly. The second objective is to fully identify and characterize E/P-selectin ligand candidates expressed on CD34+ HSPCs which cause enhanced migration after intravenous transplantation compared to their CD34- counterparts. CD34 is widely recognized marker of human HSPCs but its natural ligand and function on these cells remain elusive. Proteomics identified CD34 as an E-selL candidate on human HSPCs, whose binding to E

  15. Ligand specificity and conformational stability of human fatty acid-binding proteins.

    Science.gov (United States)

    Zimmerman, A W; van Moerkerk, H T; Veerkamp, J H

    2001-09-01

    Fatty acid binding proteins (FABPs) are small cytosolic proteins with virtually identical backbone structures that facilitate the solubility and intracellular transport of fatty acids. At least eight different types of FABP occur, each with a specific tissue distribution and possibly with a distinct function. To define the functional characteristics of all eight human FABPs, viz. heart (H), brain (B), myelin (M), adipocyte (A), epidermal (E), intestinal (I), liver (L) and ileal lipid-binding protein (I-LBP), we studied their ligand specificity, their conformational stability and their immunological crossreactivity. Additionally, binding of bile acids to I-LBP was studied. The FABP types showed differences in fatty acid binding affinity. Generally, the affinity for palmitic acid was lower than for oleic and arachidonic acid. All FABP types, except E-FABP, I-FABP and I-LBP interacted with 1-anilinonaphtalene-8-sulphonic acid (ANS). Only L-FABP, I-FABP and M-FABP showed binding of 11-((5-dimethylaminonaphtalene-1-sulfonyl)amino)undecanoic acid (DAUDA). I-LBP showed increasing binding of bile acids in the order taurine-conjugated>glycine-conjugated>unconjugated bile acids. A hydroxylgroup of bile acids at position 7 decreased and at position 12 increased the binding affinity to I-LBP. The fatty acid-binding affinity and the conformation of FABP types were differentially affected in the presence of urea. Our results demonstrate significant differences in ligand binding, conformational stability and surface properties between different FABP types which may point to a specific function in certain cells and tissues. The preference of I-LBP (but not L-FABP) for conjugated bile acids is in accordance with a specific role in bile acid reabsorption in the ileum.

  16. Chemokine Ligand 20: A Signal for Leukocyte Recruitment During Human Ovulation?

    Science.gov (United States)

    Al-Alem, Linah; Puttabyatappa, Muraly; Rosewell, Kathy; Brännström, Mats; Akin, James; Boldt, Jeffrey; Muse, Ken; Curry, Thomas E

    2015-09-01

    Ovulation is one of the cornerstones of female fertility. Disruption of the ovulatory process results in infertility, which affects approximately 10% of couples. Using a unique model in which the dominant follicle is collected across the periovulatory period in women, we have identified a leukocyte chemoattractant, chemokine ligand 20 (CCL20), in the human ovary. CCL20 mRNA is massively induced after an in vivo human chorionic gonadotropin (hCG) stimulus in granulosa (>10 000-fold) and theca (>4000-fold) cells collected during the early ovulatory (12-18 h) and late ovulatory (18-34 h) periods after hCG administration. Because the LH surge sets in motion an inflammatory reaction characterized by an influx of leukocytes and CCL20 is known to recruit leukocytes in other systems, the composition of ovarian leukocytes (CD45+) containing the CCL20 receptor CCR6 was determined immediately prior to ovulation. CD45+/CCR6+ cells were primarily natural killer cells (41%) along with B cells (12%), T cells (11%), neutrophils (10%), and monocytes (9%). Importantly, exogenous CCL20 stimulated ovarian leukocyte migration 59% within 90 minutes. Due to the difficulties in obtaining human follicles, an in vitro model was developed using granulosa-lutein cells to explore CCL20 regulation. CCL20 expression increased 40-fold within 6 hours after hCG, was regulated partially by the epithelial growth factor pathway, and was positively correlated with progesterone production. These results demonstrate that hCG dramatically increases CCL20 expression in the human ovary, that ovarian leukocytes contain the CCL20 receptor, and that CCL20 stimulates leukocyte migration. Our findings raise the prospect that CCL20 may aid in the final ovulatory events and contribute to fertility in women.

  17. Hormonal regulation of c-KIT receptor and its ligand: implications for human infertility?

    Science.gov (United States)

    Figueira, Marília I; Cardoso, Henrique J; Correia, Sara; Maia, Cláudio J; Socorro, Sílvia

    2014-09-01

    The c-KIT, a tyrosine kinase receptor, and its ligand the stem cell factor (SCF) play an important role in the production of male and female gametes. The interaction of SCF with c-KIT is required for germ cell survival and growth, and abnormalities in the activity of the SCF/c-KIT system have been associated with human infertility. Recently, it was demonstrated that gonadotropic and sex steroid hormones, among others, regulate the expression of SCF and c-KIT in testicular and ovarian cells. Therefore, the hormonal (de)regulation of SCF/c-KIT system in the testis and ovary may be a cause underpinning infertility. In the present review, we will discuss the effects of hormones modulating the expression levels of SCF and c-KIT in the human gonads. In addition, the implications of hormonal regulation of SCF/c-KIT system for germ cell development and fertility will be highlighted. Copyright © 2014. Published by Elsevier GmbH.

  18. The aryl hydrocarbon receptor ligand ITE inhibits TGFβ1-induced human myofibroblast differentiation.

    Science.gov (United States)

    Lehmann, Geniece M; Xi, Xia; Kulkarni, Ajit A; Olsen, Keith C; Pollock, Stephen J; Baglole, Carolyn J; Gupta, Shikha; Casey, Ann E; Huxlin, Krystel R; Sime, Patricia J; Feldon, Steven E; Phipps, Richard P

    2011-04-01

    Fibrosis can occur in any human tissue when the normal wound healing response is amplified. Such amplification results in fibroblast proliferation, myofibroblast differentiation, and excessive extracellular matrix deposition. Occurrence of these sequelae in organs such as the eye or lung can result in severe consequences to health. Unfortunately, medical treatment of fibrosis is limited by a lack of safe and effective therapies. These therapies may be developed by identifying agents that inhibit critical steps in fibrotic progression; one such step is myofibroblast differentiation triggered by transforming growth factor-β1 (TGFβ1). In this study, we demonstrate that TGFβ1-induced myofibroblast differentiation is blocked in human fibroblasts by a candidate endogenous aryl hydrocarbon receptor (AhR) ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Our data show that ITE disrupts TGFβ1 signaling by inhibiting the nuclear translocation of Smad2/3/4. Although ITE functions as an AhR agonist, and biologically persistent AhR agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, cause severe toxic effects, ITE exhibits no toxicity. Interestingly, ITE effectively inhibits TGFβ1-driven myofibroblast differentiation in AhR(-/-) fibroblasts: Its ability to inhibit TGFβ1 signaling is AhR independent. As supported by the results of this study, the small molecule ITE inhibits myofibroblast differentiation and may be useful clinically as an antiscarring agent.

  19. Expression of human TNF-related apoptosis-inducing ligand extracellular region in E.coli

    Institute of Scientific and Technical Information of China (English)

    唐蓓; HE; Fengtian; 等

    2002-01-01

    This study is conducted to clone the cDNA encoding human TNF-related apoptosis-inducing ligand(hTRAIL)extracellular region(amino acids 41-281,hTRAIL41-281)and to express it in E.coli.The hTRAIL41-281 cDNA is amplified by reverse transcription(RT)PCR from total RNA derived from human acute promyelocytic leukemia cell line HL-60.After sequenced,the cDNA is cloned into the vector pQE-80L and transformed into E.coli DH5α to express the recombinant hTRAIL41-281(rhTRAIL41-281)induced by IPTG.The recombinant protein is analyzed by SDS-PAGE.The cloned cDNA is consistent with the cDNA sequence encoding hTRAIL41-281 reported in GenBankTM.After inducing.the hTRAIL41-281 protein is expressed,and the mass of the recombinant protein is about 30% of total bacteria protein,which demonstrates that the cDNA encoding hTRAIL41-281 is successfully cloned and expressed in E.coli.

  20. Ligand dependent restoration of human TLR3 signaling and death in p53 mutant cells.

    Science.gov (United States)

    Menendez, Daniel; Lowe, Julie M; Snipe, Joyce; Resnick, Michael A

    2016-09-20

    Diversity within the p53 transcriptional network can arise from a matrix of changes that include target response element sequences and p53 expression level variations. We previously found that wild type p53 (WT p53) can regulate expression of most innate immune-related Toll-like-receptor genes (TLRs) in human cells, thereby affecting immune responses. Since many tumor-associated p53 mutants exhibit change-of-spectrum transactivation from various p53 targets, we examined the ability of twenty-five p53 mutants to activate endogenous expression of the TLR gene family in p53 null human cancer cell lines following transfection with p53 mutant expression vectors. While many mutants retained the ability to drive TLR expression at WT levels, others exhibited null, limited, or change-of-spectrum transactivation of TLR genes. Using TLR3 signaling as a model, we show that some cancer-associated p53 mutants amplify cytokine, chemokine and apoptotic responses after stimulation by the cognate ligand poly(I:C). Furthermore, restoration of WT p53 activity for loss-of-function p53 mutants by the p53 reactivating drug RITA restored p53 regulation of TLR3 gene expression and enhanced DNA damage-induced apoptosis via TLR3 signaling. Overall, our findings have many implications for understanding the impact of WT and mutant p53 in immunological responses and cancer therapy.

  1. An Analysis of Trafficking Receptors Shows that CD44 and P-Selectin Glycoprotein Ligand-1 Collectively Control the Migration of Activated Human T-Cells

    KAUST Repository

    Ali, Amal J.

    2017-05-03

    Selectins guide the traffic of activated T-cells through the blood stream by mediating their tethering and rolling onto inflamed endothelium, in this way acting as beacons to help navigate them to sites of inflammation. Here, we present a comprehensive analysis of E-selectin ligands expressed on activated human T-cells. We identified several novel glycoproteins that function as E-selectin ligands. Specifically, we compared the role of P-selectin glycoprotein ligand-1 (PSGL-1) and CD43, known E-selectin ligands, to CD44, a ligand that has not previously been characterized as an E-selectin ligand on activated human T-cells. We showed that CD44 acts as a functional E-selectin ligand when expressed on both CD4+ and CD8+ T-cells. Moreover, the CD44 protein carries a binding epitope identifying it as hematopoietic cell E- and/or L-selectin ligand (HCELL). Furthermore, by knocking down these ligands individually or together in primary activated human T-cells, we demonstrated that CD44/HCELL, and not CD43, cooperates with PSGL-1 as a major E-selectin ligand. Additionally, we demonstrated the relevance of our findings to chronic autoimmune disease, by showing that CD44/HCELL and PSGL-1, but not CD43, from T-cells isolated from psoriasis patients, bind E-selectin.

  2. Quantitation of species differences in albumin–ligand interactions for bovine, human and rat serum albumins using fluorescence spectroscopy: A test case with some Sudlow's site I ligands

    Energy Technology Data Exchange (ETDEWEB)

    Poór, Miklós [Institute of Laboratory Medicine, University of Pécs, Ifjúság u. 13, Pécs H-7624 (Hungary); Li, Yin; Matisz, Gergely [Department of General and Physical Chemistry, University of Pécs, Pécs H-7624 (Hungary); János Szentágothai Research Center, Pécs H-7624 (Hungary); Kiss, László [Department of General and Physical Chemistry, University of Pécs, Pécs H-7624 (Hungary); Kunsági-Máté, Sándor [Department of General and Physical Chemistry, University of Pécs, Pécs H-7624 (Hungary); János Szentágothai Research Center, Pécs H-7624 (Hungary); Kőszegi, Tamás, E-mail: koszegit@freemail.hu [Institute of Laboratory Medicine, University of Pécs, Ifjúság u. 13, Pécs H-7624 (Hungary)

    2014-01-15

    Albumin, the most abundant plasma protein is an approximately 67 kDa sized water-soluble macromolecule. Since several drugs and xenobiotics circulate in the blood at least partially in albumin-bound form, albumin plays a key role in the pharmacokinetics/toxicokinetics of these chemicals. Most of the drugs and xenobiotics are Sudlow's site I ligands. In numerous studies, bovine serum albumin (BSA) is used for modeling albumin–ligand interactions and the results are extrapolated to human serum albumin (HSA). Furthermore, only limited information is available related to albumin–ligand interactions of different albumin species. Therefore, in our study, we have focused on the quantification of differences between bovine, human and rat serum albumin (RSA) using four Sudlow's site I ligands (luteolin, ochratoxin A, phenylbutazone and warfarin). Interactions were analyzed by fluorescence spectroscopy. Stability constants as well as competing capacities of the ligands were determined, and thermodynamic study was also performed. Our results highlight that there could be major differences between BSA, HSA and RSA in their ligand binding properties. Based on our observations we emphasize that in molecular aspects BSA behaves considerably differently from HSA or from albumins of other species therefore, it is strongly recommended to apply at least some confirmatory measurements when data obtained from other species are attempted to be extrapolated to HSA. -- Highlights: • Albumin–ligand interactions of human, bovine and rat albumins were studied. • Four Sudlow's site I ligands were tested by fluorescence spectroscopy. • Substantial differences were found in stability constants among albumin complexes. • Competing capacity of ligands showed major differences in the studied species. • Data obtained for BSA cannot be directly extrapolated to human albumin.

  3. Bioisosteric phentolamine analogs as selective human alpha(2)- versus alpha(1)-adrenoceptor ligands.

    Science.gov (United States)

    Bavadekar, Supriya A; Hong, Seoung-Soo; Lee, Sang-Ii; Miller, Duane D; Feller, Dennis R

    2008-08-20

    Phentolamine is known to act as a competitive, non-subtype-selective alpha-adrenoceptor antagonist. In an attempt to improve alpha(2)- versus alpha(1)-adrenoceptor selectivity and alpha(2)-adrenoceptor subtype-selectivity, two new chemical series of bioisosteric phentolamine analogs were prepared and evaluated. These compounds were evaluated for binding affinities on alpha(1)- (alpha(1A)-, alpha(1B)-, alpha(1D)-) and alpha(2)- (alpha(2A)-, alpha(2B)-, alpha(2C)-) adrenoceptor subtypes that had been stably expressed in human embryonic kidney and Chinese hamster ovary cell lines, respectively. Methylation of the phenolic hydroxy group and replacement of the 4-methyl group of phentolamine with varying lipophilic substituents yielded bioisosteric analogs selective for the alpha(2)- versus alpha(1)-adrenoceptors. Within the alpha(2)-adrenoceptors, these analogs bound with higher affinity at the alpha(2A)- and alpha(2C)-subtypes as compared to the alpha(2B)-subtype. In particular, the t-butyl analog was found to be the most selective, its binding at the alpha(2C)-adrenoceptor (Ki=3.6 nM) being 37- to 173-fold higher than that at the alpha(1)-adrenoceptors, and around 2- and 19-fold higher than at the alpha(2A)- and alpha(2B)-adrenoceptors, respectively. Data from luciferase reporter gene assays confirmed the functional antagonist activities of selected compounds from the bioisosteric series on human alpha(1A)- and alpha(2C)-adrenoceptors. Thus, the results with these bioisosteric analogs of phentolamine provide a lead to the rational design of potent and selective alpha(2)-adrenoceptor ligands that may be useful in improving the therapeutic profile of this drug class for human disorders.

  4. Combined low doses of PPARgamma and RXR ligands trigger an intrinsic apoptotic pathway in human breast cancer cells.

    Science.gov (United States)

    Bonofiglio, Daniela; Cione, Erika; Qi, Hongyan; Pingitore, Attilio; Perri, Mariarita; Catalano, Stefania; Vizza, Donatella; Panno, Maria Luisa; Genchi, Giuseppe; Fuqua, Suzanne A W; Andò, Sebastiano

    2009-09-01

    Ligand activation of peroxisome proliferator-activated receptor (PPAR)gamma and retinoid X receptor (RXR) induces antitumor effects in cancer. We evaluated the ability of combined treatment with nanomolar levels of the PPARgamma ligand rosiglitazone (BRL) and the RXR ligand 9-cis-retinoic acid (9RA) to promote antiproliferative effects in breast cancer cells. BRL and 9RA in combination strongly inhibit of cell viability in MCF-7, MCF-7TR1, SKBR-3, and T-47D breast cancer cells, whereas MCF-10 normal breast epithelial cells are unaffected. In MCF-7 cells, combined treatment with BRL and 9RA up-regulated mRNA and protein levels of both the tumor suppressor p53 and its effector p21(WAF1/Cip1). Functional experiments indicate that the nuclear factor-kappaB site in the p53 promoter is required for the transcriptional response to BRL plus 9RA. We observed that the intrinsic apoptotic pathway in MCF-7 cells displays an ordinated sequence of events, including disruption of mitochondrial membrane potential, release of cytochrome c, strong caspase 9 activation, and, finally, DNA fragmentation. An expression vector for p53 antisense abrogated the biological effect of both ligands, which implicates involvement of p53 in PPARgamma/RXR-dependent activity in all of the human breast malignant cell lines tested. Taken together, our results suggest that multidrug regimens including a combination of PPARgamma and RXR ligands may provide a therapeutic advantage in breast cancer treatment.

  5. Suppression of prostaglandin E2 receptor subtype EP2 by PPARgamma ligands inhibits human lung carcinoma cell growth.

    Science.gov (United States)

    Han, ShouWei; Roman, Jesse

    2004-02-20

    Prostaglandin E(2) (PGE(2)), a major cyclooxygenase (COX-2) metabolite, plays important roles in tumor biology and its functions are mediated through one or more of its receptors EP1, EP2, EP3, and EP4. We have shown that the matrix glycoprotein fibronectin stimulates lung carcinoma cell proliferation via induction of COX-2 expression with subsequent PGE(2) protein biosynthesis. Ligands of peroxisome proliferator-activated receptor gamma (PPARgamma) inhibited this effect and induced cellular apoptosis. Here, we explore the role of the PGE(2) receptor EP2 in this process and whether the inhibition observed with PPARgamma ligands is related to effects on this receptor. We found that human non-small cell lung carcinoma cell lines (H1838 and H2106) express EP2 receptors, and that the inhibition of cell growth by PPARgamma ligands (GW1929, PGJ2, ciglitazone, troglitazone, and rosiglitazone [also known as BRL49653]) was associated with a significant decrease in EP2 mRNA and protein levels. The inhibitory effects of BRL49653 and ciglitazone, but not PGJ2, were reversed by a specific PPARgamma antagonist GW9662, suggesting the involvement of PPARgamma-dependent and -independent mechanisms. PPARgamma ligand treatment was associated with phosphorylation of extracellular regulated kinase (Erk), and inhibition of EP2 receptor expression by PPARgamma ligands was prevented by PD98095, an inhibitor of the MEK-1/Erk pathway. Butaprost, an EP2 agonist, like exogenous PGE(2) (dmPGE(2)), increased lung carcinoma cell growth, however, GW1929 and troglitazone blocked their effects. Our studies reveal a novel role for EP2 in mediating the proliferative effects of PGE(2) on lung carcinoma cells. PPARgamma ligands inhibit human lung carcinoma cell growth by decreasing the expression of EP2 receptors through Erk signaling and PPARgamma-dependent and -independent pathways.

  6. Peroxisome proliferator-activated receptor γ ligands induce cell cycle arrest and apoptosis in human renal carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Feng-guang YANG; Zhi-wen ZHANG; Dian-qi XIN; Chang-jin SHI; Jie-ping WU; Ying-lu GUO; You-fei GUAN

    2005-01-01

    Aim: To study the effect of peroxisome proliferator-actived receptor γ (PPARγ)ligands on cell proliferation and apoptosis in human renal carcinoma cell lines.Methods: The expression of PPARγ was investigated by reverse transcriptase polymerase chain reaction (RT-PCR), Western blot and immunohistochemistry.The effect of thiazolidinedione (TZD) PPARγ ligands on growth of renal cell carcinoma (RCC) cells was measured by MTT assay and flow cytometric analysis. Cell death ELISA, Hoechst 33342 fluorescent staining and DNA ladder assay were used to observe the effects of PPARγ ligands on apoptosis. Regulatory proteins of cell cycle and apoptosis were detected by Western blot analysis. Results:PPARγ was expressed at much higher levels in renal tumors than in the normal kidney (2.16±0.85 vs 0.90±0.73; P<0.01 ). TZD PPARγ ligands inhibited RCC cell growth in a dose-dependent manner with IC50 values of 7.08 μmol/L and 11.32 μmol/L for pioglitazone, and 5.71 μmol/L and 8.38 μmol/L for troglitazone in 786-O and A498 cells, respectively. Cell cycle analysis showed a G0/G1 arrest in human RCC cells following 24-h exposure to TZD. Analysis of cell cycle regulatory proteins revealed that TZD decreased the protein levels of proliferating cell nuclear antigen, pRb, cyclin D1, and Cdk4 but increased the levels of p21 and p27 in a timedependent manner. Furthermore, high doses of TZD induced massive apoptosis in renal cancer cells, with increased Bax expression and decreased Bcl-2 expression.Conclusion: TZD PPARγ ligands showed potent inhibitory effect on proliferation,and could induce apoptosis in RCC cells. These results suggest that ligands for PPARγ have potential antitumor effects on renal carcinoma cells.

  7. Chemokine (C-C motif ligand 2 mediates direct and indirect fibrotic responses in human and murine cultured fibrocytes

    Directory of Open Access Journals (Sweden)

    Ekert Jason E

    2011-10-01

    Full Text Available Abstract Background Fibrocytes are a population of circulating bone-marrow-derived cells that express surface markers for leukocytes and mesenchymal cells, and are capable of differentiating into myofibroblasts. They have been observed at sites of active fibrosis and increased circulating numbers correlate with mortality in idiopathic pulmonary fibrosis (IPF. Inhibition of chemokine (C-C motif receptor 2 (CCR2 during experimental models of lung fibrosis reduces lung collagen deposition, as well as reducing lung fibrocyte accumulation. The aim of the present study was to determine whether human and mouse fibrocytes express functional CCR2. Results Following optimized and identical human and murine fibrocyte isolation, both cell sources were shown to be positive for CCR2 by flow cytometry and this expression colocalized with collagen I and CD45. Human blood fibrocytes stimulated with the CCR2 ligand chemokine (C-C motif ligand 2 (CCL2, demonstrated increased proliferation (P P P Conclusions This study directly compares the functional responses of human and murine fibrocytes to CCR2 ligands, and following comparable isolation techniques. We have shown comparable biological effects, strengthening the translatability of the murine models to human disease with respect to targeting the CCR2 axis to ameliorate disease in IPF patients.

  8. TLR2 ligands induce NF-κB activation from endosomal compartments of human monocytes.

    Directory of Open Access Journals (Sweden)

    Karim J Brandt

    Full Text Available Localization of Toll-like receptors (TLR in subcellular organelles is a major strategy to regulate innate immune responses. While TLR4, a cell-surface receptor, signals from both the plasma membrane and endosomal compartments, less is known about the functional role of endosomal trafficking upon TLR2 signaling. Here we show that the bacterial TLR2 ligands Pam3CSK4 and LTA activate NF-κB-dependent signaling from endosomal compartments in human monocytes and in a NF-κB sensitive reporter cell line, despite the expression of TLR2 at the cell surface. Further analyses indicate that TLR2-induced NF-κB activation is controlled by a clathrin/dynamin-dependent endocytosis mechanism, in which CD14 serves as an important upstream regulator. These findings establish that internalization of cell-surface TLR2 into endosomal compartments is required for NF-κB activation. These observations further demonstrate the need of endocytosis in the activation and regulation of TLR2-dependent signaling pathways.

  9. Human serum albumin binding to silica nanoparticles--effect of protein fatty acid ligand.

    Science.gov (United States)

    Ang, Joo Chuan; Henderson, Mark J; Campbell, Richard A; Lin, Jhih-Min; Yaron, Peter N; Nelson, Andrew; Faunce, Thomas; White, John W

    2014-06-07

    Neutron reflectivity shows that fatted (F-HSA) and defatted (DF-HSA) versions of human serum albumin behave differently in their interaction with silica nanoparticles premixed in buffer solutions although these proteins have close to the same surface excess when the silica is absent. In both cases a silica containing film is quickly established at the air-water interface. This film is stable for F-HSA at all relative protein-silica concentrations measured. This behaviour has been verified for two small silica nanoparticle radii (42 Å and 48 Å). Contrast variation and co-refinement have been used to find the film composition for the F-HSA-silica system. The film structure changes with protein concentration only for the DF-HSA-silica system. The different behaviour of the two proteins is interpreted as a combination of three factors: increased structural stability of F-HSA induced by the fatty acid ligand, differences in the electrostatic interactions, and the higher propensity of defatted albumin to self-aggregate. The interfacial structures of the proteins alone in buffer are also reported and discussed.

  10. High-throughput screening assay for new ligands at human melatonin receptors

    Institute of Scientific and Technical Information of China (English)

    Jian-hua YAN; Hao-ran SU; Jean A BOUTIN; M Pierre RENARD; Ming-wei WANG

    2008-01-01

    Aim: Melatonin (MT) is a neurohormone produced and secreted primarily by the pineal gland in a circadian manner, and mainly acta through 2 receptor subtypes: MT1 and MT2 in humans. The diversity in their tissue distribution is in favor of different functions for each receptor subtype. Selective modulators are therefore required to determine the physiological roles of these melatonin receptor sub-types and their implications in pathological processes. Methods: A homogenous MT1/MT2 receptor binding assay was established for high-throughput screening of new ligands at the hMT1 and/or hMT2 receptors. The functional properties (agonists or antagonists) were assessed by a conventional guanosine-5'[γ-35S] triphosphate (GTP-γS) assay. Results: Three hMT, receptor-selective small mol-ecule antagonists and 1 hMT2 receptor-selective small molecule antagonist with novel structural features were identified following a high-throughput screening campaign of 48 240 synthetic and natural compounds. Conclusion: The findings may assist in the expansion of chemical probes to these 2 receptor subtypes.

  11. Desensitization oft lymphocyte function by CXCR3 ligands in human hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yu-Qing Liu; Ronnie T. Poon; Jeremy Hughes; Qin-Yu Li; Wan-Ching Yu; Sheung-Tat Fan

    2005-01-01

    AIM: Despite the presence of lymphocyte infiltration, human hepatocellular carcinoma (HCC) is typically a rapidly progressive disease. The mechanism of regulation of lymphocyte migration is poorly understood. In this study,we investigated various factors regulating T cell migration in HCC patients. We examined serum CXC chemokine levels in HCC patients and demonstrated the production of CXC chemokines by HCC cell lines. We determined the effect of both HCC patient serum and tumor cell conditioned supernatant upon lymphocyte expression of chemokine receptor CXCR3 as well as lymphocyte migration. Lastly,we examined the chemotactic responses of lymphocytes derived from HCC patients.METHODS: The serum chemokines IP-10 (CXCL10) and Mig (CXCL9) levels were measured by cytometric bead array (CBA) and the tumor tissue IP-10 concentration was measured by ELISA. The surface expression of CXCR3 on lymphocytes was determined by flow cytometry. The migratory function of lymphocytes to the corresponding chemokines was assessed using an in vitro chemotactic assay. Phosphorylation of extracellular signal-regulated kinase (ERK) was determined by Western blot analysis.RESULTS: Increased levels of IP-10 and Mig were detected in HCC patient serum and culture supernatants of HCC cell lines. The IP-10 concentration in the tumor was significantly higher than that in the non-involved adjacent liver tissues.HCC cell lines secreted functional chemokines that induced a CXCR3-specific chemotactic response of lymphocytes.Furthermore, tumor-cell-derived chemokines induced initial rapid phosphorylation of lymphocyte ERK followed by later inhibition of ERK phosphorylation. The culture of normal lymphocytes with HCC cell line supernatants or medium containing serum from HCC patients resulted in a significant reduction in the proportion of lymphocytes exhibiting surface expression of CXCR3. The reduction in T cell expression of CXCR3 resulted in reduced migration toward the ligand IP-10, and both

  12. Characterization of human platelet binding of recombinant T cell receptor ligand

    Directory of Open Access Journals (Sweden)

    Meza-Romero Roberto

    2010-11-01

    Full Text Available Abstract Background Recombinant T cell receptor ligands (RTLs are bio-engineered molecules that may serve as novel therapeutic agents for the treatment of neuroinflammatory conditions such as multiple sclerosis (MS. RTLs contain membrane distal α1 plus β1 domains of class II major histocompatibility complex linked covalently to specific peptides that can be used to regulate T cell responses and inhibit experimental autoimmune encephalomyelitis (EAE. The mechanisms by which RTLs impede local recruitment and retention of inflammatory cells in the CNS, however, are not completely understood. Methods We have recently shown that RTLs bind strongly to B cells, macrophages, and dendritic cells, but not to T cells, in an antigenic-independent manner, raising the question whether peripheral blood cells express a distinct RTL-receptor. Our study was designed to characterize the molecular mechanisms by which RTLs bind human blood platelets, and the ability of RTL to modulate platelet function. Results Our data demonstrate that human blood platelets support binding of RTL. Immobilized RTL initiated platelet intracellular calcium mobilization and lamellipodia formation through a pathway dependent upon Src and PI3 kinases signaling. The presence of RTL in solution reduced platelet aggregation by collagen, while treatment of whole blood with RTL prolonged occlusive thrombus formation on collagen. Conclusions Platelets, well-known regulators of hemostasis and thrombosis, have been implicated in playing a major role in inflammation and immunity. This study provides the first evidence that blood platelets express a functional RTL-receptor with a putative role in modulating pathways of neuroinflammation.

  13. Initial evaluation of 11C-DPA-713, a novel TSPO PET ligand, in humans.

    Science.gov (United States)

    Endres, Christopher J; Pomper, Martin G; James, Michelle; Uzuner, Ovsev; Hammoud, Dima A; Watkins, Crystal C; Reynolds, Aaron; Hilton, John; Dannals, Robert F; Kassiou, Michael

    2009-08-01

    Translocator protein (TSPO) is upregulated in activated microglia and thus can serve as a marker of neuroinflammation. Recently, a novel radioligand, (11)C-N,N-diethyl-2-[2-(4-methoxyphenyl)-5,7-dimethyl-pyrazolo[1,5-a]pyrimidin-3-yl]-acetamide ((11)C-DPA-713), has been described that binds to TSPO with high affinity. Here, we report the first examination of (11)C-DPA-713 in human subjects using PET. Five healthy controls were studied with PET for 90 min after a bolus injection of high-specific-activity (11)C-DPA-713. For comparison, 2 additional healthy controls were studied with (11)C-R-PK11195. Arterial blood sampling and metabolite analysis were performed to allow the accurate quantification of tracer kinetics. Tracer uptake was evaluated for several brain regions. Tissue time-activity curves were fitted using 1- and 2-tissue-compartment models, with goodness-of-fit tests showing a preference for the 2-tissue model. In the healthy brain, the average plasma-to-tissue clearance and the total volume of distribution were an order of magnitude larger than measured for (11)C-R-PK11195. Accordingly, dose-normalized time-activity curves showed that (11)C-DPA-713 gives a larger brain signal. Studies in patient populations will help determine whether (11)C-DPA-713 provides better sensitivity for evaluating increased TSPO expression. This initial study in humans shows that (11)C-DPA-713 is a promising ligand for evaluating TSPO binding with PET.

  14. Reevaluation of ANS binding to human and bovine serum albumins: key role of equilibrium microdialysis in ligand - receptor binding characterization.

    Directory of Open Access Journals (Sweden)

    Irina M Kuznetsova

    Full Text Available In this work we return to the problem of the determination of ligand-receptor binding stoichiometry and binding constants. In many cases the ligand is a fluorescent dye which has low fluorescence quantum yield in free state but forms highly fluorescent complex with target receptor. That is why many researchers use dye fluorescence for determination of its binding parameters with receptor, but they leave out of account that fluorescence intensity is proportional to the part of the light absorbed by the solution rather than to the concentration of bound dye. We showed how ligand-receptor binding parameters can be determined by spectrophotometry of the solutions prepared by equilibrium microdialysis. We determined the binding parameters of ANS - human serum albumin (HSA and ANS - bovine serum albumin (BSA interaction, absorption spectra, concentration and molar extinction coefficient, as well as fluorescence quantum yield of the bound dye. It was found that HSA and BSA have two binding modes with significantly different affinity to ANS. Correct determination of the binding parameters of ligand-receptor interaction is important for fundamental investigations and practical aspects of molecule medicine and pharmaceutics. The data obtained for albumins are important in connection with their role as drugs transporters.

  15. Usefulness of molecular modeling in characterizing the ligand-binding sites of proteins: experience with human PDI, PDIp and COX.

    Science.gov (United States)

    Wang, Pan; Zhu, Bao-Ting

    2013-01-01

    In this paper, we discussed our recent experience with the use of computational modeling tools in studying the binding interaction of small molecular weight ligands with their protein targets. Specific examples discussed here include the interaction of estrogens with human protein disulfide isomerase (PDI) and its pancreas-specific homolog (PDIp), and the interaction of dietary flavonoids with human cyclooxygenase (COX) I and II. Using human PDIp as an example, biochemical analysis revealed that the estrogen-binding activity is only associated with PDIp's b-b´ domain combination but not associated with the single b or b´ domain or any other domains. Homology modeling was then used to build a threedimensional structure of the human PDIp's b-b´ fragment. Docking analyses predicted that a hydrogen bond, formed between the 3-hydroxyl group of estradiol and His278 of PDIp's E2-binding site, is critical for the binding interaction. This binding model was then experimentally confirmed by a series of experiments, such as selective mutations of the predicted binding site amino acid residues and the selective modifications of the functional groups of the ligands. Similar combinatorial approaches were used successfully to identify the binding site structure of human PDI for estradiol and the binding site structures of human COX I and II for their phenolic co-substrates. The success with these combinatorial approaches provides the basis for using computational modeling-guided approaches in characterizing the ligand binding site structures of complex proteins whose structures are difficult to decipher with crystallographic studies.

  16. Surface Plasmon Resonance Studies of the Specific Interactions of Hexamer Peptide Ligands with Human Immunoglobulin G

    Science.gov (United States)

    Islam, Nafisa

    This study characterizes the human immunoglobulin G (IgG) binding on peptides grafted onto self-assembled monolayers (SAMs) and the binding events are studied primarily using surface plasmon resonance (SPR) technology. The dissertation also seeks to determine the optimum surface preparation and surface chemistry approaches for grafting the peptide so that the sensor surfaces demonstrate enhanced selectivity and sensitivity in both laboratory and industrial settings. Peptide covalent grafting was performed on pure and mixed SAMs, the surfaces were characterized and the peptide densities were quantified. Theoretical models were developed and implemented to describe the binding mechanism of IgG with grafted ligands. Protein A was grafted onto SPR sensors and subsequent IgG binding characteristics were compared side-by-side to those of peptide-IgG binding. It was found that Protein A-based sensors showed much higher selectivities and higher binding capacities than their peptides based counterparts. Oligo(ethylene glycol) alkanethiol-based pure and mixed SAMs were grafted with peptides in order to determine the optimal surface among these, for enhanced selectivity. Among the mixed SAMs formed from different precursor solutions, a surface with peptides grafted onto mixed SAMs formulated from 10% amine-terminated/90% hydroxyl-terminated alkanethiols showed optimum selectivity. Studies were carried out to increase the peptide density via grafting of branched amines onto surfaces. The branched amine-based peptide surfaces displayed improved sensitivities and similar selectivities to the surfaces based on un-branched amine termini. Kinetic analyses were carried out to determine the characteristics of IgG binding to ligands grafted in the abovementioned methods. Kinetic analysis of binding indicated that Protein A-IgG interactions have concentrationdependent affinity properties that could be attributed to the allosteric effects of the interaction. The lack of tertiary

  17. Human NKG2D-ligands: cell biology strategies to ensure immune recognition

    Directory of Open Access Journals (Sweden)

    Lola eFernández-Messina

    2012-09-01

    Full Text Available Immune recognition mediated by the activating receptor NKG2D plays an important role for the elimination of stressed cells, including tumours and virus-infected cells. On the other hand, the ligands for NKG2D can also be shed into the sera of cancer patients where they weaken the immune response by downmodulating the receptor on effector cells, mainly NK and T cells. Although both families of NKG2D-ligands, MICA/B and ULBPs, are related to MHC molecules and their expression is increased after stress, many differences are observed in terms of their biochemical properties and cell trafficking. In this paper, we summarise the variety of NKG2D-ligands and propose that selection pressure has driven evolution of diversity in their trafficking and shedding, but not receptor binding affinity. However, it is also possible to identify functional properties common to individual ULBP molecules and MICA/B alleles, but not generally conserved within the MIC or ULBP families. These characteristics likely represent examples of convergent evolution for efficient immune recognition, but are also attractive targets for pathogen immune evasion strategies. Categorization of NKG2D-ligands according to their biological features, rather than their genetic family, may help to achieve a better understanding of NKG2D-ligand association with disease.

  18. Coupling of disulfide bond and distal histidine dissociation in human ferrous cytoglobin regulates ligand binding.

    Science.gov (United States)

    Beckerson, Penny; Reeder, Brandon J; Wilson, Michael T

    2015-02-13

    Earlier kinetics studies on cytoglobin did not assign functional properties to specific structural forms. Here, we used defined monomeric and dimeric forms and cysteine mutants to show that an intramolecular disulfide bond (C38-C83) alters the dissociation rate constant of the intrinsic histidine (H81) (∼1000 fold), thus controlling binding of extrinsic ligands. Through time-resolved spectra we have unequivocally assigned CO binding to hexa- and penta-coordinate forms and have made direct measurement of histidine rebinding following photolysis. We present a model that describes how the cysteine redox state of the monomer controls histidine dissociation rate constants and hence extrinsic ligand binding.

  19. Expression of mammalian GPCRs in C. elegans generates novel behavioural responses to human ligands

    NARCIS (Netherlands)

    M.S. Teng (Michelle); M.P.J. Dekkers (Martijn); B.L. Ng (Bee Ling); S. Rademakers (Suzanne); G. Jansen (Gert); A.G. Fraser (Andrew); J. McCafferty (Gert)

    2006-01-01

    textabstractBackground: G-protein-coupled receptors (GPCRs) play a crucial role in many biological processes and represent a major class of drug targets. However, purification of GPCRs for biochemical study is difficult and current methods of studying receptor-ligand interactions involve in vitro sy

  20. Expression of mammalian GPCRs in C. elegans generates novel behavioural responses to human ligands

    NARCIS (Netherlands)

    M.S. Teng (Michelle); M.P.J. Dekkers (Martijn); B.L. Ng (Bee Ling); S. Rademakers (Suzanne); G. Jansen (Gert); A.G. Fraser (Andrew); J. McCafferty (Gert)

    2006-01-01

    textabstractBackground: G-protein-coupled receptors (GPCRs) play a crucial role in many biological processes and represent a major class of drug targets. However, purification of GPCRs for biochemical study is difficult and current methods of studying receptor-ligand interactions involve in vitro sy

  1. Evidence for clustered mannose as a new ligand for hyaluronan-binding protein (HABP1) from human fibroblasts

    Indian Academy of Sciences (India)

    Rajeev Kumar; Nirupam Roy Choudhury; Dinakar M Salunke; K Datta

    2001-09-01

    We have earlier reported that overexpression of the gene encoding human hyaluronan-binding protein (HABP1) is functionally active, as it binds specifically with hyaluronan (HA). In this communication, we confirm the collapse of the filamentous and branched structure of HA by interaction with increasing concentrations of recombinant-HABP1 (rHABP1). HA is the reported ligand of rHABP1. Here, we show the affinity of rHABP1 towards D-mannosylated albumin (DMA) by overlay assay and purification using a DMA affinity column. Our data suggests that DMA is another ligand for HABP1. Furthermore, we have observed that DMA inhibits the binding of HA in a concentration-dependent manner, suggesting its multiligand affinity amongst carbohydrates. rHABP1 shows differential affinity towards HA and DMA which depends on pH and ionic strength. These data suggest that affinity of rHABP1 towards different ligands is regulated by the microenvironment.

  2. Expression of mammalian GPCRs in C. elegans generates novel behavioural responses to human ligands

    Directory of Open Access Journals (Sweden)

    Jansen Gert

    2006-07-01

    Full Text Available Abstract Background G-protein-coupled receptors (GPCRs play a crucial role in many biological processes and represent a major class of drug targets. However, purification of GPCRs for biochemical study is difficult and current methods of studying receptor-ligand interactions involve in vitro systems. Caenorhabditis elegans is a soil-dwelling, bacteria-feeding nematode that uses GPCRs expressed in chemosensory neurons to detect bacteria and environmental compounds, making this an ideal system for studying in vivo GPCR-ligand interactions. We sought to test this by functionally expressing two medically important mammalian GPCRs, somatostatin receptor 2 (Sstr2 and chemokine receptor 5 (CCR5 in the gustatory neurons of C. elegans. Results Expression of Sstr2 and CCR5 in gustatory neurons allow C. elegans to specifically detect and respond to somatostatin and MIP-1α respectively in a robust avoidance assay. We demonstrate that mammalian heterologous GPCRs can signal via different endogenous Gα subunits in C. elegans, depending on which cells it is expressed in. Furthermore, pre-exposure of GPCR transgenic animals to its ligand leads to receptor desensitisation and behavioural adaptation to subsequent ligand exposure, providing further evidence of integration of the mammalian GPCRs into the C. elegans sensory signalling machinery. In structure-function studies using a panel of somatostatin-14 analogues, we identified key residues involved in the interaction of somatostatin-14 with Sstr2. Conclusion Our results illustrate a remarkable evolutionary plasticity in interactions between mammalian GPCRs and C. elegans signalling machinery, spanning 800 million years of evolution. This in vivo system, which imparts novel avoidance behaviour on C. elegans, thus provides a simple means of studying and screening interaction of GPCRs with extracellular agonists, antagonists and intracellular binding partners.

  3. Structural insights into human peroxisome proliferator activated receptor delta (PPAR-delta selective ligand binding.

    Directory of Open Access Journals (Sweden)

    Fernanda A H Batista

    Full Text Available Peroxisome proliferator activated receptors (PPARs δ, α and γ are closely related transcription factors that exert distinct effects on fatty acid and glucose metabolism, cardiac disease, inflammatory response and other processes. Several groups developed PPAR subtype specific modulators to trigger desirable effects of particular PPARs without harmful side effects associated with activation of other subtypes. Presently, however, many compounds that bind to one of the PPARs cross-react with others and rational strategies to obtain highly selective PPAR modulators are far from clear. GW0742 is a synthetic ligand that binds PPARδ more than 300-fold more tightly than PPARα or PPARγ but the structural basis of PPARδ:GW0742 interactions and reasons for strong selectivity are not clear. Here we report the crystal structure of the PPARδ:GW0742 complex. Comparisons of the PPARδ:GW0742 complex with published structures of PPARs in complex with α and γ selective agonists and pan agonists suggests that two residues (Val312 and Ile328 in the buried hormone binding pocket play special roles in PPARδ selective binding and experimental and computational analysis of effects of mutations in these residues confirms this and suggests that bulky substituents that line the PPARα and γ ligand binding pockets as structural barriers for GW0742 binding. This analysis suggests general strategies for selective PPARδ ligand design.

  4. Analysis of glycoprotein E-selectin ligANDs on human and mouse marrow cells enriched for hematopoietic stem/progenitor cells

    KAUST Repository

    Merzaban, Jasmeen S.

    2011-06-09

    Although well recognized that expression of E-selectin on marrow microvessels mediates osteotropism of hematopoietic stem/progenitor cells (HSPCs), our knowledge regarding the cognate E-selectin ligand(s) on HSPCs is incomplete. Flow cytometry using E-selectin-Ig chimera (E-Ig) shows that human marrow cells enriched for HSPCs (CD34+ cells) display greater E-selectin binding than those obtained from mouse (lin-/Sca-1+/c-kit+ [LSK] cells). To define the relevant glycoprotein E-selectin ligands, lysates from human CD34+ and KG1a cells and from mouse LSK cells were immunoprecipitated using E-Ig and resolved byWestern blot using E-Ig. In both human and mouse cells, E-selectin ligand reactivity was observed at ∼ 120- to 130-kDa region, which contained two E-selectin ligands, the P-selectin glycoprotein ligand- 1 glycoform "CLA," and CD43. Human, but not mouse, cells displayed a prominent ∼ 100-kDa band, exclusively comprising the CD44 glycoform "HCELL."E-Ig reactivity was most prominent on CLA in mouse cells and on HCELL in human cells. To further assess HCELL\\'s contribution to E-selectin adherence, complementary studies were performed to silence (via CD44 siRNA) or enforce its expression (via exoglycosylation). Under physiologic shear conditions, CD44/HCELL-silenced human cells showed striking decreases (> 50%) in E-selectin binding. Conversely, enforced HCELL expression of LSK cells profoundly increased E-selectin adherence, yielding > 3-fold more marrow homing in vivo. These data define the key glycoprotein E-selectin ligands of human and mouse HSPCs, unveiling critical species-intrinsic differences in both the identity and activity of these structures. © 2011 by The American Society of Hematology.

  5. Molecular determinants of ligand selectivity for the human multidrug and toxin extruder proteins MATE1 and MATE2-K.

    Science.gov (United States)

    Astorga, Bethzaida; Ekins, Sean; Morales, Mark; Wright, Stephen H

    2012-06-01

    The present study compared the selectivity of two homologous transport proteins, multidrug and toxin extruders 1 and 2-K (MATE1 and MATE2-K), and developed three-dimensional pharmacophores for inhibitory ligand interaction with human MATE1 (hMATE1). The human orthologs of MATE1 and MATE2-K were stably expressed in Chinese hamster ovary cells, and transport function was determined by measuring uptake of the prototypic organic cation (OC) substrate 1-methyl-4-phenylpyridinium (MPP). Both MATEs had similar apparent affinities for MPP, with K(tapp) values of 4.4 and 3.7 μM for MATE1 and MATE2-K, respectively. Selectivity was assessed for both transporters from IC(50) values for 59 structurally diverse compounds. Whereas the two transporters discriminated markedly between a few of the test compounds, the IC(50) values for MATE1 and MATE2-K were within a factor of 3 for most of them. For hMATE1 there was little or no correlation between IC(50) values and the individual molecular descriptors LogP, total polar surface area, or pK(a). The IC(50) values were used to generate a common-features pharmacophore, quantitative pharmacophores for hMATE1, and a bayesian model suggesting molecular features favoring and not favoring the interaction of ligands with hMATE1. The models identified hydrophobic regions, hydrogen bond donor and hydrogen bond acceptor sites, and an ionizable (cationic) feature as key determinants for ligand binding to MATE1. In summary, using a combined in vitro and computational approach, MATE1 and MATE2-K were found to have markedly overlapping selectivities for a broad range of cationic compounds, including representatives from seven novel drug classes of Food and Drug Administration-approved drugs.

  6. Four crystal structures of human LLT1, a ligand of human NKR-P1, in varied glycosylation and oligomerization states

    Energy Technology Data Exchange (ETDEWEB)

    Skálová, Tereza, E-mail: t.skalova@gmail.com [Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Praha 4 (Czech Republic); Bláha, Jan [Charles University Prague, Hlavova 8, 128 40 Praha (Czech Republic); Harlos, Karl [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Dušková, Jarmila [Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Praha 4 (Czech Republic); Koval’, Tomáš [Academy of Sciences of the Czech Republic, v.v.i., Heyrovského nám. 2, 162 06 Praha 6 (Czech Republic); Stránský, Jan; Hašek, Jindřich [Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Praha 4 (Czech Republic); Vaněk, Ondřej [Charles University Prague, Hlavova 8, 128 40 Praha (Czech Republic); Dohnálek, Jan, E-mail: t.skalova@gmail.com [Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Praha 4 (Czech Republic); Academy of Sciences of the Czech Republic, v.v.i., Heyrovského nám. 2, 162 06 Praha 6 (Czech Republic)

    2015-03-01

    Four crystal structures of human LLT1, a ligand of human NKR-P1, are reported. Human LLT1 is a C-type lectin-like ligand of NKR-P1 (CD161, gene KLRB1), a C-type lectin-like receptor of natural killer cells. Using X-ray diffraction, the first experimental structures of human LLT1 were determined. Four structures of LLT1 under various conditions were determined: monomeric, dimeric deglycosylated after the first N-acetylglucosamine unit in two forms and hexameric with homogeneous GlcNAc{sub 2}Man{sub 5} glycosylation. The dimeric form follows the classical dimerization mode of human CD69. The monomeric form keeps the same fold with the exception of the position of an outer part of the long loop region. The hexamer of glycosylated LLT1 consists of three classical dimers. The hexameric packing may indicate a possible mode of interaction of C-type lectin-like proteins in the glycosylated form.

  7. Transfer of the human NKG2D ligands UL16 binding proteins (ULBP) 1-3 is related to lytic granule release and leads to ligand retransfer and killing of ULBP-recipient natural killer cells.

    Science.gov (United States)

    López-Cobo, Sheila; Romera-Cárdenas, Gema; García-Cuesta, Eva M; Reyburn, Hugh T; Valés-Gómez, Mar

    2015-09-01

    After immune interactions, membrane fragments can be transferred between cells. This fast transfer of molecules is transient and shows selectivity for certain proteins; however, the constraints underlying acquisition of a protein are unknown. To characterize the mechanism and functional consequences of this process in natural killer (NK) cells, we have compared the transfer of different NKG2D ligands. We show that human NKG2D ligands can be acquired by NK cells with different efficiencies. The main findings are that NKG2D ligand transfer is related to immune activation and receptor-ligand interaction and that NK cells acquire these proteins during interactions with target cells that lead to degranulation. Our results further demonstrate that NK cells that have acquired NKG2D ligands can stimulate activation of autologous NK cells. Surprisingly, NK cells can also re-transfer the acquired molecule to autologous effector cells during this immune recognition that leads to their death. These data demonstrate that transfer of molecules occurs as a consequence of immune recognition and imply that this process might play a role in homeostatic tuning-down of the immune response or be used as marker of interaction. © 2015 John Wiley & Sons Ltd.

  8. Role of the Sulfonium Center in Determining the Ligand Specificity of Human S-Adenosylmethionine Decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Bale, Shridhar; Brooks, Wesley; Hanes, Jeremiah W.; Mahesan, Arnold M.; Guida, Wayne C.; Ealick, Steven E.; (Moffitt); (Cornell)

    2009-08-13

    S-Adenosylmethionine decarboxylase (AdoMetDC) is a key enzyme in the polyamine biosynthetic pathway. Inhibition of this pathway and subsequent depletion of polyamine levels is a viable strategy for cancer chemotherapy and for the treatment of parasitic diseases. Substrate analogue inhibitors display an absolute requirement for a positive charge at the position equivalent to the sulfonium of S-adenosylmethionine. We investigated the ligand specificity of AdoMetDC through crystallography, quantum chemical calculations, and stopped-flow experiments. We determined crystal structures of the enzyme cocrystallized with 5{prime}-deoxy-5{prime}-dimethylthioadenosine and 5{prime}-deoxy-5{prime}-(N-dimethyl)amino-8-methyladenosine. The crystal structures revealed a favorable cation-{pi} interaction between the ligand and the aromatic side chains of Phe7 and Phe223. The estimated stabilization from this interaction is 4.5 kcal/mol as determined by quantum chemical calculations. Stopped-flow kinetic experiments showed that the rate of the substrate binding to the enzyme greatly depends on Phe7 and Phe223, thus supporting the importance of the cation-{pi} interaction.

  9. Identification of calcium-modulating cyclophilin ligand as a human host restriction to HIV-1 release overcome by Vpu

    Science.gov (United States)

    Varthakavi, Vasundhara; Heimann-Nichols, Ellen; Smith, Rita M; Sun, Yuehui; Bram, Richard J; Ali, Showkat; Rose, Jeremy; Ding, Lingmei; Spearman, Paul

    2008-01-01

    The HIV-1 Vpu protein is required for efficient viral release from human cells. For HIV-2, the envelope (Env) protein replaces the role of Vpu. Both Vpu and HIV-2 Env enhance virus release by counteracting an innate host-cell block within human cells that is absent in African green monkey (AGM) cells. Here we identify calcium-modulating cyclophilin ligand (CAML) as a Vpu-interacting host factor that restricts HIV-1 release. Expression of human CAML (encoded by CAMLG) in AGM cells conferred a strong restriction of virus release that was reversed by Vpu and HIV-2 Env, suggesting that CAML is the mechanistic link between these two viral regulators. Depletion of CAML in human cells eliminated the need for Vpu in enhancing HIV-1 and murine leukemia virus release. These results point to CAML as a Vpu-sensitive host restriction factor that inhibits HIV release from human cells. The ability of CAML to inhibit virus release should illuminate new therapeutic strategies against HIV. PMID:18500349

  10. Display of aggregation-prone ligand binding domain of human PPAR gamma on surface of bacteriophage lambda

    Institute of Scientific and Technical Information of China (English)

    Bo KONG; Wei-jun MA

    2006-01-01

    Aim: To display the aggregation-prone ligand binding domain (LBD) of the human peroxisome proliferator-activated receptor gamma (PPARγ) on the surface of bacteriophages to establish an easy screening assay for the identification of PPARγ ligands. Methods: Plasmids were constructed for the expression of the PPARγ LBD as a fusion to the N-terminus of the g3p protein of filamentous phage or the C-terminus of the capsid protein D (pD) of phage lambda. The fusion proteins were expressed in E coli and solubility characteristics were compared. Polyclonal antibodies against the LBD as well as the pD protein were prepared for Western blot analysis and phage capture assay. Results: The pD-LBD fusion protein was partially soluble, whereas the LBD-g3p fusion protein was detected only in the insoluble fraction. The pD-LBD fusion protein was efficiently incorporated in phage particles. Furthermore, the LBD was shown to be displayed on the surface of bacteriophage lambda. On average, the pD-LBD fusion protein accounted for 28% of the total pD protein in the lambda head capsid. Conclusion: The hydrophobic PPARγLBD was expressed as a soluble form of fusionprotein in E coli and displayed on the surface of bacteriophage lambda when it was fused to the lambda pD protein. The lambda pD fusion system could be used for improving the solubility of proteins that tend to form inclusion bodies when expressed in E coli. The lambda phage particles displaying the LBD of PPARγ may be of great value for the identification of novel PPARγ ligands.

  11. A SAR study of novel antiproliferative ruthenium and osmium complexes with quinoxalinone ligands in human cancer cell lines.

    Science.gov (United States)

    Ginzinger, Werner; Mühlgassner, Gerhard; Arion, Vladimir B; Jakupec, Michael A; Roller, Alexander; Galanski, Markus; Reithofer, Michael; Berger, Walter; Keppler, Bernhard K

    2012-04-12

    A series of ruthenium(II) arene complexes with 3-(1H-benzimidazol-2-yl)-1H-quinoxalin-2-one, bearing pharmacophoric groups of known protein kinase inhibitors, and related benzoxazole and benzothiazole derivatives have been synthesized. In addition, the corresponding osmium complexes of the unsubstituted ligands have also been prepared. The compounds have been characterized by NMR, UV-vis, and IR spectroscopy, ESI mass spectrometry, elemental analysis, and by X-ray crystallography. Antiproliferative activity in three human cancer cell lines (A549, CH1, SW480) was determined by MTT assays, yielding IC(50) values of 6-60 μM for three unsubstituted metal-free ligands, whereas values for the metal complexes vary in a broad range from 0.3 to 140 μM. Complexation with osmium of quinoxalinone derivatives with benzimidazole or benzothiazole results in a more consistent increase in cytotoxicity than complexation with ruthenium. For selected compounds, the capacity to induce apoptosis was confirmed by fluorescence microscopy and flow-cytometric analysis, whereas cell cycle effects are only moderate.

  12. Amyloidogenic propensity of a natural variant of human apolipoprotein A-I: stability and interaction with ligands.

    Directory of Open Access Journals (Sweden)

    Silvana A Rosú

    Full Text Available A number of naturally occurring mutations of human apolipoprotein A-I (apoA-I have been associated with hereditary amyloidoses. The molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here we examined the effects of the Arg173Pro point mutation in apoA-I on the structure, stability, and aggregation propensity, as well as on the ability to bind to putative ligands. Our results indicate that the mutation induces a drastic loss of stability, and a lower efficiency to bind to phospholipid vesicles at physiological pH, which could determine the observed higher tendency to aggregate as pro-amyloidogenic complexes. Incubation under acidic conditions does not seem to induce significant desestabilization or aggregation tendency, neither does it contribute to the binding of the mutant to sodium dodecyl sulfate. While the binding to this detergent is higher for the mutant as compared to wt apoA-I, the interaction of the Arg173Pro variant with heparin depends on pH, being lower at pH 5.0 and higher than wt under physiological pH conditions. We suggest that binding to ligands as heparin or other glycosaminoglycans could be key events tuning the fine details of the interaction of apoA-I variants with the micro-environment, and probably eliciting the toxicity of these variants in hereditary amyloidoses.

  13. Covalent heme attachment to the protein in human heme oxygenase-1 with selenocysteine replacing the His25 proximal iron ligand.

    Science.gov (United States)

    Jiang, Yongying; Trnka, Michael J; Medzihradszky, Katalin F; Ouellet, Hugues; Wang, Yongqiang; Ortiz de Montellano, Paul R

    2009-03-01

    To characterize heme oxygenase with a selenocysteine (SeCys) as the proximal iron ligand, we have expressed truncated human heme oxygenase-1 (hHO-1) His25Cys, in which Cys-25 is the only cysteine, in the Escherichia coli cysteine auxotroph strain BL21(DE3)cys. Selenocysteine incorporation into the protein was demonstrated by both intact protein mass measurement and mass spectrometric identification of the selenocysteine-containing tryptic peptide. One selenocysteine was incorporated into approximately 95% of the expressed protein. Formation of an adduct with Ellman's reagent (DTNB) indicated that the selenocysteine in the expressed protein was in the reduced state. The heme-His25SeCys hHO-1 complex could be prepared by either (a) supplementing the overexpression medium with heme, or (b) reconstituting the purified apoprotein with heme. Under reducing conditions in the presence of imidazole, a covalent bond is formed by addition of the selenocysteine residue to one of the heme vinyl groups. No covalent bond is formed when the heme is replaced by mesoheme, in which the vinyls are replaced by ethyl groups. These results, together with our earlier demonstration that external selenolate ligands can transfer an electron to the iron [Y. Jiang, P.R. Ortiz de Montellano, Inorg. Chem. 47 (2008) 3480-3482 ], indicate that a selenyl radical is formed in the hHO-1 His25SeCys mutant that adds to a heme vinyl group.

  14. The different catalytic roles of the metal-binding ligands in human 4-hydroxyphenylpyruvate dioxygenase.

    Science.gov (United States)

    Huang, Chih-Wei; Liu, Hsiu-Chen; Shen, Chia-Pei; Chen, Yi-Tong; Lee, Sung-Jai; Lloyd, Matthew D; Lee, Hwei-Jen

    2016-05-01

    4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a non-haem iron(II)-dependent oxygenase that catalyses the conversion of 4-hydroxyphenylpyruvate (HPP) to homogentisate (HG). In the active site, a strictly conserved 2-His-1-Glu facial triad co-ordinates the iron ready for catalysis. Substitution of these residues resulted in about a 10-fold decrease in the metal binding affinity, as measured by isothermal titration calorimetry, and a large reduction in enzyme catalytic efficiencies. The present study revealed the vital role of the ligand Glu(349) in enzyme function. Replacing this residue with alanine resulted in loss of activity. The E349G variant retained 5% activity for the coupled reaction, suggesting that co-ordinating water may be able to support activation of the trans-bound dioxygen upon substrate binding. The reaction catalysed by the H183A variant was fully uncoupled. H183A variant catalytic activity resulted in protein cleavage between Ile(267) and Ala(268) and the production of an N-terminal fragment. The H266A variant was able to produce 4-hydroxyphenylacetate (HPA), demonstrating that decarboxylation had occurred but that there was no subsequent product formation. Structural modelling of the variant enzyme with bound dioxygen revealed the rearrangement of the co-ordination environment and the dynamic behaviour of bound dioxygen in the H266A and H183A variants respectively. These models suggest that the residues regulate the geometry of the reactive oxygen intermediate during the oxidation reaction. The mutagenesis and structural simulation studies demonstrate the critical and unique role of each ligand in the function of HPPD, and which correlates with their respective co-ordination position.

  15. Conformational dynamics and the energetics of protein--ligand interactions: role of interdomain loop in human cytochrome P450 reductase.

    Science.gov (United States)

    Grunau, Alex; Geraki, Kalotina; Grossmann, J Günter; Gutierrez, Aldo

    2007-07-17

    A combination of mutagenesis, calorimetry, kinetics, and small-angle X-ray scattering (SAXS) has been used to study the mechanism of ligand binding energy propagation through human cytochrome P450 reductase (CPR). Remarkably, the energetics of 2',5'-ADP binding to R597 at the FAD-binding domain are affected by mutations taking place at an interdomain loop located 60 A away. Either deletion of a 7 amino acid long segment (T236-G237-E238-E239-S240-S241-I242) or its replacement by poly-proline repeats (5 and 10 residues) results in a significant increase in 2',5'-ADP enthalpy of binding (DeltaHB). This is accompanied by a decrease in the number of thermodynamic microstates available for the ligand-CPR complex. Moreover, the estimated heat capacity change (DeltaCp) for this interaction changes from -220 cal mol-1 K-1 in the wild-type enzyme to -580 cal mol-1 K-1 in the deletion mutant. Pre-steady-state kinetics measurements reveal a 50-fold decrease in the microscopic rate for interdomain (FAD --> FMN) electron transfer in the deletion mutant (kobs = 0.4 s-1). Multiple turnover cytochome c reduction assays indicate that these mutations impair the ability of the FMN-binding domain to shuttle electrons from the FAD-binding domain to the cytochrome partner. Binding of 2',5'-ADP to wild-type CPR triggers a large-scale structural rearrangement resulting in the complex having a more compact domain organization, and the maximum molecular dimension (Dmax) decreases from 110 A in ligand-free enzyme to 100 A in the ligand-bound CPR. The SAXS experiments also demonstrate that what is affected by the mutations is indeed the relative diffusional motion of the domains. Furthemore, ab initio shape reconstruction and homology modeling would suggest that-in the deletion mutant-hindering of domain motion occurs concomitantly with dimerization. The results presented here show that the energetics of this highly localized interaction (2',5'-ADP binding) have a global character, and are

  16. Tapasin discriminates peptide-human leukocyte antigen-A*02:01 complexes formed with natural ligands

    DEFF Research Database (Denmark)

    Røder, Gustav Andreas; Geironson, Linda; Rasmussen, Michael

    2011-01-01

    A plethora of peptides are generated intracellularly, and most peptide-human leukocyte antigen (HLA)-I interactions are of a transient, unproductive nature. Without a quality control mechanism, the HLA-I system would be stressed by futile attempts to present peptides not sufficient for the stable...... according to the identity of the peptide. The facilitation was also specific for the identity of the HLA-I heavy chain, where it correlated to established tapasin dependence hierarchies. Two large sets of HLA-A*02:01 binding peptides, one extracted from natural HLA-I ligands from the SYFPEITHI database...... functionally discriminate the selected SYFPEITHI peptides from the other peptide binders with high sensitivity and specificity. We suggest that this HLA-I- and peptide-specific function, together with the functions exerted by the more C-terminal parts of tapasin, are major features of tapasin-mediated HLA...

  17. Cell-Specific Variation in E-Selectin Ligand Expression among Human Peripheral Blood Mononuclear Cells: Implications for Immunosurveillance and Pathobiology.

    Science.gov (United States)

    Silva, Mariana; Fung, Ronald Kam Fai; Donnelly, Conor Brian; Videira, Paula Alexandra; Sackstein, Robert

    2017-03-22

    Both host defense and immunopathology are shaped by the ordered recruitment of circulating leukocytes to affected sites, a process initiated by binding of blood-borne cells to E-selectin displayed at target endothelial beds. Accordingly, knowledge of the expression and function of leukocyte E-selectin ligands is key to understanding the tempo and specificity of immunoreactivity. In this study, we performed E-selectin adherence assays under hemodynamic flow conditions coupled with flow cytometry and Western blot analysis to elucidate the function and structural biology of glycoprotein E-selectin ligands expressed on human PBMCs. Circulating monocytes uniformly express high levels of the canonical E-selectin binding determinant sialyl Lewis X (sLe(X)) and display markedly greater adhesive interactions with E-selectin than do circulating lymphocytes, which exhibit variable E-selectin binding among CD4(+) and CD8(+) T cells but no binding by B cells. Monocytes prominently present sLe(X) decorations on an array of protein scaffolds, including P-selectin glycoprotein ligand-1, CD43, and CD44 (rendering the E-selectin ligands cutaneous lymphocyte Ag, CD43E, and hematopoietic cell E-selectin/L-selectin ligand, respectively), and B cells altogether lack E-selectin ligands. Quantitative PCR gene expression studies of glycosyltransferases that regulate display of sLe(X) reveal high transcript levels among circulating monocytes and low levels among circulating B cells, and, commensurately, cell surface α(1,3)-fucosylation reveals that acceptor sialyllactosaminyl glycans convertible into sLe(X) are abundantly expressed on human monocytes yet are relatively deficient on B cells. Collectively, these findings unveil distinct cell-specific patterns of E-selectin ligand expression among human PBMCs, indicating that circulating monocytes are specialized to engage E-selectin and providing key insights into the molecular effectors mediating recruitment of these cells at inflammatory

  18. Human brain endothelial cells endeavor to immunoregulate CD8 T cells via PD-1 ligand expression in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Pittet Camille L

    2011-11-01

    Full Text Available Abstract Background Multiple sclerosis (MS, an inflammatory disease of the central nervous system (CNS, is characterized by blood-brain barrier (BBB disruption and massive infiltration of activated immune cells. Engagement of programmed cell death-1 (PD-1 expressed on activated T cells with its ligands (PD-L1 and PD-L2 suppresses T cell responses. We recently demonstrated in MS lesions elevated PD-L1 expression by glial cells and absence of PD-1 on many infiltrating CD8 T cells. We have now investigated whether human brain endothelial cells (HBECs, which maintain the BBB, can express PD-L1 or PD-L2 and thereby modulate T cells. Methods We used primary cultures of HBECs isolated from non-tumoral CNS tissue either under basal or inflamed conditions. We assessed the expression of PD-L1 and PD-L2 using qPCR and flow cytometry. Human CD8 T cells were isolated from peripheral blood of healthy donors and co-cultured with HBECs. Following co-culture with HBECs, proliferation and cytokine production by human CD8 T cells were measured by flow cytometry whereas transmigration was determined using a well established in vitro model of the BBB. The functional impact of PD-L1 and PD-L2 provided by HBECs was determined using blocking antibodies. We performed immunohistochemistry for the detection of PD-L1 or PD-L2 concurrently with caveolin-1 (a cell specific marker for endothelial cells on post-mortem human brain tissues obtained from MS patients and normal controls. Results Under basal culture conditions, PD-L2 is expressed on HBECs, whilst PD-L1 is not detected. Both ligands are up-regulated under inflammatory conditions. Blocking PD-L1 and PD-L2 leads to increased transmigration and enhanced responses by human CD8 T cells in co-culture assays. Similarly, PD-L1 and PD-L2 blockade significantly increases CD4 T cell transmigration. Brain endothelium in normal tissues and MS lesions does not express detectable PD-L1; in contrast, all blood vessels in normal

  19. Molecular interaction studies of hemostasis: fibrinogen ligand-human platelet receptor interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Imshik; Marchant, Roger E

    2003-10-15

    The interactions between fibrinogen ligands and platelet receptor {alpha}{sub IIb}{beta}{sub 3} were studied under physiological conditions by atomic force microscopy (AFM). Two linear peptide sequences in fibrinogen, RGD and HHLGGAKQAGDV, play central roles in the regulation of hemostasis and thrombosis by facilitating adhesion and aggregation of platelets. In order to measure the interactions (i.e., debonding force), oligopeptides, GSSSGaaa, where aaa is -RGDSPA or -HHLGGAKQAGDV, were synthesized and grafted on to the surface of AFM probe tips. The interaction forces between a peptide-modified AFM probe tip and platelet surface were determined from pN to nN levels using AFM force measurements. Our results show that the zero kinetic off-rate, K{sub off}(0), for RGDSPA is significantly smaller than that for HHLGGAKQAGDV, under the consideration of flexible receptor surfaces. From our analysis, the K{sub off}(0), the single molecular binding energy E{sub b}, and the transition state x{sub b}, were extracted from the data, and estimated to be 1.53 s{sup -1}, -2.64x10{sup -20} J and 1.03 A for the RGD-{alpha}{sub IIb}{beta}{sub 3} system, and 47.58 s{sup -1}, 2.67x10{sup -20}, 1.09 A for the HHLGGAKQAGDV-{alpha}{sub IIb}{beta}{sub 3} system, respectively.

  20. Structure and behavior of human α-thrombin upon ligand recognition: thermodynamic and molecular dynamics studies.

    Directory of Open Access Journals (Sweden)

    Vivian de Almeira Silva

    Full Text Available Thrombin is a serine proteinase that plays a fundamental role in coagulation. In this study, we address the effects of ligand site recognition by alpha-thrombin on conformation and energetics in solution. Active site occupation induces large changes in secondary structure content in thrombin as shown by circular dichroism. Thrombin-D-Phe-Pro-Arg-chloromethyl ketone (PPACK exhibits enhanced equilibrium and kinetic stability compared to free thrombin, whose difference is rooted in the unfolding step. Small-angle X-ray scattering (SAXS measurements in solution reveal an overall similarity in the molecular envelope of thrombin and thrombin-PPACK, which differs from the crystal structure of thrombin. Molecular dynamics simulations performed with thrombin lead to different conformations than the one observed in the crystal structure. These data shed light on the diversity of thrombin conformers not previously observed in crystal structures with distinguished catalytic and conformational behaviors, which might have direct implications on novel strategies to design direct thrombin inhibitors.

  1. Examining the critical roles of human CB2 receptor residues Valine 3.32 (113) and Leucine 5.41 (192) in ligand recognition and downstream signaling activities.

    Science.gov (United States)

    Alqarni, Mohammed; Myint, Kyaw Zeyar; Tong, Qin; Yang, Peng; Bartlow, Patrick; Wang, Lirong; Feng, Rentian; Xie, Xiang-Qun

    2014-09-26

    We performed molecular modeling and docking to predict a putative binding pocket and associated ligand-receptor interactions for human cannabinoid receptor 2 (CB2). Our data showed that two hydrophobic residues came in close contact with three structurally distinct CB2 ligands: CP-55,940, SR144528 and XIE95-26. Site-directed mutagenesis experiments and subsequent functional assays implicated the roles of Valine residue at position 3.32 (V113) and Leucine residue at position 5.41 (L192) in the ligand binding function and downstream signaling activities of the CB2 receptor. Four different point mutations were introduced to the wild type CB2 receptor: V113E, V113L, L192S and L192A. Our results showed that mutation of Val113 with a Glutamic acid and Leu192 with a Serine led to the complete loss of CB2 ligand binding as well as downstream signaling activities. Substitution of these residues with those that have similar hydrophobic side chains such as Leucine (V113L) and Alanine (L192A), however, allowed CB2 to retain both its ligand binding and signaling functions. Our modeling results validated by competition binding and site-directed mutagenesis experiments suggest that residues V113 and L192 play important roles in ligand binding and downstream signaling transduction of the CB2 receptor.

  2. Matched sizes of activating and inhibitory receptor/ligand pairs are required for optimal signal integration by human natural killer cells.

    Directory of Open Access Journals (Sweden)

    Karsten Köhler

    Full Text Available It has been suggested that receptor-ligand complexes segregate or co-localise within immune synapses according to their size, and this is important for receptor signaling. Here, we set out to test the importance of receptor-ligand complex dimensions for immune surveillance of target cells by human Natural Killer (NK cells. NK cell activation is regulated by integrating signals from activating receptors, such as NKG2D, and inhibitory receptors, such as KIR2DL1. Elongating the NKG2D ligand MICA reduced its ability to trigger NK cell activation. Conversely, elongation of KIR2DL1 ligand HLA-C reduced its ability to inhibit NK cells. Whereas normal-sized HLA-C was most effective at inhibiting activation by normal-length MICA, only elongated HLA-C could inhibit activation by elongated MICA. Moreover, HLA-C and MICA that were matched in size co-localised, whereas HLA-C and MICA that were different in size were segregated. These results demonstrate that receptor-ligand dimensions are important in NK cell recognition, and suggest that optimal integration of activating and inhibitory receptor signals requires the receptor-ligand complexes to have similar dimensions.

  3. Apoptotic depletion of infiltrating mucosal lymphocytes associated with Fas ligand expression by Helicobacter pylori-infected gastric mucosal epithelium: human glandular stomach as a site of immune privilege.

    Science.gov (United States)

    Koyama, S

    2000-04-01

    H. pylori infection almost invariably results in chronic gastritis, but only a proportion of patients develops severe destruction of epithelial glandular structure or peptic ulcer. To confirm the recent data obtained in testis and eye, showing that Fas ligand is involved in the phenomenon of "immune privilege," expression of Fas receptor and its ligand of the stomach was investigated in a panel of gastric biopsies obtained from patients H. pylori-positive (N = 42) and with H. pylori-negative (N = 18) by two-color flow cytometry. The results show that membrane-bound Fas ligand protein is constitutively expressed on freshly isolated human gastric mucosal epithelium coupled with infiltrating lymphocytes. There was significant overexpression of Fas receptor and its ligand, and a higher frequency of apoptotic cell death detected by TUNEL in epithelium and infiltrating lymphocytes in H. pylori-infected patients. These findings suggest that involvement of Fas receptor and its ligand system contributes to some extent to mucosal damage in H. pylori-associated gastritis. However, the more specific findings are apoptotic depletion of invading mucosal lymphocytes associated with Fas ligand expression by gastric epithelium. These provide the first direct quantitative evidence to support Fas receptor counterattack and/or paracrine fratricide as a mechanism of immune privilege in vivo in the H. pylori-infected glandular stomach.

  4. Ligand binding study of human PEBP1/RKIP: interaction with nucleotides and Raf-1 peptides evidenced by NMR and mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Laurette Tavel

    Full Text Available BACKGROUND: Human Phosphatidylethanolamine binding protein 1 (hPEBP1 also known as Raf kinase inhibitory protein (RKIP, affects various cellular processes, and is implicated in metastasis formation and Alzheimer's disease. Human PEBP1 has also been shown to inhibit the Raf/MEK/ERK pathway. Numerous reports concern various mammalian PEBP1 binding ligands. However, since PEBP1 proteins from many different species were investigated, drawing general conclusions regarding human PEBP1 binding properties is rather difficult. Moreover, the binding site of Raf-1 on hPEBP1 is still unknown. METHODS/FINDINGS: In the present study, we investigated human PEBP1 by NMR to determine the binding site of four different ligands: GTP, FMN, and one Raf-1 peptide in tri-phosphorylated and non-phosphorylated forms. The study was carried out by NMR in near physiological conditions, allowing for the identification of the binding site and the determination of the affinity constants K(D for different ligands. Native mass spectrometry was used as an alternative method for measuring K(D values. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates and/or confirms the binding of hPEBP1 to the four studied ligands. All of them bind to the same region centered on the conserved ligand-binding pocket of hPEBP1. Although the affinities for GTP and FMN decrease as pH, salt concentration and temperature increase from pH 6.5/NaCl 0 mM/20°C to pH 7.5/NaCl 100 mM/30°C, both ligands clearly do bind under conditions similar to what is found in cells regarding pH, salt concentration and temperature. In addition, our work confirms that residues in the vicinity of the pocket rather than those within the pocket seem to be required for interaction with Raf-1.

  5. Human NK cells maintain licensing status and are subject to killer immunoglobulin-like receptor (KIR) and KIR-ligand inhibition following ex vivo expansion.

    Science.gov (United States)

    Wang, Wei; Erbe, Amy K; Alderson, Kory A; Phillips, Emily; Gallenberger, Mikayla; Gan, Jacek; Campana, Dario; Hank, Jacquelyn A; Sondel, Paul M

    2016-09-01

    Infusion of allogeneic NK cells is a potential immunotherapy for both hematopoietic malignancies and solid tumors. Interactions between killer immunoglobulin-like receptors (KIR) on human NK cells and KIR-ligands on tumor cells influence the magnitude of NK function. To obtain sufficient numbers of activated NK cells for infusion, one potent method uses cells from the K562 human erythroleukemia line that have been transfected to express activating 41BB ligand (41BBL) and membrane-bound interleukin 15 (mbIL15). The functional importance of KIRs on ex vivo expanded NK cells has not been studied in detail. We found that after a 12-day co-culture with K562-mbIL15-41BBL cells, expanded NK cells maintained inhibition specificity and prior in vivo licensing status determined by KIR/KIR-ligand interactions. Addition of an anti-CD20 antibody (rituximab) induced NK-mediated antibody-dependent cellular cytotoxicity and augmented killing of CD20+ target cells. However, partial inhibition induced by KIR/KIR-ligand interactions persisted. Finally, we found that extended co-cultures of NK cells with stimulatory cells transduced to express various KIR-ligands modified both the inhibitory and activating KIR repertoires of the expanded NK cell product. These studies demonstrate that the licensing interactions known to occur during NK ontogeny also influence NK cell function following NK expansion ex vivo with HLA-null stimulatory cells.

  6. The impact of human leukocyte antigen (HLA) micropolymorphism on ligand specificity within the HLA-B*41 allotypic family

    Energy Technology Data Exchange (ETDEWEB)

    Bade-Döding, Christina; Theodossis, Alex; Gras, Stephanie; Kjer-Nielsen, Lars; Eiz-Vesper, Britta; Seltsam, Axel; Huyton, Trevor; Rossjohn, Jamie; McCluskey, James; Blasczyk, Rainer (Springe); (Hannover-MED); (Monash); (Melbourne)

    2011-09-28

    Polymorphic differences between human leukocyte antigen (HLA) molecules affect the specificity and conformation of their bound peptides and lead to differential selection of the T-cell repertoire. Mismatching during allogeneic transplantation can, therefore, lead to immunological reactions. We investigated the structure-function relationships of six members of the HLA-B*41 allelic group that differ by six polymorphic amino acids, including positions 80, 95, 97 and 114 within the antigen-binding cleft. Peptide-binding motifs for B*41:01, *41:02, *41:03, *41:04, *41:05 and *41:06 were determined by sequencing self-peptides from recombinant B*41 molecules by electrospray ionization tandem mass spectrometry. The crystal structures of HLA-B*41:03 bound to a natural 16-mer self-ligand (AEMYGSVTEHPSPSPL) and HLA-B*41:04 bound to a natural 11-mer self-ligand (HEEAVSVDRVL) were solved. Peptide analysis revealed that all B*41 alleles have an identical anchor motif at peptide position 2 (glutamic acid), but differ in their choice of C-terminal p{Omega} anchor (proline, valine, leucine). Additionally, B*41:04 displayed a greater preference for long peptides (>10 residues) when compared to the other B*41 allomorphs, while the longest peptide to be eluted from the allelic group (a 16mer) was obtained from B*41:03. The crystal structures of HLA-B*41:03 and HLA-B*41:04 revealed that both alleles interact in a highly conserved manner with the terminal regions of their respective ligands, while micropolymorphism-induced changes in the steric and electrostatic properties of the antigen-binding cleft account for differences in peptide repertoire and auxiliary anchoring. Differences in peptide repertoire, and peptide length specificity reflect the significant functional evolution of these closely related allotypes and signal their importance in allogeneic transplantation, especially B*41:03 and B*41:04, which accommodate longer peptides, creating structurally distinct peptide

  7. Engineering bacterial surface displayed human norovirus capsid proteins: A novel system to explore interaction between norovirus and ligands

    Directory of Open Access Journals (Sweden)

    Mengya eNiu

    2015-12-01

    Full Text Available Human noroviruses (HuNoVs are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2 and the protruding domain (P domain encoding gene (3’ terminal fragment of ORF2 of HuNoVs GI.1 and GII.4 were fused with 5’ terminal fragment of ice nucleation protein encoding gene (inaQn. The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an

  8. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution.

    Science.gov (United States)

    Parham, Peter; Moffett, Ashley

    2013-02-01

    Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, in which they have progressively co-evolved with MHC class I molecules. The emergence of the MHC-C gene in hominids drove the evolution of a system of NK cell receptors for MHC-C molecules that is most elaborate in chimpanzees. By contrast, the human system of MHC-C receptors seems to have been subject to different selection pressures that have acted in competition on the immunological and reproductive functions of MHC class I molecules. We suggest that this compromise facilitated the development of the bigger brains that enabled archaic and modern humans to migrate out of Africa and populate other continents.

  9. Evaluation of the Serotonin Transporter Ligand 123I-ADAM for SPECT Studies on Humans

    DEFF Research Database (Denmark)

    Frokjaer, V.G.; Pinborg, Lars Hageman; Madsen, J.;

    2008-01-01

    transporters using (123)I-labeled 2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine (ADAM) in humans: an arterial plasma input model, simplified and Logan reference tissue models, and standardized uptake value ratios. METHODS: Nine subjects were scanned with dynamic (123)I-ADAM SPECT (mean age, 31 y...

  10. Ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory chemokine ligand 2 gene in humans

    Directory of Open Access Journals (Sweden)

    Fischer Alexandra

    2012-10-01

    Full Text Available Abstract Background Coenzyme Q10 is an essential cofactor in the respiratory chain and serves in its reduced form, ubiquinol, as a potent antioxidant. Studies in vitro and in vivo provide evidence that ubiquinol reduces inflammatory processes via gene expression. Here we investigate the putative link between expression and DNA methylation of ubiquinol sensitive genes in monocytes obtained from human volunteers supplemented with 150 mg/ day ubiquinol for 14 days. Findings Ubiquinol decreases the expression of the pro-inflammatory chemokine (C-X-C motif ligand 2 gene (CXCL2 more than 10-fold. Bisulfite-/ MALDI-TOF-based analysis of regulatory regions of the CXCL2 gene identified six adjacent CpG islands which showed a 3.4-fold decrease of methylation status after ubiquinol supplementation. This effect seems to be rather gene specific, because ubiquinol reduced the expression of two other pro-inflammatory genes (PMAIP1, MMD without changing the methylation pattern of the respective gene. Conclusion In conclusion, ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory CXCL2 gene in humans. Current Controlled Trials ISRCTN26780329.

  11. Mixed-ligand copper(II) complexes activate aryl hydrocarbon receptor AhR and induce CYP1A genes expression in human hepatocytes and human cell lines.

    Science.gov (United States)

    Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-07-25

    The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology.

  12. The discovery of quinoline based single-ligand human H1 and H3 receptor antagonists.

    Science.gov (United States)

    Procopiou, Panayiotis A; Ancliff, Rachael A; Gore, Paul M; Hancock, Ashley P; Hodgson, Simon T; Holmes, Duncan S; Keeling, Steven P; Looker, Brian E; Parr, Nigel A; Rowedder, James E; Slack, Robert J

    2016-12-15

    A novel series of potent quinoline-based human H1 and H3 bivalent histamine receptor antagonists, suitable for intranasal administration for the potential treatment of allergic rhinitis associated nasal congestion, were identified. Compound 18b had slightly lower H1 potency (pA2 8.8 vs 9.7 for the clinical goldstandard azelastine), and H3 potency (pKi 9.1vs 6.8 for azelastine), better selectivity over α1A, α1B and hERG, similar duration of action, making 18b a good back-up compound to our previous candidate, but with a more desirable profile.

  13. Expression of Fas ligand by human gastric adenocarcinomas: a potential mechanism of immune escape in stomach cancer.

    LENUS (Irish Health Repository)

    Bennett, M W

    2012-02-03

    BACKGROUND: Despite being immunogenic, gastric cancers overcome antitumour immune responses by mechanisms that have yet to be fully elucidated. Fas ligand (FasL) is a molecule that induces Fas receptor mediated apoptosis of activated immunocytes, thereby mediating normal immune downregulatory roles including immune response termination, tolerance acquisition, and immune privilege. Colon cancer cell lines have previously been shown to express FasL and kill lymphoid cells by Fas mediated apoptosis in vitro. Many diverse tumours have since been found to express FasL suggesting that a "Fas counterattack" against antitumour immune effector cells may contribute to tumour immune escape. AIM: To ascertain if human gastric tumours express FasL in vivo, as a potential mediator of immune escape in stomach cancer. SPECIMENS: Thirty paraffin wax embedded human gastric adenocarcinomas. METHODS: FasL protein was detected in gastric tumours using immunohistochemistry; FasL mRNA was detected in the tumours using in situ hybridisation. Cell death was detected in situ in tumour infiltrating lymphocytes using terminal deoxynucleotidyl transferase mediated dUTP nick end labelling (TUNEL). RESULTS: Prevalent expression of FasL was detected in all 30 resected gastric adenocarcinomas examined. In the tumours, FasL protein and mRNA were co-localised to neoplastic gastric epithelial cells, confirming expression by the tumour cells. FasL expression was independent of tumour stage, suggesting that it may be expressed throughout gastric cancer progression. TUNEL staining disclosed a high level of cell death among lymphocytes infiltrating FasL positive areas of tumour. CONCLUSIONS: Human gastric adenocarcinomas express the immune downregulatory molecule, FasL. The results suggest that FasL is a prevalent mediator of immune privilege in stomach cancer.

  14. Functional contributions of N- and O-glycans to L-selectin ligands in murine and human lymphoid organs.

    Science.gov (United States)

    Arata-Kawai, Hanayo; Singer, Mark S; Bistrup, Annette; Zante, Annemieke van; Wang, Yang-Qing; Ito, Yuki; Bao, Xingfeng; Hemmerich, Stefan; Fukuda, Minoru; Rosen, Steven D

    2011-01-01

    L-selectin initiates lymphocyte interactions with high endothelial venules (HEVs) of lymphoid organs through binding to ligands with specific glycosylation modifications. 6-Sulfo sLe(x), a sulfated carbohydrate determinant for L-selectin, is carried on core 2 and extended core 1 O-glycans of HEV-expressed glycoproteins. The MECA-79 monoclonal antibody recognizes sulfated extended core 1 O-glycans and partially blocks lymphocyte-HEV interactions in lymphoid organs. Recent evidence has identified the contribution of 6-sulfo sLe(x) carried on N-glycans to lymphocyte homing in mice. Here, we characterize CL40, a novel IgG monoclonal antibody. CL40 equaled or surpassed MECA-79 as a histochemical staining reagent for HEVs and HEV-like vessels in mouse and human. Using synthetic carbohydrates, we found that CL40 bound to 6-sulfo sLe(x) structures, on both core 2 and extended core 1 structures, with an absolute dependency on 6-O-sulfation. Using transfected CHO cells and gene-targeted mice, we observed that CL40 bound its epitope on both N-glycans and O-glycans. Consistent with its broader glycan-binding, CL40 was superior to MECA-79 in blocking lymphocyte-HEV interactions in both wild-type mice and mice deficient in forming O-glycans. This superiority was more marked in human, as CL40 completely blocked lymphocyte binding to tonsillar HEVs, whereas MECA-79 inhibited only 60%. These findings extend the evidence for the importance of N-glycans in lymphocyte homing in mouse and indicate that this dependency also applies to human lymphoid organs.

  15. Helicobacter pylori enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in human gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yi-Ying Wu; Hwei-Fang Tsai; We-Cheng Lin; Ai-Hsiang Chou; Hui-Ting Chen; Jyh-Chin Yang; Ping-I Hsu; Ping-Ning Hsu

    2004-01-01

    AIM: To investigate the relations between tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Helicobacter pylori(H pylori) infection in apoptosis of gastric epithelial cells and to assess the expression of TRAIL onthe surface of infiltrating T-cells in Hpylori-infected gastric mucosa.METHODS: Human gastric epithelial cell lines and primary gastric epithelial cells were co-cultured with H pylori in vitro, then recombinant TRAIL proteins were added to the culture. Apoptosis of gastric epithelial cells was determined by a specific ELISA for cell death. Infiltrating lymphocytes were isolated from H pylori-infected gastric mucosa, and expression of TRAIL in T cells was analyzed by flow cytometry.RESULTS: The apoptosis of gastric epithelial cell lines and primary human gastric epithelial cells was mildly increased by interaction with either TRAIL or H pylorialone. Interestingly,the apoptotic indices were markedly elevated when gastric epithelial cells were incubated with both TRAIL and H pylori (Control vsTRAIL and H pylori: 0.51±0.06 vs 2.29±0.27,P = 0.018). A soluble TRAIL receptor (DR4-Fc) could specifically block the TRAIL-mediated apoptosis. Further studies demonstrated that infiltrating T-cells in gastric mucosa expressed TRAIL on their surfaces, and the induction of TRAIL sensitivity by H pylori was dependent upon direct cell contact of viable bacteria, but not CagA and VacA of H pylori.CONCLUSION: H pylori can sensitize human gastric epithelial ceils and enhance susceptibility to TRAIL-mediated apoptosis. Modulation of host cell sensitivity to apoptosis by bacterial interaction adds a new dimension to the immunopathogenesis of H pylori infection.

  16. Molecular Docking Explains Atomic Interaction between Plant-originated Ligands and Oncogenic E7 Protein of High Risk Human Papillomavirus Type 16

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2014-12-01

    Full Text Available Cervical cancer caused by Human papillomavirus (HPV is one of the leading causes of cancer mortality in women worldwide, particularly in the developing countries. In the last few decades, various compounds from plant origin such as Curcumin, Epigallocatechin gallate (EGCG, Jaceosidin, Resveratrol etc. have been used as anti cancer therapeutic agents. Different studies have shown these plant-originated compounds are able to suppress HPV infection. The E6 and E7 oncoproteins of high-risk HPV play a key role in HPV related cancers. In this study, we explored these ligands from plants origin against E7 oncoprotein of high risk HPV 16, which is known to inactivate tumor suppressor pRb protein. A robust homology model of HPV 16 E7 was built to foresee the interaction mechanism of E7 oncoprotein with these ligands using structure-based drug designing approach. Docking studies demonstrate the interaction of these ligands with pRb binding site of E7 protein by residues Tyr52, Asn53, Val55, Phe57, Cys59, Ser63, Thr64, Thr72, Arg77, Glu80 and Asp81 and help restoration of pRb functioning. This in silico based atomic interaction between these ligands and E7 protein may assist in validating the plant-originated ligands as effective drugs against HPV.

  17. Cross-species fertilization: the hamster egg receptor, Juno, binds the human sperm ligand, Izumo1.

    Science.gov (United States)

    Bianchi, Enrica; Wright, Gavin J

    2015-02-05

    Fertilization is the culminating event in sexual reproduction and requires the recognition and fusion of the haploid sperm and egg to form a new diploid organism. Specificity in these recognition events is one reason why sperm and eggs from different species are not normally compatible. One notable exception is the unusual ability of zona-free eggs from the Syrian golden hamster (Mesocricetus auratus) to recognize and fuse with human sperm, a phenomenon that has been exploited to assess sperm quality in assisted fertility treatments. Following our recent finding that the interaction between the sperm and egg recognition receptors Izumo1 and Juno is essential for fertilization, we now demonstrate concordance between the ability of Izumo1 and Juno from different species to interact, and the ability of their isolated gametes to cross-fertilize each other in vitro. In particular, we show that Juno from the golden hamster can directly interact with human Izumo1. These data suggest that the interaction between Izumo1 and Juno plays an important role in cross-species gamete recognition, and may inform the development of improved prognostic tests that do not require the use of animals to guide the most appropriate fertility treatment for infertile couples.

  18. In Vivo Responses of Human A375M Melanoma to a sigma Ligand : F-18-FDG PET Imaging

    NARCIS (Netherlands)

    Rybczynska, Anna A.; de Bruyn, Marco; K. Ramakrishnan, Nisha; de Jong, Johan R.; Elsinga, Philip H.; Helfrich, Wijnand; Dierckx, Rudi A. J. O.; van Waarde, Aren

    2013-01-01

    sigma-ligands can kill tumor cells. Previously we have shown that a short in vitro incubation of C6 tumor cells with sigma-ligands (24 h) results in a dose-dependent increase of cellular F-18-FDG uptake and that the magnitude of this increase is predictive of subsequent cell death. Here, we aimed to

  19. Conformational restrictions in ligand binding to the human intestinal di-/tripeptide transporter

    DEFF Research Database (Denmark)

    Våbenø, Jon; Nielsen, Carsten Uhd; Steffansen, Bente

    2005-01-01

    by conformational analysis and 2D dihedral driving analysis of 15 hPEPT1 substrates, which suggested that psi(1) approximately 165 degrees , omega(1) approximately 180 degrees , and phi(2) approximately 280 degrees were descriptive of the bioactive conformation. Subsequently, the conformational energy required......The aim of the present study was to develop a computational method aiding the design of dipeptidomimetic pro-moieties targeting the human intestinal di-/tripeptide transporter hPEPT1. First, the conformation in which substrates bind to hPEPT1 (the bioactive conformation) was identified...... to change the peptide backbone conformation (DeltaE(bbone)) from the global energy minimum conformation to the identified bioactive conformation was calculated for 20 hPEPT1 targeted model prodrugs with known K(i) values. Quantitatively, an inverse linear relationship (r(2)=0.81, q(2)=0.80) was obtained...

  20. Human Herpesvirus 6B Downregulates Expression of Activating Ligands during Lytic Infection To Escape Elimination by Natural Killer Cells.

    Science.gov (United States)

    Schmiedel, Dominik; Tai, Julie; Levi-Schaffer, Francesca; Dovrat, Sarah; Mandelboim, Ofer

    2016-11-01

    The Herpesviridae family consists of eight viruses, most of which infect a majority of the human population. One of the less-studied members is human herpesvirus 6 (HHV-6) (Roseolovirus), which causes a mild, well-characterized childhood disease. Primary HHV-6 infection is followed by lifelong latency. Reactivation frequently occurs in immunocompromised patients, such as those suffering from HIV infection or cancer or following transplantation, and causes potentially life-threatening complications. In this study, we investigated the mechanisms that HHV-6 utilizes to remain undetected by natural killer (NK) cells, which are key participants in the innate immune response to infections. We revealed viral mechanisms which downregulate ligands for two powerful activating NK cell receptors: ULBP1, ULBP3, and MICB, which trigger NKG2D, and B7-H6, which activates NKp30. Accordingly, this downregulation impaired the ability of NK cells to recognize HHV-6-infected cells. Thus, we describe for the first time immune evasion mechanisms of HHV-6 that protect lytically infected cells from NK elimination. Human herpesvirus 6 (HHV-6) latently infects a large portion of the human population and can reactivate in humans lacking a functional immune system, such as cancer or AIDS patients. Under these conditions, it can cause life-threatening diseases. To date, the actions and interplay of immune cells, and particularly cells of the innate immune system, during HHV-6 infection are poorly defined. In this study, we aimed to understand how cells undergoing lytic HHV-6 infection interact with natural killer (NK) cells, innate lymphocytes constituting the first line of defense against viral intruders. We show that HHV-6 suppresses the expression of surface proteins that alert the immune cells by triggering two major receptors on NK cells, NKG2D and NKp30. As a consequence, HHV-6 can replicate undetected by the innate immune system and potentially spread infection throughout the body. This

  1. A Molecular Dynamics Approach to Ligand-Receptor Interaction in the Aspirin-Human Serum Albumin Complex

    Directory of Open Access Journals (Sweden)

    H. Ariel Alvarez

    2012-01-01

    Full Text Available In this work, we present a study of the interaction between human serum albumin (HSA and acetylsalicylic acid (ASA, C9H8O4 by molecular dynamics simulations (MD. Starting from an experimentally resolved structure of the complex, we performed the extraction of the ligand by means of the application of an external force. After stabilization of the system, we quantified the force used to remove the ASA from its specific site of binding to HSA and calculated the mechanical nonequilibrium external work done during this process. We obtain a reasonable value for the upper boundary of the Gibbs free energy difference (an equilibrium thermodynamic potential between the complexed and noncomplexed states. To achieve this goal, we used the finite sampling estimator of the average work, calculated from the Jarzynski Equality. To evaluate the effect of the solvent, we calculated the so-called “viscous work,” that is, the work done to move the aspirin in the same trajectory through the solvent in absence of the protein, so as to assess the relevance of its contribution to the total work. The results are in good agreement with the available experimental data for the albumin affinity constant for aspirin, obtained through quenching fluorescence methods.

  2. Fas/Fas ligand-mediated apoptosis in different cell lineages and functional compartments of human lymph nodes.

    Science.gov (United States)

    Kokkonen, Tuomo S; Karttunen, Tuomo J

    2010-02-01

    We have optimized an immunohistochemical double-staining method combining immunohistochemical lymphocyte lineage marker detection and apoptosis detection with terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling. The method was used to trace Fas-mediated apoptosis in human reactive lymph nodes according to cell lineage and anatomical location. In addition to Fas, we also studied the expression of Fas ligand (FasL), CD3, CD20, CD19, CD23, and CD68 of apoptotic cells. The presence of simultaneous Fas and FasL positivity indicated involvement of activation-induced death in the induction of paracortical apoptosis. FasL expression in the high endothelial venules might be an inductor of apoptosis of Fas-positive lymphoid cells. In addition to B-lymphocyte apoptosis in the germinal centers, there was often a high apoptosis rate of CD23-expressing follicular dendritic cells. In summary, our double-staining method provides valuable new information about the occurrence and mechanisms of apoptosis of different immune cell types in the lymph node compartments. Among other things, we present support for the importance of Fas/FasL-mediated apoptosis in lymph node homeostasis.

  3. In vitro study of histamine and histamine receptor ligands influence on the adhesion of purified human eosinophils to endothelium.

    Science.gov (United States)

    Grosicki, Marek; Wójcik, Tomasz; Chlopicki, Stefan; Kieć-Kononowicz, Katarzyna

    2016-04-15

    It is a well-known fact that histamine is involved in eosinophil-dependent inflammatory responses including cellular chemotaxis and migration. Nevertheless, the relative role of histamine receptors in the mechanisms of eosinophils adhesion to endothelial cells is not known. Therefore the aim of presented study was to examine the effect of selective histamine receptors ligands on eosinophils adhesion to endothelium. For that purpose the highly purified human eosinophils have been isolated from the peripheral blood. The viability and functional integrity of isolated eosinophils have been validated in several tests. Histamine as well as 4-methylhistamine (selective H4 agonist) in concentration-dependent manner significantly increased number of eosinophils that adhere to endothelium. Among the selective histamine receptors antagonist or H1 inverse agonist only JNJ7777120 (histamine H4 antagonist) and thioperamide (dual histamine H3/H4 antagonist) had direct effect on eosinophils adhesion to endothelial cells. Antagonists of H1 (diphenhydramine, mepyramine) H2 (ranitidine and famotidine) and H3 (pitolisant) histamine receptors were ineffective. To the best of our knowledge, this is the first study to demonstrate that histamine receptor H4 plays a dominant role in histamine-induced eosinophils adhesion to endothelium.

  4. Combination of Human Fas (CD95/Apo-1) Ligand with Adriamycin Significantly Enhances the Efficacy of Antitumor Response

    Institute of Scientific and Technical Information of China (English)

    Zhongchen Liu; Ruizhen Liu; Jinhua Qiu; Ping Yin; Fanghong Luo; Jinhua SU; Wenzhu Li; Caixia Chen; Xin Fan; Jiakai Zhang; Guohong Zhuang

    2009-01-01

    The prognosis of hepatocellular carcinoma (HCC) is poor, even with the combined treatment of curative resection and adjuvant chemoradiotherapy. To solve this problem, many biologic therapies have been investigated. Fas ligand (FasL, CD95L) is mainly expressed in activated T lymphocytes and natural killer (NK) cells, and plays a central role in both cell-mediated immunity and immune downregnlation. Several studies have shown that FasL is expressed in HCC. In the present report, we prepared recombinant human pET-22b(+)/FasL protein and investigated the effect of FasL on HCC cells in vitro and on tumor growth in a murine HCC tumor model. The well-known cytotoxic chemotherapeutic reagent adriamycin (ADM) served as a control. We found that FasL effectively suppressed the viability of H22 tumor cells and significantly induced the apoptosis of H22 cells. The apoptotic levels of cells treated with FasL-ADM were significantly higher than those treated with FasL or ADM alone, and the FasL-ADM combination resulted in a more than additive effect on tumor growth delay in this model. The results suggested that combined treatment of FasL and other chemotherapeutic agents 5 be a new approach to improve the efficacy of chemotherapy for HCC. Cellular & Molecular Immunology. 2009;6(3):167-174.

  5. Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).

    Science.gov (United States)

    Fanger, N A; Maliszewski, C R; Schooley, K; Griffith, T S

    1999-10-18

    TRAIL (TNF-related apoptosis-inducing ligand) is a member of the TNF family that induces apoptosis in a variety of cancer cells. In this study, we demonstrate that human CD11c(+) blood dendritic cells (DCs) express TRAIL after stimulation with either interferon (IFN)-gamma or -alpha and acquire the ability to kill TRAIL-sensitive tumor cell targets but not TRAIL-resistant tumor cells or normal cell types. The DC-mediated apoptosis was TRAIL specific, as soluble TRAIL receptor blocked target cell death. Moreover, IFN-stimulated interleukin (IL)-3 receptor (R)alpha(+) blood precursor (pre-)DCs displayed minimal cytotoxicity toward the same target cells, demonstrating a clear functional difference between the CD11c(+) DC and IL-3Ralpha(+) pre-DC subsets. These results indicate that TRAIL may serve as an innate effector molecule on CD11c(+) DCs for the elimination of spontaneously arising tumor cells and suggest a means by which TRAIL-expressing DCs may regulate or eliminate T cells responding to antigen presented by the DCs.

  6. Differential ligand binding affinities of human estrogen receptor-α isoforms.

    Directory of Open Access Journals (Sweden)

    Amanda H Y Lin

    Full Text Available Rapid non-genomic effects of 17β-estradiol are elicited by the activation of different estrogen receptor-α isoforms. Presence of surface binding sites for estrogen have been identified in cells transfected with full-length estrogen receptor-α66 (ER66 and the truncated isoforms, estrogen receptor-α46 (ER46 and estrogen receptor-α36 (ER36. However, the binding affinities of the membrane estrogen receptors (mERs remain unknown due to the difficulty of developing of stable mER-transfected cell lines with sufficient mER density, which has largely hampered biochemical binding studies. The present study utilized cell-free expression systems to determine the binding affinities of 17β-estradiol to mERs, and the relationship among palmitoylation, membrane insertion and binding affinities. Saturation binding assays of human mERs revealed that [³H]-17β-estradiol bound ER66 and ER46 with Kd values of 68.81 and 60.72 pM, respectively, whereas ER36 displayed no specific binding within the tested concentration range. Inhibition of palmitoylation or removal of the nanolipoprotein particles, used as membrane substitute, reduced the binding affinities of ER66 and ER46 to 17β-estradiol. Moreover, ER66 and ER46 bound differentially with some estrogen receptor agonists and antagonists, and phytoestrogens. In particular, the classical estrogen receptor antagonist, ICI 182,780, had a higher affinity for ER66 than ER46. In summary, the present study defines the binding affinities for human estrogen receptor-α isoforms, and demonstrates that ER66 and ER46 show characteristics of mERs. The present data also indicates that palmitoylation and membrane insertion of mERs are important for proper receptor conformation allowing 17β-estradiol binding. The differential binding of ER66 and ER46 with certain compounds substantiates the prospect of developing mER-selective drugs.

  7. Response of SCP-2L domain of human MFE-2 to ligand removal: binding site closure and burial of peroxisomal targeting signal.

    Science.gov (United States)

    Lensink, M F; Haapalainen, A M; Hiltunen, J K; Glumoff, T; Juffer, A H

    2002-10-11

    In the study of the structure and function relationship of human MFE-2, we have investigated the dynamics of human MFE-2SCP-2L (hSCP-2L) and its response to ligand removal. A comparison was made with homologous rabbit SCP-2. Breathing and a closing motion are found, identifiable with an adjustment in size and a closing off of the binding pocket. Crucial residues for structural integrity have been identified. Particularly mobile areas of the protein are loop 1 that is connecting helices A and C in space, and helix D, next to the entrance of the pocket. In hSCP-2L, the binding pocket gets occupied by Phe93, which is making a tight hydrophobic contact with Trp36. In addition, it is found that the C-terminal peroxisomal targeting signal (PTS1) that is solvent exposed in the complexed structure becomes buried when no ligand is present. Moreover, an anti-correlation exists between burial of PTS1 and the size of the binding pocket. The results are in accordance with plant nsLTPs, where a similar accommodation of binding pocket size was found after ligand binding/removal. Furthermore, the calculations support the suggestion of a ligand-assisted targeting mechanism.

  8. Structural mechanism of ligand activation in human calcium-sensing receptor

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Yong; Mosyak, Lidia; Kurinov, Igor; Zuo, Hao; Sturchler, Emmanuel; Cheng, Tat Cheung; Subramanyam, Prakash; Brown, Alice P.; Brennan, Sarah C.; Mun, Hee-chang; Bush, Martin; Chen, Yan; Nguyen, Trang X.; Cao, Baohua; Chang, Donald D.; Quick, Matthias; Conigrave, Arthur D.; Colecraft, Henry M.; McDonald, Patricia; Fan, Qing R.

    2016-07-19

    Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca2+homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca2+and PO43-ions. Both ions are crucial for structural integrity of the receptor. While Ca2+ions stabilize the active state, PO43-ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits.

  9. Human CMTM2/CKLFSF2 enhances the ligand-induced transactivation of the androgen receptor

    Institute of Scientific and Technical Information of China (English)

    LIU DaZhen; YIN CaiHua; ZHANG YingMei; TIAN LinJie; LI Ting; LI Dan; MA DaLong; GUO YingLu; WANG Ying

    2009-01-01

    CKLF (chemokine-like factor)-Iike MARVEL (MAL and related proteins for vesicle trafficking and membrane link domain) transmembrane domain containing (CMTM) is a novel gene family. One member of this family, CMTM2, also named chemokine-like factor superfamily 2 (CKLFSF2), is expressed highly in the testis and moderately in the prostate, marrow and peripheral blood cells. However, the function of human CMTM2 remains unknown. Here, we found that CMTM2 was upregulated in 5α-dihydrotestosterone (DHT)-treated LNCaP cells. We investigated the relationship between CMTM2 and the androgen receptor. Our results showed that CMTM2 enhanced DHT-mediated androgen receptor (AR) transactiration and the expression of prostate specific antigen (PSA). We also observed that CMTM2 enhanced the AR protein level, which was reversed by silencing endogenous CMTM2 expression, which suggested that CMTM2 might play an important role in maintaining the AR protein level. We also found that CMTM2 suppressed Akt activation. A previous study showed that Akt could phosphorylate AR at Ser210 and Ser790 and lead to AR ubiquitylation and degradation as well as suppression of AR activity.Taken together, suppressing Akt activation and increasing the AR protein level might be one of the mechanisms for the CMTM2-mediated enhancement of AR transactivation.

  10. Human synovial lubricin expresses sialyl Lewis x determinant and has L-selectin ligand activity.

    Science.gov (United States)

    Jin, Chunsheng; Ekwall, Anna-Karin Hultgård; Bylund, Johan; Björkman, Lena; Estrella, Ruby P; Whitelock, John M; Eisler, Thomas; Bokarewa, Maria; Karlsson, Niclas G

    2012-10-19

    Lubricin (or proteoglycan 4 (PRG4)) is an abundant mucin-like glycoprotein in synovial fluid (SF) and a major component responsible for joint lubrication. In this study, it was shown that O-linked core 2 oligosaccharides (Galβ1-3(GlcNAcβ1-6)GalNAcα1-Thr/Ser) on lubricin isolated from rheumatoid arthritis SF contained both sulfate and fucose residues, and SF lubricin was capable of binding to recombinant L-selectin in a glycosylation-dependent manner. Using resting human polymorphonuclear granulocytes (PMN) from peripheral blood, confocal microscopy showed that lubricin coated circulating PMN and that it partly co-localized with L-selectin expressed by these cells. In agreement with this, activation-induced shedding of L-selectin also mediated decreased lubricin binding to PMN. It was also found that PMN recruited to inflamed synovial area and fluid in rheumatoid arthritis patients kept a coat of lubricin. These observations suggest that lubricin is able to bind to PMN via an L-selectin-dependent and -independent manner and may play a role in PMN-mediated inflammation.

  11. Human Synovial Lubricin Expresses Sialyl Lewis x Determinant and Has L-selectin Ligand Activity*

    Science.gov (United States)

    Jin, Chunsheng; Ekwall, Anna-Karin Hultgård; Bylund, Johan; Björkman, Lena; Estrella, Ruby P.; Whitelock, John M.; Eisler, Thomas; Bokarewa, Maria; Karlsson, Niclas G.

    2012-01-01

    Lubricin (or proteoglycan 4 (PRG4)) is an abundant mucin-like glycoprotein in synovial fluid (SF) and a major component responsible for joint lubrication. In this study, it was shown that O-linked core 2 oligosaccharides (Galβ1–3(GlcNAcβ1–6)GalNAcα1-Thr/Ser) on lubricin isolated from rheumatoid arthritis SF contained both sulfate and fucose residues, and SF lubricin was capable of binding to recombinant L-selectin in a glycosylation-dependent manner. Using resting human polymorphonuclear granulocytes (PMN) from peripheral blood, confocal microscopy showed that lubricin coated circulating PMN and that it partly co-localized with L-selectin expressed by these cells. In agreement with this, activation-induced shedding of L-selectin also mediated decreased lubricin binding to PMN. It was also found that PMN recruited to inflamed synovial area and fluid in rheumatoid arthritis patients kept a coat of lubricin. These observations suggest that lubricin is able to bind to PMN via an L-selectin-dependent and -independent manner and may play a role in PMN-mediated inflammation. PMID:22930755

  12. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand

    Directory of Open Access Journals (Sweden)

    Venu Venkatarame Gowda Saralamma

    2015-09-01

    Full Text Available Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma. The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose polymerase (PARP. Inhibitor studies’ results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm, pro-apoptotic proteins (Bax and Bak and anti-apoptotic protein (Bcl-xL in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer.

  13. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand.

    Science.gov (United States)

    Saralamma, Venu Venkatarame Gowda; Nagappan, Arulkumar; Hong, Gyeong Eun; Lee, Ho Jeong; Yumnam, Silvia; Raha, Suchismita; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won Sup; Kim, Eun Hee; Kim, Gon Sup

    2015-09-18

    Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma). The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL) protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). Inhibitor studies' results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm), pro-apoptotic proteins (Bax and Bak) and anti-apoptotic protein (Bcl-xL) in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer.

  14. Tryptic digestion of the human erythrocyte glucose transporter: effects on ligand binding and tryptophan fluorescence.

    Science.gov (United States)

    May, J M; Qu, Z C; Beechem, J M

    1993-09-21

    The conformation of the human erythrocyte glucose transport protein has been shown to determine its susceptibility to enzymatic cleavage on a large cytoplasmic loop. We took the converse approach and investigated the effects of tryptic digestion on the conformational structure of this protein. Exhaustive tryptic digestion of protein-depleted erythrocyte ghosts decreased the affinity of the residual transporter for cytochalasin B by 3-fold but did not affect the total number of binding sites. Tryptic digestion also increased the affinity of the residual transporter for D-glucose and inward-binding sugar phenyl beta-D-glucopyranoside but decreased that for the outward-binding 4,6-O-ethylidene glucose. These results suggest that tryptic cleavage stabilized the remaining transporter in an inward-facing conformation, but one with decreased affinity for cytochalasin B. The steady-state fluorescence emission scan of the purified reconstituted glucose transport protein was unaffected by tryptic digestion. Addition of increasing concentrations of potassium iodide resulted in linear Stern-Volmer plots, which were also unaffected by prior tryptic digestion. The tryptophan oxidant N-bromosuccinimide was investigated to provide a more sensitive measure of tryptophan environment. This agent irreversibly inhibited 3-O-methylglucose transport in intact erythrocytes and cytochalasin B binding in protein-depleted ghosts, with a half-maximal effect observed for each activity at about 0.3-0.4 nM. Treatment of purified glucose transport protein with N-bromosuccinimide resulted in a time-dependent quench of tryptophan fluorescence, which was resolved into two components by nonlinear regression using global analysis. Tryptic digestion retarded the rate of oxidation of the more slowly reacting class of tryptophans. (ABSTRACT TRUNCATED AT 250 WORDS)

  15. Osteoprotegerin and osteoprotegerin ligand expression during human marrow stromal cell differentiation and their effect on osteoclast formation

    Institute of Scientific and Technical Information of China (English)

    YANG Lin; HAI Yong; ZHOU Jun-lin

    2011-01-01

    ackground Osteoprotegerin (OPG) and osteoprotegerin ligand (OPGL) play an important role in human bone metabolism. The aim of this research was to detect the expression of OPG and OPGL during human marrow stromal cells (hMSC) differentiation into osteoblasts (OB), and to observe their effect on osteoclasts (OC) formation in vitro to investigate bone metabolism mechanisms.Methods hMSCs were obtained from human bone marrow specimens using gradient centrifugation method, before being purified and incubated with differentiation medium to develop along the human osteoblasts (hOB) pathway. Morphology observation, biochemical detection and cell staining were performed during hMSC differentiation. OPG and OPGL mRNA levels were detected by reverse transcription-polymerase chain reaction. OPG and OPGL protein expression were determined by Western blotting. We further obtained OC progenitor cells from mice bone marrow and co-cultured with differentiating MSCs. We assessed the effect of OPG and OPGL on OC formation by identifying tartrate resistant acid phosphatase (TRAP) positive multinuclear cells.Results Optimal hMSC survival and purification were observed, along with stable biochemical indexes. Alkaline phosphatase secretion increased significantly and mineralization nodules appeared in the process of cell differentiation. OPG mRNA and protein level increased significantly, while OPGL mRNA and protein level decreased. Average levels of OPG mRNA and protein were about 2.5-fold higher than the control, while OPGL mRNA and protein levels were reduced by about one-half. In the group co-culturing with undifferentiated MSC or added OPGL, we found TRAP positive and multinuclear OC formation. However, OC formation was absent in the group co-culturing with differentiated MSC or added OPG.Conclusions During hMSC differentiation into hOB, OPG secretion increased rapidly and OPGL production decreased significantly. The OPG/OPGL ratio was also increased, while OC formation was

  16. Disturbances of ligand potency and enhanced degradation of the human glycine receptor at affected positions G160 and T162 originally identified in patients suffering from hyperekplexia

    Directory of Open Access Journals (Sweden)

    Sinem eAtak

    2015-12-01

    Full Text Available Ligand-binding of Cys-loop receptors is determined by N-terminal extracellular loop structures from the plus as well as from the minus side of two adjacent subunits in the pentameric receptor complex. An aromatic residue in loop B of the glycine receptor (GlyR undergoes direct interaction with the incoming ligand via cation-π interactions. Recently we showed that mutated residues in loop B identified from human patients suffering from hyperekplexia disturb ligand-binding. Here, we exchanged the affected human residues by amino acids found in related members of the Cys-loop receptor family to determine the effects of side chain volume for ion channel properties. GlyR variants were characterized in vitro following transfection into cell lines in order to analyze protein expression, trafficking, degradation and ion channel function. GlyR α1 G160 mutations significantly decrease glycine potency arguing for a positional effect on neighboring aromatic residues and consequently glycine-binding within the ligand-binding pocket. Disturbed glycinergic inhibition due to T162 α1 mutations is an additive effect of affected biogenesis and structural changes within the ligand-binding site. Protein trafficking from the ER towards ER-Golgi intermediate compartment, the secretory Golgi pathways and finally the cell surface is largely diminished, but still sufficient to deliver ion channels that are functional at least at high glycine concentrations. The majority of T162 mutant protein accumulates in the ER and is conducted to ER-associated proteasomal degradation. Hence, G160 is an important determinant during glycine binding. In contrast, T162 assigns primarily receptor biogenesis whereas exchanges in functionality are secondary effects thereof.

  17. Selective recognition and stabilization of new ligands targeting the potassium form of the human telomeric G-quadruplex DNA

    Science.gov (United States)

    Lin, Yi-Hwa; Chuang, Show-Mei; Wu, Pei-Ching; Chen, Chun-Liang; Jeyachandran, Sivakamavalli; Lo, Shou-Chen; Huang, Hsu-Shan; Hou, Ming-Hon

    2016-08-01

    The development of a ligand that is capable of distinguishing among the wide variety of G-quadruplex structures and targeting telomeres to treat cancer is particularly challenging. In this study, the ability of two anthraquinone telomerase inhibitors (NSC749235 and NSC764638) to target telomeric G-quadruplex DNA was probed. We found that these ligands specifically target the potassium form of telomeric G-quadruplex DNA over the DNA counterpart. The characteristic interaction with the telomeric G-quadruplex DNA and the anticancer activities of these ligands were also explored. The results of this present work emphasize our understanding of the binding selectivity of anthraquinone derivatives to G-quadruplex DNA and assists in future drug development for G-quadruplex-specific ligands.

  18. Human thymus medullary epithelial cells promote regulatory T-cell generation by stimulating interleukin-2 production via ICOS ligand.

    Science.gov (United States)

    Nazzal, D; Gradolatto, A; Truffault, F; Bismuth, J; Berrih-Aknin, S

    2014-09-11

    Natural thymic T regulatory (tTreg) cells maintain tolerance to self-antigen. These cells are generated in the thymus, but how this generation occurs is still controversial. Furthermore, the contribution of thymus epithelial cells to this process is still unclear, especially in humans. Using an exceptional panel of human thymic samples, we demonstrated that medullary thymus epithelial cells (mTECs) promote the generation of tTreg cells and favor their function. These effects were mediated through soluble factors and were mTEC specific since other cell types had no such effect. By evaluating the effects of mTECs on the absolute number of Treg cells and their state of proliferation or cell death, we conclude that mTECs promote the proliferation of newly generated CD25+ cells from CD4+CD25- cells and protect Treg cells from cell death. This observation implicates Bcl-2 and mitochondrial membrane potential changes, indicating that the intrinsic cell death pathway is involved in Treg protection by mTECs. Interestingly, when the mTECs were cultured directly with purified Treg cells, they were able to promote their phenotype but not their expansion, suggesting that CD4+CD25- cells have a role in the expansion process. To explore the mechanisms involved, several neutralizing antibodies were tested. The effects of mTECs on Treg cells were essentially due to interleukin (IL)-2 overproduction by thymus CD4+ T cells. We then searched for a soluble factor produced by mTECs able to increase IL-2 production by CD4+ cells and could identify the inducible T-cell costimulator ligand (ICOSL). Our data strongly suggest a « ménage à trois »: mTEC cells (via ICOSL) induce overproduction of IL-2 by CD25- T cells leading to the expansion of tTreg cells. Altogether, these results demonstrate for the first time a role of mTECs in promoting Treg cell expansion in the human thymus and implicate IL-2 and ICOSL in this process.

  19. Using molecular repertoires to identify high-affinity peptide ligands of the WW domain of human and mouse YAP.

    Science.gov (United States)

    Linn, H; Ermekova, K S; Rentschler, S; Sparks, A B; Kay, B K; Sudol, M

    1997-06-01

    The WW domain is a globular protein domain that is involved in mediating protein-protein interaction and that ultimately participates in various intracellular signaling events. The domain binds to polyproline ligands containing the xPPxY consensus (where x signifies any amino acid, P is proline and Y is tyrosine). One of the first WW domain-ligand links that was characterized in vitro was the WW domain of Yes-Associated Protein (YAP) and its WBP-1 ligand. To further characterize this molecular interaction, we used two independent approaches, both of which focused on the mutational analysis of the WBP-1 ligand. We screened repertoires of synthetic decamer peptides containing the xPPxY core of WBP-1 in which all ten positions were sequentially replaced with the remaining amino acids. In addition, we screened decamer repertoires with all permutations of the amino acids which individually increased the binding to the WW domain of YAP, as compared to the wild type. In a parallel approach, we used a phage-displayed combinatorial peptide library biased for the presence of two consecutive prolines to study ligand preferences for the WW domain of YAP. Interestingly, these two lines of investigation converged and yielded the core sequence PPPPYP, which is preferred by the YAP-WW domain. This sequence was found within the p53 (tumor suppressor) binding protein-2, a probable cognate or alternative ligand interacting with YAP.

  20. Single-domain antibody-based ligands for immunoaffinity separation of recombinant human lactoferrin from the goat lactoferrin of transgenic goat milk.

    Science.gov (United States)

    Tillib, S V; Privezentseva, M E; Ivanova, T I; Vasilev, L F; Efimov, G A; Gursky, Y G; Georgiev, G P; Goldman, I L; Sadchikova, E R

    2014-02-15

    Single-domain antibody generation technology was applied to make new Sepharose-bound ligands for affinity separation of closely related proteins, such as human and goat lactoferrin. We generated recombinant antibodies that can selectively bind/recognize only lactoferrins having amino acid sequences identical to that of human natural lactoferrin (anti-hLF Ab). Selected and purified histidine-tagged single-domain antibodies were used as ligands, and different lactoferrins were used as analytes in the kinetics analysis of lactoferrin binding to captured anti-hLF Abs using the Bio-Rad ProteOn XPR36 protein interaction array system. The data obtained were consistent with a 1:1 binding model with very high affinity, practically equal in the case of hLF and rec-hLF (calculated KD varied from 0.43nM to 3.7nM). Interaction of captured fsdAbs with goat LF was significantly weaker and not detectable under the same analysis conditions. We demonstrated the high efficiency of the recombinant human lactoferrin purification from goat lactoferrin and other proteins using the obtained single domain antibody-based affinity ligands. We believe this approach can be used for the generation of single-domain antibody-based affinity media for the efficient separation/purification of a wide spectrum of other highly homologous proteins.

  1. DNA display selection of peptide ligands for a full-length human G protein-coupled receptor on CHO-K1 cells.

    Directory of Open Access Journals (Sweden)

    Nobuhide Doi

    Full Text Available The G protein-coupled receptors (GPCRs, which form the largest group of transmembrane proteins involved in signal transduction, are major targets of currently available drugs. Thus, the search for cognate and surrogate peptide ligands for GPCRs is of both basic and therapeutic interest. Here we describe the application of an in vitro DNA display technology to screening libraries of peptide ligands for full-length GPCRs expressed on whole cells. We used human angiotensin II (Ang II type-1 receptor (hAT1R as a model GPCR. Under improved selection conditions using hAT1R-expressing Chinese hamster ovary (CHO-K1 cells as bait, we confirmed that Ang II gene could be enriched more than 10,000-fold after four rounds of selection. Further, we successfully selected diverse Ang II-like peptides from randomized peptide libraries. The results provide more precise information on the sequence-function relationships of hAT1R ligands than can be obtained by conventional alanine-scanning mutagenesis. Completely in vitro DNA display can overcome the limitations of current display technologies and is expected to prove widely useful for screening diverse libraries of mutant peptide and protein ligands for receptors that can be expressed functionally on the surface of CHO-K1 cells.

  2. Stimulation of human formyl peptide receptors by calpain inhibitors: homology modeling of receptors and ligand docking simulation.

    Science.gov (United States)

    Fujita, Hisakazu; Kato, Takayuki; Watanabe, Norifumi; Takahashi, Tatsuji; Kitagawa, Seiichi

    2011-12-15

    Calpain inhibitors, including peptide aldehydes (N-acetyl-Leu-Leu-Nle-CHO and N-acetyl-Leu-Leu-Met-CHO) and α-mercapto-acrylic acid derivatives (PD150606 and PD151746), have been shown to stimulate phagocyte functions via activation of human formyl peptide receptor (hFPR) and/or hFPR-like 1 (hFPRL1). Using the homology modeling of the receptors and the ligand docking simulation, here we show that these calpain inhibitors could bind to the putative N-formyl-Met-Leu-Phe (fMLF) binding site on hFPR and/or hFPRL1. The studies with HEK-293 cells stably expressing hFPR or hFPRL1 showed that the concentrations of calpain inhibitors required to induce an increase in cytoplasmic free Ca(2+) ([Ca(2+)](i)) was much higher (>100 folds) than those of fMLF and Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm). HEK-293 cells expressing hFPR or hFPRL1 with the mutated fMLF binding site never exhibited the [Ca(2+)](i) response to calpain inhibitors. When the optimal concentrations of each stimulus were used, pretreatment of cells with fMLF or WKYMVm abolished an increase in [Ca(2+)](i) induced by calpain inhibitors as well as the same stimulus, whereas pretreatment of cells with calpain inhibitors significantly suppressed, but never abolished, the [Ca(2+)](i) response induced by fMLF or WKYMVm, suggesting that the binding affinity of the inhibitors to the putative fMLF binding site may be lower than that of fMLF or WKYMVm. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Generation of a homology model of the human histamine H3 receptor for ligand docking and pharmacophore-based screening

    Science.gov (United States)

    Schlegel, Birgit; Laggner, Christian; Meier, Rene; Langer, Thierry; Schnell, David; Seifert, Roland; Stark, Holger; Höltje, Hans-Dieter; Sippl, Wolfgang

    2007-08-01

    The human histamine H3 receptor (hH3R) is a G-protein coupled receptor (GPCR), which modulates the release of various neurotransmitters in the central and peripheral nervous system and therefore is a potential target in the therapy of numerous diseases. Although ligands addressing this receptor are already known, the discovery of alternative lead structures represents an important goal in drug design. The goal of this work was to study the hH3R and its antagonists by means of molecular modelling tools. For this purpose, a strategy was pursued in which a homology model of the hH3R based on the crystal structure of bovine rhodopsin was generated and refined by molecular dynamics simulations in a dipalmitoylphosphatidylcholine (DPPC)/water membrane mimic before the resulting binding pocket was used for high-throughput docking using the program GOLD. Alternatively, a pharmacophore-based procedure was carried out where the alleged bioactive conformations of three different potent hH3R antagonists were used as templates for the generation of pharmacophore models. A pharmacophore-based screening was then carried out using the program Catalyst. Based upon a database of 418 validated hH3R antagonists both strategies could be validated in respect of their performance. Seven hits obtained during this screening procedure were commercially purchased, and experimentally tested in a [3H]Nα-methylhistamine binding assay. The compounds tested showed affinities at hH3R with K i values ranging from 0.079 to 6.3 μM.

  4. Design of a modified mouse protein with ligand binding properties of its human analog by molecular dynamics simulations: the case of C3 inhibition by compstatin.

    Science.gov (United States)

    Tamamis, Phanourios; Pierou, Panayiota; Mytidou, Chrystalla; Floudas, Christodoulos A; Morikis, Dimitrios; Archontis, Georgios

    2011-11-01

    The peptide compstatin and its derivatives inhibit the complement-component protein C3 in primate mammals and are potential therapeutic agents against the unregulated activation of complement in humans, but are inactive against C3 from lower mammals. Recent molecular dynamics (MD) simulations showed that the most potent compstatin analog comprised entirely of natural amino acids (W4A9) had a smaller affinity for rat C3, due to reproducible changes in the rat protein structure with respect to the human protein, which eliminated or weakened specific protein-ligand interactions seen in the human C3:W4A9 complex. Here, we study by MD simulations three W4A9 complexes with the mouse C3 protein, and two "transgenic" mouse derivatives, containing a small number (6-9) of human C3 substitutions. The mouse complex experiences the conformational changes and affinity reduction of the rat complex. In the "transgenic" complexes, the conformation remains closer to that of the human complex, the protein-ligand interactions are improved, and the affinity for compstatin becomes "human-like." The present work creates new avenues for a compstatin-sensitive animal model. A similar strategy, involving the comparison of a series of complexes by MD simulations, could be used to design "transgenic" sequences in other systems.

  5. Alendronate affects osteoprotegerin/receptor of activator of nuclear factor κB-ligand expression in human marrow stroma cells in vitro

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To evaluate the effect of alendronate on osteoprotegerin(OPG)and receptor of activator of nuclear factor κB-ligand(RANKL)expression in human marrow stroma cells(hMSCs)in vitro.Methods hMSCs were isolated from human marrow,cultured in vitro,and randomly divided into two groups:alendronate group,hMSCs culture fluid containing 1×10-7mol/L alendronate;control group,no special treatment but culturing hMSCs in DMEM.Two weeks after treatment,the expressions of OPG and RANKL were evaluated by RT-PCR and W...

  6. Solution NMR characterization of magnetic/electronic properties of azide and cyanide-inhibited substrate complexes of human heme oxygenase: implications for steric ligand tilt.

    Science.gov (United States)

    Peng, Dungeng; Ogura, Hiroshi; Ma, Li-Hua; Evans, John P; de Montellano, Paul R Ortiz; La Mar, Gerd N

    2013-04-01

    Solution 2D (1)H NMR was carried out on the azide-ligated substrate complex of human heme oxygenase, hHO, to provide information on the active site molecular structure, chromophore electronic/magnetic properties, and the distal H-bond network linked to the exogenous ligand by catalytically relevant oriented water molecules. While 2D NMR exhibited very similar patterns of two-dimensional nuclear Overhauser spectroscopy cross peaks of residues with substrate and among residues as the previously characterized cyanide complex, significant, broadly distributed chemical shift differences were observed for both labile and non-labile protons. The anisotropy and orientation of the paramagnetic susceptibility tensor, χ, were determined for both the azide and cyanide complexes. The most significant difference observed is the tilt of the major magnetic axes from the heme normal, which is only half as large for the azide than cyanide ligand, with each ligand tilted toward the catalytically cleaved α-meso position. The difference in chemical shifts is quantitatively correlated with differences in dipolar shifts in the respective complexes for all but the distal helix. The necessity of considering dipolar shifts, and hence determination of the orientation/anisotropy of χ, in comparing chemical shifts involving paramagnetic complexes, is emphasized. The analysis shows that the H-bond network cannot detect significant differences in H-bond acceptor properties of cyanide versus azide ligands. Lastly, significant retardation of distal helix labile proton exchange upon replacing cyanide with azide indicates that the dynamic stability of the distal helix is increased upon decreasing the steric interaction of the ligand with the distal helix. Copyright © 2013. Published by Elsevier Inc.

  7. Inositol hexaphosphate downregulates both constitutive and ligand-induced mitogenic and cell survival signaling, and causes caspase-mediated apoptotic death of human prostate carcinoma PC-3 cells.

    Science.gov (United States)

    Gu, Mallikarjuna; Raina, Komal; Agarwal, Chapla; Agarwal, Rajesh

    2010-01-01

    Constitutively active mitogenic and prosurvival signaling cascades due to aberrant expression and interaction of growth factors and their receptors are well documented in human prostate cancer (PCa). Epidermal growth factor (EGF) and insulin-like growth factor-1 (IGF-1) are potent mitogens that regulate proliferation and survival of PCa cells via autocrine and paracrine loops involving both mitogen-activated protein kinase (MAPK)- and Akt-mediated signaling. Accordingly, here we assessed the effect of inositol hexaphosphate (IP6) on constitutive and ligand (EGF and IGF-1)-induced biological responses and associated signaling cascades in advanced and androgen-independent human PCa PC-3 cells. Treatment of PC-3 cells with 2 mM IP6 strongly inhibited both growth and proliferation and decreased cell viability; similar effects were also observed in other human PCa DU145 and LNCaP cells. IP6 also caused a strong apoptotic death of PC-3 cells together with caspase 3 and PARP cleavage. Mechanistic studies showed that biological effects of IP6 were associated with inhibition of both constitutive and ligand-induced Akt phosphorylation together with a decrease in total Akt levels, but a differential inhibitory effect on MAPKs extra cellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK1/2), and p38 under constitutive and ligand-activated conditions. Under similar condition, IP6 also inhibited AP-1 DNA-binding activity and decreased nuclear levels of both phospho and total c-Fos and c-Jun. Together, these findings for the first time establish IP6 efficacy in inhibiting aberrant EGF receptor (EGFR) or IGF-1 receptor (IGF-1R) pathway-mediated sustained growth promoting and survival signaling cascades in advanced and androgen-independent human PCa PC-3 cells, which might have translational implications in advanced human PCa control and management.

  8. Kinetic analysis of the translocator protein positron emission tomography ligand [{sup 18}F]GE-180 in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Feeney, Claire [Imperial College London, Division of Brain Sciences, Hammersmith Hospital Campus, London (United Kingdom); Hammersmith Hospital, Computational, Cognitive and Clinical Neuroimaging Laboratory, London (United Kingdom); Scott, Gregory; Raffel, Joel; Roberts, S.; Coello, Christopher; Jolly, Amy; Searle, Graham; Goldstone, A.P.; Nicholas, Richard S.; Gunn, Roger N.; Sharp, David J. [Imperial College London, Division of Brain Sciences, Hammersmith Hospital Campus, London (United Kingdom); Brooks, David J. [Imperial College London, Division of Brain Sciences, Hammersmith Hospital Campus, London (United Kingdom); Aarhus University, Institute of Clinical Medicine, Aarhus (Denmark); Trigg, William [GE Healthcare Ltd, Amersham (United Kingdom)

    2016-11-15

    PET can image neuroinflammation by targeting the translocator protein (TSPO), which is upregulated in activated microglia. The high nonspecific binding of the first-generation TSPO radioligand [{sup 11}C]PK-11195 limits accurate quantification. [{sup 18}F]GE-180, a novel TSPO ligand, displays superior binding to [{sup 11}C]PK-11195 in vitro. Our objectives were to: (1) evaluate tracer characteristics of [{sup 18}F]GE-180 in the brains of healthy human subjects; and (2) investigate whether the TSPO Ala147Thr polymorphism influences outcome measures. Ten volunteers (five high-affinity binders, HABs, and five mixed-affinity binders, MABs) underwent a dynamic PET scan with arterial sampling after injection of [{sup 18}F]GE-180. Kinetic modelling of time-activity curves with one-tissue and two-tissue compartment models and Logan graphical analysis was applied to the data. The primary outcome measure was the total volume of distribution (V{sub T}) across various regions of interest (ROIs). Secondary outcome measures were the standardized uptake values (SUV), the distribution volume and SUV ratios estimated using a pseudoreference region. The two-tissue compartment model was the best model. The average regional delivery rate constant (K{sub 1}) was 0.01 mL cm{sup -3} min{sup -1} indicating low extraction across the blood-brain barrier (1 %). The estimated median V{sub T} across all ROIs was also low, ranging from 0.16 mL cm{sup -3} in the striatum to 0.38 mL cm{sup -3} in the thalamus. There were no significant differences in V{sub T} between HABs and MABs across all ROIs. A reversible two-tissue compartment model fitted the data well and determined that the tracer has a low first-pass extraction (approximately 1 %) and low V{sub T} estimates in healthy individuals. There was no observable dependency on the rs6971 polymorphism as compared to other second-generation TSPO PET tracers. Investigation of [{sup 18}F]GE-180 in populations with neuroinflammatory disease is needed

  9. Intracranial elimination of human glioblastoma brain tumors in nude rats using the bispecific ligand-directed toxin, DTEGF13 and convection enhanced delivery.

    Science.gov (United States)

    Oh, Seunguk; Ohlfest, John R; Todhunter, Deborah A; Vallera, Vincent D; Hall, Walter A; Chen, Hua; Vallera, Daniel A

    2009-12-01

    A bispecific ligand-directed toxin (BLT) consisting of human interleukin-13, epithelial growth factor, and the first 389 amino acids of diphtheria toxin was assembled in order to target human glioblastoma. In vitro, DTEGF13 selectively killed the human glioblastoma cell line U87-luc as well as other human glioblastomas. DTEGF13 fulfilled the requirement of a successful BLT by having greater activity than either of its monospecific counterparts or their mixture proving it necessary to have both ligands on the same single chain molecule. Aggressive brain tumors established intracranially (IC) in nude rats with U87 glioma genetically marked with a firefly luciferase reporter gene were treated with two injections of DTEGF13 using convection enhanced delivery resulting in tumor eradication in 50% of the rats which survived with tumor free status at least 110 days post tumor inoculation. An irrelevant BLT control did not protect establishing specificity. The bispecific DTEGF13 MTD dose was measured at 2 microg/injection or 0.5 microg/kg and toxicity studies indicated safety in this dose. Combination of monospecific DTEGF and DTIL13 did not inhibit tumor growth. ELISA assay indicated that anti-DT antibodies were not generated in normal immunocompetent rats given identical intracranial DTEGF13 therapy. Thus, DTEGF13 is safe and efficacious as an alternative drug for glioblastoma therapy and warrants further study.

  10. Structure of the ligand-binding domain (LBD) of human androgen receptor in complex with a selective modulator LGD2226

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng; Liu, Xiao-qin; Li, He; Liang, Kai-ni [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Miner, Jeffrey N.; Hong, Mei; Kallel, E. Adam; Oeveren, Arjan van; Zhi, Lin [Discovery Research, Ligand Pharmaceuticals Inc., 10275 Science Center Drive, San Diego, California 92121 (United States); Jiang, Tao, E-mail: x-ray@sun5.ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)

    2006-11-01

    Crystal structure of the ligand-binding domain of androgen receptor in complex with LGD2226. The androgen receptor (AR) is a ligand-inducible steroid hormone receptor that mediates androgen action, determining male sexual phenotypes and promoting spermatogenesis. As the androgens play a dominant role in male sexual development and function, steroidal androgen agonists have been used clinically for some years. However, there is a risk of potential side effects and most steroidal androgens cannot be dosed orally, which limits the use of these substances. 1,2-Dihydro-6-N,N-bis(2,2,2-trifluoroethyl) amino-4-trifluoromethyl-2-quinolinone (LGD2226) is a synthetic nonsteroidal ligand and a novel selective AR modulator. The crystal structure of the complex of LGD2226 with the androgen receptor ligand-binding domain (AR LBD) at 2.1 Å was solved and compared with the structure of the AR LBD–R1881 complex. It is hoped that this will aid in further explaining the selectivity of LGD2226 observed in in vitro and in vivo assays and in developing more selective and effective therapeutic agents.

  11. Cloning,expression and purification of the ligand-binding region of human IL-6R in E.coli and its preliminary functional identification

    Institute of Scientific and Technical Information of China (English)

    段聚宝; 王嘉玺; 韩家淮; 彭善云; 邹民吉; 苗继红; 赵春文; 马贤凯

    1995-01-01

    The ligand-binding region of human IL-6R is taken as the target gene fragment to be clonedand expressed.With pET-3b as expressing vector,two recombinants pET-6R(B)and pET-6R(B)4 have beenconstructed encoding the ligand-binding region(28 kD)of hIL-6R and its dimmer(53 kD),respectively.Afterinduction with IPTG,they produced two proteins rIL6R-28 of 28 kD and rIL6R-53 of 53 kD amounting to 50%and 30% of total bacteria proteins,respectively.The expressed products were mainly recovered as inclusionbodies.After purification and renaturation,both of them were capable of augmenting the growth-stimulatingeffect of IL-6 on 7TD1 cells,an IL-6 dependent cell line.The result of ELISA also revealed that bothrIL6R-28 and rIL6R-53 had the obvious ligand-binding activity.

  12. NMR structure of a concatemer of the first and second ligand-binding modules of the human low-density lipoprotein receptor.

    Science.gov (United States)

    Kurniawan, N D; Atkins, A R; Bieri, S; Brown, C J; Brereton, I M; Kroon, P A; Smith, R

    2000-07-01

    The ligand-binding domain of the human low-density lipoprotein receptor consists of seven modules, each of 40-45 residues. In the presence of calcium, these modules adopt a common polypeptide fold with three conserved disulfide bonds. A concatemer of the first and second modules (LB(1-2)) folds efficiently in the presence of calcium ions, forming the same disulfide connectivities as in the isolated modules. The three-dimensional structure of LB(1-2) has now been solved using two-dimensional 1H NMR spectroscopy and restrained molecular dynamics calculations. No intermodule nuclear Overhauser effects were observed, indicating the absence of persistent interaction between them. The near random-coil NH and H alpha chemical shifts and the low phi and psi angle order parameters of the four-residue linker suggest that it has considerable flexibility. The family of LB(1-2) structures superimposed well over LB1 or LB2, but not over both modules simultaneously. LB1 and LB2 have a similar pattern of calcium ligands, but the orientations of the indole rings of the tryptophan residues W23 and W66 differ, with the latter limiting solvent access to the calcium ion. From these studies, it appears that although most of the modules in the ligand-binding region of the receptor are joined by short segments, these linkers may impart considerable flexibility on this region.

  13. Human 17β-hydroxysteroid dehydrogenase-ligand complexes: crystals of different space groups with various cations and combined seeding and co-crystallization

    Science.gov (United States)

    Zhu, D.-W.; Han, Q.; Qiu, W.; Campbell, R. L.; Xie, B.-X.; Azzi, A.; Lin, S.-X.

    1999-01-01

    Human estrogenic 17β-hydroxysteroid dehydrogenase (17β-HSD1) is responsible for the synthesis of active estrogens that stimulate the proliferation of breast cancer cells. The enzyme has been crystallized using a Mg 2+/PEG (3500)/β-octyl glucoside system [Zhu et al., J. Mol. Biol. 234 (1993) 242]. The space group of these crystals is C2. Here we report that cations can affect 17β-HSD1 crystallization significantly. In the presence of Mn 2+ instead of Mg 2+, crystals have been obtained in the same space group with similar unit cell dimensions. In the presence of Li + and Na + instead of Mg 2+, the space group has been changed to P2 12 12 1. A whole data set for a crystal of 17ß-HSD1 complex with progesterone grown in the presence of Li + has been collected to 1.95 Å resolution with a synchrotron source. The cell dimensions are a=41.91 Å, b=108.21 Å, c=117.00 Å. The structure has been preliminarily determined by molecular replacement, yielding important information on crystal packing in the presence of different cations. In order to further understand the structure-function relationship of 17β-HSD1, enzyme complexes with several ligands have been crystallized. As the steroids have very low aqueous solubility, we used a combined method of seeding and co-crystallization to obtain crystals of 17β-HSD1 complexed with various ligands. This method provides ideal conditions for growing complex crystals, with ligands such as 20α-hydroxysteroid progesterone, testosterone and 17β-methyl-estradiol-NADP +. Several complex structures have been determined with reliable electronic density of the bound ligands.

  14. Target and resistance-related proteins of recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand on myeloma cell lines

    OpenAIRE

    JIAN, YUAN; Chen, Yuling; GENG, CHUANYING; Liu, Nian; YANG, GUANGZHONG; Liu, Jinwei; Li, Xin; Deng, Haiteng; CHEN, WENMING

    2016-01-01

    Recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand (rmhTRAIL) has become a potential therapeutic drug for multiple myeloma (MM). However, the exact targets and resistance mechanisms of rmhTRAIL on MM cells remain to be elucidated. The present study aimed to investigate the target and resistance-related proteins of rmhTRAIL on myeloma cell lines. A TRAIL-sensitive myeloma cell line, RPMI 8226, and a TRAIL-resistance one, U266, were chosen and the differentially ex...

  15. Influence of baicalin on the expression of receptor activator of nuclear factor-κB ligand and osteoprotegerin in human periodontal ligament cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To study the effect of baicalin on the expression of receptor activator of nuclear factor-κB ligand(RANKL)and osteoprotegerin(OPG)in cultured human periodontal ligament(HPDL)cells.Methods Small interfering RNA(siRNA)eukaryotic expression vector targeted transforming growth factor βⅡ receptor(TGF-β RⅡ)was constructed and transfected into T cells.HPDL cells with T cells transfected with siRNA or not were placed in the culture medium that had been added with lipopolysaccharide(LPS)and baicalin.The ob...

  16. Graves病患者外周血FOXP3、GITR及CD25基因的表达%Expression of FOXP3, GITR and CD25 genes in peripheral blood of patients with Graves' disease

    Institute of Scientific and Technical Information of China (English)

    王宏伟; 张莹; 陈福琴

    2009-01-01

    目的 研究Graves病(GD)不同阶段患者外周血叉状头/翅膀状螺旋转录因子(FOXP3)、糖皮质激素诱导肿瘤坏死因子受体(GITR)及IL-2受体α链(CD25)基因的表达变化,探讨其在GD发病机制中的作用.方法 收集GD患者90例,按病情分为GD初诊组30例(男13例,女17例);GD缓解组30例(男10例,女20例);GD复发组30例(男11例,女19例).健康查体者30例(男14例,女16例)作为健康对照组.应用实时荧光定量PCR法检测各组外周血单个核细胞中FOXP3、GITR及CIY25 mRNA含量,同时利用电化学发光的方法测定各组血清甲状腺激素水平及甲状腺过氧化酶抗体(TPOAb)、甲状腺球蛋白抗体(TGAb)的水平.结果 GD各组患者外周血FOXP3mRNA表达均较健康对照组显著降低(P<0.05),GD缓解组FOXP3 mRNA水平较GD初诊组显著升高(P<0.05),复发组FOXP3 mRNA水平虽低于缓解组(P<0.05),但明显高于GD初诊组(P<0.05);GD各组女性患者FOXP3mRNA表达水平显著高于男性患者(P<0.05);Graves初诊及复发组GITR mRNA、CD25mRNA表达水平显著高于对照组(P<0.05).结论 FOXP3、GITR及CD35可能参与了Graves的发生、发展及复发过程.

  17. The Positron Emission Tomography Ligand DAA1106 Binds With High Affinity to Activated Microglia in Human Neurological Disorders

    OpenAIRE

    2008-01-01

    Chronic microglial activation is an important component of many neurological disorders, and imaging activated microglia in vivo will enable the detection and improved treatment of neuroinflammation. 1-(2-Chlorphenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-carbox-amide (PK11195), a peripheral benzodiazepine receptor ligand, has been used to image neuroinflammation, but the extent to which PK11195 binding distinguishes activated microglia and reactive astrocytes is unclear. Moreover, PK1119...

  18. Enhancement of binding activity of soluble human CD40 to CD40 ligand through incorporation of an isoleucine zipper motif

    Institute of Scientific and Technical Information of China (English)

    Xian-hui HE; Li-hui XU; Yi LIU

    2006-01-01

    Aim:To investigate the effect of incorporation of all isoleucine zipper(IZ)motif into CD40 on binding activity of CD40 for the CD40 ligand (CD40L).Methods:Prokaryotic expression vectors for 2 soluble CD40 derivatives,shCD40His and shCD40IZ containing an IZ dowain,were constructed and expressed in Escherichia coli.The recombinant proteins were purified to homogeneity after refolding from inclusion bodies.Their molecular weights in solution of shCD40His and shCD40IZ were compared by size-exclusion chromatography,and their binding activity for CD40L on Jurkat T cells was determined by flow cytometry.Results:shCD40His and shCD40IZ were generated.Both of them possessed significant binding activity for the cognate ligand CD40L expressed on the cell surface.shCD40IZ had much higher binding activity to its ligand(CD40L)than did shCD40His.Furthermore,size-exclusion chromatography demonstrated that shCD40IZ existed in high molecular mass forms that were most likely to be trimers in solution.Conclusion:Incorporation of an IZ motif into CD40 enhances its binding activity for CD40L through trimerization of the CD40 derivative.

  19. Measurement of intact insulin-like growth factor-binding protein-3 in human plasma using a ligand immunofunctional assay.

    Science.gov (United States)

    Lassarre, C; Binoux, M

    2001-03-01

    Limited proteolysis of insulin-like growth factor binding protein-3 (IGFBP-3) is a fundamental mechanism in the regulation of IGF-I bioavailability in the bloodstream. Its measurement by Western immunoblotting provides only semiquantitative estimation. We have developed a ligand immunofunctional assay (LIFA) for quantifying human (h) intact IGFBP-3 in biological fluids. IGFBP-bound IGFs are dissociated and separated by acid pH ultrafiltration, and a monoclonal antibody specific to the first 160 amino acids of IGFBP-3 is used to capture hIGFBP-3 in a solid-phase assay. The complex is then incubated with (125)I-IGF-I, which binds to intact IGFBP-3 but not to its proteolytic fragments. Binding specificity was demonstrated in competition experiments with unlabeled IGF. Nonspecific binding was 1.4%. The fragments comprising residues 1-160 and 1-95 of recombinant hIGFBP-3 [corresponding to the major proteolytic fragments of approximately 30 kDa and (glycosylated) 20 or (nonglycosylated) 16 kDa detected in serum by Western immunoblotting, respectively] fail to bind (125)I-IGF-I when complexed with the monoclonal antibody. Similarly, no binding of (125)I-IGF-I was obtained in the LIFA when applied to plasmas from pregnant women during the final 3 months of pregnancy, where the characteristic 42- to 39-kDa doublet of intact IGFBP-3 is undetectable. The standard curve was established using a pool of plasmas (EDTA) from healthy adults, for which standardization with glycosylated recombinant hIGFBP-3 yielded an intact IGFBP-3 content of 2 microg/mL. The dynamic range of the LIFA was 0.50-3.75 microL equivalent of the plasma pool in a total volume of 300 microL per assay tube, with a sensitivity threshold of approximately 1 ng intact IGFBP-3. Unknown plasma samples were studied at three concentrations. Intra- and interassay variations were 3.6% and 4%, respectively. In 31 healthy adults, the mean plasma concentration of intact IGFBP-3 was 2.24 +/- 0.08 (SEM) mg/L, and that of

  20. Exploration of the orthosteric/allosteric interface in human M1 muscarinic receptors by bitopic fluorescent ligands.

    Science.gov (United States)

    Daval, Sandrine B; Kellenberger, Esther; Bonnet, Dominique; Utard, Valérie; Galzi, Jean-Luc; Ilien, Brigitte

    2013-07-01

    Bitopic binding properties apply to a variety of muscarinic compounds that span and simultaneously bind to both the orthosteric and allosteric receptor sites. We provide evidence that fluorescent pirenzepine derivatives, with the M1 antagonist fused to the boron-dipyrromethene [Bodipy (558/568)] fluorophore via spacers of varying lengths, exhibit orthosteric/allosteric binding properties at muscarinic M1 receptors. This behavior was inferred from a combination of functional, radioligand, and fluorescence resonance energy transfer binding experiments performed under equilibrium and kinetic conditions on enhanced green fluorescent protein-fused M1 receptors. Although displaying a common orthosteric component, the fluorescent compounds inherit bitopic properties from a linker-guided positioning of their Bodipy moiety within the M1 allosteric vestibule. Depending on linker length, the fluorophore is allowed to reach neighboring allosteric domains, overlapping or not with the classic gallamine site, but distinct from the allosteric indolocarbazole "WIN" site. Site-directed mutagenesis, as well as molecular modeling and ligand docking studies based on recently solved muscarinic receptor structures, further support the definition of two groups of Bodipy-pirenzepine derivatives exhibiting distinct allosteric binding poses. Thus, the linker may dictate pharmacological outcomes for bitopic molecules that are hardly predictable from the properties of individual orthosteric and allosteric building blocks. Our findings also demonstrate that the fusion of a fluorophore to an orthosteric ligand is not neutral, as it may confer, unless carefully controlled, unexpected properties to the resultant fluorescent tracer. Altogether, this study illustrates the importance of a "multifacet" experimental approach to unravel and validate bitopic ligand binding mechanisms.

  1. The gene for calcium-modulating cyclophilin ligand (CAMLG) is located on human Chromosome 5q23 and a syntenic region of mouse chromosome 13

    Energy Technology Data Exchange (ETDEWEB)

    Bram, R.J.; Valentine, V.; Shapiro, D.N. [St. Jude Children`s Research Hospital, Memphis, TN (United States)]|[Univ. of Tennessee, Memphis, TN (United States)] [and others

    1996-01-15

    The CAMLG gene encodes a novel cyclophilin B-binding protein called calcium-modulating cyclophilin ligand, which appears to be involved in the regulation of calcium signaling in T lymphocytes and other cells. The murine homolog, Caml, was localized by interspecific backcross analysis in the middle of chromosome 13. By fluorescence in situ hybridization, this gene was localized to human chromosome 5 in a region (q23) known to be syntenic to mouse chromosome 13. These results provide further evidence supporting the extensive homology between human chromosome 5q and mouse chromosome 13. In addition, the results will provide a basis for further evaluation of cytogenetic anomalies that may contribute to inherited defects in calcium signaling or immune system function. 15 refs., 2 figs.

  2. Understanding the Selectivity Mechanism of the Human Asialoglycoprotein Receptor (ASGP-R toward Gal- and Man- type Ligands for Predicting Interactions with Exogenous Sugars

    Directory of Open Access Journals (Sweden)

    Emo Chiellini

    2007-01-01

    Full Text Available A practical approach for addressing the computer simulation of protein-carbohydrate interactions is described here. An articulated computational protocol was setup and validated by checking its ability to predict experimental data, available in theliterature, and concerning the selectivity shown by the Carbohydrate Recognition Domain(CRD of the human asialoglycoprotein receptor (ASGP-R toward Gal-type ligands. Somerequired features responsible for the interactions were identified. Subsequently the sameprotocol was applied to monomer sugar molecules that constitute the building blocks foralginates and ulvans. Such sugar polymers may supply a low-cost source of rare sugars witha potential impact on several industrial applications, from pharmaceutical to fine chemicalindustry. An example of their applicative exploitation could be given by their use indeveloping biomaterial with adhesion properties toward hepatocytes, through interactionwith the ASGP-R. Such a receptor has been already proposed as a target for exogenousmolecules, specifically in the case of hepatocytes, for diagnostic and therapeutic purposes.The DOCK5.2 program was used to search optimal locations of the above ligands of interestinto CRD binding site and to roughly estimate interaction energies. Finally, the binding ∆G oftheoretical protein-ligand complexes was estimated by using the DelPhi program in which thesolvation free energy is accounted for with a continuum solvent model, by solving the Poisson-Boltzmann equation. The structure analysis of the obtained complexes and their ∆G values suggest that one of the sugar monomers of interest shows the desired characteristics.

  3. The extracellular loop 2 (ECL2 of the human histamine H4 receptor substantially contributes to ligand binding and constitutive activity.

    Directory of Open Access Journals (Sweden)

    David Wifling

    Full Text Available In contrast to the corresponding mouse and rat orthologs, the human histamine H4 receptor (hH4R shows extraordinarily high constitutive activity. In the extracellular loop (ECL, replacement of F169 by V as in the mouse H4R significantly reduced constitutive activity. Stabilization of the inactive state was even more pronounced for a double mutant, in which, in addition to F169V, S179 in the ligand binding site was replaced by M. To study the role of the FF motif in ECL2, we generated the hH4R-F168A mutant. The receptor was co-expressed in Sf9 insect cells with the G-protein subunits Gαi2 and Gβ1γ2, and the membranes were studied in [3H]histamine binding and functional [35S]GTPγS assays. The potency of various ligands at the hH4R-F168A mutant decreased compared to the wild-type hH4R, for example by 30- and more than 100-fold in case of the H4R agonist UR-PI376 and histamine, respectively. The high constitutive activity of the hH4R was completely lost in the hH4R-F168A mutant, as reflected by neutral antagonism of thioperamide, a full inverse agonist at the wild-type hH4R. By analogy, JNJ7777120 was a partial inverse agonist at the hH4R, but a partial agonist at the hH4R-F168A mutant, again demonstrating the decrease in constitutive activity due to F168A mutation. Thus, F168 was proven to play a key role not only in ligand binding and potency, but also in the high constitutive activity of the hH4R.

  4. Synthesis, spectroscopic characterization, electrochemical behavior and computational analysis of mixed diamine ligand gold(III) complexes: antiproliferative and in vitro cytotoxic evaluations against human cancer cell lines.

    Science.gov (United States)

    Al-Jaroudi, Said S; Monim-ul-Mehboob, M; Altaf, Muhammad; Al-Saadi, Abdulaziz A; Wazeer, Mohammed I M; Altuwaijri, Saleh; Isab, Anvarhusein A

    2014-12-01

    The gold(III) complexes of the type [(DACH)Au(en)]Cl3, 1,2-Diaminocyclohexane ethylenediamine gold(III) chloride [where 1,2-DACH = cis-, trans-1,2- and S,S-1,2diaminocyclohexane and en = ethylenediamine] have been synthesized and characterized using various analytical and spectroscopic techniques including elemental analysis, UV-Vis and FTIR spectra; and solution as well as solid-state NMR measurements. The solid-state (13)C NMR shows that 1,2-diaminocyclohexane (1,2-DACH) and ethylenediamine (en) are strongly bound to the gold(III) center via N donor atoms. The stability of the mixed diamine ligand gold(III) was determined by (1)H and (13)C NMR spectra. Their electrochemical behavior was studied by cyclic voltammetry. The structural details and relative stabilities of the four possible isomers of the complexes were also reported at the B3LYP/LANL2DZ level of theory. The coordination sphere of these complexes around gold(III) center adopts distorted square planar geometry. The computational study also demonstrates that trans- conformations is slightly more stable than the cis-conformations. The antiproliferative effects and cytotoxic properties of the mixed diamine ligand gold(III) complexes were evaluated in vitro on human gastric SGC7901 and prostate PC3 cancer cells using MTT assay. The antiproliferative study of the gold(III) complexes on PC3 and SGC7901 cells indicate that complex 1 is the most effective antiproliferative agent among mixed ligand based gold(III) complexes 1-3. The IC50 data reveal that the in vitro cytotoxicity of complexes 1 and 3 against SGC7901 cancer cells are fairly better than that of cisplatin.

  5. Ligand-activated PPARδ upregulates α-smooth muscle actin expression in human dermal fibroblasts: A potential role for PPARδ in wound healing.

    Science.gov (United States)

    Ham, Sun Ah; Hwang, Jung Seok; Yoo, Taesik; Lee, Won Jin; Paek, Kyung Shin; Oh, Jae-Wook; Park, Chan-Kyu; Kim, Jin-Hoi; Do, Jung Tae; Kim, Jae-Hwan; Seo, Han Geuk

    2015-12-01

    The phenotypic changes that accompany differentiation of resident fibroblasts into myofibroblasts are important aspects of the wound healing process. Recent studies showed that peroxisome proliferator-activated receptor (PPAR) δ plays a critical role in wound healing. To determine whether the nuclear receptor PPARδ can modulate the differentiation of human dermal fibroblasts (HDFs) into myofibroblasts. These studies were undertaken in primary HDFs using Western blot analyses, small interfering (si)RNA-mediated gene silencing, reporter gene assays, chromatin immunoprecipitation (ChIP), migration assays, collagen gel contraction assays, and real-time PCR. Activation of PPARδ by GW501516, a specific ligand of PPARδ, specifically upregulated the myofibroblast marker α-smooth muscle actin (α-SMA) in a time- and concentration-dependent manner. This induction was significantly inhibited by the presence of siRNA against PPARδ, indicating that PPARδ is involved in myofibroblast transdifferentiation of HDFs. Ligand-activated PPARδ increased α-SMA promoter activity in a dual mode by directly binding a direct repeat-1 (DR1) site in the α-SMA promoter, and by inducing expression of transforming growth factor (TGF)-β, whose downstream effector Smad3 interacts with a Smad-binding element (SBE) in another region of the promoter. Mutations in these cis-elements totally abrogated transcriptional activation of the α-SMA gene by the PPARδ ligand; thus both sites represent novel types of PPARδ response elements. GW501516-activated PPARδ also increased the migration and contractile properties of HDFs, as demonstrated by Transwell and collagen lattice contraction assays, respectively. In addition, PPARδ-mediated upregulation of α-SMA was correlated with elevated expression of myofibroblast markers such as collagen I and fibronectin, with a concomitant reduction in expression of the epithelial marker E-cadherin. PPARδ plays pivotal roles in wound healing by promoting

  6. The extracellular loop 2 (ECL2) of the human histamine H4 receptor substantially contributes to ligand binding and constitutive activity.

    Science.gov (United States)

    Wifling, David; Bernhardt, Günther; Dove, Stefan; Buschauer, Armin

    2015-01-01

    In contrast to the corresponding mouse and rat orthologs, the human histamine H4 receptor (hH4R) shows extraordinarily high constitutive activity. In the extracellular loop (ECL), replacement of F169 by V as in the mouse H4R significantly reduced constitutive activity. Stabilization of the inactive state was even more pronounced for a double mutant, in which, in addition to F169V, S179 in the ligand binding site was replaced by M. To study the role of the FF motif in ECL2, we generated the hH4R-F168A mutant. The receptor was co-expressed in Sf9 insect cells with the G-protein subunits Gαi2 and Gβ1γ2, and the membranes were studied in [3H]histamine binding and functional [35S]GTPγS assays. The potency of various ligands at the hH4R-F168A mutant decreased compared to the wild-type hH4R, for example by 30- and more than 100-fold in case of the H4R agonist UR-PI376 and histamine, respectively. The high constitutive activity of the hH4R was completely lost in the hH4R-F168A mutant, as reflected by neutral antagonism of thioperamide, a full inverse agonist at the wild-type hH4R. By analogy, JNJ7777120 was a partial inverse agonist at the hH4R, but a partial agonist at the hH4R-F168A mutant, again demonstrating the decrease in constitutive activity due to F168A mutation. Thus, F168 was proven to play a key role not only in ligand binding and potency, but also in the high constitutive activity of the hH4R.

  7. Biodistribution and radiation dosimetry of the {alpha}{sub 7} nicotinic acetylcholine receptor ligand [{sup 11}C]CHIBA-1001 in humans

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Muneyuki [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022 (Japan); Wu, Jin; Toyohara, Jun [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022 (Japan); Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Oda, Keiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022 (Japan); Ishikawa, Masatomo [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022 (Japan); Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022 (Japan); Hashimoto, Kenji [Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Ishiwata, Kiichi, E-mail: ishiwata@pet.tmig.or.j [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022 (Japan)

    2011-04-15

    Introduction: 4-[{sup 11}C]Methylphenyl 2,4-diazabicyclo[3.2.2]nonane-2-carboxylate ([{sup 11}C]CHIBA-1001) is a newly developed positron emission tomography (PET) ligand for mapping {alpha}{sub 7} nicotinic acetylcholine receptors. We investigated whole-body biodistribution and radiation dosimetry of [{sup 11}C]CHIBA-1001 in humans and compared the results with those obtained in mice. Methods: Dynamic whole-body PET was carried out for three human subjects after administering a bolus injection of [{sup 11}C]CHIBA-1001. Emission scans were collected in two-dimensional mode over five bed positions. Regions of interest were placed over 12 organs. Radiation dosimetry was estimated from the residence times of these source organs using the OLINDA program. Biodistribution data from mice were also used for the prediction of radiation dosimetry in humans, and results with and those without accommodation of different proportions of organ-to-total-body mass were compared with the results from the human PET study. Results: In humans, the highest accumulation was observed in the liver, whereas in mice, the highest accumulation was observed in the urinary bladder. The estimated effective dose from the human PET study was 6.9 {mu}Sv/MBq, and that from mice was much underestimated. Conclusion: Effective dose estimates for [{sup 11}C]CHIBA-1001 were compatible with those associated with other common nuclear medicine tests. Absorption doses among several organs were considerably different between the human and mouse studies. Human dosimetry studies for the investigation of radiation safety are desirable as one of the first clinical trials of new PET probes before their application in subsequent clinical investigations.

  8. Propionic acid secreted from propionibacteria induces NKG2D ligand expression on human-activated T lymphocytes and cancer cells

    DEFF Research Database (Denmark)

    Andresen, Lars; Hansen, Karen Aagaard; Jensen, Helle

    2009-01-01

    We found that propionic acid secreted from propionibacteria induces expression of the NKG2D ligands MICA/B on activated T lymphocytes and different cancer cells, without affecting MICA/B expression on resting peripheral blood cells. Growth supernatant from propionibacteria or propionate alone could...... activity. Other short-chain fatty acids such as lactate, acetate, and butyrate could also induce MICA/B expression. We observed a striking difference in the molecular signaling pathways that regulate MICA/B. A functional glycolytic pathway was essential for MICA/B expression after exposure to propionate...... that propionate, produced either by bacteria or during cellular metabolism, has significant immunoregulatory function and may be cancer prophylactic....

  9. Structures of human thymidylate synthase R163K with dUMP, FdUMP and glutathione show asymmetric ligand binding

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Lydia M.; Celeste, Lesa R.; Lovelace, Leslie L.; Lebioda, Lukasz (SC)

    2012-02-21

    Thymidylate synthase (TS) is a well validated target in cancer chemotherapy. Here, a new crystal form of the R163K variant of human TS (hTS) with five subunits per asymmetric part of the unit cell, all with loop 181-197 in the active conformation, is reported. This form allows binding studies by soaking crystals in artificial mother liquors containing ligands that bind in the active site. Using this approach, crystal structures of hTS complexes with FdUMP and dUMP were obtained, indicating that this form should facilitate high-throughput analysis of hTS complexes with drug candidates. Crystal soaking experiments using oxidized glutathione revealed that hTS binds this ligand. Interestingly, the two types of binding observed are both asymmetric. In one subunit of the physiological dimer covalent modification of the catalytic nucleophile Cys195 takes place, while in another dimer a noncovalent adduct with reduced glutathione is formed in one of the active sites.

  10. Structures of human thymidylate synthase R163K with dUMP, FdUMP and glutathione show asymmetric ligand binding.

    Science.gov (United States)

    Gibson, Lydia M; Celeste, Lesa R; Lovelace, Leslie L; Lebioda, Lukasz

    2011-01-01

    Thymidylate synthase (TS) is a well validated target in cancer chemotherapy. Here, a new crystal form of the R163K variant of human TS (hTS) with five subunits per asymmetric part of the unit cell, all with loop 181-197 in the active conformation, is reported. This form allows binding studies by soaking crystals in artificial mother liquors containing ligands that bind in the active site. Using this approach, crystal structures of hTS complexes with FdUMP and dUMP were obtained, indicating that this form should facilitate high-throughput analysis of hTS complexes with drug candidates. Crystal soaking experiments using oxidized glutathione revealed that hTS binds this ligand. Interestingly, the two types of binding observed are both asymmetric. In one subunit of the physiological dimer covalent modification of the catalytic nucleophile Cys195 takes place, while in another dimer a noncovalent adduct with reduced glutathione is formed in one of the active sites.

  11. Regulatory roles of the N-terminal domain based on crystal structures of human pyruvate dehydrogenase kinase 2 containing physiological and synthetic ligands.

    Science.gov (United States)

    Knoechel, Thorsten R; Tucker, Alec D; Robinson, Colin M; Phillips, Chris; Taylor, Wendy; Bungay, Peter J; Kasten, Shane A; Roche, Thomas E; Brown, David G

    2006-01-17

    Pyruvate dehydrogenase kinase (PDHK) regulates the activity of the pyruvate dehydrogenase multienzyme complex. PDHK inhibition provides a route for therapeutic intervention in diabetes and cardiovascular disorders. We report crystal structures of human PDHK isozyme 2 complexed with physiological and synthetic ligands. Several of the PDHK2 structures disclosed have C-terminal cross arms that span a large trough region between the N-terminal regulatory (R) domains of the PDHK2 dimers. The structures containing bound ATP and ADP demonstrate variation in the conformation of the active site lid, residues 316-321, which enclose the nucleotide beta and gamma phosphates at the active site in the C-terminal catalytic domain. We have identified three novel ligand binding sites located in the R domain of PDHK2. Dichloroacetate (DCA) binds at the pyruvate binding site in the center of the R domain, which together with ADP, induces significant changes at the active site. Nov3r and AZ12 inhibitors bind at the lipoamide binding site that is located at one end of the R domain. Pfz3 (an allosteric inhibitor) binds in an extended site at the other end of the R domain. We conclude that the N-terminal domain of PDHK has a key regulatory function and propose that the different inhibitor classes act by discrete mechanisms. The structures we describe provide insights that can be used for structure-based design of PDHK inhibitors.

  12. The FML (Fucose Mannose Ligand of Leishmania donovani: a new tool in diagnosis, prognosis, transfusional control and vaccination against human kala-azar

    Directory of Open Access Journals (Sweden)

    Claris B. Palatnik de Sousa

    1996-04-01

    Full Text Available The Fucose-Mannose Ligand (FML of Leishmania donovani is a complex glycoproteic fraction. Its potential use as a tool for diagnosis of human visceral leishmaniasis was tested with human sera from Natal, Rio Grande do Norte, Brazil. The FML-ELISA test, showed 100% sensitivity and 96% specificity, identifying patients with overt kala-azar (p < 0.001, when compared to normal sera, and subjects with subclinical infection. More than 20% apparently healthy subjects with positive reaction to FML developed overt kala-azar during the following 10 months. In the screening of human blood donnors, a prevalence of 5% of sororeactive subjects was detected, attaining 17% in a single day. The GP36 glycoprotein of FHL is specifically reconized by human kala-azar sera. The immunoprotective effect of FML on experimental L. donovanii infection was tested in swiss albino mice. The protection scheemes included three weekly doses of FML, supplemented or not with saponin by the subcutaneous or intraperitoneal routes and challenge with 2x 10(7 amastigotes of Leishmania donovani. An enhancement of 80.0 % in antibody response (p<0.001 and reduction of 85.5 % parasite liver burden (p<0.001 was detected in animals immunized with FML saponin, unrespectivety of the immunization route.

  13. Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4.

    NARCIS (Netherlands)

    Joosten, S.A.; Meijgaarden, K.E. van; Savage, N.D.; Boer, T. de; Triebel, F.; Wal, A. van der; Heer, E. de; Klein, M.R.; Geluk, A.; Ottenhoff, T.H.M.

    2007-01-01

    Regulatory T cells (Treg) comprise multiple subsets and are important in controlling immunity and inflammation. However, the induction and mode of action of the various distinct Treg subsets remain ill defined, particularly in humans. Here, we describe a human CD8+ lymphocyte activation gene-3 (LAG-

  14. Biodistribution and radiation dosimetry of a positron emission tomographic ligand, {sup 18}F-SP203, to image metabotropic glutamate subtype 5 receptors in humans

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Yasuyuki; Simeon, Fabrice G.; Pike, Victor W.; Innis, Robert B.; Fujita, Masahiro [National Institute of Mental Health, Molecular Imaging Branch, Bethesda, MD (United States); Hatazawa, Jun [Osaka University Graduate School of Medicine, Department of Nuclear Medicine and Tracer Kinetics, Suita, Osaka (Japan); Mozley, P.D. [Merck Research Laboratories, West Point, PA (United States)

    2010-10-15

    A new PET ligand, 3-fluoro-5-(2-(2-{sup 18}F-(fluoromethyl)-thiazol-4-yl)ethynyl)benzonitrile ({sup 18}F-SP203), is a positron emission tomographic radioligand selective for metabotropic glutamate subtype 5 receptors. The purposes of this study were to estimate the radiation-absorbed doses of {sup 18}F-SP203 in humans and to determine from the distribution of radioactivity in bone structures with various proportions of bone and red marrow whether {sup 18}F-SP203 undergoes defluorination. Whole-body images were acquired for 5 h after injecting {sup 18}F-SP203 in seven healthy humans. Urine was collected at various time points. Radiation-absorbed doses were estimated by the Medical Internal Radiation Dose scheme. After injecting {sup 18}F-SP203, the two organs with highest radiation exposure were urinary bladder wall and gallbladder wall, consistent with both urinary and fecal excretion. In the skeleton, most of the radioactivity was in bone structures that contain red marrow and not in those without red marrow. Although the dose to red marrow (30.9 {mu}Sv/MBq) was unusually high, the effective dose (17.8 {mu}Sv/MBq) of {sup 18}F-SP203 was typical of that of other {sup 18}F radiotracers. {sup 18}F-SP203 causes an effective dose in humans typical of several other {sup 18}F radioligands and undergoes little defluorination. (orig.)

  15. Structure of human POFUT1, its requirement in ligand-independent oncogenic Notch signaling, and functional effects of Dowling-Degos mutations

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Brian J.; Zimmerman, Brandon; Egan, Emily D.; Lofgren, Michael; Xu, Xiang; Hesser, Anthony; Blacklow, Stephen C.

    2017-03-17

    Protein O-fucosyltransferase-1 (POFUT1), which transfers fucose residues to acceptor sites on serine and threonine residues of epidermal growth factor-like repeats of recipient proteins, is essential for Notch signal transduction in mammals. Here, we examine the consequences of POFUT1 loss on the oncogenic signaling associated with certain leukemia-associated mutations of human Notch1, report the structures of human POFUT1 in free and GDP-fucose bound states, and assess the effects of Dowling-Degos mutations on human POFUT1 function. CRISPR-mediated knockout of POFUT1 in U2OS cells suppresses both normal Notch1 signaling, and the ligand-independent signaling associated with leukemogenic mutations of Notch1. Normal and oncogenic signaling are rescued by wild-type POFUT1 but rescue is impaired by an active-site R240A mutation. The overall structure of the human enzyme closely resembles that of the Caenorhabditis elegans protein, with an overall backbone RMSD of 0.93 Å, despite primary sequence identity of only 39% in the mature protein. GDP-fucose binding to the human enzyme induces limited backbone conformational movement, though the side chains of R43 and D244 reorient to make direct contact with the fucose moiety in the complex. The reported Dowling-Degos mutations of POFUT1, except for M262T, fail to rescue Notch1 signaling efficiently in the CRISPR-engineered POFUT1-/- background. Together, these studies identify POFUT1 as a potential target for cancers driven by Notch1 mutations and provide a structural roadmap for its inhibition.

  16. Expression of Fas (CD95/APO-1) ligand by human breast cancers: significance for tumor immune privilege.

    LENUS (Irish Health Repository)

    O'Connell, J

    2012-02-03

    Breast cancers have been shown to elicit tumor-specific immune responses. As in other types of cancer, the antitumor immune response fails to contain breast tumor growth, and a reduction in both the quantity and cytotoxic effectiveness of tumor-infiltrating lymphocytes (TILs) is associated with a poorer prognosis. Fas ligand (FasL) induces apoptotic death of activated lymphocytes that express its cell surface receptor, FasR (CD95\\/APO-1). FasL-mediated apoptosis of activated lymphocytes contributes to normal immune downregulation through its roles in tolerance acquisition, immune response termination, and maintenance of immune privilege in the eye, testis, and fetus. In this report, we demonstrate that breast carcinomas express FasL. Using in situ hybridization and immunohistochemistry, we show that breast tumors constitutively express FasL at both the mRNA and protein levels, respectively. FasL expression is prevalent in breast cancer: 100% of breast tumors (17 of 17) were found to express FasL, and expression occurred over more than 50% of the tumor area in all cases. By immunohistochemistry, FasR was found to be coexpressed with FasL throughout large areas of all the breast tumors. This suggests that the tumor cells had acquired intracellular defects in FasL-mediated apoptotic signaling. FasL and FasR expression were independent of tumor type or infiltrative capacity. FasL expressed by tumor cells has previously been shown to kill Fas-sensitive lymphoid cells in vitro and has been associated with apoptosis of TILs in vivo. We conclude that mammary carcinomas express FasL in vivo as a potential inhibitor of the antitumor immune response.

  17. The 15 SCR flexible extracellular domains of human complement receptor type 2 can mediate multiple ligand and antigen interactions.

    Science.gov (United States)

    Gilbert, Hannah E; Asokan, Rengasamy; Holers, V Michael; Perkins, Stephen J

    2006-10-01

    Complement receptor type 2 (CR2, CD21) is a cell surface protein that links the innate and adaptive immune response during the activation of B cells. The extracellular portion of CR2 comprises 15 or 16 short complement regulator (SCR) domains, for which the overall arrangement in solution is unknown. This was determined by constrained scattering and ultracentrifugation modelling. The radius of gyration of CR2 SCR 1-15 was determined to be 11.5 nm by both X-ray and neutron scattering, and that of its cross-section was 1.8 nm. The distance distribution function P(r) showed that the overall length of CR2 SCR 1-15 was 38 nm. Sedimentation equilibrium curve fits gave a mean molecular weight of 135,000 (+/- 13,000) Da, in agreement with a fully glycosylated structure. Velocity experiments using the g*(s) derivative method gave a sedimentation coefficient of 4.2 (+/- 0.1) S. In order to construct a model of CR2 SCR 1-15 for constrained fitting, homology models for the 15 SCR domains were combined with randomised linker peptides generated by molecular dynamics simulations. Using an automated procedure, the analysis of 15,000 possible CR2 SCR 1-15 models showed that only those models in which the 15 SCR domains were flexible but partially folded back accounted for the scattering and sedimentation data. The best-fit CR2 models provided a visual explanation for the versatile interaction of CR2 with four ligands C3d, CD23, gp350 and IFN-alpha. The flexible location of CR2 SCR 1-2 is likely to facilitate interactions of C3d-antigen complexes with the B cell receptor.

  18. Virtual screening using ligand-based pharmacophores for inhibitors of human tyrosyl-DNA phospodiesterase (hTdp1)

    Science.gov (United States)

    Weidlich, Iwona E.; Dexheimer, Thomas; Marchand, Christophe; Antony, Smitha; Pommier, Yves; Nicklaus, Marc C.

    2012-01-01

    Human tyrosyl-DNA phosphodiesterase (hTdp1) inhibitors have become a major area of drug research and structure-based design since they have been shown to work synergistically with camptothecin (CPT) and selectively in cancer cells. The pharmacophore features of 14 hTdp1 inhibitors were used as a filter to screen the ChemNavigator iResearch Library of about 27 million purchasable samples. Docking of the inhibitors and hits obtained from virtual screening was performed into a structural model of hTdp1 based on a high resolution X-ray crystal structure of human Tdp1 in complex with vanadate, DNA and a human topoisomerase I (TopI)-derived peptide (PDB code: 1NOP). We present and discuss in some detail 46 compounds matching the three-dimensional arrangement of the pharmacophoric features. The presented novel chemotypes may provide new scaffolds for developing inhibitors of Tdp1. PMID:19963390

  19. Investigation on etretin effects on expression of Fas/FasL ligand and apoptosis in cultured human keratinocytes

    Institute of Scientific and Technical Information of China (English)

    Ping Liu; Shunsheng Tan; Yanping Xi; Zhenping Cao

    2005-01-01

    Objective: To further illuminate a possibme mechanism of Fas/FasL in the treatment of psoriasis, the expression of it and apoptosis of KC were investigated. Methods: With cell culture,immunocytochemistry, the expression of Fas/FasL protein after the treatment with etretin was observed in cultured human normal keratinocytes. Then, the state of apoptosis in cultured keratinocyte after stimuwasn't involved in apoptosis in cultured normol human keratinocytes. But during limited period, the apoptosis of KC could be induced by etretin, thus it can antagonize benign proliferate of keratinocytes. Our data showed up-regulation of the expression of Fas/FasL and apoptosis in cultured human keratinocytes stimulated by etretin, and its function may be involved in the therapeutic machanism of psoriasis.

  20. How did variable NK-cell receptors and MHC class I ligands influence immunity, reproduction and human evolution?

    Science.gov (United States)

    Parham, Peter; Moffett, Ashley

    2014-01-01

    Preface Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, where they have progressively co-evolved with MHC class I molecules. The emergence of MHC-C in hominids drove the evolution of a system of MHC-C receptors that is most elaborate in chimpanzees. In contrast, the human system appears to have been subject to different and competing selection pressures that have acted on its immunological and reproductive functions. We suggest that this compromise facilitated development of the bigger brains that enabled archaic and modern humans to migrate out-of-Africa and populate other continents. PMID:23334245

  1. Toll-like receptor 8 ligands activate a vitamin D mediated autophagic response that inhibits human immunodeficiency virus type 1.

    Science.gov (United States)

    Campbell, Grant R; Spector, Stephen A

    2012-01-01

    Toll-like receptors (TLR) are important in recognizing microbial pathogens and triggering host innate immune responses, including autophagy, and in the mediation of immune activation during human immunodeficiency virus type-1 (HIV) infection. We report here that TLR8 activation in human macrophages induces the expression of the human cathelicidin microbial peptide (CAMP), the vitamin D receptor (VDR) and cytochrome P450, family 27, subfamily B, polypeptide 1 (CYP27B1), which 1α-hydroxylates the inactive form of vitamin D, 25-hydroxycholecalciferol, into its biologically active metabolite. Moreover, we demonstrate using RNA interference, chemical inhibitors and vitamin D deficient media that TLR8 agonists inhibit HIV through a vitamin D and CAMP dependent autophagic mechanism. These data support an important role for vitamin D in the control of HIV infection, and provide a biological explanation for the benefits of vitamin D. These findings also provide new insights into potential novel targets to prevent and treat HIV infection.

  2. Cysteine-rich secretory protein 3 is a ligand of alpha1B-glycoprotein in human plasma

    DEFF Research Database (Denmark)

    Udby, Lene; Sørensen, Ole E; Pass, Jesper

    2004-01-01

    Human cysteine-rich secretory protein 3 (CRISP-3; also known as SGP28) belongs to a family of closely related proteins found in mammals and reptiles. Some mammalian CRISPs are known to be involved in the process of reproduction, whereas some of the CRISPs from reptiles are neurotoxin......-like substances found in lizard saliva or snake venom. Human CRISP-3 is present in exocrine secretions and in secretory granules of neutrophilic granulocytes and is believed to play a role in innate immunity. On the basis of the relatively high content of CRISP-3 in human plasma and the small size of the protein...... (28 kDa), we hypothesized that CRISP-3 in plasma was bound to another component. This was supported by size-exclusion chromatography and immunoprecipitation of plasma proteins. The binding partner was identified by mass spectrometry as alpha(1)B-glycoprotein (A1BG), which is a known plasma protein...

  3. Low-density crystal packing of human protein kinase CK2 catalytic subunit in complex with resorufin or other ligands

    DEFF Research Database (Denmark)

    Klopffleisch, Karsten; Issinger, Olaf Georg; Niefind, Karsten

    2012-01-01

    adopts a closed conformation correlating to a canonically established catalytic spine as is typical for eukaryotic protein kinases. In the corresponding crystal packing the hinge/helix αD region is nearly unaffected by crystal contacts, so that largely unbiased conformational adaptions are possible....... This is documented by published human CK2α structures with the same crystal packing but with an open hinge/helix αD region, one of which has been redetermined here with a higher symmetry. An overview of all published human CK2α crystal packings serves as the basis for a discussion of the factors that determine...

  4. Biomaterial arrays with defined adhesion ligand densities and matrix stiffness identify distinct phenotypes for tumorigenic and nontumorigenic human mesenchymal cell types.

    Science.gov (United States)

    Hansen, Tyler D; Koepsel, Justin T; Le, Ngoc Nhi; Nguyen, Eric H; Zorn, Stefan; Parlato, Matthew; Loveland, Samuel G; Schwartz, Michael P; Murphy, William L

    2014-05-01

    Here, we aimed to investigate migration of a model tumor cell line (HT-1080 fibrosarcoma cells, HT-1080s) using synthetic biomaterials to systematically vary peptide ligand density and substrate stiffness. A range of substrate elastic moduli were investigated by using poly(ethylene glycol) (PEG) hydrogel arrays (0.34 - 17 kPa) and self-assembled monolayer (SAM) arrays (~0.1-1 GPa), while cell adhesion was tuned by varying the presentation of Arg-Gly-Asp (RGD)-containing peptides. HT-1080 motility was insensitive to cell adhesion ligand density on RGD-SAMs, as they migrated with similar speed and directionality for a wide range of RGD densities (0.2-5% mol fraction RGD). Similarly, HT-1080 migration speed was weakly dependent on adhesion on 0.34 kPa PEG surfaces. On 13 kPa surfaces, a sharp initial increase in cell speed was observed at low RGD concentration, with no further changes observed as RGD concentration was increased further. An increase in cell speed ~ two-fold for the 13 kPa relative to the 0.34 kPa PEG surface suggested an important role for substrate stiffness in mediating motility, which was confirmed for HT-1080s migrating on variable modulus PEG hydrogels with constant RGD concentration. Notably, despite ~ two-fold changes in cell speed over a wide range of moduli, HT-1080s adopted rounded morphologies on all surfaces investigated, which contrasted with well spread primary human mesenchymal stem cells (hMSCs). Taken together, our results demonstrate that HT-1080s are morphologically distinct from primary mesenchymal cells (hMSCs) and migrate with minimal dependence on cell adhesion for surfaces within a wide range of moduli, whereas motility is strongly influenced by matrix mechanical properties.

  5. Comparative distribution of binding of the muscarinic receptor ligands pirenzepine, AF-DX 384, (R,R)-I-QNB and (R,S)-I-QNB to human brain.

    Science.gov (United States)

    Piggott, Margaret; Owens, Jonathan; O'Brien, John; Paling, Sean; Wyper, David; Fenwick, John; Johnson, Mary; Perry, Robert; Perry, Elaine

    2002-09-01

    Quinuclidinyl benzilate (QNB) and its derivatives are being developed to investigate muscarinic receptor changes in vivo in Alzheimer's disease and dementia with Lewy bodies. This is the first study of [125I]-(R,R)-I-QNB and [125I]-(R,S)-I-QNB binding in vitro in human brain. We have compared the in vitro binding of the muscarinic ligands [3H]pirenzepine and [3H]AF-DX 384, which have selectivity for the M1 and M2/M4 receptor subtypes, respectively, to the binding of [125I]-(R,R)-I-QNB and [125I]-(R,S)-I-QNB. This will provide a guide to the interpretation of in vivo SPET images generated with [123I]-(R,R)-I-QNB and [123I]-(R,S)-I-QNB. Binding was investigated in striatum, globus pallidus, thalamus and cerebellum, and cingulate, insula, temporal and occipital cortical areas, which show different proportions of muscarinic receptor subtypes, in post-mortem brain from normal individuals. M1 receptors are of high density in cortex and striatum and are relatively low in the thalamus and cerebellum, while M4 receptors are mainly expressed in the striatum, and M2 receptors are most evident in the cerebellum and thalamus. [125I]-(R,R)-I-QNB and [125I]-(R,S)-I-QNB density distribution patterns were consistent with binding to both M1 and M4 receptors, with [125I]-(R,R)-I-QNB additionally binding to a non-cholinergic site not displaceable by atropine. This distribution can be exploited by in vivo imaging, developing ligands for both SPET and PET, to reveal muscarinic receptor changes in Alzheimer's disease and dementia with Lewy bodies during the disease process and following cholinergic therapy.

  6. High-resolution structures of mutants of residues that affect access to the ligand-binding cavity of human lipocalin-type prostaglandin D synthase.

    Science.gov (United States)

    Perduca, Massimiliano; Bovi, Michele; Bertinelli, Mattia; Bertini, Edoardo; Destefanis, Laura; Carrizo, Maria E; Capaldi, Stefano; Monaco, Hugo L

    2014-08-01

    Lipocalin-type prostaglandin D synthase (L-PGDS) catalyzes the isomerization of the 9,11-endoperoxide group of PGH2 (prostaglandin H2) to produce PGD2 (prostaglandin D2) with 9-hydroxy and 11-keto groups. The product of the reaction, PGD2, is the precursor of several metabolites involved in many regulatory events. L-PGDS, the first member of the important lipocalin family to be recognized as an enzyme, is also able to bind and transport small hydrophobic molecules and was formerly known as β-trace protein, the second most abundant protein in human cerebrospinal fluid. Previous structural work on the mouse and human proteins has focused on the identification of the amino acids responsible and the proposal of a mechanism for catalysis. In this paper, the X-ray structures of the apo and holo forms (bound to PEG) of the C65A mutant of human L-PGDS at 1.40 Å resolution and of the double mutant C65A/K59A at 1.60 Å resolution are reported. The apo forms of the double mutants C65A/W54F and C65A/W112F and the triple mutant C65A/W54F/W112F have also been studied. Mutation of the lysine residue does not seem to affect the binding of PEG to the ligand-binding cavity, and mutation of a single or both tryptophans appears to have the same effect on the position of these two aromatic residues at the entrance to the cavity. A solvent molecule has also been identified in an invariant position in the cavity of virtually all of the molecules present in the nine asymmetric units of the crystals that have been examined. Taken together, these observations indicate that the residues that have been mutated indeed appear to play a role in the entrance-exit process of the substrate and/or other ligands into/out of the binding cavity of the lipocalin.

  7. The Plasmodium falciparum erythrocyte invasion ligand Pfrh4 as a target of functional and protective human antibodies against malaria.

    Directory of Open Access Journals (Sweden)

    Linda Reiling

    Full Text Available BACKGROUND: Acquired antibodies are important in human immunity to malaria, but key targets remain largely unknown. Plasmodium falciparum reticulocyte-binding-homologue-4 (PfRh4 is important for invasion of human erythrocytes and may therefore be a target of protective immunity. METHODS: IgG and IgG subclass-specific responses against different regions of PfRh4 were determined in a longitudinal cohort of 206 children in Papua New Guinea (PNG. Human PfRh4 antibodies were tested for functional invasion-inhibitory activity, and expression of PfRh4 by P. falciparum isolates and sequence polymorphisms were determined. RESULTS: Antibodies to PfRh4 were acquired by children exposed to P. falciparum malaria, were predominantly comprised of IgG1 and IgG3 subclasses, and were associated with increasing age and active parasitemia. High levels of antibodies, particularly IgG3, were strongly predictive of protection against clinical malaria and high-density parasitemia. Human affinity-purified antibodies to the binding region of PfRh4 effectively inhibited erythrocyte invasion by P. falciparum merozoites and antibody levels in protected children were at functionally-active concentrations. Although expression of PfRh4 can vary, PfRh4 protein was expressed by most isolates derived from the cohort and showed limited sequence polymorphism. CONCLUSIONS: Evidence suggests that PfRh4 is a target of antibodies that contribute to protective immunity to malaria by inhibiting erythrocyte invasion and preventing high density parasitemia. These findings advance our understanding of the targets and mechanisms of human immunity and evaluating the potential of PfRh4 as a component of candidate malaria vaccines.

  8. IL-1β but not programmed death-1 and programmed death-ligand pathway is critical for the human Th17 response to M. tuberculosis

    Directory of Open Access Journals (Sweden)

    Emmanuel Stephen-Victor

    2016-11-01

    Full Text Available The programmed death-1 (PD-1- programmed death ligand-1 (PD-L1 and PD-L2 co-inhibitory pathway has been implicated in the evasion strategies of Mycobacterium tuberculosis. Specifically, M. tuberculosis-induced PD-L1 orchestrates expansion of regulatory T cells (Tregs and suppression of Th1 response. However, the role of PD pathway in regulating Th17 response to M. tuberculosis has not been investigated. In the present report, we demonstrate that M. tuberculosis and M. tuberculosis-derived antigen fractions have differential abilities to mediate human monocyte and dendritic cell (DC-mediated Th17 response and were independent of expression of PD-L1 or PD-L2 on aforementioned antigen-presenting cells. Importantly, we observed that blockade of PD-L1 or PD-1 did not significantly modify either the frequencies of Th17 cells or the production of IL-17 from CD4+ T cells though IFN-γ response was significantly enhanced. On the contrary, IL-1β from monocytes and DCs were critical for the Th17 response to M. tuberculosis. Together, our results indicate that IL-1β but not members of the programmed death pathway is critical for human Th17 response to M. tuberculosis

  9. Combined treatment with the Cox-2 inhibitor niflumic acid and PPARγ ligand ciglitazone induces ER stress/caspase-8-mediated apoptosis in human lung cancer cells.

    Science.gov (United States)

    Kim, Byeong Mo; Maeng, Kyungah; Lee, Kee-Ho; Hong, Sung Hee

    2011-01-28

    The present study was performed to investigate the possible combined use of the Cox-2 inhibitor niflumic acid and the PPARγ ligand ciglitazone and to elucidate the mechanisms underlying enhanced apoptosis by this combination treatment in human lung cancer cells. Combined niflumic acid-ciglitazone treatment synergistically induced apoptotic cell death, activated caspase-9, caspase-3, and induced caspase-3-mediated PARP cleavage. The combination treatment also triggered apoptosis through caspase-8/Bid/Bax activation, and the inhibition of caspase-8 suppressed caspase-8/Bid activation, caspase-3-mediated PARP cleavage, and concomitant apoptosis. In addition, combined niflumic acid-ciglitazone treatment significantly induced ER stress responses, and suppression of CHOP expression significantly attenuated the combined niflumic acid-ciglitazone treatment-induced activation of caspase-8 and caspase-3, and the subsequent apoptotic cell death, indicating a role of ER stress in caspase-8 activation and apoptosis. Interestingly, the pro-apoptotic effects of combined niflumic acid-ciglitazone treatment were realized through Cox-2- and PPARγ-independent mechanisms. Taken together, these results suggest that sequential ER stress and caspase-8 activation are critical in combined niflumic acid-ciglitazone treatment-induced apoptosis in human lung cancer cells.

  10. Synergistic interaction between a mixed ligand copper (II) chelate complex and two anticancer agents in T47D human breast cancer cells in vitro.

    Science.gov (United States)

    Geromichalos, G D; Trafalis, D T; Katsoulos, G A; Papageorgiou, A; Dalezis, P; Triandafillidis, E B; Hadjikostas, C C; Athanassiou, A

    2006-01-01

    We have developed a copper(II) chelate complex with a tridentate ONN-Schiff ligand and the anion of salicylate, showing a potent cytotoxic activity against a panel of human and murine cancer cell lines. In this experiment we have explored the combination effect between Cu(SalNEt(2))salicylate (Cu-Sal) complex and two widely used drugs in cancer chemotherapy, bleomycin (BLM) and 5-fluorouracil (5-FU), against T47D human breast cancer cells. Previous theoretical quantum-chemical studies of this complex and ass adducts with biological molecules elucidated the underlying mechanism of action of this complex. Cells grown in adherence in 96-well microplates were exposed simultaneously to both agents for 48 h. During cytotoxicity was assessed via the XTT colorimetric assay. The combined drug interaction was assessed with the median-effect analysis and the combination index (CI). Concurrent treatment of cells with Cu-Sal complex and the chemotherapeutic drugs BLM and 5-FU and the antioxidant agent ascorbic acid (AsA) resulted mainly in synergistic interaction for most concentration ratios. Cu-Sal complex interacts synergistically with the chemotherapeutic drugs for most schedules of administration. These findings call for prompting to search for possible interaction of this complex with other cellular elements of fundamental importance in cell proliferation.

  11. Cell-free synthesis of functional human epidermal growth factor receptor: Investigation of ligand-independent dimerization in Sf21 microsomal membranes using non-canonical amino acids

    Science.gov (United States)

    Quast, Robert B.; Ballion, Biljana; Stech, Marlitt; Sonnabend, Andrei; Varga, Balázs R.; Wüstenhagen, Doreen A.; Kele, Péter; Schiller, Stefan M.; Kubick, Stefan

    2016-01-01

    Cell-free protein synthesis systems represent versatile tools for the synthesis and modification of human membrane proteins. In particular, eukaryotic cell-free systems provide a promising platform for their structural and functional characterization. Here, we present the cell-free synthesis of functional human epidermal growth factor receptor and its vIII deletion mutant in a microsome-containing system derived from cultured Sf21 cells. We provide evidence for embedment of cell-free synthesized receptors into microsomal membranes and asparagine-linked glycosylation. Using the cricket paralysis virus internal ribosome entry site and a repetitive synthesis approach enrichment of receptors inside the microsomal fractions was facilitated thereby providing analytical amounts of functional protein. Receptor tyrosine kinase activation was demonstrated by monitoring receptor phosphorylation. Furthermore, an orthogonal cell-free translation system that provides the site-directed incorporation of p-azido-L-phenylalanine is characterized and applied to investigate receptor dimerization in the absence of a ligand by photo-affinity cross-linking. Finally, incorporated azides are used to generate stable covalently linked receptor dimers by strain-promoted cycloaddition using a novel linker system. PMID:27670253

  12. Human biodistribution and radiation dosimetry of {sup 11}C-(R)-PK11195, the prototypic PET ligand to image inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Jussi; Roivainen, Anne; Virta, Jere; Helin, Semi; Naagren, Kjell; Rinne, Juha O. [University of Turku and Turku University Hospital, Turku PET Centre, P.O. Box 52, Turku (Finland)

    2010-03-15

    The positron emission tomography (PET) radiotracer {sup 11}C-(R)-PK11195 allows the in vivo imaging in humans of the translocator protein 18 kDa (TSPO), previously called peripheral benzodiazepine receptor (PBR), a marker of inflammation. Despite its widespread use, the radiation burden associated with {sup 11}C-(R)-PK11195 in humans is not known. To examine this, we performed dynamic whole-body imaging with PET and {sup 11}C-(R)-PK11195 in healthy humans. Five healthy male volunteers were scanned with PET and {sup 11}C-(R)-PK11195, using a dynamic whole-body imaging protocol. An organ-specific method was used to measure accumulated radioactivity in source organs, and residence times were calculated as areas under the curve of time-activity curves expressed as percentage of injected radioactivity. Residence times were used as input for OLINDA/EXM 1.0 software to model the equivalent organ doses and the effective dose for the 70-kg man. After intravenous injection of {sup 11}C-(R)-PK11195, radioactivity accumulated in organs rich in TSPO as well as routes of excretion: the hepatobiliary system and the urine. The mean effective dose was 4.8 {mu}Sv/MBq according to International Commission on Radiological Protection (ICRP) Publication 60 and 5.1 {mu}Sv/MBq according to ICRP Publication 103, and the highest equivalent organ doses were observed in the kidneys (14.0 {mu}Sv/MBq), spleen (12.5 {mu}Sv/MBq) and small intestine (12.2 {mu}Sv/MBq). Imaging of TSPO with PET using {sup 11}C-(R)-PK11195 is associated with modest radiation exposure, similar in magnitude to most other {sup 11}C-labelled PET tracers, suggesting feasibility of {sup 11}C-(R)-PK11195 imaging in clinical human studies involving multiple scans in the same subjects per year. (orig.)

  13. Hedgehog signaling is synergistically enhanced by nutritional deprivation and ligand stimulation in human fibroblasts of Gorlin syndrome.

    Science.gov (United States)

    Mizuochi, Hiromi; Fujii, Katsunori; Shiohama, Tadashi; Uchikawa, Hideki; Shimojo, Naoki

    2015-02-13

    Hedgehog signaling is a pivotal developmental pathway that comprises hedgehog, PTCH1, SMO, and GLI proteins. Mutations in PTCH1 are responsible for Gorlin syndrome, which is characterized by developmental defects and tumorigenicity. Although the hedgehog pathway has been investigated extensively in Drosophila and mice, its functional roles have not yet been determined in human cells. In order to elucidate the mechanism by which transduction of the hedgehog signal is regulated in human tissues, we employed human fibroblasts derived from three Gorlin syndrome patients and normal controls. We investigated GLI1 transcription, downstream of hedgehog signaling, to assess native signal transduction, and then treated fibroblasts with a recombinant human hedgehog protein with or without serum deprivation. We also examined the transcriptional levels of hedgehog-related genes under these conditions. The expression of GLI1 mRNA was significantly higher in Gorlin syndrome-derived fibroblasts than in control cells. Hedgehog stimulation and nutritional deprivation synergistically enhanced GLI1 transcription levels, and this was blocked more efficiently by vismodegib, a SMO inhibitor, than by the natural compound, cyclopamine. Messenger RNA profiling revealed the increased expression of Wnt signaling and morphogenetic molecules in these fibroblasts. These results indicated that the hedgehog stimulation and nutritional deprivation synergistically activated the hedgehog signaling pathway in Gorlin syndrome fibroblasts, and this was associated with increments in the transcription levels of hedgehog-related genes such as those involved in Wnt signaling. These fibroblasts may become a significant tool for predicting the efficacies of hedgehog molecular-targeted therapies such as vismodegib.

  14. Inhibitors of human tyrosyl-DNA phospodiesterase (hTdp1) developed by virtual screening using ligand-based pharmacophores.

    Science.gov (United States)

    Weidlich, Iwona E; Dexheimer, Thomas; Marchand, Christophe; Antony, Smitha; Pommier, Yves; Nicklaus, Marc C

    2010-01-01

    Human tyrosyl-DNA phosphodiesterase (hTdp1) inhibitors have become a major area of drug research and structure-based design since they have been shown to work synergistically with camptothecin (CPT) and selectively in cancer cells. The pharmacophore features of 14 hTdp1 inhibitors were used as a filter to screen the ChemNavigator iResearch Library of about 27 million purchasable samples. Docking of the inhibitors and hits obtained from virtual screening was performed into a structural model of hTdp1 based on a high resolution X-ray crystal structure of human Tdp1 in complex with vanadate, DNA and a human topoisomerase I (TopI)-derived peptide (PDB code: 1NOP). A total of 46 compounds matching the three-dimensional arrangement of the pharmacophoric features were assayed. Using a high-throughput screening assay, we have identified an 1H-indol-3-yl-acetic acid derivative as a potent Tdp1 inhibitor with an IC(50) value of 7.94 microM. The obtained novel chemotype may provide a new scaffold for developing inhibitors of Tdp1. Copyright (c) 2009. Published by Elsevier Ltd.

  15. Toll-like receptor 8 ligands activate a vitamin D mediated autophagic response that inhibits human immunodeficiency virus type 1.

    Directory of Open Access Journals (Sweden)

    Grant R Campbell

    Full Text Available Toll-like receptors (TLR are important in recognizing microbial pathogens and triggering host innate immune responses, including autophagy, and in the mediation of immune activation during human immunodeficiency virus type-1 (HIV infection. We report here that TLR8 activation in human macrophages induces the expression of the human cathelicidin microbial peptide (CAMP, the vitamin D receptor (VDR and cytochrome P450, family 27, subfamily B, polypeptide 1 (CYP27B1, which 1α-hydroxylates the inactive form of vitamin D, 25-hydroxycholecalciferol, into its biologically active metabolite. Moreover, we demonstrate using RNA interference, chemical inhibitors and vitamin D deficient media that TLR8 agonists inhibit HIV through a vitamin D and CAMP dependent autophagic mechanism. These data support an important role for vitamin D in the control of HIV infection, and provide a biological explanation for the benefits of vitamin D. These findings also provide new insights into potential novel targets to prevent and treat HIV infection.

  16. Transcriptional regulation of human FE65, a ligand of Alzheimer's disease amyloid precursor protein, by Sp1.

    LENUS (Irish Health Repository)

    Yu, Hoi-Tin

    2010-03-01

    FE65 is a neuronal-enriched adaptor protein that binds to the Alzheimer\\'s disease amyloid precursor protein (APP). FE65 forms a transcriptionally active complex with the APP intracellular domain (AICD). The precise gene targets for this complex are unclear but several Alzheimer\\'s disease-linked genes have been proposed. Additionally, evidence suggests that FE65 influences APP metabolism. The mechanism by which FE65 expression is regulated is as yet unknown. To gain insight into the regulatory mechanism, we cloned a 1.6 kb fragment upstream of the human FE65 gene and found that it possesses particularly strong promoter activity in neurones. To delineate essential regions in the human FE65 promoter, a series of deletion mutants were generated. The minimal FE65 promoter was located between -100 and +5, which contains a functional Sp1 site. Overexpression of the transcription factor Sp1 potentiates the FE65 promoter activity. Conversely, suppression of the FE65 promoter was observed in cells either treated with an Sp1 inhibitor or in which Sp1 was knocked down. Furthermore, reduced levels of Sp1 resulted in downregulation of endogenous FE65 mRNA and protein. These findings reveal that Sp1 plays a crucial role in transcriptional control of the human FE65 gene.

  17. The Fas counterattack in vivo: apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma.

    LENUS (Irish Health Repository)

    Bennett, M W

    2012-02-03

    Various cancer cell lines express Fas ligand (FasL) and can kill lymphoid cells by Fas-mediated apoptosis in vitro. FasL expression has been demonstrated in several human malignancies in vivo. We sought to determine whether human esophageal carcinomas express FasL, and whether FasL expression is associated with increased apoptosis of tumor-infiltrating lymphocytes (TIL) in vivo, thereby contributing to the immune privilege of the tumor. Using in situ hybridization and immunohistochemistry, respectively, FasL mRNA and protein were colocalized to neoplastic esophageal epithelial cells in all esophageal carcinomas (squamous, n = 6; adenocarcinoma, n = 2). The Extent of FasL expression was variable, with both FasL-positive and FasL-negative neoplastic regions occurring within tumors. TIL were detected by immunohistochemical staining for the leukocyte common Ag, CD45. FasL expression was associated with a mean fourfold depletion of TIL when compared with FasL-negative areas within the same tumors (range 1.6- to 12-fold, n = 6,p < 0.05). Cell death of TIL was detected by dual staining of CD45 (immunohistochemistry) and DNA strand breaks (TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling). There was a mean twofold increase in detectable cell death among TIL in FasL-positive areas compared with FasL-negative areas (range 1.6- to 2.4-fold, n = 6, p < 0.05). In conclusion, we demonstrate a statistically significant, quantitative reduction of TIL concomitant with significantly increased TIL apoptosis within FasL-expressing areas of esophageal tumors. Our findings suggest Fas-mediated apoptotic depletion of TIL in response to FasL expression by esophageal cancers, and provide the first direct, quantitative evidence to support the Fas counterattack as a mechanism of immune privilege in vivo in human cancer.

  18. Synergistic interaction between a novel mixed ligand copper(II) chelate complex and a panel of anticancer agents in T47D human breast cancer cells in vitro.

    Science.gov (United States)

    Geromichalos, G D; Katsoulos, G A; Trafalis, D T; Hadjikostas, C C; Papageorgiou, A

    2005-01-01

    We have developed a novel copper(II) chelate complex with a tridentate ONN-Schiff base ligand and the anion of salicylate, which presented a potent cytotoxic activity against a panel of human and murine cancer cell lines. In this experiment we explored the combined effect between Cu(SalNEt(2))salicylate (Cu-Sal) complex and the widely used anticancer drugs carboplatin (CBDCA), cyclophosphamide (CTX) and paclitaxel (TXL) against T47D human breast cancer cells. Theoretical (quantum-chemical) study of this complex and its adducts with biological molecules were carried out, aiming at the elucidation of the underlying mechanism of action. Cells grown in adherence in 96-well microplates were exposed simultaneously to both agents for 48 h. Drug cytotoxicity was assessed via the XTT colorimetric assay. The combined drug interaction was assessed with the median-effect analysis and the combination index (CI). Copper(II) salicylate complex was proved active against T47D human breast cancer cells. Concurrent treatment of cells with Cu-Sal complex and the chemotherapeutic drugs CBDCA, CTX and TXL, mainly showed a synergistic interaction in most concentration ratios. Cu-Sal complex interacts synergistically with tested chemotherapeutic drugs for most schedules of administration, and only occasionally an additive or antagonistic effect was apparent. With the aid of quantum-chemical calculations it was demonstrated that the mechanism of action of this complex involves binding to DNA and RNA. These findings prompt to search for possible interaction of this complex with other cellular elements of fundamental importance in cell proliferation.

  19. A race for RAGE ligands.

    Science.gov (United States)

    Schleicher, Erwin D

    2010-08-01

    In experimental animals a causal involvement of the multiligand receptor for advanced glycation end products (RAGE) in the development of diabetic vascular complications has been demonstrated. However, the nature of RAGE ligands present in patients with diabetic nephropathy has not yet been defined; this leaves open the relevance of the RAGE system to the human disease.

  20. CCR5 susceptibility to ligand-mediated down-modulation differs between human T lymphocytes and myeloid cells.

    Science.gov (United States)

    Fox, James M; Kasprowicz, Richard; Hartley, Oliver; Signoret, Nathalie

    2015-07-01

    CCR5 is a chemokine receptor expressed on leukocytes and a coreceptor used by HIV-1 to enter CD4(+) T lymphocytes and macrophages. Stimulation of CCR5 by chemokines triggers internalization of chemokine-bound CCR5 molecules in a process called down-modulation, which contributes to the anti-HIV activity of chemokines. Recent studies have shown that CCR5 conformational heterogeneity influences chemokine-CCR5 interactions and HIV-1 entry in transfected cells or activated CD4(+) T lymphocytes. However, the effect of CCR5 conformations on other cell types and on the process of down-modulation remains unclear. We used mAbs, some already shown to detect distinct CCR5 conformations, to compare the behavior of CCR5 on in vitro generated human T cell blasts, monocytes and MDMs and CHO-CCR5 transfectants. All human cells express distinct antigenic forms of CCR5 not detected on CHO-CCR5 cells. The recognizable populations of CCR5 receptors exhibit different patterns of down-modulation on T lymphocytes compared with myeloid cells. On T cell blasts, CCR5 is recognized by all antibodies and undergoes rapid chemokine-mediated internalization, whereas on monocytes and MDMs, a pool of CCR5 molecules is recognized by a subset of antibodies and is not removed from the cell surface. We demonstrate that this cell surface-retained form of CCR5 responds to prolonged treatment with more-potent chemokine analogs and acts as an HIV-1 coreceptor. Our findings indicate that the regulation of CCR5 is highly specific to cell type and provide a potential explanation for the observation that native chemokines are less-effective HIV-entry inhibitors on macrophages compared with T lymphocytes.

  1. Structures of the human Pals1 PDZ domain with and without ligand suggest gated access of Crb to the PDZ peptide-binding groove

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Marina E.; Fletcher, Georgina C.; O’Reilly, Nicola; Purkiss, Andrew G.; Thompson, Barry J. [Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY (United Kingdom); McDonald, Neil Q., E-mail: neil.mcdonald@cancer.org.uk [Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY (United Kingdom); Birkbeck College, University of London, Malet Street, London WC1E 7HX (United Kingdom)

    2015-03-01

    This study characterizes the interaction between the carboxy-terminal (ERLI) motif of the essential polarity protein Crb and the Pals1/Stardust PDZ-domain protein. Structures of human Pals1 PDZ with and without a Crb peptide are described, explaining the highly conserved nature of the ERLI motif and revealing a sterically blocked peptide-binding groove in the absence of ligand. Many components of epithelial polarity protein complexes possess PDZ domains that are required for protein interaction and recruitment to the apical plasma membrane. Apical localization of the Crumbs (Crb) transmembrane protein requires a PDZ-mediated interaction with Pals1 (protein-associated with Lin7, Stardust, MPP5), a member of the p55 family of membrane-associated guanylate kinases (MAGUKs). This study describes the molecular interaction between the Crb carboxy-terminal motif (ERLI), which is required for Drosophila cell polarity, and the Pals1 PDZ domain using crystallography and fluorescence polarization. Only the last four Crb residues contribute to Pals1 PDZ-domain binding affinity, with specificity contributed by conserved charged interactions. Comparison of the Crb-bound Pals1 PDZ structure with an apo Pals1 structure reveals a key Phe side chain that gates access to the PDZ peptide-binding groove. Removal of this side chain enhances the binding affinity by more than fivefold, suggesting that access of Crb to Pals1 may be regulated by intradomain contacts or by protein–protein interaction.

  2. Development of a microprocessing-assisted cell-systematic evolution of ligands by exponential enrichment method for human umbilical vein endothelial cells

    Science.gov (United States)

    Terazono, Hideyuki; Kim, Hyonchol; Nomura, Fumimasa; Yasuda, Kenji

    2016-06-01

    We developed a microprocessing-assisted technique to select single-strand DNA aptamers that bind to unknown targets on the cell surface by modifying the conventional systematic evolution of ligands by exponential enrichment (cell-SELEX). Our technique involves 1) the specific selection of target-cell-surface-bound aptamers without leakage of intracellular components by trypsinization and 2) cloning of aptamers by microprocessing-assisted picking of single cells using magnetic beads. After cell-SELEX, the enriched aptamers were conjugated with magnetic beads. The aptamer-magnetic beads conjugates attached to target cells were collected individually by microassisted procedures using microneedles under a microscope. After that, the sequences of the collected magnetic-bead-bound aptamers were identified. As a result, a specific aptamer for the surface of target cells, e.g., human umbilical vein endothelial cells (HUVECs), was chosen and its specificity was examined using other cell types, e.g., HeLa cells. The results indicate that this microprocessing-assisted cell-SELEX method for identifying aptamers is applicable in biological research and clinical diagnostics.

  3. Novel computational methodologies for structural modeling of spacious ligand binding sites of G-protein-coupled receptors: development and application to human leukotriene B4 receptor.

    Science.gov (United States)

    Ishino, Yoko; Harada, Takanori

    2012-01-01

    This paper describes a novel method to predict the activated structures of G-protein-coupled receptors (GPCRs) with high accuracy, while aiming for the use of the predicted 3D structures in in silico virtual screening in the future. We propose a new method for modeling GPCR thermal fluctuations, where conformation changes of the proteins are modeled by combining fluctuations on multiple time scales. The core idea of the method is that a molecular dynamics simulation is used to calculate average 3D coordinates of all atoms of a GPCR protein against heat fluctuation on the picosecond or nanosecond time scale, and then evolutionary computation including receptor-ligand docking simulations functions to determine the rotation angle of each helix of a GPCR protein as a movement on a longer time scale. The method was validated using human leukotriene B4 receptor BLT1 as a sample GPCR. Our study demonstrated that the proposed method was able to derive the appropriate 3D structure of the active-state GPCR which docks with its agonists.

  4. Mutagenesis of the aspartic acid ligands in human serum transferrin: lobe-lobe interaction and conformation as revealed by antibody, receptor-binding and iron-release studies.

    Science.gov (United States)

    Mason, A; He, Q Y; Tam, B; MacGillivray, R A; Woodworth, R

    1998-01-01

    Recombinant non-glycosylated human serum transferrin and mutants in which the liganding aspartic acid (D) in one or both lobes was changed to a serine residue (S) were produced in a mammalian cell system and purified from the tissue culture media. Significant downfield shifts of 20, 30, and 45 nm in the absorption maxima were found for the D63S-hTF, D392S-hTF and the double mutant, D63S/D392S-hTF when compared to wild-type hTF. A monoclonal antibody to a sequential epitope in the C-lobe of hTF reported affinity differences between the apo- and iron-forms of each mutant and the control. Cell-binding studies performed under the same buffer conditions used for the antibody work clearly showed that the mutated lobe(s) had an open cleft. It is not clear whether the receptor itself may play a role in promoting the open conformation or whether the iron remains in the cleft. PMID:9461487

  5. Novel Computational Methodologies for Structural Modeling of Spacious Ligand Binding Sites of G-Protein-Coupled Receptors: Development and Application to Human Leukotriene B4 Receptor

    Directory of Open Access Journals (Sweden)

    Yoko Ishino

    2012-01-01

    Full Text Available This paper describes a novel method to predict the activated structures of G-protein-coupled receptors (GPCRs with high accuracy, while aiming for the use of the predicted 3D structures in in silico virtual screening in the future. We propose a new method for modeling GPCR thermal fluctuations, where conformation changes of the proteins are modeled by combining fluctuations on multiple time scales. The core idea of the method is that a molecular dynamics simulation is used to calculate average 3D coordinates of all atoms of a GPCR protein against heat fluctuation on the picosecond or nanosecond time scale, and then evolutionary computation including receptor-ligand docking simulations functions to determine the rotation angle of each helix of a GPCR protein as a movement on a longer time scale. The method was validated using human leukotriene B4 receptor BLT1 as a sample GPCR. Our study demonstrated that the proposed method was able to derive the appropriate 3D structure of the active-state GPCR which docks with its agonists.

  6. Chronic infection drives expression of the inhibitory receptor CD200R, and its ligand CD200, by mouse and human CD4 T cells.

    Directory of Open Access Journals (Sweden)

    Stefano Caserta

    Full Text Available Certain parasites have evolved to evade the immune response and establish chronic infections that may persist for many years. T cell responses in these conditions become muted despite ongoing infection. Upregulation of surface receptors with inhibitory properties provides an immune cell-intrinsic mechanism that, under conditions of chronic infection, regulates immune responses and limits cellular activation and associated pathology. The negative regulator, CD200 receptor, and its ligand, CD200, have been shown to regulate macrophage activation and reduce pathology following infection. We show that CD4 T cells also increase expression of inhibitory CD200 receptors (CD200R in response to chronic infection. CD200R was upregulated on murine effector T cells in response to infection with bacterial, Salmonella enterica, or helminth, Schistosoma mansoni, pathogens that respectively drive predominant Th1- or Th2-responses. In vitro chronic and prolonged stimuli were required for the sustained upregulation of CD200R, and its expression coincided with loss of multifunctional potential in T effector cells during infection. Importantly, we show an association between IL-4 production and CD200R expression on T effector cells from humans infected with Schistosoma haematobium that correlated effectively with egg burden and, thus infection intensity. Our results indicate a role of CD200R:CD200 in T cell responses to helminths which has diagnostic and prognostic relevance as a marker of infection for chronic schistosomiasis in mouse and man.

  7. Effect of Common Buffers and Heterocyclic Ligands on the Binding of Cu(II at the Multimetal Binding Site in Human Serum Albumin

    Directory of Open Access Journals (Sweden)

    Magdalena Sokołowska

    2010-01-01

    Full Text Available Visible-range circular dichroism titrations were used to study Cu(II binding properties of Multimetal Binding Site (MBS of Human Serum Albumin (HSA. The formation of ternary MBS-Cu(II-Buffer complexes at pH 7.4 was positively verified for sodium phosphate, Tris, and Hepes, the three most common biochemical buffers. The phosphate > Hepes > Tris order of affinities, together with strong spectral changes induced specifically by Tris, indicates the presence of both Buffer-Cu(II and Buffer-HSA interactions. All complexes are strong enough to yield a nearly 100% ternary complex formation in 0.5 mM HSA dissolved in 100 mM solutions of respective buffers. The effects of warfarin and ibuprofen, specific ligands of hydrophobic pockets I and II in HSA on the Cu(II binding to MBS were also investigated. The effects of ibuprofen were negligible, but warfarin diminished the MBS affinity for Cu(II by a factor of 20, as a result of indirect conformational effects. These results indicate that metal binding properties of MBS can be modulated directly and indirectly by small molecules.

  8. Rational design and synthesis of altered peptide ligands based on human myelin oligodendrocyte glycoprotein 35-55 epitope: inhibition of chronic experimental autoimmune encephalomyelitis in mice.

    Science.gov (United States)

    Tselios, Theodore; Aggelidakis, Mihalis; Tapeinou, Anthi; Tseveleki, Vivian; Kanistras, Ioannis; Gatos, Dimitrios; Matsoukas, John

    2014-11-04

    Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG), plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR) contact residues of the human MOG35-55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs) by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl) using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35-55 peptide at the time of immunization.

  9. Expression of the urokinase plasminogen activator receptor (uPAR) and its ligand (uPA) in brain tissues of human immunodeficiency virus patients with opportunistic cerebral diseases.

    Science.gov (United States)

    Nebuloni, Manuela; Cinque, Paola; Sidenius, Nicolai; Ferri, Angelita; Lauri, Eleonora; Omodeo-Zorini, Elisabetta; Zerbi, Pietro; Vago, Luca

    2009-01-01

    The urokinase plasminogen activator receptor (uPAR) and its ligand (uPA) play an important role in cell migration and extracellular proteolysis. We previously described uPAR/uPA overexpression in the cerebrospinal fluid (CSF) and brain tissues of patients with human immunodeficiency virus (HIV)-related cerebral diseases. In this study, we examined uPAR/uPA expression by immunohistochemistry (IHC) in brains of HIV patients with opportunistic cerebral lesions and in HIV-positive/negative controls. uPAR was found in macrophages/microglia with the highest levels in cytomegalovirus (CMV) encephalitis, toxoplasmosis, and lymphomas; in cryptococcosis and progressive multifocal leukoencephalopathy (PML) cases, only a few positive cells were found and no positivity was observed in controls. uPA expression was demonstrated only in a few macrophages/microglia and lymphocytes in all the cases and HIV-positive controls without different pattern of distribution; no uPA immunostaining was found in cryptococcosis and HIV-negative controls. The higher expression of uPAR/uPA in most of the opportunistic cerebral lesions supports their role in these diseases, suggesting their contribution to tissue injury.

  10. G protein-coupled receptor 30 ligand G-1 increases aryl hydrocarbon receptor signalling by inhibition of tubulin assembly and cell cycle arrest in human MCF-7 cells.

    Science.gov (United States)

    Tarnow, Patrick; Tralau, Tewes; Luch, Andreas

    2016-08-01

    Regulatory crosstalk between the aryl hydrocarbon receptor (AHR) and oestrogen receptor α (ERα) is well established. Apart from the nuclear receptors ERα and ERβ, oestrogen signalling further involves an unrelated G protein-coupled receptor termed GPR30. In order to investigate potential regulatory crosstalk, this study investigated the influence of G-1 as one of the few GPR30-specific ligands on the AHR regulon in MCF-7 cells. As a well-characterised model system, these human mammary carcinoma cells co-express all three receptors (AHR, ERα and GPR30) and are thus ideally suited to study corresponding regulatory pathway interactions on transcript level. Indeed, treatment with micromolar concentrations of the GPR30-specific agonist G-1 resulted in up-regulation of AHR as well as the transcripts for cytochromes P450 1A1 and 1B1, two well-known targets of the AHR regulon. While this was partly attributable to G-1-mediated inhibition of tubulin assembly and subsequent cell cycle arrest in the G2/M phase, the effects nevertheless required functional AHR. However, G-1-induced up-regulation of CYP 1A1 was not mediated by GPR30, as G15 antagonist treatment as well as a knockdown of GPR30 and AHR failed to inhibit this effect.

  11. Rational Design and Synthesis of Altered Peptide Ligands based on Human Myelin Oligodendrocyte Glycoprotein 35–55 Epitope: Inhibition of Chronic Experimental Autoimmune Encephalomyelitis in Mice

    Directory of Open Access Journals (Sweden)

    Theodore Tselios

    2014-11-01

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS. Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35–55 epitope of myelin oligodendrocyte glycoprotein (MOG, plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR contact residues of the human MOG35–55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35–55 peptide at the time of immunization.

  12. Nickel(II) complexes of N2S2 donor set ligand and halide/pseudohalides: Synthesis, crystal structure, DNA and bovine/human serum albumin interaction

    Indian Academy of Sciences (India)

    Animesh Patra; Biplab Mondal; Buddhadeb Sen; Ennio Zangrando; Pabitra Chattopadhyay

    2015-11-01

    A series of neutral hexacoordinated nickel(II) complexes of formula [NiII (L)X2] (where L = 3,4-bis(2-pyridylmethylthio)toluene with tetradentate N2S2 donor set and X = chloride (1), azide (2), cyanate (3) and isothiocyanate anion (4)) have been synthesized and isolated in pure form. The complexes were characterized by physicochemical and spectroscopic methods along with detailed structural characterization of 1,2 and 3 by single crystal X-ray diffraction analyses. The structural study showed that the nickel(II) ion has a distorted octahedral geometry being chelated by the tetradentate N2S2 ligand and bound to cis- located choride or pseudohalide anions. In dimethylformamide solution the complexes showed quasi-reversible NiII/NiIII redox couples in cyclic voltammograms with E1/2 values of +0.723, +0.749, +0.768 and +0.868 V for 1, 2, 3 and 4, respectively. The study of interaction of the complexes with calf thymus DNA, bovine serum albumin (BSA) and human serum albumin (HSA) using spectroscopic and physicochemical tools clearly indicates that the complexes interact with DNA via groove binding mode.

  13. Pattern recognition receptor signaling in human dendritic cells is enhanced by ICOS ligand and modulated by the Crohn's disease ICOSLG risk allele.

    Science.gov (United States)

    Hedl, Matija; Lahiri, Amit; Ning, Kaida; Cho, Judy H; Abraham, Clara

    2014-05-15

    Inflammatory bowel disease (IBD) is characterized by dysregulated intestinal immune homeostasis and cytokine secretion. Multiple loci are associated with IBD, but a functional explanation is missing for most. Here we found that pattern-recognition receptor (PRR)-induced cytokine secretion was diminished in human monocyte-derived dendritic cells (MDDC) from rs7282490 ICOSLG GG risk carriers. Homotypic interactions between the costimulatory molecule ICOS and the ICOS ligand on MDDCs amplified nucleotide-binding oligomerization domain 2 (NOD2)-initiated cytokine secretion. This amplification required arginine residues in the ICOSL cytoplasmic tail that recruited the adaptor protein RACK1 and the kinases PKC and JNK leading to PKC, MAPK, and NF-κB activation. MDDC from rs7282490 GG risk-carriers had reduced ICOSL expression and PRR-initiated signaling and this loss-of-function ICOSLG risk allele associated with an ileal Crohn's disease phenotype, similar to polymorphisms in NOD2. Taken together, ICOSL amplifies PRR-initiated outcomes, which might contribute to immune homeostasis.

  14. Differential effects of methoxy group on the interaction of curcuminoids with two major ligand binding sites of human serum albumin.

    Directory of Open Access Journals (Sweden)

    Hiroki Sato

    Full Text Available Curcuminoids are a group of compounds with a similar chemical backbone structure but containing different numbers of methoxy groups that have therapeutic potential due to their anti-inflammatory and anti-oxidant properties. They mainly bind to albumin in plasma. These findings influence their body disposition and biological activities. Spectroscopic analysis using site specific probes on human serum albumin (HSA clearly indicated that curcumin (Cur, demethylcurcumin (Dmc and bisdemethoxycurcumin (Bdmc bind to both Site I (sub-site Ia and Ib and Site II on HSA. At pH 7.4, the binding constants for Site I were relatively comparable between curcuminoids, while the binding constants for Site II at pH 7.4 were increased in order Cur < Dmc < Bdmc. Binding experiments using HSA mutants showed that Trp214 and Arg218 at Site I, and Tyr411 and Arg410 at Site II are involved in the binding of curcuminoids. The molecular docking of all curcuminoids to the Site I pocket showed that curcuminoids stacked with Phe211 and Trp214, and interacted with hydrophobic and aromatic amino acid residues. In contrast, each curcuminoid interacted with Site II in a different manner depending whether a methoxy group was present or absent. A detailed analysis of curcuminoids-albumin interactions would provide valuable information in terms of understanding the pharmacokinetics and the biological activities of this class of compounds.

  15. From linked open data to molecular interaction: studying selectivity trends for ligands of the human serotonin and dopamine transporter.

    Science.gov (United States)

    Zdrazil, Barbara; Hellsberg, Eva; Viereck, Michael; Ecker, Gerhard F

    2016-09-14

    Retrieval of congeneric and consistent SAR data sets for protein targets of interest is still a laborious task to do if no appropriate in-house data set is available. However, combining integrated open data sources (such as the Open PHACTS Discovery Platform) with workflow tools now offers the possibility of querying across multiple domains and tailoring the search to the given research question. Starting from two phylogenetically related protein targets of interest (the human serotonin and dopamine transporters), the whole chemical compound space was explored by implementing a scaffold-based clustering of compounds possessing biological measurements for both targets. In addition, potential hERG blocking liabilities were included. The workflow allowed studying the selectivity trends of scaffold series, identifying potentially harmful compound series, and performing SAR, docking studies and molecular dynamics (MD) simulations for a consistent data set of 56 cathinones. This delivered useful insights into driving determinants for hDAT selectivity over hSERT. With respect to the scaffold-based analyses it should be noted that the cathinone data set could be retrieved only when Murcko scaffold analyses were combined with similarity searches such as a common substructure search.

  16. Decitabine immunosensitizes human gliomas to NY-ESO-1 specific T lymphocyte targeting through the Fas/Fas Ligand pathway

    Science.gov (United States)

    2011-01-01

    Background The lack of effective treatments for gliomas makes them a significant health problem and highlights the need for the development of novel and innovative treatment approaches. Immunotherapy is an appealing strategy because of the potential ability for immune cells to traffic to and destroy infiltrating tumor cells. However, the absence of well-characterized, highly immunogenic tumor-rejection antigens (TRA) in gliomas has limited the implementation of targeted immune-based therapies. Methods We hypothesized that treatment with the demethylating agent, decitabine, would upregulate the expression of TRA on tumor cells, thereby facilitating enhanced surveillance by TRA-specific T cells. Results and Discussion Treatment of human glioma cells with decitabine increased the expression of NY-ESO-1 and other well characterized cancer testes antigens. The upregulation of NY-ESO-1 made these tumors susceptible to NY-ESO-1-specific T-cell recognition and lysis. Interestingly, decitabine treatment of T98 glioma cells also sensitized them to Fas-dependent apoptosis with an agonistic antibody, while a Fas blocking antibody could largely prevent the enhanced functional recognition by NY-ESO-1 specific T cells. Thus, decitabine treatment transformed a non-immunogenic glioma cell into an immunogenic target that was efficiently recognized by NY-ESO-1--specific T cells. Conclusions Such data supports the hypothesis that agents which alter epigenetic cellular processes may "immunosensitize" tumor cells to tumor-specific T cell-mediated lysis. PMID:22060015

  17. Decitabine immunosensitizes human gliomas to NY-ESO-1 specific T lymphocyte targeting through the Fas/Fas Ligand pathway

    Directory of Open Access Journals (Sweden)

    Konkankit Veerauo V

    2011-11-01

    Full Text Available Abstract Background The lack of effective treatments for gliomas makes them a significant health problem and highlights the need for the development of novel and innovative treatment approaches. Immunotherapy is an appealing strategy because of the potential ability for immune cells to traffic to and destroy infiltrating tumor cells. However, the absence of well-characterized, highly immunogenic tumor-rejection antigens (TRA in gliomas has limited the implementation of targeted immune-based therapies. Methods We hypothesized that treatment with the demethylating agent, decitabine, would upregulate the expression of TRA on tumor cells, thereby facilitating enhanced surveillance by TRA-specific T cells. Results and Discussion Treatment of human glioma cells with decitabine increased the expression of NY-ESO-1 and other well characterized cancer testes antigens. The upregulation of NY-ESO-1 made these tumors susceptible to NY-ESO-1-specific T-cell recognition and lysis. Interestingly, decitabine treatment of T98 glioma cells also sensitized them to Fas-dependent apoptosis with an agonistic antibody, while a Fas blocking antibody could largely prevent the enhanced functional recognition by NY-ESO-1 specific T cells. Thus, decitabine treatment transformed a non-immunogenic glioma cell into an immunogenic target that was efficiently recognized by NY-ESO-1--specific T cells. Conclusions Such data supports the hypothesis that agents which alter epigenetic cellular processes may "immunosensitize" tumor cells to tumor-specific T cell-mediated lysis.

  18. Quantitative autoradiographic determination of binding sites for a peripheral benzodiazepine ligand ((/sup 3/H)PK 11195) in human iris

    Energy Technology Data Exchange (ETDEWEB)

    Valtier, D.; Malgouris, C.; Uzan, A.

    1987-01-01

    Specific binding sites of peripheral-type benzodiazepines were investigated in human iris/ciliary body (8 eyes). Examination of color-coded prints and densitometric quantification of autoradiograms were performed on slides (20 ..mu..m) labelled with (/sup 3/H)PK 11195 (1 nM) at 25 deg C. Nonspecific binding was determined with PK 11211 (5 ..mu..M) or Ro 5-4864 (5 ..mu..M). Binding sites were present on all the slides, with equivalent density in the 3 regions of the preparation (ciliary body, iris and pupil margin). The numbers of binding sites in ciliary body, iris, and pupil margin, respectively were: 42.7 +- 0.2, 30.1 +- 0.5 and 37.4 +- 0.4 femtomol/mg protein. Labelling on the pupil margin seemed to coincide with the iris sphincter muscle. The presence of peripheral benzodiazepine binding sites in iris muscular tissue, and particularly in the pupil margin, suggests that the iris preparation may be a valuable tool to detect putative physiological effects of peripheral benzodiazepines on muscular motility.

  19. Mobilization of human CD34+ CD133+ and CD34+ CD133(-) stem cells in vivo by consumption of an extract from Aphanizomenon flos-aquae--related to modulation of CXCR4 expression by an L-selectin ligand?

    Science.gov (United States)

    Jensen, Gitte S; Hart, Aaron N; Zaske, Lue A M; Drapeau, Christian; Gupta, Niraj; Schaeffer, David J; Cruickshank, J Alex

    2007-01-01

    The goal of this study was to evaluate effects on human stem cells in vitro and in vivo of an extract from the edible cyanobacterium Aphanizomenon flos-aquae (AFA) enriched for a novel ligand for human CD62L (L-selectin). Ligands for CD62L provide a mechanism for stem cell mobilization in conjunction with down-regulation of the CXCR4 chemokine receptor for stromal derived factor 1. Affinity immunoprecipitation was used to identify a novel ligand for CD62L from a water extract from AFA. The effects of AFA water extract on CD62L binding and CXCR4 expression was tested in vitro using human bone marrow CD34+ cells and the two progenitor cell lines, KG1a and K562. A double-blind randomized crossover study involving 12 healthy subjects evaluated the effects of consumption on stem cell mobilization in vivo. An AFA extract rich in the CD62L ligand reduced the fucoidan-mediated externalization of the CXCR4 chemokine receptor on bone marrow CD34+ cells by 30% and the CD62L+ CD34+ cell line KG1A by 50% but did not alter the CXCR4 expression levels on the CD34(-) cell line K562. A transient, 18% increase in numbers of circulating CD34+ stem cells maximized 1 hour after consumption (P<.0003). When 3 noncompliant volunteers were removed from analysis, the increase in CD34+ cells was 25% (P<.0001). AFA water extract contains a novel ligand for CD62L. It modulates CXCR4 expression on CD34+ bone marrow cells in vitro and triggers the mobilization of CD34+ CD133+ and CD34+ CD133(-) cells in vivo.

  20. Affinity composite cryogel discs functionalized with Reactive Red 120 and Green HE 4BD dye ligands: Application on the separation of human immunoglobulin G subclasses

    Energy Technology Data Exchange (ETDEWEB)

    Huseynli, Sabina; Baydemir, Gözde; Sarı, Esma [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey); Elkak, Assem [Laboraory of “Valorisation des Ressources Naturelles et Produits de Santé (VRNPS)”, Doctoral School of Sciences and Technology, Lebanese University, Rafic Hariri University Campus, Hadath (Lebanon); Denizli, Adil, E-mail: denizli@hacettepe.edu.tr [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey)

    2015-01-01

    Naturally produced by the human immune system, immunoglobulin nowadays is widely used for in vivo and in vitro purposes. The increased needs for pure immunoglobulin have prompted researchers to find new immunoglobulin chromatographic separation processes. Cryogels as chromatographic adsorbents, congregate several mechanical features including good compatibility, large pore structure, flexibility, short diffusion pathway and stability. These different characteristics make them a good alternative to conventional chromatographic methods and allowing their potential use in separation technology. In the present study, two sets of poly(2-hydroxyethyl methacrylate) (PHEMA) based beads were prepared and functionalized with Reactive Red 120 (RR) and Reactive Green HE 4BD (RG) dyes, and then embedded into supermacroporous cryogels. The morphology, physical and chemical features of the prepared bead embedded composite cryogel discs (CCDs) were performed by scanning electron microscopy (SEM), swelling test, elemental analysis and Fourier transform infrared spectroscopy (FTIR). The results showed that the embedded composite cryogel discs have a specific surface area of 192.0 m{sup 2}/g with maximum adsorption capacity of HIgG 239.8 mg/g for the RR functionalized CCD and 170 mg/g for RG functionalized CCD columns, both at pH 6.2. - Highlights: • Dye attached composite cryogel discs were prepared to separate HIgG subclasses. • Composite cryogels characterized by swelling, FTIR, SEM and elemental analysis. • Reactive Green HE 4B and Reactive Red 120 dyes were used as the affinity ligand. • HIgG and subclasses were separate from both aqueous solution and human plasma.

  1. A cardiac-specific robotized cellular assay identified families of human ligands as inducers of PGC-1α expression and mitochondrial biogenesis.

    Directory of Open Access Journals (Sweden)

    Matthieu Ruiz

    Full Text Available BACKGROUND: Mitochondrial function is dramatically altered in heart failure (HF. This is associated with a decrease in the expression of the transcriptional coactivator PGC-1α, which plays a key role in the coordination of energy metabolism. Identification of compounds able to activate PGC-1α transcription could be of future therapeutic significance. METHODOLOGY/PRINCIPAL FINDINGS: We thus developed a robotized cellular assay to screen molecules in order to identify new activators of PGC-1α in a cardiac-like cell line. This screening assay was based on both the assessment of activity and gene expression of a secreted luciferase under the control of the human PGC-1α promoter, stably expressed in H9c2 cells. We screened part of a library of human endogenous ligands and steroid hormones, B vitamins and fatty acids were identified as activators of PGC-1α expression. The most responsive compounds of these families were then tested for PGC-1α gene expression in adult rat cardiomyocytes. These data highly confirmed the primary screening, and the increase in PGC-1α mRNA correlated with an increase in several downstream markers of mitochondrial biogenesis. Moreover, respiration rates of H9c2 cells treated with these compounds were increased evidencing their effectiveness on mitochondrial biogenesis. CONCLUSIONS/SIGNIFICANCE: Using our cellular reporter assay we could identify three original families, able to activate mitochondrial biogenesis both in cell line and adult cardiomyocytes. This first screening can be extended to chemical libraries in order to increase our knowledge on PGC-1α regulation in the heart and to identify potential therapeutic compounds able to improve mitochondrial function in HF.

  2. The FML (Fucose Mannose Ligand of Leishmania donovani: a new tool in diagnosis, prognosis, transfusional control and vaccination against human kala-azar

    Directory of Open Access Journals (Sweden)

    Claris B. Palatnik de Sousa

    1996-04-01

    Full Text Available The Fucose-Mannose Ligand (FML of Leishmania donovani is a complex glycoproteic fraction. Its potential use as a tool for diagnosis of human visceral leishmaniasis was tested with human sera from Natal, Rio Grande do Norte, Brazil. The FML-ELISA test, showed 100% sensitivity and 96% specificity, identifying patients with overt kala-azar (p O FML (Ligame de Fucose-Manose de Leishmania donovani é uma fração glicoproteica complexa. O seu potencial no diagnóstico da leishmaniose visceral humana foi testado com soros provenientes de Natal, Rio Grande do Norte, Brasil. O teste de FML-ELISA mostrou 100% de sensibilidade e 96% de especificidade, identificando pacientes com calazar declarado (p<0.001, comparados com soros normais e indivíduos com infecção subclínica. Mais de 20% dos sororreativos assimptomáticos desenvolveram a doença no prazo de 10 meses. Na análise de doadores de sangue, 5% de sororeativos, atingindo até 17% num único dia foram detectados. A glicoproteínaGP36 do FHL é reconhecida especificamente por soros de pacientes com calazar. O potencial imunoprotetor do FML no calazar experimental foi testado no modelo swiss albino em combinação com saponina pelas vias subcutâneas e/ou intraperitoneal seguido de desafio com 2x 10(7 amastigolas de Leishmania donovani. Um aumento de 80.0% na resposta de anticorpos específicos (p<0.001 e a redução de 85.5 % da carga parasitária no fígado (p<0.001 foi detectado nos animais vacinados com FML e saponina, independentemente da via de administração.

  3. Fas ligand expression in human and mouse cancer cell lines; a caveat on over-reliance on mRNA data

    Directory of Open Access Journals (Sweden)

    Ryan Aideen E

    2006-02-01

    Full Text Available Abstract Background During carcinogenesis, tumors develop multiple mechanisms for evading the immune response, including upregulation of Fas ligand (FasL/CD95L expression. Expression of FasL may help to maintain tumor cells in a state of immune privilege by inducing apoptosis of anti-tumor immune effector cells. Recently this idea has been challenged by studies reporting that tumor cells of varying origin do not express FasL. In the present study, we aimed to comprehensively characterize FasL expression in tumors of both murine and human origin over a 72 hour time period. Methods RNA and protein was extracted from six human (SW620, HT29, SW480, KM12SM, HCT116, Jurkat and three mouse (CMT93, CT26, B16F10 cancer cell lines at regular time intervals over a 72 hour time period. FasL expression was detected at the mRNA level by RT-PCR, using intron spanning primers, and at the protein level by Western Blotting and immunofluorescence, using a polyclonal FasL- specific antibody. Results Expression of FasL mRNA and protein was observed in all cell lines analysed. However, expression of FasL mRNA varied dramatically over time, with cells negative for FasL mRNA at many time points. In contrast, 8 of the 9 cell lines constitutively expressed FasL protein. Thus, cells can abundantly express FasL protein at times when FasL mRNA is absent. Conclusion These findings demonstrate the importance of complete analysis of FasL expression by tumor cells in order to fully characterize its biological function and may help to resolve the discrepancies present in the literature regarding FasL expression and tumor immune privilege.

  4. Model peptides provide new insights into the role of histidine residues as potential ligands in human cellular copper acquisition via Ctr1.

    Science.gov (United States)

    Haas, Kathryn L; Putterman, Allison B; White, Daniel R; Thiele, Dennis J; Franz, Katherine J

    2011-03-30

    Cellular acquisition of copper in eukaryotes is primarily accomplished through the Ctr family of copper transport proteins. In both humans and yeast, methionine-rich "Mets" motifs in the amino-terminal extracellular domain of Ctr1 are thought to be responsible for recruitment of copper at the cell surface. Unlike yeast, mammalian Ctr1 also contains extracellular histidine-rich motifs, although a role for these regions in copper uptake has not been explored in detail. Herein, synthetic model peptides containing the first 14 residues of the extracellular domain of human Ctr1 (MDHSHHMGMSYMDS) have been prepared and evaluated for their apparent binding affinity to both Cu(I) and Cu(II). These studies reveal a high affinity Cu(II) binding site (log K = 11.0 ± 0.3 at pH 7.4) at the amino-terminus of the peptide as well as a high affinity Cu(I) site (log K = 10.2 ± 0.2 at pH 7.4) that utilizes adjacent HH residues along with an additional His or Met ligand. These model studies suggest that the histidine domains may play a direct role in copper acquisition from serum copper-binding proteins and in facilitating the reduction of Cu(II) to the active Ctr1 substrate, Cu(I). We tested this hypothesis by expressing a Ctr1 mutant lacking only extracellular histidine residues in Ctr1-knockout mouse embryonic fibroblasts. Results from live cell studies support the hypothesis that extracellular amino-terminal His residues directly participate in the copper transport function of Ctr1.

  5. Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus.

    Science.gov (United States)

    Stenqvist, Ann-Christin; Nagaeva, Olga; Baranov, Vladimir; Mincheva-Nilsson, Lucia

    2013-12-01

    Apoptosis is crucially important in mediating immune privilege of the fetus during pregnancy. We investigated the expression and in vitro apoptotic activity of two physiologically relevant death messengers, the TNF family members Fas ligand (FasL) and TRAIL in human early and term placentas. Both molecules were intracellularly expressed, confined to the late endosomal compartment of the syncytiotrophoblast, and tightly associated to the generation and secretion of placental exosomes. Using immunoelectron microscopy, we show that FasL and TRAIL are expressed on the limiting membrane of multivesicular bodies where, by membrane invagination, intraluminal microvesicles carrying membranal bioactive FasL and TRAIL are formed and released in the extracellular space as exosomes. Analyzing exosomes secreted from placental explant cultures, to our knowledge, we demonstrate for the first time that FasL and TRAIL are clustered on the exosomal membrane as oligomerized aggregates ready to form death-inducing signaling complex. Consistently, placental FasL- and TRAIL-carrying exosomes triggered apoptosis in Jurkat T cells and activated PBMC in a dose-dependent manner. Limiting the expression of functional FasL and TRAIL to exosomes comprise a dual benefit: 1) storage of exosomal FasL and TRAIL in multivesicular bodies is protected from proteolytic cleavage and 2) upon secretion, delivery of preformed membranal death molecules by exosomes rapidly triggers apoptosis. Our results suggest that bioactive FasL- and TRAIL-carrying exosomes, able to convey apoptosis, are secreted by the placenta and tie up the immunomodulatory and protective role of human placenta to its exosome-secreting ability.

  6. Biodistribution and radiation dosimetry of the A{sub 1} adenosine receptor ligand {sup 18}F-CPFPX determined from human whole-body PET

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Hans; Elmenhorst, David; Winz, Oliver [Forschungszentrum Juelich GmbH, Institute of Neuroscience and Biophysics - Medicine, Juelich (Germany); Bauer, Andreas [Forschungszentrum Juelich GmbH, Institute of Neuroscience and Biophysics - Medicine, Juelich (Germany); University Hospital Duesseldorf, Department of Neurology, Duesseldorf (Germany)

    2008-08-15

    {sup 18}F-8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine ({sup 18}F-CPFPX) is a potent radioligand to study human cerebral A{sub 1} adenosine receptors and their neuromodulatory and neuroprotective functions with positron emission tomography (PET). The purpose of this study was to determine the biodistribution and the radiation dose of {sup 18}F-CPFPX by whole-body scans in humans. Six normal volunteers were examined with 12 whole-body PET scans from 1.5 min to 4.5 h after injection. Volumes of interest were defined over all visually identifiable organs, i.e. liver, gallbladder, kidneys, small intestines, heart, and brain to obtain the organs' volumes and time-activity curves (TACs). TACs were fitted with exponential functions, extrapolated, multiplied with the physical decay and normalized to injected activities so that the residence times could be computed as area under the curve. Radiation doses were calculated using the OLINDA/EXM software for internal dose assessment in nuclear medicine. The liver uptake shows peak values (decay-corrected) of up to 35% of the injected radioactivity. About 30% is eliminated by bladder voiding. The highest radiation dose is received by the gallbladder (136.2 {+-} 66.1 {mu}Sv/MBq), followed by the liver (84.4 {+-} 10.6 {mu}Sv/MBq) and the urinary bladder (78.3 {+-} 7.1 {mu}Sv/MBq). The effective dose was 17.6 {+-} 0.5 {mu}Sv/MBq. With 300 MBq of injected {sup 18}F-CPFPX a subject receives an effective dose (ICRP 60) of 5.3 mSv. Thus the effective dose of an {sup 18}F-CPFPX study is comparable to that of other {sup 18}F-labelled neuroreceptor ligands. (orig.)

  7. Direct activation of human dendritic cells by particle-bound but not soluble MHC class II ligand.

    Directory of Open Access Journals (Sweden)

    Renato B Baleeiro

    Full Text Available Dendritic cells (DCs are key activators of cellular immune responses through their capacity to induce naïve T cells and sustained effector T cell responses. This capacity is a function of their superior efficiency of antigen presentation via MHC class I and class II molecules, and the expression of co-stimulatory cell surface molecules and cytokines. Maturation of DCs is induced by microbial factors via pattern recognition receptors such as Toll-like receptors, pro-inflammatory cytokines or cognate interaction with CD4(+ T cells. Here we show that, unexpectedly, the PanDR helper T cell epitope PADRE, a generic T helper cell antigen presented by a large fraction of HLA-DR alleles, when delivered in particle-bound form induced maturation of human DCs. The DCs that received the particle-bound PADRE displayed all features of fully mature DCs, such as high expression of the co-stimulatory molecules CD80, CD86, CD83, the MHC-II molecule HLA-DR, secretion of high levels of the biologically active IL-12 (IL-12p70 and induction of vigorous proliferation of naïve CD4(+ T cells. Furthermore, the maturation of DCs induced by particle-bound PADRE was shown to involve sphingosine kinase, calcium signaling from internal sources and downstream signaling through the MAP kinase and the p72syk pathways, and finally activation of the transcription factor NF-κB. Based on our findings, we propose that particle-bound PADRE may be used as a DC activator in DC-based vaccines.

  8. Ligand binding to the FA3-FA4 cleft inhibits the esterase-like activity of human serum albumin.

    Directory of Open Access Journals (Sweden)

    Paolo Ascenzi

    Full Text Available The hydrolysis of 4-nitrophenyl esters of hexanoate (NphOHe and decanoate (NphODe by human serum albumin (HSA at Tyr411, located at the FA3-FA4 site, has been investigated between pH 5.8 and 9.5, at 22.0°C. Values of Ks, k+2, and k+2/Ks obtained at [HSA] ≥ 5×[NphOXx] and [NphOXx] ≥ 5×[HSA] (Xx is NphOHe or NphODe match very well each other; moreover, the deacylation step turns out to be the rate limiting step in catalysis (i.e., k+3 a-shift appears to be correlated to the length of the fatty acid tail of the substrate. The inhibition of the HSA-Tyr411-catalyzed hydrolysis of NphOHe, NphODe, and 4-nitrophenyl myristate (NphOMy by five inhibitors (i.e., diazepam, diflunisal, ibuprofen, 3-indoxyl-sulfate, and propofol has been investigated at pH 7.5 and 22.0°C, resulting competitive. The affinity of diazepam, diflunisal, ibuprofen, 3-indoxyl-sulfate, and propofol for HSA reflects the selectivity of the FA3-FA4 cleft. Under conditions where Tyr411 is not acylated, the molar fraction of diazepam, diflunisal, ibuprofen, and 3-indoxyl-sulfate bound to HSA is higher than 0.9 whereas the molar fraction of propofol bound to HSA is ca. 0.5.

  9. Assessment of the Dissociation Energetics of Some Selected Ligand Drugs Bound on Human Serum Albumin by Differential Scanning Calorimetry.

    Science.gov (United States)

    Faroongsarng, Damrongsak

    2016-04-01

    Drug-protein binding may play a role in the thermal energetics of protein denaturation and could lead to the determination of its equilibrium dissociation parameter. The aim of this study was to assess the energetics of a drug that was bound to human serum albumin (HSA) during thermal denaturation. Drugs that were bound at a single high-affinity primary binding site on HSA, including diazepam and ibuprofen, were employed. Commercial HSA was treated with charcoal to remove stabilizers and adjusted to 20% w/v in a pH 7.4 buffered solution. Serial concentrations of individual drugs up to 0.16 mmole/g-protein were added to the cleaned HSA solutions whereas diazepam was added to a commercial HSA solution. Samples were subjected to differential scanning calorimetry (DSC) set to run from 37 to 90°C at 3.0°C/min. Binding of the drug slightly increased the denaturing temperature of the cleaned HSA due to a shift in the equilibrium toward the native protein bound with the drug. Diazepam depressed the denaturing temperature of the commercial HSA by competing with the stabilizers already bound to the primary site of the HSA. This yielded not only the HSA-stabilizer but also the HSA-diazepam type complexes that exhibited a different denaturation process. A rational approximation of the Lumry-Eyring protein denaturation model was used to treat the DSC endotherms. The approximated scheme: [Formula: see text] was successfully fitted to the data. It was used to determine the dissociation parameters for diazepam and ibuprofen bound to the HSA. These results were comparable to those obtained from other methods.

  10. Human formyl peptide receptor ligand binding domain(s). Studies using an improved mutagenesis/expression vector reveal a novel mechanism for the regulation of receptor occupancy.

    Science.gov (United States)

    Perez, H D; Vilander, L; Andrews, W H; Holmes, R

    1994-09-09

    Recently, we reported the domain requirements for the binding of formyl peptide to its specific receptor. Based on experiments using receptor chimeras, we also postulated an importance for the amino-terminal domain of the receptor in ligand binding (Perez, H. D., Holmes, R., Vilander, L., Adams, R., Manzana, W., Jolley, D., and Andrews, W. H. (1993) J. Biol. Chem. 268, 2292-2295). We have begun to perform a detailed analysis of the regions within the formyl peptide receptor involved in ligand binding. To address the importance of the receptor amino-terminal domain, we substituted (or inserted) hydrophilic sequences within the amino-terminal domain, expressed the receptors, and determined their ability to bind ligand. A stretch of nine amino acids next to the initial methionine was identified as crucial for receptor occupancy. A peptide containing such a sequence specifically completed binding of the ligand to the receptor. Alanine screen mutagenesis of the second extracellular domain also identified amino acids involved in ligand binding as well as a disulfide bond (Cys98 to Cys176) crucial for maintaining the binding pocket. These studies provide evidence for a novel mechanism involved in regulation of receptor occupancy. Binding of the ligand induces conformational changes in the receptor that result in the apposition of the amino-terminal domain over the ligand, providing a lid to the binding pocket.

  11. Ligand binding and functional characterization of muscarinic acetylcholine receptors on the TE671/RD human cell line

    Energy Technology Data Exchange (ETDEWEB)

    Bencherif, M.; Lukas, R.J. (Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (USA))

    1991-06-01

    Cells of the TE671/RD human clonal line express a finite number ((Bmax) of about 350 fmol/mg of membrane protein) of apparently noninteracting, high-affinity binding sites (KD of 0.07 nM and a Hill coefficient close to unity, nH = 0.94) for the muscarinic acetylcholine receptor (mAChR) radio antagonist, tritium-labeled quinuclidinyl benzilate ({sup 3}H-QNB). The rank order potency of selective antagonists that inhibit specific {sup 3}HQNB binding is: atropine greater than 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide) greater than pirenzepine greater than methoctramine greater than AFDx-116 (11-2(2-((diethylamino)methyl)-1-(piperidinyl) acetyl)-5,11-dihydro-6H-pyrido(2,3-b)(1,4)benzodiazepin-6-one). Functional studies indicate that phosphoinositide (PIns) hydrolysis in TE671/RD cells is increased by carbachol (EC50 of 10 microM), but not by nicotine (to concentrations as high as 1 mM). Agonist-stimulated PIns metabolism is inhibited by antagonists with the same rank order potency as for inhibition of {sup 3}HQNB binding. Functional responses are augmented in the presence of a nonhydrolyzable GTP analog, are strongly inhibited after 24-hr exposure to cholera toxin, but are only slightly inhibited after long-term exposure to pertussis toxin or forskolin. These studies identify a pharmacologically-defined M3-subtype of mAChR strongly coupled via a cholera toxin-sensitive mechanism to PIns hydrolysis in these cells. Within 1 hr of treatment of TE671/RD cells with 1 mM dibutyryl cyclic AMP or with 10 microM phorbol-12-myristate-13-acetate (PMA), there is a 30 to 50% decrease in carbachol-stimulated PIns responsiveness that recovers to control values after 5 days of continued drug treatment. However, a comparable and more persistent inhibition of mAChR function is observed on cell treatment with 20 nM PMA.

  12. Target and resistance-related proteins of recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand on myeloma cell lines.

    Science.gov (United States)

    Jian, Yuan; Chen, Yuling; Geng, Chuanying; Liu, Nian; Yang, Guangzhong; Liu, Jinwei; Li, Xin; Deng, Haiteng; Chen, Wenming

    2016-06-01

    Recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand (rmhTRAIL) has become a potential therapeutic drug for multiple myeloma (MM). However, the exact targets and resistance mechanisms of rmhTRAIL on MM cells remain to be elucidated. The present study aimed to investigate the target and resistance-related proteins of rmhTRAIL on myeloma cell lines. A TRAIL-sensitive myeloma cell line, RPMI 8226, and a TRAIL-resistance one, U266, were chosen and the differentially expressed proteins between the two cell lines were analyzed prior and subsequent to rmhTRAIL administration by a liquid chromatography-tandem mass spectrometry method. The results showed that following TRAIL treatment, 6 apoptosis-related proteins, calpain small subunit 1 (CPNS1), peflin (PEF1), B-cell receptor-associated protein 31 (BAP31), apoptosis-associated speck-like protein containing CARD (ASC), BAG family molecular chaperone regulator 2 (BAG2) and chromobox protein homolog 3 (CBX3), were upregulated in RPMI 8226 cells while no change was identified in the U266 cells. Furthermore, small ubiquitin-related modifier 1 and several other ubiquitin proteasome pathway (UPP)-related proteins expressed higher levels in TRAIL-resistant cells U266 compared to the RPMI-8226 cells prior and subsequent to rmhTRAIL treatment. These results suggested that CPNS1, PEF1, BAP31, ASC, BAG2 and CBX3 were possibly target proteins of rmhTRAIL on RPMI 8226 cells, while UPP may have a vital role in mediating TRAIL-resistance in U266 cells.

  13. Recombinant human endostatin inhibits TNF-alpha-induced receptor activator of NF-κB ligand expression in fibroblast-like synoviocytes in mice with adjuvant arthritis.

    Science.gov (United States)

    Gao, Qiu-Fang; Zhang, Xiu-Hong; Yuan, Feng-Lai; Zhao, Ming-Dong; Li, Xia

    2016-12-01

    Bone loss is a critical pathology responsible for the functional disability in patients with rheumatoid arthritis (RA). It is well known that receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL) plays a crucial role in bone loss in RA. The purpose of this study was to determine whether recombinant human endostatin (rh-endostatin) mediates bone erosion in RA by regulation of RANKL expression in an experimental model of RA, consisting of mice with adjuvant-induced arthritis (AA). Cultured AA fibroblast-like synoviocytes (FLSs) obtained from these mice were induced by tumor necrosis factor-α (TNF-α) combined with or without rh-endostatin. The levels of RANKL and osteoprotegerin (OPG) mRNA, soluble and membrane-bound proteins were assessed by real-time PCR, ELISA, and Western blotting. Western blotting and the luciferase reporter assay were used to study related signaling pathways. Rh-endostatin inhibited RANKL mRNA expression, soluble and membrane-bound protein expression in AA FLSs but not in CD4+ T cells. However, OPG expression and secretion was not affected by rh-endostatin in AA FLSs. Molecular analysis demonstrated that rh-endostatin significantly inhibited TNF-α-induced MAPK and AP-1 signaling pathways. Moreover, rh-endostatin attenuated TNF-α-induced NF-κB signaling by suppressing the phosphorylation level of inhibitor kappaBα (IκBα) and nuclear translocation of NF-κB p65 in FLSs from mice with AA. These results provide the first evidence that rh-endostatin inhibits TNF-α-induced RANKL expression in AA FLSs.

  14. Water participation in molecular recognition and protein-ligand association: Probing the drug binding site "Sudlow I" in human serum albumin

    Science.gov (United States)

    Al-Lawatia, Najla; Steinbrecher, Thomas; Abou-Zied, Osama K.

    2012-03-01

    Human serum albumin (HSA) plays an important role in the transport and disposition of endogenous and exogenous ligands present in blood. Its capacity to reversibly bind a large variety of drugs results in its prevailing role in drug pharmacokinetics and pharmacodynamics. In this work, we used 7-hydroxyquinoline (7HQ) as a probe to study the binding nature of one of the major drug binding sites of HSA (Sudlow I) and to reveal the local environment around the probe in the binding site. The interaction between 7HQ and HSA at a physiological pH of 7.2 was investigated using steady-state and lifetime spectroscopic measurements, molecular docking and molecular dynamics (MD) simulations methods. The fluorescence results indicate a selective interaction between 7HQ and the Trp214 residue. The reduction in both the intensity and lifetime of the Trp214 fluorescence upon probe binding indicates the dominant role of static quenching. Molecular docking and MD simulations show that 7HQ binds in Sudlow site I close to Trp214, confirming the experimental results, and pinpoint the dominant role of hydrophobic interaction in the binding site. Electrostatic interactions were also found to be important in which two water molecules form strong hydrogen bonds with the polar groups of 7HQ. Detection of water in the binding site agrees with the absorption and fluorescence results that show the formation of a zwitterion tautomer of 7HQ. The unique spectral signatures of 7HQ in water make this molecule a potential probe for detecting the presence of water in nanocavities of proteins. Interaction of 7HQ with water in the binding site shows that water molecules can be crucial for molecular recognition and association in protein binding sites.

  15. Human Cannabinoid Receptor 2 Ligand-Interaction Motif: Transmembrane Helix 2 Cysteine, C2.59(89), as Determinant of Classical Cannabinoid Agonist Activity and Binding Pose.

    Science.gov (United States)

    Zhou, Han; Peng, Yan; Halikhedkar, Aneetha; Fan, Pusheng; Janero, David R; Thakur, Ganesh A; Mercier, Richard W; Sun, Xin; Ma, Xiaoyu; Makriyannis, Alexandros

    2017-06-21

    Cannabinoid receptor 2 (CB2R)-dependent signaling is implicated in neuronal physiology and immune surveillance by brain microglia. Selective CB2R agonists hold therapeutic promise for inflammatory and other neurological disorders. Information on human CB2R (hCB2R) ligand-binding and functional domains is needed to inform the rational design and optimization of candidate druglike hCB2R agonists. Prior demonstration that hCB2R transmembrane helix 2 (TMH2) cysteine C2.59(89) reacts with small-molecule methanethiosulfonates showed that this cysteine residue is accessible to sulfhydryl derivatization reagents. We now report the design and application of two novel, pharmacologically active, high-affinity molecular probes, AM4073 and AM4099, as chemical reporters to interrogate directly the interaction of classical cannabinoid agonists with hCB2R cysteine residues. AM4073 has one electrophilic isothiocyanate (NCS) functionality at the C9 position of its cyclohexenyl C-ring, whereas AM4099 has NCS groups at that position and at the terminus of its aromatic A-ring C3 side chain. Pretreatment of wild-type hCB2R with either probe reduced subsequent [(3)H]CP55,940 specific binding by ∼60%. Conservative serine substitution of any hCB2R TMH cysteine residue except C2.59(89) did not affect the reduction of [(3)H]CP55,940 specific binding by either probe, suggesting that AM4073 and AM4099 interact irreversibly with this TMH2 cysteine. In contrast, AM841, an exceptionally potent hCB2R megagonist and direct AM4073/4099 congener bearing a single electrophilic NCS group at the terminus of its C3 side chain, had been demonstrated to bind covalently to TMH6 cysteine C6.47(257) and not C2.59(89). Molecular modeling indicates that the AM4073-hCB2R* interaction at C2.59(89) orients this classical cannabinoid away from TMH6 and toward the TMH2-TMH3 interface in the receptor's hydrophobic binding pocket, whereas the AM841-hCB2R* interaction at C6.47(257) favors agonist orientation toward

  16. New dimeric carbazole-benzimidazole mixed ligands for the stabilization of human telomeric G-quadruplex DNA and as telomerase inhibitors. A remarkable influence of the spacer.

    Science.gov (United States)

    Maji, Basudeb; Kumar, Krishan; Muniyappa, K; Bhattacharya, Santanu

    2015-08-14

    The development of G-quadruplex (G4) DNA binding small molecules has become an important strategy for selectively targeting cancer cells. Herein, we report the design and evolution of a new kind of carbazole-based benzimidazole dimers for their efficient telomerase inhibition activity. Spectroscopic titrations reveal the ligands high affinity toward the G4 DNA with significantly higher selectivity over duplex-DNA. The electrophoretic mobility shift assay shows that the ligands efficiently promote the formation of G4 DNA even at a lower concentration of the stabilizing K(+) ions. The TRAP-LIG assay demonstrates the ligand's potential telomerase inhibition activity and also establishes that the activity proceeds via G4 DNA stabilization. An efficient nuclear internalization of the ligands in several common cancer cells (HeLa, HT1080, and A549) also enabled differentiation between normal HFF cells in co-cultures of cancer and normal ones. The ligands induce significant apoptotic response and antiproliferative activity toward cancer cells selectively when compared to the normal cells.

  17. Inositol Hexaphosphate Down-regulates both Constitutive and Ligand-Induced Mitogenic and Cell Survival Signaling, and Causes Caspase-Mediated Apoptotic Death of Human Prostate Carcinoma PC-3 cells

    Science.gov (United States)

    Gu, Mallikarjuna; Raina, Komal; Agarwal, Chapla; Agarwal, Rajesh

    2009-01-01

    Constitutively active mitogenic and pro-survival signaling cascades due to aberrant expression and interaction of growth factors and their receptors are well documented in human prostate cancer (PCa). EGF and IGF-1 are potent mitogens that regulate proliferation and survival of PCa cells via autocrine and paracrine loops involving both MAPK- and Akt-mediated signaling. Accordingly, here we assessed the effect of inositol hexaphosphate (IP6) on constitutive and ligand (EGF and IGF-1)-induced biological responses and associated signaling cascades in advanced and androgen-independent human PCa PC-3 cells. Treatment of PC-3 cells with 2 mM IP6 strongly inhibited both growth and proliferation and decreased cell viability; similar effects were also observed in other human PCa DU145 and LNCaP cells. IP6 also caused a strong apoptotic death of PC-3 cells together with caspase 3 and PARP cleavage. Mechanistic studies showed that biological effects of IP6 were associated with inhibition of both constitutive and ligand-induced Akt phosphorylation together with a decrease in total Akt levels, but a differential inhibitory effect on MAPKs ERK1/2, JNK1/2 and p38 under constitutive and ligand-activated conditions. Under similar condition, IP6 also inhibited AP-1 DNA binding activity and decreased nuclear levels of both phospho and total c-Fos and c-Jun. Together, these findings for the first time establish IP6 efficacy in inhibiting aberrant EGFR or IGF-1R pathway-mediated sustained growth promoting and survival signaling cascades in advanced and androgen-independent human PCa PC-3 cells, which might have translational implications in advanced human PCa control and management. PMID:19544333

  18. 7,12-Dimethylbenzanthracene induces apoptosis in RL95-2 human endometrial cancer cells: Ligand-selective activation of cytochrome P450 1B1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); Lee, Seung Gee [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Chung, Jin-Yong [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); Kim, Yoon-Jae [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Park, Ji-Eun [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); Oh, Seunghoon [Department of Physiology, College of Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Lee, Se Yong [Department of Obstetrics and Gynecology, Busan Medical Center, Busan 611-072 (Korea, Republic of); Choi, Hong Jo [Department of General Surgery, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Yoo, Young Hyun, E-mail: yhyoo@dau.ac.kr [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); and others

    2012-04-15

    7,12-Dimethylbenzanthracene (DMBA), a polycyclic aromatic hydrocarbon, exhibits mutagenic, carcinogenic, immunosuppressive, and apoptogenic properties in various cell types. To achieve these functions effectively, DMBA is modified to its active form by cytochrome P450 1 (CYP1). Exposure to DMBA causes cytotoxicity-mediated apoptosis in bone marrow B cells and ovarian cells. Although uterine endometrium constitutively expresses CYP1A1 and CYP1B1, their apoptotic role after exposure to DMBA remains to be elucidated. Therefore, we chose RL95-2 endometrial cancer cells as a model system for studying DMBA-induced cytotoxicity and cell death and hypothesized that exposure to DMBA causes apoptosis in this cell type following CYP1A1 and/or CYP1B1 activation. We showed that DMBA-induced apoptosis in RL95-2 cells is associated with activation of caspases. In addition, mitochondrial changes, including decrease in mitochondrial potential and release of mitochondrial cytochrome c into the cytosol, support the hypothesis that a mitochondrial pathway is involved in DMBA-induced apoptosis. Exposure to DMBA upregulated the expression of AhR, Arnt, CYP1A1, and CYP1B1 significantly; this may be necessary for the conversion of DMBA to DMBA-3,4-diol-1,2-epoxide (DMBA-DE). Although both CYP1A1 and CYP1B1 were significantly upregulated by DMBA, only CYP1B1 exhibited activity. Moreover, knockdown of CYP1B1 abolished DMBA-induced apoptosis in RL95-2 cells. Our data show that RL95-2 cells are susceptible to apoptosis by exposure to DMBA and that CYP1B1 plays a pivotal role in DMBA-induced apoptosis in this system. -- Highlights: ► Cytotoxicity-mediated apoptogenic action of DMBA in human endometrial cancer cells. ► Mitochondrial pathway in DMBA-induced apoptosis of RL95-2 endometrial cancer cells. ► Requirement of ligand-selective activation of CYP1B1 in DMBA-induced apoptosis.

  19. A novel role of Rho-kinase in the regulation of ligand-induced phosphorylated EGFR endocytosis via the early/late endocytic pathway in human fibrosarcoma cells.

    Science.gov (United States)

    Nishimura, Yukio; Bereczky, Biborka; Yoshioka, Kiyoko; Taniguchi, Shun'ichiro; Itoh, Kazuyuki

    2011-10-01

    The small GTPase RhoA and its downstream effectors, the Rho-associated kinase (Rho-kinase) family, are known to regulate cell morphology, motility, and tumor progression via the regulation of actin cytoskeleton rearrangement. In the present study, we evaluated the role of Rho-kinase in the intracellular endocytic trafficking of ligand-induced phosphorylated epidermal growth factor receptor (pEGFR). We investigated the time course of the internalization fate of EGF-induced pEGFR via the early/late endocytic pathway in human fibrosarcoma cell line HT1080 cells using Y-27632, a selective Rho-kinase inhibitor. We found, using confocal immunofluorescence microscopy and Western blot analysis, a large accumulation of pEGFR in the nuclei of HT1080 cells. In contrast, we observed decreased amounts of the pEGFR-positive staining in the nuclei along with an accumulation of cytosolic pEGFR staining when the cells were incubated for 15-30 min in the presence of Y-27632, implying that an aberrant endocytic trafficking mechanism of pEGFR occurs in HT1080 cells whereby pEGFR might be selectively translocated into the nucleus. Moreover, we demonstrated that after 15-min of stimulation with Texas Red-EGF, increasing numbers of pEGFR-positive staining that had colocalized with Texas Red-EGF-positive punctate staining were seen in the cytoplasm of HT1080 cells but after 30-min of stimulation, most of this staining had disappeared from the cytoplasm and a large accumulation of pEGFR-positive staining appeared in the nucleus. Thus, nuclear accumulation of pEGFR appears to occur in an EGF-dependent manner. In contrast, such nuclear pEGFR-positive staining was not seen in the Y-27632-treated cells. Furthermore, silencing of RhoA or Rho-kinases I/II by sequence specific siRNAs considerably inhibited the EGF-dependent nuclear accumulation of pEGFR. Collectively, these results provide the first evidence that Rho-kinase signaling pathway plays a suppressive role in the intracellular vesicle

  20. Structure-based identification of CaMKIIα-interacting MUPP1 PDZ domains and rational design of peptide ligands to target such interaction in human fertilization.

    Science.gov (United States)

    Zhang, Yi-Le; Han, Zhao-Feng; Sun, Ying-Pu

    2016-06-01

    The recognition and association between Ca(2+)/calmodulin-activated protein kinase II-α (CaMKIIα) and multi-PDZ domain protein 1 (MUPP1) plays an important role in sperm acrosome reaction and human fertilization, which is mediated by the binding of CaMKIIα's C-terminal tail to one or more PDZ domains of the scaffolding protein MUPP1. In this study, we attempt to identify the CaMKIIα-interacting MUPP1 PDZ domains and to design peptide ligands that can potently target and then competitively disrupt such interaction. Here, a synthetic biology approach was proposed to systematically characterize the structural basis, energetic property, dynamic behavior and biological implication underlying the intermolecular interactions between the C-terminal peptide of CaMKIIα and all the 13 PDZ domains of MUPP1. These domains can be grouped into four clusters in terms of their sequence, structure and physiochemical profile; different clusters appear to recognize different classes of PDZ-binding motifs. The cluster 3 includes two members, i.e. MUPP1 PDZ 5 and 11 domains, which were suggested to bind class II motif Φ-X-Φ(-COOH) of the C-terminal peptide SGAPSV(-COOH) of CaMKIIα. Subsequently, the two domains were experimentally measured as the moderate- and high-affinity binders of the peptide by using fluorescence titration (dissociation constants K d = 25.2 ± 4.6 and 0.47 ± 0.08 µM for peptide binding to PDZ 5 and 11, respectively), which was in line with theoretical prediction (binding free energies ΔG total = -7.6 and -9.2 kcal/mol for peptide binding to PDZ 5 and 11, respectively). A systematic mutation of SGAPSV(-COOH) residues suggested few favorable amino acids at different residue positions of the peptide, which were then combined to generate a number of potent peptide mutants for PDZ 11 domain. Consequently, two peptides (SIAPNV(-COOH) and SIVMNV(-COOH)) were identified to have considerably improved affinity with K d increase by ~tenfold relative to

  1. Biochemical Analysis of Pathogenic Ligand-Dependent FGFR2 Mutations Suggests Distinct Pathophysiological Mechanisms for Craniofacial and Limb Abnormalities in Human Skeletal Disorders

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahimi,O.; Zhang, F.; Eliseenkova, A.; Itoh, N.; Linhardt, R.; Mohammadi, M.

    2004-01-01

    Gain-of-function missense mutations in FGF receptor 2 (FGFR2) are responsible for a variety of craniosynostosis syndromes including Apert syndrome (AS), Pfeiffer syndrome (PS) and Crouzon syndrome (CS). Unlike the majority of FGFR2 mutations, S252W and P253R AS mutations and a D321A PS mutation retain ligand-dependency and are also associated with severe limb pathology. In addition, a recently identified ligand-dependent S252L/A315S double mutation in FGFR2 was shown to cause syndactyly in the absence of craniosynostosis. Here, we analyze the effect of the canonical AS mutations, the D321A PS mutation and the S252L/A315S double mutation on FGFR2 ligand binding affinity and specificity using surface plasmon resonance. Both AS mutations and the D321A PS mutation, but not the S252L/A315S double mutation, increase the binding affinity of FGFR2c to multiple FGFs expressed in the cranial suture. Additionally, all four pathogenic mutations also violate FGFR2c ligand binding specificity and enable this receptor to bind FGF10. Based on our data, we propose that an increase in mutant FGFR2c binding to multiple FGFs results in craniosynostosis, whereas binding of mutant FGFR2c to FGF10 results in severe limb pathology. Structural and biophysical analysis shows that AS mutations in FGFR2b also enhance and violate FGFR2b ligand binding affinity and specificity, respectively. We suggest that elevated AS mutant FGFR2b signaling may account for the dermatological manifestations of AS.

  2. A proliferation-inducing ligand sustains the proliferation of human naïve (CD27⁻) B cells and mediates their differentiation into long-lived plasma cells in vitro via transmembrane activator and calcium modulator and cyclophilin ligand interactor and B-cell mature antigen.

    Science.gov (United States)

    Matsuda, Yoshiko; Haneda, Masataka; Kadomatsu, Kenji; Kobayashi, Takaaki

    2015-06-01

    Long-lived plasma cells (PCs) contribute to humoral immunity through an undefined mechanism. Memory B cells, but not human naïve B cells, can be induced to differentiate into long-lived PCs in vitro. Because evidence links a proliferation-inducing ligand (APRIL), a tumor necrosis factor family member, to the ability of bone marrow to mediate long-term PC survival, we reasoned that APRIL influences the proliferation and differentiation of naïve B cells. We describe here the development of a simple cell culture system that allowed us to show that APRIL sustained the proliferation of naïve human B cells and induced them to differentiate into long-lived PCs. Blocking the transmembrane activator and calcium modulator and cyclophilin ligand interactor or B-cell mature antigen shows they were required for the differentiation of naïve B cells into long-lived PCs in vitro. Our in vitro culture system will reveal new insights into the biology of long-lived PCs.

  3. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model

    Directory of Open Access Journals (Sweden)

    Claudia Tulotta

    2016-02-01

    Full Text Available Triple-negative breast cancer (TNBC is a highly aggressive and recurrent type of breast carcinoma that is associated with poor patient prognosis. Because of the limited efficacy of current treatments, new therapeutic strategies need to be developed. The CXCR4-CXCL12 chemokine signaling axis guides cell migration in physiological and pathological processes, including breast cancer metastasis. Although targeted therapies to inhibit the CXCR4-CXCL12 axis are under clinical experimentation, still no effective therapeutic approaches have been established to block CXCR4 in TNBC. To unravel the role of the CXCR4-CXCL12 axis in the formation of TNBC early metastases, we used the zebrafish xenograft model. Importantly, we demonstrate that cross-communication between the zebrafish and human ligands and receptors takes place and human tumor cells expressing CXCR4 initiate early metastatic events by sensing zebrafish cognate ligands at the metastatic site. Taking advantage of the conserved intercommunication between human tumor cells and the zebrafish host, we blocked TNBC early metastatic events by chemical and genetic inhibition of CXCR4 signaling. We used IT1t, a potent CXCR4 antagonist, and show for the first time its promising anti-tumor effects. In conclusion, we confirm the validity of the zebrafish as a xenotransplantation model and propose a pharmacological approach to target CXCR4 in TNBC.

  4. Multicomponent mixtures for cryoprotection and ligand solubilization

    Directory of Open Access Journals (Sweden)

    Lidia Ciccone

    2015-09-01

    Full Text Available Mixed cryoprotectants have been developed for the solubilization of ligands for crystallization of protein–ligand complexes and for crystal soaking. Low affinity lead compounds with poor solubility are problematic for structural studies. Complete ligand solubilization is required for co-crystallization and crystal soaking experiments to obtain interpretable electron density maps for the ligand. Mixed cryo-preserving compounds are needed prior to X-ray data collection to reduce radiation damage at synchrotron sources. Here we present dual-use mixes that act as cryoprotectants and also promote the aqueous solubility of hydrophobic ligands. Unlike glycerol that increases protein solubility and can cause crystal melting the mixed solutions of cryo-preserving compounds that include precipitants and solubilizers, allow for worry-free crystal preservation while simultaneously solubilizing relatively hydrophobic ligands, typical of ligands obtained in high-throughput screening. The effectiveness of these mixture has been confirmed on a human transthyretin crystals both during crystallization and in flash freezing of crystals.

  5. Ligand modeling and design

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B.P. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used in the cost-effective removal of specific radionuclides from nuclear waste streams. Organic ligands with metal ion specificity are critical components in the development of solvent extraction and ion exchange processes that are highly selective for targeted radionuclides. The traditional approach to the development of such ligands involves lengthy programs of organic synthesis and testing, which in the absence of reliable methods for screening compounds before synthesis, results in wasted research effort. The author`s approach breaks down and simplifies this costly process with the aid of computer-based molecular modeling techniques. Commercial software for organic molecular modeling is being configured to examine the interactions between organic ligands and metal ions, yielding an inexpensive, commercially or readily available computational tool that can be used to predict the structures and energies of ligand-metal complexes. Users will be able to correlate the large body of existing experimental data on structure, solution binding affinity, and metal ion selectivity to develop structural design criteria. These criteria will provide a basis for selecting ligands that can be implemented in separations technologies through collaboration with other DOE national laboratories and private industry. The initial focus will be to select ether-based ligands that can be applied to the recovery and concentration of the alkali and alkaline earth metal ions including cesium, strontium, and radium.

  6. Human beta-defensin-2 and -3 enhance pro-inflammatory cytokine expression induced by TLR ligands via ATP-release in a P2X7R dependent manner.

    Science.gov (United States)

    Wanke, Daniela; Mauch-Mücke, Katrin; Holler, Ernst; Hehlgans, Thomas

    2016-11-01

    Our previous results indicate that HBD2 and HBD3 are chemotactic for a broad spectrum of leukocytes in a CCR6- and CCR2-dependent manner. In this study we report that pre-stimulation of primary human macrophages or THP-1 cells with HBD2 or HBD3 results in a synergistic, enhanced expression of pro-inflammatory cytokines and chemokines induced by TLR ligand re-stimulation. Experiments using specific inhibitors of the ATP-gated channel receptor P2X7 or its functional ligand ATP, suggest that the enhanced expression of pro-inflammatory cytokines and chemokines seems to be mediated by P2X7R. Furthermore, our data provide evidence that beta-defensins do not directly interact with P2X7R but rather induce the release of intracellular ATP. Interference with ATP release abrogated the synergistic effect mediated by HBD2 and HBD3 pre-stimulation in THP-1 cells. However, extracellular ATP alone seems not to be sufficient to elicit the enhanced synergistic effect on cytokine and chemokine expression observed by pre-stimulation of primary human macrophages or THP-1 cells with HBD2 or HBD3. Collectively, our findings provide new insights into the molecular mechanisms how HBD2 and HBD3 interact with cells of myeloid origin and demonstrate their immuno-modulating functions during innate immune responses.

  7. The PPAR{gamma} ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Patrice E.; Lyles, Besstina E.; Stewart, LaMonica V., E-mail: lstewart@mmc.edu

    2010-12-10

    The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPAR{gamma} ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPAR{gamma} ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPAR{gamma} ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPAR{gamma}. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPAR{gamma} and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.

  8. Biomaterial arrays with defined adhesion ligand densities and matrix stiffness identify distinct phenotypes for tumorigenic and nontumorigenic human mesenchymal cell types

    OpenAIRE

    Hansen, Tyler D.; Koepsel, Justin T.; Le, Ngoc Nhi; Nguyen, Eric H.; Zorn, Stefan; Parlato, Matthew; Loveland, Samuel G.; Schwartz, Michael P.; Murphy, William L.

    2014-01-01

    Here, we aimed to investigate migration of a model tumor cell line (HT-1080 fibrosarcoma cells, HT-1080s) using synthetic biomaterials to systematically vary peptide ligand density and substrate stiffness. A range of substrate elastic moduli were investigated by using poly(ethylene glycol) (PEG) hydrogel arrays (0.34 - 17 kPa) and self-assembled monolayer (SAM) arrays (~0.1-1 GPa), while cell adhesion was tuned by varying the presentation of Arg-Gly-Asp (RGD)-containing peptides. HT-1080 moti...

  9. Ligand modeling and design

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used tin applications for the cost-effective removal of specific radionuclides from nuclear waste streams.

  10. Quercetin protects necrotic insult and promotes apoptosis by attenuating the expression of RAGE and its ligand HMGB1 in human breast adenocarcinoma cells.

    Science.gov (United States)

    Dhumale, Suhashini S; Waghela, Bhargav N; Pathak, Chandramani

    2015-05-01

    The receptor for advanced glycation end-products (RAGE) is a multiligand member of the immunoglobulin superfamily, which plays an important role in maintaining cellular homeostasis. It is normally expressed on immune cells, including macrophages, monocytes, dendritic cells and T cells to maintain homeostasis, but highly upregulated at sites of vascular pathology. Accumulating evidence suggest that the elevated expression of RAGE and its ligand HMGB-1 was found in various types of cancer. The accumulation of RAGE and its ligand high-mobility group box proteins-1 (HMGB1) activates complex signaling network for cell survival and evades apoptosis. Therefore, targeting the RAGE-mediated signaling could be the promising strategies for the therapeutic potential of cancer. This study was aimed to examine the biological potential of quercetin on the regulation of RAGE- and HMGB1-mediated activation of NF-κB and induction of apoptotic cell death in MCF-7 cells. Our findings demonstrate that quercetin inhibits the expression of RAGE and HMGB1 in MCF-7 cells. In addition, quercetin protects necrotic insult and augments apoptosis in MCF-7 cells. Taken together, these results suggest that quercetin plays an important role in modulating RAGE and HMGB1 signaling and induces apoptotic cell death in MCF-7 cells. © 2015 International Union of Biochemistry and Molecular Biology.

  11. From ligand to complexes. Part 2. Remarks on human immunodeficiency virus type 1 integrase inhibition by beta-diketo acid metal complexes.

    Science.gov (United States)

    Bacchi, Alessia; Biemmi, Mariano; Carcelli, Mauro; Carta, Fabrizio; Compari, Carlotta; Fisicaro, Emilia; Rogolino, Dominga; Sechi, Mario; Sippel, Martin; Sotriffer, Christoph A; Sanchez, Tino W; Neamati, Nouri

    2008-11-27

    Previously, we synthesized a series of beta-diketo acid metal complexes as novel HIV-1 integrase (IN) inhibitors (J. Med. Chem. 2006, 46, 4248-4260). Herein, a further extension of this study is reported. First, detailed docking studies were performed in order to investigate the mode of binding in the active site of the free ligands and of their metal complexes. Second, a series of potentiometric measurements were conducted for two diketo acids chosen as model ligands, with Mn(2+) and Ca(2+), in order to outline a speciation model. Third, we designed and synthesized a new set of complexes with different stoichiometries and tested them in an in vitro assay specific for IN. Finally, we obtained the first X-ray structure of a metal complex with HIV-1 IN inhibition activity. Analysis of these results supports the hypothesis that the diketo acids could act as complexes and form complexes with the metal ions on the active site of the enzyme.

  12. Design of Ligands for Affinity Purification of G-CSF Based on Peptide Ligands Derived from a Peptide Library

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Combinatorial peptide libraries have become powerful tools to screen functional ligands by the principle of affinity selection. We screened in a phage peptide library to investigate potential peptide affinity ligands for the purification of human granulocyte colony-stimulation factor(hG-CSF). Peptide ligands will be promising to replace monoclonal antibodies as they have advantages of high stability, efficiency, selectivity and low price.

  13. Glucocorticoid-induced TNF receptor expression by T cells is reciprocally regulated by NF-kappaB and NFAT.

    Science.gov (United States)

    Zhan, Yifan; Gerondakis, Steve; Coghill, Elise; Bourges, Dorothee; Xu, Yuekang; Brady, Jamie L; Lew, Andrew M

    2008-10-15

    Although the transcription factor Foxp3 is implicated in regulating glucocorticoid-induced TNF receptor (GITR) expression in the T regulatory cell lineage, little is known about how GITR is transcriptionally regulated in conventional T cells. In this study, we provide evidence that TCR-mediated GITR expression depends on the ligand affinity and the maturity of conventional T cells. A genetic dissection of GITR transcriptional control revealed that of the three transcription factors downstream of the classical NF-kappaB pathway (RelA, cRel, and NF-kappaB1), RelA is a critical positive regulator of GITR expression, although cRel and NF-kappaB1 also play a positive regulatory role. Consistent with this finding, inhibiting NF-kappaB using Bay11-7082 reduces GITR up-regulation. In contrast, NFAT acts as a negative regulator of GITR expression. This was evidenced by our findings that agents suppressing NFAT activity (e.g., cyclosporin A and FK506) enhanced TCR-mediated GITR expression, whereas agents enhancing NFAT activity (e.g., lithium chloride) suppressed TCR-mediated GITR up-regulation. Critically, the induction of GITR was found to confer protection to conventional T cells from TCR-mediated apoptosis. We propose therefore that two major transcriptional factors activated downstream of the TCR, namely, NF-kappaB and NFAT, act reciprocally to balance TCR-mediated GITR expression in conventional T cells, an outcome that appears to influence cell survival.

  14. Vitamin D and vitamin A receptor expression and the proliferative effects of ligand activation of these receptors on the development of pancreatic progenitor cells derived from human fetal pancreas.

    Science.gov (United States)

    Ng, Ka Yan; Ma, Man Ting; Leung, Kwan Keung; Leung, Po Sing

    2011-03-01

    The growth and development of pancreatic islet cells are regulated by various morphogens. Vitamin A modulates in vitro differentiation of islet cells and vitamin D affects beta-cell insulin secretion, while both vitamin ligands act through heterodimerization with the retinoid X receptor (RXR). However, their effects in modulating pancreatic development have not been determined. In this study, cultured human pancreatic progenitor cells (PPCs) isolated from human fetal pancreas were stimulated to differentiate into islet-like cell clusters (ICCs). RT-PCR, Western blotting and immunocytochemistry were used to examine the expression and localization of vitamin D receptor (VDR), retinoic acid receptor (RAR), and RXR in PPCs. The effects of added all-trans retinoic acid (atRA, a form of vitamin A), calcitriol (activated vitamin D) and of these ligands together on PPC cell viability, proliferation and apoptosis were assessed by MTT, BrdU and ELISA assays, respectively. Post-treatment neurogenin-3 (NGN3) expression, necessary for islet-cell lineage development, was examined by real-time RT-PCR. Results showed that RAR, RXR and VDR were expressed in PPCs. RAR and RXR were localized in nuclei, and the VDR in nuclei, cytoplasm and plasma membrane. atRA and calcitriol each increased PPC viability and proliferation; atRA additionally decreased PPC apoptosis. Co-addition of atRA and calcitriol had no additive effects on cell viability but did increase ngn3 responses. In conclusion, RAR, RXR and VDR are expressed in human fetal PPCs and PPC proliferation can be promoted by calcitriol, atRA or both together, data valuable for elucidating mechanisms underlying islet development and for developing clinical islet transplantation.

  15. Development and Application of Ligand-Exchange Reaction Method ...

    African Journals Online (AJOL)

    Erah

    Methods: The method is based on ligand-exchange reaction. ... Clonazepam, Ligand-exchange reaction, Kinetic spectrometry, Validation, Pharmaceutical ... sensitive and selective analytical method for ... does not need sophisticated instruments or ..... of clonazepam in human serum ("Lytorol N) by standard addition method.

  16. Expression of toll-like receptors by human muscle cells in vitro and in vivo: TLR3 is highly expressed in inflammatory and HIV myopathies, mediates IL-8 release and up-regulation of NKG2D-ligands.

    Science.gov (United States)

    Schreiner, Bettina; Voss, Joachim; Wischhusen, Jörg; Dombrowski, Yvonne; Steinle, Alexander; Lochmüller, Hanns; Dalakas, Marinos; Melms, Arthur; Wiendl, Heinz

    2006-01-01

    The particular microenvironment of the skeletal muscle can be the site of complex immune reactions. Toll-like receptors (TLRs) mediate inflammatory stimuli from pathogens and endogenous danger signals and link the innate and adaptive immune system. We investigated innate immune responses in human muscle. Analyzing TLR1-9 mRNA in cultured myoblasts and rhabdomyosarcoma cells, we found constitutive expression of TLR3. The TLR3 ligand Poly (I:C), a synthetic analog of dsRNA, and IFN-gamma increased TLR3 levels. TLR3 was mainly localized intracellularly and regulated at the protein level. Poly (I:C) challenge 1) activated nuclear factor-kappaB (NF-kappaB), 2) increased IL-8 release, and 3) up-regulated NKG2D ligands and NK-cell-mediated lysis of muscle cells. We examined muscle biopsy specimens of 6 HIV patients with inclusion body myositis/polymyositis (IBM/PM), 7 cases of sporadic IBM and 9 nonmyopathic controls for TLR3 expression. TLR3 mRNA levels were elevated in biopsy specimens from patients with IBM and HIV-myopathies. Muscle fibers in inflammatory myopathies expressed TLR3 in close proximity of infiltrating mononuclear cells. Taken together, our study suggests an important role of TLR3 in the immunobiology of muscle, and has substantial implications for the understanding of the pathogenesis of inflammatory myopathies or therapeutic interventions like vaccinations or gene transfer.

  17. Molecular modeling of the human P2Y14 receptor: A template for structure-based design of selective agonist ligands.

    Science.gov (United States)

    Trujillo, Kevin; Paoletta, Silvia; Kiselev, Evgeny; Jacobson, Kenneth A

    2015-07-15

    The P2Y14 receptor (P2Y14R) is a Gi protein-coupled receptor that is activated by uracil nucleotides UDP and UDP-glucose. The P2Y14R structure has yet to be solved through X-ray crystallography, but the recent agonist-bound crystal structure of the P2Y12R provides a potentially suitable template for its homology modeling for rational structure-based design of selective and high-affinity ligands. In this study, we applied ligand docking and molecular dynamics refinement to a P2Y14R homology model to qualitatively explain structure-activity relationships of previously published synthetic nucleotide analogues and to probe the quality of P2Y14R homology modeling as a template for structure-based design. The P2Y14R model supports the hypothesis of a conserved binding mode of nucleotides in the three P2Y12-like receptors involving functionally conserved residues. We predict phosphate group interactions with R253(6.55), K277(7.35), Y256(6.58) and Q260(6.62), nucleobase (anti-conformation) π-π stacking with Y102(3.33) and the role of F191(5.42) as a means for selectivity among P2Y12-like receptors. The glucose moiety of UDP-glucose docked in a secondary subpocket at the P2Y14R homology model. Thus, P2Y14R homology modeling may allow detailed prediction of interactions to facilitate the design of high affinity, selective agonists as pharmacological tools to study the P2Y14R.

  18. Involvement of ubiquitous and tale transcription factors, as well as liganded RXRα, in the regulation of human SOX2 gene expression in the NT2/D1 embryonal carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Milivojević Milena

    2010-01-01

    Full Text Available SOX2 is a key transcription factor in embryonic development representing a universal marker of pluripotent stem cells. Based on the functional redundancy and overlapping expression patterns of SOXB1 subgroup members during development, the goal of this study has been to analyze if some aspects of regulation of expression are preserved between human SOX2 and SOX3 genes. Thus, we have tested several transcription factors previously demonstrated to play roles in controlling SOX3 gene activity for potential participation in the regulation of SOX2 gene expression in NT2/D1 cells. Here we report on the activation of SOX2 expression by ubiquitous transcription factors (NF-Y, Sp1 and MAZ, TALE family members (Pbx1 and Meis1, as well as liganded RXRα. Elucidating components involved in the regulation of SOX gene expression represent a valuable contribution in unraveling the regulatory networks operating in pluripotent embryonic cells.

  19. Identification of Potent and Selective CYP1A1 Inhibitors via Combined Ligand and Structure-Based Virtual Screening and Their in Vitro Validation in Sacchrosomes and Live Human Cells.

    Science.gov (United States)

    Joshi, Prashant; McCann, Glen J P; Sonawane, Vinay R; Vishwakarma, Ram A; Chaudhuri, Bhabatosh; Bharate, Sandip B

    2017-06-26

    Target structure-guided virtual screening (VS) is a versatile, powerful, and inexpensive alternative to experimental high-throughput screening (HTS). To discover potent CYP1A1 enzyme inhibitors for cancer chemoprevention, a commercial library of 50 000 small molecules was utilized for VS guided by both ligand and structure-based strategies. For experimental validation, 300 ligands were proposed based on combined analysis of fitness scores from ligand based e-pharmacophore screening and docking score, prime MMGB/SA binding affinity and interaction pattern analysis from structure-based VS. These 300 compounds were screened, at 10 μM concentration, for in vitro inhibition of CYP1A1-Sacchrosomes (yeast-derived microsomal enzyme) in the ethoxyresorufin-O-de-ethylase assay. Thirty-two compounds displayed >50% inhibition of CYP1A1 enzyme activity at 10 μM. 2-Phenylimidazo-[1,2-a]quinoline (5121780, 119) was found to be the most potent with 97% inhibition. It also inhibited ∼95% activity of CYP1B1 and CYP1A2, the other two CYP1 enzymes. The compound 5121780 (119) showed high selectivity toward inhibition of CYP1 enzymes with respect to CYP2 and CYP3 enzymes (i.e., there was no detectable inhibition of CYP2D6/CYP2C9/CYP2C19 and CYP3A4 at 10 μM). It was further investigated in live CYP-expressing human cell system, which confirmed that compound 5121780 (119) potently inhibited CYP1A1, CYP1A2, CYP1B1 enzymes with IC50 values of 269, 30, and 56 nM, respectively. Like in Sacchrosomes, inhibition of CYP2D6/CYP2C9/CYP2C19 and CYP3A4 enzymes, expressed within live human cells, could hardly be detected at 10 μM. The compound 119 rescued CYP1A1 overexpressing HEK293 cells from CYP1A1 mediated benzo[a]pyrene (B[a]P) toxicity and also overcame cisplatin resistance in CYP1B1 overexpressing HEK293 cells. Molecular dynamics simulations of 5121780 (119) with CYP1 enzymes was performed to understand the interaction pattern to CYP isoforms. Results indicate that VS can successfully

  20. Does DcR1 (TNF-related apoptosis-inducing-ligand Receptor 3) have any role in human AMD pathogenesis?

    Science.gov (United States)

    Anand, Akshay; Sharma, Neel K; Singh, Ramandeep; Gupta, Amod; Prabhakar, Sudesh; Jindal, Neeru; Bhatt, Arvind K; Sharma, Suresh K; Gupta, Pawan K

    2014-02-18

    It has been postulated that there is a link between age related degenerative diseases and cancer. The TNF-related apoptosis-inducing ligand (TRAIL) has been shown to selectively kill tumor cells by binding to pro-apoptotic and anti-apoptotic receptors. Our aim was to study the levels of anti-apoptotic receptor (DcR1) in age related macular degeneration (AMD) and controls. AMD patients (115) were classified into two groups: Dry and Wet AMD. Wet AMDs were further classified into occult, predominant classic and minimal classic. 61 healthy individuals were recruited as normal controls. After normalization with total protein, DcR1 levels were analyzed by ELISA. Mann Whitney U-statistic was used for analysis of DcR1 ELISA results. We have observed DcR1 levels in serum sample which were significantly lower in AMD patients as compared to controls (p = 0.001). On the other hand, we did not find difference in DcR1 levels between wet and dry AMD. The present study defines the plausible role of DcR1 in AMD pathology signifying a new therapeutic target for AMD.

  1. Hispolon from Phellinus linteus induces apoptosis and sensitizes human cancer cells to the tumor necrosis factor-related apoptosis-inducing ligand through upregulation of death receptors.

    Science.gov (United States)

    Kim, Ji-Hun; Kim, Yu Chul; Park, Byoungduck

    2016-02-01

    The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent anticancer agent possessing the ability to induce apoptosis in various cancer cells but not in non‑malignant cells. However, certain type of cancer cells are resistant to TRAIL‑induced apoptosis and some acquire resistance after the first treatment. So development of an agent that can reduce or avoid resistance in TRAIL‑induced apoptosis has garnered significant attention. The present study evaluated the anticancer potential of hispolon in TRAIL‑induced apoptosis and indicated hispolon can sensitize cancer cells to TRAIL. As the mechanism of action was examined, hispolon was found to activate caspase‑3, caspase‑8 and caspase‑9, while downregulating the expression of cell survival proteins such as cFLIP, Bcl‑2 and Bcl‑xL and upregulating the expression of Bax and truncated Bid. We also found hispolon induced death receptors in a non‑cell type‑specific manner. Upregulation of death receptors by hispolon was found to be p53-independent but linked to the induction of CAAT enhancer binding protein homologous protein (CHOP). Overall, hispolon was demonstrated to potentiate the apoptotic effects of TRAIL through downregulation of anti‑apoptotic proteins and upregulation of death receptors linked with CHOP and pERK elevation.

  2. Receptor activator of NF-kB Ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Epithelial-mesenchymal transition (EMT) in cancer describes the phenotypic and behavioral changes of cancer cells from indolent to virulent forms with increased migratory, invasive and metastatic potential. EMT can be induced by soluble proteins like transforming growth factor β1 (TGFβ1) and transcription factors including Snail and Slug. We utilized the ARCaPE/ARCaPM prostate cancer progression model and LNCaP clones stably overexpressing Snail to identify novel markers associated with EMT. Compared to ARCaPE cells, the highly tumorigenic mesenchymai ARCaPM and ARCaPM1 variant cells displayed a higher incidence of bone metastasis after intracardiac administration in SCID mice. ARCaPM and ARCaPM1 expressed mesenchymal stromal markers of vimentin and N-cadherin in addition to elevated levels of Receptor Activator of NF-kB Ligand (RANKL). We observed that both epidermal growth factor (EGF) plus TGFβ1 treatment and Snail overexpression induced EMT in ARCaPE and LNCaP cells, and EMT was associated with increased expression of RANKL protein. Finally, we determined that the RANKL protein was functionally active, promoting osteoclastogenesis in vitro. Our results indicate that RANKL is a novel marker for EMT during prostate cancer progression. RANKL may function as a link between EMT, bone turnover, and prostate cancer skeletal metastasis.

  3. Automated preparation of the dopamine D{sub 2/3} receptor agonist ligand [{sup 11}C]-(+)-PHNO for human PET imaging studies

    Energy Technology Data Exchange (ETDEWEB)

    Plisson, Christophe, E-mail: Christophe.2.plisson@gsk.com [GlaxoSmithKline, Clinical Imaging Centre, Hammersmith Hospital, London W12 0NN (United Kingdom); Huiban, Mickael; Pampols-Maso, Sabina; Singleton, Goerkem; Hill, Samuel P.; Passchier, Jan [GlaxoSmithKline, Clinical Imaging Centre, Hammersmith Hospital, London W12 0NN (United Kingdom)

    2012-02-15

    Carbon-11 labelled (+)-4-Propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol ([{sup 11}C]-(+)-PHNO) is used as a high-affinity state, dopamine D{sub 2/3} receptor ligand in clinical PET studies. To facilitate its use, robust, rapid, efficient and GMP compliant methods are required for the manufacturing and QC testing processes. Additionally, to allow for full quantification of the resulting signal in the CNS, a reliable method is required to establish the parent plasma concentration over the course of the scan. This paper provides high-quality methods to support clinical application of [{sup 11}C]-(+)-PHNO. - Highlights: Black-Right-Pointing-Pointer Fully automated synthesis of [{sup 11}C]-(+)-PHNO. Black-Right-Pointing-Pointer Rapid multi-step synthesis and QC analysis. Black-Right-Pointing-Pointer Reproducible synthesis process typically yielding more than 3 GBq of [{sup 11}C]-(+)-PHNO. Black-Right-Pointing-Pointer Very low failure rate.

  4. Screening of candidate G-quadruplex ligands for the human c-KIT promotorial region and their effects in multiple in-vitro models

    Science.gov (United States)

    Zorzan, Eleonora; Ros, Silvia Da; Musetti, Caterina; Shahidian, Lara Zorro; Ramos Coelho, Nuno Filipe; Bonsembiante, Federico; Létard, Sébastien; Gelain, Maria Elena; Palumbo, Manlio; Dubreuil, Patrice; Giantin, Mery; Sissi, Claudia; Dacasto, Mauro

    2016-01-01

    Stabilization of G-quadruplex (G4) structures in promoters is a novel promising strategy to regulate gene expression at transcriptional and translational levels. c-KIT proto-oncogene encodes for a tyrosine kinase receptor. It is involved in several physiological processes, but it is also dysregulated in many diseases, including cancer. Two G-rich sequences able to fold into G4, have been identified in c-KIT proximal promoter, thus representing suitable targets for anticancer intervention. Herein, we screened an “in house” library of compounds for the recognition of these G4 elements and we identified three promising ligands. Their G4-binding properties were analyzed and related to their antiproliferative, transcriptional and post-transcriptional effects in MCF7 and HGC27 cell lines. Besides c-KIT, the transcriptional analysis covered a panel of oncogenes known to possess G4 in their promoters. From these studies, an anthraquinone derivative (AQ1) was found to efficiently downregulate c-KIT mRNA and protein in both cell lines. The targeted activity of AQ1 was confirmed using c-KIT–dependent cell lines that present either c-KIT mutations or promoter engineered (i.e., α155, HMC1.2 and ROSA cells). Present results indicate AQ1 as a promising compound for the target therapy of c-KIT-dependent tumors, worth of further and in depth molecular investigations. PMID:26942875

  5. Modulation of the CD40-CD40 ligand interaction using human anti-CD40 single-chain antibody fragments obtained from the n-CoDeR phage display library.

    Science.gov (United States)

    Ellmark, Peter; Ottosson, Camilla; Borrebaeck, Carl A K; Malmborg Hager, Ann-Christin; Furebring, Christina

    2002-08-01

    CD40 plays a central regulatory role in the immune system and antibodies able to modulate CD40 signalling may consequently have a potential in immunotherapy, in particular for treatment of lymphomas and autoimmune disease like multiple sclerosis. As a first step to achieve this goal, we describe the selection and characterization of a novel set of fully human anti-CD40 antibody fragments (scFv) from a phage display library (n-CoDeR). In order to determine their biological potential, these antibody fragments have been analysed for their ability to promote B-cell activation, rescue from apoptosis and to block the CD40-CD40 ligand (CD40L) interaction. The selected cohort of human scFv could be subcategorized, each expressing a distinct functional signature. Thus scFv were generated that induced B-cell proliferation, rescued B cells from apoptosis and blocked the CD40-CD40L interaction to different extents. In particular, one of the scFv clones (F33) had the ability to abrogate completely this interaction. The epitope recognition patterns as well as individual rate constants were also determined and the affinity was shown to vary from low to high nanomolar range. In conclusion, this panel of human anti-CD40 scFv fragments displays a number of distinct properties, which may constitute a valuable source when evaluating candidates for in vivo trials.

  6. Pleiotropic Effects of Blastocystis spp. Subtypes 4 and 7 on Ligand-Specific Toll-Like Receptor Signaling and NF-κB Activation in a Human Monocyte Cell Line

    Science.gov (United States)

    Teo, Joshua D. W.; MacAry, Paul A.; Tan, Kevin S. W.

    2014-01-01

    Blastocystis spp. is a common enteric stramenopile parasite that colonizes the colon of hosts of a diverse array of species, including humans. It has been shown to compromise intestinal epithelial cell barrier integrity and mediate the production of pro-inflammatory cytokines and chemokines. Mucosal epithelial surfaces, including the intestinal epithelium, are increasingly recognized to perform a vital surveillance role in the context of innate immunity, through the expression of pathogen recognition receptors, such as Toll-like receptors (TLRs). In this study, we use the human TLR reporter monocytic cell line, THP1-Blue, which expresses all human TLRs, to investigate effects of Blastocystis on TLR activation, more specifically the activation of TLR-2, -4 and -5. We have observed that live Blastocystis spp. parasites and whole cell lysate (WCL) alone do not activate TLRs in THP1-Blue. Live ST4-WR1 parasites inhibited LPS-mediated NF-κB activation in THP1-Blue. In contrast, ST7-B WCL and ST4-WR1 WCL induced pleiotropic modulation of ligand-specific TLR-2 and TLR-4 activation, with no significant effects on flagellin-mediated TLR-5 activation. Real time-qPCR analysis on SEAP reporter gene confirmed the augmenting effect of ST7-B on LPS-mediated NF-κB activation in THP1-Blue. Taken together, this is the first study to characterize interactions between Blastocystis spp. and host TLR activation using an in vitro reporter model. PMID:24551212

  7. Pleiotropic effects of Blastocystis spp. Subtypes 4 and 7 on ligand-specific toll-like receptor signaling and NF-κB activation in a human monocyte cell line.

    Directory of Open Access Journals (Sweden)

    Joshua D W Teo

    Full Text Available Blastocystis spp. is a common enteric stramenopile parasite that colonizes the colon of hosts of a diverse array of species, including humans. It has been shown to compromise intestinal epithelial cell barrier integrity and mediate the production of pro-inflammatory cytokines and chemokines. Mucosal epithelial surfaces, including the intestinal epithelium, are increasingly recognized to perform a vital surveillance role in the context of innate immunity, through the expression of pathogen recognition receptors, such as Toll-like receptors (TLRs. In this study, we use the human TLR reporter monocytic cell line, THP1-Blue, which expresses all human TLRs, to investigate effects of Blastocystis on TLR activation, more specifically the activation of TLR-2, -4 and -5. We have observed that live Blastocystis spp. parasites and whole cell lysate (WCL alone do not activate TLRs in THP1-Blue. Live ST4-WR1 parasites inhibited LPS-mediated NF-κB activation in THP1-Blue. In contrast, ST7-B WCL and ST4-WR1 WCL induced pleiotropic modulation of ligand-specific TLR-2 and TLR-4 activation, with no significant effects on flagellin-mediated TLR-5 activation. Real time-qPCR analysis on SEAP reporter gene confirmed the augmenting effect of ST7-B on LPS-mediated NF-κB activation in THP1-Blue. Taken together, this is the first study to characterize interactions between Blastocystis spp. and host TLR activation using an in vitro reporter model.

  8. Ligand fitting with CCP4

    Science.gov (United States)

    2017-01-01

    Crystal structures of protein–ligand complexes are often used to infer biology and inform structure-based drug discovery. Hence, it is important to build accurate, reliable models of ligands that give confidence in the interpretation of the respective protein–ligand complex. This paper discusses key stages in the ligand-fitting process, including ligand binding-site identification, ligand description and conformer generation, ligand fitting, refinement and subsequent validation. The CCP4 suite contains a number of software tools that facilitate this task: AceDRG for the creation of ligand descriptions and conformers, Lidia and JLigand for two-dimensional and three-dimensional ligand editing and visual analysis, Coot for density interpretation, ligand fitting, analysis and validation, and REFMAC5 for macromolecular refinement. In addition to recent advancements in automatic carbohydrate building in Coot (LO/Carb) and ligand-validation tools (FLEV), the release of the CCP4i2 GUI provides an integrated solution that streamlines the ligand-fitting workflow, seamlessly passing results from one program to the next. The ligand-fitting process is illustrated using instructive practical examples, including problematic cases such as post-translational modifications, highlighting the need for careful analysis and rigorous validation. PMID:28177312

  9. Re-evaluation of receptor-ligand interactions of the human neuropeptide Y receptor Y1: a site-directed mutagenesis study

    National Research Council Canada - National Science Library

    Sjödin, Paula; Holmberg, Sara K S; Akerberg, Helena; Berglund, Magnus M; Mohell, Nina; Larhammar, Dan

    2006-01-01

    Interactions of the human NPY (neuropeptide Y) receptor Y1 with the two endogenous agonists NPY and peptide YY and two non-peptide antagonists were investigated using site-directed mutagenesis at 17 positions...

  10. Differential requirements of arrestin-3 and clathrin for ligand-dependent and -independent internalization of human G protein-coupled receptor 40.

    Science.gov (United States)

    Qian, Jing; Wu, Chun; Chen, Xiaopan; Li, Xiangmei; Ying, Guoyuan; Jin, Lili; Ma, Qiang; Li, Guo; Shi, Ying; Zhang, Guozheng; Zhou, Naiming

    2014-11-01

    G protein-coupled receptor 40 (GPR40) is believed to be an attractive target to enhance insulin secretion in patients with type 2 diabetes. GPR40 has been found to couple to Gq protein, leading to the activation of phospholipase C and subsequent increases in the intracellular Ca(2+) level. However, the underlying mechanisms that regulate the internalization and desensitization of GPR40 remain to be elucidated. In the present study, a construct of GPR40 fused with enhanced green fluorescent protein (EGFP) at its C-terminus was constructed for direct imaging of the localization and internalization of GPR40 by confocal microscopy. In stably transfected HEK-293 cells, GPR40 receptors underwent rapid agonist-induced internalization and constitutive ligand-independent internalization. Our data demonstrated that the agonist-mediated internalization of GPR40 was significantly blocked by hypertonic sucrose treatment and by siRNA mediated depletion of the heavy chain of clathrin. In contrast, constitutive GPR40 internalization was not affected by hypertonic sucrose or by knock-down of clathrin expression, but it was affected by treatment with methyl-β-cyclodextrin (MβCD) and nystatin. Furthermore, our results using an arrestin-3-EGFP redistribution assay and siRNA-mediated knock-down of arrestin-3 and GRK2 expression revealed that arrestin-3 and GRK2 play an essential role in the regulation of agonist-mediated GPR40 internalization, but are not involved in the regulation of constitutive GPR40 internalization. Additionally, our observation showed that upon activation by agonist, the internalized GPR40 receptors were rapidly recycled back to the plasma membrane via Rab4/Rab5 positive endosomes, whereas the constitutively internalized GPR40 receptors were recycled back to the cell surface through Rab5 positive endosomes. Because FFA receptors exhibit a high level of homology, our observations could be applicable to other members of this family.

  11. The Influence of Cytomegalovirus on Expression of HLA-G and its Ligand KIR2DL4 by Human Peripheral Blood Leucocyte Subsets.

    Science.gov (United States)

    Albayati, Z; Alyami, A; Alomar, S; Middleton, D; Bonnett, L; Aleem, S; Flanagan, B F; Christmas, S E

    2017-08-17

    HLA-G is a non-classical class I HLA antigen, normally expressed in high levels only on extravillous cytotrophoblast. It has immunosuppressive properties in pregnancy and has also been found to be upregulated on leucocytes in viral infection. In this study, proportions of all leucocyte subsets expressing HLA-G were found to be low in healthy subjects positive or negative for cytomegalovirus (CMV). Significantly greater proportions of CD4+ CD69+ and CD56+ T cells expressed HLA-G compared to other T cells. However, following stimulation with CMV antigens or intact CMV, proportions of CD4+, CD8+, CD69+ and CD56+ T cells, and also B cells expressing HLA-G, were significantly increased in CMV+ subjects. Despite some subjects having alleles of HLA-G associated with high levels of expression, no relationship was found between HLA-G genotype and expression levels. Purified B cells from CMV+ subjects stimulated in mixed culture with CMV antigens showed significantly increased HLA-G mRNA expression by real-time polymerase chain reaction. Serum levels of soluble HLA-G were similar in CMV- and CMV+ subjects but levels in culture supernatants were significantly higher in cells from CMV+ than from CMV- subjects stimulated with CMV antigens. The HLA-G ligand KIR2DL4 was mainly expressed on NK cells and CD56+ T cells with no differences between CMV+ and CMV- subjects. Following stimulation with IL-2, an increase in the proportion of CD56+ T cells positive for KIR2DL4 was found, together with a significant decrease in CD56dimCD16+ NK cells. The results show that CMV influences HLA-G expression in healthy subjects and may contribute to viral immune evasion. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  12. Superior serum half life of albumin tagged TNF ligands

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Nicole [Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg (Germany); Schneider, Britta; Pfizenmaier, Klaus [Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart (Germany); Wajant, Harald, E-mail: harald.wajant@mail.uni-wuerzburg.de [Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg (Germany)

    2010-06-11

    Due to their immune stimulating and apoptosis inducing properties, ligands of the TNF family attract increasing interest as therapeutic proteins. A general limitation of in vivo applications of recombinant soluble TNF ligands is their notoriously rapid clearance from circulation. To improve the serum half life of the TNF family members TNF, TWEAK and TRAIL, we genetically fused soluble variants of these molecules to human serum albumin (HSA). The serum albumin-TNF ligand fusion proteins were found to be of similar bioactivity as the corresponding HSA-less counterparts. Upon intravenous injection (i.v.), serum half life of HSA-TNF ligand fusion proteins, as determined by ELISA, was around 15 h as compared to approximately 1 h for all of the recombinant control TNF ligands without HSA domain. Moreover, serum samples collected 6 or 24 h after i.v. injection still contained high TNF ligand bioactivity, demonstrating that there is only limited degradation/inactivation of circulating HSA-TNF ligand fusion proteins in vivo. In a xenotransplantation model, significantly less of the HSA-TRAIL fusion protein compared to the respective control TRAIL protein was required to achieve inhibition of tumor growth indicating that the increased half life of HSA-TNF ligand fusion proteins translates into better therapeutic action in vivo. In conclusion, our data suggest that genetic fusion to serum albumin is a powerful and generally applicable mean to improve bioavailability and in vivo activity of TNF ligands.

  13. LigandRNA: computational predictor of RNA-ligand interactions.

    Science.gov (United States)

    Philips, Anna; Milanowska, Kaja; Lach, Grzegorz; Bujnicki, Janusz M

    2013-12-01

    RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA-small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA-ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a "meta-predictor" leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl.

  14. Analysis of macromolecules, ligands and macromolecule-ligand complexes

    Science.gov (United States)

    Von Dreele, Robert B [Los Alamos, NM

    2008-12-23

    A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.

  15. Ligand-Receptor Interactions

    CERN Document Server

    Bongrand, Pierre

    2008-01-01

    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the ...

  16. Cortactin overexpression results in sustained epidermal growth factor receptor signaling by preventing ligand-induced receptor degradation in human carcinoma cells

    NARCIS (Netherlands)

    van Rossum, AGSH; Gibcus, J; van der Wal, J; Schuuring, E

    2005-01-01

    The chromosome 11q13 region is frequently amplified in human carcinomas and results in an increased expression of various genes including cortactin, and is also associated with an increased invasive potential. Cortactin acts as an important regulator of the actin cytoskeleton. It is therefore very t

  17. Therapeutic androgen receptor ligands

    OpenAIRE

    Allan, George F.; Sui, Zhihua

    2003-01-01

    In the past several years, the concept of tissue-selective nuclear receptor ligands has emerged. This concept has come to fruition with estrogens, with the successful marketing of drugs such as raloxifene. The discovery of raloxifene and other selective estrogen receptor modulators (SERMs) has raised the possibility of generating selective compounds for other pathways, including androgens (that is, selective androgen receptor modulators, or SARMs).

  18. Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ{sup 9}-tetrahydrocannabinol in human CD4{sup +} T cells

    Energy Technology Data Exchange (ETDEWEB)

    Ngaotepprutaram, Thitirat [Department of Pharmacology and Toxicology, Michigan State University (United States); Center for Integrative Toxicology, Michigan State University (United States); Kaplan, Barbara L.F. [Department of Pharmacology and Toxicology, Michigan State University (United States); Center for Integrative Toxicology, Michigan State University (United States); Neuroscience Program, Michigan State University (United States); Kaminski, Norbert E., E-mail: kamins11@msu.edu [Department of Pharmacology and Toxicology, Michigan State University (United States); Center for Integrative Toxicology, Michigan State University (United States)

    2013-11-15

    We have previously reported that Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), the main psychoactive cannabinoid in marijuana, suppresses CD40 ligand (CD40L) expression by activated mouse CD4{sup +} T cells. CD40L is involved in pathogenesis of many autoimmune and inflammatory diseases. In the present study, we investigated the molecular mechanism of Δ{sup 9}-THC-mediated suppression of CD40L expression using peripheral blood human T cells. Pretreatment with Δ{sup 9}-THC attenuated CD40L expression in human CD4{sup +} T cells activated by anti-CD3/CD28 at both the protein and mRNA level, as determined by flow cytometry and quantitative real-time PCR, respectively. Electrophoretic mobility shift assays revealed that Δ{sup 9}-THC suppressed the DNA-binding activity of both NFAT and NFκB to their respective response elements within the CD40L promoter. An assessment of the effect of Δ{sup 9}-THC on proximal T cell-receptor (TCR) signaling induced by anti-CD3/CD28 showed significant impairment in the rise of intracellular calcium, but no significant effect on the phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β. Collectively, these findings identify perturbation of the calcium-NFAT and NFκB signaling cascade as a key mechanistic event by which Δ{sup 9}-THC suppresses human T cell function. - Highlights: • Δ{sup 9}-THC attenuated CD40L expression in activated human CD4+ T cells. • Δ{sup 9}-THC suppressed DNA-binding activity of NFAT and NFκB. • Δ{sup 9}-THC impaired elevation of intracellular Ca2+. • Δ{sup 9}-THC did not affect phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β.

  19. Imidazoline receptors ligands

    Directory of Open Access Journals (Sweden)

    Agbaba Danica

    2012-01-01

    Full Text Available Extensive biochemical and pharmacological studies have determined three different subtypes of imidazoline receptors: I1-imidazoline receptors (I1-IR involved in central inhibition of sympathicus that produce hypotensive effect; I2-imidazoline receptors (I2-IR modulate monoamine oxidase B activity (MAO-B; I3-imidazoline receptors (I3-IR regulate insulin secretion from pancreatic β-cells. Therefore, the I1/I2/I3 imidazoline receptors are selected as new, interesting targets for drug design and discovery. Novel selective I1/I2/I3 agonists and antagonists have been recently developed. In the present review, we provide a brief update to the field of imidazoline research, highlighting some of the chemical diversity and progress made in the 2D-QSAR, 3D-QSAR and quantitative pharmacophore development studies of I1-IR and I2-IR imidazoline receptor ligands. Theoretical studies of I3-IR ligands are not yet performed because of insufficient number of synthesized I3-IR ligands.

  20. No influence of OPG and its ligands, RANKL and TRAIL, on proliferation and regulation of the calcification process in primary human vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Olesen, Malene; Skov, Vibe; Mechta, Mie;

    2012-01-01

    The aim of this study was to examine the effects of the OPG-RANKL-TRAIL system on proliferation, regulation of calcification-associated genes and calcification of human vascular smooth muscle cells (HVSMCs). Small interfering (si)RNA-mediated knockdown of OPG was followed by treatment of HVSMCs...... with recombinant RANKL or TRAIL. Regulation of a calcification-associated gene set was assayed by pathway analysis of microarray results. The lack of OPG in HVSMCs or treatment with RANKL or TRAIL did not affect proliferation of HVSMCs. In addition, OPG, RANKL or TRAIL did not modify the regulation...... of a calcification-associated gene set. Finally, in the long term calcification assay, we found that cells isolated from seven different human donors showed a great variability in the response to RANKL and insulin. However, overall RANKL and/or insulin did not affect the development of calcification of HVSMCs...

  1. Metalloprotein-inhibitor binding: human carbonic anhydrase II as a model for probing metal-ligand interactions in a metalloprotein active site.

    Science.gov (United States)

    Martin, David P; Hann, Zachary S; Cohen, Seth M

    2013-11-01

    An ever-increasing number of metalloproteins are being discovered that play essential roles in physiological processes. Inhibitors of these proteins have significant potential for the treatment of human disease, but clinical success of these compounds has been limited. Herein, zinc(II)-dependent metalloprotein inhibitors in clinical use are reviewed, and the potential for using novel metal-binding groups (MBGs) in the design of these inhibitors is discussed. By using human carbonic anhydrase II as a model system, the nuances of MBG-metal interactions in the context of a protein environment can be probed. Understanding how metal coordination influences inhibitor binding may help in the design of new therapeutics targeting metalloproteins.

  2. The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand.

    Science.gov (United States)

    Bella, J; Kolatkar, P R; Marlor, C W; Greve, J M; Rossmann, M G

    1998-04-14

    The normal function of human intercellular adhesion molecule-1 (ICAM-1) is to provide adhesion between endothelial cells and leukocytes after injury or stress. ICAM-1 binds to leukocyte function-associated antigen (LFA-1) or macrophage-1 antigen (Mac-1). However, ICAM-1 is also used as a receptor by the major group of human rhinoviruses and is a catalyst for the subsequent viral uncoating during cell entry. The three-dimensional atomic structure of the two amino-terminal domains (D1 and D2) of ICAM-1 has been determined to 2.2-A resolution and fitted into a cryoelectron microscopy reconstruction of a rhinovirus-ICAM-1 complex. Rhinovirus attachment is confined to the BC, CD, DE, and FG loops of the amino-terminal Ig-like domain (D1) at the end distal to the cellular membrane. The loops are considerably different in structure to those of human ICAM-2 or murine ICAM-1, which do not bind rhinoviruses. There are extensive charge interactions between ICAM-1 and human rhinoviruses, which are mostly conserved in both major and minor receptor groups of rhinoviruses. The interaction of ICAMs with LFA-1 is known to be mediated by a divalent cation bound to the insertion (I)-domain on the alpha chain of LFA-1 and the carboxyl group of a conserved glutamic acid residue on ICAMs. Domain D1 has been docked with the known structure of the I-domain. The resultant model is consistent with mutational data and provides a structural framework for the adhesion between these molecules.

  3. Site-directed in vitro immunization leads to a complete human monoclonal IgG4λ that binds specifically to the CDR2 region of CTLA-4 (CD152 without interfering the engagement of natural ligands

    Directory of Open Access Journals (Sweden)

    Hsu Shu-Ching

    2007-08-01

    Full Text Available Abstract Background The ability to acquire fully human monoclonal antibodies (mAbs with pre-defined specificities is critical to the development of molecular tags for the analysis of receptor function in addition to promising immunotherapeutics. Yet most of the arriving affinity maturated and complete human immunoglobulin G (IgG molecules, which are actually derived from single human B cells, have not widely been used to study the conserved self antigens (Ags such as CD152 (cytotoxic T lymphocyte antigen-4, CTLA-4 because proper hosts are lacking. Results Here we developed an optimized protocol for site-directed in vitro immunizing peripheral blood mononuclear cells (PBMC by using a selected epitope of human CD152, an essential receptor involved in down-regulation of T cell activation. The resultant stable trioma cell lines constantly produce anti-CD152 mAb (γ4λhuCD152, which contains variable (V regions of the heavy chain and the light chain derived from the VH3 and Vλ human germline genes, respectively, and yet displays an unusual IgG4 isotype. Interestingly, γ4λhuCD152 has a basic pI not commonly found in myeloid monoclonal IgG4λs as revealed by the isoelectric focusing (IEF analysis. Furthermore, γ4λhuCD152 binds specifically, with nanomolar affinity, to an extracellular constituency encompassing the putative second complementarity determining region (CDR2 of CD152, whereby it can react to activated CD3+ cells. Conclusion In a context of specific cell depletion and conditioned medium,in vitro induction of human Abs against a conserved self Ag was successfully acquired and a relatively basic mAb, γ4λhuCD152, with high affinity to CDR2 of CD152 was thus obtained. Application of such a human IgG4λ mAb with designated CDR2 specificity may impact upon and prefer for CD152 labeling both in situ and ex situ, as it does not affect the binding of endogenous B7 ligands and can localize into the confined immunological synapse which may

  4. Ternary complex structures of human farnesyl pyrophosphate synthase bound with a novel inhibitor and secondary ligands provide insights into the molecular details of the enzyme’s active site closure

    Directory of Open Access Journals (Sweden)

    Park Jaeok

    2012-12-01

    Full Text Available Abstract Background Human farnesyl pyrophosphate synthase (FPPS controls intracellular levels of farnesyl pyrophosphate, which is essential for various biological processes. Bisphosphonate inhibitors of human FPPS are valuable therapeutics for the treatment of bone-resorption disorders and have also demonstrated efficacy in multiple tumor types. Inhibition of human FPPS by bisphosphonates in vivo is thought to involve closing of the enzyme’s C-terminal tail induced by the binding of the second substrate isopentenyl pyrophosphate (IPP. This conformational change, which occurs through a yet unclear mechanism, seals off the enzyme’s active site from the solvent environment and is essential for catalysis. The crystal structure of human FPPS in complex with a novel bisphosphonate YS0470 and in the absence of a second substrate showed partial ordering of the tail in the closed conformation. Results We have determined crystal structures of human FPPS in ternary complex with YS0470 and the secondary ligands inorganic phosphate (Pi, inorganic pyrophosphate (PPi, and IPP. Binding of PPi or IPP to the enzyme-inhibitor complex, but not that of Pi, resulted in full ordering of the C-terminal tail, which is most notably characterized by the anchoring of the R351 side chain to the main frame of the enzyme. Isothermal titration calorimetry experiments demonstrated that PPi binds more tightly to the enzyme-inhibitor complex than IPP, and differential scanning fluorometry experiments confirmed that Pi binding does not induce the tail ordering. Structure analysis identified a cascade of conformational changes required for the C-terminal tail rigidification involving Y349, F238, and Q242. The residues K57 and N59 upon PPi/IPP binding undergo subtler conformational changes, which may initiate this cascade. Conclusions In human FPPS, Y349 functions as a safety switch that prevents any futile C-terminal closure and is locked in the “off” position in the

  5. Bexarotene ligand pharmaceuticals.

    Science.gov (United States)

    Hurst, R E

    2000-12-01

    Bexarotene (LGD-1069), from Ligand, was the first retinoid X receptor (RXR)-selective, antitumor retinoid to enter clinical trials. The company launched the drug for the treatment of cutaneous T-cell lymphoma (CTCL), as Targretin capsules, in the US in January 2000 [359023]. The company filed an NDA for Targretin capsules in June 1999, and for topical gel in December 1999 [329011], [349982] specifically for once-daily oral administration for the treatment of patients with early-stage CTCL who have not tolerated other therapies, patients with refractory or persistent early stage CTCL and patients with refractory advanced stage CTCL. The FDA approved Targretin capsules at the end of December 1999 for once-daily oral treatment of all stages of CTCL in patients refractory to at least one prior systemic therapy, at an initial dose of 300 mg/m2/day. After an NDA was submitted in December 1999 for Targretin gel, the drug received Priority Review status for use as a treatment of cutaneous lesions in patients with stage IA, IB or IIA CTCL [354836]. The FDA issued an approvable letter in June 2000, and granted marketing clearance for CTCL in the same month [370687], [372768], [372769], [373279]. Ligand had received Orphan Drug designation for this indication [329011]. At the request of the FDA, Ligand agreed to carry out certain post-approval phase IV and pharmacokinetic studies [351604]. The company filed an MAA with the EMEA for Targretin Capsules to treat lymphoma in November 1999 [348944]. The NDA for Targretin gel is based on a multicenter phase III trial that was conducted in the US, Canada, Europe and Australia involving 50 patients and a multicenter phase I/II clinical program involving 67 patients. Targretin gel was evaluated for the treatment of patients with early stage CTCL (IA-IIA) who were refractory to, intolerant to, or reached a response plateau for at least 6 months on at least two prior therapies. Efficacy results exceeded the protocol-defined response

  6. KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space.

    Science.gov (United States)

    van Linden, Oscar P J; Kooistra, Albert J; Leurs, Rob; de Esch, Iwan J P; de Graaf, Chris

    2014-01-23

    Protein kinases regulate the majority of signal transduction pathways in cells and have become important targets for the development of designer drugs. We present a systematic analysis of kinase-ligand interactions in all regions of the catalytic cleft of all 1252 human kinase-ligand cocrystal structures present in the Protein Data Bank (PDB). The kinase-ligand interaction fingerprints and structure database (KLIFS) contains a consistent alignment of 85 kinase ligand binding site residues that enables the identification of family specific interaction features and classification of ligands according to their binding modes. We illustrate how systematic mining of kinase-ligand interaction space gives new insights into how conserved and selective kinase interaction hot spots can accommodate the large diversity of chemical scaffolds in kinase ligands. These analyses lead to an improved understanding of the structural requirements of kinase binding that will be useful in ligand discovery and design studies.

  7. Investigation of the interaction between human serum albumin and antitumor palladium(II) complex containing 1,10-phenanthroline and dithiocarbamate ligands.

    Science.gov (United States)

    Saeidifar, Maryam; Mansouri-Torshizi, Hassan

    2015-01-01

    The interaction between [Pd(But-dtc)(phen)]NO3 (where But-dtc = butyldithiocarbamate and phen = 1,10-phenanthroline) with HSA (Human Serum Albumin) was investigated by applying fluorescence, UV-Vis and circular dichroism techniques under physiological conditions. The results of fluorescence spectra indicated that the Pd(II) complex could effectively quench the fluorescence intensity of HSA molecules via static mechanism. The number of binding sites and binding constant of HSA-Pd(II) complex were calculated. Analysis of absorption titration data on the interaction between Pd(II) complex and HSA revealed the formation of HSA-Pd(II) complex with high-binding affinity. Thermodynamic parameters indicated that hydrophobic forces play a major role in this interaction. Furthermore, CD measurements were taken to explore changes in HSA secondary structure induced by the Pd(II) complex.

  8. Decreased affinity of recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL) D269H/E195R to osteoprotegerin (OPG) overcomes TRAIL resistance mediated by the bone microenvironment.

    Science.gov (United States)

    Bosman, Matthieu C J; Reis, Carlos R; Schuringa, Jan J; Vellenga, Edo; Quax, Wim J

    2014-01-10

    The bone marrow microenvironment provides important signals for the survival and proliferation of hematopoietic and malignant cells. In multiple myeloma, plasma cells are surrounded by stromal cells including osteoblasts. These stromal cells protect multiple myeloma cells from apoptosis induced by chemotherapeutic agents. Osteoprotegerin (OPG), a soluble receptor of the cytokine TNF-related apoptosis-inducing ligand (TRAIL), is secreted by osteoblasts and has been implicated in the prevention of cell death induced by TRAIL in malignant cells. Previously, we have designed death receptor-specific TRAIL variants that induce apoptosis exclusively via one of its death receptors. Here, we have studied in detail the interaction between recombinant human (rhTRAIL) variants and OPG. We show that a DR5-specific variant (rhTRAIL D269H/E195R) displays a significantly decreased affinity to OPG. Furthermore, this rhTRAIL variant shows a much higher activity when compared with rhTRAIL WT and retains its effectiveness in inducing cell death in multiple myeloma cell lines, in the presence of OPG secreted by stromal cells. We also demonstrate that stromal cells are largely insensitive to high concentrations of this rhTRAIL variant. In conclusion, rhTRAIL D269H/E195R is a potential therapy for multiple myeloma due to its high effectiveness and diminished binding to OPG.

  9. The oestrogen metabolite 2-methoxyoestradiol alone or in combination with tumour necrosis factor-related apoptosis-inducing ligand mediates apoptosis in cancerous but not healthy cells of the human endometrium.

    Science.gov (United States)

    Kato, Sumie; Sadarangani, Anil; Lange, Soledad; Villalón, Manuel; Brañes, Jorge; Brosens, Jan J; Owen, Gareth I; Cuello, Mauricio

    2007-06-01

    Cancers of the reproductive tract account for 12% of all malignancies in women. As previous studies have shown that oestrogen metabolites can cause apoptosis, we characterised the effect of oestrogen and oestrogen metabolites on non-cancerous and cancerous human endometrial cells. Herein, we demonstrate that 2-methoxyoestradiol (2ME), but not 17beta-oestradiol, induces apoptosis in cancer cell lines and primary cultured tumours of endometrial origin. In contrast, 2ME had no effect on cell viability of corresponding normal tissue. This ability of 2ME to induce apoptosis does not require oestrogen receptor activation, but is associated with increased entry into the G2/M phases of the cell cycle and the activation of both the intrinsic and the extrinsic apoptotic pathways. The selective behaviour of 2ME on cancerous as opposed to normal tissue may be due to a reduction in 17beta-hydroxysteroid dehydrogenase type II levels in cancer cells and to a differential down-regulation of superoxide dismutase. Furthermore, we demonstrate that pre-treatment with 2ME enhances the sensitivity of reproductive tract cancer cells to the apoptotic drug tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), without the loss in cell viability to normal cells incurred by currently chemotherapeutic drugs. In conclusion, 2ME, alone or in combination with TRAIL, may be an effective treatment for cancers of uterine origin with minimal toxicity to corresponding healthy female reproductive tissue.

  10. C2-O-sLeX glycoproteins are E-selectin ligands that regulate invasion of human colon and hepatic carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Catherine A St Hill

    Full Text Available Similar to mechanisms of recruitment of activated leukocytes to inflamed tissues, selectins mediate adhesion and extravasation of circulating cancer cells. Our objective was to determine whether sialyl Lewis X modified core 2 O-glycans (C2-O-sLe(X present on colon and hepatic carcinoma cells promote their adhesion and invasion. We examined membrane expression of C2-O-sLe(X, selectin binding, invasion of human colon and hepatic carcinoma cell lines, and mRNA levels of alpha-2,3 fucosyltransferase (FucT-III and core 2 beta-1,6 N-acetylglucosaminyltransferase (C2GnT1 genes, necessary for C2-O-sLe(X synthesis, by quantitative reverse-transcriptase (RT PCR. Synthesis of core 2 branched O-glycans decorated by sLe(X is dependent on C2GnT1 function and thus we determined enzyme activity of C2GnT1. The cell lines that expressed C2GnT1 and FucT-III mRNA by quantitative RT-PCR were highly positive for C2-O-sLe(X by flow cytometry, and colon carcinoma cells possessed highly active C2GnT1 enzyme. Cells bound avidly to E-selection but not to P- and L-selectin. Gene knock-down of C2GnT1 in colon and hepatic carcinoma cells using short hairpin RNAs (shRNA resulted in a 40-90% decrease in C2-O-sLe(X and a 30-50% decrease in E-selectin binding compared to control cells. Invasion of hepatic and colon carcinoma cells containing C2GnT1 shRNA was significantly reduced compared to control cells in Matrigel assays and C2GnT1 activity was down-regulated in the latter cells. The sLe(X epitope was predominantly distributed on core 2 O-glycans on colon and hepatic carcinoma cells. Our findings indicate that C2GnT1 gene expression and the resulting C2-O-sLe(X carbohydrates produced mediate the adhesive and invasive behaviors of human carcinomas which may influence their metastatic potential.

  11. Test-retest reproducibility of the metabotropic glutamate receptor 5 ligand [{sup 18}F]FPEB with bolus plus constant infusion in humans

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eunkyung; Sullivan, Jenna M.; Planeta, Beata; Gallezot, Jean-Dominique; Lim, Keunpoong; Lin, Shu-Fei; Ropchan, Jim; Huang, Yiyun; Carson, Richard E. [Yale School of Medicine, PET Center, Department of Diagnostic Radiology, 801 Howard Avenue, PO Box 208048, New Haven, CT (United States); McCarthy, Timothy J. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Ding, Yu-Shin [New York University School of Medicine, Department of Radiology, New York, NY (United States); Morris, Evan D.; Williams, Wendol A. [Yale School of Medicine, PET Center, Department of Diagnostic Radiology, 801 Howard Avenue, PO Box 208048, New Haven, CT (United States); Yale School of Medicine, Department of Psychiatry, New Haven, CT (United States)

    2015-09-15

    [{sup 18}F]FPEB is a promising PET radioligand for the metabotropic glutamate receptor 5 (mGluR5), a potential target for the treatment of neuropsychiatric diseases. The purpose of this study was to evaluate the test-retest reproducibility of [{sup 18}F]FPEB in the human brain. Seven healthy male subjects were scanned twice, 3 - 11 weeks apart. Dynamic data were acquired using bolus plus infusion of 162 ± 32 MBq [{sup 18}F]FPEB. Four methods were used to estimate volume of distribution (V{sub T}): equilibrium analysis (EQ) using arterial (EQ{sub A}) or venous input data (EQ{sub V}), MA1, and a two-tissue compartment model (2 T). Binding potential (BP{sub ND}) was also estimated using cerebellar white matter (CWM) or gray matter (CGM) as the reference region using EQ, 2 T and MA1. Absolute test-retest variability (aTRV) of V{sub T} and BP{sub ND} were calculated for each method. Venous blood measurements (C{sub V}) were compared with arterial input (C{sub A}) to examine their usability in EQ analysis. Regional V{sub T} estimated by the four methods displayed a high degree of agreement (r{sup 2} ranging from 0.83 to 0.99 among the methods), although EQ{sub A} and EQ{sub V} overestimated V{sub T} by a mean of 9 % and 7 %, respectively, compared to 2 T. Mean values of aTRV of V{sub T} were 11 % by EQ{sub A}, 12 % by EQ{sub V}, 14 % by MA1 and 14 % by 2 T. Regional BP{sub ND} also agreed well among the methods and mean aTRV of BP{sub ND} was 8 - 12 % (CWM) and 7 - 9 % (CGM). Venous and arterial blood concentrations of [{sup 18}F]FPEB were well matched during equilibrium (C{sub V} = 1.01 . C{sub A}, r{sup 2} = 0.95). [{sup 18}F]FPEB binding shows good TRV with minor differences among analysis methods. Venous blood can be used as an alternative for input function measurement instead of arterial blood in EQ analysis. Thus, [{sup 18}F]FPEB is an excellent PET imaging tracer for mGluR5 in humans. (orig.)

  12. MUC1* ligand, NM23-H1, is a novel growth factor that maintains human stem cells in a more naive state.

    Directory of Open Access Journals (Sweden)

    Benoit J Smagghe

    Full Text Available We report that a single growth factor, NM23-H1, enables serial passaging of both human ES and iPS cells in the absence of feeder cells, their conditioned media or bFGF in a fully defined xeno-free media on a novel defined, xeno-free surface. Stem cells cultured in this system show a gene expression pattern indicative of a more "naïve" state than stem cells grown in bFGF-based media. NM23-H1 and MUC1* growth factor receptor cooperate to control stem cell self-replication. By manipulating the multimerization state of NM23-H1, we override the stem cell's inherent programming that turns off pluripotency and trick the cells into continuously replicating as pluripotent stem cells. Dimeric NM23-H1 binds to and dimerizes the extra cellular domain of the MUC1* transmembrane receptor which stimulates growth and promotes pluripotency. Inhibition of the NM23-H1/MUC1* interaction accelerates differentiation and causes a spike in miR-145 expression which signals a cell's exit from pluripotency.

  13. The binding assessment with human serum albumin of novel six-coordinate Pt(IV) complexes, containing bidentate nitrogen donor/methyl ligands.

    Science.gov (United States)

    Yousefi, Reza; Taheri-Kafrani, Asghar; Nabavizadeh, Sayed Masoud; Pouryasin, Zahra; Shahsavani, Mohammad Bagher; Khoshaman, Kazem; Rashidi, Mehdi

    2015-12-01

    The interactions between platinum complexes and human serum albumin (HSA) play crucial roles in the distribution, metabolism, and activity of platinum-based anticancer drugs. Octahedral platinum (IV) complexes represent a significant class of anticancer agents that display molecular pharmacological properties different from cisplatin. In this study, the interaction between two Pt(IV) complexes with the general formula [Pt(X)2Me2 (tbu2bpy)], where tbu2bpy = 4,4'-ditert-butyl-2,2'-bipyridine, with two leaving groups of X = Cl (Com1) or Br (Com2), and HSA were investigated, using Ultraviolet-Visible (UV-Vis) spectroscopy, fluorescence spectroscopy, circular dichroism (CD) and molecular docking simulation. The spectroscopic and thermodynamic data revealed that the HSA/Pt(IV) complexes interactions were spontaneous process and Com2 demonstrated stronger interaction and binding constant in comparison with Com1. Also, the results suggest approximately similar structural alteration of HSA in the presence of these Pt complexes. Molecular docking revealed that both Pt(IV) complexes bind with HSA in subdomain IB, literally the same as each other. This study suggests that variation in the leaving group, displaying differing departure rate, has no significant contribution in denaturing prosperities of the Pt(IV) complexes against HSA.

  14. CD40-CD40 ligand (CD154) engagement is required but not sufficient for modulating MHC class I, ICAM-1 and Fas expression and proliferation of human non-small cell lung tumors.

    Science.gov (United States)

    Yamada, M; Shiroko, T; Kawaguchi, Y; Sugiyama, Y; Egilmez, N K; Chen, F A; Bankert, R B

    2001-05-15

    To determine the possible functional significance of CD40 expression on human non-small cell lung carcinomas and to assess the potential of CD40 as a therapeutic target, 18 lung tumor cell lines were established from biopsy tissues and were monitored for phenotypic changes on the cell surface and alterations in tumor cell proliferation after the ligation of CD40 with a trimeric fusion protein complex of CD40 ligand (CD40Lt). CD40 cross-linking resulted in up to a 6-fold increase in the surface expression of major histocompatibility complex (MHC) class I, Fas and intracellular adhesion molecule (ICAM)-1 in a subset of tumors expressing the highest levels of CD40. Suppression of tumor proliferation was seen after the ligation of CD40 on CD40Lt-responsive cell lines. The suppression was dose dependent, reversible and resulted from a delay of the tumor cells entering S-phase. No change in the cell phenotype or in proliferation were observed in CD40-negative tumors or in tumors expressing moderate-to-low levels of CD40 after incubation with CD40Lt. CD40-negative tumors transfected with the CD40 gene expressed high levels of CD40 on their surface, but were also unresponsive to CD40Lt cross-linking of CD40. Our data establish that CD40 is required (but not sufficient) for transducing a signal that results in phenotypic changes in human lung tumors and suppression in their proliferation. We conclude that CD40 on non-small cell lung tumors may represent a potential therapeutic target, but only on a subset of the CD40+ tumors.

  15. Fatty acid transduction of nitric oxide signaling: multiple nitrated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands.

    Science.gov (United States)

    Baker, Paul R S; Lin, Yiming; Schopfer, Francisco J; Woodcock, Steven R; Groeger, Alison L; Batthyany, Carlos; Sweeney, Scott; Long, Marshall H; Iles, Karen E; Baker, Laura M S; Branchaud, Bruce P; Chen, Yuqing E; Freeman, Bruce A

    2005-12-23

    Mass spectrometric analysis of human plasma and urine revealed abundant nitrated derivatives of all principal unsaturated fatty acids. Nitrated palmitoleic, oleic, linoleic, linolenic, arachidonic and eicosapentaenoic acids were detected in concert with their nitrohydroxy derivatives. Two nitroalkene derivatives of the most prevalent fatty acid, oleic acid, were synthesized (9- and 10-nitro-9-cis-octadecenoic acid; OA-NO2), structurally characterized and determined to be identical to OA-NO2 found in plasma, red cells, and urine of healthy humans. These regioisomers of OA-NO2 were quantified in clinical samples using 13C isotope dilution. Plasma free and esterified OA-NO2 concentrations were 619 +/- 52 and 302 +/- 369 nm, respectively, and packed red blood cell free and esterified OA-NO2 was 59 +/- 11 and 155 +/- 65 nm. The OA-NO2 concentration of blood is approximately 50% greater than that of nitrated linoleic acid, with the combined free and esterified blood levels of these two fatty acid derivatives exceeding 1 microm. OA-NO2 is a potent ligand for peroxisome proliferator activated receptors at physiological concentrations. CV-1 cells co-transfected with the luciferase gene under peroxisome proliferator-activated receptor (PPAR) response element regulation, in concert with PPARgamma, PPARalpha, or PPARdelta expression plasmids, showed dose-dependent activation of all PPARs by OA-NO2. PPARgamma showed the greatest response, with significant activation at 100 nm, while PPARalpha and PPARdelta were activated at approximately 300 nm OA-NO2. OA-NO2 also induced PPAR gamma-dependent adipogenesis and deoxyglucose uptake in 3T3-L1 preadipocytes at a potency exceeding nitrolinoleic acid and rivaling synthetic thiazo-lidinediones. These data reveal that nitrated fatty acids comprise a class of nitric oxide-derived, receptor-dependent, cell signaling mediators that act within physiological concentration ranges.

  16. In vitro DNA and BSA-binding, cell imaging and anticancer activity against human carcinoma cell lines of mixed ligand copper(II) complexes.

    Science.gov (United States)

    Anjomshoa, Marzieh; Torkzadeh-Mahani, Masoud

    2015-01-01

    Binding studies of two water soluble copper(II) complexes of the type [Cu(phen-dion)(diimine)Cl]Cl, where phen-dione is 1,10-phenanthroline-5,6-dione and diimine is 1,10-phenanthroline (1) and 2,2'-bipyridine (2), with fish sperm DNA (FS-DNA) and bovine serum albumin (BSA) have been examined under physiological conditions by a series of experimental methods (UV-Vis absorption, fluorescence, viscosity, cyclic voltammetry (CV) and circular dichroism (CD) spectroscopic techniques). The experimental results indicate that the complexes interact with FS-DNA by electrostatic and partial insertion of pyridyl rings between the base stacks of double-stranded DNA. The complexes could quench the intrinsic fluorescence of BSA with the binding constants (Kbin) of 32×10(5) M(-1) (1) and 1.7×10(5) M(-1) (2) at 290 K. The quenching mechanism, thermodynamic parameters, the number of binding sites and the effect of the Cu(II) complexes on the secondary structure of BSA have been explored. The in vitro anticancer chemotherapeutic potential of two copper(II) complexes against the three human carcinoma cell lines (MCF-7, A-549, and HT-29) and one normal cell line (DPSC) were evaluated by MTT assay. The results of in vitro cytotoxicity indicate that the complex (1) has greater cytotoxicity activity against all of the cell lines, especially HT-29 with IC50 values of 1.8 μM. Based on the IC50 values, these complexes did not display an apparent cyto-selective profile, because it would appear that two complexes are toxic to all four model cell lines. The microscopic analyses of the cancer cells confirm results of cytotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Gene expression of fucosyl- and sialyl-transferases which synthesize sialyl Lewisx, the carbohydrate ligands for E-selectin, in human breast cancer.

    Science.gov (United States)

    Matsuura, N; Narita, T; Hiraiwa, N; Hiraiwa, M; Murai, H; Iwase, T; Funahashi, H; Imai, T; Takagi, H; Kannagi, R

    1998-05-01

    The adhesion of circulating cancer cells to vascular endothelium is an important step in the hematogenous metastasis of cancer. Until recently, it has been believed that carbohydrate antigens are expressed on cancer cells, and E-selectin is expressed on endothelial cells to effect this adhesion. We investigated the gene expression of fucosyl-transferase (Fuc-T) and sialyltransferase (ST), which are involved in the synthesis of sialyl Lewisx (s-Lex) in breast cancer by using Northern blot analysis. The concentration of s-Lex in the cancerous portion was increased, compared to that in the adjacent non-cancerous portion. A correlation was found between the concentration of s-Lex and the amount of Fuc-T VI message in 9 cases of breast cancer tissue. Expression of the Fuc-T III message was found in only one case who expressed s-Lea. No expression of the Fuc-T V or VII message was observed. There was no relationship between the concentration of s-Lex and the amount of ST3N and ST4 transcripts. Similar findings were obtained from an analysis using cell lines derived from human breast cancer. When Fuc-T VI gene was transfected to MCF-7 cells, the expression of s-Lex was markedly induced on MCF-7 cells, and the attachment of cancer cells to endothelial cells was enhanced. These findings suggest that Fuc-T VI is chiefly involved in the synthesis of s-Lex on breast cancer cells.

  18. Characterization of zinc-binding sites in human stromelysin-1: stoichiometry of the catalytic domain and identification of a cysteine ligand in the proenzyme.

    Science.gov (United States)

    Salowe, S P; Marcy, A I; Cuca, G C; Smith, C K; Kopka, I E; Hagmann, W K; Hermes, J D

    1992-05-19

    A determination of the zinc stoichiometry of the catalytic domain of the human matrix metalloproteinase stromelysin-1 has been carried out using enzyme purified from recombinant Escherichia coli that express C-terminally truncated protein. Atomic absorption spectrometry revealed that both the proenzyme (prostrom255) and the mature active form (strom255) contained nearly 2 mol of Zn/mol of protein. Full-length prostromelysin purified from a mammalian cell culture line also contained zinc in excess of 1 equiv. While zinc in prostrom255 could not be removed by dialysis against o-phenanthroline, similar treatment of mature strom255 resulted in the loss of one-half of the original zinc content. The peptidase activity of the zinc-depleted protein was reduced by greater than 85% but could be restored upon addition of Zn2+ or Co2+. Addition of a thiol-containing inhibitor to a CoZn hybrid enzyme resulted in marked spectral changes in both the visible and ultraviolet regions characteristic of sulfur ligation to Co2+. This direct evidence for an integral role in catalysis and inhibitor binding confirms the location of the exchangeable metal at the active site. To examine the environment of zinc in the proenzyme, a fully cobalt-substituted proenzyme was prepared by in vivo metal replacement. The absorbance features of dicobalt prostrom255 were consistent with metal coordination by the single cysteine present in the propeptide, although the data do not allow assignment to a particular zinc site.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Ligand and electrically induced acitivation patterns in myenteric neuronal networks. Confocal calcium imaging as a bridge between basic and human physiology.

    Science.gov (United States)

    Bisschops, R

    2008-01-01

    Confocal imaging in combination with fluorescent calcium indicators provides the possibility to study neuronal activation in entire neuronal networks. The experiments presented in this essay aimed at applying confocal calcium imaging to study activation patterns in neuronal networks of myenteric ganglia in situ. First we studied the response to electrical train stimulation (ETS). ETS induced Ca2+ transients in 52.2% and 65.4% of the neurons when applied orally and aborally respectively. We observed more responses during aboral ETS which is not in line with the hypothesis of neuronal polarity, suggesting complex neuronal activation patterns and neuronal interaction in ETS-induced activation in myenteric ganglia. We demonstrated that ghrelin has a direct excitatory effect on myenteric neurons in situ via ghrelin receptor activation. Ghrelin induced Ca2+ transients in one third of the myenteric neurons, involving release of Ca2+ from intracellular stores and direct GHS-receptor activation. We found that CRF activates one fifth of the myenteric neurons, via CRF1 receptor activation. These CRF induced Ca2+ signals involved somatic influx through (mainly R-type) voltage operated Ca2+ channels. Finally we set up human studies in healthy volunteers and dyspeptic patients to test the effect of ghrelin on gastrointestinal motility. Intravenous administration of ghrelin induced a premature phase 3 activity front that originated in the stomach and an increase in gastric tone. Ghrelin decreased gastric emptying time for fluids and reduced symptom scores for fullness and pain. These studies provide further evidence for a role of ghrelin in the regulation of gastrointestinal motility, and possibly provide new therapeutic approaches. Our studies show that confocal calcium imaging allows to assess neuronal activation of myenteric neurons. The influence of new hormones or new pharmaceutical compounds on the myenteric plexus can hereby be easily assessed.

  20. Real time analysis of β2-adrenoceptor-mediated signaling kinetics in Human Primary Airway Smooth Muscle Cells reveals both ligand and dose dependent differences

    Directory of Open Access Journals (Sweden)

    Hall Ian P

    2011-07-01

    Full Text Available Abstract Background β2-adrenoceptor agonists elicit bronchodilator responses by binding to β2-adrenoceptors on airway smooth muscle (ASM. In vivo, the time between drug administration and clinically relevant bronchodilation varies significantly depending on the agonist used. Our aim was to utilise a fluorescent cyclic AMP reporter probe to study the temporal profile of β2-adrenoceptor-mediated signaling induced by isoproterenol and a range of clinically relevant agonists in human primary ASM (hASM cells by using a modified Epac protein fused to CFP and a variant of YFP. Methods Cells were imaged in real time using a spinning disk confocal system which allowed rapid and direct quantification of emission ratio imaging following direct addition of β2-adrenoceptor agonists (isoproterenol, salbutamol, salmeterol, indacaterol and formoterol into the extracellular buffer. For pharmacological comparison a radiolabeling assay for whole cell cyclic AMP formation was used. Results Temporal analysis revealed that in hASM cells the β2-adrenoceptor agonists studied did not vary significantly in the onset of initiation. However, once a response was initiated, significant differences were observed in the rate of this response with indacaterol and isoproterenol inducing a significantly faster response than salmeterol. Contrary to expectation, reducing the concentration of isoproterenol resulted in a significantly faster initiation of response. Conclusions We conclude that confocal imaging of the Epac-based probe is a powerful tool to explore β2-adrenoceptor signaling in primary cells. The ability to analyse the kinetics of clinically used β2-adrenoceptor agonists in real time and at a single cell level gives an insight into their possible kinetics once they have reached ASM cells in vivo.

  1. Solution NMR study of environmental effects on substrate seating in human heme oxygenase: influence of polypeptide truncation, substrate modification and axial ligand.

    Science.gov (United States)

    Zhu, Wenfeng; Li, Yiming; Wang, Jinling; Ortiz de Montellano, Paul R; La Mar, Gerd N

    2006-01-01

    Solution proton NMR has been used here to show that, as either the high-spin ferric, protohemin (PH) substrate complex at neutral pH, or the low-spin ferric, cyanide-inhibited PH substrate complex, the active site electronic and molecular structure of the 233- and 265-residue recombinant constructs of human heme oxygenase-1, hHO, are essentially indistinguishable. It is shown, moreover, that the equilibrium PH orientational isomerism about the alpha,gamma-meso axis is 1:1 in the water-ligated, resting-state complex, but changes to a 4:1 equilibrium ratio as the cyanide-inhibited complex, with the minor species in solution corresponding to the only one found in crystals. The introduction of significant PH orientational preference in the cyanide over the aquo complex is rationalized by the crystallographic observation for the same H2O and CN ligated complexes of rat heme oxygenase (rHO), where the steric tilt of the Fe-CN unit resulted in a approximately 1 A transition of PH into the hydrophobic interior, and stronger interaction of the vinyls with the HO matrix [M. Sugishima, H. Sakamoto, M. Noguchi, K. Fukugama, Biochemistry 42 (2003) 9898-9905]. 1H NMR spectra of the cyanide-inhibited PH complex are the most used, and most useful, for determining the distribution of orientational isomerism for PH in complexes of HO. Hence, it is imperative that the time-course of the spectra after sample preparation be considered in order to reach conclusions that relate isomeric seating of the heme with variable isomeric biliverdin products. The natural orientational isomerism of PH leads to spectral congestion that has prompted the use of a synthetic, twofold symmetric substrate, 2,4-dimethyldeuterohemin, DMDH. While the hyperfine shift pattern for non-ligated residues are very similar and are consistent with largely conserved molecular structure with the alternate substrates, the steric tilt of the Fe-CN vector towards the protein interior, as determined by the orientation of

  2. Melatonin: functions and ligands.

    Science.gov (United States)

    Singh, Mahaveer; Jadhav, Hemant R

    2014-09-01

    Melatonin is a chronobiotic substance that acts as synchronizer by stabilizing bodily rhythms. Its synthesis occurs in various locations throughout the body, including the pineal gland, skin, lymphocytes and gastrointestinal tract (GIT). Its synthesis and secretion is controlled by light and dark conditions, whereby light decreases and darkness increases its production. Thus, melatonin is also known as the 'hormone of darkness'. Melatonin and analogs that bind to the melatonin receptors are important because of their role in the management of depression, insomnia, epilepsy, Alzheimer's disease (AD), diabetes, obesity, alopecia, migraine, cancer, and immune and cardiac disorders. In this review, we discuss the mechanism of action of melatonin in these disorders, which could aid in the design of novel melatonin receptor ligands.

  3. Macrocyclic G-quadruplex ligands

    DEFF Research Database (Denmark)

    Nielsen, M C; Ulven, Trond

    2010-01-01

    G-quadruplex stabilizing compounds have recently received increased interest due to their potential application as anticancer therapeutics. A significant number of structurally diverse G-quadruplex ligands have been developed. Some of the most potent and selective ligands currently known are macr...

  4. Increased expression of programmed death (PD)-1 and its ligand PD-L1 correlates with impaired cell-mediated immunity in high-risk human papillomavirus-related cervical intraepithelial neoplasia.

    Science.gov (United States)

    Yang, Wen; Song, Yan; Lu, Yun-Long; Sun, Jun-Zhong; Wang, Hong-Wei

    2013-08-01

    Impaired local cellular immunity contributes to the pathogenesis of persistent high-risk human papillomavirus (HR-HPV) infection and related cervical intraepithelial neoplasia (CIN), but the underlying molecular mechanisms remain unclear. Recently, the programmed death 1/programmed death 1 ligand (PD-1/PD-L1; CD279/CD274) pathway was demonstrated to play a critical role in attenuating T-cell responses and promoting T-cell tolerance during chronic viral infections. In this study, we examined the expression of PD-1 and PD-L1 on cervical T cells and dendritic cells (DCs), respectively, from 40 women who were HR-HPV-negative (-) or HR-HPV-positive (+) with CIN grades 0, I and II-III. We also measured interferon-γ, interleukin-12 (IL-12) and IL-10 in cervical exudates. The most common HPV type was HPV 16, followed by HPV 18, 33, 51 and 58. PD-1 and PD-L1 expression on cervical T cells and DCs, respectively, was associated with HR-HPV positivity and increased in parallel with increasing CIN grade. The opposite pattern was observed for CD80 and CD86 expression on DCs, which decreased in HR-HPV+ patients in parallel with increasing CIN grade. Similarly, reduced levels of the T helper type 1 cytokines interferon-γ and IL-12 and increased levels of the T helper type 2 cytokine IL-10 in cervical exudates correlated with HR-HPV positivity and CIN grade. Our results suggest that up-regulation of the inhibitory PD-1/PD-L1 pathway may negatively regulate cervical cell-mediated immunity to HPV and contribute to the progression of HR-HPV-related CIN. These results may aid in the development of PD-1/PD-L1 pathway-based strategies for immunotherapy of HR-HPV-related CIN.

  5. Structure of the unique SEFIR domain from human interleukin 17 receptor A reveals a composite ligand-binding site containing a conserved α-helix for Act1 binding and IL-17 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bing [Oklahoma State University, Stillwater, OK 74078 (United States); Liu, Caini; Qian, Wen [Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Han, Yue [Oklahoma State University, Stillwater, OK 74078 (United States); Li, Xiaoxia, E-mail: lix@ccf.org [Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Deng, Junpeng, E-mail: lix@ccf.org [Oklahoma State University, Stillwater, OK 74078 (United States)

    2014-05-01

    Crystal structure of the SEFIR domain from human IL-17 receptor A provides new insights into IL-17 signaling. Interleukin 17 (IL-17) cytokines play a crucial role in mediating inflammatory and autoimmune diseases. A unique intracellular signaling domain termed SEFIR is found within all IL-17 receptors (IL-17Rs) as well as the key adaptor protein Act1. SEFIR-mediated protein–protein interaction is a crucial step in IL-17 cytokine signaling. Here, the 2.3 Å resolution crystal structure of the SEFIR domain of IL-17RA, the most commonly shared receptor for IL-17 cytokine signaling, is reported. The structure includes the complete SEFIR domain and an additional α-helical C-terminal extension, which pack tightly together to form a compact unit. Structural comparison between the SEFIR domains of IL-17RA and IL-17RB reveals substantial differences in protein topology and folding. The uniquely long insertion between strand βC and helix αC in IL-17RA SEFIR is mostly well ordered, displaying a helix (αCC′{sub ins}) and a flexible loop (CC′). The DD′ loop in the IL-17RA SEFIR structure is much shorter; it rotates nearly 90° with respect to the counterpart in the IL-17RB SEFIR structure and shifts about 12 Å to accommodate the αCC′{sub ins} helix without forming any knots. Helix αC was identified as critical for its interaction with Act1 and IL-17-stimulated gene expression. The data suggest that the heterotypic SEFIR–SEFIR association via helix αC is a conserved and signature mechanism specific for IL-17 signaling. The structure also suggests that the downstream motif of IL-17RA SEFIR together with helix αC could provide a composite ligand-binding surface for recruiting Act1 during IL-17 signaling.

  6. APL1, an altered peptide ligand derived from human heat-shock protein 60, increases the frequency of Tregs and its suppressive capacity against antigen responding effector CD4 + T cells from rheumatoid arthritis patients.

    Science.gov (United States)

    Barberá, Ariana; Lorenzo, Noraylis; van Kooten, Peter; van Roon, Joel; de Jager, Wilco; Prada, Dinorah; Gómez, Jorge; Padrón, Gabriel; van Eden, Willem; Broere, Femke; Del Carmen Domínguez, María

    2016-07-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by a chronic relapsing-remitting joint inflammation. Perturbations in the balance between CD4 + T cells producing IL-17 and CD4 + CD25(high)FoxP3 + Tregs correlate with irreversible bone and cartilage destruction in RA. APL1 is an altered peptide ligand derived from a CD4+ T-cell epitope of human HSP60, an autoantigen expressed in the inflamed synovium, which increases the frequency of CD4 + CD25(high)FoxP3+ Tregs in peripheral blood mononuclear cells from RA patients. The aim of this study was to evaluate the suppressive capacity of Tregs induced by APL1 on proliferation of effector CD4+ T cells using co-culture experiments. Enhanced Treg-mediated suppression was observed in APL1-treated cultures compared with cells cultured only with media. Subsequent analyses using autologous cross-over experiments showed that the enhanced Treg suppression in APL1-treated cultures could reflect increased suppressive function of Tregs against APL1-responsive T cells. On the other hand, APL1-treatment had a significant effect reducing IL-17 levels produced by effector CD4+ T cells. Hence, this peptide has the ability to increase the frequency of Tregs and their suppressive properties whereas effector T cells produce less IL-17. Thus, we propose that APL1 therapy could help to ameliorate the pathogenic Th17/Treg balance in RA patients.

  7. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea;

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA......-ray crystallographic analyses, chemical correlation, and CD spectral analyses. The effects of the individual stereoisomers at ionotropic and metabotropic (S)-Glu receptors (iGluRs and mGluRs) were characterized. Compounds with S-configuration at the alpha-carbon generally showed mGluR2 agonist activity of similar...... limited effect on pharmacology. Structure-activity relationships at iGluRs in the rat cortical wedge preparation showed a complex pattern, some compounds being NMDA receptor agonists [e.g., EC(50) =110 microM for (2S,5RS)-5-methyl-AA (6a,b)] and some compounds showing NMDA receptor antagonist effects [e...

  8. Targeting Selectins and Their Ligands in Cancer

    Directory of Open Access Journals (Sweden)

    Alessandro eNatoni

    2016-04-01

    Full Text Available Aberrant glycosylation is a hallmark of cancer cells with increased evidence pointing to a role in tumor progression. In particular, aberrant sialylation of glycoproteins and glycolipids have been linked to increased immune cell evasion, drug evasion, drug resistance, tumor invasiveness, and vascular dissemination leading to metastases. Hypersialylation of cancer cells is largely the result of overexpression of sialyltransferases. Humans differentially express twenty different sialyltransferases in a tissue-specific manner, each of which catalyze the attachment of sialic acids via different glycosidic linkages (2-3; 2-6 or 2-8 to the underlying glycan chain. One important mechanism whereby overexpression of sialyltransferases contributes to an enhanced metastatic phenotype is via the generation of selectin ligands. Selectin ligand function requires the expression of sialyl-Lewis X and its structural-isomer sialyl-Lewis A, which are synthesized by the combined action of alpha 1-3-fucosyltransferases, 2-3-sialyltransferases, 1-4-galactosyltranferases, and N-acetyl--glucosaminyltransferases. The α2-3-sialyltransferases ST3Gal4 and ST3Gal6 are critical to the generation of functional E- and P-selectin ligands and overexpression of these sialyltransferases have been linked to increased risk of metastatic disease in solid tumors and poor outcome in multiple myeloma. Thus, targeting selectins and their ligands as well as the enzymes involved in their generation, in particular sialyltransferases, could be beneficial to many cancer patients. Potential strategies include sialyltransferase inhibition and the use of selectin antagonists, such as glycomimetic drugs and antibodies. Here, we review ongoing efforts to optimize the potency and selectivity of sialyltransferase inhibitors, including the potential for targeted delivery approaches, as well as evaluate the potential utility of selectin inhibitors, which are now in early clinical

  9. Growth of macroscopic human megakaryocyte colonies from cord blood in culture with recombinant human thrombopoietin (c-mpl ligand) and the effects of gestational age on frequency of colonies.

    Science.gov (United States)

    Nishihira, H; Toyoda, Y; Miyazaki, H; Kigasawa, H; Ohsaki, E

    1996-01-01

    We investigated the effects of recombinant human thrombopoietin (rhTPO) on the growth of megakaryocytic (MK) colony derived MK progenitors from human cord blood (CB) in vitro and the effects of gestational age on the number of MK colonies. The results demonstrated that rhTPO alone supports the growth of MK colonies and induces not only proliferation but also differentiation of MK progenitors. CB shows a high frequency of MK colonies; most of which are very large and equivalent to high proliferative potential colony-forming unit-megakaryocyte. The colonies could be macroscopically observed as white spots in the culture dish. Preterm neonates showed greater numbers of MK progenitors than term neonates and there was an inverse correlation between gestational age and concentration of MK progenitors of CB. The effects of gestational age was an important factor on the proliferative capacity of MK progenitors and on the response to rhTPO.

  10. Agonists and Antagonists of TGF-β Family Ligands.

    Science.gov (United States)

    Chang, Chenbei

    2016-08-01

    The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.

  11. The partly folded back solution structure arrangement of the 30 SCR domains in human complement receptor type 1 (CR1) permits access to its C3b and C4b ligands.

    Science.gov (United States)

    Furtado, Patricia B; Huang, Chen Y; Ihyembe, Demvihin; Hammond, Russell A; Marsh, Henry C; Perkins, Stephen J

    2008-01-01

    Human complement receptor type 1 (CR1, CD35) is a type I membrane-bound glycoprotein that belongs to the regulators of complement activity (RCA) family. The extra-cellular component of CR1 is comprised of 30 short complement regulator (SCR) domains, whereas complement receptor type 2 (CR2) has 15 SCR domains and factor H (FH) has 20 SCR domains. The domain arrangement of a soluble form of CR1 (sCR1) was studied by X-ray scattering and analytical ultracentrifugation. The radius of gyration R(G) of sCR1 of 13.4(+/-1.1) nm is not much greater than those for CR2 and FH, and its R(G)/R(0) anisotropy ratio is 3.76, compared to ratios of 3.67 for FH and 4.1 for CR2. Unlike CR2, but similar to FH, two cross-sectional R(G) ranges were identified that gave R(XS) values of 4.7(+/-0.2) nm and 1.2(+/-0.7) nm, respectively, showing that the SCR domains adopt a range of conformations including folded-back ones. The distance distribution function P(r) showed that the most commonly occurring distance in sCR1 is at 11.5 nm. Its maximum length of 55 nm is less than double those for CR2 or FH, even though sCR1 has twice the number of SCR domains compared to CR2 Sedimentation equilibrium experiments gave a mean molecular weight of 235 kDa for sCR1. This is consistent with the value of 245 kDa calculated from its composition including 14 N-linked oligosaccharide sites, and confirmed that sCR1 is a monomer in solution. Sedimentation velocity experiments gave a sedimentation coefficient of 5.8 S. From this, the frictional ratio (f/f(0)) of sCR1 was calculated to be 2.29, which is greater than those of 1.96 for CR2 and 1.77 for FH. The constrained scattering modelling of the sCR1 solution structure starting from homologous SCR domain structures generated 5000 trial conformationally randomised models, 43 of which gave good scattering fits to show that sCR1 has a partly folded-back structure. We conclude that the inter-SCR linkers show structural features in common with those in FH, but

  12. The equivalents of human blood and spleen dendritic cell subtypes can be generated in vitro from human CD34+ stem cells in the presence of fms-like tyrosine kinase 3 ligand and thrombopoietin

    OpenAIRE

    Proietto, AI; Mittag, D; Roberts, AW; Sprigg, N; L. Wu

    2012-01-01

    Dendritic cells (DCs) are immune cells specialized to capture, process and present antigen to T cells in order to initiate an appropriate adaptive immune response. The study of mouse DC has revealed a heterogeneous population of cells that differ in their development, surface phenotype and function. The study of human blood and spleen has shown the presence of two subsets of conventional DC including the CD1b/c+ and CD141+CLEC9A+ conventional DC (cDC) and a plasmacytoid DC (pDC) that is CD304...

  13. Visualization of Metal-to-Ligand and Ligand-to-Ligand Charge Transfer in Metal-Ligand Complexes

    Institute of Scientific and Technical Information of China (English)

    Yong Ding; Jian-xiu Guo; Xiang-si Wang; Sha-sha Liu; Feng-cai Ma

    2009-01-01

    Three methods including the atomic resolved density of state, charge difference density, and the transition density matrix are used to visualize metal to ligand charge transfer (MLCT) in ruthenium(Ⅱ) ammine complex. The atomic resolved density of state shows that there is density of Ru on the HOMOs. All the density is localized on the ammine, which reveals that the excited electrons in the Ru complex are delocalized over the ammine ligand. The charge difference density shows that all the holes are localized on the Ru and the electrons on the ammine. The localization explains the MLCT on excitation. The transition density matrix shows that there is electron-hole coherence between Ru and ammine. These methods are also used to examine the MLCT in Os(bpy)(p0p)Cl ("Osp0p"; bpy=2,2'-bipyridyl; p0p=4,4'-bipyridyl) and the ligand-to-ligand charge transfer (LLCT) in Alq3. The calculated results show that these methods are powerful to examine MLCT and LLCT in the metal-ligand system.

  14. Molecular Recognition and Ligand Association

    Science.gov (United States)

    Baron, Riccardo; McCammon, J. Andrew

    2013-04-01

    We review recent developments in our understanding of molecular recognition and ligand association, focusing on two major viewpoints: (a) studies that highlight new physical insight into the molecular recognition process and the driving forces determining thermodynamic signatures of binding and (b) recent methodological advances in applications to protein-ligand binding. In particular, we highlight the challenges posed by compensating enthalpic and entropic terms, competing solute and solvent contributions, and the relevance of complex configurational ensembles comprising multiple protein, ligand, and solvent intermediate states. As more complete physics is taken into account, computational approaches increase their ability to complement experimental measurements, by providing a microscopic, dynamic view of ensemble-averaged experimental observables. Physics-based approaches are increasingly expanding their power in pharmacology applications.

  15. Why mercury prefers soft ligands

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, Demian M [ORNL; Guo, Hao-Bo [ORNL; Gu, Baohua [ORNL; Parks, Jerry M [ORNL; Summers, Anne [University of Georgia, Athens, GA; Miller, S [University of California, San Francisco; Liang, Liyuan [ORNL; Smith, Jeremy C [ORNL

    2013-01-01

    Mercury (Hg) is a major global pollutant arising from both natural and anthropogenic sources. Defining the factors that determine the relative affinities of different ligands for the mercuric ion, Hg2+, is critical to understanding its speciation, transformation, and bioaccumulation in the environment. Here, we use quantum chemistry to dissect the relative binding free energies for a series of inorganic anion complexes of Hg2+. Comparison of Hg2+ ligand interactions in the gaseous and aqueous phases shows that differences in interactions with a few, local water molecules led to a clear periodic trend within the chalcogenide and halide groups and resulted in the well-known experimentally observed preference of Hg2+ for soft ligands such as thiols. Our approach establishes a basis for understanding Hg speciation in the biosphere.

  16. Newcastle disease virus promotes expression of TNF-related apoptosis-inducing ligand in human NK cells%新城疫病毒对人NK细胞表达TRAIL的促进作用

    Institute of Scientific and Technical Information of China (English)

    殷君; 王立芳; 樊晓晖; 梁莹; 肖庆; 宋德志; 高灵茜; 赖振屏

    2012-01-01

    Objective: The purpose of this study is to investigate the mechanism for the TRAIL (TNF-related apoptosis-inducing ligand) expression in NK (natural killer) cells stimulated by NDV (Newcastle disease virus). Methods: Pure NK cells were isolated by using MACS (magnetic activated cell sorting). The cytotoxicity of NK cells stimulated by NDV was detected by LDH releasing assay. TRAIL transcription levels in NK cells stimulated by NDV were detected through RFQ-PCR (real-time fluorogenic quantitative-PCR). TRAIL expression on NK cell membrane stimulated with NDV for 16 h was analyzed by FCM (flow cytometry). The level of IFN (interferon) -y was determined by ELISA after NK cells were stimulated by NDV. TRAIL expression on NK cell membrane was analyzed by FCM after applying the anti-human IFN-γ while NDV was added into NK cell medium. Results: The purity of NK cells detected by FCM was (90.60+ 1.15)%. NDV can enhance the cytotoxicity of NK cells after stimulation for 16 h, and the cytotoxicity of NK cells reached (22.28±0.84)% after stimulation with 204.8HU NDV. TRAIL mRNA expression levels were increased after stimulation with various concentrations of NDV for 4 h. TRAIL expression on NK cell membrane was significantly increased after stimulation with NDV for 16 h. IFN-γ level was significantly increased after NK cells were stimulated by NDV, consistent with the concentration of NDV and it was time-dependent. IFN-γ level reached a peak of 796.47+37.87 pg/mL after stimulation with 25.6 HU NDV for 16 h. TRAIL expression was significantly decreased after IFN-γ was neutralized. Conclusion: NDV can enhance the expression of IFN-γ in NK cells, and IFN-γ can up-regulate the TRAIL expression. This is one of the mechanisms for TRAIL expression on NK cells stimulated by NDV. Besides this mechanism, there exists another mechanism for TRAIL expression on NK cells directly stimulated by NDV.%目的:研究新城疫病毒(Newcastle disease virus

  17. Structural Analysis Uncovers Lipid-Binding Properties of Notch Ligands

    Directory of Open Access Journals (Sweden)

    Chandramouli R. Chillakuri

    2013-11-01

    Full Text Available The Notch pathway is a core cell-cell signaling system in metazoan organisms with key roles in cell-fate determination, stem cell maintenance, immune system activation, and angiogenesis. Signals are initiated by extracellular interactions of the Notch receptor with Delta/Serrate/Lag-2 (DSL ligands, whose structure is highly conserved throughout evolution. To date, no structure or activity has been associated with the extreme N termini of the ligands, even though numerous mutations in this region of Jagged-1 ligand lead to human disease. Here, we demonstrate that the N terminus of human Jagged-1 is a C2 phospholipid recognition domain that binds phospholipid bilayers in a calcium-dependent fashion. Furthermore, we show that this activity is shared by a member of the other class of Notch ligands, human Delta-like-1, and the evolutionary distant Drosophila Serrate. Targeted mutagenesis of Jagged-1 C2 domain residues implicated in calcium-dependent phospholipid binding leaves Notch interactions intact but can reduce Notch activation. These results reveal an important and previously unsuspected role for phospholipid recognition in control of this key signaling system.

  18. Evolutionarily conserved paired immunoglobulin-like receptor α (PILRα) domain mediates its interaction with diverse sialylated ligands.

    Science.gov (United States)

    Sun, Yonglian; Senger, Kate; Baginski, Tomasz K; Mazloom, Anita; Chinn, Yvonne; Pantua, Homer; Hamidzadeh, Kajal; Ramani, Sree Ranjani; Luis, Elizabeth; Tom, Irene; Sebrell, Andrew; Quinones, Gabriel; Ma, Yan; Mukhyala, Kiran; Sai, Tao; Ding, Jiabing; Haley, Benjamin; Shadnia, Hooman; Kapadia, Sharookh B; Gonzalez, Lino C; Hass, Philip E; Zarrin, Ali A

    2012-05-04

    Paired immunoglobulin-like receptor (PILR) α is an inhibitory receptor that recognizes several ligands, including mouse CD99, PILR-associating neural protein, and Herpes simplex virus-1 glycoprotein B. The physiological function(s) of interactions between PILRα and its cellular ligands are not well understood, as are the molecular determinants of PILRα/ligand interactions. To address these uncertainties, we sought to identify additional PILRα ligands and further define the molecular basis for PILRα/ligand interactions. Here, we identify two novel PILRα binding partners, neuronal differentiation and proliferation factor-1 (NPDC1), and collectin-12 (COLEC12). We find that sialylated O-glycans on these novel PILRα ligands, and on known PILRα ligands, are compulsory for PILRα binding. Sialylation-dependent ligand recognition is also a property of SIGLEC1, a member of the sialic acid-binding Ig-like lectins. SIGLEC1 Ig domain shares ∼22% sequence identity with PILRα, an identity that includes a conserved arginine localized to position 97 in mouse and human SIGLEC1, position 133 in mouse PILRα and position 126 in human PILRα. We observe that PILRα/ligand interactions require conserved PILRα Arg-133 (mouse) and Arg-126 (human), in correspondence with a previously reported requirement for SIGLEC1 Arg-197 in SIGLEC1/ligand interactions. Homology modeling identifies striking similarities between PILRα and SIGLEC1 ligand binding pockets as well as at least one set of distinctive interactions in the galactoxyl-binding site. Binding studies suggest that PILRα recognizes a complex ligand domain involving both sialic acid and protein motif(s). Thus, PILRα is evolved to engage multiple ligands with common molecular determinants to modulate myeloid cell functions in anatomical settings where PILRα ligands are expressed.

  19. Contrasting roles for TLR ligands in HIV-1 pathogenesis.

    Directory of Open Access Journals (Sweden)

    Beda Brichacek

    Full Text Available The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs. Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs 5 and 9, we examined their effect on human immunodeficiency virus (HIV-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist treatment enhanced replication of CC chemokine receptor 5 (CCR 5-tropic and CXC chemokine receptor 4 (CXCR4-tropic HIV-1, treatment with oligodeoxynucleotide (ODN M362 (TLR9 agonist suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention.

  20. Novel radioiodinated neuroreceptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Musachio, J.L.

    1993-01-01

    Since many bioactive compounds do not readily undergo direct labeling with radioisotopes of iodine, the novel prosthetic groups, p-toluenesulfonate esters of (E)- and (Z)-3-(tri-n-butylstannyl)prop-2-en-1-ol, were designed to complement existing methods for radioiodine incorporation. The preparation and synthetic utility of these bifunctional reagents are described. These vinylstannylated alkylating agents were coupled with nucleophilic functionalities (amide nitrogen, secondary amine, tertiary alcohol) in acceptable to excellent yields. Regio- and stereospecific radioiododestannylation with retention of configuration occurred under mild, no-carrier-added conditions to give the corresponding radiolabeled N- or O-iodoallyl analogs in good radiochemical yields with high specific radioactivities. The methodology is versatile and well-suited to selective labeling of small molecules with radioisotopes of iodine. Of particular importance are the N-iodoallyl analogs of spiperone and the O-iodoallyl analog of diprenorphine for in vitro and in vivo studies of dopamine D[sub 2] and opioid receptors. For in vivo studies of central serotonin 5-HT[sub 2] receptors via single photon emission computed tomography (SPECT), novel radioiodinated N1-alkyl-2-iodo-LSD derivatives were synthesized. These target radioligands were prepared in moderate radiochemical yields. D-(+)-N1-ethyl-2-iodo-LSD, EIL, was identified as the most promising candidate of this series. [[sup 125]I]-EIL binds to central 5-HT[sub 2] receptors with high affinity and selectivity in vitro and labels 5-HT[sub 2] receptors in vivo with high specificity. For preparation of EIL labeled with [sup 123]I, an optimized procedure was developed that gave [[sup 123]I]-EIL in acceptable yields. This radioligand allowed visualization of serotonin 5-HT[sub 2] sites in living baboon brain via SPECT. [[sup 123]I]-EIL may serve as an agent for tomographic studies of human cerebral 5-HT[sub 2] receptors in normal and disease states.

  1. Crystal Structure of the Urokinase Receptor in a Ligand-Free Form

    DEFF Research Database (Denmark)

    Xu, Xiang; Gårdsvoll, Henrik; Yuan, Cai;

    2012-01-01

    . The crystal structure of human uPAR in its ligand-free state would clarify this issue, but such information remains unfortunately elusive. We now report the crystal structures of a stabilized, human uPAR (H47C/N259C) in its ligand-free form to 2.4 Å and in complex with amino-terminal fragment (ATF) to 3.2 Å...

  2. Development of novel strategy for the synthesis of organometallic compounds usable as protein ligands: application to the human cyclophilin hCyp-18; Developpement de ligands de proteines par assemblage combinatoire autour d'un coeur de rhenium{sup V}: application a la cyclophiline hCyp-18

    Energy Technology Data Exchange (ETDEWEB)

    Clavaud, C

    2006-02-15

    This thesis describes a new strategy for the development of bioactive organometallic compounds, basing on the combinatorial assembly of sub-chemical libraries (A and B) independent but complementary and able to coordinate a metallic heart M to form A-M-B complex potential ligands of biomolecules. The coordination of metals, well adapted to the production of molecular variety is usually used in medicinal chemistry, in diagnostic and therapeutic nuclear medicine. Among the useful elements, the rhenium and the technetium are metals of choice for the development of the assembly strategy because of their chemical and radiochemical properties and of the structure analogy of their complexes. This strategy was validated in vitro. The protein chosen for this purpose was the cyclophilin hCyp-18. (N.C.)

  3. Soluble multi-trimeric TNF superfamily ligand adjuvants enhance immune responses to a HIV-1 Gag DNA vaccine.

    Science.gov (United States)

    Kanagavelu, Saravana K; Snarsky, Victoria; Termini, James M; Gupta, Sachin; Barzee, Suzanne; Wright, Jacqueline A; Khan, Wasif N; Kornbluth, Richard S; Stone, Geoffrey W

    2012-01-17

    DNA vaccines remain an important component of HIV vaccination strategies, typically as part of a prime/boost vaccination strategy with viral vector or protein boost. A number of DNA prime/viral vector boost vaccines are currently being evaluated for both preclinical studies and in Phase I and Phase II clinical trials. These vaccines would benefit from molecular adjuvants that increase correlates of immunity during the DNA prime. While HIV vaccine immune correlates are still not well defined, there are a number of immune assays that have been shown to correlate with protection from viral challenge including CD8+ T cell avidity, antigen-specific proliferation, and polyfunctional cytokine secretion. Recombinant DNA vaccine adjuvants composed of a fusion between Surfactant Protein D (SP-D) and either CD40 Ligand (CD40L) or GITR Ligand (GITRL) were previously shown to enhance HIV-1 Gag DNA vaccines. Here we show that similar fusion constructs composed of the TNF superfamily ligands (TNFSFL) 4-1BBL, OX40L, RANKL, LIGHT, CD70, and BAFF can also enhanced immune responses to a HIV-1 Gag DNA vaccine. BALB/c mice were vaccinated intramuscularly with plasmids expressing secreted Gag and SP-D-TNFSFL fusions. Initially, mice were analyzed 2 weeks or 7 weeks following vaccination to evaluate the relative efficacy of each SP-D-TNFSFL construct. All SP-D-TNFSFL constructs enhanced at least one Gag-specific immune response compared to the parent vaccine. Importantly, the constructs SP-D-4-1BBL, SP-D-OX40L, and SP-D-LIGHT enhanced CD8+ T cell avidity and CD8+/CD4+ T cell proliferation 7 weeks post vaccination. These avidity and proliferation data suggest that 4-1BBL, OX40L, and LIGHT fusion constructs may be particularly effective as vaccine adjuvants. Constructs SP-D-OX40L, SP-D-LIGHT, and SP-D-BAFF enhanced Gag-specific IL-2 secretion in memory T cells, suggesting these adjuvants can increase the number of self-renewing Gag-specific CD8+ and/or CD4+ T cells. Finally adjuvants SP

  4. Identification of inhibitors against the potential ligandable sites in the active cholera toxin.

    Science.gov (United States)

    Gangopadhyay, Aditi; Datta, Abhijit

    2015-04-01

    The active cholera toxin responsible for the massive loss of water and ions in cholera patients via its ADP ribosylation activity is a heterodimer of the A1 subunit of the bacterial holotoxin and the human cytosolic ARF6 (ADP Ribosylation Factor 6). The active toxin is a potential target for the design of inhibitors against cholera. In this study we identified the potential ligandable sites of the active cholera toxin which can serve as binding sites for drug-like molecules. By employing an energy-based approach to identify ligand binding sites, and comparison with the results of computational solvent mapping, we identified two potential ligandable sites in the active toxin which can be targeted during structure-based drug design against cholera. Based on the probe affinities of the identified ligandable regions, docking-based virtual screening was employed to identify probable inhibitors against these sites. Several indole-based alkaloids and phosphates showed strong interactions to the important residues of the ligandable region at the A1 active site. On the other hand, 26 top scoring hits were identified against the ligandable region at the A1 ARF6 interface which showed strong hydrogen bonding interactions, including guanidines, phosphates, Leucopterin and Aristolochic acid VIa. This study has important implications in the application of hybrid structure-based and ligand-based methods against the identified ligandable sites using the identified inhibitors as reference ligands, for drug design against the active cholera toxin.

  5. End-to-End Thiocyanato-Bridged Helical Chain Polymer and Dichlorido-Bridged Copper(II) Complexes with a Hydrazone Ligand: Synthesis, Characterisation by Electron Paramagnetic Resonance and Variable-Temperature Magnetic Studies, and Inhibitory Effects on Human Colorectal Carcinoma Cells.

    Science.gov (United States)

    Das, Kuheli; Datta, Amitabha; Sinha, Chittaranjan; Huang, Jui-Hsien; Garribba, Eugenio; Hsiao, Ching-Sheng; Hsu, Chin-Lin

    2012-04-01

    The reactions of the tridentate hydrazone ligand, N'-[1-(pyridin-2-yl)ethylidene]acetohydrazide (HL), obtained by condensation of 2-acetylpyridine with acetic hyadrazide, with copper nitrate trihydrate in the presence of thiocyanate, or with CuCl2 produce two distinct coordination compounds, namely a one-dimensional helical coordination chain of [CuL(NCS)] n (1) units, and a doubly chlorido-bridged dinuclear complex [Cu2L2Cl2] (2) (where L=CH3C(O)=N-N=CCH3C5H4N). Single-crystal X-ray structural determination studies reveal that in complex 1, a deprotonated hydrazone ligand L(-) coordinates a copper(II) ion that is bridged to two neighbouring metal centres by SCN(-) anions, generating a one-dimensional helical coordination chain. In complex 2, two symmetry-related, adjacent copper(II) coordination entities are doubly chlorido-bridged, producing a dicopper entity with a Cu⋅⋅⋅Cu distance of 3.402 (1) Å. The two coordination compounds have been fully characterised by elemental analysis, spectroscopic techniques including IR, UV-vis and electron paramagnetic resonance, and variable-temperature magnetic studies. The biological effects of 1 and 2 on the viability of human colorectal carcinoma cells (COLO-205 and HT-29) were evaluated using an MTT assay, and the results indicate that these complexes induce a decrease in cell-population growth of human colorectal carcinoma cells with apoptosis.

  6. 9-cis-13,14-Dihydroretinoic Acid Is an Endogenous Retinoid Acting as RXR Ligand in Mice.

    Directory of Open Access Journals (Sweden)

    Ralph Rühl

    2015-06-01

    Full Text Available The retinoid X receptors (RXRs are ligand-activated transcription factors which heterodimerize with a number of nuclear hormone receptors, thereby controlling a variety of (patho-physiological processes. Although synthetic RXR ligands are developed for the treatment of various diseases, endogenous ligand(s for these receptors have not been conclusively identified. We show here that mice lacking cellular retinol binding protein (Rbp1-/- display memory deficits reflecting compromised RXR signaling. Using HPLC-MS and chemical synthesis we identified in Rbp1-/- mice reduced levels of 9-cis-13,14-dihydroretinoic acid (9CDHRA, which acts as an RXR ligand since it binds and transactivates RXR in various assays. 9CDHRA rescues the Rbp1-/- phenotype similarly to a synthetic RXR ligand and displays similar transcriptional activity in cultured human dendritic cells. High endogenous levels of 9CDHRA in mice indicate physiological relevance of these data and that 9CDHRA acts as an endogenous RXR ligand.

  7. Aryl hydrocarbon receptor ligand activity of commercial health foods.

    Science.gov (United States)

    Amakura, Yoshiaki; Tsutsumi, Tomoaki; Nakamura, Masafumi; Handa, Hiroshi; Yoshimura, Morio; Matsuda, Rieko; Yoshida, Takashi

    2011-06-15

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates toxicological effects by binding to agonists such as dioxins. We previously reported the presence of natural dioxin-like ligands in foods. To further characterise natural ligands with dioxin-like activity, we examined the influence of 50 kinds of commercial supplement and health food on the AhR, using a reporter gene assay. Some samples, prepared using soybean, sesame, or propolis as an ingredient, were revealed to show AhR-binding activity, similar to that of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), at high concentrations. To characterise the AhR-activating substances in eight active samples, the respective extracts were subjected to fractionation with n-hexane, ethyl acetate, and water, followed by estimating their AhR activities. The n-hexane fraction of the propolis extract sample, and the ethyl acetate fractions of the other samples, showed AhR activity similar to that of TCDD, at a high concentration range. HPLC analysis of the active fractions identified isoflavones, such as daidzein and glycitein, and flavones, such as tectochrysin and chrysin, in the samples. Among these compounds, tectochrysin exhibited marked AhR activation. Flavonoids, which are characterised as natural AhR ligands, are known to have representative beneficial effects on human health. The natural AhR ligands identified in this study are known to be useful for human health. Therefore, it is considered that AhR may play a beneficial regulatory role in humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Tumor necrosis factor-α and receptor activator of nuclear factor-κB ligand augment human macrophage foam-cell destruction of extracellular matrix through protease-mediated processes

    DEFF Research Database (Denmark)

    Skjøt-Arkil, Helene; Barascuk, Natasha; Larsen, Lise;

    2012-01-01

    component of extracellular matrix (ECM) in plaques, and to establish whether the pro-inflammatory molecules, tumor necrosis factor (TNF)-alpha, and receptor activator of nuclear factor-κB ligand (RANK-L) increase this degradation. CD14+ monocytes isolated from peripheral blood were differentiated......% and 72%, respectively. This is, to our knowledge, the first data describing a simple in vitro system in which macrophage foam cells degradation of matrix proteins can be monitored. This degradation can be enhanced by cytokines since TNF-alpha and RANK-L significantly increased the matrix degradation...

  9. Controlled-deactivation cannabinergic ligands.

    Science.gov (United States)

    Sharma, Rishi; Nikas, Spyros P; Paronis, Carol A; Wood, Jodianne T; Halikhedkar, Aneetha; Guo, Jason Jianxin; Thakur, Ganesh A; Kulkarni, Shashank; Benchama, Othman; Raghav, Jimit Girish; Gifford, Roger S; Järbe, Torbjörn U C; Bergman, Jack; Makriyannis, Alexandros

    2013-12-27

    We report an approach for obtaining novel cannabinoid analogues with controllable deactivation and improved druggability. Our design involves the incorporation of a metabolically labile ester group at the 2'-position on a series of (-)-Δ(8)-THC analogues. We have sought to introduce benzylic substituents α to the ester group which affect the half-lives of deactivation through enzymatic activity while enhancing the affinities and efficacies of individual ligands for the CB1 and CB2 receptors. The 1'-(S)-methyl, 1'-gem-dimethyl, and 1'-cyclobutyl analogues exhibit remarkably high affinities for both CB receptors. The novel ligands are susceptible to enzymatic hydrolysis by plasma esterases in a controllable manner, while their metabolites are inactive at the CB receptors. In further in vitro and in vivo experiments key analogues were shown to be potent CB1 receptor agonists and to exhibit CB1-mediated hypothermic and analgesic effects.

  10. Privileged chiral ligands and catalysts

    CERN Document Server

    Zhou, Qi-Lin

    2011-01-01

    This ultimate ""must have"" and long awaited reference for every chemist working in the field of asymmetric catalysis starts with the core structure of the catalysts, explaining why a certain ligand or catalyst is so successful. It describes in detail the history, the basic structural characteristics, and the applications of these ""privileged catalysts"". A novel concept that gives readers a much deeper insight into the topic.

  11. Tumor targeting via integrin ligands

    Directory of Open Access Journals (Sweden)

    Udaya Kiran eMarelli

    2013-08-01

    Full Text Available Selective and targeted delivery of drugs to tumors is a major challenge for an effective cancer therapy and also to overcome the side effects associated with current treatments. Overexpression of various receptors on tumor cells is a characteristic structural and biochemical aspect of tumors and distinguishes them from physiologically normal cells. This abnormal feature is therefore suitable for selectively directing anticancer molecules to tumors by using ligands that can preferentially recognize such receptors. Several subtypes of integrin receptors that are crucial for cell adhesion, cell signaling, cell viability and motility have been shown to have an upregulated expression on cancer cells. Thus, ligands that recognize specific integrin subtypes represent excellent candidates to be conjugated to drugs or drug carrier systems and be targeted to tumors. In this regard, integrins recognizing the RGD cell adhesive sequence have been extensively targeted for tumor specific drug delivery. Here we review key recent examples on the presentation of RGD-based integrin ligands by means of distinct drug delivery systems, and discuss the prospects of such therapies to specifically target tumor cells.

  12. Photoaffinity labeling of the human receptor for urokinase-type plasminogen activator using a decapeptide antagonist. Evidence for a composite ligand-binding site and a short interdomain separation

    DEFF Research Database (Denmark)

    Ploug, M; Ostergaard, S; Hansen, L B

    1998-01-01

    labeling. Proteolytic domain mapping using chymotrypsin revealed a specific labeling of both uPAR domain I and domains II + III dependent on the position of the photoprobe in the antagonist. On the basis of these studies, we propose the existence of a composite ligand binding site in uPAR combined......Binding of urokinase-type plasminogen activator (uPA) to its cellular receptor (uPAR) renders the cell surface a favored site for plasminogen activation. Recently, a 15-mer peptide antagonist of the uPA-uPAR interaction, with an IC50 value of 10 nM, was identified using phage display technology...... [Goodson, R. J., Doyle, M. V., Kaufman, S. E., and Rosenberg, S. (1994) Proc. Natl. Acad. Sci. 91, 7129-7133]. In the present study, the molecular aspects of the interaction between this peptide and uPAR have been investigated. We have characterized the real-time receptor binding kinetics...

  13. Biotechnological Fluorescent Ligands of the Bradykinin B1 Receptor: Protein Ligands for a Peptide Receptor.

    Directory of Open Access Journals (Sweden)

    Xavier Charest-Morin

    Full Text Available The bradykinin (BK B1 receptor (B1R is a peculiar G protein coupled receptor that is strongly regulated to the point of being inducible in immunopathology. Limited clinical evidence suggests that its expression in peripheral blood mononuclear cells is a biomarker of active inflammatory states. In an effort to develop a novel imaging/diagnostic tool, we report the rational design and testing of a fusion protein that is a ligand of the human B1R but not likely to label peptidases. This ligand is composed of a fluorescent protein (FP (enhanced green FP [EGFP] or mCherry prolonged at its N-terminus by a spacer peptide and a classical peptide agonist or antagonist (des-Arg9-BK, [Leu8]des-Arg9-BK, respectively. The design of the spacer-ligand joint peptide was validated by a competition assay for [3H]Lys-des-Arg9-BK binding to the human B1R applied to 4 synthetic peptides of 18 or 19 residues. The labeling of B1R-expressing cells with EGFP or mCherry fused with 7 of such peptides was performed in parallel (microscopy. Both assays indicated that the best design was FP-(Asn-Glyn-Lys-des-Arg9-BK; n = 15 was superior to n = 5, suggesting benefits from minimizing steric hindrance between the FP and the receptor. Cell labeling concerned mostly plasma membranes and was inhibited by a B1R antagonist. EGFP-(Asn-Gly15-Lys-des-Arg9-BK competed for the binding of [3H]Lys-des-Arg9-BK to human recombinant B1R, being only 10-fold less potent than the unlabeled form of Lys-des-Arg9-BK to do so. The fusion protein did not label HEK 293a cells expressing recombinant human BK B2 receptors or angiotensin converting enzyme. This study identifies a modular C-terminal sequence that can be adapted to protein cargoes, conferring high affinity for the BK B1R, with possible applications in diagnostic cytofluorometry, histology and drug delivery (e.g., in oncology.

  14. Ligand placement based on prior structures: the guided ligand-replacement method

    Energy Technology Data Exchange (ETDEWEB)

    Klei, Herbert E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Moriarty, Nigel W., E-mail: nwmoriarty@lbl.gov; Echols, Nathaniel [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Terwilliger, Thomas C. [Los Alamos National Laboratory, Los Alamos, NM 87545-0001 (United States); Baldwin, Eric T. [Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Natural Discovery LLC, Princeton, NJ 08542-0096 (United States); Pokross, Matt; Posy, Shana [Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California at Berkeley, Berkeley, CA 94720-1762 (United States)

    2014-01-01

    A new module, Guided Ligand Replacement (GLR), has been developed in Phenix to increase the ease and success rate of ligand placement when prior protein-ligand complexes are available. The process of iterative structure-based drug design involves the X-ray crystal structure determination of upwards of 100 ligands with the same general scaffold (i.e. chemotype) complexed with very similar, if not identical, protein targets. In conjunction with insights from computational models and assays, this collection of crystal structures is analyzed to improve potency, to achieve better selectivity and to reduce liabilities such as absorption, distribution, metabolism, excretion and toxicology. Current methods for modeling ligands into electron-density maps typically do not utilize information on how similar ligands bound in related structures. Even if the electron density is of sufficient quality and resolution to allow de novo placement, the process can take considerable time as the size, complexity and torsional degrees of freedom of the ligands increase. A new module, Guided Ligand Replacement (GLR), was developed in Phenix to increase the ease and success rate of ligand placement when prior protein–ligand complexes are available. At the heart of GLR is an algorithm based on graph theory that associates atoms in the target ligand with analogous atoms in the reference ligand. Based on this correspondence, a set of coordinates is generated for the target ligand. GLR is especially useful in two situations: (i) modeling a series of large, flexible, complicated or macrocyclic ligands in successive structures and (ii) modeling ligands as part of a refinement pipeline that can automatically select a reference structure. Even in those cases for which no reference structure is available, if there are multiple copies of the bound ligand per asymmetric unit GLR offers an efficient way to complete the model after the first ligand has been placed. In all of these applications, GLR

  15. Ligand fishing with functionalized magnetic nanoparticles coupled with mass spectrometry for herbal medicine analysis: Ligand fishing for herbal medicine analysis

    OpenAIRE

    Qing, Lin-Sen; XUE, YING; Deng, Wen-Long; Liao, Xun; XU, XUE-MIN; Li, Bo-Gang; Liu, Yi-Ming

    2010-01-01

    The chemical composition of herbal medicines is very complex, and their therapeutic effects are determined by multi-components with sophisticated synergistic and/or suppressive actions. Therefore, quality control of herbal medicines has been a formidable challenge. In this work, we describe a fast analytical method that can be used for quality assessment of herbal medicines. The method is based on ligand fishing using human-serum-albumin-functionalized magnetic nanoparticles (HSA-MNPs) and ma...

  16. Bovine Norovirus: Carbohydrate Ligand, Environmental Contamination, and Potential Cross-Species Transmission via Oysters ▿ †

    Science.gov (United States)

    Zakhour, Maha; Maalouf, Haifa; Di Bartolo, Ilaria; Haugarreau, Larissa; Le Guyader, Françoise S.; Ruvoën-Clouet, Nathalie; Le Saux, Jean-Claude; Ruggeri, Franco Maria; Pommepuy, Monique; Le Pendu, Jacques

    2010-01-01

    Noroviruses (NoV) are major agents of acute gastroenteritis in humans and the primary pathogens of shellfish-related outbreaks. Previous studies showed that some human strains bind to oyster tissues through carbohydrate ligands that are similar to their human receptors. Thus, based on presentation of shared norovirus carbohydrate ligands, oysters could selectively concentrate animal strains with increased ability to overcome species barriers. In comparison with human GI and GII strains, bovine GIII NoV strains, although frequently detected in bovine feces and waters of two estuaries of Brittany, were seldom detected in oysters grown in these estuaries. Characterization of the carbohydrate ligand from a new GIII strain indicated recognition of the alpha-galactosidase (α-Gal) epitope not expressed by humans, similar to the GIII.2 Newbury2 strain. This ligand was not detectable on oyster tissues, suggesting that oysters may not be able to accumulate substantial amounts of GIII strains due to the lack of shared carbohydrate ligand and that they should be unable to contribute to select GIII strains with an increased ability to recognize humans. PMID:20709837

  17. CB receptor ligands from plants.

    Science.gov (United States)

    Woelkart, Karin; Salo-Ahen, Outi M H; Bauer, Rudolf

    2008-01-01

    Advances in understanding the physiology and pharmacology of the endogenous cannabinoid system have potentiated the interest of cannabinoid receptors as potential therapeutic targets. Cannabinoids have been shown to modulate a variety of immune cell functions and have therapeutic implications on central nervous system (CNS) inflammation, chronic inflammatory conditions such as arthritis, and may be therapeutically useful in treating autoimmune conditions such as multiple sclerosis. Many of these drug effects occur through cannabinoid receptor signalling mechanisms and the modulation of cytokines and other gene products. Further, endocannabinoids have been found to have many physiological and patho-physiological functions, including mood alteration and analgesia, control of energy balance, gut motility, motor and co-ordination activities, as well as alleviation of neurological, psychiatric and eating disorders. Plants offer a wide range of chemical diversity and have been a growing domain in the search for effective cannabinoid ligands. Cannabis sativa L. with the known plant cannabinoid, Delta(9-)tetrahydrocannabinol (THC) and Echinacea species with the cannabinoid (CB) receptor-binding lipophilic alkamides are the best known herbal cannabimimetics. This review focuses on the state of the art in CB ligands from plants, as well their possible therapeutic and immunomodulatory effects.

  18. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  19. Measurement of protein-ligand complex formation.

    Science.gov (United States)

    Lowe, Peter N; Vaughan, Cara K; Daviter, Tina

    2013-01-01

    Experimental approaches to detect, measure, and quantify protein-ligand binding, along with their theoretical bases, are described. A range of methods for detection of protein-ligand interactions is summarized. Specific protocols are provided for a nonequilibrium procedure pull-down assay, for an equilibrium direct binding method and its modification into a competition-based measurement and for steady-state measurements based on the effects of ligands on enzyme catalysis.

  20. Activation profiles of opioid ligands in HEK cells expressing δ opioid receptors

    OpenAIRE

    Clark J; Demirci Hasan; Gharagozlou Parham; Lameh Jelveh

    2002-01-01

    Abstract Background The aim of the present study was to characterize the activation profiles of 15 opioid ligands in transfected human embryonic kidney cells expressing only δ opioid receptors. Activation profiles of most of these ligands at δ opioid receptors had not been previously characterized in vitro. Receptor activation was assessed by measuring the inhibition of forskolin-stimulated cAMP production. Results Naltrexone and nalorphine were classified as antagonists at δ opioid receptor....

  1. A Novel Strategy for Proteome-wide Ligand Screening Using Cross-linked Phage Matrices*

    OpenAIRE

    Qian, Chen; LIU, Jian-ning; Tang, Fengyuan; Yuan, Dawen; Guo, Zhigang; Zhang, Jing

    2010-01-01

    To find a suitable ligand from a complex antigen system is still a mission to be accomplished. Here we have explored a novel “library against proteome” panning strategy for ligand screening and antigen purification from a complex system using phage-displayed antibody technology. Human plasma proteome was targeted for phage library panning. During the process, the panning was carried out in solution, using a biotin/streptavidin beads separation system, for three rounds. Nine monoclonal phages,...

  2. IDENTIFICATION OF SPECIFIC PEPTIDE LIGANDS FOR B-LYMPHOMA CELL AND ITS EFFECT ON TYROSINE PHOSPHORYLATION AND CELL APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    宋良文; 马宪梅; 崔雪梅; 李扬; 王晓民

    2004-01-01

    Objective To search novel method for diagnosis and therapy of B-lymphoma, specific small molecular peptide ligands against binding site of tumor cells were screened and its effects on signal transduction and cell apoptosis were tested. Methods Specific peptide ligands were screened by binding with site of human B lymphoma cell (OC1LY8) using peptide-bead libraries. The identified peptides were characterized with responsible cells by rebinding test. The role of tyrosine phosphorylation of peptide ligand was tested by Western blot;and its apoptosispromoting role was observed by confocal fluorescent microscope. Results Specific peptide ligand was able to bind specifically to site on cell surface and enter into cytoplasm. Tetrameric peptide ligand was able to strongly trigger signal transduction resulting in tyrosine phosphorylation and cellular apoptosis in OC1LY8 cell line.Conclusion Screened peptide ligand can effectively bind with OC1LY8 cell, stimulate cellular tyrosine phosphorylation and induce cellular apoptosis.

  3. Co-evolution of Human Leukocyte Antigen (HLA) Class I Ligands with Killer-Cell Immunoglobulin-Like Receptors (KIR) in a Genetically Diverse Population of Sub-Saharan Africans

    Science.gov (United States)

    Norman, Paul J.; Hollenbach, Jill A.; Nemat-Gorgani, Neda; Guethlein, Lisbeth A.; Hilton, Hugo G.; Pando, Marcelo J.; Koram, Kwadwo A.; Riley, Eleanor M.; Abi-Rached, Laurent; Parham, Peter

    2013-01-01

    Interactions between HLA class I molecules and killer-cell immunoglobulin-like receptors (KIR) control natural killer cell (NK) functions in immunity and reproduction. Encoded by genes on different chromosomes, these polymorphic ligands and receptors correlate highly with disease resistance and susceptibility. Although studied at low-resolution in many populations, high-resolution analysis of combinatorial diversity of HLA class I and KIR is limited to Asian and Amerindian populations with low genetic diversity. At the other end of the spectrum is the West African population investigated here: we studied 235 individuals, including 104 mother-child pairs, from the Ga-Adangbe of Ghana. This population has a rich diversity of 175 KIR variants forming 208 KIR haplotypes, and 81 HLA-A, -B and -C variants forming 190 HLA class I haplotypes. Each individual we studied has a unique compound genotype of HLA class I and KIR, forming 1–14 functional ligand-receptor interactions. Maintaining this exceptionally high polymorphism is balancing selection. The centromeric region of the KIR locus, encoding HLA-C receptors, is highly diverse whereas the telomeric region encoding Bw4-specific KIR3DL1, lacks diversity in Africans. Present in the Ga-Adangbe are high frequencies of Bw4-bearing HLA-B*53:01 and Bw4-lacking HLA-B*35:01, which otherwise are identical. Balancing selection at key residues maintains numerous HLA-B allotypes having and lacking Bw4, and also those of stronger and weaker interaction with LILRB1, a KIR-related receptor. Correspondingly, there is a balance at key residues of KIR3DL1 that modulate its level of cell-surface expression. Thus, capacity to interact with NK cells synergizes with peptide binding diversity to drive HLA-B allele frequency distribution. These features of KIR and HLA are consistent with ongoing co-evolution and selection imposed by a pathogen endemic to West Africa. Because of the prevalence of malaria in the Ga-Adangbe and previous

  4. Heterobifunctional crosslinkers for tethering single ligand molecules to scanning probes

    Energy Technology Data Exchange (ETDEWEB)

    Riener, Christian K.; Kienberger, Ferry; Hahn, Christoph D.; Buchinger, Gerhard M.; Egwim, Innocent O.C.; Haselgruebler, Thomas; Ebner, Andreas; Romanin, Christoph; Klampfl, Christian; Lackner, Bernd; Prinz, Heino; Blaas, Dieter; Hinterdorfer, Peter; Gruber, Hermann J

    2003-11-14

    Single molecule recognition force microscopy (SMRFM) is a versatile atomic force microscopy (AFM) method to probe specific interactions of cognitive molecules on the single molecule level. It allows insights to be gained into interaction potentials and kinetic barriers and is capable of mapping interaction sites with nm positional accuracy. These applications require a ligand to be attached to the AFM tip, preferably by a distensible poly(ethylene glycol) (PEG) chain between the measuring tip and the ligand molecule. The PEG chain greatly facilitates specific binding of the ligand to immobile receptor sites on the sample surface. The present study contributes to tip-PEG-ligand tethering in three ways: (i) a convenient synthetic route was found to prepare NH{sub 2}-PEG-COOH which is the key intermediate for long heterobifunctional crosslinkers; (ii) a variety of heterobifunctional PEG derivatives for tip-PEG-ligand linking were prepared from NH{sub 2}-PEG-COOH; (iii) in particular, a new PEG crosslinker with one thiol-reactive end and one terminal nitrilotriacetic acid (NTA) group was synthesized and successfully used to tether His{sub 6}-tagged protein molecules to AFM tips via noncovalent NTA-Ni{sup 2+}-His{sub 6} bridges. The new crosslinker was applied to link a recombinant His{sub 6}-tagged fragment of the very-low density lipoprotein receptor to the AFM tip whereupon specific docking to the capsid of human rhinovirus particles was observed by force microscopy. In a parallel study, the specific interaction of the small GTPase Ran with the nuclear import receptor importin {beta}1 was studied in detail by SMRFM, using the new crosslinker to link His{sub 6}-tagged Ran to the measuring tip [Nat. Struct. Biol. (2003), 10, 553-557].

  5. Rational Ligand Design for U(VI) and Pu(IV)

    Energy Technology Data Exchange (ETDEWEB)

    Szigethy, Geza [Univ. of California, Berkeley, CA (United States)

    2009-08-12

    Nuclear power is an attractive alternative to hydrocarbon-based energy production at a time when moving away from carbon-producing processes is widely accepted as a significant developmental need. Hence, the radioactive actinide power sources for this industry are necessarily becoming more widespread, which is accompanied by the increased risk of exposure to both biological and environmental systems. This, in turn, requires the development of technology designed to remove such radioactive threats efficiently and selectively from contaminated material, whether that be contained nuclear waste streams or the human body. Raymond and coworkers (University of California, Berkeley) have for decades investigated the interaction of biologically-inspired, hard Lewis-base ligands with high-valent, early-actinide cations. It has been established that such ligands bind strongly to the hard Lewis-acidic early actinides, and many poly-bidentate ligands have been developed and shown to be effective chelators of actinide contaminants in vivo. Work reported herein explores the effect of ligand geometry on the linear U(IV) dioxo dication (uranyl, UO2 2+). The goal is to utilize rational ligand design to develop ligands that exhibit shape selectivity towards linear dioxo cations and provides thermodynamically favorable binding interactions. The uranyl complexes with a series of tetradentate 3-hydroxy-pyridin-2-one (3,2-HOPO) ligands were studied in both the crystalline state as well as in solution. Despite significant geometric differences, the uranyl affinities of these ligands vary only slightly but are better than DTPA, the only FDA-approved chelation therapy for actinide contamination. The terepthalamide (TAM) moiety was combined into tris-beidentate ligands with 1,2- and 3,2-HOPO moieties were combined into hexadentate ligands whose structural preferences and solution thermodynamics were measured with the uranyl cation. In addition to achieving coordinative

  6. Anaerobic biosynthesis of the lower ligand of vitamin B12.

    Science.gov (United States)

    Hazra, Amrita B; Han, Andrew W; Mehta, Angad P; Mok, Kenny C; Osadchiy, Vadim; Begley, Tadhg P; Taga, Michiko E

    2015-08-25

    Vitamin B12 (cobalamin) is required by humans and other organisms for diverse metabolic processes, although only a subset of prokaryotes is capable of synthesizing B12 and other cobamide cofactors. The complete aerobic and anaerobic pathways for the de novo biosynthesis of B12 are known, with the exception of the steps leading to the anaerobic biosynthesis of the lower ligand, 5,6-dimethylbenzimidazole (DMB). Here, we report the identification and characterization of the complete pathway for anaerobic DMB biosynthesis. This pathway, identified in the obligate anaerobic bacterium Eubacterium limosum, is composed of five previously uncharacterized genes, bzaABCDE, that together direct DMB production when expressed in anaerobically cultured Escherichia coli. Expression of different combinations of the bza genes revealed that 5-hydroxybenzimidazole, 5-methoxybenzimidazole, and 5-methoxy-6-methylbenzimidazole, all of which are lower ligands of cobamides produced by other organisms, are intermediates in the pathway. The bza gene content of several bacterial and archaeal genomes is consistent with experimentally determined structures of the benzimidazoles produced by these organisms, indicating that these genes can be used to predict cobamide structure. The identification of the bza genes thus represents the last remaining unknown component of the biosynthetic pathway for not only B12 itself, but also for three other cobamide lower ligands whose biosynthesis was previously unknown. Given the importance of cobamides in environmental, industrial, and human-associated microbial metabolism, the ability to predict cobamide structure may lead to an improved ability to understand and manipulate microbial metabolism.

  7. Genetics, genomics, and evolutionary biology of NKG2D ligands.

    Science.gov (United States)

    Carapito, Raphael; Bahram, Seiamak

    2015-09-01

    Human and mouse NKG2D ligands (NKG2DLs) are absent or only poorly expressed by most normal cells but are upregulated by cell stress, hence, alerting the immune system in case of malignancy or infection. Although these ligands are numerous and highly variable (at genetic, genomic, structural, and biochemical levels), they all belong to the major histocompatibility complex class I gene superfamily and bind to a single, invariant, receptor: NKG2D. NKG2D (CD314) is an activating receptor expressed on NK cells and subsets of T cells that have a key role in the recognition and lysis of infected and tumor cells. Here, we review the molecular diversity of NKG2DLs, discuss the increasing appreciation of their roles in a variety of medical conditions, and propose several explanations for the evolutionary force(s) that seem to drive the multiplicity and diversity of NKG2DLs while maintaining their interaction with a single invariant receptor.

  8. Cofactor-Controlled Chirality of Tropoisomeric Ligand

    NARCIS (Netherlands)

    Théveau, L.; Bellini, R.; Dydio, P.; Szabo, Z.; van der Werf, A.; Sander, R.A.; Reek, J.N.H.; Moberg, C.

    2016-01-01

    A new tropos ligand with an integrated anion receptor receptor site has been prepared. Chiral carboxylate and phosphate anions that bind in the anion receptor unit proved capable of stabilizing chiral conformations of the achiral flexible bidentate biaryl phosphite ligand, as shown by variable

  9. Flexible Ligand Docking Using Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Thomsen, Rene

    2003-01-01

    The docking of ligands to proteins can be formulated as a computational problem where the task is to find the most favorable energetic conformation among the large space of possible protein–ligand complexes. Stochastic search methods such as evolutionary algorithms (EAs) can be used to sample large...

  10. Flexible Ligand Docking Using Differential Evolution

    DEFF Research Database (Denmark)

    Thomsen, René

    2003-01-01

    the most favorable energetic conformation among the large space of possible protein-ligand complexes. Stochastic search methods, such as evolutionary algorithms (EAs), can be used to sample large search spaces effectively and is one of the preferred methods for flexible ligand docking. The differential...

  11. Rhodium olefin complexes of diiminate type ligands

    NARCIS (Netherlands)

    Willems, Sander Theodorus Hermanus

    2003-01-01

    The mono-anionic beta-diiminate ligand (ArNC(CH3)CHC(CH3)NAr) on several previous occasions proved useful in stabilising low coordination numbers for both early and late transition metals. In this thesis the reactivity of the rhodium olefin complexes of one of these beta-diiminate ligands (Ar = 2,6-

  12. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first exam...

  13. CD40 Ligand Deficient C57BL/6 Mouse Is a Potential Surrogate Model of Human X-Linked Hyper IgM (X-HIGM Syndrome for Characterizing Immune Responses against Pathogens

    Directory of Open Access Journals (Sweden)

    Catalina Lopez-Saucedo

    2015-01-01

    Full Text Available Individuals with X-HIGM syndrome fail to express functional CD40 ligand; consequently they cannot mount effective protective antibody responses against pathogenic bacteria. We evaluated, compared, and characterized the humoral immune response of wild type (WT and C57-CD40L deficient (C57-CD40L−/− mice infected with Citrobacter rodentium. Basal serum isotype levels were similar for IgM and IgG3 among mice, while total IgG and IgG2b concentrations were significantly lower in C57-CD40L−/− mice compared with WT. Essentially IgG1 and IgG2c levels were detectable only in WT mice. C57-CD40L−/− animals, orally inoculated with 2×109 CFU, presented several clinical manifestations since the second week of infection and eventually died. In contrast at this time point no clinical manifestations were observed among C57-CD40L−/− mice infected with 1×107 CFU. Infection was subclinical in WT mice inoculated with either bacterial dose. The serum samples from infected mice (1×107 CFU, collected at day 14 after infection, had similar C. rodentium-specific IgM titres. Although C57-CD40L−/− animals had lower IgG and IgG2b titres than WT mice, C57-CD40L−/− mice sera displayed complement-mediated bactericidal activity against C. rodentium. C. rodentium-infected C57-CD40L−/− mice are capable of producing antibodies that are protective. C57-CD40L−/− mouse is a useful surrogate model of X-HIGM syndrome for studying immune responses elicited against pathogens.

  14. Asymmetric catalysis based on tropos ligands.

    Science.gov (United States)

    Aikawa, Kohsuke; Mikami, Koichi

    2012-11-21

    All enantiopure atropisomeric (atropos) ligands essentially require enantiomeric resolution or synthetic transformation from a chiral pool. In sharp contrast, the use of tropos (chirally flexible) ligands, which are highly modular, versatile, and easy to synthesize without enantiomeric resolution, has recently been the topic of much interest in asymmetric catalysis. Racemic catalysts bearing tropos ligands can be applied to asymmetric catalysis through enantiomeric discrimination by the addition of a chiral source, which preferentially transforms one catalyst enantiomer into a highly activated catalyst enantiomer. Additionally, racemic catalysts bearing tropos ligands can also be utilized as atropos enantiopure catalysts obtained via the control of chirality by a chiral source followed by the memory of chirality. In this feature article, our results on the asymmetric catalysis via the combination of various central metals and tropos ligands are summarized.

  15. High-Throughput Identification of Combinatorial Ligands for DNA Delivery in Cell Culture

    Science.gov (United States)

    Svahn, Mathias G.; Rabe, Kersten S.; Barger, Geoffrey; EL-Andaloussi, Samir; Simonson, Oscar E.; Didier, Boturyn; Olivier, Renaudet; Dumy, Pascal; Brandén, Lars J.; Niemeyer, Christof M.; Smith, C. I. Edvard

    2008-10-01

    Finding the optimal combinations of ligands for tissue-specific delivery is tedious even if only a few well-established compounds are tested. The cargo affects the receptor-ligand interaction, especially when it is charged like DNA. The ligand should therefore be evaluated together with its cargo. Several viruses have been shown to interact with more than one receptor, for efficient internalization. We here present a DNA oligonucleotide-based method for inexpensive and rapid screening of biotin labeled ligands for combinatorial effects on cellular binding and uptake. The oligonucleotide complex was designed as a 44 bp double-stranded DNA oligonucleotide with one central streptavidin molecule and a second streptavidin at the terminus. The use of a highly advanced robotic platform ensured stringent processing and execution of the experiments. The oligonucleotides were fluorescently labeled and used for detection and analysis of cell-bound, internalized and intra-cellular compartmentalized constructs by an automated line-scanning confocal microscope, IN Cell Analyzer 3000. All possible combinations of 22 ligands were explored in sets of 2 and tested on 6 different human cell lines in triplicates. In total, 10 000 transfections were performed on the automation platform. Cell-specific combinations of ligands were identified and their relative position on the scaffold oligonucleotide was found to be of importance. The ligands were found to be cargo dependent, carbohydrates were more potent for DNA delivery whereas cell penetrating peptides were more potent for delivery of less charged particles.

  16. CHARMM-GUI Ligand Binder for absolute binding free energy calculations and its application.

    Science.gov (United States)

    Jo, Sunhwan; Jiang, Wei; Lee, Hui Sun; Roux, Benoît; Im, Wonpil

    2013-01-28

    Advanced free energy perturbation molecular dynamics (FEP/MD) simulation methods are available to accurately calculate absolute binding free energies of protein-ligand complexes. However, these methods rely on several sophisticated command scripts implementing various biasing energy restraints to enhance the convergence of the FEP/MD calculations, which must all be handled properly to yield correct results. Here, we present a user-friendly Web interface, CHARMM-GUI Ligand Binder ( http://www.charmm-gui.org/input/gbinding ), to provide standardized CHARMM input files for calculations of absolute binding free energies using the FEP/MD simulations. A number of features are implemented to conveniently set up the FEP/MD simulations in highly customizable manners, thereby permitting an accelerated throughput of this important class of computations while decreasing the possibility of human errors. The interface and a series of input files generated by the interface are tested with illustrative calculations of absolute binding free energies of three nonpolar aromatic ligands to the L99A mutant of T4 lysozyme and three FK506-related ligands to FKBP12. Statistical errors within individual calculations are found to be small (~1 kcal/mol), and the calculated binding free energies generally agree well with the experimental measurements and the previous computational studies (within ~2 kcal/mol). Therefore, CHARMM-GUI Ligand Binder provides a convenient and reliable way to set up the ligand binding free energy calculations and can be applicable to pharmaceutically important protein-ligand systems.

  17. Modeling RNA-ligand interactions: the Rev-binding element RNA-aminoglycoside complex.

    Science.gov (United States)

    Leclerc, F; Cedergren, R

    1998-01-15

    An approach to the modeling of ligand-RNA complexes has been developed by combining three-dimensional structure-activity relationship (3D-SAR) computations with a docking protocol. The ability of 3D-SAR to predict bound conformations of flexible ligands was first assessed by attempting to reconstruct the known, bound conformations of phenyloxazolines complexed with human rhinovirus 14 (HRV14) RNA. Subsequently, the same 3D-SAR analysis was applied to the identification of bound conformations of aminoglycosides which associate with the Rev-binding element (RBE) RNA. Bound conformations were identified by parsing ligand conformational data sets with pharmacophores determined by the 3D-SAR analysis. These "bioactive" structures were docked to the receptor RNA, and optimization of the complex was undertaken by extensive searching of ligand conformational space coupled with molecular dynamics computations. The similarity between the bound conformations of the ligand from the 3D-SAR analysis and those found in the docking protocol suggests that this methodology is valid for the prediction of bound ligand conformations and the modeling of the structure of the ligand-RNA complexes.

  18. Ligand binding mechanics of maltose binding protein.

    Science.gov (United States)

    Bertz, Morten; Rief, Matthias

    2009-11-13

    In the past decade, single-molecule force spectroscopy has provided new insights into the key interactions stabilizing folded proteins. A few recent studies probing the effects of ligand binding on mechanical protein stability have come to quite different conclusions. While some proteins seem to be stabilized considerably by a bound ligand, others appear to be unaffected. Since force acts as a vector in space, it is conceivable that mechanical stabilization by ligand binding is dependent on the direction of force application. In this study, we vary the direction of the force to investigate the effect of ligand binding on the stability of maltose binding protein (MBP). MBP consists of two lobes connected by a hinge region that move from an open to a closed conformation when the ligand maltose binds. Previous mechanical experiments, where load was applied to the N and C termini, have demonstrated that MBP is built up of four building blocks (unfoldons) that sequentially detach from the folded structure. In this study, we design the pulling direction so that force application moves the two MBP lobes apart along the hinge axis. Mechanical unfolding in this geometry proceeds via an intermediate state whose boundaries coincide with previously reported MBP unfoldons. We find that in contrast to N-C-terminal pulling experiments, the mechanical stability of MBP is increased by ligand binding when load is applied to the two lobes and force breaks the protein-ligand interactions directly. Contour length measurements indicate that MBP is forced into an open conformation before unfolding even if ligand is bound. Using mutagenesis experiments, we demonstrate that the mechanical stabilization effect is due to only a few key interactions of the protein with its ligand. This work illustrates how varying the direction of the applied force allows revealing important details about the ligand binding mechanics of a large protein.

  19. The ligand binding domain controls glucocorticoid receptor dynamics independent of ligand release.

    Science.gov (United States)

    Meijsing, Sebastiaan H; Elbi, Cem; Luecke, Hans F; Hager, Gordon L; Yamamoto, Keith R

    2007-04-01

    Ligand binding to the glucocorticoid receptor (GR) results in receptor binding to glucocorticoid response elements (GREs) and the formation of transcriptional regulatory complexes. Equally important, these complexes are continuously disassembled, with active processes driving GR off GREs. We found that co-chaperone p23-dependent disruption of GR-driven transcription depended on the ligand binding domain (LBD). Next, we examined the importance of the LBD and of ligand dissociation in GR-GRE dissociation in living cells. We showed in fluorescence recovery after photobleaching studies that dissociation of GR from GREs is faster in the absence of the LBD. Furthermore, GR interaction with a target promoter revealed ligand-specific exchange rates. However, using covalently binding ligands, we demonstrated that ligand dissociation is not required for receptor dissociation from GREs. Overall, these studies showed that activities impinging on the LBD regulate GR exchange with GREs but that the dissociation of GR from GREs is independent from ligand dissociation.

  20. Correcting ligands, metabolites, and pathways

    Directory of Open Access Journals (Sweden)

    Vriend Gert

    2006-11-01

    Full Text Available Abstract Background A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information. Description The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry and that a considerable number (about one third had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface. Conclusion We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and

  1. Phenanthroline-2,9-bistriazoles as selective G-quadruplex ligands

    DEFF Research Database (Denmark)

    Nielsen, Mads Corvinius; Larsen, Anders Foller; Abdikadir, Faisal Hussein

    2014-01-01

    G-quadruplex (G4) ligands are currently receiving considerable attention as potential anticancer therapeutics. A series of phenanthroline-2,9-bistriazoles carrying tethered positive end groups has been synthesized and evaluated as G4 stabilizers. The compounds were efficiently assembled by copper......(I)-catalyzed azide-alkyne cycloaddition (CuAAC) in CH2Cl2 and water in the presence of a complexing agent. Characterization of the target compounds on telomeric and c-KIT G4 sequences led to the identification of guanidinium-substituted compounds as potent G4 DNA ligands with high selectivity over duplex DNA....... The diisopropylguanidium ligands exhibited high selectivity for the proto-oncogenic sequence c-KIT over the human telomeric sequence in the surface plasmon resonance (SPR) assay, whereas the compounds appeared potent on both G4 structures in the FRET melting temperature assay. The phenanthroline-2,9-bistriazole ligands...

  2. Tools and techniques to study ligand-receptor interactions and receptor activation by TNF superfamily members.

    Science.gov (United States)

    Schneider, Pascal; Willen, Laure; Smulski, Cristian R

    2014-01-01

    Ligands and receptors of the TNF superfamily are therapeutically relevant targets in a wide range of human diseases. This chapter describes assays based on ELISA, immunoprecipitation, FACS, and reporter cell lines to monitor interactions of tagged receptors and ligands in both soluble and membrane-bound forms using unified detection techniques. A reporter cell assay that is sensitive to ligand oligomerization can identify ligands with high probability of being active on endogenous receptors. Several assays are also suitable to measure the activity of agonist or antagonist antibodies, or to detect interactions with proteoglycans. Finally, self-interaction of membrane-bound receptors can be evidenced using a FRET-based assay. This panel of methods provides a large degree of flexibility to address questions related to the specificity, activation, or inhibition of TNF-TNF receptor interactions in independent assay systems, but does not substitute for further tests in physiologically relevant conditions.

  3. Understanding the Molecular Determinant of Reversible Human Monoamine Oxidase B Inhibitors Containing 2H-chromen-2-One Core: Structure-Based and Ligand-Based Derived 3-D QSAR Predictive Models.

    Science.gov (United States)

    Mladenovic, Milan; Patsilinakos, Alexandros; Pirolli, Adele; Sabatino, Manuela; Ragno, Rino

    2017-03-14

    Monoamine oxidase B (MAO B) catalyzes the oxidative deamination of aryalkylamines neurotransmitters with concomitant reduction of oxygen to hydrogen peroxide. Consequently, the enzyme's malfunction can induce oxidative damage to mitochondrial DNA and mediates development of Parkinson's disease. Thus, MAO B emerges as a promising target for developing pharmaceuticals potentially useful to treat this vicious neurodegenerative condition. Aiming to contribute to the development of drugs with the reversible mechanism of MAO B inhibition only, herein, an extended in silico-in vitro procedure for the selection of novel MAO B inhibitors is demonstrated, including: (1) definition of optimized and validated structure-based (SB) 3-D QSAR models derived from available co-crystallized inhibitor-MAO B complexes; (2) elaboration of structure-activity relationships (SAR) features for either irreversible or reversible MAO B inhibitors to characterize and improve coumarin-based inhibitor activity (Protein Data Bank ID: 2V61) as the most potent reversible lead compound; (3) definition of structure-based (SB) and ligand-based (LB) alignment rules assessments by which virtually any untested potential MAO B inhibitor might be evaluated; (4) predictive ability validation of the best 3-D QSAR model through SB/LB modeling of four coumarin-based external test sets (267 compounds); (5) design and SB/LB alignment of novel coumarin-based scaffolds experimentally validated through synthesis and biological evaluation in vitro. Due to the wide range of molecular diversity within the 3-D QSARs training set and derived features, the selected N probe-derived 3-D QSAR model proves to be a valuable tool for virtual screening (VS) of novel MAO B inhibitors and a platform for design, synthesis and evaluation of novel active structures. Accordingly, six highly active and selective MAO B inhibitors (picomolar to low nanomolar range of activity) were disclosed as a result of rational SB/LB 3-D QSAR design

  4. Fringe-mediated extension of O-linked fucose in the ligand-binding region of Notch1 increases binding to mammalian Notch ligands.

    Science.gov (United States)

    Taylor, Paul; Takeuchi, Hideyuki; Sheppard, Devon; Chillakuri, Chandramouli; Lea, Susan M; Haltiwanger, Robert S; Handford, Penny A

    2014-05-20

    The Notch signaling pathway is essential for many aspects of development, cell fate determination, and tissue homeostasis. Notch signaling can be modulated by posttranslational modifications to the Notch receptor, which are known to alter both ligand binding and receptor activation. We have modified the ligand-binding region (EGF domains 11-13) of human Notch1 (hN1) with O-fucose and O-glucose glycans and shown by flow cytometry and surface plasmon resonance that the Fringe-catalyzed addition of GlcNAc to the O-fucose at T466 in EGF12 substantially increases binding to Jagged1 and Delta-like 1 (DLL1) ligands. We have subsequently determined the crystal structures of EGF domains 11-13 of hN1 modified with either the O-fucose monosaccharide or the GlcNAc-fucose disaccharide at T466 of EGF12 and observed no change in backbone structure for each variant. Collectively, these data demonstrate a role for GlcNAc in modulating the ligand-binding site in hN1 EGF12, resulting in an increased affinity of this region for ligands Jagged1 and DLL1. We propose that this finding explains the Fringe-catalyzed enhancement of Notch-Delta signaling observed in flies and humans, but suggest that the inhibitory effect of Fringe on Jagged/Serrate mediated signaling involves other regions of Notch.

  5. CC-Chemokine Ligand 2 (CCL2) Suppresses High Density Lipoprotein (HDL) Internalization and Cholesterol Efflux via CC-Chemokine Receptor 2 (CCR2) Induction and p42/44 Mitogen-activated Protein Kinase (MAPK) Activation in Human Endothelial Cells.

    Science.gov (United States)

    Sun, Run-Lu; Huang, Can-Xia; Bao, Jin-Lan; Jiang, Jie-Yu; Zhang, Bo; Zhou, Shu-Xian; Cai, Wei-Bin; Wang, Hong; Wang, Jing-Feng; Zhang, Yu-Ling

    2016-09-09

    High density lipoprotein (HDL) has been proposed to be internalized and to promote reverse cholesterol transport in endothelial cells (ECs). However, the mechanism underlying these processes has not been studied. In this study, we aim to characterize HDL internalization and cholesterol efflux in ECs and regulatory mechanisms. We found mature HDL particles were reduced in patients with coronary artery disease (CAD), which was associated with an increase in CC-chemokine ligand 2 (CCL2). In cultured primary human coronary artery endothelial cells and human umbilical vein endothelial cells, we determined that CCL2 suppressed the binding (4 °C) and association (37 °C) of HDL to/with ECs and HDL cellular internalization. Furthermore, CCL2 inhibited [(3)H]cholesterol efflux to HDL/apoA1 in ECs. We further found that CCL2 induced CC-chemokine receptor 2 (CCR2) expression and siRNA-CCR2 reversed CCL2 suppression on HDL binding, association, internalization, and on cholesterol efflux in ECs. Moreover, CCL2 induced p42/44 mitogen-activated protein kinase (MAPK) phosphorylation via CCR2, and p42/44 MAPK inhibition reversed the suppression of CCL2 on HDL metabolism in ECs. Our study suggests that CCL2 was elevated in CAD patients. CCL2 suppressed HDL internalization and cholesterol efflux via CCR2 induction and p42/44 MAPK activation in ECs. CCL2 induction may contribute to impair HDL function and form atherosclerosis in CAD.

  6. Directed evolution of estrogen receptor proteins with altered ligand-binding specificities.

    Science.gov (United States)

    Islam, Kazi Mohammed Didarul; Dilcher, Meik; Thurow, Corinna; Vock, Carsten; Krimmelbein, Ilga Kristine; Tietze, Lutz Friedjan; Gonzalez, Victor; Zhao, Huimin; Gatz, Christiane

    2009-01-01

    Transcriptional activators that respond to ligands with no cellular targets are powerful tools that can confer regulated expression of a transgene in almost all biological systems. In this study, we altered the ligand-binding specificity of the human estrogen receptor alpha (hER alpha) so that it would recognize a non-steroidal synthetic compound with structural similarities to the phytoestrogen resveratrol. For this purpose, we performed iterative rounds of site-specific saturation mutagenesis of a fixed set of ligand-contacting residues and subsequent random mutagenesis of the entire ligand-binding domain. Selection of the receptor mutants and quantification of the interaction were carried out by exploiting a yeast two-hybrid system that reports the ligand-dependent interaction between hER alpha and steroid receptor coactivator-1 (SRC-1). The screen was performed with a synthetic ligand (CV3320) that promoted growth of the reporter yeast strain to half maximal levels at a concentration of 3.7 microM. The optimized receptor mutant (L384F/L387M/Y537S) showed a 67-fold increased activity to the synthetic ligand CV3320 (half maximal yeast growth at 0.055 microM) and a 10-fold decreased activity to 17beta-estradiol (E2; half maximal yeast growth at 4 nM). The novel receptor-ligand pair partially fulfills the requirements for a specific 'gene switch' as it responds to concentrations of the synthetic ligand which do not activate the wildtype receptor. Due to its residual responsiveness to E2 at concentrations (4 nM) that might occur in vivo, further improvements have to be performed to render the system applicable in organisms with endogenous E2 synthesis.

  7. Hydration in drug design. 3. Conserved water molecules at the ligand-binding sites of homologous proteins.

    Science.gov (United States)

    Poornima, C S; Dean, P M

    1995-12-01

    Water molecules are known to play an important rôle in mediating protein-ligand interactions. If water molecules are conserved at the ligand-binding sites of homologous proteins, such a finding may suggest the structural importance of water molecules in ligand binding. Structurally conserved water molecules change the conventional definition of 'binding sites' by changing the shape and complementarity of these sites. Such conserved water molecules can be important for site-directed ligand/drug design. Therefore, five different sets of homologous protein/protein-ligand complexes have been examined to identify the conserved water molecules at the ligand-binding sites. Our analysis reveals that there are as many as 16 conserved water molecules at the FAD binding site of glutathione reductase between the crystal structures obtained from human and E. coli. In the remaining four sets of high-resolution crystal structures, 2-4 water molecules have been found to be conserved at the ligand-binding sites. The majority of these conserved water molecules are either bound in deep grooves at the protein-ligand interface or completely buried in cavities between the protein and the ligand. All these water molecules, conserved between the protein/protein-ligand complexes from different species, have identical or similar apolar and polar interactions in a given set. The site residues interacting with the conserved water molecules at the ligand-binding sites have been found to be highly conserved among proteins from different species; they are more conserved compared to the other site residues interacting with the ligand. These water molecules, in general, make multiple polar contacts with protein-site residues.

  8. Coordinate unsaturation with fluorinated ligands

    Energy Technology Data Exchange (ETDEWEB)

    Rack, J.L.; Hurlburt, P.K.; Anderson, O.P.; Strauss, S.H. [Colorado State Univ., Ft. Collins, CO (United States)

    1993-12-31

    The preparation and characterization of Zn(OTeF{sub 5}){sub 2} has resulted in a model compound with which to explore the concept of coordinative unsaturation. The coordination of solvents of varying donicity and dielectric constant to the Zn(II) ions in Zn(OTeF{sub 5}){sub 2} was studied by vapor phase monometry, NMR and IR spectroscopy, conductimetry, and X-Ray crystallography. The structures of [Zn(C{sub 6}H{sub 5}NO{sub 2}){sub 2}(OTeF{sub 5})2]2 and Zn(C{sub 6}H{sub 5}NO{sub 2}){sub 3}(OTEF{sub 5}){sub 2} demonstrate the electronic flexibility of some weakly coordinating solvents in that nitrobenzene can function as either an {eta}{sup 1}O or {eta}{sup 2}O,O`-ligand. The dependence of the number of bound solvent molecules and the degree of OTeF{sub 5}{minus} dissociation on solvent donor number and dielectric constant will be presented.

  9. Distribution of unselectively bound ligands along DNA.

    Science.gov (United States)

    Lando, Dmitri Y; Nechipurenko, Yury D

    2008-10-01

    Unselective and reversible adsorption of ligands on DNA for a model of binding proposed by Zasedatelev, Gursky, and Volkenshtein is considered. In this model, the interaction between neighboring ligands located at the distance of i binding centers is characterized by the statistical weight ai. Each ligand covers L binding centers. For this model, expressions for binding averages are represented in a new simple form. This representation is convenient for the calculation of the fraction of inter-ligand distances of i binding centers fd(i) and the fraction of binding centers included in the distances of i binding centers fbc(i) for various types of interaction between bound ligands. It is shown that, for non-cooperative binding, contact cooperativity and long-range cooperativity, the fraction of the zero inter-ligand distance fd(0) is maximal at any relative concentration of bound ligands (r). Calculations demonstrate that, at low r, fd(0) approximately r.ao, and fd(i) approximately r at 11/r-L, then fd(i) rapidly decreases with i at any r for all types of inter-ligand interaction. At high ligand concentration (r is close to rmax=L(-1)), fd(0) is close to unity and fd(i) rapidly decreases with i for any type of inter-ligand interaction. For strong contact cooperativity, fd(0) is close to unity in a much lager r interval ((0.5-1).rmax), and fd(1) approximately ao(-1) at r approximately 0.5.rmax. In the case of long-range interaction between bound ligands, the dependence fd(i) is more complex and has a maximum at i approximately (1/r-L)1/2 for anti-cooperative binding. fbc(i) is maximal at i approximately 1/r-L for all types of binding except the contact cooperativity. A strong asymmetry in the influence of contact cooperativity and anticooperativity on the ligand distribution along DNA is demonstrated.

  10. Discovery of Aptamer Ligands for Hepatic Stellate Cells Using SELEX.

    Science.gov (United States)

    Chen, Zhijin; Liu, Hao; Jain, Akshay; Zhang, Li; Liu, Chang; Cheng, Kun

    2017-01-01

    Insulin like growth factor II receptor (IGFIIR) is a transmembrane protein overexpressed in activated hepatic stellate cells (HSCs), which are the major target for the treatment of liver fibrosis. In this study, we aim to discover an IGFIIR-specific aptamer that can be potentially used as a targeting ligand for the treatment and diagnosis of liver fibrosis. Systematic evolution of ligands by exponential enrichment (SELEX) was conducted on recombinant human IGFIIR to identify IGFIIR-specific aptamers. The binding affinity and specificity of the discovered aptamers to IGFIIR and hepatic stellate cells were studied using flow cytometry and Surface Plasmon Resonance (SPR). Aptamer-20 showed the highest affinity to recombinant human IGFIIR protein with a Kd of 35.5 nM, as determined by SPR. Aptamer-20 also has a high affinity (apparent Kd 45.12 nM) to LX-2 human hepatic stellate cells. Binding of aptamer-20 to hepatic stellate cells could be inhibited by knockdown of IGFIIR using siRNA, indicating a high specificity of the aptamer. The aptamer formed a chimera with an anti-fibrotic PCBP2 siRNA and delivered the siRNA to HSC-T6 cells to trigger silencing activity. In Vivo biodistribution study of the siRNA-aptamer chimera also demonstrated a high and specific uptake in the liver of the rats with CCl4-induced liver fibrosis. These data suggest that aptamer-20 is a high-affinity ligand for antifibrotic and diagnostic agents for liver fibrosis.

  11. Fcγ receptors and ligands and cardiovascular disease.

    Science.gov (United States)

    Tanigaki, Keiji; Sundgren, Nathan; Khera, Amit; Vongpatanasin, Wanpen; Mineo, Chieko; Shaul, Philip W

    2015-01-16

    Fcγ receptors (FcγRs) classically modulate intracellular signaling on binding of the Fc region of IgG in immune response cells. How FcγR and their ligands affect cardiovascular health and disease has been interrogated recently in both preclinical and clinical studies. The stimulation of activating FcγR in endothelial cells, vascular smooth muscle cells, and monocytes/macrophages causes a variety of cellular responses that may contribute to vascular disease pathogenesis. Stimulation of the lone inhibitory FγcR, FcγRIIB, also has adverse consequences in endothelial cells, antagonizing NO production and reparative mechanisms. In preclinical disease models, activating FcγRs promote atherosclerosis, whereas FcγRIIB is protective, and activating FcγRs also enhance thrombotic and nonthrombotic vascular occlusion. The FcγR ligand C-reactive protein (CRP) has undergone intense study. Although in rodents CRP does not affect atherosclerosis, it causes hypertension and insulin resistance and worsens myocardial infarction. Massive data have accumulated indicating an association between increases in circulating CRP and coronary heart disease in humans. However, Mendelian randomization studies reveal that CRP is not likely a disease mediator. CRP genetics and hypertension warrant further investigation. To date, studies of genetic variants of activating FcγRs are insufficient to implicate the receptors in coronary heart disease pathogenesis in humans. However, a link between FcγRIIB and human hypertension may be emerging. Further knowledge of the vascular biology of FcγR and their ligands will potentially enhance our understanding of cardiovascular disorders, particularly in patients whose greater predisposition for disease is not explained by traditional risk factors, such as individuals with autoimmune disorders.

  12. Barley as a green factory for the production of functional Flt3 ligand.

    Science.gov (United States)

    Erlendsson, Lýdur S; Muench, Marcus O; Hellman, Ulf; Hrafnkelsdóttir, Soffía M; Jonsson, Anders; Balmer, Yves; Mäntylä, Einar; Orvar, Björn L

    2010-02-01

    Biologically active recombinant human Flt3 ligand was expressed and isolated from transgenic barley seeds. Its expression is controlled by a tissue specific promoter that confines accumulation of the recombinant protein to the endosperm tissue of the seed. The recombinant Flt3 ligand variant expressed in the seeds contains an HQ-tag for affinity purification on immobilized metal ion affinity chromatography (IMAC) resin. The tagged protein was purified from seed extracts to near homogeneity using sequential chromatography on IMAC affinity resin and cation exchange resin. We also show that the recombinant Flt3 ligand protein undergoes posttranslational modifications: it is a glycoprotein containing alpha-1,3-fucose and alpha-1,2-xylose. The HQ-tagged Flt3 ligand variant exhibits comparable biological activity to commercial Flt3 ligand. This is the first report showing expression and accumulation of recombinant human growth factor in barley seeds with a yield of active protein similar to a bacterial expression system. The present results demonstrate that plant molecular farming is a viable approach for the bioproduction of human-derived growth factors.

  13. Ligand fishing with functionalized magnetic nanoparticles coupled with mass spectrometry for herbal medicine analysis: ligand fishing for herbal medicine analysis.

    Science.gov (United States)

    Qing, Lin-Sen; Xue, Ying; Deng, Wen-Long; Liao, Xun; Xu, Xue-Min; Li, Bo-Gang; Liu, Yi-Ming

    2011-01-01

    The chemical composition of herbal medicines is very complex, and their therapeutic effects are determined by multi-components with sophisticated synergistic and/or suppressive actions. Therefore, quality control of herbal medicines has been a formidable challenge. In this work, we describe a fast analytical method that can be used for quality assessment of herbal medicines. The method is based on ligand fishing using human-serum-albumin-functionalized magnetic nanoparticles (HSA-MNPs) and mass spectrometry. To demonstrate the applicability of the proposed method, eight samples of Dioscorea panthaica were analyzed. The sampled plants were of both wild and cultivated origins. They grew at different geographical locations and were harvested at different times. The ligands bound to HSA-MNPs were isolated from the plant extracts and detected by using direct infusion electrospray ionization mass spectrometry (DI-ESI-MS). Chemical identity has been confirmed for five of the ligands isolated. From more than 15 peaks in the ESI-MS spectrum, 11 common peaks were selected for calculating the correlation coefficient and cosine ratio. The values of correlation coefficient and cosine ratio were >0.9824 and >0.9988, respectively, for all the samples tested. The results indicated a high level of similarity among the eight D. panthaica samples. Compared with chromatographic fingerprint analysis, the proposed HSA-MNP-based DI-ESI-MS/MS approach was not only fast and easy to carry out but also biological-activity-oriented, promising a more effective data interpretation and thus reliable assessment conclusions.

  14. The Search for Covalently Ligandable Proteins in Biological Systems

    Directory of Open Access Journals (Sweden)

    Syed Lal Badshah

    2016-09-01

    Full Text Available This commentary highlights the recent article published in Nature, June 2016, titled: “Proteome-wide covalent ligand discovery in native biological systems”. They screened the whole proteome of different human cell lines and cell lysates. Around 700 druggable cysteines in the whole proteome were found to bind the electrophilic fragments in both active and inactive states of the proteins. Their experiment and computational docking results agreed with one another. The usefulness of this study in terms of bringing a change in medicinal chemistry is highlighted here.

  15. From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules

    Directory of Open Access Journals (Sweden)

    Antoine Taly

    2011-03-01

    Full Text Available Ligand-gated ion channels (LGIC play a central role in inter-cellular communication. This key function has two consequences: (i these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted.

  16. Automated design of ligands to polypharmacological profiles

    Science.gov (United States)

    Besnard, Jérémy; Ruda, Gian Filippo; Setola, Vincent; Abecassis, Keren; Rodriguiz, Ramona M.; Huang, Xi-Ping; Norval, Suzanne; Sassano, Maria F.; Shin, Antony I.; Webster, Lauren A.; Simeons, Frederick R.C.; Stojanovski, Laste; Prat, Annik; Seidah, Nabil G.; Constam, Daniel B.; Bickerton, G. Richard; Read, Kevin D.; Wetsel, William C.; Gilbert, Ian H.; Roth, Bryan L.; Hopkins, Andrew L.

    2012-01-01

    The clinical efficacy and safety of a drug is determined by its activity profile across multiple proteins in the proteome. However, designing drugs with a specific multi-target profile is both complex and difficult. Therefore methods to rationally design drugs a priori against profiles of multiple proteins would have immense value in drug discovery. We describe a new approach for the automated design of ligands against profiles of multiple drug targets. The method is demonstrated by the evolution of an approved acetylcholinesterase inhibitor drug into brain penetrable ligands with either specific polypharmacology or exquisite selectivity profiles for G-protein coupled receptors. Overall, 800 ligand-target predictions of prospectively designed ligands were tested experimentally, of which 75% were confirmed correct. We also demonstrate target engagement in vivo. The approach can be a useful source of drug leads where multi-target profiles are required to achieve either selectivity over other drug targets or a desired polypharmacology. PMID:23235874

  17. Ligand inducible assembly of a DNA tetrahedron.

    Science.gov (United States)

    Dohno, Chikara; Atsumi, Hiroshi; Nakatani, Kazuhiko

    2011-03-28

    Here we show that a small synthetic ligand can be used as a key building component for DNA nanofabrication. Using naphthyridinecarbamate dimer (NCD) as a molecular glue for DNA hybridization, we demonstrate NCD-triggered formation of a DNA tetrahedron.

  18. Spectroscopic investigations on the complexation of Cm(III) and Eu(III) with organic model ligands and their binding mode in human urine (in vitro); Spektroskopische Untersuchungen zur Komplexbildung von Cm(III) und Eu(III) mit organischen Modellliganden sowie ihrer chemischen Bindungsform in menschlichem Urin (in vitro)

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Anne

    2011-10-26

    In case of incorporation, trivalent actinides (An(III)) and lanthanides (Ln(III)) pose a serious health risk to humans. An(III) are artificial, highly radioactive elements which are mainly produced during the nuclear fuel cycle in nuclear power plants. Via hazardous accidents or nonprofessional storage of radioactive waste, they can be released in the environment and enter the human food chain. In contrast, Ln(III) are nonradioactive, naturally occurring elements with multiple applications in technique and medicine. Consequently it is possible that humans get in contact and incorporate both, An(III) and Ln(III). Therefore, it is of particular importance to elucidate the behaviour of these elements in the human body. While macroscopic processes such as distribution, accumulation and excretion are studied quite well, knowledge about the chemical binding form (speciation) of An(III) and Ln(III) in various body fluids is still sparse. In the present work, for the first time, the speciation of Cm(III) and Eu(III) in natural human urine (in vitro) has been investigated spectroscopically and the formed complex identified. For this purpose, also basic investigations on the complex formation of Cm(III) and Eu(III) in synthetic model urine as well as with the urinary relevant, organic model ligands urea, alanine, phenylalanine, threonine and citrate have been performed and the previously unknown complex stability constants determined. Finally, all experimental results were compared to literature data and predictions calculated by thermodynamic modelling. Since both, Cm(III) and Eu(III), exhibit unique luminescence properties, particularly the suitability of time-resolved laser-induced fluorescence spectroscopy (TRLFS) could be demonstrated as a method to investigate these metal ions in untreated, complex biofluids. The results of this work provide new scientific findings on the biochemical reactions of An(III) and Ln(III) in human body fluids on a molecular scale and

  19. Nye ligander for Pt-MOF strukturer

    OpenAIRE

    Jakobsen, Søren

    2006-01-01

    Metalorganic frameworks (MOFs) are a new type of compounds which have been intensely investigated during the last few years. They have been synthesized using a wide variety of metals and ligands constructing a vast number of 1, 2 and 3 dimensional structures, some of which possess zeolite-type physics and chemistry. Our approach is to incorporate platinum metal sites into the structures making them bimetallic and potentially catalytically active. Therefore a number of N-N-type ligands (dii...

  20. SnapShot: GPCR-Ligand Interactions.

    Science.gov (United States)

    Ghosh, Eshan; Nidhi, Kumari; Shukla, Arun K

    2014-12-18

    G-protein-coupled receptors enable cells to recognize numerous external stimuli and to transmit corresponding signals across the plasma membrane to trigger appropriate cellular responses. Crystal structures of a number of these receptors have now been determined in inactive and active conformations bound to chemically and functionally distinct ligands. These crystal structures illustrate overall receptor organization and atomic details of ligand-receptor interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. A versatile dinucleating ligand containing sulfonamide groups

    DEFF Research Database (Denmark)

    Sundberg, Jonas; Witt, Hannes; Cameron, Lisa

    2014-01-01

    Copper, iron, and gallium coordination chemistries of the new pentadentate bis-sulfonamide ligand 2,6-bis(N-2-pyridylmethylsulfonamido)-4-methylphenol (psmpH3) were investigated. PsmpH3 is capable of varying degrees of deprotonation, and notably, complexes containing the fully trideprotonated...... ligand can be prepared in aqueous solutions using only divalent metal ions. Two of the copper(II) complexes, [Cu2(psmp)(OH)] and [Cu2(psmp)(OAc)2]-, demonstrate the anticipated 1:2 ligand/metal stoichiometry and show that the dimetallic binding site created for exogenous ligands possesses high inherent...... flexibility since additional one- and three-atom bridging ligands bridge the two copper(II) ions in each complex, respectively. This gives rise to a difference of 0.4 Å in the Cu···Cu distances. Complexes with 2:3 and 2:1 ligand/metal stoichiometries for the divalent and trivalent metal ions, respectively...

  2. Designer TGFβ superfamily ligands with diversified functionality.

    Directory of Open Access Journals (Sweden)

    George P Allendorph

    Full Text Available Transforming Growth Factor--beta (TGFβ superfamily ligands, including Activins, Growth and Differentiation Factors (GDFs, and Bone Morphogenetic Proteins (BMPs, are excellent targets for protein-based therapeutics because of their pervasiveness in numerous developmental and cellular processes. We developed a strategy termed RASCH (Random Assembly of Segmental Chimera and Heteromer, to engineer chemically-refoldable TGFβ superfamily ligands with unique signaling properties. One of these engineered ligands, AB208, created from Activin-βA and BMP-2 sequences, exhibits the refolding characteristics of BMP-2 while possessing Activin-like signaling attributes. Further, we find several additional ligands, AB204, AB211, and AB215, which initiate the intracellular Smad1-mediated signaling pathways more strongly than BMP-2 but show no sensitivity to the natural BMP antagonist Noggin unlike natural BMP-2. In another design, incorporation of a short N-terminal segment from BMP-2 was sufficient to enable chemical refolding of BMP-9, without which was never produced nor refolded. Our studies show that the RASCH strategy enables us to expand the functional repertoire of TGFβ superfamily ligands through development of novel chimeric TGFβ ligands with diverse biological and clinical values.

  3. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng

    2014-12-03

    Background Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction for protein-ligand binding sites, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. Results In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. We propose a combination technique to reduce the effects of different sliding residue windows in the process of encoding input feature vectors. Moreover, due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we construct several balanced data sets, for each of which a random forest (RF)-based classifier is trained. The ensemble of these RF classifiers forms a sequence-based protein-ligand binding site predictor. Conclusions Experimental results on CASP9 and CASP8 data sets demonstrate that our method compares favorably with the state-of-the-art protein-ligand binding site prediction methods.

  4. Fully Flexible Docking of Medium Sized Ligand Libraries with RosettaLigand.

    Directory of Open Access Journals (Sweden)

    Samuel DeLuca

    Full Text Available RosettaLigand has been successfully used to predict binding poses in protein-small molecule complexes. However, the RosettaLigand docking protocol is comparatively slow in identifying an initial starting pose for the small molecule (ligand making it unfeasible for use in virtual High Throughput Screening (vHTS. To overcome this limitation, we developed a new sampling approach for placing the ligand in the protein binding site during the initial 'low-resolution' docking step. It combines the translational and rotational adjustments to the ligand pose in a single transformation step. The new algorithm is both more accurate and more time-efficient. The docking success rate is improved by 10-15% in a benchmark set of 43 protein/ligand complexes, reducing the number of models that typically need to be generated from 1000 to 150. The average time to generate a model is reduced from 50 seconds to 10 seconds. As a result we observe an effective 30-fold speed increase, making RosettaLigand appropriate for docking medium sized ligand libraries. We demonstrate that this improved initial placement of the ligand is critical for successful prediction of an accurate binding position in the 'high-resolution' full atom refinement step.

  5. Use of the ligand immunofunctional assay for human insulin-like growth factor ((IGF) binding protein-3 (IGFBP-3) to analyze IGFBP-3 proteolysis and igf-i bioavailability in healthy adults, GH-deficient and acromegalic patients, and diabetics.

    Science.gov (United States)

    Lassarre, C; Duron, F; Binoux, M

    2001-05-01

    The ligand immunofunctional assay for plasma insulin-like growth factor (IGF) binding protein (IGFBP)-3 developed in our laboratory provides for specific measurement of intact, as opposed to proteolyzed, IGFBP-3. IGFBP-bound IGFs are dissociated and separated by acid pH ultrafiltration; thereafter, intact and proteolyzed IGFBP-3 are captured by a monoclonal antibody in a solid-phase assay and incubated with (125)I-IGF-I, which detects the intact protein but not its proteolytic fragments. This assay was combined with assays for IGF-I (RIA of the ultrafiltrate) and total IGFBP-3 (immunoradiometric assay) to quantify the percentage of proteolyzed IGFBP-3 (percent proteolyzed IGFBP-3) and to calculate the IGF-I/intact IGFBP-3 ratio as an index of the fraction of exchangeable IGF-I bound to IGFBP-3. This fraction represents most of the IGF-I that is bioavailable. Because GH and insulin control the hepatic production and plasma concentrations of IGF-I and IGFBP-3, we set out to determine whether variations in the secretion of the two hormones are involved in the regulation of IGFBP-3 proteolysis. The study included adult populations of 36 healthy subjects, 23 hypopituitary patients untreated with GH, 43 acromegalics (13 untreated), 42 insulin-treated type 1 diabetics [insulin-dependent diabetes mellitus (IDDM)] patients, and 50 type 2 diabetics [non-IDDM (NIDDM)] patients, 22 of whom were insulin-treated and the remaining 28 treated with sulfonylurea and/or metformin). Unlike IGF-I and (to a lesser extent) total IGFBP-3 levels, which decline with age, percent proteolyzed IGFBP-3 seemed relatively stable. In healthy adults, the mean +/- SEM was 29.4 +/- 1.9 for subjects less than 45 yr old and was slightly (but not significantly) lower, 25.7 +/- 3, for those of more than 45 yr. There was no difference between male and female subjects. In GH-deficient patients, despite severely depressed IGF-I levels, percent proteolyzed IGFBP-3 and IGF-I/intact IGFBP-3 ratios were within

  6. Synthesis and PET evaluation of the translocator protein (18 kDa) (T.S.P.O.) ligand [{sup 11}C]D.P.A.-715 in rat and non-human primate

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, A.; Mcgregor, I.; Kassiou, M. [Sydney Univ., NSW (Australia); Thominiaux, C.; Chauveau, F.; Kuhnast, B.; Boutin, H.; Hantraye, P.; Tavitian, B.; Dolle, F. [Service Hospitalier Frederic Joliot 91 - Orsay (France); Fulton, R.; Henderson, D. [RPAH, NSW (Australia); Selleri, S. [Firenze Univ. (Italy)

    2008-02-15

    The translocator protein (18 kDa) (T.S.P.O.), formerly known as the peripheral benzodiazepine receptor (P.B.R.), is over expressed upon micro-glial activation. This study involved the evaluation of the pyrazolo-pyrimidine D.P.A.-715 (T.S.P.O. Ki = 16.4 nM) in behavioural studies and the radiolabelled form, [{sup 11}C]D.P.A.-715, in healthy non-human primate and A.M.P.A.-lesioned rats as a model of activated micro-glia using PET. The in vivo anxiolytic effects of D.P.A.-715 were assessed using the social interaction test which represents social anxiety in humans. [{sup 11}C]D.P.A.-715 was prepared using [{sup 11}C]CH{sub 3}I as the labelling intermediate from the phenolic precursor of D.P.A.-715 using T.B.A.H. and D.M.F. followed by H.P.L.C.. The non-human primate distribution studies were performed using a clinical PET scanner, and A.M.P.A.-lesioned rats using micro PET. Blocking studies were conducted using P.K.11195 (5 mg/kg).In the social interaction test a significant overall effect for the duration of time spent in general investigation, adjacent lying and rearing was observed. Post hoc analysis revealed a significantly greater time spent in general investigation and adjacent lying in the 20 mg/kg D.P.A.-715 treatment group compared to vehicle treated rats. The average non-decay corrected radiochemical yield of [{sup 11}C]D.P.A.-715 was 0.27 {+-} 0.05% with an average specific activity of 16.32 {+-} 4.01 GBq/mmol. The PET distribution studies revealed poor brain uptake. Pre-treatment with P.K.1195 resulted in no change of in the uptake of the radioligand, which suggests that brain uptake is representative of non-specific binding. In agreement with these results, the brain uptake in the A.M.P.A. lesioned model, depicted no significant differences between the lesioned striatum and the non-lesioned contralateral striatum. Although D.P.A.-715 does possess anxiolytic properties in vivo, [{sup 11}C]D.P.A.-715 does not possess the required properties for further

  7. Synthesis, characterization and anti-proliferative activity of Cd(II) complexes with NNN type pyrazole-based ligand and pseudohalide ligands as coligand

    Science.gov (United States)

    Hopa, Cigdem; Yildirim, Hatice; Kara, Hulya; Kurtaran, Raif; Alkan, Mahir

    2014-03-01

    Cd(II) complexes of tridentate nitrogen donor ligand, 2,6-bis(3,4,5-trimethylpyrazolyl)pyridine (btmpp), Cd(btmpp)X2 (X:Cl, ONO or N(CN)2) have been synthesized and characterized by elemental and spectral (FT-IR, 1H NMR, 13C NMR, UV-Vis) analyses, differential thermal analysis and single crystal X-ray diffraction studies. The molecular structure of reported complex 1, revealed distorted square-pyramidal geometry around Cadmium. Complexes 1-3 and corresponding ligand were tested for cytotoxic activity against the human carcinoma cell lines HEP3B (hepatocellular carcinoma), PC3 (prostate adenocarcinoma), MCF7 (breast adenocarcinoma) and Saos2 (osteosarcoma). The results show that, complexes are more cytotoxic than the free ligand and complex 2 is the most cytotoxic complex for PC3.

  8. Hypoxia modifies the transcriptome of primary human monocytes: modulation of novel immune-related genes and identification of CC-chemokine ligand 20 as a new hypoxia-inducible gene.

    Science.gov (United States)

    Bosco, Maria Carla; Puppo, Maura; Santangelo, Clara; Anfosso, Luca; Pfeffer, Ulrich; Fardin, Paolo; Battaglia, Florinda; Varesio, Luigi

    2006-08-01

    Peripheral blood monocytes migrate to and accumulate in hypoxic areas of inflammatory and tumor lesions. To characterize the molecular bases underlying monocyte functions within a hypoxic microenvironment, we investigated the transcriptional profile induced by hypoxia in primary human monocytes using high-density oligonucleotide microarrays. Profound changes in the gene expression pattern were detected following 16 h exposure to 1% O(2), with 536 and 677 sequences showing at least a 1.5-fold increase and decrease, respectively. Validation of this analysis was provided by quantitative RT-PCR confirmation of expression differences of selected genes. Among modulated genes, 74 were known hypoxia-responsive genes, whereas the majority were new genes whose responsiveness to hypoxia had not been previously described. The hypoxic transcriptome was characterized by the modulation of a significant cluster of genes with immunological relevance. These included scavenger receptors (CD163, STAB1, C1qR1, MSR1, MARCO, TLR7), immunoregulatory, costimulatory, and adhesion molecules (CD32, CD64, CD69, CD89, CMRF-35H, ITGB5, LAIR1, LIR9), chemokines/cytokines and receptors (CCL23, CCL15, CCL8, CCR1, CCR2, RDC1, IL-23A, IL-6ST). Furthermore, we provided conclusive evidence of hypoxic induction of CCL20, a chemoattractant for immature dendritic cells, activated/memory T lymphocytes, and naive B cells. CCL20 mRNA up-regulation was paralleled by increased protein expression and secretion. This study represents the first transcriptome analysis of hypoxic primary human monocytes, which provides novel insights into monocyte functional behavior within ischemic/hypoxic tissues. CCL20 up-regulation by hypoxia may constitute an important mechanism to promote recruitment of specific leukocyte subsets at pathological sites and may have implications for the pathogenesis of chronic inflammatory diseases.

  9. Structural determinants of ligand migration in Mycobacterium tuberculosis truncated hemoglobin O.

    Science.gov (United States)

    Boechi, Leonardo; Martí, Marcelo A; Milani, Mario; Bolognesi, Martino; Luque, F Javier; Estrin, Darío A

    2008-11-01

    Mycobacterium tuberculosis is the causative agent of human tuberculosis, one of the most prevalent infectious diseases in the world. Its genome hosts the glbN and glbO genes coding for two proteins, truncated hemoglobin N (trHbN) and truncated hemoglobin O (trHbO), that belong to different groups (I and II, respectively) of the recently discovered trHb family of hemeproteins. The different expression pattern and kinetics rates constants for ligand association and NO oxidation rate suggest different functions for these proteins. Previous experimental and theoretical studies showed that, in trHbs, ligand migration along the internal tunnel cavity system is a key issue in determining the ligand-binding characteristics. The X-ray structure of trHbO has been solved and shows several internal cavities and secondary-docking sites. In this work, we present an extensive investigation of the tunnel/cavity system ofM. tuberculosis trHbO by means of computer-simulation techniques. We have computed the free-energy profiles for ligand migration along three found tunnels in the oxy and deoxy w.t. and mutant trHbO proteins. Our results show that multiple-ligand migration paths are possible and that several conserved residues such as TrpG8 play a key role in the ligand-migration regulation.

  10. Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain.

    Science.gov (United States)

    van Rooy, Inge; Mastrobattista, Enrico; Storm, Gert; Hennink, Wim E; Schiffelers, Raymond M

    2011-02-28

    In many different studies nanocarriers modified with targeting ligands have been used to target to the brain. Many ligands have been successful, but it is difficult to compare results from different studies to determine which targeting ligand is the best. Therefore, we selected five targeting ligands (transferrin, RI7217, COG133, angiopep-2, and CRM197) and compared their ability to target liposomes to the brain in vitro and in vivo. In vitro, only CRM197-modified liposomes were able to bind to murine endothelial cells (bEnd.3). Both CRM197 and RI7217-modified liposomes associated with human endothelial cells (hCMEC/D3). In vivo, uptake of targeted liposomes was tested at 12h after iv injection. For some of the ligands, additional time points of 1 and 6h were tested. Only the RI7217 was able to significantly enhance brain uptake in vivo at all time points. Uptake in the brain capillaries was up to 10 times higher compared to untargeted liposomes, and uptake in the brain parenchyma was up to 4.3 times higher. Additionally, these results show that many targeting ligands that have been described for brain targeting, do not target to the brain in vivo when coupled to a liposomal delivery vehicle.

  11. Evaluation of Polymeric Nanomedicines Targeted to PSMA: Effect of Ligand on Targeting Efficiency.

    Science.gov (United States)

    Fuchs, Adrian V; Tse, Brian W C; Pearce, Amanda K; Yeh, Mei-Chun; Fletcher, Nicholas L; Huang, Steve S; Heston, Warren D; Whittaker, Andrew K; Russell, Pamela J; Thurecht, Kristofer J

    2015-10-12

    Targeted nanomedicines offer a strategy for greatly enhancing accumulation of a therapeutic within a specific tissue in animals. In this study, we report on the comparative targeting efficiency toward prostate-specific membrane antigen (PSMA) of a number of different ligands that are covalently attached by the same chemistry to a polymeric nanocarrier. The targeting ligands included a small molecule (glutamate urea), a peptide ligand, and a monoclonal antibody (J591). A hyperbranched polymer (HBP) was utilized as the nanocarrier and contained a fluorophore for tracking/analysis, whereas the pendant functional chain-ends provided a handle for ligand conjugation. Targeting efficiency of each ligand was assessed in vitro using flow cytometry and confocal microscopy to compare degree of binding and internalization of the HBPs by human prostate cancer (PCa) cell lines with different PSMA expression status (PC3-PIP (PSMA+) and PC3-FLU (PSMA-). The peptide ligand was further investigated in vivo, in which BALB/c nude mice bearing subcutaneous PC3-PIP and PC3-FLU PCa tumors were injected intravenously with the HBP-peptide conjugate and assessed by fluorescence imaging. Enhanced accumulation in the tumor tissue of PC3-PIP compared to PC3-FLU highlighted the applicability of this system as a future imaging and therapeutic delivery vehicle.

  12. Accelerated Molecular Dynamics Simulations of Ligand Binding to a Muscarinic G-protein Coupled Receptor

    Science.gov (United States)

    Kappel, Kalli; Miao, Yinglong; McCammon, J. Andrew

    2017-01-01

    Elucidating the detailed process of ligand binding to a receptor is pharmaceutically important for identifying druggable binding sites. With the ability to provide atomistic detail, computational methods are well poised to study these processes. Here, accelerated molecular dynamics (aMD) is proposed to simulate processes of ligand binding to a G-protein coupled receptor (GPCR), in this case the M3 muscarinic receptor, which is a target for treating many human diseases, including cancer, diabetes and obesity. Long-timescale aMD simulations were performed to observe the binding of three chemically diverse ligand molecules: antagonist tiotropium (TTP), partial agonist arecoline (ARc), and full agonist acetylcholine (ACh). In comparison with earlier microsecond-timescale conventional MD simulations, aMD greatly accelerated the binding of ACh to the receptor orthosteric ligand-binding site and the binding of TTP to an extracellular vestibule. Further aMD simulations also captured binding of ARc to the receptor orthosteric site. Additionally, all three ligands were observed to bind in the extracellular vestibule during their binding pathways, suggesting that it is a metastable binding site. This study demonstrates the applicability of aMD to protein-ligand binding, especially the drug recognition of GPCRs. PMID:26537408

  13. Phenanthroline-2,9-bistriazoles as selective G-quadruplex ligands.

    Science.gov (United States)

    Nielsen, Mads Corvinius; Larsen, Anders Foller; Abdikadir, Faisal Hussein; Ulven, Trond

    2014-01-24

    G-quadruplex (G4) ligands are currently receiving considerable attention as potential anticancer therapeutics. A series of phenanthroline-2,9-bistriazoles carrying tethered positive end groups has been synthesized and evaluated as G4 stabilizers. The compounds were efficiently assembled by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) in CH2Cl2 and water in the presence of a complexing agent. Characterization of the target compounds on telomeric and c-KIT G4 sequences led to the identification of guanidinium-substituted compounds as potent G4 DNA ligands with high selectivity over duplex DNA. The diisopropylguanidium ligands exhibited high selectivity for the proto-oncogenic sequence c-KIT over the human telomeric sequence in the surface plasmon resonance (SPR) assay, whereas the compounds appeared potent on both G4 structures in the FRET melting temperature assay. The phenanthroline-2,9-bistriazole ligands were thus identified as potent G4 ligands with high selectivity over duplex DNA, and preliminary results indicate that the scaffold may form basis for the development of subtype-specific G4 ligands.

  14. Thermodynamics of ligand binding to histone deacetylase like amidohydrolase from Bordetella/Alcaligenes.

    Science.gov (United States)

    Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef

    2014-03-01

    Thermodynamic studies on ligand-protein binding have become increasingly important in the process of drug design. In combination with structural data and molecular dynamics simulations, thermodynamic studies provide relevant information about the mode of interaction between compounds and their target proteins and therefore build a sound basis for further drug optimization. Using the example of histone deacetylases (HDACs), particularly the histone deacetylase like amidohydrolase (HDAH) from Bordetella/Alcaligenes, a novel sensitive competitive fluorescence resonance energy transfer-based binding assay was developed and the thermodynamics of interaction of both fluorescent ligands and inhibitors to histone deacetylase like amidohydrolase were investigated. The assay consumes only small amounts of valuable target proteins and is suitable for fast kinetic and mechanistic studies as well as high throughput screening applications. Binding affinity increased with increasing length of aliphatic spacers (n = 4-7) between the hydroxamate moiety and the dansyl head group of ligand probes. Van't Hoff plots revealed an optimum in enthalpy contribution to the free energy of binding for the dansyl-ligand with hexyl spacer. The selectivity in the series of dansyl-ligands against human class I HDAC1 but not class II HDACs 4 and 6 increased with the ratio of ΔH(0)/ΔG(0). The data clearly emphasize the importance of thermodynamic signatures as useful general guidance for the optimization of ligands or rational drug design.

  15. Protein adsorption on DEAE ion-exchange resins with different ligand densities and pore sizes.

    Science.gov (United States)

    Lu, Hui-Li; Lin, Dong-Qiang; Zhu, Mi-Mi; Yao, Shan-Jing

    2012-11-01

    Ion exchange chromatography (IEC) is a common and powerful technique for the purification of proteins. The ligand density and pore properties of ion-exchange resins have significant effects on the separation behaviors of protein, however, the understandings are quite limited. In the present work, the adsorption isotherms of bovine serum albumin (BSA) and human serum albumin (HSA) were investigated systematically with series of diethylaminoethyl (DEAE) ion-exchange resins, which have different ligand densities and pore sizes. The Langmuir equation was used to fit the experimental data and the influences of ligand density and pore size on the saturated adsorption capacity and the dissociation constant were discussed. The zeta potentials and hydrodynamic diameters of proteins at different pHs were also measured, and the surface charge characteristics of proteins and the adsorption mechanism were discussed. The results demonstrated that the ligand density, pore size, and protein properties affect the protein adsorption capacities in an integrative way. An integrative parameter was introduced to describe the complicated effects of ligand density and pore size on the protein adsorption. For a given protein, the ligand density and pore size should be optimized for improving the protein adsorption.

  16. High-throughput identification of telomere-binding ligands based on the fluorescence regulation of DNA-copper nanoparticles.

    Science.gov (United States)

    Yang, Luzhu; Wang, Yanjun; Li, Baoxin; Jin, Yan

    2017-01-15

    Formation of the G-quadruplex in the human telomeric DNA is an effective way to inhibit telomerase activity. Therefore, screening ligands of G-quadruplex has potential applications in the treatment of cancer by inhibit telomerase activity. Although several techniques have been explored for screening of telomeric G-quadruplexes ligands, high-throughput screening method for fast screening telomere-binding ligands from the large compound library is still urgently needed. Herein, a label-free fluorescence strategy has been proposed for high-throughput screening telomere-binding ligands by using DNA-copper nanoparticles (DNA-CuNPs) as a signal probe. In the absence of ligands, human telomeric DNA (GDNA) hybridized with its complementary DNA (cDNA) to form double stranded DNA (dsDNA) which can act as an efficient template for the formation of DNA-CuNPs, leading to the high fluorescence of DNA-CuNPs. In the presence of ligands, GDNA folded into G-quadruplex. Single-strdanded cDNA does not support the formation of DNA-CuNP, resulting in low fluorescence of DNA-CuNPs. Therefore, telomere-binding ligands can be high-throughput screened by monitoring the change in the fluorescence of DNA-CuNPs. Thirteen traditional chinese medicines were screened. Circular dichroism (CD) measurements demonstrated that the selected ligands could induce single-stranded telomeric DNA to form G-quadruplex. The telomere repeat amplification protocol (TRAP) assay demonstrated that the selected ligands can effectively inhibit telomerase activity. Therefore, it offers a cost-effective, label-free and reliable high-throughput way to identify G-quadruplex ligands, which holds great potential in discovering telomerase-targeted anticancer drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.

    2016-06-22

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  18. Ligand binding to telomeric G-quadruplex DNA investigated by funnel-metadynamics simulations

    Science.gov (United States)

    Moraca, Federica; Amato, Jussara; Ortuso, Francesco; Artese, Anna; Novellino, Ettore; Alcaro, Stefano; Parrinello, Michele; Limongelli, Vittorio

    2017-01-01

    G-quadruplexes (G4s) are higher-order DNA structures typically present at promoter regions of genes and telomeres. Here, the G4 formation decreases the replicative DNA at each cell cycle, finally leading to apoptosis. The ability to control this mitotic clock, particularly in cancer cells, is fascinating and passes through a rational understanding of the ligand/G4 interaction. We demonstrate that an accurate description of the ligand/G4 binding mechanism is possible using an innovative free-energy method called funnel-metadynamics (FM), which we have recently developed to investigate ligand/protein interaction. Using FM simulations, we have elucidated the binding mechanism of the anticancer alkaloid berberine to the human telomeric G4 (d[AG3(T2AG3)3]), computing also the binding free-energy landscape. Two ligand binding modes have been identified as the lowest energy states. Furthermore, we have found prebinding sites, which are preparatory to reach the final binding mode. In our simulations, the ions and the water molecules have been explicitly represented and the energetic contribution of the solvent during ligand binding evaluated. Our theoretical results provide an accurate estimate of the absolute ligand/DNA binding free energy (ΔGb0 = −10.3 ± 0.5 kcal/mol) that we validated through steady-state fluorescence binding assays. The good agreement between the theoretical and experimental value demonstrates that FM is a most powerful method to investigate ligand/DNA interaction and can be a useful tool for the rational design also of G4 ligands. PMID:28232513

  19. RET Recognition of GDNF-GFRα1 Ligand by a Composite Binding Site Promotes Membrane-Proximal Self-Association

    Directory of Open Access Journals (Sweden)

    Kerry M. Goodman

    2014-09-01

    Full Text Available The RET receptor tyrosine kinase is essential to vertebrate development and implicated in multiple human diseases. RET binds a cell surface bipartite ligand comprising a GDNF family ligand and a GFRα coreceptor, resulting in RET transmembrane signaling. We present a hybrid structural model, derived from electron microscopy (EM and low-angle X-ray scattering (SAXS data, of the RET extracellular domain (RETECD, GDNF, and GFRα1 ternary complex, defining the basis for ligand recognition. RETECD envelopes the dimeric ligand complex through a composite binding site comprising four discrete contact sites. The GFRα1-mediated contacts are crucial, particularly close to the invariant RET calcium-binding site, whereas few direct contacts are made by GDNF, explaining how distinct ligand/coreceptor pairs are accommodated. The RETECD cysteine-rich domain (CRD contacts both ligand components and makes homotypic membrane-proximal interactions occluding three different antibody epitopes. Coupling of these CRD-mediated interactions suggests models for ligand-induced RET activation and ligand-independent oncogenic deregulation.

  20. A Search for CD36 Ligands from Flavor Volatiles in Foods with an Aldehyde Moiety: Identification of Saturated Aliphatic Aldehydes with 9-16 Carbon Atoms as Potential Ligands of the Receptor.

    Science.gov (United States)

    Tsuzuki, Satoshi; Amitsuka, Takahiko; Okahashi, Tatsuya; Kimoto, Yusaku; Inoue, Kazuo

    2017-08-09

    Volatile compounds with an aldehyde moiety such as (Z)-9-octadecenal are potential ligands for cluster of differentiation 36 (CD36), a transmembrane receptor that has recently been shown to play a role in mammalian olfaction. In this study, by performing an assay using a peptide mimic of human CD36, we aimed to discover additional ligands for the receptor from volatiles containing a single aldehyde group commonly found in human foods. Straight-chain, saturated aliphatic aldehydes with 9-16 carbons exhibited CD36 ligand activities, albeit to varying degrees. Notably, the activities of tridecanal and tetradecanal were higher than that of oleic acid, the most potent ligand among the fatty acids tested. Among the aldehydes other than aliphatic aldehydes, only phenylacetaldehyde showed a weak activity. These findings make a contribution to our knowledge of recognition mechanisms for flavor volatiles in foods with an aldehyde group.

  1. Ligand binding by PDZ domains

    OpenAIRE

    Celestine N. Chi; Bach, Anders; Stromgaard, Kristian; Gianni, Stefano; Jemth, Per

    2012-01-01

    The postsynaptic density protein-95/disks large/zonula occludens-1 (PDZ) protein domain family is one of the most common proteinprotein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins, for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, s...

  2. MOST: most-similar ligand based approach to target prediction.

    Science.gov (United States)

    Huang, Tao; Mi, Hong; Lin, Cheng-Yuan; Zhao, Ling; Zhong, Linda L D; Liu, Feng-Bin; Zhang, Ge; Lu, Ai-Ping; Bian, Zhao-Xiang

    2017-03-11

    Many computational approaches have been used for target prediction, including machine learning, reverse docking, bioactivity spectra analysis, and chemical similarity searching. Recent studies have suggested that chemical similarity searching may be driven by the most-similar ligand. However, the extent of bioactivity of most-similar ligands has been oversimplified or even neglected in these studies, and this has impaired the prediction power. Here we propose the MOst-Similar ligand-based Target inference approach, namely MOST, which uses fingerprint similarity and explicit bioactivity of the most-similar ligands to predict targets of the query compound. Performance of MOST was evaluated by using combinations of different fingerprint schemes, machine learning methods, and bioactivity representations. In sevenfold cross-validation with a benchmark Ki dataset from CHEMBL release 19 containing 61,937 bioactivity data of 173 human targets, MOST achieved high average prediction accuracy (0.95 for pKi ≥ 5, and 0.87 for pKi ≥ 6). Morgan fingerprint was shown to be slightly better than FP2. Logistic Regression and Random Forest methods performed better than Naïve Bayes. In a temporal validation, the Ki dataset from CHEMBL19 were used to train models and predict the bioactivity of newly deposited ligands in CHEMBL20. MOST also performed well with high accuracy (0.90 for pKi ≥ 5, and 0.76 for pKi ≥ 6), when Logistic Regression and Morgan fingerprint were employed. Furthermore, the p values associated with explicit bioactivity were found be a robust index for removing false positive predictions. Implicit bioactivity did not offer this capability. Finally, p values generated with Logistic Regression, Morgan fingerprint and explicit activity were integrated with a false discovery rate (FDR) control procedure to reduce false positives in multiple-target prediction scenario, and the success of this strategy it was demonstrated with a case of fluanisone

  3. New polypyridine anchoring ligands for coordination complexes and surface functionalization

    OpenAIRE

    Müller, Steffen

    2015-01-01

    This PhD thesis focuses on the synthesis of new polypyridine anchoring ligands and several dfferent applications. The ligands consist of a coordinating part, a flexible linker and an anchoring group. Due to the fact that different anchoring groups were used, the ligands can be applied for several types of surface-materials. Using these anchoring ligands, several coordination complexes were synthesized. Ruthenium-based complexes, bearing an ion-sensitive ligand, were tested towards...

  4. Mac-2 binding protein is a novel E-selectin ligand expressed by breast cancer cells.

    Science.gov (United States)

    Shirure, Venktesh S; Reynolds, Nathan M; Burdick, Monica M

    2012-01-01

    Hematogenous metastasis involves the adhesion of circulating tumor cells to vascular endothelium of the secondary site. We hypothesized that breast cancer cell adhesion is mediated by interaction of endothelial E-selectin with its glycoprotein counter-receptor(s) expressed on breast cancer cells. At a hematogenous wall shear rate, ZR-75-1 breast cancer cells specifically adhered to E-selectin expressing human umbilical vein endothelial cells when tested in parallel plate flow chamber adhesion assays. Consistent with their E-selectin ligand activity, ZR-75-1 cells expressed flow cytometrically detectable epitopes of HECA-452 mAb, which recognizes high efficiency E-selectin ligands typified by sialofucosylated moieties. Multiple E-selectin reactive proteins expressed by ZR-75-1 cells were revealed by immunoprecipitation with E-selectin chimera (E-Ig chimera) followed by Western blotting. Mass spectrometry analysis of the 72 kDa protein, which exhibited the most prominent E-selectin ligand activity, corresponded to Mac-2 binding protein (Mac-2BP), a heretofore unidentified E-selectin ligand. Immunoprecipitated Mac-2BP expressed sialofucosylated epitopes and possessed E-selectin ligand activity when tested by Western blot analysis using HECA-452 mAb and E-Ig chimera, respectively, demonstrating that Mac-2BP is a novel high efficiency E-selectin ligand. Furthermore, silencing the expression of Mac-2BP from ZR-75-1 cells by shRNA markedly reduced their adhesion to E-selectin expressing cells under physiological flow conditions, confirming the functional E-selectin ligand activity of Mac-2BP on intact cells. In addition to ZR-75-1 cells, several other E-selectin ligand positive breast cancer cell lines expressed Mac-2BP as detected by Western blot and flow cytometry, suggesting that Mac-2BP may be an E-selectin ligand in a variety of breast cancer types. Further, invasive breast carcinoma tissue showed co-localized expression of Mac-2BP and HECA-452 antigens by

  5. Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein.

    Science.gov (United States)

    Li, Huameng; Li, Chenglong

    2010-07-30

    Present docking methodologies simulate only one single ligand at a time during docking process. In reality, the molecular recognition process always involves multiple molecular species. Typical protein-ligand interactions are, for example, substrate and cofactor in catalytic cycle; metal ion coordination together with ligand(s); and ligand binding with water molecules. To simulate the real molecular binding processes, we propose a novel multiple ligand simultaneous docking (MLSD) strategy, which can deal with all the above processes, vastly improving docking sampling and binding free energy scoring. The work also compares two search strategies: Lamarckian genetic algorithm and particle swarm optimization, which have respective advantages depending on the specific systems. The methodology proves robust through systematic testing against several diverse model systems: E. coli purine nucleoside phosphorylase (PNP) complex with two substrates, SHP2NSH2 complex with two peptides and Bcl-xL complex with ABT-737 fragments. In all cases, the final correct docking poses and relative binding free energies were obtained. In PNP case, the simulations also capture the binding intermediates and reveal the binding dynamics during the recognition processes, which are consistent with the proposed enzymatic mechanism. In the other two cases, conventional single-ligand docking fails due to energetic and dynamic coupling among ligands, whereas MLSD results in the correct binding modes. These three cases also represent potential applications in the areas of exploring enzymatic mechanism, interpreting noisy X-ray crystallographic maps, and aiding fragment-based drug design, respectively.

  6. Immobilisation of ligands by radio-derivatized polymers; Immobilisering av ligander med radioderiverte polymerer

    Energy Technology Data Exchange (ETDEWEB)

    Varga, J.M.; Fritsch, P.

    1995-01-30

    The invention relates to radio-derivatized polymers and a method of producing them by contacting non-polymerizable conjugands with radiolysable polymers in the presence of irradiation. The resulting radio-derivatized polymers can be further linked with ligand of organic or inorganic nature to immobilize such ligands. 2 figs., 5 tabs.

  7. Novel and high affinity fluorescent ligands for the serotonin transporter based on (s)-citalopram

    DEFF Research Database (Denmark)

    Kumar, Vivek; Rahbek-Clemmensen, Troels; Billesbølle, Christian B

    2014-01-01

    Novel rhodamine-labeled ligands, based on (S)-citalopram, were synthesized and evaluated for uptake inhibition at the human serotonin, dopamine, and norepinephrine transporters (hSERT, hDAT, and hNET, respectively) and for binding at SERT, in transiently transfected COS7 cells. Compound 14 demons...

  8. Vesicular Stomatitis Virus Infection Promotes Immune Evasion by Preventing NKG2D-Ligand Surface Expression

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Nielsen, Jens

    2011-01-01

    leads to a robust induction of MICA mRNA expression, however the subsequent surface expression is potently hindered. Thus, VSV lines up with human cytomegalovirus (HCMV) and adenovirus, which actively subvert the immune system by negatively affecting NKG2D-ligand surface expression. VSV infection caused...

  9. Receptor for Advanced Glycation End Products and its Inflammatory Ligands are Upregulated in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Judyta eJuranek

    2015-12-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal motor neuron disorder of largely unknown pathogenesis. Recent studies suggest that enhanced oxidative stress and neuroinflammation contribute to the progression of the disease. Mounting evidence implicates the receptor for advanced glycation end-products (RAGE as a significant contributor to the pathogenesis of certain neurodegenerative diseases and chronic conditions. It is hypothesized that detrimental actions of RAGE are triggered upon binding to its ligands, such as AGEs (advanced glycation end products, S100/calgranulin family members, and High Mobility Group Box-1 (HMGB1 proteins. Here, we examined the expression of RAGE and its ligands in human ALS spinal cord. Tissue samples from age-matched human control and ALS spinal cords were tested for the expression of RAGE, carboxymethyllysine (CML AGE, S100B and HMGB1, and intensity of the immunofluorescent and immunoblotting signals was assessed. We found that the expression of both RAGE and its ligands was significantly increased in the spinal cords of ALS patients versus age-matched control subjects. Our study is the first report describing co-expression of both RAGE and its ligands in human ALS spinal cords. These findings suggest that further probing of RAGE as a mechanism of neurodegeneration in human ALS is rational.

  10. Organotellurium ligands - designing and complexation reactions

    Indian Academy of Sciences (India)

    Ajai K Singh

    2002-08-01

    A variety of tellurium ligands has been designed and studied for their complexation reactions in the last decade. Of these hybrid telluroethers, halotellurium ligands and polytellurides are the most notable ones. RTe- and polytelluride ions have also been used to design clusters. Ligation of ditelluroethers and several hybrid telluroethers is extensively studied in our laboratories. The ditelluroether ligand RTeCH2TeR (where R = 4-MeOC6H4) (1), similar to dppm [1,2-bis(diphenylphosphino) methane], has been synthesized in good yield (∼80 %) by reacting CHCl3 with RTe- (generated in situ by borohydride reduction of R2Te2). Iodine reacts with 1 to give tetra-iodo derivative, which has intermolecular Te$\\cdots$I interactions resulting in a macro structure containing rectangular Te-I$\\cdots$Te bridges. 1 readily forms four membered rings with Pd(II) and Ru(II). On the formation of this chelate ring, the signal in 125Te NMR spectra shifts significantly upfield (50-60 ppm). The bridging mode of 1 has been shown in [Ru(-cymene)Cl2](-1)[Ru(-cymene)Cl2]. The hybrid telluroether ligands explored are of the types (Te, S), (Te, N) and (Te, O). The tellurium donor site has strong trans influence, which is manifested more strongly in square planar complexes of palladium(II). The morpholine N-donor site has been found to have weaker donor characteristics in (Te, N) ligands than pyridine and alkylamine donor sites of analogous ligands. The singlet oxygen readily oxidises the coordinated Te. This oxidation follows first order kinetics. The complexation reaction of RuCl3.H2O with N-[2-(4-methoxyphenyltelluro)ethyl]phthalimide (2) results in a novel (Te, N, O)-heterocycle, Te-chloro,Te-anisyl-1a-aza-4-oxa-3-tellura-1H, 2H, 4aH-9 fluorenone. The (Te, O) ligands can be used as hemilabile ligands, the oxygen atom temporarily protects the vacant coordination site before the arrival of the substrate. The chelate shifts observed in 125Te NMR spectra of metal complexes of Te-ligands have

  11. Dockomatic - automated ligand creation and docking

    Directory of Open Access Journals (Sweden)

    Hampikian Greg

    2010-11-01

    Full Text Available Abstract Background The application of computational modeling to rationally design drugs and characterize macro biomolecular receptors has proven increasingly useful due to the accessibility of computing clusters and clouds. AutoDock is a well-known and powerful software program used to model ligand to receptor binding interactions. In its current version, AutoDock requires significant amounts of user time to setup and run jobs, and collect results. This paper presents DockoMatic, a user friendly Graphical User Interface (GUI application that eases and automates the creation and management of AutoDock jobs for high throughput screening of ligand to receptor interactions. Results DockoMatic allows the user to invoke and manage AutoDock jobs on a single computer or cluster, including jobs for evaluating secondary ligand interactions. It also automates the process of collecting, summarizing, and viewing results. In addition, DockoMatic automates creation of peptide ligand .pdb files from strings of single-letter amino acid abbreviations. Conclusions DockoMatic significantly reduces the complexity of managing multiple AutoDock jobs by facilitating ligand and AutoDock job creation and management.

  12. Dockomatic - automated ligand creation and docking.

    Science.gov (United States)

    Bullock, Casey W; Jacob, Reed B; McDougal, Owen M; Hampikian, Greg; Andersen, Tim

    2010-11-08

    The application of computational modeling to rationally design drugs and characterize macro biomolecular receptors has proven increasingly useful due to the accessibility of computing clusters and clouds. AutoDock is a well-known and powerful software program used to model ligand to receptor binding interactions. In its current version, AutoDock requires significant amounts of user time to setup and run jobs, and collect results. This paper presents DockoMatic, a user friendly Graphical User Interface (GUI) application that eases and automates the creation and management of AutoDock jobs for high throughput screening of ligand to receptor interactions. DockoMatic allows the user to invoke and manage AutoDock jobs on a single computer or cluster, including jobs for evaluating secondary ligand interactions. It also automates the process of collecting, summarizing, and viewing results. In addition, DockoMatic automates creation of peptide ligand .pdb files from strings of single-letter amino acid abbreviations. DockoMatic significantly reduces the complexity of managing multiple AutoDock jobs by facilitating ligand and AutoDock job creation and management.

  13. Sliding tethered ligands add topological interactions to the toolbox of ligand-receptor design

    Science.gov (United States)

    Bauer, Martin; Kékicheff, Patrick; Iss, Jean; Fajolles, Christophe; Charitat, Thierry; Daillant, Jean; Marques, Carlos M.

    2015-09-01

    Adhesion in the biological realm is mediated by specific lock-and-key interactions between ligand-receptor pairs. These complementary moieties are ubiquitously anchored to substrates by tethers that control the interaction range and the mobility of the ligands and receptors, thus tuning the kinetics and strength of the binding events. Here we add sliding anchoring to the toolbox of ligand-receptor design by developing a family of tethered ligands for which the spacer can slide at the anchoring point. Our results show that this additional sliding degree of freedom changes the nature of the adhesive contact by extending the spatial range over which binding may sustain a significant force. By introducing sliding tethered ligands with self-regulating length, this work paves the way for the development of versatile and reusable bio-adhesive substrates with potential applications for drug delivery and tissue engineering.

  14. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    KAUST Repository

    Li, Huaifeng

    2014-12-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands\\' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  15. Nitrosamines as nicotinic receptor ligands.

    Science.gov (United States)

    Schuller, Hildegard M

    2007-05-30

    Nitrosamines are carcinogens formed in the mammalian organism from amine precursors contained in food, beverages, cosmetics and drugs. The potent carcinogen, NNK, and the weaker carcinogen, NNN, are nitrosamines formed from nicotine. Metabolites of the nitrosamines react with DNA to form adducts responsible for genotoxic effects. We have identified NNK as a high affinity agonist for the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) whereas NNN bound with high affinity to epibatidine-sensitive nAChRs. Diethylnitrosamine (DEN) bound to both receptors but with lower affinity. High levels of the alpha7nAChR were expressed in human small cell lung cancer (SCLC) cell lines and in hamster pulmonary neuroendocrine cells (PNECs), which serve as a model for the cell of origin of human SCLC. Exposure of SCLC or PNECs to NNK or nicotine increased expression of the alpha7nAChR and caused influx of Ca(2+), activation of PKC, Raf-1, ERK1/2, and c-myc, resulting in the stimulation of cell proliferation. Signaling via the alpha7nAChR was enhanced when cells were maintained in an environment of 10-15% CO(2) similar to that in the diseased lung. Hamsters with hyperoxia-induced pulmonary fibrosis developed neuroendocrine lung carcinomas similar to human SCLC when treated with NNK, DEN, or nicotine. The development of the NNK-induced tumors was prevented by green tea or theophylline. The beta-adrenergic receptor agonist, isoproterenol or theophylline blocked NNK-induced cell proliferation in vitro. NNK and nicotine-induced hyperactivity of the alpha7nAChR/RAF/ERK1/2 pathway thus appears to play a crucial role in the development of SCLC in smokers and could be targeted for cancer prevention.

  16. Ligand binding by PDZ domains

    DEFF Research Database (Denmark)

    Chi, Celestine N.; Bach, Anders; Strømgaard, Kristian

    2012-01-01

    The postsynaptic density protein-95/disks large/zonula occludens-1 (PDZ) protein domain family is one of the most common protein-protein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins......, for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well...

  17. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs

    Science.gov (United States)

    Hudson, Brian D.; Christiansen, Elisabeth; Tikhonova, Irina G.; Grundmann, Manuel; Kostenis, Evi; Adams, David R.; Ulven, Trond; Milligan, Graeme

    2012-01-01

    When it is difficult to develop selective ligands within a family of related G-protein-coupled receptors (GPCRs), chemically engineered receptors activated solely by synthetic ligands (RASSLs) are useful alternatives for probing receptor function. In the present work, we explored whether a RASSL of the free fatty acid receptor 2 (FFA2) could be developed on the basis of pharmacological variation between species orthologs. For this, bovine FFA2 was characterized, revealing distinct ligand selectivity compared with human FFA2. Homology modeling and mutational analysis demonstrated a single mutation in human FFA2 of C4.57G resulted in a human FFA2 receptor with ligand selectivity similar to the bovine receptor. This was exploited to generate human FFA2-RASSL by the addition of a second mutation at a known orthosteric ligand interaction site, H6.55Q. The resulting FFA2-RASSL displayed a >100-fold loss of activity to endogenous ligands, while responding to the distinct ligand sorbic acid with pEC50 values for inhibition of cAMP, 5.83 ± 0.11; Ca2+ mobilization, 4.63 ± 0.05; ERK phosphorylation, 5.61 ± 0.06; and dynamic mass redistribution, 5.35 ± 0.06. This FFA2-RASSL will be useful in future studies on this receptor and demonstrates that exploitation of pharmacological variation between species orthologs is a powerful method to generate novel chemically engineered GPCRs.—Hudson, B. D., Christiansen, E., Tikhonova, I. G., Grundmann, M., Kostenis, E., Adams, D. R., Ulven, T., Milligan, G. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. PMID:22919070

  18. Cationic ruthenium alkylidene catalysts bearing phosphine ligands.

    Science.gov (United States)

    Endo, Koji; Grubbs, Robert H

    2016-02-28

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  19. Flexible Ligand Docking Using Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Thomsen, Rene

    2003-01-01

    The docking of ligands to proteins can be formulated as a computational problem where the task is to find the most favorable energetic conformation among the large space of possible protein–ligand complexes. Stochastic search methods such as evolutionary algorithms (EAs) can be used to sample large...... search spaces effectively and is one of the commonly used methods for flexible ligand docking. During the last decade, several EAs using different variation operators have been introduced, such as the ones provided with the AutoDock program. In this paper we evaluate the performance of different EA...... settings such as choice of variation operators, population size, and usage of local search. The comparison is performed on a suite of six docking problems previously used to evaluate the performance of search algorithms provided with the AutoDock program package. The results from our investigation confirm...

  20. Ligand Intermediates in Metal-Catalyzed Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gladysz, John A.

    1999-07-31

    The longest-running goal of this project has been the synthesis, isolation, and physical chemical characterization of homogeneous transition metal complexes containing ligand types believed to be intermediates in the metal-catalyzed conversion of CO/H{sub 2}, CO{sub 2}, CH{sub 4}, and similar raw materials to organic fuels, feedstocks, etc. In the current project period, complexes that contain unusual new types of C{sub x}(carbide) and C{sub x}O{sub y} (carbon oxide) ligands have been emphasized. A new program in homogeneous fluorous phase catalysis has been launched as described in the final report.

  1. Efficient chemoenzymatic synthesis of chiral pincer ligands.

    Science.gov (United States)

    Felluga, Fulvia; Baratta, Walter; Fanfoni, Lidia; Pitacco, Giuliana; Rigo, Pierluigi; Benedetti, Fabio

    2009-05-01

    Chiral, nonracemic pincer ligands based on the 6-phenyl-2-aminomethylpyridine and 2-aminomethylbenzo[h]quinoline scaffolds were obtained by a chemoenzymatic approach starting from 2-pyridyl and 2-benzoquinolyl ethanone. In the enantiodifferentiating step, secondary alcohols of opposite absolute configuration were obtained by a baker's yeast reduction of the ketones and by lipase-mediated dynamic kinetic resolution of the racemic alcohols. Their transformation into homochiral 1-methyl-1-heteroarylethanamines occurred without loss of optical purity, giving access to pincer ligands used in enantioselective catalysis.

  2. A reporter ligand NMR screening method for 2-oxoglutarate oxygenase inhibitors

    Science.gov (United States)

    Leung, Ivanhoe K. H.; Demetriades, Marina; Hardy, Adam P.; Lejeune, Clarisse; Smart, Tristan J.; Szöllössi, Andrea; Kawamura, Akane; Schofield, Christopher J.; Claridge, Timothy D. W.

    2015-01-01

    The human 2-oxoglutarate (2OG) dependent oxygenases belong to a family of structurally related enzymes that play important roles in many biological processes. We report that competition-based NMR methods, using 2OG as a reporter ligand, can be used for quantitative and site-specific screening of ligand binding to 2OG oxygenases. The method was demonstrated using hypoxia inducible factor (HIF) hydroxylases and histone demethylases, and KD values were determined for inhibitors that compete with 2OG at the metal centre. This technique is also useful as a screening or validation tool for inhibitor discovery, as exemplified by work with protein-directed dynamic combinatorial chemistry (DCC). PMID:23234607

  3. CLiBE: a database of computed ligand binding energy for ligand-receptor complexes.

    Science.gov (United States)

    Chen, X; Ji, Z L; Zhi, D G; Chen, Y Z

    2002-11-01

    Consideration of binding competitiveness of a drug candidate against natural ligands and other drugs that bind to the same receptor site may facilitate the rational development of a candidate into a potent drug. A strategy that can be applied to computer-aided drug design is to evaluate ligand-receptor interaction energy or other scoring functions of a designed drug with that of the relevant ligands known to bind to the same binding site. As a tool to facilitate such a strategy, a database of ligand-receptor interaction energy is developed from known ligand-receptor 3D structural entries in the Protein Databank (PDB). The Energy is computed based on a molecular mechanics force field that has been used in the prediction of therapeutic and toxicity targets of drugs. This database also contains information about ligand function and other properties and it can be accessed at http://xin.cz3.nus.edu.sg/group/CLiBE.asp. The computed energy components may facilitate the probing of the mode of action and other profiles of binding. A number of computed energies of some PDB ligand-receptor complexes in this database are studied and compared to experimental binding affinity. A certain degree of correlation between the computed energy and experimental binding affinity is found, which suggests that the computed energy may be useful in facilitating a qualitative analysis of drug binding competitiveness.

  4. Sensitive bioassay for detection of PPAR{alpha} potentially hazardous ligands with gold nanoparticle probe

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Wei; Wan, Yan-Jian [Minister of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province 430030 (China); Wang, Xianliang [Division of Environmental Pollution and Human Health, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Li, Yuan-yuan; Yang, Wen-Jie; Wang, Chun-Xiang [Minister of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province 430030 (China); Xu, Shun-qing, E-mail: shunqing@mails.tjmu.edu.cn [Minister of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province 430030 (China)

    2011-09-15

    Highlights: {yields} We develop a sensitive and high throughput method to screen PPAR{alpha} ligands. {yields} This method is based on the ligand-receptor interaction on microplate. {yields} The sensitivity is increased through sliver enhancement on captured gold nanoparticle probes. {yields} There is a significant correlation between the bioassay and LC-MS for water spiked samples. - Abstract: There are so many kinds of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) ligands with hazardous effect for human health in the environment, such as certain herbicides, plasticizers and drugs. Among these agonists, perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and mono-(2-ethylhexyl) phthalate (MEHP) are mostly investigated due to their persistence and accumulation in environment and their potential toxicity via PPAR{alpha}. This investigation aims at developing a bioassay method to detect PPAR{alpha} ligands based on the ligand-receptor interaction on microplate. PPAR{alpha}, which formed heterodimers with retinoid X receptor-{alpha} (RXR{alpha}), were activated by PPAR{alpha} ligands to form ligands-PPAR{alpha}-RXR{alpha} complexes. Then the complexes were transferred into a microplate and captured via monoclonal anti-PPAR{alpha} antibody. The PPAR{alpha} responsive elements (PPRE) modified-gold nanoparticle probes were captured by the ligand-PPAR{alpha}-RXR{alpha} complexes immobilized on the microplate, and then could be quantified through measuring the optical density after silver enhancement. The results showed that PFOS was quantified with a linear range from 100 pM to 1 {mu}M and the detection limit was 10 pM. In addition to PFOS, PFOA and MEHP were also quantified within a proper range through the proposed bioassay. This bioassay was compared with that of liquid chromatography tandem-mass spectrometry (LC-MS) for water spiked samples with a significant correlation (r = 0.9893). This study provides a high-throughput detection

  5. Ligand-induced changes in estrogen receptor conformation as measured by site-directed spin labeling.

    Science.gov (United States)

    Hurth, Kyle M; Nilges, Mark J; Carlson, Kathryn E; Tamrazi, Anobel; Belford, R Linn; Katzenellenbogen, John A

    2004-02-24

    Site-directed spin labeling (SDSL), the site-specific incorporation of nitroxide spin-labels into a protein, has allowed us to investigate ligand-induced conformational changes in the ligand-binding domain of human estrogen receptor alpha (hERalpha-LBD). EPR (electron paramagnetic resonance) spectroscopy of the nitroxide probe attached to ER produces different spectra depending upon the identity of the bound ligand; these differences are indicative of changes in the type and degree of motional character of the spin-label induced by different ligand-induced conformations of labeled ER. Visual inspection of EPR spectra, construction of B versus C cross-correlation plots, and cross-comparison of spectral pairs using a relative squared difference (RSD) calculation allowed receptor-ligand complexes to be profiled according to their conformational character. Plotting B and C parameters allowed us to evaluate the liganded receptor according to the motional characteristics of the attached spin-label, and they were particularly illustrative for the receptor labeled at position 530, which had motion between the fast and intermediate regimes. RSD analysis allowed us to directly compare the similarity or difference between two different spectra, and these comparisons produced groupings that paralleled those seen in B versus C cross-correlation plots, again relating meaningfully with the pharmacological nature of the bound ligand. RSD analysis was also particularly useful for qualifying differences seen with the receptor labeled at position 417, which had motion between the intermediate and slow motional regimes. This work demonstrates that B and C formulas from EPR line shape theory are useful for qualitative analysis of spectra with differences subtler than those that are often analyzed by EPR spectroscopists. This work also provides evidence that the ER can exist in a range of conformations, with specific conformations resulting from preferential stabilization of ER by the

  6. 人血和尿中锡的高压微波络合消解氢化物发生-原子荧光测定法%Determination of tin in human blood and urine with high-pressure microwave digestion and complexing ligand and hydride generation-atomic fluorescence spectrometry

    Institute of Scientific and Technical Information of China (English)

    陈峰; 谢超

    2013-01-01

    Objective To establish the hydride generation-atomic fluorescence spectrometric method for the determination of tin in human blood and urine with high-pressure microwave digestion and complexing ligand.Methods Human blood and urine samples were digested by using high-pressure microwave.Then complexing ligand 1% EDTA,5 ml 150 g/L thiourea and ascorbic acid were added to mask the interfering ions such as nickel,iron,arsenic,selenium and etc.Tin concentration was determined with hydride-generation atomic fluorescence spectrometric method with sodium borohydride as the reductant in 2% sulphuric acid media.Results The linear range of tin was 10-100 μg/ml,the regression equations and correlation coefficients in blood and urine were y=9.391 1 x-16.312,r=0.999 7,y=8.244 7x-27.849 6,r=0.998 2,respectively.The limits of detection of tin in blood and urine were 0.090,0.020 μg/L respectively.The relative standard derivation of this method was 1.4%-6.1%.The rates of recovery were between 98.1% and 101.8%.Conclusion This method presents many advantages,such as completed sample digestion,rapid,less matrix disturbance,accurate,sensitive and is applicable to the determination of tin in blood and urine in grass-roots units.%目的 建立人血、尿中锡的高压微波络合消解氢化物发生-原子荧光测定法.方法 利用高压微波络合消解已加入1% EDTA溶液的人血和尿液,在样品测定液中加入150 g/L硫脲-抗坏血酸5ml来掩蔽镍、铁、砷、硒等干扰离子;以2%硫酸作为介质,以2%的硼氢化钠溶液作为还原剂,采用氢化物发生-原子荧光法测定锡浓度.结果 在10~100 μg/ml的线性范围内,血中锡所得回归方程为y=9.391 1x-16.312,r=0.999 7;尿中锡所得回归方程为y=8.244 7x-27.849 6,r=0.998 2.血、尿中锡的检出限分别为0.090、0.020 μg/L.该方法的RSD为1.4%~6.1%,回收率在98.1%~101.8%之间.结论 该方法样品消解完全,测定时间短,待测元素

  7. Modulation of estrogen receptor α levels by endogenous and exogenous ligands

    Directory of Open Access Journals (Sweden)

    P. La Rosa

    2011-01-01

    Full Text Available ERα is a ligand-activated transcription factor, member of the nuclear receptor superfamily. Regulation of ERα levels is intrinsically required for its transcriptional activity and thus for the modulation of the physiological actions of the cognate hormone 17β-estradiol (E2. Indeed, ERα exogenous ligands that target this molecular circuitry are used as drugs in clinical practice. Interestingly, some natural and synthetic molecules, which human beings are commonly exposed to, interfere with the endocrine system and operate through ERα by selectively modifying its signalling. In addition, these molecules may also modulate ERα cellular content. Here, we report the recent advances in our understanding of how exogenous ERα ligands impact on receptor levels and change the physiological E2-dipendent modulation of specific cellular function.

  8. Vesicular Stomatitis Virus Infection Promotes Immune Evasion by Preventing NKG2D-Ligand Surface Expression

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Nielsen, Jens;

    2011-01-01

    Vesicular stomatitis virus (VSV) has recently gained attention for its oncolytic ability in cancer treatment. Initially, we hypothesized that VSV infection could increase immune recognition of cancer cells through induction of the immune stimulatory NKG2D-ligands. Here we show that VSV infection...... leads to a robust induction of MICA mRNA expression, however the subsequent surface expression is potently hindered. Thus, VSV lines up with human cytomegalovirus (HCMV) and adenovirus, which actively subvert the immune system by negatively affecting NKG2D-ligand surface expression. VSV infection caused...... an active suppression of NKG2D-ligand surface expression, affecting both endogenous and histone deacetylase (HDAC)-inhibitor induced MICA, MICB and ULBP-2 expression. The classical immune escape mechanism of VSV (i.e., the M protein blockade of nucleocytoplasmic mRNA transport) was not involved, as the VSV...

  9. Molecular Basis for Jagged-1/Serrate Ligand Recognition by the Notch Receptor*

    Science.gov (United States)

    Whiteman, Pat; de Madrid, Beatriz Hernandez; Taylor, Paul; Li, Demin; Heslop, Rebecca; Viticheep, Nattnee; Tan, Joyce Zi; Shimizu, Hideyuki; Callaghan, Juliana; Masiero, Massimo; Li, Ji Liang; Banham, Alison H.; Harris, Adrian L.; Lea, Susan M.; Redfield, Christina; Baron, Martin; Handford, Penny A.

    2013-01-01

    We have mapped a Jagged/Serrate-binding site to specific residues within the 12th EGF domain of human and Drosophila Notch. Two critical residues, involved in a hydrophobic interaction, provide a ligand-binding platform and are adjacent to a Fringe-sensitive residue that modulates Notch activity. Our data suggest that small variations within the binding site fine-tune ligand specificity, which may explain the observed sequence heterogeneity in mammalian Notch paralogues, and should allow the development of paralogue-specific ligand-blocking antibodies. As a proof of principle, we have generated a Notch-1-specific monoclonal antibody that blocks binding, thus paving the way for antibody tools for research and therapeutic applications. PMID:23339193

  10. Peptides identify multiple hotspots within the ligand binding domain of the TNF receptor 2

    Directory of Open Access Journals (Sweden)

    Lennick Michael

    2003-01-01

    Full Text Available Abstract Background Hotspots are defined as the minimal functional domains involved in protein:protein interactions and sufficient to induce a biological response. Results Here we describe the use of complex and high diversity phage display libraries to isolate peptides (called Hotspot Ligands or HSPLs which sub-divide the ligand binding domain of the tumor necrosis factor receptor 2 (TNFR2; p75 into multiple hotspots. We have shown that these libraries could generate HSPLs which not only subdivide hotspots on protein and non-protein targets but act as agonists or antagonists. Using this approach, we generated peptides which were specific for human TNFR2, could be competed by the natural ligands, TNFα and TNFβ and induced an unexpected biological response in a TNFR2-specific manner. Conclusions To our knowledge, this is the first report describing the dissection of the TNFR2 into biologically active hotspots with the concomitant identification of a novel and unexpected biological activity.

  11. Conditional ligands for Asian HLA variants facilitate the definition of CD8+ T-cell responses in acute and chronic viral diseases

    DEFF Research Database (Denmark)

    Chang, Cynthia X L; Tan, Anthony T; Or, Ming Yan

    2013-01-01

    Conditional ligands have enabled the high-throughput production of human leukocyte antigen (HLA) libraries that present defined peptides. Immunomonitoring platforms typically concentrate on restriction elements associated with European ancestry, and such tools are scarce for Asian HLA variants. W...

  12. Molecular Mechanism of Peroxisome Proliferator-Activated Receptor alpha Activation by WY14643: a New Mode of Ligand Recognition and Receptor Stabilization

    NARCIS (Netherlands)

    Bernardes, Amanda; Telles de Souza, Paulo C; Muniz, João R C; Ricci, Clarisse G; Ayers, Stephen D; Parekh, Nili M; Godoy, André S; Trivella, Daniela B B; Reinach, Peter; Webb, Paul; Skaf, Munir S; Polikarpov, Igor

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) are members of a superfamily of nuclear transcription factors. They are involved in mediating numerous physiological effects in humans, including glucose and lipid metabolism. PPAR alpha ligands effectively treat dyslipidemia and have significant

  13. [Functional selectivity of opioid receptors ligands].

    Science.gov (United States)

    Audet, Nicolas; Archer-Lahlou, Elodie; Richard-Lalonde, Mélissa; Piñeyro-Filpo, Graciela

    2010-01-01

    Opiates are the most effective analgesics available for the treatment of severe pain. However, their clinical use is restricted by unwanted side effects such as tolerance, physical dependence and respiratory depression. The strategy to develop new opiates with reduced side effects has mainly focused on the study and production of ligands that specifically bind to different opiate receptors subtypes. However, this strategy has not allowed the production of novel therapeutic ligands with a better side effects profile. Thus, other research strategies need to be explored. One which is receiving increasing attention is the possibility of exploiting ligand ability to stabilize different receptor conformations with distinct signalling profiles. This newly described property, termed functional selectivity, provides a potential means of directing the stimulus generated by an activated receptor towards a specific cellular response. Here we summarize evidence supporting the existence of ligand-specific active conformations for two opioid receptors subtypes (delta and mu), and analyze how functional selectivity may contribute in the production of longer lasting, better tolerated opiate analgesics. double dagger.

  14. Ligand Exchange Kinetics of Environmentally Relevant Metals

    Energy Technology Data Exchange (ETDEWEB)

    Panasci, Adele Frances [Univ. of California, Davis, CA (United States)

    2014-07-15

    The interactions of ground water with minerals and contaminants are of broad interest for geochemists but are not well understood. Experiments on the molecular scale can determine reaction parameters (i.e. rates of ligand exchange, activation entropy, activation entropy, and activation volume) that can be used in computations to gain insight into reactions that occur in natural groundwaters. Experiments to determine the rate of isotopic ligand exchange for three environmentally relevant metals, rhodium (Rh), iron (Fe), and neptunium (Np), are described. Many environmental transformations of metals (e.g. reduction) in soil occur at trivalent centers, Fe(III) in particular. Contaminant ions absorb to mineral surfaces via ligand exchange, and the reversal of this reaction can be dangerous, releasing contaminants into the environment. Ferric iron is difficult to study spectroscopically because most of its complexes are paramagnetic and are generally reactive toward ligand exchange; therefore, Rh(III), which is diamagnetic and less reactive, was used to study substitution reactions that are analogous to those that occur on mineral oxide surfaces. Studies on both Np(V) and Np(VI) are important in their own right, as 237Np is a radioactive transuranic element with a half-life of 2 million years.

  15. Ligand iron catalysts for selective hydrogenation

    Science.gov (United States)

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  16. Supramolecular architectures constructed using angular bipyridyl ligands

    CERN Document Server

    Barnett, S A

    2003-01-01

    This work details the synthesis and characterization of a series of coordination frameworks that are formed using bidentate angular N-donor ligands. Pyrimidine was reacted with metal(ll) nitrate salts. Reactions using Cd(NO sub 3) sub 2 receive particular focus and the analogous reactions using the linear ligand, pyrazine, were studied for comparison. In all cases, two-dimensional coordination networks were prepared. Structural diversity is observed for the Cd(ll) centres including metal-nitrate bridging. In contrast, first row transition metal nitrates form isostructural one-dimensional chains with only the bridging N-donor ligands generating polymeric propagation. The angular ligand, 2,4-bis(4-pyridyl)-1,3,5-triazine (dpt), was reacted with Cd(NO sub 3) sub 2 and Zn(NO sub 3) sub 2. Whereas Zn(NO sub 3) sub 2 compounds exhibit solvent mediated polymorphism, a range of structures were obtained for the reactions with Cd(NO sub 3) sub 2 , including the first example of a doubly parallel interpenetrated 4.8 sup...

  17. Receptor Binding Ligands to Image Infection

    NARCIS (Netherlands)

    Chianelli, M.; Boerman, O. C.; Malviya, G.; Galli, F.; Oyen, W. J. G.; Signore, A.

    2008-01-01

    The current gold standard for imaging infection is radiolabeled white blood cells. For reasons of safety, simplicity and cost, it would be desirable to have a receptor-specific ligand that could be used for imaging infection and that would allow a differential diagnosis between sterile and septic in

  18. Imaging of a glioma using peripheral benzodiazepine receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Starosta-Rubinstein, S.; Ciliax, B.J.; Penney, J.B.; McKeever, P.; Young, A.B.

    1987-02-01

    Two types of benzodiazepine receptors have been demonstrated in mammalian tissues, one which is localized on neuronal elements in brain and the other, on glial cells and in peripheral tissues such as kidney. In vivo administration of /sup 3/H-labeled PK 11195 (1-(2-chlorophenyl-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide) or (/sup 3/H)flunitrazepam with 5 mg of clonazepam per kg to rats with intracranial C6 gliomas resulted in high levels of tritiated-drug binding to the tumor as shown by quantitative autoradiography. Pharmacological studies indicated that the bound drugs labeled the peripheral benzodiazepine binding site. Binding to the peripheral benzodiazepine site was confirmed primarily to malignant cells with little binding to adjacent normal brain tissue or to necrotic tissue. Tumor cell binding was completely inhibited by preadministration of the peripheral benzodiazepine blocking agent PK 11195 at 5 mg/kg. The centrally selective benzodiazepine ligand clonazepam had no effect on PK 11195 binding to the tumor cells. When binding to other tumor cell lines grown in nude mice and nude athymic rats was evaluated, little or no peripheral benzodiazepine binding was detected on human pheochromocytoma (RN1) and neuroblastoma (SK-N-MC, SK-N-SH) tumor cells, respectively. However, high densities of peripheral benzodiazepine binding sites were observed on tumors derived from a human glioma cell line (ATCC HTB 14, U-87 MG). The presence of high concentrations of specific peripheral benzodiazepine receptors on glial tumors suggests that human primary central nervous system tumors could be imaged and diagnosed using peripheral benzodiazepine ligands labeled with positron- or gamma-emitting isotopes.

  19. Challenges predicting ligand-receptor interactions of promiscuous proteins: the nuclear receptor PXR.

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    2009-12-01

    Full Text Available Transcriptional regulation of some genes involved in xenobiotic detoxification and apoptosis is performed via the human pregnane X receptor (PXR which in turn is activated by structurally diverse agonists including steroid hormones. Activation of PXR has the potential to initiate adverse effects, altering drug pharmacokinetics or perturbing physiological processes. Reliable computational prediction of PXR agonists would be valuable for pharmaceutical and toxicological research. There has been limited success with structure-based modeling approaches to predict human PXR activators. Slightly better success has been achieved with ligand-based modeling methods including quantitative structure-activity relationship (QSAR analysis, pharmacophore modeling and machine learning. In this study, we present a comprehensive analysis focused on prediction of 115 steroids for ligand binding activity towards human PXR. Six crystal structures were used as templates for docking and ligand-based modeling approaches (two-, three-, four- and five-dimensional analyses. The best success at external prediction was achieved with 5D-QSAR. Bayesian models with FCFP_6 descriptors were validated after leaving a large percentage of the dataset out and using an external test set. Docking of ligands to the PXR structure co-crystallized with hyperforin had the best statistics for this method. Sulfated steroids (which are activators were consistently predicted as non-activators while, poorly predicted steroids were docked in a reverse mode compared to 5alpha-androstan-3beta-ol. Modeling of human PXR represents a complex challenge by virtue of the large, flexible ligand-binding cavity. This study emphasizes this aspect, illustrating modest success using the largest quantitative data set to date and multiple modeling approaches.

  20. Techniques, tools and best practices for ligand electron-density analysis and results from their application to deposited crystal structures.

    Science.gov (United States)

    Pozharski, Edwin; Weichenberger, Christian X; Rupp, Bernhard

    2013-02-01

    As a result of substantial instrumental automation and the continuing improvement of software, crystallographic studies of biomolecules are conducted by non-experts in increasing number