WorldWideScience

Sample records for human germline gene

  1. Meta-analysis of expression of l(3)mbt tumor-associated germline genes supports the model that a soma-to-germline transition is a hallmark of human cancers.

    Science.gov (United States)

    Feichtinger, Julia; Larcombe, Lee; McFarlane, Ramsay J

    2014-05-15

    Evidence is starting to emerge indicating that tumorigenesis in metazoans involves a soma-to-germline transition, which may contribute to the acquisition of neoplastic characteristics. Here, we have meta-analyzed gene expression profiles of the human orthologs of Drosophila melanogaster germline genes that are ectopically expressed in l(3)mbt brain tumors using gene expression datasets derived from a large cohort of human tumors. We find these germline genes, some of which drive oncogenesis in D. melanogaster, are similarly ectopically activated in a wide range of human cancers. Some of these genes normally have expression restricted to the germline, making them of particular clinical interest. Importantly, these analyses provide additional support to the emerging model that proposes a soma-to-germline transition is a general hallmark of a wide range of human tumors. This has implications for our understanding of human oncogenesis and the development of new therapeutic and biomarker targets with clinical potential. © 2013 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  2. Human Germline Genome Editing.

    Science.gov (United States)

    Ormond, Kelly E; Mortlock, Douglas P; Scholes, Derek T; Bombard, Yvonne; Brody, Lawrence C; Faucett, W Andrew; Garrison, Nanibaa' A; Hercher, Laura; Isasi, Rosario; Middleton, Anna; Musunuru, Kiran; Shriner, Daniel; Virani, Alice; Young, Caroline E

    2017-08-03

    With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Genetic Counselors. These groups, as well as the American Society for Reproductive Medicine, Asia Pacific Society of Human Genetics, British Society for Genetic Medicine, Human Genetics Society of Australasia, Professional Society of Genetic Counselors in Asia, and Southern African Society for Human Genetics, endorsed the final statement. The statement includes the following positions. (1) At this time, given the nature and number of unanswered scientific, ethical, and policy questions, it is inappropriate to perform germline gene editing that culminates in human pregnancy. (2) Currently, there is no reason to prohibit in vitro germline genome editing on human embryos and gametes, with appropriate oversight and consent from donors, to facilitate research on the possible future clinical applications of gene editing. There should be no prohibition on making public funds available to support this research. (3) Future clinical application of human germline genome editing should not proceed unless, at a minimum, there is (a) a compelling medical rationale, (b) an evidence base that supports its clinical use, (c) an ethical justification, and (d) a transparent public process to solicit and incorporate stakeholder input. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  3. Human germline gene editing: Recommendations of ESHG and ESHRE

    NARCIS (Netherlands)

    de Wert, Guido; Pennings, Guido; Clarke, Angus; Eichenlaub-Ritter, Ursula; van El, Carla G.; Forzano, Francesca; Goddijn, Mariëtte; Heindryckx, Björn; Howard, Heidi C.; Radojkovic, Dragica; Rial-Sebbag, Emmanuelle; Tarlatzis, Basil C.; Cornel, Martina C.

    2018-01-01

    Technological developments in gene editing raise high expectations for clinical applications, first of all for somatic gene editing but in theory also for germline gene editing (GLGE). GLGE is currently not allowed in many countries. This makes clinical applications in these countries impossible

  4. Responsible innovation in human germline gene editing: Background document to the recommendations of ESHG and ESHRE.

    Science.gov (United States)

    De Wert, Guido; Heindryckx, Björn; Pennings, Guido; Clarke, Angus; Eichenlaub-Ritter, Ursula; van El, Carla G; Forzano, Francesca; Goddijn, Mariëtte; Howard, Heidi C; Radojkovic, Dragica; Rial-Sebbag, Emmanuelle; Dondorp, Wybo; Tarlatzis, Basil C; Cornel, Martina C

    2018-04-01

    Technological developments in gene editing raise high expectations for clinical applications, including editing of the germline. The European Society of Human Reproduction and Embryology (ESHRE) and the European Society of Human Genetics (ESHG) together developed a Background document and Recommendations to inform and stimulate ongoing societal debates. This document provides the background to the Recommendations. Germline gene editing is currently not allowed in many countries. This makes clinical applications in these countries impossible now, even if germline gene editing would become safe and effective. What were the arguments behind this legislation, and are they still convincing? If a technique could help to avoid serious genetic disorders, in a safe and effective way, would this be a reason to reconsider earlier standpoints? This Background document summarizes the scientific developments and expectations regarding germline gene editing, legal regulations at the European level, and ethics for three different settings (basic research, preclinical research and clinical applications). In ethical terms, we argue that the deontological objections (e.g., gene editing goes against nature) do not seem convincing while consequentialist objections (e.g., safety for the children thus conceived and following generations) require research, not all of which is allowed in the current legal situation in European countries. Development of this Background document and Recommendations reflects the responsibility to help society understand and debate the full range of possible implications of the new technologies, and to contribute to regulations that are adapted to the dynamics of the field while taking account of ethical considerations and societal concerns.

  5. Responsible innovation in human germline gene editing: Background document to the recommendations of ESHG and ESHRE

    NARCIS (Netherlands)

    de Wert, Guido; Heindryckx, Björn; Pennings, Guido; Clarke, Angus; Eichenlaub-Ritter, Ursula; van El, Carla G.; Forzano, Francesca; Goddijn, Mariëtte; Howard, Heidi C.; Radojkovic, Dragica; Rial-Sebbag, Emmanuelle; Dondorp, Wybo; Tarlatzis, Basil C.; Cornel, Martina C.

    2018-01-01

    Technological developments in gene editing raise high expectations for clinical applications, including editing of the germline. The European Society of Human Reproduction and Embryology (ESHRE) and the European Society of Human Genetics (ESHG) together developed a Background document and

  6. Antibody Heavy Chain Variable Domains of Different Germline Gene Origins Diversify through Different Paths

    Directory of Open Access Journals (Sweden)

    Ufuk Kirik

    2017-11-01

    Full Text Available B cells produce antibodies, key effector molecules in health and disease. They mature their properties, including their affinity for antigen, through hypermutation events; processes that involve, e.g., base substitution, codon insertion and deletion, often in association with an isotype switch. Investigations of antibody evolution define modes whereby particular antibody responses are able to form, and such studies provide insight important for instance for development of efficient vaccines. Antibody evolution is also used in vitro for the design of antibodies with improved properties. To better understand the basic concepts of antibody evolution, we analyzed the mutational paths, both in terms of amino acid substitution and insertions and deletions, taken by antibodies of the IgG isotype. The analysis focused on the evolution of the heavy chain variable domain of sets of antibodies, each with an origin in 1 of 11 different germline genes representing six human heavy chain germline gene subgroups. Investigated genes were isolated from cells of human bone marrow, a major site of antibody production, and characterized by next-generation sequencing and an in-house bioinformatics pipeline. Apart from substitutions within the complementarity determining regions, multiple framework residues including those in protein cores were targets of extensive diversification. Diversity, both in terms of substitutions, and insertions and deletions, in antibodies is focused to different positions in the sequence in a germline gene-unique manner. Altogether, our findings create a framework for understanding patterns of evolution of antibodies from defined germline genes.

  7. Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome.

    Directory of Open Access Journals (Sweden)

    Jian Li

    Full Text Available The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR mediated by low-copy repeats (LCRs. Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ~1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR-mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease.

  8. In Genes We Trust: Germline Engineering, Eugenics, and the Future of the Human Genome.

    Science.gov (United States)

    Powell, Russell

    2015-12-01

    Liberal proponents of genetic engineering maintain that developing human germline modification technologies is morally desirable because it will result in a net improvement in human health and well-being. Skeptics of germline modification, in contrast, fear evolutionary harms that could flow from intervening in the human germline, and worry that such programs, even if well intentioned, could lead to a recapitulation of the scientifically and morally discredited projects of the old eugenics. Some bioconservatives have appealed as well to the value of retaining our "given" human biological nature as a reason for restraining the development and use of human genetic modification technologies even where they would tend to increase well-being. In this article, I argue that germline intervention will be necessary merely to sustain the levels of genetic health that we presently enjoy for future generations-a goal that should appeal to bioliberals and bioconservatives alike. This is due to the population-genetic consequences of relaxed selection pressures in human populations caused by the increasing efficacy and availability of conventional medicine. This heterodox conclusion, which I present as a problem of intergenerational justice, has been overlooked in medicine and bioethics due to certain misconceptions about human evolution, which I attempt to rectify, as well as the sordid history of Darwinian approaches to medicine and social policy, which I distinguish from the present argument. © The Author 2015. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. The Budapest Meeting 2005. Intensified networking on ethics of science : The case of reproductive cloning, germline gene therapy and human dignity

    NARCIS (Netherlands)

    van Steendam, Guido; Dinnyes, Andras; Mallet, Jacques; Roosendaal, Hans E.

    2006-01-01

    This paper reports on the meeting of the Sounding Board of the EU Reprogenetics Project that was held in Budapest, Hungary, 6–9 November 2005. The Reprogenetics Project runs from 2004 until 2007 and has a brief to study the ethical aspects of human reproductive cloning and germline gene therapy.

  10. Epigenetic modulation of cancer-germline antigen gene expression in tumorigenic human mesenchymal stem cells: implications for cancer therapy

    DEFF Research Database (Denmark)

    Gjerstorff, Morten; Burns, Jorge S; Nielsen, Ole

    2009-01-01

    Cancer-germline antigens are promising targets for cancer immunotherapy, but whether such therapies will also eliminate the primary tumor stem cell population remains undetermined. We previously showed that long-term cultures of telomerized adult human bone marrow mesenchymal stem cells can...... spontaneously evolve into tumor-initiating, mesenchymal stem cells (hMSC-TERT20), which have characteristics of clinical sarcoma cells. In this study, we used the hMSC-TERT20 tumor stem cell model to investigate the potential of cancer-germline antigens to serve as tumor stem cell targets. We found...... of cancer-germline antigens in hMSC-TERT20 cells, while their expression levels in primary human mesenchymal stem cells remained unaffected. The expression pattern of cancer-germline antigens in tumorigenic mesenchymal stem cells and sarcomas, plus their susceptibility to enhancement by epigenetic...

  11. Molecular analysis on germline mutation caused by low-dose irradiation

    International Nuclear Information System (INIS)

    Uchiyama, R.; Fujikawa, K.; Nishimura, M.; Adzuma, H.; Shimada, Y.; Yamauchi, M.

    2003-01-01

    Full text: Genetic heterogeneity and a low frequency of germline mutation at single-copy gene loci have limited the direct measurement of germline mutation in human populations. Two conflicting results have been reported for the effect of ionizing radiation on germline mutation in human populations. A study conducted on the first-generation progeny of the survivors of the atomic bombs at Hiroshima and Nagasaki found no significant increase in germline mutations. On the other hand, a significant increase in germline mutation was reported among the human population in the Belarus area after the Chernobyl accident in 1986. We investigated the germline mutation at the molecular level using experimental mouse strains with different genetic backgrounds to assess the risk of ionizing radiation on human populations. The C3H male parents were exposed to X ray (0, 0.3, 1, and 3Gy) and mated with unexposed C57BL females after two weeks interval, so as to detect the germline mutation occurred at the spermatid stage. Genomic DNA samples were prepared from the both parents and F1s, and the genomic DNA sequences were compared between parents and offspring at the specific genomic gene loci, such as adenine phosphoribosyl transferase (aprt) gene and cytidine triphosphate synthetase (ctps) gene, using the automated DNA sequencer. Also hypervariable Pc-1 (Ms6-hm) minisatellite repeat locus was analyzed by using Southern blot hybridization technique. Our preliminary results indicated that the changes of the restriction DNA fragment length in offspring did not reflect the occurrence of the mutation, such as point mutation, insertion, and deletion, in the genomic gene loci including the intervening sequence (intron)

  12. Male germline stem cells in non-human primates

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2017-09-01

    Full Text Available Over the past few decades, several studies have attempted to decipher the biology of mammalian germline stem cells (GSCs. These studies provide evidence that regulatory mechanisms for germ cell specification and migration are evolutionarily conserved across species. The characteristics and functions of primate GSCs are highly distinct from rodent species; therefore the findings from rodent models cannot be extrapolated to primates. Due to limited availability of human embryonic and testicular samples for research purposes, two non-human primate models (marmoset and macaque monkeys are extensively employed to understand human germline development and differentiation. This review provides a broader introduction to the in vivo and in vitro germline stem cell terminology from primordial to differentiating germ cells. Primordial germ cells (PGCs are the most immature germ cells colonizing the gonad prior to sex differentiation into testes or ovaries. PGC specification and migratory patterns among different primate species are compared in the review. It also reports the distinctions and similarities in expression patterns of pluripotency markers (OCT4A, NANOG, SALL4 and LIN28 during embryonic developmental stages, among marmosets, macaques and humans. This review presents a comparative summary with immunohistochemical and molecular evidence of germ cell marker expression patterns during postnatal developmental stages, among humans and non-human primates. Furthermore, it reports findings from the recent literature investigating the plasticity behavior of germ cells and stem cells in other organs of humans and monkeys. The use of non-human primate models would enable bridging the knowledge gap in primate GSC research and understanding the mechanisms involved in germline development. Reported similarities in regulatory mechanisms and germ cell expression profile in primates demonstrate the preclinical significance of monkey models for development of

  13. Human Germline Genome Editing

    OpenAIRE

    Ormond, Kelly E.; Mortlock, Douglas P.; Scholes, Derek T.; Bombard, Yvonne; Brody, Lawrence C.; Faucett, W. Andrew; Garrison, Nanibaa’ A.; Hercher, Laura; Isasi, Rosario; Middleton, Anna; Musunuru, Kiran; Shriner, Daniel; Virani, Alice; Young, Caroline E.

    2017-01-01

    With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Gen...

  14. The role of germline promoters and I exons in cytokine-induced gene-specific class switch recombination.

    Science.gov (United States)

    Dunnick, Wesley A; Shi, Jian; Holden, Victoria; Fontaine, Clinton; Collins, John T

    2011-01-01

    Germline transcription precedes class switch recombination (CSR). The promoter regions and I exons of these germline transcripts include binding sites for activation- and cytokine-induced transcription factors, and the promoter regions/I exons are essential for CSR. Therefore, it is a strong hypothesis that the promoter/I exons regions are responsible for much of cytokine-regulated, gene-specific CSR. We tested this hypothesis by swapping the germline promoter and I exons for the murine γ1 and γ2a H chain genes in a transgene of the entire H chain C-region locus. We found that the promoter/I exon for γ1 germline transcripts can direct robust IL-4-induced recombination to the γ2a gene. In contrast, the promoter/I exon for the γ2a germline transcripts works poorly in the context of the γ1 H chain gene, resulting in expression of γ1 H chains that is level. Nevertheless, the small amount of recombination to the chimeric γ1 gene is induced by IFN-γ. These results suggest that cytokine regulation of CSR, but not the magnitude of CSR, is regulated by the promoter/I exons.

  15. Germ-line gene therapy and the medical imperative.

    Science.gov (United States)

    Munson, Ronald; Davis, Lawrence H

    1992-06-01

    Somatic cell gene therapy has yielded promising results. If germ cell gene therapy can be developed, the promise is even greater: hundreds of genetic diseases might be virtually eliminated. But some claim the procedure is morally unacceptable. We thoroughly and sympathetically examine several possible reasons for this claim but find them inadequate. There is no moral reason, then, not to develop and employ germ-line gene therapy. Taking the offensive, we argue next that medicine has a prima facie moral obligation to do so.

  16. Developmental expression of "germline"- and "sex determination"-related genes in the ctenophore Mnemiopsis leidyi.

    Science.gov (United States)

    Reitzel, Adam M; Pang, Kevin; Martindale, Mark Q

    2016-01-01

    An essential developmental pathway in sexually reproducing animals is the specification of germ cells and the differentiation of mature gametes, sperm and oocytes. The "germline" genes vasa, nanos and piwi are commonly identified in primordial germ cells, suggesting a molecular signature for the germline throughout animals. However, these genes are also expressed in a diverse set of somatic stem cells throughout the animal kingdom leaving open significant questions for whether they are required for germline specification. Similarly, members of the Dmrt gene family are essential components regulating sex determination and differentiation in bilaterian animals, but the functions of these transcription factors, including potential roles in sex determination, in early diverging animals remain unknown. The phylogenetic position of ctenophores and the genome sequence of the lobate Mnemiopsis leidyi motivated us to determine the compliment of these gene families in this species and determine expression patterns during development. Our phylogenetic analyses of the vasa, piwi and nanos gene families show that Mnemiopsis has multiple genes in each family with multiple lineage-specific paralogs. Expression domains of Mnemiopsis nanos, vasa and piwi, during embryogenesis from fertilization to the cydippid stage, were diverse, with little overlapping expression and no or little expression in what we think are the germ cells or gametogenic regions. piwi paralogs in Mnemiopsis had distinct expression domains in the ectoderm during development. We observed overlapping expression domains in the apical organ and tentacle apparatus of the cydippid for a subset of "germline genes," which are areas of high cell proliferation, suggesting that these genes are involved with "stem cell" specification and maintenance. Similarly, the five Dmrt genes show diverse non-overlapping expression domains, with no clear evidence for expression in future gametogenic regions of the adult. We also

  17. The Budapest Meeting 2005 intensified networking on ethics of science: the case of reproductive cloning, germline gene therapy and human dignity.

    Science.gov (United States)

    Van Steendam, Guido; Dinnyés, András; Mallet, Jacques; Meloni, Rolando; Casabona, Carlos Romeo; González, Jorge Guerra; Kure, Josef; Szathmáry, Eörs; Vorstenbosch, Jan; Molnár, Péter; Edbrooke, David; Sándor, Judit; Oberfrank, Ferenc; Cole-Turner, Ron; Hargittai, István; Littig, Beate; Ladikas, Miltos; Mordini, Emilio; Roosendaal, Hans E; Salvi, Maurizio; Gulyás, Balázs; Malpede, Diana

    2006-10-01

    This paper reports on the meeting of the Sounding Board of the EU Reprogenetics Project that was held in Budapest, Hungary, 6-9 November 2005. The Reprogenetics Project runs from 2004 until 2007 and has a brief to study the ethical aspects of human reproductive cloning and germline gene therapy. Discussions during The Budapest Meeting are reported in depth in this paper as well as the initiatives to involve the participating groups and others in ongoing collaborations with the goal of forming an integrated network of European resources in the fields of ethics of science.

  18. Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy

    DEFF Research Database (Denmark)

    Møller, Rikke S; Weckhuysen, Sarah; Chipaux, Mathilde

    2016-01-01

    OBJECTIVE: To assess the prevalence of somatic MTOR mutations in focal cortical dysplasia (FCD) and of germline MTOR mutations in a broad range of epilepsies. METHODS: We collected 20 blood-brain paired samples from patients with FCD and searched for somatic variants using deep-targeted gene panel...... sequencing. Germline mutations in MTOR were assessed in a French research cohort of 93 probands with focal epilepsies and in a diagnostic Danish cohort of 245 patients with a broad range of epilepsies. Data sharing among collaborators allowed us to ascertain additional germline variants in MTOR. RESULTS: We...... detected recurrent somatic variants (p.Ser2215Phe, p.Ser2215Tyr, and p.Leu1460Pro) in the MTOR gene in 37% of participants with FCD II and showed histologic evidence for activation of the mTORC1 signaling cascade in brain tissue. We further identified 5 novel de novo germline missense MTOR variants in 6...

  19. Human germline hedgehog pathway mutations predispose to fatty liver.

    Science.gov (United States)

    Guillen-Sacoto, Maria J; Martinez, Ariel F; Abe, Yu; Kruszka, Paul; Weiss, Karin; Everson, Joshua L; Bataller, Ramon; Kleiner, David E; Ward, Jerrold M; Sulik, Kathleen K; Lipinski, Robert J; Solomon, Benjamin D; Muenke, Maximilian

    2017-10-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease. Activation of hedgehog (Hh) signaling has been implicated in the progression of NAFLD and proposed as a therapeutic target; however, the effects of Hh signaling inhibition have not been studied in humans with germline mutations that affect this pathway. Patients with holoprosencephaly (HPE), a disorder associated with germline mutations disrupting Sonic hedgehog (SHH) signaling, were clinically evaluated for NAFLD. A combined mouse model of Hh signaling attenuation (Gli2 heterozygous null: Gli2 +/- ) and diet-induced NAFLD was used to examine aspects of NAFLD and hepatic gene expression profiles, including molecular markers of hepatic fibrosis and inflammation. Patients with HPE had a higher prevalence of liver steatosis compared to the general population, independent of obesity. Exposure of Gli2 +/- mice to fatty liver-inducing diets resulted in increased liver steatosis compared to wild-type mice. Similar to humans, this effect was independent of obesity in the mutant mice and was associated with decreased expression of pro-fibrotic and pro-inflammatory genes, and increased expression of PPARγ, a potent anti-fibrogenic and anti-inflammatory regulator. Interestingly, tumor suppressors p53 and p16INK4 were found to be downregulated in the Gli2 +/- mice exposed to a high-fat diet. Our results indicate that germline mutations disrupting Hh signaling promotes liver steatosis, independent of obesity, with reduced fibrosis. While Hh signaling inhibition has been associated with a better NAFLD prognosis, further studies are required to evaluate the long-term effects of mutations affecting this pathway. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is characterized by excess fat deposition in the liver predominantly due to high calorie intake and a sedentary lifestyle. NAFLD progression is usually accompanied by activation of the Sonic hedgehog (SHH) pathway leading to fibrous

  20. The molecular anatomy of spontaneous germline mutations in human testes.

    Directory of Open Access Journals (Sweden)

    Jian Qin

    2007-09-01

    Full Text Available The frequency of the most common sporadic Apert syndrome mutation (C755G in the human fibroblast growth factor receptor 2 gene (FGFR2 is 100-1,000 times higher than expected from average nucleotide substitution rates based on evolutionary studies and the incidence of human genetic diseases. To determine if this increased frequency was due to the nucleotide site having the properties of a mutation hot spot, or some other explanation, we developed a new experimental approach. We examined the spatial distribution of the frequency of the C755G mutation in the germline by dividing four testes from two normal individuals each into several hundred pieces, and, using a highly sensitive PCR assay, we measured the mutation frequency of each piece. We discovered that each testis was characterized by rare foci with mutation frequencies 10(3 to >10(4 times higher than the rest of the testis regions. Using a model based on what is known about human germline development forced us to reject (p < 10(-6 the idea that the C755G mutation arises more frequently because this nucleotide simply has a higher than average mutation rate (hot spot model. This is true regardless of whether mutation is dependent or independent of cell division. An alternate model was examined where positive selection acts on adult self-renewing Ap spermatogonial cells (SrAp carrying this mutation such that, instead of only replacing themselves, they occasionally produce two SrAp cells. This model could not be rejected given our observed data. Unlike the disease site, similar analysis of C-to-G mutations at a control nucleotide site in one testis pair failed to find any foci with high mutation frequencies. The rejection of the hot spot model and lack of rejection of a selection model for the C755G mutation, along with other data, provides strong support for the proposal that positive selection in the testis can act to increase the frequency of premeiotic germ cells carrying a mutation

  1. Germline mutations in 40 cancer susceptibility genes among Chinese patients with high hereditary risk breast cancer.

    Science.gov (United States)

    Li, Junyan; Jing, Ruilin; Wei, Hongyi; Wang, Minghao; Qi, Xiaowei; Liu, Haoxi; Liu, Jian; Ou, Jianghua; Jiang, Weihua; Tian, Fuguo; Sheng, Yuan; Li, Hengyu; Xu, Hong; Zhang, Ruishan; Guan, Aihua; Liu, Ke; Jiang, Hongchuan; Ren, Yu; He, Jianjun; Huang, Weiwei; Liao, Ning; Cai, Xiangjun; Ming, Jia; Ling, Rui; Xu, Yan; Hu, Chunyan; Zhang, Jianguo; Guo, Baoliang; Ouyang, Lizhi; Shuai, Ping; Liu, Zhenzhen; Zhong, Ling; Zeng, Zhen; Zhang, Ting; Xuan, Zhaoling; Tan, Xuanni; Liang, Junbin; Pan, Qinwen; Chen, Li; Zhang, Fan; Fan, Linjun; Zhang, Yi; Yang, Xinhua; Li, Jingbo; Chen, Chongjian; Jiang, Jun

    2018-05-12

    Multigene panel testing of breast cancer predisposition genes have been extensively conducted in Europe and America, which is relatively rare in Asia however. In this study, we assessed the frequency of germline mutations in 40 cancer predisposition genes, including BRCA1 and BRCA2, among a large cohort of Chinese patients with high hereditary risk of BC. From 2015 to 2016, consecutive BC patients from 26 centers of China with high hereditary risk were recruited (n=937). Clinical information was collected and next-generation sequencing (NGS) was performed using blood samples of participants to identify germline mutations. In total, we acquired 223 patients with putative germline mutations, including 159 in BRCA1/2, 61 in 15 other BC susceptibility genes and 3 in both BRCA1/2 and non-BRCA1/2 gene. Major mutant non-BRCA1/2 genes were TP53 (n=18), PALB2 (n=11), CHEK2 (n=6), ATM (n=6), and BARD1 (n=5). No factors predicted pathologic mutations in non-BRCA1/2 genes when treated as a whole. TP53 mutations were associated with HER-2 positive BC and younger age at diagnosis; and CHEK2 and PALB2 mutations were enriched in patients with luminal BC. Among high hereditary risk Chinese BC patients, 23.8% contained germline mutations, including 6.8% in non-BRCA1/2 genes. TP53 and PALB2 had a relatively high mutation rates (1.9% and 1.2%). Although no factors predicted for detrimental mutations in non-BRCA1/2 genes, some clinical features were associated with mutations of several particular genes. This article is protected by copyright. All rights reserved. © 2018 UICC.

  2. Protection of germline gene expression by the C. elegans Argonaute CSR-1.

    Science.gov (United States)

    Wedeles, Christopher J; Wu, Monica Z; Claycomb, Julie M

    2013-12-23

    In Caenorhabditis elegans, the Piwi-interacting small RNA (piRNA)-mediated germline surveillance system encodes more than 30,000 unique 21-nucleotide piRNAs, which silence a variety of foreign nucleic acids. What mechanisms allow endogenous germline-expressed transcripts to evade silencing by the piRNA pathway? One likely candidate in a protective mechanism is the Argonaute CSR-1, which interacts with 22G-small RNAs that are antisense to nearly all germline-expressed genes. Here, we use an in vivo RNA tethering assay to demonstrate that the recruitment of CSR-1 to a transcript licenses expression of the transcript, protecting it from piRNA-mediated silencing. Licensing occurs mainly at the level of transcription, as we observe changes in pre-mRNA levels consistent with transcriptional activation when CSR-1 is tethered. Furthermore, the recruitment of CSR-1 to a previously silenced locus transcriptionally activates its expression. Together, these results demonstrate a rare positive role for an endogenous Argonaute pathway in heritably licensing and protecting germline transcripts.

  3. Allele-specific expression in the germline of patients with familial pancreatic cancer: An unbiased approach to cancer gene discovery

    OpenAIRE

    Tan, Aik Choon; Fan, Jian-Bing; Karikari, Collins; Bibikova, Marina; Garcia, Eliza Wickham; Zhou, Lixin; Barker, David; Serre, David; Feldmann, Georg; Hruban, Ralph H.; Klein, Alison P.; Goggins, Michael; Couch, Fergus J.; Hudson, Thomas J.; Winslow, Raimond L.

    2007-01-01

    Physiologic allele-specific expression (ASE) in germline tissues occurs during random X-chromosome inactivation1 and in genomic imprinting,2 wherein the two alleles of a gene in a heterozygous individual are not expressed equally. Recent studies have confirmed the existence of ASE in apparently non-imprinted autosomal genes;3–14 however, the extent of ASE in the human genome is unknown. We explored ASE in lymphoblastoid cell lines of 145 individuals using an oligonucleotide array based assay....

  4. Complete Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and Analyses Integration Sites Define a New Human Endogenous Virus with Potential to Reactivate as an Emerging Infection.

    OpenAIRE

    Tweedy, J; Spyrou, MA; Pearson, M; Lassner, D; Kuhl, U; Gompels, UA

    2016-01-01

    Human herpesvirus-6A and B (HHV-6A, HHV-6B) have recently defined endogenous genomes, resulting from integration into the germline: chromosomally-integrated "CiHHV-6A/B". These affect approximately 1.0% of human populations, giving potential for virus gene expression in every cell. We previously showed that CiHHV-6A was more divergent than CiHHV-6B by examining four genes in 44 European CiHHV-6A/B cardiac/haematology patients. There was evidence for gene expression/reactivation, imp...

  5. Germline stem cells and neo-oogenesis in the adult human ovary.

    Science.gov (United States)

    Liu, Yifei; Wu, Chao; Lyu, Qifeng; Yang, Dongzi; Albertini, David F; Keefe, David L; Liu, Lin

    2007-06-01

    It remains unclear whether neo-oogenesis occurs in postnatal ovaries of mammals, based on studies in mice. We thought to test whether adult human ovaries contain germline stem cells (GSCs) and undergo neo-oogenesis. Rather than using genetic manipulation which is unethical in humans, we took the approach of analyzing the expression of meiotic marker genes and genes for germ cell proliferation, which are required for neo-oogenesis, in adult human ovaries covering an age range from 28 to 53 years old, compared to testis and fetal ovaries served as positive controls. We show that active meiosis, neo-oogenesis and GSCs are unlikely to exist in normal, adult, human ovaries. No early meiotic-specific or oogenesis-associated mRNAs for SPO11, PRDM9, SCP1, TERT and NOBOX were detectable in adult human ovaries using RT-PCR, compared to fetal ovary and adult testis controls. These findings are further corroborated by the absence of early meiocytes and proliferating germ cells in adult human ovarian cortex probed with markers for meiosis (SCP3), oogonium (OCT3/4, c-KIT), and cell cycle progression (Ki-67, PCNA), in contrast to fetal ovary controls. If postnatal oogenesis is confirmed in mice, then this species would represent an exception to the rule that neo-oogenesis does not occur in adults.

  6. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    Science.gov (United States)

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-07-15

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-line mutant proteins observed in patients with Li-Fraumeni syndrome, second primary neoplasms, or familial breast cancer to block the growth of malignant cells and compared the structural properties of the mutant proteins to that of the wild-type protein. Six of seven missense mutations disrupted the growth inhibitory properties and structure of the wild-type protein. One germ-line mutation retained the features of the wild-type p53. Genetic analysis of the breast cancer family in which this mutation was observed indicated that this germ-line mutation was not associated with the development of cancer. These results demonstrate that germ-line p53 mutations observed in patients with Li-Fraumeni syndrome and with second malignancies have inactivated the p53 tumor suppressor gene. The inability of the germ-line p53 mutants to block the growth of malignant cells can explain why patients with these germ-line mutations have an increased risk for cancer. The observation of a functionally silent germ-line mutation indicates that, before associating a germ-line tumor suppressor gene mutation with cancer risk, it is prudent to consider its functional significance.

  7. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    Science.gov (United States)

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-01-01

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-line mutant proteins observed in patients with Li-Fraumeni syndrome, second primary neoplasms, or familial breast cancer to block the growth of malignant cells and compared the structural properties of the mutant proteins to that of the wild-type protein. Six of seven missense mutations disrupted the growth inhibitory properties and structure of the wild-type protein. One germ-line mutation retained the features of the wild-type p53. Genetic analysis of the breast cancer family in which this mutation was observed indicated that this germ-line mutation was not associated with the development of cancer. These results demonstrate that germ-line p53 mutations observed in patients with Li-Fraumeni syndrome and with second malignancies have inactivated the p53 tumor suppressor gene. The inability of the germ-line p53 mutants to block the growth of malignant cells can explain why patients with these germ-line mutations have an increased risk for cancer. The observation of a functionally silent germ-line mutation indicates that, before associating a germ-line tumor suppressor gene mutation with cancer risk, it is prudent to consider its functional significance. Images PMID:1631137

  8. Oyster vasa-like gene as a marker of the germline cell development in Crassostrea gigas

    International Nuclear Information System (INIS)

    Fabioux, C.; Huvet, A.; Lelong, C.; Robert, R.; Pouvreau, S.; Daniel, J.Y.; Minguant, C.; Le Pennec, M.

    2004-01-01

    The oyster vasa-like gene was previously demonstrated to be specifically expressed in germline cells of adult oysters Crassostrea gigas. In the present study, this gene was used as a molecular marker to establish the developmental pattern of germline cells during oyster ontogenesis, using whole-mount in situ hybridization and real-time PCR. The Oyvlg transcripts appeared to be localized to the vegetal pole of unfertilized oocytes and maternally transmitted to embryos. At early development, these maternal transcripts were observed to segregate into a single blastomere, from the CD macromere of 2-cell stage to the 4d mesentoblast of blastula. From late blastula stage, the mesentoblast divided into two cell clumps that migrated to both sides of the larvae body and that would correspond to primordial germ cells (PGCs). Based on these results, we postulate that the germline of C. gigas is specified at early development by maternal cytoplasmic determinants including Oyvlg mRNAs, in putative PGCs that would differentiate into germinal stem cells in juvenile oysters

  9. The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes

    DEFF Research Database (Denmark)

    Pantano, Lorena; Jodar, Meritxell; Bak, Mads

    2015-01-01

    -specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed...... into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource...... for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline....

  10. Germline Variants in Targeted Tumor Sequencing Using Matched Normal DNA.

    Science.gov (United States)

    Schrader, Kasmintan A; Cheng, Donavan T; Joseph, Vijai; Prasad, Meera; Walsh, Michael; Zehir, Ahmet; Ni, Ai; Thomas, Tinu; Benayed, Ryma; Ashraf, Asad; Lincoln, Annie; Arcila, Maria; Stadler, Zsofia; Solit, David; Hyman, David M; Hyman, David; Zhang, Liying; Klimstra, David; Ladanyi, Marc; Offit, Kenneth; Berger, Michael; Robson, Mark

    2016-01-01

    Tumor genetic sequencing identifies potentially targetable genetic alterations with therapeutic implications. Analysis has concentrated on detecting tumor-specific variants, but recognition of germline variants may prove valuable as well. To estimate the burden of germline variants identified through routine clinical tumor sequencing. Patients with advanced cancer diagnoses eligible for studies of targeted agents at Memorial Sloan Kettering Cancer Center are offered tumor-normal sequencing with MSK-IMPACT, a 341-gene panel. We surveyed the germline variants seen in 187 overlapping genes with Mendelian disease associations in 1566 patients who had undergone tumor profiling between March and October 2014. The number of presumed pathogenic germline variants (PPGVs) and variants of uncertain significance per person in 187 genes associated with single-gene disorders and the proportions of individuals with PPGVs in clinically relevant gene subsets, in genes consistent with known tumor phenotypes, and in genes with evidence of second somatic hits in their tumors. The mean age of the 1566 patients was 58 years, and 54% were women. Presumed pathogenic germline variants in known Mendelian disease-associated genes were identified in 246 of 1566 patients (15.7%; 95% CI, 14.0%-17.6%), including 198 individuals with mutations in genes associated with cancer susceptibility. Germline findings in cancer susceptibility genes were concordant with the individual's cancer type in only 81 of 198 cases (40.9%; 95% CI, 34.3%-47.9%). In individuals with PPGVs retained in the tumor, somatic alteration of the other allele was seen in 39 of 182 cases (21.4%; 95% CI, 16.1%-28.0%), of which 13 cases did not show a known correlation of the germline mutation and a known syndrome. Mutations in non-cancer-related Mendelian disease genes were seen in 55 of 1566 cases (3.5%; 95% CI, 27.1%-45.4%). Almost every individual had more than 1 variant of uncertain significance (1565 of 1566 patients; 99

  11. Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells.

    Science.gov (United States)

    Vassena, R; Heindryckx, B; Peco, R; Pennings, G; Raya, A; Sermon, K; Veiga, A

    2016-06-01

    With the recent development of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 genome editing technology, the possibility to genetically manipulate the human germline (gametes and embryos) has become a distinct technical possibility. Although many technical challenges still need to be overcome in order to achieve adequate efficiency and precision of the technology in human embryos, the path leading to genome editing has never been simpler, more affordable, and widespread. In this narrative review we seek to understand the possible impact of CRISR/Cas9 technology on human reproduction from the technical and ethical point of view, and suggest a course of action for the scientific community. This non-systematic review was carried out using Medline articles in English, as well as technical documents from the Human Fertilisation and Embryology Authority and reports in the media. The technical possibilities of the CRISPR/Cas9 technology with regard to human reproduction are analysed based on results obtained in model systems such as large animals and laboratory rodents. Further, the possibility of CRISPR/Cas9 use in the context of human reproduction, to modify embryos, germline cells, and pluripotent stem cells is reviewed based on the authors' expert opinion. Finally, the possible uses and consequences of CRISPR/cas9 gene editing in reproduction are analysed from the ethical point of view. We identify critical technical and ethical issues that should deter from employing CRISPR/Cas9 based technologies in human reproduction until they are clarified. Overcoming the numerous technical limitations currently associated with CRISPR/Cas9 mediated editing of the human germline will depend on intensive research that needs to be transparent and widely disseminated. Rather than a call to a generalized moratorium, or banning, of this type of research, efforts should be placed on establishing an open, international, collaborative and regulated research

  12. Human Germline: A New Research Frontier

    Directory of Open Access Journals (Sweden)

    M. Azim Surani

    2015-06-01

    Full Text Available We recently elucidated the mechanism of human primordial germ cell (hPGC specification and resetting of the epigenome for totipotency. The regulators of hPGC specification also initiate resetting of the epigenome, leading to a comprehensive erasure of DNA methylation, erasure of imprints and X reactivation in early hPGCs in vivo. These studies reveal differences with the mouse model, which are probably due to differences in the regulation of human pluripotency, and in postimplantation development at gastrulation, which indicates the importance of non-rodent models for investigations. Within the extreme hypomethylated environment of the early human germline are loci that are resistant to DNA demethylation, with subsequent predominant expression in neural cells. These loci provide a model for studies on the mechanism of transgenerational epigenetic inheritance, and their response to environmental factors. Such epigenetic mechanism of inheritance could potentially provide greater phenotypic plasticity, with significant consequences for human development and disease.

  13. First report of a de novo germline mutation in the MLH1 gene

    NARCIS (Netherlands)

    Stulp, Rein P; Vos, Yvonne J; Mol, Bart; Karrenbeld, Arend; de Raad, Monique; van der Mijle, Huub J C; Sijmons, Rolf H

    2006-01-01

    Hereditary non-polyposis colorectal carcinoma (HNPCC) is an autosomal dominant disorder associated with colorectal and endometrial cancer and a range of other tumor types. Germline mutations in the DNA mismatch repair (MMR) genes, particularly MLH1, MSH2, and MSH6, underlie this disorder. The vast

  14. Activation of germline-specific genes is required for limb regeneration in the Mexican axolotl

    Science.gov (United States)

    Zhu, Wei; Pao, Gerald M; Satoh, Akira; Cummings, Gillian; Monaghan, James R; Harkins, Timothy T; Bryant, Susan V; Voss, S Randal; Gardiner, David M; Hunter, Tony

    2013-01-01

    The capacity for tissue and organ regeneration in humans is dwarfed by comparison to that of salamanders. Emerging evidence suggests that mechanisms learned from the early phase of salamander limb regeneration – wound healing, cellular dedifferentiation and blastemal formation – will reveal therapeutic approaches for tissue regeneration in humans. Here we describe a unique transcriptional fingerprint of regenerating limb tissue in the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells to a germline-like state. Two genes that are required for self-renewal of germ cells in mice and flies, Piwi-like 1 (PL1) and Piwi-like 2 (PL2), are expressed in limb blastemal cells, the basal layer keratinocytes and the thickened apical epithelial cap in the wound epidermis in the regenerating limb. Depletion of PL1 and PL2 by morpholino oligonucleotides decreased cell proliferation and increased cell death in the blastema leading to a significant retardation of regeneration. Examination of key molecules that are known to be required for limb development or regeneration further revealed that FGF8 is transcriptionally downregulated in the presence of the morpholino oligos, indicating PL1 and PL2 might participate in FGF signaling during limb regeneration. Given the requirement for FGF signaling in limb development and regeneration, the results suggest that PL1 and PL2 function to establish a unique germline-like state that is associated with successful regeneration. PMID:22841627

  15. Germline Mutations in Cancer Predisposition Genes are Frequent in Sporadic Sarcomas

    OpenAIRE

    Chan, Sock Hoai; Lim, Weng Khong; Ishak, Nur Diana Binte; Li, Shao-Tzu; Goh, Wei Lin; Tan, Gek San; Lim, Kiat Hon; Teo, Melissa; Young, Cedric Ng Chuan; Malik, Simeen; Tan, Mann Hong; Teh, Jonathan Yi Hui; Chin, Francis Kuok Choon; Kesavan, Sittampalam; Selvarajan, Sathiyamoorthy

    2017-01-01

    Associations of sarcoma with inherited cancer syndromes implicate genetic predisposition in sarcoma development. However, due to the apparently sporadic nature of sarcomas, little attention has been paid to the role genetic susceptibility in sporadic sarcoma. To address this, we performed targeted-genomic sequencing to investigate the prevalence of germline mutations in known cancer-associated genes within an Asian cohort of sporadic sarcoma patients younger than 50 years old. We observed 13....

  16. Identification of germline transcriptional regulatory elements in Aedes aegypti

    Science.gov (United States)

    Akbari, Omar S.; Papathanos, Philippos A.; Sandler, Jeremy E.; Kennedy, Katie; Hay, Bruce A.

    2014-02-01

    The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UDMEL, and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.

  17. Detection of mismatch repair gene germline mutation carrier among Chinese population with colorectal cancer

    International Nuclear Information System (INIS)

    Jin, Hei-Ying; Zhao, Ronghua; Liu, Xiufang; Li, Vicky Ka Ming; Ding, Yijiang; Yang, Bolin; Geng, Jianxiang; Lai, Rensheng; Ding, Shuqing; Ni, Min

    2008-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant syndrome. The National Cancer Institute (NCI) has recommended the Revised Bethesda guidelines for screening HNPCC. There has been a great deal of research on the value of these tests in other countries. However, literature about the Chinese population is scarce. Our objective is to detect and study microsatellite instability (MSI) and mismatch repair (MMR) gene germline mutation carriers among a Chinese population with colorectal cancer. In 146 prospectively recruited consecutive patients with clinically proven colorectal cancer, MSI carriers were identified by analysis of tumor tissue using multiplex fluorescence polymerase chain reaction (PCR) using the NCI recommended panel and classified into microsatellite instability-low (MSI-L), microsatellite instability-high (MSI-H) and microsatellite stable (MSS) groups. Immunohistochemical staining for MSH2, MSH6 and MLH1 on tissue microarrays (TMAs) was performed, and methylation of the MLH1 promoter was analyzed by quantitative methylation specific PCR (MSP). Germline mutation analysis of blood samples was performed for MSH2, MSH6 and MLH1 genes. Thirty-four out of the 146 colorectal cancers (CRCs, 23.2%) were MSI, including 19 MSI-H CRCs and 15 MSI-L CRCS. Negative staining for MSH2 was found in 8 CRCs, negative staining for MSH6 was found in 6 CRCs. One MSI-H CRC was negative for both MSH6 and MSH2. Seventeen CRCs stained negatively for MLH1. MLH1 promoter methylation was determined in 34 MSI CRCs. Hypermethylation of the MLH1 promoter occurred in 14 (73.7%) out of 19 MSI-H CRCs and 5 (33.3%) out of 15 MSI-L CRCs. Among the 34 MSI carriers and one MSS CRC with MLH1 negative staining, 8 had a MMR gene germline mutation, which accounted for 23.5% of all MSI colorectal cancers and 5.5% of all the colorectal cancers. Five patients harbored MSH2 germline mutations, and three patients harbored MSH6 germline mutations. None of the patients had an MLH

  18. Elucidating the impact of neurofibromatosis-1 germline mutations on neurofibromin function and dopamine-based learning.

    Science.gov (United States)

    Anastasaki, Corina; Woo, Albert S; Messiaen, Ludwine M; Gutmann, David H

    2015-06-15

    Neurofibromatosis type 1 (NF1) is a common autosomal dominant neurologic condition characterized by significant clinical heterogeneity, ranging from malignant cancers to cognitive deficits. Recent studies have begun to reveal rare genotype-phenotype correlations, suggesting that the specific germline NF1 gene mutation may be one factor underlying disease heterogeneity. The purpose of this study was to define the impact of the germline NF1 gene mutation on brain neurofibromin function relevant to learning. Herein, we employ human NF1-patient primary skin fibroblasts, induced pluripotent stem cells and derivative neural progenitor cells (NPCs) to demonstrate that NF1 germline mutations have dramatic effects on neurofibromin expression. Moreover, while all NF1-patient NPCs exhibit increased RAS activation and reduced cyclic AMP generation, there was a neurofibromin dose-dependent reduction in dopamine (DA) levels. Additionally, we leveraged two complementary Nf1 genetically-engineered mouse strains in which hippocampal-based learning and memory is DA-dependent to establish that neuronal DA levels and signaling as well as mouse spatial learning are controlled in an Nf1 gene dose-dependent manner. Collectively, this is the first demonstration that different germline NF1 gene mutations differentially dictate neurofibromin function in the brain. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Clerics urge ban on altering germline cells.

    Science.gov (United States)

    Norman, C

    1983-06-24

    A resolution calling for a ban on genetic engineering of human reproductive cells has been signed by leaders of almost every major church group in the United States. Some of the religious leaders, while not certain that a total moratorium should be placed on altering germline cells, signed the statement in order to stimulate public debate on the issue. Legislation has recently been introduced in Congress to set up a committee to monitor genetic engineering and its human applications, but author Jeremy Rifkin, the impetus behind the church leaders' resolution, argues that such tampering threatens the gene pool and should be banned altogether.

  20. Hyperthyroidism caused by a germline activating mutation of the thyrotropin receptor gene: difficulties in diagnosis and therapy.

    Science.gov (United States)

    Bertalan, Rita; Sallai, Agnes; Sólyom, János; Lotz, Gábor; Szabó, István; Kovács, Balázs; Szabó, Eva; Patócs, Attila; Rácz, Károly

    2010-03-01

    Germline activating mutations of the thyrotropin receptor (TSHR) gene have been considered as the only known cause of sporadic nonautoimmune hyperthyroidism in the pediatric population. Here we describe the long-term follow-up and evaluation of a patient with sporadic nonautoimmune primary hyperthyroidism who was found to have a de novo germline activating mutation of the TSHR gene. The patient was an infant who presented at the age of 10 months in an unconscious state with exsiccation, wet skin, fever, and tachycardia. Nonautoimmune primary hyperthyroidism was diagnosed, and brain magnetic resonance imaging and computed tomography showed also Arnold-Chiari malformation type I. Continuous propylthiouracil treatment resulted in a prolonged clinical cure lasting for 10 years. At the age of 11 years and 5 months the patient underwent subtotal thyroidectomy because of symptoms of trachea compression caused by a progressive multinodular goiter. However, 2 months after surgery, hormonal evaluation indicated recurrent hyperthyroidism and the patient was treated with propylthiouracil during the next 4 years. At the age of 15 years the patient again developed symptoms of trachea compression. Radioiodine treatment resulted in a regression of the recurrent goiter and a permanent cure of hyperthyroidism without relapse during the last 3 years of his follow-up. Sequencing of exon 10 of the TSHR gene showed a de novo heterozygous germline I630L mutation, which has been previously described as activating mutation at somatic level in toxic thyroid nodules. The I630L mutation of the TSHR gene occurs not only at somatic level in toxic thyroid nodules, but also its presence in germline is associated with nonautoimmune primary hyperthyroidism. Our case report demonstrates that in this disorder a continuous growth of the thyroid occurs without any evidence of elevated TSH due to antithyroid drug overdosing. This may justify previous recommendations for early treatment of affected

  1. A novel germline mutation in the aryl hydrocarbon receptor-interacting protein (AIP) gene in an Italian family with gigantism.

    Science.gov (United States)

    Urbani, C; Russo, D; Raggi, F; Lombardi, M; Sardella, C; Scattina, I; Lupi, I; Manetti, L; Tomisti, L; Marcocci, C; Martino, E; Bogazzi, F

    2014-10-01

    Acromegaly usually occurs as a sporadic disease, but it may be a part of familial pituitary tumor syndromes in rare cases. Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene have been associated with a predisposition to familial isolated pituitary adenoma. The aim of the present study was to evaluate the AIP gene in a patient with gigantism and in her relatives. Direct sequencing of AIP gene was performed in fourteen members of the family, spanning among three generations. The index case was an 18-year-old woman with gigantism due to an invasive GH-secreting pituitary adenoma and a concomitant tall-cell variant of papillary thyroid carcinoma. A novel germline mutation in the AIP gene (c.685C>T, p.Q229X) was identified in the proband and in two members of her family, who did not present clinical features of acromegaly or other pituitary disorders. Eleven subjects had no mutation in the AIP gene. Two members of the family with clinical features of acromegaly refused either the genetic or the biochemical evaluation. The Q229X mutation was predicted to generate a truncated AIP protein, lacking the last two tetratricopeptide repeat domains and the final C-terminal α-7 helix. We identified a new AIP germline mutation predicted to produce a truncated AIP protein, lacking its biological properties due to the disruption of the C-terminus binding sites for both the chaperones and the client proteins of AIP.

  2. Ethical issues of perinatal human gene therapy.

    Science.gov (United States)

    Fletcher, J C; Richter, G

    1996-01-01

    This paper examines some key ethical issues raised by trials of human gene therapy in the perinatal period--i.e., in infants, young children, and the human fetus. It describes five resources in ethics for researchers' considerations prior to such trials: (1) the history of ethical debate about gene therapy, (2) a literature on the relevance of major ethical principles for clinical research, (3) a body of widely accepted norms and practices, (4) knowledge of paradigm cases, and (5) researchers' own professional integrity. The paper also examines ethical concerns that must be met prior to any trial: benefits to and safety of subjects, informed assent of children and informed parental permission, informed consent of pregnant women in fetal gene therapy, protection of privacy, and concerns about fairness in the selection of subjects. The paper criticizes the position that cases of fetal gene therapy should be restricted only to those where the pregnant woman has explicitly refused abortion. Additional topics include concerns about genetic enhancement and germ-line gene therapy.

  3. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wu

    Full Text Available The retinoblastoma (Rb tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene.

  4. C. elegans DAF-16/FOXO interacts with TGF-ß/BMP signaling to induce germline tumor formation via mTORC1 activation.

    Directory of Open Access Journals (Sweden)

    Wenjing Qi

    2017-05-01

    Full Text Available Activation of the FOXO transcription factor DAF-16 by reduced insulin/IGF signaling (IIS is considered to be beneficial in C. elegans due to its ability to extend lifespan and to enhance stress resistance. In the germline, cell-autonomous DAF-16 activity prevents stem cell proliferation, thus acting tumor-suppressive. In contrast, hypodermal DAF-16 causes a tumorous germline phenotype characterized by hyperproliferation of the germline stem cells and rupture of the adjacent basement membrane. Here we show that cross-talk between DAF-16 and the transforming growth factor ß (TGFß/bone morphogenic protein (BMP signaling pathway causes germline hyperplasia and results in disruption of the basement membrane. In addition to activating MADM/NRBP/hpo-11 gene alone, DAF-16 also directly interacts with both R-SMAD proteins SMA-2 and SMA-3 in the nucleus to regulate the expression of mTORC1 pathway. Knocking-down of BMP genes or each of the four target genes in the hypodermis was sufficient to inhibit germline proliferation, indicating a cell-non-autonomously controlled regulation of stem cell proliferation by somatic tissues. We propose the existence of two antagonistic DAF-16/FOXO functions, a cell-proliferative somatic and an anti-proliferative germline activity. Whereas germline hyperplasia under reduced IIS is inhibited by DAF-16 cell-autonomously, activation of somatic DAF-16 in the presence of active IIS promotes germline proliferation and eventually induces tumor-like germline growth. In summary, our results suggest a novel pathway crosstalk of DAF-16 and TGF-ß/BMP that can modulate mTORC1 at the transcriptional level to cause stem-cell hyperproliferation. Such cell-type specific differences may help explaining why human FOXO activity is considered to be tumor-suppressive in most contexts, but may become oncogenic, e.g. in chronic and acute myeloid leukemia.

  5. C. elegans DAF-16/FOXO interacts with TGF-ß/BMP signaling to induce germline tumor formation via mTORC1 activation.

    Science.gov (United States)

    Qi, Wenjing; Yan, Yijian; Pfeifer, Dietmar; Donner V Gromoff, Erika; Wang, Yimin; Maier, Wolfgang; Baumeister, Ralf

    2017-05-01

    Activation of the FOXO transcription factor DAF-16 by reduced insulin/IGF signaling (IIS) is considered to be beneficial in C. elegans due to its ability to extend lifespan and to enhance stress resistance. In the germline, cell-autonomous DAF-16 activity prevents stem cell proliferation, thus acting tumor-suppressive. In contrast, hypodermal DAF-16 causes a tumorous germline phenotype characterized by hyperproliferation of the germline stem cells and rupture of the adjacent basement membrane. Here we show that cross-talk between DAF-16 and the transforming growth factor ß (TGFß)/bone morphogenic protein (BMP) signaling pathway causes germline hyperplasia and results in disruption of the basement membrane. In addition to activating MADM/NRBP/hpo-11 gene alone, DAF-16 also directly interacts with both R-SMAD proteins SMA-2 and SMA-3 in the nucleus to regulate the expression of mTORC1 pathway. Knocking-down of BMP genes or each of the four target genes in the hypodermis was sufficient to inhibit germline proliferation, indicating a cell-non-autonomously controlled regulation of stem cell proliferation by somatic tissues. We propose the existence of two antagonistic DAF-16/FOXO functions, a cell-proliferative somatic and an anti-proliferative germline activity. Whereas germline hyperplasia under reduced IIS is inhibited by DAF-16 cell-autonomously, activation of somatic DAF-16 in the presence of active IIS promotes germline proliferation and eventually induces tumor-like germline growth. In summary, our results suggest a novel pathway crosstalk of DAF-16 and TGF-ß/BMP that can modulate mTORC1 at the transcriptional level to cause stem-cell hyperproliferation. Such cell-type specific differences may help explaining why human FOXO activity is considered to be tumor-suppressive in most contexts, but may become oncogenic, e.g. in chronic and acute myeloid leukemia.

  6. Exome sequencing reveals frequent deleterious germline variants in cancer susceptibility genes in women with invasive breast cancer undergoing neoadjuvant chemotherapy.

    Science.gov (United States)

    Ellingson, Marissa S; Hart, Steven N; Kalari, Krishna R; Suman, Vera; Schahl, Kimberly A; Dockter, Travis J; Felten, Sara J; Sinnwell, Jason P; Thompson, Kevin J; Tang, Xiaojia; Vedell, Peter T; Barman, Poulami; Sicotte, Hugues; Eckel-Passow, Jeanette E; Northfelt, Donald W; Gray, Richard J; McLaughlin, Sarah A; Moreno-Aspitia, Alvaro; Ingle, James N; Moyer, Ann M; Visscher, Daniel W; Jones, Katie; Conners, Amy; McDonough, Michelle; Wieben, Eric D; Wang, Liewei; Weinshilboum, Richard; Boughey, Judy C; Goetz, Matthew P

    2015-09-01

    When sequencing blood and tumor samples to identify targetable somatic variants for cancer therapy, clinically relevant germline variants may be uncovered. We evaluated the prevalence of deleterious germline variants in cancer susceptibility genes in women with breast cancer referred for neoadjuvant chemotherapy and returned clinically actionable results to patients. Exome sequencing was performed on blood samples from women with invasive breast cancer referred for neoadjuvant chemotherapy. Germline variants within 142 hereditary cancer susceptibility genes were filtered and reviewed for pathogenicity. Return of results was offered to patients with deleterious variants in actionable genes if they were not aware of their result through clinical testing. 124 patients were enrolled (median age 51) with the following subtypes: triple negative (n = 43, 34.7%), HER2+ (n = 37, 29.8%), luminal B (n = 31, 25%), and luminal A (n = 13, 10.5%). Twenty-eight deleterious variants were identified in 26/124 (21.0%) patients in the following genes: ATM (n = 3), BLM (n = 1), BRCA1 (n = 4), BRCA2 (n = 8), CHEK2 (n = 2), FANCA (n = 1), FANCI (n = 1), FANCL (n = 1), FANCM (n = 1), FH (n = 1), MLH3 (n = 1), MUTYH (n = 2), PALB2 (n = 1), and WRN (n = 1). 121/124 (97.6%) patients consented to return of research results. Thirteen (10.5%) had actionable variants, including four that were returned to patients and led to changes in medical management. Deleterious variants in cancer susceptibility genes are highly prevalent in patients with invasive breast cancer referred for neoadjuvant chemotherapy undergoing exome sequencing. Detection of these variants impacts medical management.

  7. Maternal Germline-Specific Genes in the Asian Malaria Mosquito Anopheles stephensi: Characterization and Application for Disease Control

    Science.gov (United States)

    Biedler, James K.; Qi, Yumin; Pledger, David; Macias, Vanessa M.; James, Anthony A.; Tu, Zhijian

    2014-01-01

    Anopheles stephensi is a principal vector of urban malaria on the Indian subcontinent and an emerging model for molecular and genetic studies of mosquito biology. To enhance our understanding of female mosquito reproduction, and to develop new tools for basic research and for genetic strategies to control mosquito-borne infectious diseases, we identified 79 genes that displayed previtellogenic germline-specific expression based on RNA-Seq data generated from 11 life stage–specific and sex-specific samples. Analysis of this gene set provided insights into the biology and evolution of female reproduction. Promoters from two of these candidates, vitellogenin receptor and nanos, were used in independent transgenic cassettes for the expression of artificial microRNAs against suspected mosquito maternal-effect genes, discontinuous actin hexagon and myd88. We show these promoters have early germline-specific expression and demonstrate 73% and 42% knockdown of myd88 and discontinuous actin hexagon mRNA in ovaries 48 hr after blood meal, respectively. Additionally, we demonstrate maternal-specific delivery of mRNA and protein to progeny embryos. We discuss the application of this system of maternal delivery of mRNA/miRNA/protein in research on mosquito reproduction and embryonic development, and for the development of a gene drive system based on maternal-effect dominant embryonic arrest. PMID:25480960

  8. A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes

    DEFF Research Database (Denmark)

    Hansen, Kasper Lage; Hansen, Niclas Tue; Karlberg, Erik, Olof, Linnart

    2008-01-01

    to be overexpressed in the normal tissues where defects cause pathology. In contrast, cancer genes and complexes were not overexpressed in the tissues from which the tumors emanate. We specifically identified a complex involved in XY sex reversal that is testis-specific and down-regulated in ovaries. We also......Heritable diseases are caused by germ-line mutations that, despite tissuewide presence, often lead to tissue-specific pathology. Here, we make a systematic analysis of the link between tissue-specific gene expression and pathological manifestations in many human diseases and cancers. Diseases were...

  9. Phage display used for gene cloning of human recombinant antibody against the erythrocyte surface antigen, rhesus D

    DEFF Research Database (Denmark)

    Dziegiel, M; Nielsen, L K; Andersen, P S

    1995-01-01

    A novel phage display system has been developed for PCR amplification and cloning of the Fab fragments of human immunoglobulin genes. Using this system, we have cloned an antibody from a mouse-human hybridoma cell line directed against the erythrocyte antigen rhesus D. Intact erythrocytes were used...... for absorption of the Fab phages. Soluble Fab fragments produced from the cloned material showed identical performance to the parental antibody in agglutination assays. Gel filtration confirmed that the Fab fragment consists of a kappa-Fd heterodimer. The successful use of intact cells for selection of specific...... Fab phages demonstrates that it is possible to by-pass purification of the antigen of interest. Comparison with published germline sequences demonstrated that the immunoglobulin coding regions had the highest homology to the VH 1.9III and V kappa Hum kappa v325 germline genes, respectively....

  10. Modeling human infertility with pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Di Chen

    2017-05-01

    Full Text Available Human fertility is dependent upon the correct establishment and differentiation of the germline. This is because no other cell type in the body is capable of passing a genome and epigenome from parent to child. Terminally differentiated germline cells in the adult testis and ovary are called gametes. However, the initial specification of germline cells occurs in the embryo around the time of gastrulation. Most of our knowledge regarding the cell and molecular events that govern human germline specification involves extrapolating scientific principles from model organisms, most notably the mouse. However, recent work using next generation sequencing, gene editing and differentiation of germline cells from pluripotent stem cells has revealed that the core molecular mechanisms that regulate human germline development are different from rodents. Here, we will discuss the major molecular pathways required for human germline differentiation and how pluripotent stem cells have revolutionized our ability to study the earliest steps in human embryonic lineage specification in order to understand human fertility.

  11. Somatic and Germline Diversification of a Putative Immunoreceptor within One Phylum: Dscam in Arthropods.

    Science.gov (United States)

    Brites, Daniela; Du Pasquier, Louis

    2015-01-01

    Arthropod Dscam, the homologue of the human Down Syndrome cell adhesion molecule, is a receptor used by the nervous and immune systems. Unlike in vertebrates, evolutionary pressure has selected and maintained a vast Dscam diversity of isoforms, known to specifying neuronal identity during the nervous system differentiation. This chapter examines the different modes of Dscam diversification in the context of arthropods' evolution and that of their immune system, where its role is controversial. In the single Dscam gene of insects and crustaceans, mutually exclusive alternative splicing affects three clusters of duplicated exons encoding the variable parts of the receptor. The Dscam gene produces over 10,000 isoforms. In the more basal arthropods such as centipedes, Dscam diversity results from a combination of many germline genes (over 80) with, in about half of those, the possibility of alternative splicing affecting only one exon cluster. In the even more basal arthropods, such as chelicerates, no splicing possibility is detected, but there exist dozens of germline Dscam genes. Compared to controlling the expression of multiple germline genes, the somatic mutually alternative splicing within a single gene may offer a simplified way of expressing a large Dscam repertoire. Expressed by hemocytes, Dscam is considered a phagocytic receptor but is also encountered in solution. More information is necessary about its binding to pathogens, its role in phagocytosis, its possible role in specifying hemocyte identity, its kinetics of expression, and the regulation of its RNA splicing to understand how its diversity is linked to immunity.

  12. Germline Transgenic Methods for Tracking Cells and Testing Gene Function during Regeneration in the Axolotl

    Science.gov (United States)

    Khattak, Shahryar; Schuez, Maritta; Richter, Tobias; Knapp, Dunja; Haigo, Saori L.; Sandoval-Guzmán, Tatiana; Hradlikova, Kristyna; Duemmler, Annett; Kerney, Ryan; Tanaka, Elly M.

    2013-01-01

    The salamander is the only tetrapod that regenerates complex body structures throughout life. Deciphering the underlying molecular processes of regeneration is fundamental for regenerative medicine and developmental biology, but the model organism had limited tools for molecular analysis. We describe a comprehensive set of germline transgenic strains in the laboratory-bred salamander Ambystoma mexicanum (axolotl) that open up the cellular and molecular genetic dissection of regeneration. We demonstrate tissue-dependent control of gene expression in nerve, Schwann cells, oligodendrocytes, muscle, epidermis, and cartilage. Furthermore, we demonstrate the use of tamoxifen-induced Cre/loxP-mediated recombination to indelibly mark different cell types. Finally, we inducibly overexpress the cell-cycle inhibitor p16INK4a, which negatively regulates spinal cord regeneration. These tissue-specific germline axolotl lines and tightly inducible Cre drivers and LoxP reporter lines render this classical regeneration model molecularly accessible. PMID:24052945

  13. Similarities in the immunoglobulin response and VH gene usage in rhesus monkeys and humans exposed to porcine hepatocytes

    Directory of Open Access Journals (Sweden)

    Borie Dominic C

    2006-03-01

    Full Text Available Abstract Background The use of porcine cells and organs as a source of xenografts for human patients would vastly increase the donor pool; however, both humans and Old World primates vigorously reject pig tissues due to xenoantibodies that react with the polysaccharide galactose α (1,3 galactose (αGal present on the surface of many porcine cells. We previously examined the xenoantibody response in patients exposed to porcine hepatocytes via treatment(s with bioartficial liver devices (BALs, composed of porcine cells in a support matrix. We determined that xenoantibodies in BAL-treated patients are predominantly directed at porcine αGal carbohydrate epitopes, and are encoded by a small number of germline heavy chain variable region (VH immunoglobulin genes. The studies described in this manuscript were designed to identify whether the xenoantibody responses and the IgVH genes encoding antibodies to porcine hepatocytes in non-human primates used as preclinical models are similar to those in humans. Adult non-immunosuppressed rhesus monkeys (Macaca mulatta were injected intra-portally with porcine hepatocytes or heterotopically transplanted with a porcine liver lobe. Peripheral blood leukocytes and serum were obtained prior to and at multiple time points after exposure, and the immune response was characterized, using ELISA to evaluate the levels and specificities of circulating xenoantibodies, and the production of cDNA libraries to determine the genes used by B cells to encode those antibodies. Results Xenoantibodies produced following exposure to isolated hepatocytes and solid organ liver grafts were predominantly encoded by genes in the VH3 family, with a minor contribution from the VH4 family. Immunoglobulin heavy-chain gene (VH cDNA library screening and gene sequencing of IgM libraries identified the genes as most closely-related to the IGHV3-11 and IGHV4-59 germline progenitors. One of the genes most similar to IGHV3-11, VH3-11cyno, has

  14. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    OpenAIRE

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-01-01

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-...

  15. Single genome retrieval of context-dependent variability in mutation rates for human germline.

    Science.gov (United States)

    Sahakyan, Aleksandr B; Balasubramanian, Shankar

    2017-01-13

    Accurate knowledge of the core components of substitution rates is of vital importance to understand genome evolution and dynamics. By performing a single-genome and direct analysis of 39,894 retrotransposon remnants, we reveal sequence context-dependent germline nucleotide substitution rates for the human genome. The rates are characterised through rate constants in a time-domain, and are made available through a dedicated program (Trek) and a stand-alone database. Due to the nature of the method design and the imposed stringency criteria, we expect our rate constants to be good estimates for the rates of spontaneous mutations. Benefiting from such data, we study the short-range nucleotide (up to 7-mer) organisation and the germline basal substitution propensity (BSP) profile of the human genome; characterise novel, CpG-independent, substitution prone and resistant motifs; confirm a decreased tendency of moieties with low BSP to undergo somatic mutations in a number of cancer types; and, produce a Trek-based estimate of the overall mutation rate in human. The extended set of rate constants we report may enrich our resources and help advance our understanding of genome dynamics and evolution, with possible implications for the role of spontaneous mutations in the emergence of pathological genotypes and neutral evolution of proteomes.

  16. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia

    NARCIS (Netherlands)

    Georgitsi, Marianthi; Raitila, Anniina; Karhu, Auli; van der Luijt, Rob B.; Aalfs, Cora M.; Sane, Timo; Vierimaa, Outi; Mäkinen, Markus J.; Tuppurainen, Karoliina; Paschke, Ralph; Gimm, Oliver; Koch, Christian A.; Gündogdu, Sadi; Lucassen, Anneke; Tischkowitz, Marc; Izatt, Louise; Aylwin, Simon; Bano, Gul; Hodgson, Shirley; de Menis, Ernesto; Launonen, Virpi; Vahteristo, Pia; Aaltonen, Lauri A.

    2007-01-01

    Germline mutations in the MEN1 gene predispose to multiple endocrine neoplasia type 1 (MEN1) syndrome, but in up to 20-25% of clinical MEN1 cases, no MEN1 mutations can be found. Recently, a germline mutation in the CDKN1B gene, encoding p27(Kip1), was reported in one suspected MEN1 family with two

  17. Assessing the spectrum of germline variation in Fanconi anemia genes among patients with head and neck carcinoma before age 50.

    Science.gov (United States)

    Chandrasekharappa, Settara C; Chinn, Steven B; Donovan, Frank X; Chowdhury, Naweed I; Kamat, Aparna; Adeyemo, Adebowale A; Thomas, James W; Vemulapalli, Meghana; Hussey, Caroline S; Reid, Holly H; Mullikin, James C; Wei, Qingyi; Sturgis, Erich M

    2017-10-15

    Patients with Fanconi anemia (FA) have an increased risk for head and neck squamous cell carcinoma (HNSCC). The authors sought to determine the prevalence of undiagnosed FA and FA carriers among patients with HNSCC as well as an age cutoff for FA genetic screening. Germline DNA samples from 417 patients with HNSCC aged <50 years were screened for sequence variants by targeted next-generation sequencing of the entire length of 16 FA genes. The sequence revealed 194 FA gene variants in 185 patients (44%). The variant spectrum was comprised of 183 nonsynonymous point mutations, 9 indels, 1 large deletion, and 1 synonymous variant that was predicted to effect splicing. One hundred eight patients (26%) had at least 1 rare variant that was predicted to be damaging, and 57 (14%) had at least 1 rare variant that was predicted to be damaging and had been previously reported. Fifteen patients carried 2 rare variants or an X-linked variant in an FA gene. Overall, an age cutoff for FA screening was not identified among young patients with HNSCC, because there were no significant differences in mutation rates when patients were stratified by age, tumor site, ethnicity, smoking status, or human papillomavirus status. However, an increased burden, or mutation load, of FA gene variants was observed in carriers of the genes FA complementation group D2 (FANCD2), FANCE, and FANCL in the HNSCC patient cohort relative to the 1000 Genomes population. FA germline functional variants offer a novel area of study in HNSCC tumorigenesis. FANCE and FANCL, which are components of the core complex, are known to be responsible for the recruitment and ubiquitination, respectively, of FANCD2, a critical step in the FA DNA repair pathway. In the current cohort, the increased mutation load of FANCD2, FANCE, and FANCL variants among younger patients with HNSCC indicates the importance of the FA pathway in HNSCC. Cancer 2017;123:3943-54. © 2017 American Cancer Society. © 2017 American Cancer Society.

  18. Germline Variants of Prostate Cancer in Japanese Families.

    Directory of Open Access Journals (Sweden)

    Takahide Hayano

    Full Text Available Prostate cancer (PC is the second most common cancer in men. Family history is the major risk factor for PC. Only two susceptibility genes were identified in PC, BRCA2 and HOXB13. A comprehensive search of germline variants for patients with PC has not been reported in Japanese families. In this study, we conducted exome sequencing followed by Sanger sequencing to explore responsible germline variants in 140 Japanese patients with PC from 66 families. In addition to known susceptibility genes, BRCA2 and HOXB13, we identified TRRAP variants in a mutually exclusive manner in seven large PC families (three or four patients per family. We also found shared variants of BRCA2, HOXB13, and TRRAP from 59 additional small PC families (two patients per family. We identified two deleterious HOXB13 variants (F127C and G132E. Further exploration of the shared variants in rest of the families revealed deleterious variants of the so-called cancer genes (ATP1A1, BRIP1, FANCA, FGFR3, FLT3, HOXD11, MUTYH, PDGFRA, SMARCA4, and TCF3. The germline variant profile provides a new insight to clarify the genetic etiology and heterogeneity of PC among Japanese men.

  19. Impact of germline and somatic missense variations on drug binding sites.

    Science.gov (United States)

    Yan, C; Pattabiraman, N; Goecks, J; Lam, P; Nayak, A; Pan, Y; Torcivia-Rodriguez, J; Voskanian, A; Wan, Q; Mazumder, R

    2017-03-01

    Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein's gene. To identify the nsSNVs that may affect drug binding, protein-drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein-drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein-drug binding sites. Using this method we identified 12 993 amino acid-drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid-drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid-drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid-drug binding sites. Using this method, 81 paralogs were identified that could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142 homologs in humans that can potentially bind to drugs. In the current protein-drug pairs that contain somatic mutations within their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer types. Information on protein-drug binding predicted drug target proteins and prevalence of both somatic and

  20. Structures of Preferred Human IgV Genes-Based Protective Antibodies Identify How Conserved Residues Contact Diverse Antigens and Assign Source of Specificity to CDR3 Loop Variation.

    Science.gov (United States)

    Bryson, Steve; Thomson, Christy A; Risnes, Louise F; Dasgupta, Somnath; Smith, Kenneth; Schrader, John W; Pai, Emil F

    2016-06-01

    The human Ab response to certain pathogens is oligoclonal, with preferred IgV genes being used more frequently than others. A pair of such preferred genes, IGVK3-11 and IGVH3-30, contributes to the generation of protective Abs directed against the 23F serotype of the pneumonococcal capsular polysaccharide of Streptococcus pneumoniae and against the AD-2S1 peptide of the gB membrane protein of human CMV. Structural analyses of Fab fragments of mAbs 023.102 and pn132p2C05 in complex with portions of the 23F polysaccharide revealed five germline-encoded residues in contact with the key component, l-rhamnose. In the case of the AD-2S1 peptide, the KE5 Fab fragment complex identified nine germline-encoded contact residues. Two of these germline-encoded residues, Arg91L and Trp94L, contact both the l-rhamnose and the AD-2S1 peptide. Comparison of the respective paratopes that bind to carbohydrate and protein reveals that stochastic diversity in both CDR3 loops alone almost exclusively accounts for their divergent specificity. Combined evolutionary pressure by human CMV and the 23F serotype of S. pneumoniae acted on the IGVK3-11 and IGVH3-30 genes as demonstrated by the multiple germline-encoded amino acids that contact both l-rhamnose and AD-2S1 peptide. Copyright © 2016 by The American Association of Immunologists, Inc.

  1. Screening for germline mutations of MLH1, MSH2, MSH6 and PMS2 genes in Slovenian colorectal cancer patients: implications for a population specific detection strategy of Lynch syndrome.

    Science.gov (United States)

    Berginc, Gasper; Bracko, Matej; Ravnik-Glavac, Metka; Glavac, Damjan

    2009-01-01

    Microsatellite instability (MSI) is present in more than 90% of colorectal cancers of patients with Lynch syndrome, and is therefore a feasible marker for the disease. Mutations in MLH1, MSH2, MSH6 and PMS2, which are one of the main causes of deficient mismatch repair and subsequent MSI, have been linked to the disease. In order to establish the role of each of the 4 genes in Slovenian Lynch syndrome patients, we performed MSI analysis on 593 unselected CRC patients and subsequently searched for the presence of point mutations, larger genomic rearrangements and MLH1 promoter hypermethylation in patients with MSI-high tumours. We detected 43 (7.3%) patients with MSI-H tumours, of which 7 patients (1.3%) harboured germline defects: 2 in MLH1, 4 in MSH2, 1 in PMS2 and none in MSH6. Twenty-nine germline sequence variations of unknown significance and 17 deleterious somatic mutations were found. MLH1 promoter methylation was detected in 56% of patients without detected germline defects and in 1 (14%) suspected Lynch syndrome. Due to the minor role of germline MSH6 mutations, we adapted the Lynch syndrome detection strategy for the Slovenian population of CRC patients, whereby germline alterations should be first sought in MLH1 and MSH2 followed by a search for larger genomic rearrangements in these two genes. When no germline mutations are found tumors should be further tested for the presence of germline defects in PMS2 and MSH6. The choice about which gene should be tested first can be guided more accurately by the immunohistochemical analysis. Our study demonstrates that the incidence of MMR mutations in a population should be known prior to the application of one of several suggested strategies for detection of Lynch syndrome.

  2. Selfish genetic elements favor the evolution of a distinction between soma and germline.

    Science.gov (United States)

    Johnson, Louise J

    2008-08-01

    Many multicellular organisms have evolved a dedicated germline. This can benefit the whole organism, but its advantages to genetic parasites have not been explored. Here I model the evolutionary success of a selfish element, such as a transposable element or endosymbiont, which is capable of creating or strengthening a germline-soma distinction in a primitively multicellular host, and find that it will always benefit the element to do so. Genes causing germline sequestration can therefore spread in a population even if germline sequestration is maladaptive for the host organism. Costly selfish elements are expected to survive only in sexual populations, so sexual species may experience an additional push toward germline-soma distinction, and hence toward cell differentiation and multicellularity.

  3. Genetic and genomic analysis modeling of germline c-MYC overexpression and cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Nunes Virginia

    2008-01-01

    Full Text Available Abstract Background Germline genetic variation is associated with the differential expression of many human genes. The phenotypic effects of this type of variation may be important when considering susceptibility to common genetic diseases. Three regions at 8q24 have recently been identified to independently confer risk of prostate cancer. Variation at 8q24 has also recently been associated with risk of breast and colorectal cancer. However, none of the risk variants map at or relatively close to known genes, with c-MYC mapping a few hundred kilobases distally. Results This study identifies cis-regulators of germline c-MYC expression in immortalized lymphocytes of HapMap individuals. Quantitative analysis of c-MYC expression in normal prostate tissues suggests an association between overexpression and variants in Region 1 of prostate cancer risk. Somatic c-MYC overexpression correlates with prostate cancer progression and more aggressive tumor forms, which was also a pathological variable associated with Region 1. Expression profiling analysis and modeling of transcriptional regulatory networks predicts a functional association between MYC and the prostate tumor suppressor KLF6. Analysis of MYC/Myc-driven cell transformation and tumorigenesis substantiates a model in which MYC overexpression promotes transformation by down-regulating KLF6. In this model, a feedback loop through E-cadherin down-regulation causes further transactivation of c-MYC. Conclusion This study proposes that variation at putative 8q24 cis-regulator(s of transcription can significantly alter germline c-MYC expression levels and, thus, contribute to prostate cancer susceptibility by down-regulating the prostate tumor suppressor KLF6 gene.

  4. The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes

    Science.gov (United States)

    Pantano, Lorena; Jodar, Meritxell; Bak, Mads; Ballescà, Josep Lluís; Tommerup, Niels; Oliva, Rafael; Vavouri, Tanya

    2015-01-01

    At the end of mammalian sperm development, sperm cells expel most of their cytoplasm and dispose of the majority of their RNA. Yet, hundreds of RNA molecules remain in mature sperm. The biological significance of the vast majority of these molecules is unclear. To better understand the processes that generate sperm small RNAs and what roles they may have, we sequenced and characterized the small RNA content of sperm samples from two human fertile individuals. We detected 182 microRNAs, some of which are highly abundant. The most abundant microRNA in sperm is miR-1246 with predicted targets among sperm-specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline. PMID:25904136

  5. The protein kinase MBK-1 contributes to lifespan extension in daf-2 mutant and germline-deficient Caenorhabditis elegans.

    Science.gov (United States)

    Mack, Hildegard I D; Zhang, Peichuan; Fonslow, Bryan R; Yates, John R

    2017-05-25

    In Caenorhabditis elegans , reduction of insulin/IGF-1 like signaling and loss of germline stem cells both increase lifespan by activating the conserved transcription factor DAF-16 (FOXO). While the mechanisms that regulate DAF-16 nuclear localization in response to insulin/IGF-1 like signaling are well characterized, the molecular pathways that act in parallel to regulate DAF-16 transcriptional activity, and the pathways that couple DAF-16 activity to germline status, are not fully understood at present. Here, we report that inactivation of MBK-1, the C. elegans ortholog of the human FOXO1-kinase DYRK1A substantially shortens the prolonged lifespan of daf-2 and glp-1 mutant animals while decreasing wild-type lifespan to a lesser extent. On the other hand, lifespan-reduction by mutation of the MBK-1-related kinase HPK-1 was not preferential for long-lived mutants. Interestingly, mbk-1 loss still allowed for DAF-16 nuclear accumulation but reduced expression of certain DAF-16 target genes in germline-less, but not in daf-2 mutant animals. These findings indicate that mbk-1 and daf-16 functionally interact in the germline- but not in the daf-2 pathway. Together, our data suggest mbk-1 as a novel regulator of C. elegans longevity upon both, germline ablation and DAF-2 inhibition, and provide evidence for mbk-1 regulating DAF-16 activity in germline-deficient animals.

  6. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease

    Science.gov (United States)

    Bustamante, Jacinta; Arias, Andres A; Vogt, Guillaume; Picard, Capucine; Galicia, Lizbeth Blancas; Prando, Carolina; Grant, Audrey V; Marchal, Christophe C; Hubeau, Marjorie; Chapgier, Ariane; de Beaucoudrey, Ludovic; Puel, Anne; Feinberg, Jacqueline; Valinetz, Ethan; Jannière, Lucile; Besse, Céline; Boland, Anne; Brisseau, Jean-Marie; Blanche, Stéphane; Lortholary, Olivier; Fieschi, Claire; Emile, Jean-François; Boisson-Dupuis, Stéphanie; Al-Muhsen, Saleh; Woda, Bruce; Newburger, Peter E; Condino-Neto, Antonio; Dinauer, Mary C; Abel, Laurent; Casanova, Jean-Laurent

    2011-01-01

    Germline mutations in CYBB, the human gene encoding the gp91phox subunit of the phagocyte NADPH oxidase, impair the respiratory burst of all types of phagocytes and result in X-linked chronic granulomatous disease (CGD). We report here two kindreds in which otherwise healthy male adults developed X-linked recessive Mendelian susceptibility to mycobacterial disease (MSMD) syndromes. These patients had previously unknown mutations in CYBB that resulted in an impaired respiratory burst in monocyte-derived macrophages but not in monocytes or granulocytes. The macrophage-specific functional consequences of the germline mutation resulted from cell-specific impairment in the assembly of the NADPH oxidase. This ‘experiment of nature’ indicates that CYBB is associated with MSMD and demonstrates that the respiratory burst in human macrophages is a crucial mechanism for protective immunity to tuberculous mycobacteria. PMID:21278736

  7. Germline Manipulation and Our Future Worlds.

    Science.gov (United States)

    Harris, John

    2015-01-01

    Two genetic technologies capable of making heritable changes to the human genome have revived interest in, and in some quarters a very familiar panic concerning, so-called germline interventions. These technologies are: most recently the use of CRISPR/Cas9 to edit genes in non-viable IVF zygotes and Mitochondrial Replacement Therapy (MRT) the use of which was approved in principle in a landmark vote earlier this year by the United Kingdom Parliament. The possibility of using either of these techniques in humans has encountered the most violent hostility and suspicion. However it is important to be aware that much of this hostility dates back to the fears associated with In Vitro Fertilization (IVF) and other reproductive technologies and by cloning; fears which were baseless at the time concerning both IVF and cloning the use of both of which have proved to be highly beneficial to humanity and which have been effectively regulated and controlled. This paper argues that CRISPR should by pursued through researh until it is safe enough for use in humans but there is no reason to suppose at this stage that such use will be unsafe or unethical (Collins 2015).

  8. Germline TERT promoter mutations are rare in familial melanoma

    DEFF Research Database (Denmark)

    Harland, Mark; Petljak, Mia; Robles-Espinoza, Carla Daniela

    2016-01-01

    Germline CDKN2A mutations occur in 40 % of 3-or-more case melanoma families while mutations of CDK4, BAP1, and genes involved in telomere function (ACD, TERF2IP, POT1), have also been implicated in melanomagenesis. Mutation of the promoter of the telomerase reverse transcriptase (TERT) gene (c.-57...... T>G variant) has been reported in one family. We tested for the TERT promoter variant in 675 multicase families wild-type for the known high penetrance familial melanoma genes, 1863 UK population-based melanoma cases and 529 controls. Germline lymphocyte telomere length was estimated in carriers....... The c.-57 T>G TERT promoter variant was identified in one 7-case family with multiple primaries and early age of onset (earliest, 15 years) but not among population cases or controls. One family member had multiple primary melanomas, basal cell carcinomas and a bladder tumour. The blood leukocyte...

  9. Exploration of the Germline Genome of the Ciliate Chilodonella uncinata through Single-Cell Omics (Transcriptomics and Genomics

    Directory of Open Access Journals (Sweden)

    Xyrus X. Maurer-Alcalá

    2018-01-01

    Full Text Available Separate germline and somatic genomes are found in numerous lineages across the eukaryotic tree of life, often separated into distinct tissues (e.g., in plants, animals, and fungi or distinct nuclei sharing a common cytoplasm (e.g., in ciliates and some foraminifera. In ciliates, germline-limited (i.e., micronuclear-specific DNA is eliminated during the development of a new somatic (i.e., macronuclear genome in a process that is tightly linked to large-scale genome rearrangements, such as deletions and reordering of protein-coding sequences. Most studies of germline genome architecture in ciliates have focused on the model ciliates Oxytricha trifallax, Paramecium tetraurelia, and Tetrahymena thermophila, for which the complete germline genome sequences are known. Outside of these model taxa, only a few dozen germline loci have been characterized from a limited number of cultivable species, which is likely due to difficulties in obtaining sufficient quantities of “purified” germline DNA in these taxa. Combining single-cell transcriptomics and genomics, we have overcome these limitations and provide the first insights into the structure of the germline genome of the ciliate Chilodonella uncinata, a member of the understudied class Phyllopharyngea. Our analyses reveal the following: (i large gene families contain a disproportionate number of genes from scrambled germline loci; (ii germline-soma boundaries in the germline genome are demarcated by substantial shifts in GC content; (iii single-cell omics techniques provide large-scale quality germline genome data with limited effort, at least for ciliates with extensively fragmented somatic genomes. Our approach provides an efficient means to understand better the evolution of genome rearrangements between germline and soma in ciliates.

  10. Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human.

    Science.gov (United States)

    MacRae, Sheila L; Zhang, Quanwei; Lemetre, Christophe; Seim, Inge; Calder, Robert B; Hoeijmakers, Jan; Suh, Yousin; Gladyshev, Vadim N; Seluanov, Andrei; Gorbunova, Vera; Vijg, Jan; Zhang, Zhengdong D

    2015-04-01

    Genome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM genes appeared to be strongly conserved, with copy number variation in only four genes. Interestingly, we found NMR to have a higher copy number of CEBPG, a regulator of DNA repair, and TINF2, a protector of telomere integrity. NMR, as well as human, was also found to have a lower rate of germline nucleotide substitution than the mouse. Together, the data suggest that the long-lived NMR, as well as human, has more robust GM than mouse and identifies new targets for the analysis of the exceptional longevity of the NMR. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  11. A germline FANCA alteration that is associated with increased sensitivity to DNA damaging agents.

    Science.gov (United States)

    Wilkes, David C; Sailer, Verena; Xue, Hui; Cheng, Hongwei; Collins, Colin C; Gleave, Martin; Wang, Yuzhuo; Demichelis, Francesca; Beltran, Himisha; Rubin, Mark A; Rickman, David S

    2017-09-01

    Defects in genes involved in DNA damage repair (DDR) pathway are emerging as novel biomarkers and targets for new prostate cancer drug therapies. A previous report revealed an association between an exceptional response to cisplatin treatment and a somatic loss of heterozygosity (LOH) of FANCA in a patient with metastatic prostate cancer who also harbored a germline FANCA variant (S1088F). Although germline FANCA mutations are the most frequent alterations in patients with Fanconi anemia, germline alterations are less common in prostate cancer. We hypothesized that the germline S1088F FANCA variant in combination with FANCA LOH was deleterious for FANCA function and contributed to the patient's exceptional response to cisplatin. We show that although it properly localizes to the nucleus, the S1088F FANCA mutant protein disrupts the FANC protein complex resulting in increased sensitivity to DNA damaging agents. Because molecular stratification is emerging as a strategy for treating men with metastatic, castrate-resistant prostate cancer harboring specific DDR gene defects, our findings suggest that more biomarker studies are needed to better define clinically relevant germline and somatic alterations. © 2017 Wilkes et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Genotype and phenotype spectrum of NRAS germline variants

    NARCIS (Netherlands)

    Altmuller, F.; Lissewski, C.; Bertola, D.; Flex, E.; Stark, Z.; Spranger, S.; Baynam, G.; Buscarilli, M.; Dyack, S.; Gillis, J.; Yntema, H.G.; Pantaleoni, F.; Loon, R.L. van; MacKay, S.; Mina, K.; Schanze, I.; Tan, T.Y.; Walsh, M.; White, S.M.; Niewisch, M.R.; Garcia-Minaur, S.; Plaza, D.; Ahmadian, M.R.; Cave, H.; Tartaglia, M.; Zenker, M.

    2017-01-01

    RASopathies comprise a group of disorders clinically characterized by short stature, heart defects, facial dysmorphism, and varying degrees of intellectual disability and cancer predisposition. They are caused by germline variants in genes encoding key components or modulators of the highly

  13. Heterozygous Germline Mutations in the CBL Tumor-Suppressor Gene Cause a Noonan Syndrome-like Phenotype

    Science.gov (United States)

    Martinelli, Simone; De Luca, Alessandro; Stellacci, Emilia; Rossi, Cesare; Checquolo, Saula; Lepri, Francesca; Caputo, Viviana; Silvano, Marianna; Buscherini, Francesco; Consoli, Federica; Ferrara, Grazia; Digilio, Maria C.; Cavaliere, Maria L.; van Hagen, Johanna M.; Zampino, Giuseppe; van der Burgt, Ineke; Ferrero, Giovanni B.; Mazzanti, Laura; Screpanti, Isabella; Yntema, Helger G.; Nillesen, Willy M.; Savarirayan, Ravi; Zenker, Martin; Dallapiccola, Bruno; Gelb, Bruce D.; Tartaglia, Marco

    2010-01-01

    RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies. PMID:20619386

  14. Germline RAD51B truncating mutation in a family with cutaneous melanoma

    DEFF Research Database (Denmark)

    Wadt, Karin A W; Aoude, Lauren G; Golmard, Lisa

    2015-01-01

    Known melanoma predisposition genes only account for around 40% of high-density melanoma families. Other rare mutations are likely to play a role in melanoma predisposition. RAD51B plays an important role in DNA repair through homologous recombination, and inactivation of RAD51B has been implicated...... in tumorigenesis. Thus RAD51B is a good candidate melanoma susceptibility gene, and previously, a germline splicing mutation in RAD51B has been identified in a family with early-onset breast cancer. In order to find genetic variants associated with melanoma predisposition, whole-exome sequencing was carried out...... on blood samples from a three-case cutaneous melanoma family. We identified a novel germline RAD51B nonsense mutation, and we demonstrate reduced expression of RAD51B in melanoma cells indicating inactivation of RAD51B. This is only the second report of a germline truncating RAD51B mutation. While...

  15. Discovery of the First Germline-Restricted Gene by Subtractive Transcriptomic Analysis in the Zebra Finch, Taeniopygia guttata.

    Science.gov (United States)

    Biederman, Michelle K; Nelson, Megan M; Asalone, Kathryn C; Pedersen, Alyssa L; Saldanha, Colin J; Bracht, John R

    2018-05-21

    Developmentally programmed genome rearrangements are rare in vertebrates, but have been reported in scattered lineages including the bandicoot, hagfish, lamprey, and zebra finch (Taeniopygia guttata) [1]. In the finch, a well-studied animal model for neuroendocrinology and vocal learning [2], one such programmed genome rearrangement involves a germline-restricted chromosome, or GRC, which is found in germlines of both sexes but eliminated from mature sperm [3, 4]. Transmitted only through the oocyte, it displays uniparental female-driven inheritance, and early in embryonic development is apparently eliminated from all somatic tissue in both sexes [3, 4]. The GRC comprises the longest finch chromosome at over 120 million base pairs [3], and previously the only known GRC-derived sequence was repetitive and non-coding [5]. Because the zebra finch genome project was sourced from male muscle (somatic) tissue [6], the remaining genomic sequence and protein-coding content of the GRC remain unknown. Here we report the first protein-coding gene from the GRC: a member of the α-soluble N-ethylmaleimide sensitive fusion protein (NSF) attachment protein (α-SNAP) family hitherto missing from zebra finch gene annotations. In addition to the GRC-encoded α-SNAP, we find an additional paralogous α-SNAP residing in the somatic genome (a somatolog)-making the zebra finch the first example in which α-SNAP is not a single-copy gene. We show divergent, sex-biased expression for the paralogs and also that positive selection is detectable across the bird α-SNAP lineage, including the GRC-encoded α-SNAP. This study presents the identification and evolutionary characterization of the first protein-coding GRC gene in any organism. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer

    Science.gov (United States)

    Halabi, Najeeb M.; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G.; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A.; Malek, Joel A.; Rafii, Arash

    2016-01-01

    Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies. PMID:26735499

  17. Stem cells are units of natural selection for tissue formation, for germline development, and in cancer development.

    Science.gov (United States)

    Weissman, Irving L

    2015-07-21

    It is obvious that natural selection operates at the level of individuals and collections of individuals. Nearly two decades ago we showed that in multi-individual colonies of protochordate colonial tunicates sharing a blood circulation, there exists an exchange of somatic stem cells and germline stem cells, resulting in somatic chimeras and stem cell competitions for gonadal niches. Stem cells are unlike other cells in the body in that they alone self-renew, so that they form clones that are perpetuated for the life of the organism. Stem cell competitions have allowed the emergence of competitive somatic and germline stem cell clones. Highly successful germline stem cells usually outcompete less successful competitors both in the gonads of the genotype partner from which they arise and in the gonads of the natural parabiotic partners. Therefore, natural selection also operates at the level of germline stem cell clones. In the colonial tunicate Botryllus schlosseri the formation of natural parabionts is prevented by a single-locus highly polymorphic histocompatibility gene called Botryllus histocompatibility factor. This limits germline stem cell predation to kin, as the locus has hundreds of alleles. We show that in mice germline stem cells compete for gonad niches, and in mice and humans, blood-forming stem cells also compete for bone marrow niches. We show that the clonal progression from blood-forming stem cells to acute leukemias by successive genetic and epigenetic events in blood stem cells also involves competition and selection between clones and propose that this is a general theme in cancer.

  18. Complete Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and Analyses Integration Sites Define a New Human Endogenous Virus with Potential to Reactivate as an Emerging Infection.

    Science.gov (United States)

    Tweedy, Joshua; Spyrou, Maria Alexandra; Pearson, Max; Lassner, Dirk; Kuhl, Uwe; Gompels, Ursula A

    2016-01-15

    Human herpesvirus-6A and B (HHV-6A, HHV-6B) have recently defined endogenous genomes, resulting from integration into the germline: chromosomally-integrated "CiHHV-6A/B". These affect approximately 1.0% of human populations, giving potential for virus gene expression in every cell. We previously showed that CiHHV-6A was more divergent than CiHHV-6B by examining four genes in 44 European CiHHV-6A/B cardiac/haematology patients. There was evidence for gene expression/reactivation, implying functional non-defective genomes. To further define the relationship between HHV-6A and CiHHV-6A we used next-generation sequencing to characterize genomes from three CiHHV-6A cardiac patients. Comparisons to known exogenous HHV-6A showed CiHHV-6A genomes formed a separate clade; including all 85 non-interrupted genes and necessary cis-acting signals for reactivation as infectious virus. Greater single nucleotide polymorphism (SNP) density was defined in 16 genes and the direct repeats (DR) terminal regions. Using these SNPs, deep sequencing analyses demonstrated superinfection with exogenous HHV-6A in two of the CiHHV-6A patients with recurrent cardiac disease. Characterisation of the integration sites in twelve patients identified the human chromosome 17p subtelomere as a prevalent site, which had specific repeat structures and phylogenetically related CiHHV-6A coding sequences indicating common ancestral origins. Overall CiHHV-6A genomes were similar, but distinct from known exogenous HHV-6A virus, and have the capacity to reactivate as emerging virus infections.

  19. Germline fumarate hydratase mutations in patients with ovarian mucinous cystadenoma

    DEFF Research Database (Denmark)

    Ylisaukko-oja, Sanna K.; Cybulski, Cezary; Lehtonen, Rainer

    2006-01-01

    Germline mutations in the fumarate hydratase (FH) gene were recently shown to predispose to the dominantly inherited syndrome, hereditary leiomyomatosis and renal cell cancer (HLRCC). HLRCC is characterized by benign leiomyomas of the skin and the uterus, renal cell carcinoma, and uterine...... leiomyosarcoma. The aim of this study was to identify new families with FH mutations, and to further examine the tumor spectrum associated with FH mutations. FH germline mutations were screened from 89 patients with RCC, skin leiomyomas or ovarian tumors. Subsequently, 13 ovarian and 48 bladder carcinomas were...

  20. Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function.

    Directory of Open Access Journals (Sweden)

    Yichang Chen

    2016-07-01

    Full Text Available Concerns about the safety of Bisphenol A, a chemical found in plastics, receipts, food packaging and more, have led to its replacement with substitutes now found in a multitude of consumer products. However, several popular BPA-free alternatives, such as Bisphenol S, share a high degree of structural similarity with BPA, suggesting that these substitutes may disrupt similar developmental and reproductive pathways. We compared the effects of BPA and BPS on germline and reproductive functions using the genetic model system Caenorhabditis elegans. We found that, similarly to BPA, BPS caused severe reproductive defects including germline apoptosis and embryonic lethality. However, meiotic recombination, targeted gene expression, whole transcriptome and ontology analyses as well as ToxCast data mining all indicate that these effects are partly achieved via mechanisms distinct from BPAs. These findings therefore raise new concerns about the safety of BPA alternatives and the risk associated with human exposure to mixtures.

  1. Prevalence of deleterious ATM germline mutations in gastric cancer patients.

    Science.gov (United States)

    Huang, Dong-Sheng; Tao, Hou-Quan; He, Xu-Jun; Long, Ming; Yu, Sheng; Xia, Ying-Jie; Wei, Zhang; Xiong, Zikai; Jones, Sian; He, Yiping; Yan, Hai; Wang, Xiaoyue

    2015-12-01

    Besides CDH1, few hereditary gastric cancer predisposition genes have been previously reported. In this study, we discovered two germline ATM mutations (p.Y1203fs and p.N1223S) in a Chinese family with a history of gastric cancer by screening 83 cancer susceptibility genes. Using a published exome sequencing dataset, we found deleterious germline mutations of ATM in 2.7% of 335 gastric cancer patients of different ethnic origins. The frequency of deleterious ATM mutations in gastric cancer patients is significantly higher than that in general population (p=0.0000435), suggesting an association of ATM mutations with gastric cancer predisposition. We also observed biallelic inactivation of ATM in tumors of two gastric cancer patients. Further evaluation of ATM mutations in hereditary gastric cancer will facilitate genetic testing and risk assessment.

  2. Germline but macrophage-tropic CYBB mutations in kindreds with X-linked predisposition to tuberculous mycobacterial diseases

    OpenAIRE

    2011-01-01

    Abstract Germline mutations in the human CYBB gene, encoding the gp91phox subunit of the phagocyte NADPH oxidase, impair the respiratory burst of phagocytes and result in X-linked chronic granulomatous disease. We report two kindreds in which otherwise healthy male adults show X-linked recessive Mendelian susceptibility to mycobacterial diseases. These patients harbor mutations in CYBB that profoundly reduce the respiratory burst in monocyte-derived macrophages, but not in monocyte...

  3. Mutation Detection in Patients With Advanced Cancer by Universal Sequencing of Cancer-Related Genes in Tumor and Normal DNA vs Guideline-Based Germline Testing.

    Science.gov (United States)

    Mandelker, Diana; Zhang, Liying; Kemel, Yelena; Stadler, Zsofia K; Joseph, Vijai; Zehir, Ahmet; Pradhan, Nisha; Arnold, Angela; Walsh, Michael F; Li, Yirong; Balakrishnan, Anoop R; Syed, Aijazuddin; Prasad, Meera; Nafa, Khedoudja; Carlo, Maria I; Cadoo, Karen A; Sheehan, Meg; Fleischut, Megan H; Salo-Mullen, Erin; Trottier, Magan; Lipkin, Steven M; Lincoln, Anne; Mukherjee, Semanti; Ravichandran, Vignesh; Cambria, Roy; Galle, Jesse; Abida, Wassim; Arcila, Marcia E; Benayed, Ryma; Shah, Ronak; Yu, Kenneth; Bajorin, Dean F; Coleman, Jonathan A; Leach, Steven D; Lowery, Maeve A; Garcia-Aguilar, Julio; Kantoff, Philip W; Sawyers, Charles L; Dickler, Maura N; Saltz, Leonard; Motzer, Robert J; O'Reilly, Eileen M; Scher, Howard I; Baselga, Jose; Klimstra, David S; Solit, David B; Hyman, David M; Berger, Michael F; Ladanyi, Marc; Robson, Mark E; Offit, Kenneth

    2017-09-05

    Guidelines for cancer genetic testing based on family history may miss clinically actionable genetic changes with established implications for cancer screening or prevention. To determine the proportion and potential clinical implications of inherited variants detected using simultaneous sequencing of the tumor and normal tissue ("tumor-normal sequencing") compared with genetic test results based on current guidelines. From January 2014 until May 2016 at Memorial Sloan Kettering Cancer Center, 10 336 patients consented to tumor DNA sequencing. Since May 2015, 1040 of these patients with advanced cancer were referred by their oncologists for germline analysis of 76 cancer predisposition genes. Patients with clinically actionable inherited mutations whose genetic test results would not have been predicted by published decision rules were identified. Follow-up for potential clinical implications of mutation detection was through May 2017. Tumor and germline sequencing compared with the predicted yield of targeted germline sequencing based on clinical guidelines. Proportion of clinically actionable germline mutations detected by universal tumor-normal sequencing that would not have been detected by guideline-directed testing. Of 1040 patients, the median age was 58 years (interquartile range, 50.5-66 years), 65.3% were male, and 81.3% had stage IV disease at the time of genomic analysis, with prostate, renal, pancreatic, breast, and colon cancer as the most common diagnoses. Of the 1040 patients, 182 (17.5%; 95% CI, 15.3%-19.9%) had clinically actionable mutations conferring cancer susceptibility, including 149 with moderate- to high-penetrance mutations; 101 patients tested (9.7%; 95% CI, 8.1%-11.7%) would not have had these mutations detected using clinical guidelines, including 65 with moderate- to high-penetrance mutations. Frequency of inherited mutations was related to case mix, stage, and founder mutations. Germline findings led to discussion or initiation of

  4. Germline stem cell gene PIWIL2 mediates DNA repair through relaxation of chromatin.

    Directory of Open Access Journals (Sweden)

    De-Tao Yin

    Full Text Available DNA damage response (DDR is an intrinsic barrier of cell to tumorigenesis initiated by genotoxic agents. However, the mechanisms underlying the DDR are not completely understood despite of extensive investigation. Recently, we have reported that ectopic expression of germline stem cell gene PIWIL2 is associated with tumor stem cell development, although the underlying mechanisms are largely unknown. Here we show that PIWIL2 is required for the repair of DNA-damage induced by various types of genotoxic agents. Upon ultraviolet (UV irradiation, silenced PIWIL2 gene in normal human fibroblasts was transiently activated after treatment with UV light. This activation was associated with DNA repair, because Piwil2-deficienct mouse embryonic fibroblasts (mili(-/- MEFs were defective in cyclobutane pyrimidine dimers (CPD repair after UV treatment. As a result, the UV-treated mili(-/- MEFs were more susceptible to apoptosis, as characterized by increased levels of DNA damage-associated apoptotic proteins, such as active caspase-3, cleaved Poly (ADP-ribose polymerase (PARP and Bik. The impaired DNA repair in the mili(-/- MEFs was associated with the reductions of histone H3 acetylation and chromatin relaxation, although the DDR pathway downstream chromatin relaxation appeared not to be directly affected by Piwil2. Moreover, guanine-guanine (Pt-[GG] and double strand break (DSB repair were also defective in the mili(-/- MEFs treated by genotoxic chemicals Cisplatin and ionizing radiation (IR, respectively. The results indicate that Piwil2 can mediate DNA repair through an axis of Piwil2 → histone acetylation → chromatin relaxation upstream DDR pathways. The findings reveal a new role for Piwil2 in DNA repair and suggest that Piwil2 may act as a gatekeeper against DNA damage-mediated tumorigenesis.

  5. DAF-16 and TCER-1 Facilitate Adaptation to Germline Loss by Restoring Lipid Homeostasis and Repressing Reproductive Physiology in C. elegans

    Science.gov (United States)

    Amrit, Francis Raj Gandhi; Steenkiste, Elizabeth Marie; Ratnappan, Ramesh; Chen, Shaw-Wen; McClendon, T. Brooke; Kostka, Dennis; Yanowitz, Judith; Olsen, Carissa Perez; Ghazi, Arjumand

    2016-01-01

    Elimination of the proliferating germline extends lifespan in C. elegans. This phenomenon provides a unique platform to understand how complex metazoans retain metabolic homeostasis when challenged with major physiological perturbations. Here, we demonstrate that two conserved transcription regulators essential for the longevity of germline-less adults, DAF-16/FOXO3A and TCER-1/TCERG1, concurrently enhance the expression of multiple genes involved in lipid synthesis and breakdown, and that both gene classes promote longevity. Lipidomic analyses revealed that key lipogenic processes, including de novo fatty acid synthesis, triglyceride production, desaturation and elongation, are augmented upon germline removal. Our data suggest that lipid anabolic and catabolic pathways are coordinately augmented in response to germline loss, and this metabolic shift helps preserve lipid homeostasis. DAF-16 and TCER-1 also perform essential inhibitory functions in germline-ablated animals. TCER-1 inhibits the somatic gene-expression program that facilitates reproduction and represses anti-longevity genes, whereas DAF-16 impedes ribosome biogenesis. Additionally, we discovered that TCER-1 is critical for optimal fertility in normal adults, suggesting that the protein acts as a switch supporting reproductive fitness or longevity depending on the presence or absence of the germline. Collectively, our data offer insights into how organisms adapt to changes in reproductive status, by utilizing the activating and repressive functions of transcription factors and coordinating fat production and degradation. PMID:26862916

  6. Prospective Evaluation of Germline Alterations in Patients With Exocrine Pancreatic Neoplasms.

    Science.gov (United States)

    Lowery, Maeve A; Wong, Winston; Jordan, Emmet J; Lee, Jonathan W; Kemel, Yelena; Vijai, Joseph; Mandelker, Diana; Zehir, Ahmet; Capanu, Marinela; Salo-Mullen, Erin; Arnold, Angela G; Yu, Kenneth H; Varghese, Anna M; Kelsen, David P; Brenner, Robin; Kaufmann, Erica; Ravichandran, Vignesh; Mukherjee, Semanti; Berger, Michael F; Hyman, David M; Klimstra, David S; Abou-Alfa, Ghassan K; Tjan, Catherine; Covington, Christina; Maynard, Hannah; Allen, Peter J; Askan, Gokce; Leach, Steven D; Iacobuzio-Donahue, Christine A; Robson, Mark E; Offit, Kenneth; Stadler, Zsofia K; O'Reilly, Eileen M

    2018-02-28

    Identification of pathogenic germline alterations (PGAs) has important clinical and therapeutic implications in pancreas cancer. We performed comprehensive germline testing (GT) in an unselected prospective cohort of patients with exocrine pancreatic neoplasms with genotype and phenotype association to facilitate identification of prognostic and/or predictive biomarkers and examine potential therapeutic implications. Six hundred fifteen unselected patients with exocrine pancreatic neoplasms were prospectively consented for somatic tumor and matched sample profiling for 410-468 genes. GT for PGAs in 76 genes associated with cancer susceptibility was performed in an "identified" manner in 356 (57.9%) patients and in an "anonymized" manner in 259 (42.1%) patients, using an institutional review board-approved protocol. Detailed clinical and pathological features, response to platinum, and overall survival (OS) were collected for the identified cohort. OS was analyzed with Kaplan-Meier curves. PGAs were present in 122 (19.8%) of 615 patients involving 24 different genes, including BRCA1/2, ATM, PALB2, and multiple additional genes associated with the DNA damage response pathway. Of 122 patients with germline alterations, 41.8% did not meet current guidelines for GT. The difference in median OS was not statistically significant between patients with and without PGA (50.8 months, 95% confidence interval = 34.5 to not reached, two-sided P = .94). Loss of heterozygosity was found in 60.0% of BRCA1/2. PGAs frequently occur in pancreas exocrine neoplasms and involve multiple genes beyond those previously associated with hereditary pancreatic cancer. These PGAs are therapeutically actionable in about 5% to 10% of patients. These data support routinely offering GT in all pancreatic ductal adenocarcimona patients with a broad panel of known hereditary cancer predisposition genes.

  7. Production of germline transgenic prairie voles (Microtus ochrogaster) using lentiviral vectors.

    Science.gov (United States)

    Donaldson, Zoe R; Yang, Shang-Hsun; Chan, Anthony W S; Young, Larry J

    2009-12-01

    The study of alternative model organisms has yielded tremendous insights into the regulation of behavioral and physiological traits not displayed by more widely used animal models, such as laboratory rats and mice. In particular, comparative approaches often exploit species ideally suited for investigating specific phenomenon. For instance, comparative studies of socially monogamous prairie voles and polygamous meadow voles have been instrumental toward gaining an understanding of the genetic and neurobiological basis of social bonding. However, laboratory studies of less commonly used organisms, such as prairie voles, have been limited by a lack of genetic tools, including the ability to manipulate the genome. Here, we show that lentiviral vector-mediated transgenesis is a rapid and efficient approach for creating germline transgenics in alternative laboratory rodents. Injection of a green fluorescent protein (GFP)-expressing lentiviral vector into the perivitelline space of 23 single-cell embryos yielded three live offspring (13 %), one of which (33%) contained germline integration of a GFP transgene driven by the human ubiquitin-C promoter. In comparison, transfer of 23 uninjected embryos yielded six live offspring (26%). Green fluorescent protein is present in all tissues examined and is expressed widely in the brain. The GFP transgene is heritable and stably expressed until at least the F(2) generation. This technology has the potential to allow investigation of specific gene candidates in prairie voles and provides a general protocol to pursue germline transgenic manipulation in many different rodent species.

  8. Four novel germline mutations in the MLH1 and PMS2 mismatch repair genes in patients with hereditary nonpolyposis colorectal cancer.

    Science.gov (United States)

    Montazer Haghighi, Mahdi; Radpour, Ramin; Aghajani, Katayoun; Zali, Narges; Molaei, Mahsa; Zali, Mohammad Reza

    2009-08-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is the most common cause of early onset hereditary colorectal cancer. In the majority of HNPCC families, microsatellite instability (MSI) and germline mutation in one of the DNA mismatch repair (MMR) genes are found. The entire coding sequence of MMR genes (MLH1, MLH2, MLH6, and PMS2) was analyzed using direct sequencing. Also, tumor tests were done as MSI and immunohistochemistry testing. We were able to find three novel MLH1 and one novel PMS2 germline mutations in three Iranian HNPCC patients. The first was a transversion mutation c.346A>C (T116P) and happened in the highly conserved HATPase-c region of MLH1 protein. The second was a transversion mutation c.736A>T (I246L), which caused an amino acid change of isoleucine to leucine. The third mutation (c.2145,6 delTG) was frameshift and resulted in an immature stop codon in five codons downstream. All of these three mutations were detected in the MLH1 gene. The other mutation was a transition mutation, c.676G>A (G207E), which has been found in exon six of the PMS2 gene and caused an amino acid change of glycine to glutamic acid. MSI assay revealed high instability in microsatellite for two patients and microsatellite stable for one patient. In all patients, an abnormal expression of the MMR proteins in HNPCC was related to the above novel mutations.

  9. Xeroderma Pigmentosum: Low Prevalence of Germline XPA Mutations in a Brazilian XP Population

    Directory of Open Access Journals (Sweden)

    Karina Miranda Santiago

    2015-04-01

    Full Text Available Xeroderma pigmentosum (XP is a rare autosomal recessive disorder characterized by DNA repair defects that cause photophobia, sunlight-induced cancers, and neurodegeneration. Prevalence of germline mutations in the nucleotide excision repair gene XPA vary significantly in different populations. No Brazilian patients have been reported to carry a germline mutation in this gene. In this study, the germline mutational status of XPA was determined in Brazilian patients exhibiting major clinical features of XP syndrome. The study was conducted on 27 unrelated patients from select Brazilian families. A biallelic inactivating transition mutation c.619C>T (p.Arg207Ter was identified in only one patient with a history of neurological impairment and mild skin abnormalities. These findings suggest that XP syndrome is rarely associated with inherited disease-causing XPA mutations in the Brazilian population. Additionally, this report demonstrates the effectiveness of genotype-phenotype correlation as a valuable tool to guide direct genetic screening.

  10. Xeroderma pigmentosum: low prevalence of germline XPA mutations in a Brazilian XP population.

    Science.gov (United States)

    Santiago, Karina Miranda; França de Nóbrega, Amanda; Rocha, Rafael Malagoli; Rogatto, Silvia Regina; Achatz, Maria Isabel

    2015-04-22

    Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder characterized by DNA repair defects that cause photophobia, sunlight-induced cancers, and neurodegeneration. Prevalence of germline mutations in the nucleotide excision repair gene XPA vary significantly in different populations. No Brazilian patients have been reported to carry a germline mutation in this gene. In this study, the germline mutational status of XPA was determined in Brazilian patients exhibiting major clinical features of XP syndrome. The study was conducted on 27 unrelated patients from select Brazilian families. A biallelic inactivating transition mutation c.619C>T (p.Arg207Ter) was identified in only one patient with a history of neurological impairment and mild skin abnormalities. These findings suggest that XP syndrome is rarely associated with inherited disease-causing XPA mutations in the Brazilian population. Additionally, this report demonstrates the effectiveness of genotype-phenotype correlation as a valuable tool to guide direct genetic screening.

  11. Complete Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and Analyses Integration Sites Define a New Human Endogenous Virus with Potential to Reactivate as an Emerging Infection

    Science.gov (United States)

    Tweedy, Joshua; Spyrou, Maria Alexandra; Pearson, Max; Lassner, Dirk; Kuhl, Uwe; Gompels, Ursula A.

    2016-01-01

    Human herpesvirus-6A and B (HHV-6A, HHV-6B) have recently defined endogenous genomes, resulting from integration into the germline: chromosomally-integrated “CiHHV-6A/B”. These affect approximately 1.0% of human populations, giving potential for virus gene expression in every cell. We previously showed that CiHHV-6A was more divergent than CiHHV-6B by examining four genes in 44 European CiHHV-6A/B cardiac/haematology patients. There was evidence for gene expression/reactivation, implying functional non-defective genomes. To further define the relationship between HHV-6A and CiHHV-6A we used next-generation sequencing to characterize genomes from three CiHHV-6A cardiac patients. Comparisons to known exogenous HHV-6A showed CiHHV-6A genomes formed a separate clade; including all 85 non-interrupted genes and necessary cis-acting signals for reactivation as infectious virus. Greater single nucleotide polymorphism (SNP) density was defined in 16 genes and the direct repeats (DR) terminal regions. Using these SNPs, deep sequencing analyses demonstrated superinfection with exogenous HHV-6A in two of the CiHHV-6A patients with recurrent cardiac disease. Characterisation of the integration sites in twelve patients identified the human chromosome 17p subtelomere as a prevalent site, which had specific repeat structures and phylogenetically related CiHHV-6A coding sequences indicating common ancestral origins. Overall CiHHV-6A genomes were similar, but distinct from known exogenous HHV-6A virus, and have the capacity to reactivate as emerging virus infections. PMID:26784220

  12. Proven germline mosaicism in a father of two children with CHARGE syndrome.

    Science.gov (United States)

    Pauli, S; Pieper, L; Häberle, J; Grzmil, P; Burfeind, P; Steckel, M; Lenz, U; Michelmann, H W

    2009-05-01

    CHARGE syndrome is an autosomal dominant malformation syndrome caused by mutations in the CHD7 gene. The majority of cases are sporadic and only few familial cases have been reported. In these families, mosaicism in one parent, as well as parent- to-child transmission of a CHD7 mutation, has been described. In some further cases, germline mosaicism has been suggested. Here, we report the first case in which germline mosaicism could be demonstrated in a father of two affected children with CHARGE syndrome. The truncating mutation c.7302dupA in exon 34 of the CHD7 gene was found in both affected children but was not detected in parental lymphocytes. However, in DNA extracted from the father's spermatozoa, the c.7302dupA mutation could be identified. Furthermore, mutation analysis of DNA isolated from 59 single spermatozoa revealed that the c.7302dupA mutation occurs in 16 spermatozoa, confirming germline mosaicism in the father of the affected children. This result has a high impact for genetic counselling of the family and for their recurrence risk in further pregnancies.

  13. A novel heterozygous germline deletion in MSH2 gene in a five generation Chinese family with Lynch syndrome

    OpenAIRE

    Wu, Bin; Ji, Wuyang; Liang, Shengran; Ling, Chao; You, Yan; Xu, Lai; Zhong, Min-Er; Xiao, Yi; Qiu, Hui-Zhong; Lu, Jun-Yang; Banerjee, Santasree

    2017-01-01

    Lynch syndrome (LS) is one of the most common familial forms of colorectal cancer predisposing syndrome with an autosomal dominant mode of inheritance. LS is caused by the germline mutations in DNA mismatch repair (MMR) genes including MSH2, MLH1, MSH6 and PMS2. Clinically, LS is characterized by high incidence of early-onset colorectal cancer as well as endometrial, small intestinal and urinary tract cancers, usually occur in the third to fourth decade of the life. Here we describe a five ge...

  14. C. elegans FOG-3/Tob can either promote or inhibit germline proliferation, depending on gene dosage and genetic context.

    Science.gov (United States)

    Snow, J J; Lee, M-H; Verheyden, J; Kroll-Conner, P L; Kimble, J

    2013-05-23

    Vertebrate Tob/BTG proteins inhibit cell proliferation when overexpressed in tissue-culture cells, and they can function as tumor suppressors in mice. The single Caenorhabditis elegans Tob/BTG ortholog, FOG-3, by contrast, was identified from its loss-of-function phenotype as a regulator of sperm fate specification. Here we report that FOG-3 also regulates proliferation in the germline tissue. We first demonstrate that FOG-3 is a positive regulator of germline proliferation. Thus, fog-3 null mutants possess fewer germ cells than normal, a modest but reproducible decrease observed for each of two distinct fog-3 null alleles. A similar decrease also occurred in fog-3/+ heterozygotes, again for both fog-3 alleles, revealing a haplo-insufficient effect on proliferation. Therefore, FOG-3 normally promotes proliferation, and two copies of the fog-3 gene are required for this function. We next overexpressed FOG-3 by removal of FBF, the collective term for FBF-1 and FBF-2, two nearly identical PUF RNA-binding proteins. We find that overexpressed FOG-3 blocks proliferation in fbf-1 fbf-2 mutants; whereas germ cells stop dividing and instead differentiate in fbf-1 fbf-2 double mutants, they continue to proliferate in fog-3; fbf-1 fbf-2 triple mutants. Therefore, like its vertebrate Tob/BTG cousins, overexpressed FOG-3 is 'antiproliferative'. Indeed, some fog-3; fbf-1 fbf-2 mutants possess small tumors, suggesting that FOG-3 can act as a tumor suppressor. Finally, we show that FOG-3 and FBF work together to promote tumor formation in animals carrying oncogenic Notch mutations. A similar effect was not observed when germline tumors were induced by manipulation of other regulators; therefore, this FOG-3 tumor-promoting effect is context dependent. We conclude that FOG-3 can either promote or inhibit proliferation in a manner that is sensitive to both genetic context and gene dosage. The discovery of these FOG-3 effects on proliferation has implications for our understanding of

  15. Comprehensive analysis of BRCA1, BRCA2 and TP53 germline mutation and tumor characterization: a portrait of early-onset breast cancer in Brazil.

    Directory of Open Access Journals (Sweden)

    Dirce Maria Carraro

    Full Text Available Germline mutations in BRCA1, BRCA2 and TP53 genes have been identified as one of the most important disease-causing issues in young breast cancer patients worldwide. The specific defective biological processes that trigger germline mutation-associated and -negative tumors remain unclear. To delineate an initial portrait of Brazilian early-onset breast cancer, we performed an investigation combining both germline and tumor analysis. Germline screening of the BRCA1, BRCA2, CHEK2 (c.1100delC and TP53 genes was performed in 54 unrelated patients <35 y; their tumors were investigated with respect to transcriptional and genomic profiles as well as hormonal receptors and HER2 expression/amplification. Germline mutations were detected in 12 out of 54 patients (22% [7 in BRCA1 (13%, 4 in BRCA2 (7% and one in TP53 (2% gene]. A cancer familial history was present in 31.4% of the unrelated patients, from them 43.7% were carriers for germline mutation (37.5% in BRCA1 and in 6.2% in the BRCA2 genes. Fifty percent of the unrelated patients with hormone receptor-negative tumors carried BRCA1 mutations, percentage increasing to 83% in cases with familial history of cancer. Over-representation of DNA damage-, cellular and cell cycle-related processes was detected in the up-regulated genes of BRCA1/2-associated tumors, whereas cell and embryo development-related processes were over-represented in the up-regulated genes of BRCA1/2-negative tumors, suggesting distinct mechanisms driving the tumorigenesis. An initial portrait of the early-onset breast cancer patients in Brazil was generated pointing out that hormone receptor-negative tumors and positive familial history are two major risk factors for detection of a BRCA1 germline mutation. Additionally, the data revealed molecular factors that potentially trigger the tumor development in young patients.

  16. Physical linkage of a human immunoglobulin heavy chain variable region gene segment to diversity and joining region elements

    International Nuclear Information System (INIS)

    Schroeder, H.W. Jr.; Walter, M.A.; Hofker, M.H.; Ebens, A.; Van Dijk, K.W.; Liao, L.C.; Cox, D.W.; Milner, E.C.B.; Perlmutter, R.M.

    1988-01-01

    Antibody genes are assembled from a series of germ-line gene segments that are juxtaposed during the maturation of B lymphocytes. Although diversification of the adult antibody repertoire results in large part from the combinatorial joining of these gene segments, a restricted set of antibody heavy chain variable (V H ), diversity (D H ), and joining (J H ) region gene segments appears preferentially in the human fetal repertoire. The authors report here that one of these early-expressed V H elements (termed V H 6) is the most 3' V H gene segment, positioned 77 kilobases on the 5' side of the J H locus and immediately adjacent to a set of previously described D H sequences. In addition to providing a physical map linking human V H , D H , and J H elements, these results support the view that the programmed development of the antibody V H repertoire is determined in part by the chromosomal position of these gene segments

  17. Fitness loss and germline mutations in barn swallows breeding in Chernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Ellegren, Hans; Lindgren, Gabriella; Primmer, C.R. [Swedish Univ. of Agricultural Sciences, Animal Breeding and Genetics Dept., Uppsala (Sweden); Moeller, A.P. [Universite Pierre et Marie Curie. Lab. d`Ecologie, Paris, 75 (France)

    1997-10-09

    The severe nuclear accident at Chernobyl in 1986 resulted in the worst reported accidental exposure of radioactive material to free-living organisms. Short-term effects on human populations inhabiting polluted areas include increased incidence of thyroid cancer, infant leukaemia, and congenital malformations in newborns. Two recent studies have reported, although with some controversy, that germline mutation rates were increased in humans and voles living close to Chernobyl, but little is known about the viability of the organisms affected. Here we report an increased frequency of partial albinism, a morphological aberration associated with a loss of fitness, among barn swallows, Hirundo rustica, breeding close to Chernobyl. Heretability estimates indicate that mutations causing albinism were at least partly of germline origin. Furthermore, evidence for an increased germline mutation rate was obtained from segregation analysis at two hypervariable microsatellite loci, indicating that mutation events in barn swallows from Chernobyl were two- to tenfold higher than in birds from control areas in Ukraine and Italy. (author).

  18. Fitness loss and germline mutations in barn swallows breeding in Chernobyl

    International Nuclear Information System (INIS)

    Ellegren, Hans; Lindgren, Gabriella; Primmer, C.R.; Moeller, A.P.

    1997-01-01

    The severe nuclear accident at Chernobyl in 1986 resulted in the worst reported accidental exposure of radioactive material to free-living organisms. Short-term effects on human populations inhabiting polluted areas include increased incidence of thyroid cancer, infant leukaemia, and congenital malformations in newborns. Two recent studies have reported, although with some controversy, that germline mutation rates were increased in humans and voles living close to Chernobyl, but little is known about the viability of the organisms affected. Here we report an increased frequency of partial albinism, a morphological aberration associated with a loss of fitness, among barn swallows, Hirundo rustica, breeding close to Chernobyl. Heretability estimates indicate that mutations causing albinism were at least partly of germline origin. Furthermore, evidence for an increased germline mutation rate was obtained from segregation analysis at two hypervariable microsatellite loci, indicating that mutation events in barn swallows from Chernobyl were two- to tenfold higher than in birds from control areas in Ukraine and Italy. (author)

  19. Tumor mismatch repair immunohistochemistry and DNA MLH1 methylation testing of patients with endometrial cancer diagnosed at age younger than 60 years optimizes triage for population-level germline mismatch repair gene mutation testing.

    Science.gov (United States)

    Buchanan, Daniel D; Tan, Yen Y; Walsh, Michael D; Clendenning, Mark; Metcalf, Alexander M; Ferguson, Kaltin; Arnold, Sven T; Thompson, Bryony A; Lose, Felicity A; Parsons, Michael T; Walters, Rhiannon J; Pearson, Sally-Ann; Cummings, Margaret; Oehler, Martin K; Blomfield, Penelope B; Quinn, Michael A; Kirk, Judy A; Stewart, Colin J; Obermair, Andreas; Young, Joanne P; Webb, Penelope M; Spurdle, Amanda B

    2014-01-10

    Clinicopathologic data from a population-based endometrial cancer cohort, unselected for age or family history, were analyzed to determine the optimal scheme for identification of patients with germline mismatch repair (MMR) gene mutations. Endometrial cancers from 702 patients recruited into the Australian National Endometrial Cancer Study (ANECS) were tested for MMR protein expression using immunohistochemistry (IHC) and for MLH1 gene promoter methylation in MLH1-deficient cases. MMR mutation testing was performed on germline DNA of patients with MMR-protein deficient tumors. Prediction of germline mutation status was compared for combinations of tumor characteristics, age at diagnosis, and various clinical criteria (Amsterdam, Bethesda, Society of Gynecologic Oncology, ANECS). Tumor MMR-protein deficiency was detected in 170 (24%) of 702 cases. Germline testing of 158 MMR-deficient cases identified 22 truncating mutations (3% of all cases) and four unclassified variants. Tumor MLH1 methylation was detected in 99 (89%) of 111 cases demonstrating MLH1/PMS2 IHC loss; all were germline MLH1 mutation negative. A combination of MMR IHC plus MLH1 methylation testing in women younger than 60 years of age at diagnosis provided the highest positive predictive value for the identification of mutation carriers at 46% versus ≤ 41% for any other criteria considered. Population-level identification of patients with MMR mutation-positive endometrial cancer is optimized by stepwise testing for tumor MMR IHC loss in patients younger than 60 years, tumor MLH1 methylation in individuals with MLH1 IHC loss, and germline mutations in patients exhibiting loss of MSH6, MSH2, or PMS2 or loss of MLH1/PMS2 with absence of MLH1 methylation.

  20. Immunoglobulin variable region sequences of two human monoclonal antibodies directed to an onco-developmental carbohydrate antigen, lactotetraosylceramide (LcOse4Cer).

    Science.gov (United States)

    Yago, K; Zenita, K; Ohwaki, I; Harada, R; Nozawa, S; Tsukazaki, K; Iwamori, M; Endo, N; Yasuda, N; Okuma, M

    1993-11-01

    A human monoclonal antibody, 11-50, was generated and was shown to recognize an onco-developmental carbohydrate antigen, LcOse4Cer. The isotype of this antibody was IgM, lambda, similar to the previously known human anti-LcOse4 antibodies, such as IgMWOO and HMST-1. We raised a murine anti-idiotypic antibody G3 (IgG1, kappa) against 11-50, and tested its reactivity towards the affinity purified human polyclonal anti-LcOse4 antibodies prepared from pooled human sera using a Gal beta 1-->3GlcNAc beta-immobilized column. The results indicated that at least a part of the human polyclonal anti-LcOse4 antibodies shared the G3 idiotype with 11-50. We further analyzed the sequence of variable regions of the two anti-LcOse4 antibodies, 11-50 and HMST-1. Sequence analysis of the heavy chain variable regions indicated that the VH regions of these two antibodies were highly homologous to each other (93.5% at the nucleic acid level), and these antibodies utilized the germline genes VH1.9III and hv3005f3 as the VH segments, which are closely related germline genes of the VHIII family. It was noted that these germline VH genes are frequently utilized in fetal B cells. The JH region of both antibodies was encoded by the JH4 gene. For the light chain, the V lambda segments of the two antibodies were 96.3% homologous to each other at the nucleic acid level. The V lambda segments of both antibodies showed the highest homology to the rearranged V lambda gene called V lambda II.DS among reported V lambda genes, while the exact germline V lambda genes encoding the two antibodies were not yet registered in available sequence databanks. The amino acid sequences of the J lambda segments of both antibodies were identical. These results indicate that the two human antibodies recognizing the onco-developmental carbohydrate antigen Lc4 are encoded by the same or very homologous germline genes.

  1. Germline progenitors escape the widespread phenomenon of homolog pairing during Drosophila development.

    Directory of Open Access Journals (Sweden)

    Eric F Joyce

    Full Text Available Homolog pairing, which plays a critical role in meiosis, poses a potential risk if it occurs in inappropriate tissues or between nonallelic sites, as it can lead to changes in gene expression, chromosome entanglements, and loss-of-heterozygosity due to mitotic recombination. This is particularly true in Drosophila, which supports organismal-wide pairing throughout development. Discovered over a century ago, such extensive pairing has led to the perception that germline pairing in the adult gonad is an extension of the pairing established during embryogenesis and, therefore, differs from the mechanism utilized in most species to initiate pairing specifically in the germline. Here, we show that, contrary to long-standing assumptions, Drosophila meiotic pairing in the gonad is not an extension of pairing established during embryogenesis. Instead, we find that homologous chromosomes are unpaired in primordial germ cells from the moment the germline can be distinguished from the soma in the embryo and remain unpaired even in the germline stem cells of the adult gonad. We further establish that pairing originates immediately after the stem cell stage. This pairing occurs well before the initiation of meiosis and, strikingly, continues through the several mitotic divisions preceding meiosis. These discoveries indicate that the spatial organization of the Drosophila genome differs between the germline and the soma from the earliest moments of development and thus argue that homolog pairing in the germline is an active process as versus a passive continuation of pairing established during embryogenesis.

  2. Identification of ALK germline mutation (3605delG) in pediatric anaplastic medulloblastoma.

    Science.gov (United States)

    Coco, Simona; De Mariano, Marilena; Valdora, Francesca; Servidei, Tiziana; Ridola, Vita; Andolfo, Immacolata; Oberthuer, André; Tonini, Gian Paolo; Longo, Luca

    2012-10-01

    The anaplastic lymphoma kinase (ALK) gene has been found either rearranged or mutated in several neoplasms such as anaplastic large-cell lymphoma, non-small-cell lung cancer, neuroblastoma and anaplastic thyroid cancer. Medulloblastoma (MB) is an embryonic pediatric cancer arising from nervous system, a tissue in which ALK is expressed during embryonic development. We performed an ALK mutation screening in 52 MBs and we found a novel heterozygous germline deletion of a single base in exon 23 (3605delG) in a case with marked anaplasia. This G deletion results in a frameshift mutation producing a premature stop codon in exon 25 of ALK tyrosine kinase domain. We also screened three human MB cell lines without finding any mutation of ALK gene. Quantitative expression analysis of 16 out of 52 samples showed overexpression of ALK mRNA in three MBs. In the present study, we report the first mutation of ALK found in MB. Moreover, a deletion of ALK gene producing a stop codon has not been detected in human tumors up to now. Further investigations are now required to elucidate whether the truncated form of ALK may have a role in signal transduction.

  3. Germline competence of mouse ES and iPS cell lines: Chimera technologies and genetic background.

    Science.gov (United States)

    Carstea, Ana Claudia; Pirity, Melinda K; Dinnyes, Andras

    2009-12-31

    In mice, gene targeting by homologous recombination continues to play an essential role in the understanding of functional genomics. This strategy allows precise location of the site of transgene integration and is most commonly used to ablate gene expression ("knock-out"), or to introduce mutant or modified alleles at the locus of interest ("knock-in"). The efficacy of producing live, transgenic mice challenges our understanding of this complex process, and of the factors which influence germline competence of embryonic stem cell lines. Increasingly, evidence indicates that culture conditions and in vitro manipulation can affect the germline-competence of Embryonic Stem cell (ES cell) lines by accumulation of chromosome abnormalities and/or epigenetic alterations of the ES cell genome. The effectiveness of ES cell derivation is greatly strain-dependent and it may also influence the germline transmission capability. Recent technical improvements in the production of germline chimeras have been focused on means of generating ES cells lines with a higher germline potential. There are a number of options for generating chimeras from ES cells (ES chimera mice); however, each method has its advantages and disadvantages. Recent developments in induced pluripotent stem (iPS) cell technology have opened new avenues for generation of animals from genetically modified somatic cells by means of chimera technologies. The aim of this review is to give a brief account of how the factors mentioned above are influencing the germline transmission capacity and the developmental potential of mouse pluripotent stem cell lines. The most recent methods for generating specifically ES and iPS chimera mice, including the advantages and disadvantages of each method are also discussed.

  4. Human Genome Editing and Ethical Considerations.

    Science.gov (United States)

    Krishan, Kewal; Kanchan, Tanuj; Singh, Bahadur

    2016-04-01

    Editing human germline genes may act as boon in some genetic and other disorders. Recent editing of the genome of the human embryo with the CRISPR/Cas9 editing tool generated a debate amongst top scientists of the world for the ethical considerations regarding its effect on the future generations. It needs to be seen as to what transformation human gene editing brings to humankind in the times to come.

  5. Dualism of gene GC content and CpG pattern in regard to expression in the human genome: magnitude versus breadth.

    Science.gov (United States)

    Vinogradov, Alexander E

    2005-12-01

    In this article, I show that, in the human genome, the GC content in genes (but not the CpG island in the promoter) is related to the maximum level of gene expression among tissues, whereas the promoter CpG island and gene CpG level are more strongly related to the breadth of expression among tissues. The relevance of gene GC content to expression cannot be a consequence (i.e. a byproduct) of transcription because it does not correlate with expression in the germline. The variation of GC content and CpG level can determine the characteristics of gene expression in a synergistic interplay with transcription-factor-binding sites (mediated by chromatin condensation).

  6. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine.

    Science.gov (United States)

    Stenson, Peter D; Mort, Matthew; Ball, Edward V; Shaw, Katy; Phillips, Andrew; Cooper, David N

    2014-01-01

    The Human Gene Mutation Database (HGMD®) is a comprehensive collection of germline mutations in nuclear genes that underlie, or are associated with, human inherited disease. By June 2013, the database contained over 141,000 different lesions detected in over 5,700 different genes, with new mutation entries currently accumulating at a rate exceeding 10,000 per annum. HGMD was originally established in 1996 for the scientific study of mutational mechanisms in human genes. However, it has since acquired a much broader utility as a central unified disease-oriented mutation repository utilized by human molecular geneticists, genome scientists, molecular biologists, clinicians and genetic counsellors as well as by those specializing in biopharmaceuticals, bioinformatics and personalized genomics. The public version of HGMD (http://www.hgmd.org) is freely available to registered users from academic institutions/non-profit organizations whilst the subscription version (HGMD Professional) is available to academic, clinical and commercial users under license via BIOBASE GmbH.

  7. Functioning Mediastinal Paraganglioma Associated with a Germline Mutation of von Hippel-Lindau Gene

    Directory of Open Access Journals (Sweden)

    Thibault Bahougne

    2018-05-01

    Full Text Available We report the case of a 21-year old woman presenting with high blood pressure and raised normetanephrine levels. Indium-111-pentetreotide single photon-emission computed tomography with computed tomography (SPECT/CT and 2-deoxy-2-[fluorine-18]fluoro-d-glucose (FDG positron emission tomography/computed tomography (PET/CT imaging showing isolated tracer-uptake by a 2 cm tumor close to the costovertebral angle of the third thoracic vertebra. Thoracic surgery led to normalization of normetanephrine levels. Histological findings were consistent with the presence of a paraganglioma. Mutations in SDHA, SDHB, SDHC, SDHD, RET, SDHAF2, TMEM127, MAX, NF1, FH, MDH2, and EPAS1 were absent, but a heterozygous missense mutation, c.311G > T, was found in exon 1 of the von Hippel-Lindau gene, VHL, resulting in a glycine to valine substitution in the VHL protein at position 104, p.Gly104Val. This same mutation was found in both the mother and the 17-year old sister in whom a small retinal hemangioblastoma was also found. We diagnose an unusual functional mediastinal paraganglioma in this young patient with a germline VHL gene mutation, a mutation previously described as inducing polycythemia and/or pheochromocytoma but not paraganglioma or retinal hemangioblastoma.

  8. Germline APC mutations in hepatoblastoma.

    Science.gov (United States)

    Yang, Adeline; Sisson, Rebecca; Gupta, Anita; Tiao, Greg; Geller, James I

    2018-04-01

    Conflicting reports on the frequency of germline adenomatous polyposis coli (APC) gene mutations in patients with hepatoblastoma (HB) have called into question the clinical value of APC mutation testing on apparently sporadic HB. An Institutional Review Board approved retrospective review of clinical data collected from patients with HB who received APC testing at our institution was conducted. All HB patients seen at Cincinnati Children's Hospital Medical Center were eligible for testing. Potential genotype/phenotype correlations were assessed. As of July 2015, 29 patients with HB had received constitutional APC testing. Four (14%) were found to have APC pathogenic truncations of the APC protein and in addition two (7%) had APC missense variants of unknown clinical significance. Two patients (7%) had family histories indicative of familial adenomatous polyposis (FAP). Response to chemotherapy tracked differently in APC pathogenic cases, with a slower imaging response despite an equivalent or slightly faster α-fetoprotein (AFP) response. The prevalence of pathogenic APC variants in apparently sporadic HB may be higher than previously detected. Differences in time to imaging response, despite similar AFP response, may impact surgical planning. All patients with HB warrant germline APC mutation testing for underlying FAP. © 2017 Wiley Periodicals, Inc.

  9. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression.

    Science.gov (United States)

    Seth, Meetu; Shirayama, Masaki; Gu, Weifeng; Ishidate, Takao; Conte, Darryl; Mello, Craig C

    2013-12-23

    Organisms can develop adaptive sequence-specific immunity by reexpressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piwi-interacting RNA (piRNA) pathway recruits RNA-dependent RNA polymerase (RdRP) to foreign sequences to amplify a transgenerational small-RNA-induced epigenetic silencing signal (termed RNAe). Here, we provide evidence that, in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expressed/self-mRNAs. We refer to this mechanism, which can prevent or reverse RNAe, as RNA-induced epigenetic gene activation (RNAa). We show that CSR-1, which engages RdRP-amplified small RNAs complementary to germline-expressed mRNAs, is required for RNAa. We show that a transgene with RNAa activity also exhibits accumulation of cognate CSR-1 small RNAs. Our findings suggest that C. elegans adaptively acquires and maintains a transgenerational CSR-1 memory that recognizes and protects self-mRNAs, allowing piRNAs to recognize foreign sequences innately, without the need for prior exposure

  10. A germline FANCA alteration that is associated with increased sensitivity to DNA damaging agents.

    OpenAIRE

    Wilkes, David C; Sailer, Verena; Xue, Hui; Cheng, Hongwei; Collins, Colin C; Gleave, Martin; Wang, Yuzhuo; Demichelis, Francesca; Beltran, Himisha; Rubin, Mark Andrew; Rickman, David S

    2017-01-01

    Defects in genes involved in DNA damage repair (DDR) pathway are emerging as novel biomarkers and targets for new prostate cancer drug therapies. A previous report revealed an association between an exceptional response to cisplatin treatment and a somatic loss of heterozygosity (LOH) of FANCA in a patient with metastatic prostate cancer who also harbored a germline FANCA variant (S1088F). Although germline FANCA mutations are the most frequent alterations in patients with Fanconi anemia, ger...

  11. Germline V repertoires: Origin, maintenance, diversification.

    Science.gov (United States)

    Steele, E J; Lindley, R A

    2018-06-01

    In our view, Melvin Cohn (Scand J Immunol. 2018;87:e12640) has set out the logical guidelines towards a resolution of the very real enigma of the selectability of vertebrate germline Ig V repertoires under the current evolutionary paradigm…" A somatically derived repertoire scrambles this (germline VL + VH) substrate so that its specificities are lost, making it un-selectable in the germline. Consequently, evolution faced an incompatibility." It is argued here in Reply that a reverse transcriptase-based soma-to-germline process (S->G) targeting germline V segment arrays goes some considerable way to resolving fundamental contradictions on the origin, maintenance and then real-time adaptive diversification of these limited sets of V segments encoded within various V repertoire arrays. © 2018 The Foundation for the Scandinavian Journal of Immunology.

  12. Foxn1[Cre] Expression in the Male Germline.

    Science.gov (United States)

    Shi, Jianjun; Getun, Irina; Torres, Bivian; Petrie, Howard T

    2016-01-01

    Foxn1 (forkhead box N1), also known as the nude gene or winged-helix nude (Whn), is a forkhead transcription factor thought to be restricted to keratinocytes in the skin and thymus. Consistent with this tissue distribution, spontaneous or targeted mutation of Foxn1 results in the absence of both hair and a thymus. Genetic manipulation of the Foxn1 locus thus represents a powerful tool for tissue specific gene control in the skin and thymus, and tools such as Cre recombinase under control of the Foxn1 locus are widely used for this purpose. Unexpectedly, we show that Foxn1[Cre] exhibits unexpected activity in male germ cells, resulting in ubiquitous targeting of loxP-flanked alleles in all tissues in offspring from Foxn1[Cre] expressing male mice. Inheritance of recombined loxP alleles occurs independently of Cre inheritance (i.e., offspring lacking Cre nonetheless exhibit recombined alleles), suggesting that Foxn1[Cre] induced recombination in male germ cells must occur prior to meiosis in diploid germ cells. Together with previously published data, our results show that Foxn1, and alleles under its control, are expressed in the pre-meiotic male germline, revealing a new tool for germline targeting of genes, and raising important concerns for gender selection when using Foxn1 regulatory elements.

  13. Germline truncating-mutations in BRCA1 and MSH6 in a patient with early onset endometrial cancer

    International Nuclear Information System (INIS)

    Kast, Karin; Schackert, Hans K; Neuhann, Teresa M; Görgens, Heike; Becker, Kerstin; Keller, Katja; Klink, Barbara; Aust, Daniela; Distler, Wolfgang; Schröck, Evelin

    2012-01-01

    Hereditary Breast and Ovarian Cancer Syndrome (HBOCS) and Hereditary Non-Polyposis Colorectal Cancer Syndrome (HNPCC, Lynch Syndrome) are two tumor predisposition syndromes responsible for the majority of hereditary breast and colorectal cancers. Carriers of both germline mutations in breast cancer genes BRCA1 or BRCA2 and in mismatch repair (MMR) genes MLH1, MSH2, MSH6 or PMS2 are very rare. We identified germline mutations in BRCA1 and in MSH6 in a patient with increased risk for HBOC diagnosed with endometrial cancer at the age of 46 years. Although carriers of mutations in both MMR and BRCA genes are rare in Caucasian populations and anamnestical and histopathological findings may guide clinicians to identify these families, both syndromes can only be diagnosed through a complete gene analysis of the respective genes

  14. Germline truncating-mutations in BRCA1 and MSH6 in a patient with early onset endometrial cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kast, Karin [Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Schackert, Hans K [Department of Surgical Research, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Neuhann, Teresa M [Institute for Clinical Genetics, Technische Universität Dresden, Dresden (Germany); Medical Genetic Center, Munich (Germany); Görgens, Heike [Department of Surgical Research, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Becker, Kerstin [Institute for Clinical Genetics, Technische Universität Dresden, Dresden (Germany); Keller, Katja [Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Klink, Barbara [Institute for Clinical Genetics, Technische Universität Dresden, Dresden (Germany); Aust, Daniela [Institute of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Distler, Wolfgang [Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Schröck, Evelin [Institute for Clinical Genetics, Technische Universität Dresden, Dresden (Germany)

    2012-11-20

    Hereditary Breast and Ovarian Cancer Syndrome (HBOCS) and Hereditary Non-Polyposis Colorectal Cancer Syndrome (HNPCC, Lynch Syndrome) are two tumor predisposition syndromes responsible for the majority of hereditary breast and colorectal cancers. Carriers of both germline mutations in breast cancer genes BRCA1 or BRCA2 and in mismatch repair (MMR) genes MLH1, MSH2, MSH6 or PMS2 are very rare. We identified germline mutations in BRCA1 and in MSH6 in a patient with increased risk for HBOC diagnosed with endometrial cancer at the age of 46 years. Although carriers of mutations in both MMR and BRCA genes are rare in Caucasian populations and anamnestical and histopathological findings may guide clinicians to identify these families, both syndromes can only be diagnosed through a complete gene analysis of the respective genes.

  15. Germline truncating-mutations in BRCA1 and MSH6 in a patient with early onset endometrial cancer.

    Science.gov (United States)

    Kast, Karin; Neuhann, Teresa M; Görgens, Heike; Becker, Kerstin; Keller, Katja; Klink, Barbara; Aust, Daniela; Distler, Wolfgang; Schröck, Evelin; Schackert, Hans K

    2012-11-20

    Hereditary Breast and Ovarian Cancer Syndrome (HBOCS) and Hereditary Non-Polyposis Colorectal Cancer Syndrome (HNPCC, Lynch Syndrome) are two tumor predisposition syndromes responsible for the majority of hereditary breast and colorectal cancers. Carriers of both germline mutations in breast cancer genes BRCA1 or BRCA2 and in mismatch repair (MMR) genes MLH1, MSH2, MSH6 or PMS2 are very rare. We identified germline mutations in BRCA1 and in MSH6 in a patient with increased risk for HBOC diagnosed with endometrial cancer at the age of 46 years. Although carriers of mutations in both MMR and BRCA genes are rare in Caucasian populations and anamnestical and histopathological findings may guide clinicians to identify these families, both syndromes can only be diagnosed through a complete gene analysis of the respective genes.

  16. Germline Mutations of Inhibins in Early-Onset Ovarian Epithelial Tumors

    Science.gov (United States)

    Tournier, Isabelle; Marlin, Régine; Walton, Kelly; Charbonnier, Françoise; Coutant, Sophie; Théry, Jean-Christophe; Charbonnier, Camille; Spurrell, Cailyn; Vezain, Myriam; Ippolito, Lorena; Bougeard, Gaëlle; Roman, Horace; Tinat, Julie; Sabourin, Jean-Christophe; Stoppa-Lyonnet, Dominique; Caron, Olivier; Bressac-de Paillerets, Brigitte; Vaur, Dominique; King, Mary-Claire; Harrison, Craig; Frebourg, Thierry

    2014-01-01

    To identify novel genetic bases of early-onset epithelial ovarian tumors, we used the trio exome sequencing strategy in a patient without familial history of cancer who presented metastatic serous ovarian adenocarcinomas at 21 years of age. We identified a single de novo mutation (c.1157A>G/p.Asn386Ser) within the INHBA gene encoding the βA-subunit of inhibins/activins, which play a key role in ovarian development. In vitro, this mutation alters the ratio of secreted activins and inhibins. In a second patient with early-onset serous borderline papillary cystadenoma, we identified an unreported germline mutation (c.179G>T/p.Arg60Leu) of the INHA gene encoding the α-subunit, the partner of the βA-subunit. This mutation also alters the secreted activin/inhibin ratio, by disrupting both inhibin A and inhibin B biosynthesis. In a cohort of 62 cases, we detected an additional unreported germline mutation of the INHBA gene (c.839G>A/p.Gly280Glu). Our results strongly suggest that inhibin mutations contribute to the genetic determinism of epithelial ovarian tumors. PMID:24302632

  17. Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer.

    Directory of Open Access Journals (Sweden)

    Paula Paulo

    2018-04-01

    Full Text Available Considering that mutations in known prostate cancer (PrCa predisposition genes, including those responsible for hereditary breast/ovarian cancer and Lynch syndromes, explain less than 5% of early-onset/familial PrCa, we have sequenced 94 genes associated with cancer predisposition using next generation sequencing (NGS in a series of 121 PrCa patients. We found monoallelic truncating/functionally deleterious mutations in seven genes, including ATM and CHEK2, which have previously been associated with PrCa predisposition, and five new candidate PrCa associated genes involved in cancer predisposing recessive disorders, namely RAD51C, FANCD2, FANCI, CEP57 and RECQL4. Furthermore, using in silico pathogenicity prediction of missense variants among 18 genes associated with breast/ovarian cancer and/or Lynch syndrome, followed by KASP genotyping in 710 healthy controls, we identified "likely pathogenic" missense variants in ATM, BRIP1, CHEK2 and TP53. In conclusion, this study has identified putative PrCa predisposing germline mutations in 14.9% of early-onset/familial PrCa patients. Further data will be necessary to confirm the genetic heterogeneity of inherited PrCa predisposition hinted in this study.

  18. Almost 2% of Spanish breast cancer families are associated to germline pathogenic mutations in the ATM gene.

    Science.gov (United States)

    Tavera-Tapia, A; Pérez-Cabornero, L; Macías, J A; Ceballos, M I; Roncador, G; de la Hoya, M; Barroso, A; Felipe-Ponce, V; Serrano-Blanch, R; Hinojo, C; Miramar-Gallart, M D; Urioste, M; Caldés, T; Santillan-Garzón, S; Benitez, J; Osorio, A

    2017-02-01

    There is still a considerable percentage of hereditary breast and ovarian cancer (HBOC) cases not explained by BRCA1 and BRCA2 genes. In this report, next-generation sequencing (NGS) techniques were applied to identify novel variants and/or genes involved in HBOC susceptibility. Using whole exome sequencing, we identified a novel germline mutation in the moderate-risk gene ATM (c.5441delT; p.Leu1814Trpfs*14) in a family negative for mutations in BRCA1/2 (BRCAX). A case-control association study was performed to establish its prevalence in Spanish population, in a series of 1477 BRCAX families and 589 controls further screened, and NGS panels were used for ATM mutational screening in a cohort of 392 HBOC Spanish BRCAX families and 350 patients affected with diseases not related to breast cancer. Although the interrogated mutation was not prevalent in case-control association study, a comprehensive mutational analysis of the ATM gene revealed 1.78% prevalence of mutations in the ATM gene in HBOC and 1.94% in breast cancer-only BRCAX families in Spanish population, where data about ATM mutations were very limited. ATM mutation prevalence in Spanish population highlights the importance of considering ATM pathogenic variants linked to breast cancer susceptibility.

  19. The oogenic germline starvation response in C. elegans.

    Directory of Open Access Journals (Sweden)

    Hannah S Seidel

    Full Text Available Many animals alter their reproductive strategies in response to environmental stress. Here we have investigated how L4 hermaphrodites of Caenorhabditis elegans respond to starvation. To induce starvation, we removed food at 2 h intervals from very early- to very late-stage L4 animals. The starved L4s molted into adulthood, initiated oogenesis, and began producing embryos; however, all three processes were severely delayed, and embryo viability was reduced. Most animals died via 'bagging,' because egg-laying was inhibited, and embryos hatched in utero, consuming their parent hermaphrodites from within. Some animals, however, avoided bagging and survived long term. Long-term survival did not rely on embryonic arrest but instead upon the failure of some animals to produce viable progeny during starvation. Regardless of the bagging fate, starved animals showed two major changes in germline morphology: All oogenic germlines were dramatically reduced in size, and these germlines formed only a single oocyte at a time, separated from the remainder of the germline by a tight constriction. Both changes in germline morphology were reversible: Upon re-feeding, the shrunken germlines regenerated, and multiple oocytes formed concurrently. The capacity for germline regeneration upon re-feeding was not limited to the small subset of animals that normally survive starvation: When bagging was prevented ectopically by par-2 RNAi, virtually all germlines still regenerated. In addition, germline shrinkage strongly correlated with oogenesis, suggesting that during starvation, germline shrinkage may provide material for oocyte production. Finally, germline shrinkage and regeneration did not depend upon crowding. Our study confirms previous findings that starvation uncouples germ cell proliferation from germline stem cell maintenance. Our study also suggests that when nutrients are limited, hermaphrodites scavenge material from their germlines to reproduce. We discuss

  20. The Fanconi anemia DNA damage repair pathway in the spotlight for germline predisposition to colorectal cancer.

    Science.gov (United States)

    Esteban-Jurado, Clara; Franch-Expósito, Sebastià; Muñoz, Jenifer; Ocaña, Teresa; Carballal, Sabela; López-Cerón, Maria; Cuatrecasas, Miriam; Vila-Casadesús, Maria; Lozano, Juan José; Serra, Enric; Beltran, Sergi; Brea-Fernández, Alejandro; Ruiz-Ponte, Clara; Castells, Antoni; Bujanda, Luis; Garre, Pilar; Caldés, Trinidad; Cubiella, Joaquín; Balaguer, Francesc; Castellví-Bel, Sergi

    2016-10-01

    Colorectal cancer (CRC) is one of the most common neoplasms in the world. Fanconi anemia (FA) is a very rare genetic disease causing bone marrow failure, congenital growth abnormalities and cancer predisposition. The comprehensive FA DNA damage repair pathway requires the collaboration of 53 proteins and it is necessary to restore genome integrity by efficiently repairing damaged DNA. A link between FA genes in breast and ovarian cancer germline predisposition has been previously suggested. We selected 74 CRC patients from 40 unrelated Spanish families with strong CRC aggregation compatible with an autosomal dominant pattern of inheritance and without mutations in known hereditary CRC genes and performed germline DNA whole-exome sequencing with the aim of finding new candidate germline predisposition variants. After sequencing and data analysis, variant prioritization selected only those very rare alterations, producing a putative loss of function and located in genes with a role compatible with cancer. We detected an enrichment for variants in FA DNA damage repair pathway genes in our familial CRC cohort as 6 families carried heterozygous, rare, potentially pathogenic variants located in BRCA2/FANCD1, BRIP1/FANCJ, FANCC, FANCE and REV3L/POLZ. In conclusion, the FA DNA damage repair pathway may play an important role in the inherited predisposition to CRC.

  1. TumorNext-Lynch-MMR: a comprehensive next generation sequencing assay for the detection of germline and somatic mutations in genes associated with mismatch repair deficiency and Lynch syndrome.

    Science.gov (United States)

    Gray, Phillip N; Tsai, Pei; Chen, Daniel; Wu, Sitao; Hoo, Jayne; Mu, Wenbo; Li, Bing; Vuong, Huy; Lu, Hsiao-Mei; Batth, Navanjot; Willett, Sara; Uyeda, Lisa; Shah, Swati; Gau, Chia-Ling; Umali, Monalyn; Espenschied, Carin; Janicek, Mike; Brown, Sandra; Margileth, David; Dobrea, Lavinia; Wagman, Lawrence; Rana, Huma; Hall, Michael J; Ross, Theodora; Terdiman, Jonathan; Cullinane, Carey; Ries, Savita; Totten, Ellen; Elliott, Aaron M

    2018-04-17

    The current algorithm for Lynch syndrome diagnosis is highly complex with multiple steps which can result in an extended time to diagnosis while depleting precious tumor specimens. Here we describe the analytical validation of a custom probe-based NGS tumor panel, TumorNext-Lynch-MMR, which generates a comprehensive genetic profile of both germline and somatic mutations that can accelerate and streamline the time to diagnosis and preserve specimen. TumorNext-Lynch-MMR can detect single nucleotide variants, small insertions and deletions in 39 genes that are frequently mutated in Lynch syndrome and colorectal cancer. Moreover, the panel provides microsatellite instability status and detects loss of heterozygosity in the five Lynch genes; MSH2 , MSH6 , MLH1 , PMS2 and EPCAM . Clinical cases are described that highlight the assays ability to differentiate between somatic and germline mutations, precisely classify variants and resolve discordant cases.

  2. Pitfalls in molecular analysis for mismatch repair deficiency in a family with biallelic pms2 germline mutations.

    Science.gov (United States)

    Leenen, C H M; Geurts-Giele, W R R; Dubbink, H J; Reddingius, R; van den Ouweland, A M; Tops, C M J; van de Klift, H M; Kuipers, E J; van Leerdam, M E; Dinjens, W N M; Wagner, A

    2011-12-01

    Heterozygous germline mutations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause Lynch syndrome. Biallelic mutations in the MMR genes are associated with a childhood cancer syndrome [constitutional mismatch repair deficiency (CMMR-D)]. This is predominantly characterized by hematological malignancies and tumors of the bowel and brain, often associated with signs of neurofibromatosis type 1 (NF1). Diagnostic strategies for selection of patients for MMR gene analysis include analysis of microsatellite instability (MSI) and immunohistochemical (IHC) analysis of MMR proteins in tumor tissue. We report the clinical characterization and molecular analyses of tumor specimens from a family with biallelic PMS2 germline mutations. This illustrates the pitfalls of present molecular screening strategies. Tumor tissues of five family members were analyzed for MSI and IHC. MSI was observed in only one of the analyzed tissues. However, IHC analysis of brain tumor tissue of the index patient and his sister showed absence of PMS2 expression, and germline mutation analyses showed biallelic mutations in PMS2: p.Ser46IIe and p.Pro246fs. The same heterozygous mutations were confirmed in the father and mother, respectively. These data support the conclusion that in case of a clinical phenotype of CMMR-D, it is advisable to routinely combine MSI analysis with IHC analysis for the expression of MMR proteins. With inconclusive or conflicting results, germline mutation analysis of the MMR genes should be considered after thorough counselling of the patients and/or their relatives. © 2011 John Wiley & Sons A/S.

  3. Germline truncating-mutations in BRCA1 and MSH6 in a patient with early onset endometrial cancer

    Directory of Open Access Journals (Sweden)

    Kast Karin

    2012-11-01

    Full Text Available Abstract Background Hereditary Breast and Ovarian Cancer Syndrome (HBOCS and Hereditary Non-Polyposis Colorectal Cancer Syndrome (HNPCC, Lynch Syndrome are two tumor predisposition syndromes responsible for the majority of hereditary breast and colorectal cancers. Carriers of both germline mutations in breast cancer genes BRCA1 or BRCA2 and in mismatch repair (MMR genes MLH1, MSH2, MSH6 or PMS2 are very rare. Case presentation We identified germline mutations in BRCA1 and in MSH6 in a patient with increased risk for HBOC diagnosed with endometrial cancer at the age of 46 years. Conclusions Although carriers of mutations in both MMR and BRCA genes are rare in Caucasian populations and anamnestical and histopathological findings may guide clinicians to identify these families, both syndromes can only be diagnosed through a complete gene analysis of the respective genes.

  4. Frequency and phenotypic spectrum of germline mutations in POLE and seven other polymerase genes in 266 patients with colorectal adenomas and carcinomas.

    Science.gov (United States)

    Spier, Isabel; Holzapfel, Stefanie; Altmüller, Janine; Zhao, Bixiao; Horpaopan, Sukanya; Vogt, Stefanie; Chen, Sophia; Morak, Monika; Raeder, Susanne; Kayser, Katrin; Stienen, Dietlinde; Adam, Ronja; Nürnberg, Peter; Plotz, Guido; Holinski-Feder, Elke; Lifton, Richard P; Thiele, Holger; Hoffmann, Per; Steinke, Verena; Aretz, Stefan

    2015-07-15

    In a number of families with colorectal adenomatous polyposis or suspected Lynch syndrome/HNPCC, no germline alteration in the APC, MUTYH, or mismatch repair (MMR) genes are found. Missense mutations in the polymerase genes POLE and POLD1 have recently been identified as rare cause of multiple colorectal adenomas and carcinomas, a condition termed polymerase proofreading-associated polyposis (PPAP). The aim of the present study was to evaluate the clinical relevance and phenotypic spectrum of polymerase germline mutations. Therefore, targeted sequencing of the polymerase genes POLD1, POLD2, POLD3, POLD4, POLE, POLE2, POLE3 and POLE4 was performed in 266 unrelated patients with polyposis or fulfilled Amsterdam criteria. The POLE mutation c.1270C>G;p.Leu424Val was detected in four unrelated patients. The mutation was present in 1.5% (4/266) of all patients, 4% (3/77) of all familial cases and 7% (2/30) of familial polyposis cases. The colorectal phenotype in 14 affected individuals ranged from typical adenomatous polyposis to a HNPCC phenotype, with high intrafamilial variability. Multiple colorectal carcinomas and duodenal adenomas were common, and one case of duodenal carcinoma was reported. Additionally, various extraintestinal lesions were evident. Nine further putative pathogenic variants were identified. The most promising was c.1306C>T;p.Pro436Ser in POLE. In conclusion, a PPAP was identified in a substantial number of polyposis and familial colorectal cancer patients. Screening for polymerase proofreading mutations should therefore be considered, particularly in unexplained familial cases. The present study broadens the phenotypic spectrum of PPAP to duodenal adenomas and carcinomas, and identified novel, potentially pathogenic variants in four polymerase genes. © 2014 UICC.

  5. Solid renal tumor severity in von Hippel Lindau disease is related to germline deletion length and location.

    Science.gov (United States)

    Maranchie, Jodi K; Afonso, Anoushka; Albert, Paul S; Kalyandrug, Sivaram; Phillips, John L; Zhou, Shubo; Peterson, James; Ghadimi, Bijan M; Hurley, Katheen; Riss, Joseph; Vasselli, James R; Ried, Thomas; Zbar, Berton; Choyke, Peter; Walther, McClellan M; Klausner, Richard D; Linehan, W Marston

    2004-01-01

    von Hippel Lindau disease (VHL) is an autosomal dominant familial cancer syndrome linked to alteration of the VHL tumor suppressor gene. Affected patients are predisposed to develop pheochromocytomas and cystic and solid tumors of the kidney, CNS, pancreas, retina, and epididymis. However, organ involvement varies considerably among families and has been shown to correlate with the underlying germline alteration. Clinically, we observed a paradoxically lower prevalence of renal cell carcinoma (RCC) in patients with complete germline deletion of VHL. To determine if a relationship existed between the type of VHL deletion and disease, we retrospectively evaluated 123 patients from 55 families with large germline VHL deletions, including 42 intragenic partial deletions and 13 complete VHL deletions, by history and radiographic imaging. Each individual and family was scored for cystic or solid involvement of CNS, pancreas, and kidney, and for pheochromocytoma. Germline deletions were mapped using a combination of fluorescent in situ hybridization (FISH) and quantitative Southern and Southern blot analysis. An age-adjusted comparison demonstrated a higher prevalence of RCC in patients with partial germline VHL deletions relative to complete deletions (48.9 vs. 22.6%, p=0.007). This striking phenotypic dichotomy was not seen for cystic renal lesions or for CNS (p=0.22), pancreas (p=0.72), or pheochromocytoma (p=0.34). Deletion mapping revealed that development of RCC had an even greater correlation with retention of HSPC300 (C3orf10), located within the 30-kb region of chromosome 3p, immediately telomeric to VHL (52.3 vs. 18.9%, p <0.001), suggesting the presence of a neighboring gene or genes critical to the development and maintenance of RCC. Careful correlation of genotypic data with objective phenotypic measures will provide further insight into the mechanisms of tumor formation. Copyright 2003 Wiley-Liss, Inc.

  6. Whole Gene Capture Analysis of 15 CRC Susceptibility Genes in Suspected Lynch Syndrome Patients.

    Science.gov (United States)

    Jansen, Anne M L; Geilenkirchen, Marije A; van Wezel, Tom; Jagmohan-Changur, Shantie C; Ruano, Dina; van der Klift, Heleen M; van den Akker, Brendy E W M; Laros, Jeroen F J; van Galen, Michiel; Wagner, Anja; Letteboer, Tom G W; Gómez-García, Encarna B; Tops, Carli M J; Vasen, Hans F; Devilee, Peter; Hes, Frederik J; Morreau, Hans; Wijnen, Juul T

    2016-01-01

    Lynch Syndrome (LS) is caused by pathogenic germline variants in one of the mismatch repair (MMR) genes. However, up to 60% of MMR-deficient colorectal cancer cases are categorized as suspected Lynch Syndrome (sLS) because no pathogenic MMR germline variant can be identified, which leads to difficulties in clinical management. We therefore analyzed the genomic regions of 15 CRC susceptibility genes in leukocyte DNA of 34 unrelated sLS patients and 11 patients with MLH1 hypermethylated tumors with a clear family history. Using targeted next-generation sequencing, we analyzed the entire non-repetitive genomic sequence, including intronic and regulatory sequences, of 15 CRC susceptibility genes. In addition, tumor DNA from 28 sLS patients was analyzed for somatic MMR variants. Of 1979 germline variants found in the leukocyte DNA of 34 sLS patients, one was a pathogenic variant (MLH1 c.1667+1delG). Leukocyte DNA of 11 patients with MLH1 hypermethylated tumors was negative for pathogenic germline variants in the tested CRC susceptibility genes and for germline MLH1 hypermethylation. Somatic DNA analysis of 28 sLS tumors identified eight (29%) cases with two pathogenic somatic variants, one with a VUS predicted to pathogenic and LOH, and nine cases (32%) with one pathogenic somatic variant (n = 8) or one VUS predicted to be pathogenic (n = 1). This is the first study in sLS patients to include the entire genomic sequence of CRC susceptibility genes. An underlying somatic or germline MMR gene defect was identified in ten of 34 sLS patients (29%). In the remaining sLS patients, the underlying genetic defect explaining the MMRdeficiency in their tumors might be found outside the genomic regions harboring the MMR and other known CRC susceptibility genes.

  7. Lynch syndrome caused by germline PMS2 mutations: delineating the cancer risk

    NARCIS (Netherlands)

    Broeke, S.W. ten; Brohet, R.M.; Tops, C.M.; Klift, H.M. van der; Velthuizen, M.E.; Bernstein, I.; Capella Munar, G.; Garcia, E.; Hoogerbrugge, N.; Letteboer, T.G.; Menko, F.H.; Lindblom, A.; Mensenkamp, A.R.; Moller, P.; Os, T.A. van; Rahner, N.; Redeker, B.J.; Sijmons, R.H.; Spruijt, L.; Suerink, M.; Vos, Y.J.; Wagner, A.; Hes, F.J.; Vasen, H.F.A.; Nielsen, M.; Wijnen, J.T.

    2015-01-01

    PURPOSE: The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. METHODS: Data were collected from 98

  8. The ecological imperative and its application to ethical issues in human genetic technology

    OpenAIRE

    W. Malcolm Byrnes

    2003-01-01

    As a species, we are on the cusp of being able to alter that which makes us uniquely human, our genome. Two new genetic technologies, embryo selection and germline engineering, are either in use today or may be developed in the future. Embryo selection acts to alter the human gene pool, reducing genetic diversity, while germline engineering will have the ability to alter directly the genomes of engineered individuals. Our genome has come to be what it is through an evolutionary process extend...

  9. A Database to Support the Interpretation of Human Mismatch Repair Gene Variants

    NARCIS (Netherlands)

    Ou, Jianghua; Niessen, Renee C.; Vonk, Jan; Westers, Helga; Hofstra, Robert M. W.; Sijmons, Rolf H.

    Germline mutations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6, or PMS2 can cause Lynch syndrome. This syndrome, also known as hereditary nonpolyposis colorectal cancer (HNPCC), is an autosomal dominantly-inherited disorder predominantly characterized by colorectal and endometrial cancer.

  10. Lynch Syndrome Caused by Germline PMS2 Mutations: Delineating the Cancer Risk

    NARCIS (Netherlands)

    ten Broeke, Sanne W.; Brohet, Richard M.; Tops, Carli M.; van der Klift, Heleen M.; Velthuizen, Mary E.; Bernstein, Inge; Capellá Munar, Gabriel; Gomez Garcia, Encarna; Hoogerbrugge, Nicoline; Letteboer, Tom G. W.; Menko, Fred H.; Lindblom, Annika; Mensenkamp, Arjen R.; Moller, Pal; van Os, Theo A.; Rahner, Nils; Redeker, Bert J. W.; Sijmons, Rolf H.; Spruijt, Liesbeth; Suerink, Manon; Vos, Yvonne J.; Wagner, Anja; Hes, Frederik J.; Vasen, Hans F.; Nielsen, Maartje; Wijnen, Juul T.

    2015-01-01

    Purpose The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. Methods Data were collected from 98 PMS2

  11. Lynch Syndrome Caused by Germline PMS2 Mutations : Delineating the Cancer Risk

    NARCIS (Netherlands)

    ten Broeke, Sanne W.; Brohet, Richard M.; Tops, Carli M.; van der Klift, Heleen M.; Velthuizen, Mary E.; Bernstein, Inge; Capella Munar, Gabriel; Garcia, Encarna Gomez; Hoogerbrugge, Nicoline; Letteboer, Tom G. W.; Menko, Fred H.; Lindblom, Annika; Mensenkamp, Arjen R.; Moller, Pal; Van Os, Theo A.; Rahner, Nils; Redeker, Bert J. W.; Sijmons, Rolf H.; Spruijt, Liesbeth; Suerink, Manon; Vos, Yvonne J.; Wagner, Anja; Hes, Frederik J.; Vasen, Hans F.; Nielsen, Maartje; Wijnen, Juul T.

    2015-01-01

    Purpose The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. Methods Data were collected from 98 PMS2

  12. Detection of induced male germline mutation: Correlations and comparisons between traditional germline mutation assays, transgenic rodent assays and expanded simple tandem repeat instability assays

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Timothy M. [Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., K1A 0K9 (Canada); Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada); Lambert, Iain B. [Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada); Williams, Andrew [Biostatistics and Epidemiology Division, Safe Environments Programme, 6604B, Health Canada, Ottawa, Ont., K1A 0K9 (Canada); Douglas, George R. [Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., K1A 0K9 (Canada); Yauk, Carole L. [Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., K1A 0K9 (Canada)]. E-mail: carole_yauk@hc-sc.gc.ca

    2006-06-25

    Several rodent assays are capable of monitoring germline mutation. These include traditional assays, such as the dominant lethal (DL) assay, the morphological specific locus (SL) test and the heritable translocation (HT) assay, and two assays that have been developed more recently-the expanded simple tandem repeat (ESTR) and transgenic rodent (TGR) mutation assays. In this paper, we have compiled the limited amount of experimental data that are currently available to make conclusions regarding the comparative ability of the more recently developed assays to detect germline mutations induced by chemical and radiological agents. The data suggest that ESTR and TGR assays are generally comparable with SL in detecting germline mutagenicity induced by alkylating agents and radiation, though TGR offered less sensitivity than ESTR in some cases. The DL and HT assays detect clastogenic events and are most susceptible to mutations arising in post-spermatogonial cells, and they may not provide the best comparisons with TGR and ESTR instability. The measurement of induced ESTR instability represents a relatively sensitive method of identifying agents causing germline mutation in rodents, and may also be useful for bio-monitoring exposed individuals in the human population. Any future use of the TGR and ESTR germline mutation assays in a regulatory testing context will entail more robust and extensive characterization of assay performance. This will require substantially more data, including experiments measuring multiple endpoints, a greatly expanded database of chemical agents and a focus on characterizing stage-specific activity of mutagens in these assays, preferably by sampling epididymal sperm exposed at defined pre-meiotic, meiotic and post-meiotic stages of development.

  13. Detection of induced male germline mutation: Correlations and comparisons between traditional germline mutation assays, transgenic rodent assays and expanded simple tandem repeat instability assays

    International Nuclear Information System (INIS)

    Singer, Timothy M.; Lambert, Iain B.; Williams, Andrew; Douglas, George R.; Yauk, Carole L.

    2006-01-01

    Several rodent assays are capable of monitoring germline mutation. These include traditional assays, such as the dominant lethal (DL) assay, the morphological specific locus (SL) test and the heritable translocation (HT) assay, and two assays that have been developed more recently-the expanded simple tandem repeat (ESTR) and transgenic rodent (TGR) mutation assays. In this paper, we have compiled the limited amount of experimental data that are currently available to make conclusions regarding the comparative ability of the more recently developed assays to detect germline mutations induced by chemical and radiological agents. The data suggest that ESTR and TGR assays are generally comparable with SL in detecting germline mutagenicity induced by alkylating agents and radiation, though TGR offered less sensitivity than ESTR in some cases. The DL and HT assays detect clastogenic events and are most susceptible to mutations arising in post-spermatogonial cells, and they may not provide the best comparisons with TGR and ESTR instability. The measurement of induced ESTR instability represents a relatively sensitive method of identifying agents causing germline mutation in rodents, and may also be useful for bio-monitoring exposed individuals in the human population. Any future use of the TGR and ESTR germline mutation assays in a regulatory testing context will entail more robust and extensive characterization of assay performance. This will require substantially more data, including experiments measuring multiple endpoints, a greatly expanded database of chemical agents and a focus on characterizing stage-specific activity of mutagens in these assays, preferably by sampling epididymal sperm exposed at defined pre-meiotic, meiotic and post-meiotic stages of development

  14. Gene organization inside replication domains in mammalian genomes

    Science.gov (United States)

    Zaghloul, Lamia; Baker, Antoine; Audit, Benjamin; Arneodo, Alain

    2012-11-01

    We investigate the large-scale organization of human genes with respect to "master" replication origins that were previously identified as bordering nucleotide compositional skew domains. We separate genes in two categories depending on their CpG enrichment at the promoter which can be considered as a marker of germline DNA methylation. Using expression data in mouse, we confirm that CpG-rich genes are highly expressed in germline whereas CpG-poor genes are in a silent state. We further show that, whether tissue-specific or broadly expressed (housekeeping genes), the CpG-rich genes are over-represented close to the replication skew domain borders suggesting some coordination of replication and transcription. We also reveal that the transcription of the longest CpG-rich genes is co-oriented with replication fork progression so that the promoter of these transcriptionally active genes be located into the accessible open chromatin environment surrounding the master replication origins that border the replication skew domains. The observation of a similar gene organization in the mouse genome confirms the interplay of replication, transcription and chromatin structure as the cornerstone of mammalian genome architecture.

  15. Novel germline mutation (Leu512Met) in the thyrotropin receptor gene (TSHR) leading to sporadic non-autoimmune hyperthyroidism.

    Science.gov (United States)

    Roberts, Stephanie A; Moon, Jennifer E; Dauber, Andrew; Smith, Jessica R

    2017-03-01

    Primary nonautoimmune hyperthyroidism is a rare cause of neonatal hyperthyroidism. This results from an activating mutation in the thyrotropin-receptor (TSHR). It can be inherited in an autosomal dominant manner or occur sporadically as a de novo mutation. Affected individuals display a wide phenotype from severe neonatal to mild subclinical hyperthyroidism. We describe a 6-month-old boy with a de novo mutation in the TSHR gene who presented with accelerated growth, enlarging head circumference, tremor and thyrotoxicosis. Genomic DNA from the patient's and parents' peripheral blood leukocytes was extracted. Exons 9 and 10 of the TSHR gene were amplified by PCR and sequenced. Sequencing exon 10 of the TSHR gene revealed a novel heterozygous missense mutation substituting cytosine to adenine at nucleotide position 1534 in the patient's peripheral blood leukocytes. This leads to a substitution of leucine to methionine at amino acid position 512. The mutation was absent in the parents. In silico modeling by PolyPhen-2 and SIFT predicted the mutation to be deleterious. The p.Leu512Met mutation (c.1534C>A) of the TSHR gene has not been previously described in germline or somatic mutations. This case presentation highlights the possibility of mild thyrotoxicosis in affected individuals and contributes to the understanding of sporadic non-autoimmune primary hyperthyroidism.

  16. Flow cytometry sorting of nuclei enables the first global characterization of Paramecium germline DNA and transposable elements.

    Science.gov (United States)

    Guérin, Frédéric; Arnaiz, Olivier; Boggetto, Nicole; Denby Wilkes, Cyril; Meyer, Eric; Sperling, Linda; Duharcourt, Sandra

    2017-04-26

    DNA elimination is developmentally programmed in a wide variety of eukaryotes, including unicellular ciliates, and leads to the generation of distinct germline and somatic genomes. The ciliate Paramecium tetraurelia harbors two types of nuclei with different functions and genome structures. The transcriptionally inactive micronucleus contains the complete germline genome, while the somatic macronucleus contains a reduced genome streamlined for gene expression. During development of the somatic macronucleus, the germline genome undergoes massive and reproducible DNA elimination events. Availability of both the somatic and germline genomes is essential to examine the genome changes that occur during programmed DNA elimination and ultimately decipher the mechanisms underlying the specific removal of germline-limited sequences. We developed a novel experimental approach that uses flow cell imaging and flow cytometry to sort subpopulations of nuclei to high purity. We sorted vegetative micronuclei and macronuclei during development of P. tetraurelia. We validated the method by flow cell imaging and by high throughput DNA sequencing. Our work establishes the proof of principle that developing somatic macronuclei can be sorted from a complex biological sample to high purity based on their size, shape and DNA content. This method enabled us to sequence, for the first time, the germline DNA from pure micronuclei and to identify novel transposable elements. Sequencing the germline DNA confirms that the Pgm domesticated transposase is required for the excision of all ~45,000 Internal Eliminated Sequences. Comparison of the germline DNA and unrearranged DNA obtained from PGM-silenced cells reveals that the latter does not provide a faithful representation of the germline genome. We developed a flow cytometry-based method to purify P. tetraurelia nuclei to high purity and provided quality control with flow cell imaging and high throughput DNA sequencing. We identified 61

  17. Production of a germline-humanized cetuximab scFv and evaluation of its activity in recognizing EGFR- overexpressing cancer cells.

    Science.gov (United States)

    Banisadr, Arsham; Safdari, Yaghoub; Kianmehr, Anvarsadat; Pourafshar, Mahdieh

    2018-04-03

    The aim of this study was to produce a humanized single chain antibody (scFv) as a potential improved product design to target EGFR (Epidermal Growth Factor Receptor) overexpressing cancer cells. To this end, CDR loops of cetuximab (an FDA-approved anti-EGFR antibody) were grafted on framework regions derived from type 3 (VH3 and VL3 kappa) human germline sequences to obtain recombinant VH and VL domainslinked together with a flexible linker [(Gly 4 Ser) 3 ] to form a scFv. Codon optimized synthetic gene encoding the scFv (with NH2-VH-linker-VL-COOH orientation) was expressed in E. coli Origami™ 2(DE3) cells and the resultant scFv purified by using Ni-NTA affinity chromatography. The scFv, called cet.Hum scFv, was evaluated in ELISA and immunoblot to determine whether it can recognize EGFR. The scFv was able to recognize EGFR over-expressing cancer cells (A-431) but failed to detect cancer cells with low levels of EGFR (MCF-7 cells). Although the affinity of the scFv forA-431 cells was 9 fold lower than that of cetuximab, it was strong enough to recognize these cells. Considering its ability to bind EGFR molecules, the scFv may exhibit a potential application for the detection of EGFR-overexpressing cancer cells.

  18. A novel molecular diagnostics platform for somatic and germline precision oncology.

    Science.gov (United States)

    Cabanillas, Rubén; Diñeiro, Marta; Castillo, David; Pruneda, Patricia C; Penas, Cristina; Cifuentes, Guadalupe A; de Vicente, Álvaro; Durán, Noelia S; Álvarez, Rebeca; Ordóñez, Gonzalo R; Cadiñanos, Juan

    2017-07-01

    Next-generation sequencing (NGS) opens new options in clinical oncology, from therapy selection to genetic counseling. However, realization of this potential not only requires succeeding in the bioinformatics and interpretation of the results, but also in their integration into the clinical practice. We have developed a novel NGS diagnostic platform aimed at detecting (1) somatic genomic alterations associated with the response to approved targeted cancer therapies and (2) germline mutations predisposing to hereditary malignancies. Next-generation sequencing libraries enriched in the exons of 215 cancer genes (97 for therapy selection and 148 for predisposition, with 30 informative for both applications), as well as selected introns from 17 genes involved in drug-related rearrangements, were prepared from 39 tumors (paraffin-embedded tissues/cytologies), 36 germline samples (blood) and 10 cell lines using hybrid capture. Analysis of NGS results was performed with specifically developed bioinformatics pipelines. The platform detects single-nucleotide variants (SNVs) and insertions/deletions (indels) with sensitivity and specificity >99.5% (allelic frequency ≥0.1), as well as copy-number variants (CNVs) and rearrangements. Somatic testing identified tailored approved targeted drugs in 35/39 tumors (89.74%), showing a diagnostic yield comparable to that of leading commercial platforms. A somatic EGFR p.E746_S752delinsA mutation in a mediastinal metastasis from a breast cancer prompted its anatomopathologic reassessment, its definite reclassification as a lung cancer and its treatment with gefitinib (partial response sustained for 15 months). Testing of 36 germline samples identified two pathogenic mutations (in CDKN2A and BRCA2 ). We propose a strategy for interpretation and reporting of results adaptable to the aim of the request, the availability of tumor and/or normal samples and the scope of the informed consent. With an adequate methodology, it is possible to

  19. Molecular Background of Colorectal Tumors From Patients with Lynch Syndrome Associated With Germline Variants in PMS2.

    Science.gov (United States)

    Ten Broeke, S W; van Bavel, T C; Jansen, A M L; Gómez-García, E; Hes, F J; van Hest, L P; Letteboer, T G W; Olderode-Berends, M J W; Ruano, D; Spruijt, L; Suerink, M; Tops, C M; van Eijk, R; Morreau, H; van Wezel, T; Nielsen, M

    2018-05-11

    Germline variants in the mismatch repair genes MLH1, MSH2 (EPCAM), MSH6, or PMS2 cause Lynch syndrome. Patients with these variants have an increased risk of developing colorectal cancers (CRCs) that differ from sporadic CRCs in genetic and histologic features. It has been a challenge to study CRCs associated with PMS2 variants (PMS2-associated CRCs) because these develop less frequently and in patients of older ages than colorectal tumors with variants in the other mismatch repair genes. We analyzed 20 CRCs associated with germline variants in PMS2, 22 sporadic CRCs, 18 CRCs with germline variants in MSH2, and 24 CRCs from patients with germline variants in MLH1. Tumor tissue blocks were collected from Dutch pathology departments in 2017. After extraction of tumor DNA, we used a platform designed to detect approximately 3000 somatic hotspot variants in 55 genes (including KRAS, APC, CTNNB1, and TP53). Somatic variant frequencies were compared using the Fisher's exact test. None of the PMS2-associated CRCs contained any somatic variants in the catenin beta 1 gene (CTNNB1), which encodes β-catenin, whereas 14/24 MLH1-associated CRCs (58%) contained variants in CTNNB1. Half of PMS2-associated CRCs contained KRAS variants, but only 20% of these were in hotspots that encoded G12D or G13D. These hotspot variants occurred more frequently in CRCs associated with variants in MLH1 (37.5%, P=.44) and MSH2 (and 71.4%, P=.035) than with variants in PMS2. In a genetic analysis of 84 colorectal tumors, we found tumors from patients with PMS2-associated Lynch syndrome to be distinct from colorectal tumors associated with defects in other mismatch repair genes. This might account for differences in development and less frequent occurrence. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Lack of GNAQ and GNA11 germ-line mutations in familial melanoma pedigrees with uveal melanoma or blue nevi

    Directory of Open Access Journals (Sweden)

    Jason Ezra Hawkes

    2013-06-01

    Full Text Available Approximately 10% of melanoma cases are familial, but only 25-40% of familial melanoma cases can be attributed to germ-line mutations in the CDKN2A - the most significant high-risk melanoma susceptibility locus identified to date. The pathogenic mutation(s in most of the remaining familial melanoma pedigrees have not yet been identified. The most common mutations in nevi and sporadic melanoma are found in BRAF and NRAS, both of which result in constitutive activation of the MAPK pathway. However, these mutations are not found in uveal melanomas or the intradermal melanocytic proliferations known as blue nevi. Rather, multiple studies report a strong association between these lesions and somatic mutations in Guanine nucleotide-binding protein G(q subunit alpha (GNAQ, Guanine nucleotide-binding protein G(q subunit alpha-11 (GNA11 and BRCA1 associated protein-1 (BAP1. Recently, germ-line mutations in BAP1, the gene encoding a tumor suppressing deubiquitinating enzyme, have been associated with predisposition to a variety of cancers including uveal melanoma, but no studies have examined the association of germ-line mutations in GNAQ and GNA11 with uveal melanoma and blue nevi. We have now done so by sequencing exon 5 of both of these genes in 13 unique familial melanoma pedigrees, members of which have had either uveal or cutaneous melanoma and/or blue nevi. Germ-line DNA from a total of 22 individuals was used for sequencing; however no deleterious mutations were detected. Nevertheless, such candidate gene studies and the discovery of novel germ-line mutations associated with an increased MM susceptibility can lead to a better understanding of the pathways involved in melanocyte transformation, formulation of risk assessment, and the development of specific drug therapies.

  1. Germline MLH1, MSH2 and MSH6 variants in Brazilian patients with colorectal cancer and clinical features suggestive of Lynch Syndrome.

    Science.gov (United States)

    Schneider, Nayê Balzan; Pastor, Tatiane; Paula, André Escremim de; Achatz, Maria Isabel; Santos, Ândrea Ribeiro Dos; Vianna, Fernanda Sales Luiz; Rosset, Clévia; Pinheiro, Manuela; Ashton-Prolla, Patricia; Moreira, Miguel Ângelo Martins; Palmero, Edenir Inêz

    2018-05-01

    Lynch syndrome (LS) is the most common hereditary colorectal cancer syndrome, caused by germline mutations in one of the major genes involved in mismatch repair (MMR): MLH1, MSH2, MSH6 and more rarely, PMS2. Recently, germline deletions in EPCAM have been also associated to the syndrome. Most of the pathogenic MMR mutations found in LS families occur in MLH1 or MSH2. Gene variants include missense, nonsense, frameshift mutations, large genomic rearrangements and splice-site variants and most of the studies reporting the molecular characterization of LS families have been conducted outside South America. In this study, we analyzed 60 unrelated probands diagnosed with colorectal cancer and LS criteria. Testing for germline mutations and/or rearrangements in the most commonly affected MMR genes (MLH1, MSH2, EPCAM and MSH6) was done by Sanger sequencing and MLPA. Pathogenic or likely pathogenic variants were identified in MLH1 or MSH2 in 21 probands (35.0%). Of these, approximately one-third were gene rearrangements. In addition, nine variants of uncertain significance (VUS) were identified in 10 (16.6%) of the sixty probands analyzed. Other four novel variants were identified, only in MLH1. Our results suggest that MSH6 pathogenic variants are not common among Brazilian LS probands diagnosed with CRC and that MMR gene rearrangements account for a significant proportion of the germline variants in this population underscoring the need to include rearrangement analysis in the molecular testing of Brazilian individuals with suspected Lynch syndrome. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  2. Co-option of the piRNA pathway for germline-specific alternative splicing of C. elegans TOR.

    Science.gov (United States)

    Barberán-Soler, Sergio; Fontrodona, Laura; Ribó, Anna; Lamm, Ayelet T; Iannone, Camilla; Cerón, Julián; Lehner, Ben; Valcárcel, Juan

    2014-09-25

    Many eukaryotic genes contain embedded antisense transcripts and repetitive sequences of unknown function. We report that male germline-specific expression of an antisense transcript contained in an intron of C. elegans Target of Rapamycin (TOR, let-363) is associated with (1) accumulation of endo-small interfering RNAs (siRNAs) against an embedded Helitron transposon and (2) activation of an alternative 3' splice site of TOR. The germline-specific Argonaute proteins PRG-1 and CSR-1, which participate in self/nonself RNA recognition, antagonistically regulate the generation of these endo-siRNAs, TOR mRNA levels, and 3' splice-site selection. Supply of exogenous double-stranded RNA against the region of sense/antisense overlap reverses changes in TOR expression and splicing and suppresses the progressive multigenerational sterility phenotype of prg-1 mutants. We propose that recognition of a "nonself" intronic transposon by endo-siRNAs/the piRNA system provides physiological regulation of expression and alternative splicing of a host gene that, in turn, contributes to the maintenance of germline function across generations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Two co-existing germline mutations P53 V157D and PMS2 R20Q promote tumorigenesis in a familial cancer syndrome.

    Science.gov (United States)

    Wang, Zuoyun; Sun, Yihua; Gao, Bin; Lu, Yi; Fang, Rong; Gao, Yijun; Xiao, Tian; Liu, Xin-Yuan; Pao, William; Zhao, Yun; Chen, Haiquan; Ji, Hongbin

    2014-01-01

    Germline mutations are responsible for familial cancer syndromes which account for approximately 5-10% of all types of cancers. These mutations mainly occur at tumor suppressor genes or genome stability genes, such as DNA repair genes. Here we have identified a cancer predisposition family, in which eight members were inflicted with a wide spectrum of cancer including one diagnosed with lung cancer at 22years old. Sequencing analysis of tumor samples as well as histologically normal specimens identified two germline mutations co-existing in the familial cancer syndrome, the mutation of tumor suppressor gene P53 V157D and mismatch repair gene PMS2 R20Q. We further demonstrate that P53 V157D and/or PMS2 R20Q mutant promotes lung cancer cell proliferation. These two mutants are capable of promoting colony formation in soft agar as well as tumor formation in transgenic drosophila system. Collectively, these data have uncovered the important role of co-existing germline P53 and PMS2 mutations in the familial cancer syndrome development. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Germline CDKN2A/P16INK4A mutations contribute to genetic determinism of sarcoma.

    Science.gov (United States)

    Jouenne, Fanélie; Chauvot de Beauchene, Isaure; Bollaert, Emeline; Avril, Marie-Françoise; Caron, Olivier; Ingster, Olivier; Lecesne, Axel; Benusiglio, Patrick; Terrier, Philippe; Caumette, Vincent; Pissaloux, Daniel; de la Fouchardière, Arnaud; Cabaret, Odile; N'Diaye, Birama; Velghe, Amélie; Bougeard, Gaelle; Mann, Graham J; Koscielny, Serge; Barrett, Jennifer H; Harland, Mark; Newton-Bishop, Julia; Gruis, Nelleke; Van Doorn, Remco; Gauthier-Villars, Marion; Pierron, Gaelle; Stoppa-Lyonnet, Dominique; Coupier, Isabelle; Guimbaud, Rosine; Delnatte, Capucine; Scoazec, Jean-Yves; Eggermont, Alexander M; Feunteun, Jean; Tchertanov, Luba; Demoulin, Jean-Baptiste; Frebourg, Thierry; Bressac-de Paillerets, Brigitte

    2017-09-01

    Sarcomas are rare mesenchymal malignancies whose pathogenesis is poorly understood; both environmental and genetic risk factors could contribute to their aetiology. We performed whole-exome sequencing (WES) in a familial aggregation of three individuals affected with soft-tissue sarcoma (STS) without TP53 mutation (Li-Fraumeni-like, LFL) and found a shared pathogenic mutation in CDKN2A tumour suppressor gene. We searched for individuals with sarcoma among 474 melanoma-prone families with a CDKN2A -/+ genotype and for CDKN2A mutations in 190 TP53 -negative LFL families where the index case was a sarcoma. Including the initial family, eight independent sarcoma cases carried a germline mutation in the CDKN2A /p16 INK4A gene. In five out of seven formalin-fixed paraffin-embedded sarcomas, heterozygosity was lost at germline CDKN2A mutations sites demonstrating complete loss of function. As sarcomas are rare in CDKN2A /p16 INK4A carriers, we searched in constitutional WES of nine carriers for potential modifying rare variants and identified three in platelet-derived growth factor receptor ( PDGFRA ) gene. Molecular modelling showed that two never-described variants could impact the PDGFRA extracellular domain structure. Germline mutations in CDKN2A /P16 INK4A , a gene known to predispose to hereditary melanoma, pancreatic cancer and tobacco-related cancers, account also for a subset of hereditary sarcoma. In addition, we identified PDGFRA as a candidate modifier gene. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Germline mutations in ABL1 cause an autosomal dominant syndrome characterized by congenital heart defects and skeletal malformations.

    Science.gov (United States)

    Wang, Xia; Charng, Wu-Lin; Chen, Chun-An; Rosenfeld, Jill A; Al Shamsi, Aisha; Al-Gazali, Lihadh; McGuire, Marianne; Mew, Nicholas Ah; Arnold, Georgianne L; Qu, Chunjing; Ding, Yan; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Walkiewicz, Magdalena; Xia, Fan; Plon, Sharon E; Lupski, James R; Schaaf, Christian P; Yang, Yaping

    2017-04-01

    ABL1 is a proto-oncogene well known as part of the fusion gene BCR-ABL1 in the Philadelphia chromosome of leukemia cancer cells. Inherited germline ABL1 changes have not been associated with genetic disorders. Here we report ABL1 germline variants cosegregating with an autosomal dominant disorder characterized by congenital heart disease, skeletal abnormalities, and failure to thrive. The variant c.734A>G (p.Tyr245Cys) was found to occur de novo or cosegregate with disease in five individuals (families 1-3). Additionally, a de novo c.1066G>A (p.Ala356Thr) variant was identified in a sixth individual (family 4). We overexpressed the mutant constructs in HEK 293T cells and observed increased tyrosine phosphorylation, suggesting increased ABL1 kinase activities associated with both the p.Tyr245Cys and p.Ala356Thr substitutions. Our clinical and experimental findings, together with previously reported teratogenic effects of selective BCR-ABL inhibitors in humans and developmental defects in Abl1 knockout mice, suggest that ABL1 has an important role during organismal development.

  6. Lessons for Inductive Germline Determination

    Science.gov (United States)

    Seervai, Riyad N.H.; Wessel, Gary M.

    2015-01-01

    SUMMARY Formation of the germline in an embryo marks a fresh round of reproductive potential, yet the developmental stage and location within the embryo where the primordial germ cells (PGCs) form differs wildly among species. In most animals, the germline is formed either by an inherited mechanism, in which maternal provisions within the oocyte drive localized germ-cell fate once acquired in the embryo, or an inductive mechanism that involves signaling between cells that directs germ-cell fate. The inherited mechanism has been widely studied in model organisms such as Drosophila melanogaster, Caenorhabditis elegans, Xenopus laevis, and Danio rerio. Given the rapid generation time and the effective adaptation for laboratory research of these organisms, it is not coincidental that research on these organisms has led the field in elucidating mechanisms for germline specification. The inductive mechanism, however, is less well understood and is studied primarily in the mouse (Mus musculus). In this review, we compare and contrast these two fundamental mechanisms for germline determination, beginning with the key molecular determinants that play a role in the formation of germ cells across all animal taxa. We next explore the current understanding of the inductive mechanism of germ-cell determination in mice, and evaluate the hypotheses for selective pressures on these contrasting mechanisms. We then discuss the hypothesis that the transition between these determination mechanisms, which has happened many times in phylogeny, is more of a continuum than a binary change. Finally, we propose an analogy between germline determination and sex determination in vertebrates—two of the milestones of reproduction and development—in which animals use contrasting strategies to activate similar pathways. PMID:23450642

  7. Transgenic mice produced by retroviral transduction of male germ-line stem cells

    OpenAIRE

    Nagano, Makoto; Brinster, Clayton J.; Orwig, Kyle E.; Ryu, Buom-Yong; Avarbock, Mary R.; Brinster, Ralph L.

    2001-01-01

    Male germ-line stem cells are the only cell type in postnatal mammals that have the capability to self-renew and to contribute genes to the next generation. Genetic modification of these cells would provide an opportunity to study the biology of their complex self-renewal and differentiation processes, as well as enable the generation of transgenic animals in a wide range of species. Although retroviral vectors have been used as an efficient method to introduce genes into a variety of cell ty...

  8. Spontaneous germline excision of Tol1, a DNA-based transposable element naturally occurring in the medaka fish genome.

    Science.gov (United States)

    Watanabe, Kohei; Koga, Hajime; Nakamura, Kodai; Fujita, Akiko; Hattori, Akimasa; Matsuda, Masaru; Koga, Akihiko

    2014-04-01

    DNA-based transposable elements are ubiquitous constituents of eukaryotic genomes. Vertebrates are, however, exceptional in that most of their DNA-based elements appear to be inactivated. The Tol1 element of the medaka fish, Oryzias latipes, is one of the few elements for which copies containing an undamaged gene have been found. Spontaneous transposition of this element in somatic cells has previously been demonstrated, but there is only indirect evidence for its germline transposition. Here, we show direct evidence of spontaneous excision in the germline. Tyrosinase is the key enzyme in melanin biosynthesis. In an albino laboratory strain of medaka fish, which is homozygous for a mutant tyrosinase gene in which a Tol1 copy is inserted, we identified de novo reversion mutations related to melanin pigmentation. The gamete-based reversion rate was as high as 0.4%. The revertant fish carried the tyrosinase gene from which the Tol1 copy had been excised. We previously reported the germline transposition of Tol2, another DNA-based element that is thought to be a recent invader of the medaka fish genome. Tol1 is an ancient resident of the genome. Our results indicate that even an old element can contribute to genetic variation in the host genome as a natural mutator.

  9. Specific Tandem 3'UTR Patterns and Gene Expression Profiles in Mouse Thy1+ Germline Stem Cells.

    Directory of Open Access Journals (Sweden)

    Yan Huang

    Full Text Available A recently developed strategy of sequencing alternative polyadenylation (APA sites (SAPAS with second-generation sequencing technology can be used to explore complete genome-wide patterns of tandem APA sites and global gene expression profiles. spermatogonial stem cells (SSCs maintain long-term reproductive abilities in male mammals. The detailed mechanisms by which SSCs self-renew and generate mature spermatozoa are not clear. To understand the specific alternative polyadenylation pattern and global gene expression profile of male germline stem cells (GSCs, mainly referred to SSCs here, we isolated and purified mouse Thy1+ cells from testis by magnetic-activated cell sorting (MACS and then used the SAPAS method for analysis, using pluripotent embryonic stem cells (ESCs and differentiated mouse embryonic fibroblast cells (MEFs as controls. As a result, we obtained 99,944 poly(A sites, approximately 40% of which were newly detected in our experiments. These poly(A sites originated from three mouse cell types and covered 17,499 genes, including 831 long non-coding RNA (lncRNA genes. We observed that GSCs tend to have shorter 3'UTR lengths while MEFs tend towards longer 3'UTR lengths. We also identified 1337 genes that were highly expressed in GSCs, and these genes were highly consistent with the functional characteristics of GSCs. Our detailed bioinformatics analysis identified APA site-switching events at 3'UTRs and many new specifically expressed genes in GSCs, which we experimentally confirmed. Furthermore, qRT-PCR was performed to validate several events of the 334 genes with distal-to-proximal poly(A switch in GSCs. Consistently APA reporter assay confirmed the total 3'UTR shortening in GSCs compared to MEFs. We also analyzed the cis elements around the proximal poly(A site preferentially used in GSCs and found C-rich elements may contribute to this regulation. Overall, our results identified the expression level and polyadenylation site

  10. Specific Tandem 3'UTR Patterns and Gene Expression Profiles in Mouse Thy1+ Germline Stem Cells

    Science.gov (United States)

    Lin, Zhuoheng; Feng, Xuyang; Jiang, Xue; Songyang, Zhou; Huang, Junjiu

    2015-01-01

    A recently developed strategy of sequencing alternative polyadenylation (APA) sites (SAPAS) with second-generation sequencing technology can be used to explore complete genome-wide patterns of tandem APA sites and global gene expression profiles. spermatogonial stem cells (SSCs) maintain long-term reproductive abilities in male mammals. The detailed mechanisms by which SSCs self-renew and generate mature spermatozoa are not clear. To understand the specific alternative polyadenylation pattern and global gene expression profile of male germline stem cells (GSCs, mainly referred to SSCs here), we isolated and purified mouse Thy1+ cells from testis by magnetic-activated cell sorting (MACS) and then used the SAPAS method for analysis, using pluripotent embryonic stem cells (ESCs) and differentiated mouse embryonic fibroblast cells (MEFs) as controls. As a result, we obtained 99,944 poly(A) sites, approximately 40% of which were newly detected in our experiments. These poly(A) sites originated from three mouse cell types and covered 17,499 genes, including 831 long non-coding RNA (lncRNA) genes. We observed that GSCs tend to have shorter 3'UTR lengths while MEFs tend towards longer 3'UTR lengths. We also identified 1337 genes that were highly expressed in GSCs, and these genes were highly consistent with the functional characteristics of GSCs. Our detailed bioinformatics analysis identified APA site-switching events at 3'UTRs and many new specifically expressed genes in GSCs, which we experimentally confirmed. Furthermore, qRT-PCR was performed to validate several events of the 334 genes with distal-to-proximal poly(A) switch in GSCs. Consistently APA reporter assay confirmed the total 3'UTR shortening in GSCs compared to MEFs. We also analyzed the cis elements around the proximal poly(A) site preferentially used in GSCs and found C-rich elements may contribute to this regulation. Overall, our results identified the expression level and polyadenylation site profiles and

  11. Novel germline mutation (Leu512Met) in the thyrotropin receptor gene (TSHR) leading to sporadic non-autoimmune hyperthyroidism

    Science.gov (United States)

    Roberts, Stephanie A.; Moon, Jennifer E.; Dauber, Andrew; Smith, Jessica R.

    2018-01-01

    Background Primary nonautoimmune hyperthyroidism is a rare cause of neonatal hyperthyroidism. This results from an activating mutation in the thyrotropin-receptor (TSHR). It can be inherited in an autosomal dominant manner or occur sporadically as a de novo mutation. Affected individuals display a wide phenotype from severe neonatal to mild subclinical hyperthyroidism. We describe a 6-month-old boy with a de novo mutation in the TSHR gene who presented with accelerated growth, enlarging head circumference, tremor and thyrotoxicosis. Methods Genomic DNA from the patient’s and parents’ peripheral blood leukocytes was extracted. Exons 9 and 10 of the TSHR gene were amplified by PCR and sequenced. Results Sequencing exon 10 of the TSHR gene revealed a novel heterozygous missense mutation substituting cytosine to adenine at nucleotide position 1534 in the patient’s peripheral blood leukocytes. This leads to a substitution of leucine to methionine at amino acid position 512. The mutation was absent in the parents. In silico modeling by PolyPhen-2 and SIFT predicted the mutation to be deleterious. Conclusions The p.Leu512Met mutation (c.l534C>A) of the TSHR gene has not been previously described in germline or somatic mutations. This case presentation highlights the possibility of mild thyrotoxicosis in affected individuals and contributes to the understanding of sporadic non-autoimmune primary hyperthyroidism. PMID:28195550

  12. Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: a literature review.

    Science.gov (United States)

    Metcalf, Alexander M; Spurdle, Amanda B

    2014-03-01

    Colorectal cancer (CRC) that displays high microsatellite instability (MSI-H) can be caused by either germline mutations in mismatch repair (MMR) genes, or non-inherited transcriptional silencing of the MLH1 promoter. A correlation between MLH1 promoter methylation, specifically the 'C' region, and BRAF V600E status has been reported in CRC studies. Germline MMR mutations also greatly increase risk of endometrial cancer (EC), but no systematic review has been undertaken to determine if these tumour markers may be useful predictors of MMR mutation status in EC patients. Endometrial cancer cohorts meeting review inclusion criteria encompassed 2675 tumours from 20 studies for BRAF V600E, and 447 tumours from 11 studies for MLH1 methylation testing. BRAF V600E mutations were reported in 4/2675 (0.1%) endometrial tumours of unknown MMR mutation status, and there were 7/823 (0.9%) total sequence variants in exon 11 and 27/1012 (2.7%) in exon 15. Promoter MLH1 methylation was not observed in tumours from 32 MLH1 mutation carriers, or for 13 MSH2 or MSH6 mutation carriers. MMR mutation-negative individuals with tumour MLH1 and PMS2 IHC loss displayed MLH1 methylation in 48/51 (94%) of tumours. We have also detailed specific examples that show the importance of MLH1 promoter region, assay design, and quantification of methylation. This review shows that BRAF mutations occurs so infrequently in endometrial tumours they can be discounted as a useful marker for predicting MMR-negative mutation status, and further studies of endometrial cohorts with known MMR mutation status are necessary to quantify the utility of tumour MLH1 promoter methylation as a marker of negative germline MMR mutation status in EC patients.

  13. Sex chromosomes and germline transcriptomics explored by single-cell sequencing and RNA-tomography

    NARCIS (Netherlands)

    Vértesy, Ábel

    2018-01-01

    In our study of germ cell differentiation, we applied two recently developed technologies on the germline of various model organisms: single-cell mRNA sequencing and RNA-tomography. For the first time we could look at gene expression with such a high resolution, and this led us to discover the

  14. Isolation of oogenesis-specific genes transcribed in the germ-line of Calliphora erythrocephala and Drosophila melanogaster

    International Nuclear Information System (INIS)

    Tucker, M.A.

    1988-01-01

    Poly(A) + RNA from early or mid-stage ovarian follicles of C. erythrocephala was used to generate radiolabelled oogenesis-specific cDNA probes for screening the phage libraries. A cDNA probe made from mid-stage embryo poly(A) + RNA was used as the differential screening probe. Thus plaques hybridizing to the two oogenesis-specific probes but not the mid-stage embryo probe were selected as potentially containing oogenesis-specific genes. Two further rounds of screening were used to eliminate false positives and, after plaque purification, restriction digests of the remaining clones were screened by Southern blot hybridization to identify DNA fragments transcribed in an oogenesis-specific manner. In situ hybridization to sections of ovarian follicles has been used to determine the cell types within the follicles in which the various genes are expressed. Radiolabelled RNA probes for four of the C. erythrocephala oogenesis-specific clones and the two D. melanogaster clones have been hybridized to ovarian follicles. Further studies have been concentrated on the two germ-line transcribed, oogenesis-specific clones isolated from the D. melanogaster clone library. Detailed genetic mapping of the DA clone and of these mutations was performed to determine which mutations might represent the DA gene. cDNA clones have been isolated for the transcribed region of clone DA and have been used to further define the transcription unit from this region of the D. melanogaster genome

  15. PRDM14 is expressed in germ cell tumors with constitutive overexpression altering human germline differentiation and proliferation

    Directory of Open Access Journals (Sweden)

    Joanna J. Gell

    2018-03-01

    Full Text Available Germ cell tumors (GCTs are a heterogeneous group of tumors occurring in gonadal and extragonadal locations. GCTs are hypothesized to arise from primordial germ cells (PGCs, which fail to differentiate. One recently identified susceptibility loci for human GCT is PR (PRDI-BF1 and RIZ domain proteins 14 (PRDM14. PRDM14 is expressed in early primate PGCs and is repressed as PGCs differentiate. To examine PRDM14 in human GCTs we profiled human GCT cell lines and patient samples and discovered that PRDM14 is expressed in embryonal carcinoma cell lines, embryonal carcinomas, seminomas, intracranial germinomas and yolk sac tumors, but is not expressed in teratomas. To model constitutive overexpression in human PGCs, we generated PGC-like cells (PGCLCs from human pluripotent stem cells (PSCs and discovered that elevated expression of PRDM14 does not block early PGC formation. Instead, we show that elevated PRDM14 in PGCLCs causes proliferation and differentiation defects in the germline. Keywords: Germ cell tumor, PRDM14, Cell differentiation, Primordial germ cell, Proliferation

  16. Molecular and clinical characteristics of MSH6 variants : An analysis of 25 index carriers of a germline variant

    NARCIS (Netherlands)

    Olderode - Berends, Maria; Wu, Ying; Sijmons, RH; Mensink, RGJ; van der Sluis, T; Hordijk-Hos, JM; de Vries, EGE; Hollema, H; Karrenbeld, Arend; Buys, CHCM; van der Zee, AGJ; Hofstra, RMW; Kleibeuker, JH

    The MSH6 gene is one of the mismatch-repair genes involved in hereditary nonpolyposis colorectal cancer (HNPCC). Three hundred sixteen individuals who were known or suspected to have HNPCC were analyzed for MSH6 germline mutations. For 25 index patients and 8 relatives with MSH6 variants, molecular

  17. Germline variants in MRE11/RAD50/NBN complex genes in childhood leukemia

    International Nuclear Information System (INIS)

    Mosor, Maria; Ziółkowska-Suchanek, Iwona; Nowicka, Karina; Dzikiewicz-Krawczyk, Agnieszka; Januszkiewicz–Lewandowska, Danuta; Nowak, Jerzy

    2013-01-01

    The MRE11, RAD50, and NBN genes encode proteins of the MRE11-RAD50-NBN (MRN) complex involved in cellular response to DNA damage and the maintenance of genome stability. In our previous study we showed that the germline p.I171V mutation in NBN may be considered as a risk factor in the development of childhood acute lymphoblastic leukemia (ALL) and some specific haplotypes of that gene may be associated with childhood leukemia. These findings raise important questions about the role of mutations in others genes of the MRN complex in childhood leukemia. The aim of this study was to answer the question whether MRE11 and RAD50 alterations may be associated with childhood ALL or AML. We estimated the frequency of constitutional mutations and polymorphisms in selected regions of MRE11, RAD50, and NBN in the group of 220 children diagnosed with childhood leukemias and controls (n=504/2200). The analysis was performed by specific amplification of region of interest by PCR and followed by multi-temperature single-strand conformation polymorphism (PCR-MSSCP) technique. We performed two molecular tests to examine any potential function of the detected the c.551+19G>A SNP in RAD50 gene. To our knowledge, this is the first analysis of the MRE11, RAD50 and NBN genes in childhood leukemia. The frequency of either the AA genotype or A allele of RAD50-rs17166050 were significantly different in controls compared to leukemia group (ALL+AML) (p<0.0019 and p<0.0019, respectively). The cDNA analysis of AA or GA genotypes carriers has not revealed evidence of splicing abnormality of RAD50 pre-mRNA. We measured the allelic-specific expression of G and A alleles at c.551+19G>A and the statistically significant overexpression of the G allele has been observed. Additionally we confirmed the higher incidence of the p.I171V mutation in the leukemia group (7/220) than among controls (12/2400) (p<0.0001). The formerly reported sequence variants in the RAD50 and MRE11 gene may not constitute a

  18. A regulatory network of Drosophila germline stem cell self-renewal

    OpenAIRE

    Yan, Dong; Neumüller, Ralph A.; Buckner, Michael; Ayers, Kathleen; Li, Hua; Hu, Yanhui; Yang-Zhou, Donghui; Pan, Lei; Wang, Xiaoxi; Kelley, Colleen; Vinayagam, Arunachalam; Binari, Richard; Randklev, Sakara; Perkins, Lizabeth A.; Xie, Ting

    2014-01-01

    Stem cells possess the capacity to generate two cells of distinct fate upon division; one cell retaining stem cell identity and the other cell destined to differentiate. These cell fates are established by cell-type-specific genetic networks. To comprehensively identify components of these networks, we performed a large-scale RNAi screen in Drosophila female germline stem cells (GSCs) covering ~25% of the genome. The screen identified 366 genes that affect GSC maintenance, differentiation or ...

  19. Discovery and Characterization of piRNAs in the Human Fetal Ovary

    Directory of Open Access Journals (Sweden)

    Zev Williams

    2015-10-01

    Full Text Available Piwi-interacting RNAs (piRNAs, a class of 26- to 32-nt non-coding RNAs (ncRNAs, function in germline development, transposon silencing, and epigenetic regulation. We performed deep sequencing and annotation of untreated and periodate-treated small RNA cDNA libraries from human fetal and adult germline and reference somatic tissues. This revealed abundant piRNAs originating from 150 piRNA-encoding genes, including some exhibiting gender-specific expression, in fetal ovary and adult testis—developmental periods coinciding with mitotic cell divisions expanding fetal germ cells prior to meiotic divisions. The absence of reads mapping uniquely to annotated piRNA genes demonstrated their paucity in fetal testis and adult ovary and absence in somatic tissues. We curated human piRNA-expressing regions and defined their precise borders and observed piRNA-guided cleavage of transcripts antisense to some piRNA-producing genes. This study provides insights into sex-specific mammalian piRNA expression and function and serves as a reference for human piRNA analysis and annotation.

  20. Mutation analysis of SDHB and SDHC: novel germline mutations in sporadic head and neck paraganglioma and familial paraganglioma and/or pheochromocytoma

    Directory of Open Access Journals (Sweden)

    Wong Nora

    2006-01-01

    Full Text Available Abstract Background Germline mutations of the SDHD, SDHB and SDHC genes, encoding three of the four subunits of succinate dehydrogenase, are a major cause of hereditary paraganglioma and pheochromocytoma, and demonstrate that these genes are classic tumor suppressors. Succinate dehydrogenase is a heterotetrameric protein complex and a component of both the Krebs cycle and the mitochondrial respiratory chain (succinate:ubiquinone oxidoreductase or complex II. Methods Using conformation sensitive gel electrophoresis (CSGE and direct DNA sequencing to analyse genomic DNA from peripheral blood lymphocytes, here we describe the mutation analysis of the SDHB and SDHC genes in 37 patients with sporadic (i.e. no known family history head and neck paraganglioma and five pheochromocytoma and/or paraganglioma families. Results Two sporadic patients were found to have a SDHB splice site mutation in intron 4, c.423+1G>A, which produces a mis-spliced transcript with a 54 nucleotide deletion, resulting in an 18 amino acid in-frame deletion. A third patient was found to carry the c.214C>T (p.Arg72Cys missense mutation in exon 4 of SDHC, which is situated in a highly conserved protein motif that constitutes the quinone-binding site of the succinate: ubiquinone oxidoreductase (SQR complex in E. coli. Together with our previous results, we found 27 germline mutations of SDH genes in 95 cases (28% of sporadic head and neck paraganglioma. In addition all index patients of five families showing hereditary pheochromocytoma-paraganglioma were found to carry germline mutations of SDHB: four of which were novel, c.343C>T (p.Arg115X, c.141G>A (p.Trp47X, c.281G>A (p.Arg94Lys, and c.653G>C (p.Trp218Ser, and one reported previously, c.136C>T, p.Arg46X. Conclusion In conclusion, these data indicate that germline mutations of SDHB and SDHC play a minor role in sporadic head and neck paraganglioma and further underline the importance of germline SDHB mutations in cases of

  1. Selecting one of several mating types through gene segment joining and deletion in Tetrahymena thermophila.

    Directory of Open Access Journals (Sweden)

    Marcella D Cervantes

    Full Text Available The unicellular eukaryote Tetrahymena thermophila has seven mating types. Cells can mate only when they recognize cells of a different mating type as non-self. As a ciliate, Tetrahymena separates its germline and soma into two nuclei. During growth the somatic nucleus is responsible for all gene transcription while the germline nucleus remains silent. During mating, a new somatic nucleus is differentiated from a germline nucleus and mating type is decided by a stochastic process. We report here that the somatic mating type locus contains a pair of genes arranged head-to-head. Each gene encodes a mating type-specific segment and a transmembrane domain that is shared by all mating types. Somatic gene knockouts showed both genes are required for efficient non-self recognition and successful mating, as assessed by pair formation and progeny production. The germline mating type locus consists of a tandem array of incomplete gene pairs representing each potential mating type. During mating, a complete new gene pair is assembled at the somatic mating type locus; the incomplete genes of one gene pair are completed by joining to gene segments at each end of germline array. All other germline gene pairs are deleted in the process. These programmed DNA rearrangements make this a fascinating system of mating type determination.

  2. ZTF-8 interacts with the 9-1-1 complex and is required for DNA damage response and double-strand break repair in the C. elegans germline.

    Directory of Open Access Journals (Sweden)

    Hyun-Min Kim

    2014-10-01

    Full Text Available Germline mutations in DNA repair genes are linked to tumor progression. Furthermore, failure in either activating a DNA damage checkpoint or repairing programmed meiotic double-strand breaks (DSBs can impair chromosome segregation. Therefore, understanding the molecular basis for DNA damage response (DDR and DSB repair (DSBR within the germline is highly important. Here we define ZTF-8, a previously uncharacterized protein conserved from worms to humans, as a novel factor involved in the repair of both mitotic and meiotic DSBs as well as in meiotic DNA damage checkpoint activation in the C. elegans germline. ztf-8 mutants exhibit specific sensitivity to γ-irradiation and hydroxyurea, mitotic nuclear arrest at S-phase accompanied by activation of the ATL-1 and CHK-1 DNA damage checkpoint kinases, as well as accumulation of both mitotic and meiotic recombination intermediates, indicating that ZTF-8 functions in DSBR. However, impaired meiotic DSBR progression partially fails to trigger the CEP-1/p53-dependent DNA damage checkpoint in late pachytene, also supporting a role for ZTF-8 in meiotic DDR. ZTF-8 partially co-localizes with the 9-1-1 DDR complex and interacts with MRT-2/Rad1, a component of this complex. The human RHINO protein rescues the phenotypes observed in ztf-8 mutants, suggesting functional conservation across species. We propose that ZTF-8 is involved in promoting repair at stalled replication forks and meiotic DSBs by transducing DNA damage checkpoint signaling via the 9-1-1 pathway. Our findings define a conserved function for ZTF-8/RHINO in promoting genomic stability in the germline.

  3. The Landscape of Somatic Genetic Alterations in Breast Cancers From ATM Germline Mutation Carriers.

    Science.gov (United States)

    Weigelt, Britta; Bi, Rui; Kumar, Rahul; Blecua, Pedro; Mandelker, Diana L; Geyer, Felipe C; Pareja, Fresia; James, Paul A; Couch, Fergus J; Eccles, Diana M; Blows, Fiona; Pharoah, Paul; Li, Anqi; Selenica, Pier; Lim, Raymond S; Jayakumaran, Gowtham; Waddell, Nic; Shen, Ronglai; Norton, Larry; Wen, Hannah Y; Powell, Simon N; Riaz, Nadeem; Robson, Mark E; Reis-Filho, Jorge S; Chenevix-Trench, Georgia

    2018-02-28

    Pathogenic germline variants in ataxia-telangiectasia mutated (ATM), a gene that plays a role in DNA damage response and cell cycle checkpoints, confer an increased breast cancer (BC) risk. Here, we investigated the phenotypic characteristics and landscape of somatic genetic alterations in 24 BCs from ATM germline mutation carriers by whole-exome and targeted sequencing. ATM-associated BCs were consistently hormone receptor positive and largely displayed minimal immune infiltrate. Although 79.2% of these tumors exhibited loss of heterozygosity of the ATM wild-type allele, none displayed high activity of mutational signature 3 associated with defective homologous recombination DNA (HRD) repair. No TP53 mutations were found in the ATM-associated BCs. Analysis of an independent data set confirmed that germline ATM variants and TP53 somatic mutations are mutually exclusive. Our findings indicate that ATM-associated BCs often harbor bi-allelic inactivation of ATM, are phenotypically distinct from BRCA1/2-associated BCs, lack HRD-related mutational signatures, and that TP53 and ATM genetic alterations are likely epistatic.

  4. A Mononucleotide Markers Panel to Identify hMLH1/hMSH2 Germline Mutations

    Directory of Open Access Journals (Sweden)

    M. Pedroni

    2007-01-01

    Full Text Available Hereditary NonPolyposis Colorectal Cancer (Lynch syndrome is an autosomal dominant disease caused by germline mutations in a class of genes deputed to maintain genomic integrity during cell replication, mutations result in a generalized genomic instability, particularly evident at microsatellite loci (Microsatellite Instability, MSI. MSI is present in 85–90% of colorectal cancers that occur in Lynch Syndrome. To standardize the molecular diagnosis of MSI, a panel of 5 microsatellite markers was proposed (known as the “Bethesda panel”. Aim of our study is to evaluate if MSI testing with two mononucleotide markers, such as BAT25 and BAT26, was sufficient to identify patients with hMLH1/hMSH2 germline mutations. We tested 105 tumours for MSI using both the Bethesda markers and the two mononucleotide markers BAT25 and BAT26. Moreover, immunohistochemical evaluation of MLH1 and MSH2 proteins was executed on the tumours with at least one unstable microsatellite, whereas germline hMLH1/hMSH2 mutations were searched for all cases showing two or more unstable microsatellites.

  5. Estimating Exceptionally Rare Germline and Somatic Mutation Frequencies via Next Generation Sequencing.

    Directory of Open Access Journals (Sweden)

    Jordan Eboreime

    Full Text Available We used targeted next generation deep-sequencing (Safe Sequencing System to measure ultra-rare de novo mutation frequencies in the human male germline by attaching a unique identifier code to each target DNA molecule. Segments from three different human genes (FGFR3, MECP2 and PTPN11 were studied. Regardless of the gene segment, the particular testis donor or the 73 different testis pieces used, the frequencies for any one of the six different mutation types were consistent. Averaging over the C>T/G>A and G>T/C>A mutation types the background mutation frequency was 2.6x10-5 per base pair, while for the four other mutation types the average background frequency was lower at 1.5x10-6 per base pair. These rates far exceed the well documented human genome average frequency per base pair (~10-8 suggesting a non-biological explanation for our data. By computational modeling and a new experimental procedure to distinguish between pre-mutagenic lesion base mismatches and a fully mutated base pair in the original DNA molecule, we argue that most of the base-dependent variation in background frequency is due to a mixture of deamination and oxidation during the first two PCR cycles. Finally, we looked at a previously studied disease mutation in the PTPN11 gene and could easily distinguish true mutations from the SSS background. We also discuss the limits and possibilities of this and other methods to measure exceptionally rare mutation frequencies, and we present calculations for other scientists seeking to design their own such experiments.

  6. Germline PMS2 mutation screened by mismatch repair protein immunohistochemistry of colorectal cancer in Japan.

    Science.gov (United States)

    Sugano, Kokichi; Nakajima, Takeshi; Sekine, Shigeki; Taniguchi, Hirokazu; Saito, Shinya; Takahashi, Masahiro; Ushiama, Mineko; Sakamoto, Hiromi; Yoshida, Teruhiko

    2016-11-01

    Germline PMS2 gene mutations were detected by RT-PCR/direct sequencing of total RNA extracted from puromycin-treated peripheral blood lymphocytes (PBL) and multiplex ligation-dependent probe amplification (MLPA) analyses of Japanese patients with colorectal cancer (CRC) fulfilling either the revised Bethesda Guidelines or being an age at disease onset of younger than 70 years, and screened by mismatch repair protein immunohistochemistry of formalin-fixed paraffin embedded sections. Of the 501 subjects examined, 7 (1.40%) showed the downregulated expression of the PMS2 protein alone and were referred to the genetic counseling clinic. Germline PMS2 mutations were detected in 6 (85.7%), including 3 nonsense and 1 frameshift mutations by RT-PCR/direct sequencing and 2 genomic deletions by MLPA. No mutations were identified in the other MMR genes (i.e. MSH2, MLH1 and MSH6). The prevalence of the downregulated expression of the PMS2 protein alone was 1.40% among the subjects examined and IHC results predicted the presence of PMS2 germline mutations. RT-PCR from puromycin-treated PBL and MLPA may be employed as the first screening step to detect PMS2 mutations without pseudogene interference, followed by the long-range PCR/nested PCR validation using genomic DNA. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  7. Evolutionary pattern of mutation in the factor IX genes of great apes: How does it compare to the pattern of recent germline mutation in patients with hemophilia B?

    Energy Technology Data Exchange (ETDEWEB)

    Grouse, L.H.; Ketterling, R.P.; Sommer, S.S. [Mayo Clinic/Foundation, Rochester, MN (United States)

    1994-09-01

    Most mutations causing hemophilia B have arisen within the past 150 years. By correcting for multiple biases, the underlying rates of spontaneous germline mutation have been estimated in the factor IX gene. From these rates, an underlying pattern of mutation has emerged. To determine if this pattern compares to a underlying pattern found in the great apes, sequence changes were determined in intronic regions of the factor IX gene. The following species were studied: Gorilla gorilla, Pan troglodytes (chimpanzee), Pongo pygmacus (orangutan) and Homo sapiens. Intronic sequences at least 200 bp from a splice junction were randomly chosen, amplified by cross-species PCR, and sequenced. These regions are expected to be subject to little if any selective pressure. Early diverged species of Old World monkeys were also studied to help determine the direction of mutational changes. A total of 62 sequence changes were observed. Initial data suggest that the average pattern since evolution of the great apes has a paucity of transitions at CpG dinucleotides and an excess of microinsertions to microdeletions when compared to the pattern observed in humans during the past 150 years (p<.05). A larger study is in progress to confirm these results.

  8. Lack of association between autonomously functioning thyroid nodules and germline polymorphisms of the thyrotropin receptor and Gαs genes in a mild to moderate iodine-deficient Caucasian population.

    Science.gov (United States)

    Vicchio, Teresa Manuela; Giovinazzo, Salvatore; Certo, Rosaria; Cucinotta, Mariapaola; Micali, Carmelo; Baldari, Sergio; Benvenga, Salvatore; Trimarchi, Francesco; Campennì, Alfredo; Ruggeri, Rosaria Maddalena

    2014-07-01

    Mutations of the thyrotropin receptor (TSHR) and/or Gαs gene have been found in a number of, but not all, autonomously functioning thyroid nodules (AFTNs). Recently, in a 15-year-old girl with a hyperfunctioning papillary thyroid carcinoma, we found two somatic and germline single nucleotide polymorphisms (SNPs): a SNP of the TSHR gene (exon 7, codon 187) and a SNP of Gαs gene (exon 8, codon 185). The same silent SNP of the TSHR gene had been reported in patients with AFTN or familial non-autoimmune hyperthyroidism. No further data about the prevalence of the two SNPs in AFTNs as well as in the general population are available in the literature. To clarify the possible role of these SNPs in predisposing to AFTN. Germline DNA was extracted from blood leukocytes of 115 patients with AFTNs (43 males and 72 females, aged 31-85 years, mean ± SD = 64 ± 13) and 100 sex-matched healthy individuals from the same geographic area, which is marginally iodine deficient. The genotype distribution of the two SNPs was investigated by restriction fragment length polymorphism-polymerase chain reaction. The prevalence of the two SNPs in our study population was low and not different to that found in healthy individuals: 8 % of patients vs. 9 % of controls were heterozygous for the TSHR SNP and 4 % patients vs. 6 % controls were heterozygous for the Gαs SNP. One patient harbored both SNPs. These results suggest that these two SNPs do not confer susceptibility for the development of AFTN.

  9. Long-term culture of chicken primordial germ cells isolated from embryonic blood and production of germline chimaeric chickens.

    Science.gov (United States)

    Naito, Mitsuru; Harumi, Takashi; Kuwana, Takashi

    2015-02-01

    Production of germline chimaeric chickens by the transfer of cultured primordial germ cells (PGC) is a useful system for germline manipulation. A novel culture system was developed for chicken PGC isolated from embryonic blood. The isolated PGC were cultured on feeder cells derived from chicken embryonic fibroblast. The cultured PGC formed colonies and they proliferated about 300-times during the first 30 days. The cultured PGC retained the ability to migrate to recipient gonads and were also chicken VASA homologue (CVH)-positive. Female PGC were present in the mixed-sex PGC populations cultured for more than 90 days and gave rise to viable offspring efficiently via germline chimaeric chickens. Male cultured PGC were transferred to recipient embryos and produced putative chimaeric chickens. The DNA derived from the cultured PGC was detected in the sperm samples of male putative chimaeric chickens, but no donor derived offspring were obtained. Donor-derived offspring were also obtained from germline chimaeric chickens by the transfer of frozen-thawed cultured PGC. The culture method for PGC developed in the present study is useful for manipulation of the germline in chickens, such as preservation of genetic resources and gene transfer. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study.

    Science.gov (United States)

    Fewings, Eleanor; Larionov, Alexey; Redman, James; Goldgraben, Mae A; Scarth, James; Richardson, Susan; Brewer, Carole; Davidson, Rosemarie; Ellis, Ian; Evans, D Gareth; Halliday, Dorothy; Izatt, Louise; Marks, Peter; McConnell, Vivienne; Verbist, Louis; Mayes, Rebecca; Clark, Graeme R; Hadfield, James; Chin, Suet-Feung; Teixeira, Manuel R; Giger, Olivier T; Hardwick, Richard; di Pietro, Massimiliano; O'Donovan, Maria; Pharoah, Paul; Caldas, Carlos; Fitzgerald, Rebecca C; Tischkowitz, Marc

    2018-04-26

    Germline pathogenic variants in the E-cadherin gene (CDH1) are strongly associated with the development of hereditary diffuse gastric cancer. There is a paucity of data to guide risk assessment and management of families with hereditary diffuse gastric cancer that do not carry a CDH1 pathogenic variant, making it difficult to make informed decisions about surveillance and risk-reducing surgery. We aimed to identify new candidate genes associated with predisposition to hereditary diffuse gastric cancer in affected families without pathogenic CDH1 variants. We did whole-exome sequencing on DNA extracted from the blood of 39 individuals (28 individuals diagnosed with hereditary diffuse gastric cancer and 11 unaffected first-degree relatives) in 22 families without pathogenic CDH1 variants. Genes with loss-of-function variants were prioritised using gene-interaction analysis to identify clusters of genes that could be involved in predisposition to hereditary diffuse gastric cancer. Protein-affecting germline variants were identified in probands from six families with hereditary diffuse gastric cancer; variants were found in genes known to predispose to cancer and in lesser-studied DNA repair genes. A frameshift deletion in PALB2 was found in one member of a family with a history of gastric and breast cancer. Two different MSH2 variants were identified in two unrelated affected individuals, including one frameshift insertion and one previously described start-codon loss. One family had a unique combination of variants in the DNA repair genes ATR and NBN. Two variants in the DNA repair gene RECQL5 were identified in two unrelated families: one missense variant and a splice-acceptor variant. The results of this study suggest a role for the known cancer predisposition gene PALB2 in families with hereditary diffuse gastric cancer and no detected pathogenic CDH1 variants. We also identified new candidate genes associated with disease risk in these families. UK Medical

  11. Methods in Molecular Biology: Germline Stem Cells | Center for Cancer Research

    Science.gov (United States)

    The protocols in Germline Stem Cells are intended to present selected genetic, molecular, and cellular techniques used in germline stem cell research. The book is divided into two parts. Part I covers germline stem cell identification and regulation in model organisms. Part II covers current techniques used in in vitro culture and applications of germline stem cells.

  12. Male germline recombination of a conditional allele by the widely used Dermo1-cre (Twist2-cre) transgene.

    Science.gov (United States)

    He, Yun; Sun, Xiumei; Wang, Li; Mishina, Yuji; Guan, Jun-Lin; Liu, Fei

    2017-09-01

    Conditional gene knockout using the Cre/loxP system is instrumental in advancing our understanding of the function of genes in a wide range of disciplines. It is becoming increasingly apparent in the literature that recombination mediated by some Cre transgenes can occur in unexpected tissues. Dermo1-Cre (Twist2-Cre) has been widely used to target skeletal lineage cells as well as other mesoderm-derived cells. Here we report that Dermo1-Cre exhibits spontaneous male germline recombination activity leading to a Cre-mediated recombination of a floxed Ptk2 (Protein tyrosine kinase 2, also known as Fak [Focal adhesion kinase]) allele but not a floxed Rb1cc1 (RB1 inducible coiled-coil 1, also known as Fip200 [FAK-family Interacting Protein of 200 kDa]) allele at high frequency. This ectopic germline activity of Dermo1-Cre occurred in all or none manner in a given litter. We demonstrated that the occurrence of germline recombination activity of Dermo1-Cre transgene can be avoided by using female mice as parental Dermo1-Cre carriers. © 2017 Wiley Periodicals, Inc.

  13. Cell surface fucosylation does not affect development of colon tumors in mice with germline Smad3 mutation

    Science.gov (United States)

    Domino, Steven E.; Karnak, David M.; Hurd, Elizabeth A.

    2006-01-01

    Background/Aims: Neoplasia-related alterations in cell surface α(1,2)fucosylated glycans have been reported in multiple tumors including colon, pancreas, endometrium, cervix, bladder, lung, and choriocarcinoma. Spontaneous colorectal tumors from mice with a germline null mutation of transforming growth factor-β signaling gene Smad3 (Madh3) were tested for α(1,2)fucosylated glycan expression. Methods: Ulex Europaeus Agglutinin-I lectin staining, fucosyltransferase gene northern blot analysis, and a cross of mutant mice with Fut2 and Smad3 germline mutations were performed. Results: Spontaneous colorectal tumors from Smad3 (-/-) homozygous null mice were found to express α(1,2)fucosylated glycans in an abnormal pattern compared to adjacent nonneoplastic colon. Northern blot analysis of α(1,2)fucosyltransferase genes Fut1 and Fut2 revealed that Fut2, but not Fut1, steady-state mRNA levels were significantly increased in tumors relative to adjacent normal colonic mucosa. Mutant mice with a Fut2-inactivating germline mutation were crossed with Smad3 targeted mice. In Smad3 (-/-)/Fut2 (-/-) double knock-out mice, UEA-I lectin staining was eliminated from colon and colon tumors, however, the number and size of tumors present by 24 weeks of age did not vary regardless of the Fut2 genotype. Conclusions: In this model of colorectal cancer, cell surface α(1,2)fucosylation does not affect development of colon tumors. PMID:17264540

  14. Asymmetric distribution of pl10 and bruno2, new members of a conserved core of early germline determinants in cephalochordates

    Directory of Open Access Journals (Sweden)

    Simon eDailey

    2016-01-01

    Full Text Available Molecular fingerprinting of conserved germline and somatic ¨stemness¨ markers in different taxa have been key in defining the mechanism of germline specification (preformation or epigenesis, as well as expression domains of somatic progenitors. The distribution of molecular markers for primordial germ cells (PGCs, including vasa, nanos and piwil1, as well as Vasa antibody staining, support a determinative mechanism of germline specification in the cephalochordate Branchiostoma lanceolatum, similarly to other amphioxus species. pl10 and bruno2, but not bruno4/6, are also expressed in a pattern consistent with these other germline genes, adding to our repertoire of PGC markers in lancelets. Expression of nanos, vasa and the remaining markers (musashi, pufA, pufB, pumilio and piwil2 may define populations of putative somatic progenitors in the tailbud, the amphioxus posterior growth zone, or zones of proliferative activity. Finally, we also identify a novel expression domain for musashi, a classic neural stem cell marker, during notochord development in amphioxus. These results are discussed in the context of germline determination in other taxa, stem cell regulation and regenerative capacity in adult amphioxus.

  15. Germline mutations in ABL1 cause an autosomal dominant syndrome characterized by congenital heart defects and skeletal malformations

    Science.gov (United States)

    Wang, Xia; Charng, Wu-Lin; Chen, Chun-An; Rosenfeld, Jill A.; Shamsi, Aisha Al; Al-Gazali, Lihadh; McGuire, Marianne; Mew, Nicholas Ah; Arnold, Georgianne L.; Qu, Chunjing; Ding, Yan; Muzny, Donna M.; Gibbs, Richard A.; Eng, Christine M.; Walkiewicz, Magdalena; Xia, Fan; Plon, Sharon E.; Lupski, James R.; Schaaf, Christian P.; Yang, Yaping

    2017-01-01

    ABL1 is a proto-oncogene well known as part of the fusion gene BCR-ABL in the Philadelphia chromosome of leukemia cancer cells1. Inherited germline ABL1 changes have not been associated with genetic disorders. Here we report ABL1 germline variants co-segregating with an autosomal dominant disorder characterized by congenital heart disease, skeletal abnormalities, and failure to thrive. The variant c.734A>G (p.Tyr245Cys) was found as de novo or co-segregating with disease in five individuals (families 1-3). Additionally, a de novo c.1066G>A (p.Ala356Thr) variant was identified in the sixth individual (family 4). We overexpressed the mutant constructs in HEK 293T cells and observed increased tyrosine phosphorylation, suggesting increased ABL1 kinase activities associated with both p.Tyr245Cys and p.Ala356Thr substitutions. Our clinical and laboratory findings, together with previously reported teratogenic effects of selective BCR-ABL inhibitors in humans2-5 and developmental defects in Abl1 knock-out mice6,7, suggest ABL1 plays an important role during organismal development. PMID:28288113

  16. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Shah, S.; Schrader, K.A.; Waanders, E.; Timms, A.E.; Vijai, J.; Miething, C.; Wechsler, J.; Yang, J.; Hayes, J.; Klein, R.J.; Zhang, J.; Wei, L.; Wu, G.; Rusch, M.; Nagahawatte, P.; Ma, J; Chen, S.C.; Song, G.; Cheng, J.; Meyers, P.; Bhojwani, D.; Jhanwar, S.; Maslak, P.; Fleisher, M.; Littman, J.; Offit, L.; Rau-Murthy, R.; Fleischut, M.H.; Corines, M.; Murali, R.; Gao, X.; Manschreck, C.; Kitzing, T.; Murty, V.V.; Raimondi, S.C.; Kuiper, R.P.; Simons, A.; Schiffman, J.D.; Onel, K.; Plon, S.E.; Wheeler, D.A.; Ritter, D.; Ziegler, D.S.; Tucker, K.; Sutton, R.; Chenevix-Trench, G.; Li, J.; Huntsman, D.G.; Hansford, S.; Senz, J.; Walsh, T.; Lee (Helen Dowling Instituut), M. van der; Hahn, C.N.; Roberts, K.G.; King, M.C.; Lo, S.M.; Levine, R.L.; Viale, A.; Socci, N.D.; Nathanson, K.L.; Scott, H.S.; Daly, M.; Lipkin, S.M.; Lowe, S.W.; Downing, J.R.; Altshuler, D.; Sandlund, J.T.; Horwitz, M.S.; Mullighan, C.G.; Offit, K.

    2013-01-01

    Somatic alterations of the lymphoid transcription factor gene PAX5 (also known as BSAP) are a hallmark of B cell precursor acute lymphoblastic leukemia (B-ALL), but inherited mutations of PAX5 have not previously been described. Here we report a new heterozygous germline variant, c.547G>A

  17. Prevalence of Germline Mutations in Genes Engaged in DNA Damage Repair by Homologous Recombination in Patients with Triple-Negative and Hereditary Non-Triple-Negative Breast Cancers.

    Directory of Open Access Journals (Sweden)

    Pawel Domagala

    Full Text Available This study sought to assess the prevalence of common germline mutations in several genes engaged in the repair of DNA double-strand break by homologous recombination in patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers. Tumors deficient in this type of DNA damage repair are known to be especially sensitive to DNA cross-linking agents (e.g., platinum drugs and to poly(ADP-ribose polymerase (PARP inhibitors.Genetic testing was performed for 36 common germline mutations in genes engaged in the repair of DNA by homologous recombination, i.e., BRCA1, BRCA2, CHEK2, NBN, ATM, PALB2, BARD1, and RAD51D, in 202 consecutive patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers.Thirty five (22.2% of 158 patients in the triple-negative group carried mutations in genes involved in DNA repair by homologous recombination, while 10 (22.7% of the 44 patients in the hereditary non-triple-negative group carried such mutations. Mutations in BRCA1 were most frequent in patients with triple-negative breast cancer (18.4%, and mutations in CHEK2 were most frequent in patients with hereditary non-triple-negative breast cancers (15.9%. In addition, in the triple-negative group, mutations in CHEK2, NBN, and ATM (3.8% combined were found, while mutations in BRCA1, NBN, and PALB2 (6.8% combined were identified in the hereditary non-triple-negative group.Identifying mutations in genes engaged in DNA damage repair by homologous recombination other than BRCA1/2 can substantially increase the proportion of patients with triple-negative breast cancer and hereditary non-triple-negative breast cancer who may be eligible for therapy using PARP inhibitors and platinum drugs.

  18. Prevalence of pathogenic germline variants detected by multigene sequencing in unselected Japanese patients with ovarian cancer.

    Science.gov (United States)

    Hirasawa, Akira; Imoto, Issei; Naruto, Takuya; Akahane, Tomoko; Yamagami, Wataru; Nomura, Hiroyuki; Masuda, Kiyoshi; Susumu, Nobuyuki; Tsuda, Hitoshi; Aoki, Daisuke

    2017-12-22

    Pathogenic germline BRCA1 , BRCA2 ( BRCA1/2 ), and several other gene variants predispose women to primary ovarian, fallopian tube, and peritoneal carcinoma (OC), although variant frequency and relevance information is scarce in Japanese women with OC. Using targeted panel sequencing, we screened 230 unselected Japanese women with OC from our hospital-based cohort for pathogenic germline variants in 75 or 79 OC-associated genes. Pathogenic variants of 11 genes were identified in 41 (17.8%) women: 19 (8.3%; BRCA1 ), 8 (3.5%; BRCA2 ), 6 (2.6%; mismatch repair genes), 3 (1.3%; RAD51D ), 2 (0.9%; ATM ), 1 (0.4%; MRE11A ), 1 ( FANCC ), and 1 ( GABRA6 ). Carriers of BRCA1/2 or any other tested gene pathogenic variants were more likely to be diagnosed younger, have first or second-degree relatives with OC, and have OC classified as high-grade serous carcinoma (HGSC). After adjustment for these variables, all 3 features were independent predictive factors for pathogenic variants in any tested genes whereas only the latter two remained for variants in BRCA1/2 . Our data indicate similar variant prevalence in Japanese patients with OC and other ethnic groups and suggest that HGSC and OC family history may facilitate genetic predisposition prediction in Japanese patients with OC and referring high-risk patients for genetic counseling and testing.

  19. Performance of Lynch syndrome predictive models in quantifying the likelihood of germline mutations in patients with abnormal MLH1 immunoexpression.

    Science.gov (United States)

    Cabreira, Verónica; Pinto, Carla; Pinheiro, Manuela; Lopes, Paula; Peixoto, Ana; Santos, Catarina; Veiga, Isabel; Rocha, Patrícia; Pinto, Pedro; Henrique, Rui; Teixeira, Manuel R

    2017-01-01

    Lynch syndrome (LS) accounts for up to 4 % of all colorectal cancers (CRC). Detection of a pathogenic germline mutation in one of the mismatch repair genes is the definitive criterion for LS diagnosis, but it is time-consuming and expensive. Immunohistochemistry is the most sensitive prescreening test and its predictive value is very high for loss of expression of MSH2, MSH6, and (isolated) PMS2, but not for MLH1. We evaluated if LS predictive models have a role to improve the molecular testing algorithm in this specific setting by studying 38 individuals referred for molecular testing and who were subsequently shown to have loss of MLH1 immunoexpression in their tumors. For each proband we calculated a risk score, which represents the probability that the patient with CRC carries a pathogenic MLH1 germline mutation, using the PREMM 1,2,6 and MMRpro predictive models. Of the 38 individuals, 18.4 % had a pathogenic MLH1 germline mutation. MMRpro performed better for the purpose of this study, presenting a AUC of 0.83 (95 % CI 0.67-0.9; P < 0.001) compared with a AUC of 0.68 (95 % CI 0.51-0.82, P = 0.09) for PREMM 1,2,6 . Considering a threshold of 5 %, MMRpro would eliminate unnecessary germline mutation analysis in a significant proportion of cases while keeping very high sensitivity. We conclude that MMRpro is useful to correctly predict who should be screened for a germline MLH1 gene mutation and propose an algorithm to improve the cost-effectiveness of LS diagnosis.

  20. Human heavy-chain variable region gene family nonrandomly rearranged in familial chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Shen, A.; Humphries, C.; Tucker, P.; Blattner, F.

    1987-01-01

    The authors have identified a family of human immunoglobulin heavy-chain variable-region (V/sub H/) genes, one member of which is rearranged in two affected members of a family in which the father and four of five siblings developed chronic lymphocytic leukemia. Cloning and sequencing of the rearranged V/sub H/ genes from leukemic lymphocytes of three affected siblings showed that two siblings had rearranged V/sub H/ genes (V/sub H/TS1 and V/sub H/WS1) that were 90% homologous. The corresponding germ-line gene, V/sub H/251, was found to part of a small (four gene) V/sub H/ gene family, which they term V/sub H/V. The DNA sequence homology to V/sub H/WS1 (95%) and V/sub H/TS1 (88%) and identical restriction sites on the 5' side of V/sub H/ confirm that rearrangement of V/sub H/251 followed by somatic mutation produced the identical V/sub H/ gene rearrangements in the two siblings. V/sub H/TS1 is not a functional V/sub H/ gene; a functional V/sub H/ rearrangement was found on the other chromosome of this patient. The other two siblings had different V/sub H/ gene rearrangements. All used different diversity genes. Mechanisms proposed for nonrandom selection of a single V/sub H/ gene include developmental regulation of this V/sub H/ gene rearrangement or selection of a subpopulation of B cells in which this V/sub H/ has been rearranged

  1. Association of germline mutation in the PTEN tumour suppressor gene and Proteus and Proteus-like syndromes

    NARCIS (Netherlands)

    Zhou, X.; Hampel, H.; Thiele, H.; Gorlin, R. J.; Hennekam, R. C.; Parisi, M.; Winter, R. M.; Eng, C.

    2001-01-01

    The molecular aetiology of Proteus syndrome (PS) remains elusive. Germline mutations in PTEN cause Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome, which are hereditary hamartoma syndromes. Some features-eg, macrocephaly, lipomatosis, and vascular malformations-can be seen in all three

  2. The Number of Overlapping AID Hotspots in Germline IGHV Genes Is Inversely Correlated with Mutation Frequency in Chronic Lymphocytic Leukemia.

    Science.gov (United States)

    Yuan, Chaohui; Chu, Charles C; Yan, Xiao-Jie; Bagnara, Davide; Chiorazzi, Nicholas; MacCarthy, Thomas

    2017-01-01

    The targeting of mutations by Activation-Induced Deaminase (AID) is a key step in generating antibody diversity at the Immunoglobulin (Ig) loci but is also implicated in B-cell malignancies such as chronic lymphocytic leukemia (CLL). AID has previously been shown to preferentially deaminate WRC (W = A/T, R = A/G) hotspots. WGCW sites, which contain an overlapping WRC hotspot on both DNA strands, mutate at much higher frequency than single hotspots. Human Ig heavy chain (IGHV) genes differ in terms of WGCW numbers, ranging from 4 for IGHV3-48*03 to as many as 12 in IGHV1-69*01. An absence of V-region mutations in CLL patients ("IGHV unmutated", or U-CLL) is associated with a poorer prognosis compared to "IGHV mutated" (M-CLL) patients. The reasons for this difference are still unclear, but it has been noted that particular IGHV genes associate with U-CLL vs M-CLL. For example, patients with IGHV1-69 clones tend to be U-CLL with a poor prognosis, whereas patients with IGHV3-30 tend to be M-CLL and have a better prognosis. Another distinctive feature of CLL is that ~30% of (mostly poor prognosis) patients can be classified into "stereotyped" subsets, each defined by HCDR3 similarity, suggesting selection, possibly for a self-antigen. We analyzed >1000 IGHV genes from CLL patients and found a highly significant statistical relationship between the number of WGCW hotspots in the germline V-region and the observed mutation frequency in patients. However, paradoxically, this correlation was inverse, with V-regions with more WGCW hotspots being less likely to be mutated, i.e., more likely to be U-CLL. The number of WGCW hotspots in particular, are more strongly correlated with mutation frequency than either non-overlapping (WRC) hotspots or more general models of mutability derived from somatic hypermutation data. Furthermore, this correlation is not observed in sequences from the B cell repertoires of normal individuals and those with autoimmune diseases.

  3. EPHB2 germline variants in patients with colorectal cancer or hyperplastic polyposis

    International Nuclear Information System (INIS)

    Kokko, Antti; Tomlinson, Ian PM; Vahteristo, Pia; Aaltonen, Lauri A; Laiho, Päivi; Lehtonen, Rainer; Korja, Sanna; Carvajal-Carmona, Luis G; Järvinen, Heikki; Mecklin, Jukka-Pekka; Eng, Charis; Schleutker, Johanna

    2006-01-01

    Ephrin receptor B2 (EPHB2) has recently been proposed as a novel tumor suppressor gene in colorectal cancer (CRC). Inactivation of the gene has been shown to correlate with progression of colorectal tumorigenesis, and somatic mutations have been reported in both colorectal and prostate tumors. Here we have analyzed the EPHB2 gene for germline alterations in 101 individuals either with 1) CRC and a personal or family history of prostate cancer (PC), or 2) intestinal hyperplastic polyposis (HPP), a condition associated with malignant degeneration such as serrated adenoma and CRC. Four previously unknown missense alterations were observed, which may be associated with the disease phenotype. Two of the changes, I361V and R568W, were identified in Finnish CRC patients, but not in over 300 Finnish familial CRC or PC patients or more than 200 population-matched healthy controls. The third change, D861N, was observed in a UK HPP patient, but not in additional 40 UK HPP patients or in 200 UK healthy controls. The fourth change R80H, originally identified in a Finnish CRC patient, was also found in 1/106 familial CRC patients and in 9/281 healthy controls and is likely to be a neutral polymorphism. We detected novel germline EPHB2 alterations in patients with colorectal tumors. The results suggest a limited role for these EPHB2 variants in colon tumor predisposition. Further studies including functional analyses are needed to confirm this

  4. The signature of somatic hypermutation appears to be written into the germline IgV segment repertoire.

    Science.gov (United States)

    Blanden, R V; Rothenfluh, H S; Zylstra, P; Weiller, G F; Steele, E J

    1998-04-01

    We present here a unifying hypothesis for the molecular mechanism of somatic hypermutation and somatic gene conversion in IgV genes involving reverse transcription using RNA templates from the V-gene loci to produce cDNA which undergoes homologous recombination with chromosomal V(D)J DNA. Experimental evidence produced over the last 20 years is essentially consistent with this hypothesis. We also review evidence suggesting that somatically generated IgV sequences from B lymphocytes have been fed back to germline DNA over evolutionary time.

  5. Germline transformation of the Mediterranean fruit fly, Ceratitis capitata

    International Nuclear Information System (INIS)

    McCombs, Susan D.

    2000-01-01

    Gene transfer methodology for insects was first developed in Drosophila melanogaster Meigen using a transposon-mediated system based on the P element (Spradling and Rubin 1982, Rubin and Spradling 1982). In addition to the P element, three unrelated transposons have been used successfully in genetic transformation of D. melanogaster: hobo (Blackman et al. 1989), Minos (Loukeris et al. 1992), and mariner (Lidholm et al. 1993). Routine gene transfer in Drosophila created a great deal of optimism amongst researchers who sought to employ transgenic techniques in other arthropods. However, what followed were years of consistently disappointing results in other insect species. For example, the P element system was tried unsuccessfully in several species, but was eventually shown to be non-functional outside the genus Drosophila (O'Brochta and Handler 1988). Ensuing research in non-drosophilids emphasised testing of other Drosophila systems and development of transposons isolated from other species. After nearly 15 years of intensive effort, the first successes have only recently been reported. Three Drosophila-derived transposon-based systems: hobo from D. melanogaster, mariner from Drosophila mauritiana Tsacas and David and Minos from Drosophila hydei Sturtevant have produced germline transformation in Drosophila virilis Sturtevant (Gomez and Handler 1997, Lozovskaya et al. 1996), Aedes aegypti L. (Coates et al. 1998), and Ceratitis capitata (Wied.) (Loukeris et al. 1995), respectively. Germline transformation was accomplished with two transposon-based systems from non-drosophilids, Hermes from Musca domestica L. and piggyBac from Trichoplusia ni Huebner in A. aegypti and C. capitata, respectively

  6. The ecological imperative and its application to ethical issues in human genetic technology

    Directory of Open Access Journals (Sweden)

    W. Malcolm Byrnes

    2003-08-01

    Full Text Available As a species, we are on the cusp of being able to alter that which makes us uniquely human, our genome. Two new genetic technologies, embryo selection and germline engineering, are either in use today or may be developed in the future. Embryo selection acts to alter the human gene pool, reducing genetic diversity, while germline engineering will have the ability to alter directly the genomes of engineered individuals. Our genome has come to be what it is through an evolutionary process extending over millions of years, a process that has involved exceedingly complex and unpredictable interactions between ourselves or our ancestors and myriad other life forms within Earth's biosphere. In this paper, the ecological imperativ e, which states that we must not alter the human genome or the collective human genetic inheritance, will be introduced. It will be argued based on ecological principles that embryo selection and germline engineering are unethical and unwise because they will diminish our survivability as a species, will disrupt our relationship with the natural world, and will destroy the very basis of that which makes us human.

  7. Minisatellite germline mutation rate in the Techa River population

    Energy Technology Data Exchange (ETDEWEB)

    Dubrova, Yuri E. [Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)]. E-mail: yed2@le.ac.uk; Ploshchanskaya, Olga G. [Urals Research Centre for Radiation Medicine, Medgorodok, Chelyabinsk 454076 (Russian Federation); Department of Radiobiology, Chelyabinsk State University, Chelyabinsk 454021 (Russian Federation); Kozionova, Olga S. [Urals Research Centre for Radiation Medicine, Medgorodok, Chelyabinsk 454076 (Russian Federation); Department of Radiobiology, Chelyabinsk State University, Chelyabinsk 454021 (Russian Federation); Akleyev, Alexander V. [Urals Research Centre for Radiation Medicine, Medgorodok, Chelyabinsk 454076 (Russian Federation); Department of Radiobiology, Chelyabinsk State University, Chelyabinsk 454021 (Russian Federation)

    2006-12-01

    Germline mutation at eight minisatellite loci has been studied among the irradiated families from the Techa River population and non-exposed families from the rural area of the Chelyabinsk and Kurgan Oblasts. The groups were matched by ethnicity, parental age, occupation and smoking habit. A statistically significant 1.7-fold increase in mutation rate was found in the germline of irradiated fathers, whereas maternal germline mutation rate in the exposed families was not elevated. Most of the minisatellite loci showed an elevated paternal mutation rate in the exposed group, indicating a generalised increase in minisatellite germline mutation rate in the Techa River population. These data suggest that the elevated minisatellite mutation rate can be attributed to radioactive exposure. The spectra of paternal mutation seen in the unexposed and exposed families were indistinguishable.

  8. Minisatellite germline mutation rate in the Techa River population

    International Nuclear Information System (INIS)

    Dubrova, Yuri E.; Ploshchanskaya, Olga G.; Kozionova, Olga S.; Akleyev, Alexander V.

    2006-01-01

    Germline mutation at eight minisatellite loci has been studied among the irradiated families from the Techa River population and non-exposed families from the rural area of the Chelyabinsk and Kurgan Oblasts. The groups were matched by ethnicity, parental age, occupation and smoking habit. A statistically significant 1.7-fold increase in mutation rate was found in the germline of irradiated fathers, whereas maternal germline mutation rate in the exposed families was not elevated. Most of the minisatellite loci showed an elevated paternal mutation rate in the exposed group, indicating a generalised increase in minisatellite germline mutation rate in the Techa River population. These data suggest that the elevated minisatellite mutation rate can be attributed to radioactive exposure. The spectra of paternal mutation seen in the unexposed and exposed families were indistinguishable

  9. Biallelic germline and somatic mutations in malignant mesothelioma: multiple mutations in transcription regulators including mSWI/SNF genes.

    Science.gov (United States)

    Yoshikawa, Yoshie; Sato, Ayuko; Tsujimura, Tohru; Otsuki, Taiichiro; Fukuoka, Kazuya; Hasegawa, Seiki; Nakano, Takashi; Hashimoto-Tamaoki, Tomoko

    2015-02-01

    We detected low levels of acetylation for histone H3 tail lysines in malignant mesothelioma (MM) cell lines resistant to histone deacetylase inhibitors. To identify the possible genetic causes related to the low histone acetylation levels, whole-exome sequencing was conducted with MM cell lines established from eight patients. A mono-allelic variant of BRD1 was common to two MM cell lines with very low acetylation levels. We identified 318 homozygous protein-damaging variants/mutations (18-78 variants/mutations per patient); annotation analysis showed enrichment of the molecules associated with mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complexes and co-activators that facilitate initiation of transcription. In seven of the patients, we detected a combination of variants in histone modifiers or transcription factors/co-factors, in addition to variants in mSWI/SNF. Direct sequencing showed that homozygous mutations in SMARCA4, PBRM1 and ARID2 were somatic. In one patient, homozygous germline variants were observed for SMARCC1 and SETD2 in chr3p22.1-3p14.2. These exhibited extended germline homozygosity and were in regions containing somatic mutations, leading to a loss of BAP1 and PBRM1 expression in MM cell line. Most protein-damaging variants were heterozygous in normal tissues. Heterozygous germline variants were often converted into hemizygous variants by mono-allelic deletion, and were rarely homozygous because of acquired uniparental disomy. Our findings imply that MM might develop through the somatic inactivation of mSWI/SNF complex subunits and/or histone modifiers, including BAP1, in subjects that have rare germline variants of these transcription regulators and/or transcription factors/co-factors, and in regions prone to mono-allelic deletion during oncogenesis. © 2014 UICC.

  10. DNA methylation patterns of candidate genes regulated by thymine DNA glycosylase in patients with TP53 germline mutations

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, F.P. [CIPE, Laboratrio de Oncogentica Molecular, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Kuasne, H. [CIPE, Laboratrio NeoGene, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Departamento de Urologia, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP (Brazil); Marchi, F.A. [CIPE, Laboratrio NeoGene, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Programa Inter-Institucional em Bioinformtica, Instituto de Matemtica e Estatstica, Universidade So Paulo, So Paulo, SP (Brazil); Miranda, P.M. [CIPE, Laboratrio NeoGene, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Rogatto, S.R. [CIPE, Laboratrio NeoGene, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Departamento de Urologia, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP (Brazil); Achatz, M.I. [CIPE, Laboratrio de Oncogentica Molecular, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Departamento de Oncogentica, A.C. Camargo Cancer Center, So Paulo, SP (Brazil)

    2015-04-28

    Li-Fraumeni syndrome (LFS) is a rare, autosomal dominant, hereditary cancer predisposition disorder. In Brazil, the p.R337H TP53 founder mutation causes the variant form of LFS, Li-Fraumeni-like syndrome. The occurrence of cancer and age of disease onset are known to vary, even in patients carrying the same mutation, and several mechanisms such as genetic and epigenetic alterations may be involved in this variability. However, the extent of involvement of such events has not been clarified. It is well established that p53 regulates several pathways, including the thymine DNA glycosylase (TDG) pathway, which regulates the DNA methylation of several genes. This study aimed to identify the DNA methylation pattern of genes potentially related to the TDG pathway (CDKN2A, FOXA1, HOXD8, OCT4, SOX2, and SOX17) in 30 patients with germline TP53mutations, 10 patients with wild-type TP53, and 10 healthy individuals. We also evaluated TDG expression in patients with adrenocortical tumors (ADR) with and without the p.R337H TP53 mutation. Gene methylation patterns of peripheral blood DNA samples assessed by pyrosequencing revealed no significant differences between the three groups. However, increased TDG expression was observed by quantitative reverse transcription PCR in p.R337H carriers with ADR. Considering the rarity of this phenotype and the relevance of these findings, further studies using a larger sample set are necessary to confirm our results.

  11. Germline transgenic pigs by Sleeping Beauty transposition in porcine zygotes and targeted integration in the pig genome.

    Directory of Open Access Journals (Sweden)

    Wiebke Garrels

    Full Text Available Genetic engineering can expand the utility of pigs for modeling human diseases, and for developing advanced therapeutic approaches. However, the inefficient production of transgenic pigs represents a technological bottleneck. Here, we assessed the hyperactive Sleeping Beauty (SB100X transposon system for enzyme-catalyzed transgene integration into the embryonic porcine genome. The components of the transposon vector system were microinjected as circular plasmids into the cytoplasm of porcine zygotes, resulting in high frequencies of transgenic fetuses and piglets. The transgenic animals showed normal development and persistent reporter gene expression for >12 months. Molecular hallmarks of transposition were confirmed by analysis of 25 genomic insertion sites. We demonstrate germ-line transmission, segregation of individual transposons, and continued, copy number-dependent transgene expression in F1-offspring. In addition, we demonstrate target-selected gene insertion into transposon-tagged genomic loci by Cre-loxP-based cassette exchange in somatic cells followed by nuclear transfer. Transposase-catalyzed transgenesis in a large mammalian species expands the arsenal of transgenic technologies for use in domestic animals and will facilitate the development of large animal models for human diseases.

  12. Germline Genetic Modification and Identity: the Mitochondrial and Nuclear Genomes.

    Science.gov (United States)

    Scott, Rosamund; Wilkinson, Stephen

    2017-12-01

    In a legal 'first', the UK removed a prohibition against modifying embryos in human reproduction, to enable mitochondrial replacement techniques (MRTs), a move the Government distanced from 'germline genetic modification', which it aligned with modifying the nuclear genome. This paper (1) analyzes the uses and meanings of this term in UK/US legal and policy debates; and (2) evaluates related ethical concerns about identity. It shows that, with respect to identity, MRTs and nuclear genome editing techniques such as CRISPR/Cas-9 (now a policy topic), are not as different as has been supposed. While it does not follow that the two should be treated exactly alike, one of the central reasons offered for treating MRTs more permissively than nuclear genetic modification, and for not regarding MRTs as 'germline genetic modification', is thereby in doubt. Identity cannot, by itself, do the work thus far assigned to it, explicitly or otherwise, in law and policy.

  13. Germline contamination and leakage in whole genome somatic single nucleotide variant detection.

    Science.gov (United States)

    Sendorek, Dorota H; Caloian, Cristian; Ellrott, Kyle; Bare, J Christopher; Yamaguchi, Takafumi N; Ewing, Adam D; Houlahan, Kathleen E; Norman, Thea C; Margolin, Adam A; Stuart, Joshua M; Boutros, Paul C

    2018-01-31

    The clinical sequencing of cancer genomes to personalize therapy is becoming routine across the world. However, concerns over patient re-identification from these data lead to questions about how tightly access should be controlled. It is not thought to be possible to re-identify patients from somatic variant data. However, somatic variant detection pipelines can mistakenly identify germline variants as somatic ones, a process called "germline leakage". The rate of germline leakage across different somatic variant detection pipelines is not well-understood, and it is uncertain whether or not somatic variant calls should be considered re-identifiable. To fill this gap, we quantified germline leakage across 259 sets of whole-genome somatic single nucleotide variant (SNVs) predictions made by 21 teams as part of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge. The median somatic SNV prediction set contained 4325 somatic SNVs and leaked one germline polymorphism. The level of germline leakage was inversely correlated with somatic SNV prediction accuracy and positively correlated with the amount of infiltrating normal cells. The specific germline variants leaked differed by tumour and algorithm. To aid in quantitation and correction of leakage, we created a tool, called GermlineFilter, for use in public-facing somatic SNV databases. The potential for patient re-identification from leaked germline variants in somatic SNV predictions has led to divergent open data access policies, based on different assessments of the risks. Indeed, a single, well-publicized re-identification event could reshape public perceptions of the values of genomic data sharing. We find that modern somatic SNV prediction pipelines have low germline-leakage rates, which can be further reduced, especially for cloud-sharing, using pre-filtering software.

  14. Germline mutations in lysine specific demethylase 1 (LSD1/KDM1A) confer susceptibility to multiple myeloma.

    Science.gov (United States)

    Wei, Xiaomu; Calvo-Vidal, M Nieves; Chen, Siwei; Wu, Gang; Revuelta, Maria V; Sun, Jian; Zhang, Jinghui; Walsh, Michael F; Nichols, Kim E; Joseph, Vijai; Snyder, Carrie; Vachon, Celine M; McKay, James D; Wang, Shu-Ping; Jayabalan, David S; Jacobs, Lauren M; Becirovic, Dina; Waller, Rosalie G; Artomov, Mykyta; Viale, Agnes; Patel, Jayeshkumar; Phillip, Jude M; Chen-Kiang, Selina; Curtin, Karen; Salama, Mohamed; Atanackovic, Djordje; Niesvizky, Ruben; Landgren, Ola; Slager, Susan L; Godley, Lucy A; Churpek, Jane; Garber, Judy E; Anderson, Kenneth C; Daly, Mark J; Roeder, Robert G; Dumontet, Charles; Lynch, Henry T; Mullighan, Charles G; Camp, Nicola J; Offit, Kenneth; Klein, Robert J; Yu, Haiyuan; Cerchietti, Leandro; Lipkin, Steven M

    2018-03-20

    Given the frequent and largely incurable occurrence of multiple myeloma (MM), identification of germline genetic mutations that predispose cells to MM may provide insight into disease etiology and the developmental mechanisms of its cell of origin, the plasma cell. Here we identified familial and early-onset MM kindreds with truncating mutations in lysine-specific demethylase 1 (LSD1/KDM1A), an epigenetic transcriptional repressor that primarily demethylates histone H3 on lysine 4 and regulates hematopoietic stem cell self-renewal. Additionally, we found higher rates of germline truncating and predicted deleterious missense KDM1A mutations in MM patients unselected for family history compared to controls. Both monoclonal gammopathy of unknown significance (MGUS) and MM cells have significantly lower KDM1A transcript levels compared with normal plasma cells. Transcriptome analysis of MM cells from KDM1A mutation carriers shows enrichment of pathways and MYC target genes previously associated with myeloma pathogenesis. In mice, antigen challenge followed by pharmacological inhibition of KDM1A promoted plasma cell expansion, enhanced secondary immune response, elicited appearance of serum paraprotein, and mediated upregulation of MYC transcriptional targets. These changes are consistent with the development of MGUS. Collectively, our findings show KDM1A is the first autosomal dominant MM germline predisposition gene, providing new insights into its mechanistic roles as a tumor suppressor during post-germinal center B cell differentiation. Copyright ©2018, American Association for Cancer Research.

  15. Germline variants in the ATM gene and breast cancer susceptibility in Moroccan women: A meta-analysis

    Directory of Open Access Journals (Sweden)

    Chaymaa Marouf

    2017-10-01

    Full Text Available Background: The ATM gene encoding a large protein kinase is mutated in ataxia-telangiectasia (AT, an autosomale recessive disease characterized by neurological and immunological symptoms, and cancer predisposition. Previous studies suggest that heterozygous carriers of ATM mutations have an increased risk of breast cancer compared with non carriers, but the contribution of specific variants has been difficult to estimate. However, two functional ATM variants, c.7271T > G and c.1066–6T > G (IVS10–6T > G, are associated with increased risk for the development of breast cancer. Methods: To investigate the role of ATM in breast cancer susceptibility, we genotyped 163 case patients with breast cancer and 150 healthy control individuals for the c.7271T > G and c.1066–6T > G (IVS10–6T > G ATM variants using polymerase chain reaction (PCR-restriction fragment length polymorphism (RFLP analysis. Results: We did not detect the ATM c.7271T > G and c.1066–6T > G (IVS10–6T > G mutations in any of 150 healthy control individuals and 163 breast cancer patients, including 59 women diagnosed with breast cancer at an early age ( G (IVS10–6T > G mutation and the rare c.7271T > G variant are not a risk factor for developing breast cancer in the Moroccan population. Larger and/or combined association studies are needed to clarify this issue. Keywords: Breast cancers, ATM gene, Germline mutation, Genetic susceptibility, Moroccan population

  16. The roles of DNA damage-dependent signals and MAPK cascades in tributyltin-induced germline apoptosis in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Yun; Wang, Shunchang; Luo, Xun; Yang, Yanan; Jian, Fenglei; Wang, Xuemin; Xie, Lucheng

    2014-08-01

    The induction of apoptosis is recognized to be a major mechanism of tributyltin (TBT) toxicity. However, the underlying signaling pathways for TBT-induced apoptosis remain unclear. In this study, using the nematode Caenorhabditis elegans, we examined whether DNA damage response (DDR) pathway and mitogen-activated protein kinase (MAPK) signaling cascades are involved in TBT-induced germline apoptosis and cell cycle arrest. Our results demonstrated that exposing worms to TBT at the dose of 10nM for 6h significantly increased germline apoptosis in N2 strain. Germline apoptosis was absent in strains that carried ced-3 or ced-4 loss-of-function alleles, indicating that both caspase protein CED-3 and Apaf-1 protein CED-4 were required for TBT-induced apoptosis. TBT-induced apoptosis was blocked in the Bcl-2 gain-of-function strain ced-9(n1950), whereas TBT induced a minor increase in the BH3-only protein EGL-1 mutated strain egl-1(n1084n3082). Checkpoint proteins HUS-1 and CLK-2 exerted proapoptotic effects, and the null mutation of cep-1, the homologue of tumor suppressor gene p53, significantly inhibited TBT-induced apoptosis. Apoptosis in the loss-of-function strains of ERK, JNK and p38 MAPK signaling pathways were completely or mildly suppressed under TBT stress. These results were supported by the results of mRNA expression levels of corresponding genes. The present study indicated that TBT-induced apoptosis required the core apoptotic machinery, and that DDR genes and MAPK pathways played essential roles in signaling the processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation.

    Directory of Open Access Journals (Sweden)

    Colin D Meiklejohn

    2011-08-01

    Full Text Available The evolution of heteromorphic sex chromosomes (e.g., XY in males or ZW in females has repeatedly elicited the evolution of two kinds of chromosome-specific regulation: dosage compensation--the equalization of X chromosome gene expression in males and females--and meiotic sex chromosome inactivation (MSCI--the transcriptional silencing and heterochromatinization of the X during meiosis in the male (or Z in the female germline. How the X chromosome is regulated in the Drosophila melanogaster male germline is unclear. Here we report three new findings concerning gene expression from the X in Drosophila testes. First, X chromosome-wide dosage compensation appears to be absent from most of the Drosophila male germline. Second, microarray analysis provides no evidence for X chromosome-specific inactivation during meiosis. Third, we confirm the previous discovery that the expression of transgene reporters driven by autosomal spermatogenesis-specific promoters is strongly reduced when inserted on the X chromosome versus the autosomes; but we show that this chromosomal difference in expression is established in premeiotic cells and persists in meiotic cells. The magnitude of the X-autosome difference in transgene expression cannot be explained by the absence of dosage compensation, suggesting that a previously unrecognized mechanism limits expression from the X during spermatogenesis in Drosophila. These findings help to resolve several previously conflicting reports and have implications for patterns of genome evolution and speciation in Drosophila.

  18. Contribution of germline TP53 variants and assessment of HER-2 status among young breast cancer patients in Malaysia

    Directory of Open Access Journals (Sweden)

    Shao Yan Lau

    2017-12-01

    Full Text Available Background: Li-Fraumeni Syndrome (LFS is caused by a mutation in the TP53 tumour suppressor gene. This rare hereditary condition predisposes individuals to an increased risk of cancers including breast cancer in women at a relatively young age, which accounts for nearly 25%–30% of all LFS‑associated cancers. Studies have shown that breast tumours in women with a germline TP53 deleterious variants are associated with a human epidermal growth factor receptor 2 (HER2-positive phenotype. Taken together, this study aimed to investigate the contribution of germline TP53 variants and its association with tumour HER-2 status in a cohort of young women with breast cancer. Methods: From 2002 to 2017, 4048 women with breast cancer treated at University Malaya Medical Centre or Sime Darby Medical Centre participated in the Malaysian Breast Cancer Genetics Study. Of which, 87 patients were diagnosed before 30 years of age. All patients were analysed for germline TP53 single nucleotide variants, small insertions or deletions by amplicon‑based targeted sequencing and validated by Sanger sequencing. DNA from patients who tested negative for sequencing were subsequently evaluated for the presence of TP53 exon deletions or duplications by multiplex ligation‑dependent probe amplification. HER-2 status of breast tumours was defined by immunohistochemistry, fluorescence in situ hybridisation and/or silver in situ hybridisation. Results: 5 distinct TP53 variants were detected in 5 individuals. 3 out of 5 TP53 variants were classified as frameshift mutations, one nonsense mutation and one in-frame duplication. Variants in other genes were detected in 17 individuals. No large genomic rearrangements were detected in the remaining 65 sequencing-negative patients. The assessment of HER-2 status will be presented. Conclusions: Our results suggest that alterations in TP53 gene were identified in approximately 5.7% (5/87 of this cohort of young women with breast

  19. Human Gene Therapy: Genes without Frontiers?

    Science.gov (United States)

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  20. Simple detection of germline microsatellite instability for diagnosis of constitutional mismatch repair cancer syndrome.

    Science.gov (United States)

    Ingham, Danielle; Diggle, Christine P; Berry, Ian; Bristow, Claire A; Hayward, Bruce E; Rahman, Nazneen; Markham, Alexander F; Sheridan, Eamonn G; Bonthron, David T; Carr, Ian M

    2013-06-01

    Heterozygous mutations in DNA mismatch repair (MMR) genes result in predisposition to colorectal cancer (hereditary nonpolyposis colorectal cancer or Lynch syndrome). Patients with biallelic mutations in these genes, however, present earlier, with constitutional mismatch repair deficiency cancer syndrome (CMMRD), which is characterized by a spectrum of rare childhood malignancies and café-au-lait skin patches. The hallmark of MMR deficiency, microsatellite instability (MSI), is readily detectable in tumor DNA in Lynch syndrome, but is also present in constitutional DNA of CMMRD patients. However, detection of constitutional or germline MSI (gMSI) has hitherto relied on technically difficult assays that are not routinely applicable for clinical diagnosis. Consequently, we have developed a simple high-throughput screening methodology to detect gMSI in CMMRD patients based on the presence of stutter peaks flanking a dinucleotide repeat allele when amplified from patient blood DNA samples. Using the three different microsatellite markers, the gMSI ratio was determined in a cohort of normal individuals and 10 CMMRD patients, with biallelic germline mutations in PMS2 (seven patients), MSH2 (one patient), or MSH6 (two patients). Subjects with either PMS2 or MSH2 mutations were easily identified; however, this measure was not altered in patients with CMMRD due to MSH6 mutation. © 2013 Wiley Periodicals, Inc.

  1. Association Between Germline Mutation in VSIG10L and Familial Barrett Neoplasia

    Science.gov (United States)

    Fecteau, Ryan E.; Kong, Jianping; Kresak, Adam; Brock, Wendy; Song, Yeunjoo; Fujioka, Hisashi; Elston, Robert; Willis, Joseph E.; Lynch, John P.; Markowitz, Sanford D.; Guda, Kishore; Chak, Amitabh

    2016-01-01

    IMPORTANCE Esophageal adenocarcinoma and its precursor lesion Barrett esophagus have seen a dramatic increase in incidence over the past 4 decades yet marked genetic heterogeneity of this disease has precluded advances in understanding its pathogenesis and improving treatment. OBJECTIVE To identify novel disease susceptibility variants in a familial syndrome of esophageal adenocarcinoma and Barrett esophagus, termed familial Barrett esophagus, by using high-throughput sequencing in affected individuals from a large, multigenerational family. DESIGN, SETTING, AND PARTICIPANTS We performed whole exome sequencing (WES) from peripheral lymphocyte DNA on 4 distant relatives from our multiplex, multigenerational familial Barrett esophagus family to identify candidate disease susceptibility variants. Gene variants were filtered, verified, and segregation analysis performed to identify a single candidate variant. Gene expression analysis was done with both quantitative real-time polymerase chain reaction and in situ RNA hybridization. A 3-dimensional organotypic cell culture model of esophageal maturation was utilized to determine the phenotypic effects of our gene variant. We used electron microscopy on esophageal mucosa from an affected family member carrying the gene variant to assess ultrastructural changes. MAIN OUTCOMES AND MEASURES Identification of a novel, germline disease susceptibility variant in a previously uncharacterized gene. RESULTS A multiplex, multigenerational family with 14 members affected (3 members with esophageal adenocarcinoma and 11 with Barrett esophagus) was identified, and whole-exome sequencing identified a germline mutation (S631G) at a highly conserved serine residue in the uncharacterized gene VSIG10L that segregated in affected members. Transfection of S631G variant into a 3-dimensional organotypic culture model of normal esophageal squamous cells dramatically inhibited epithelial maturation compared with the wild-type. VSIG10L exhibited

  2. Association Between Germline Mutation in VSIG10L and Familial Barrett Neoplasia.

    Science.gov (United States)

    Fecteau, Ryan E; Kong, Jianping; Kresak, Adam; Brock, Wendy; Song, Yeunjoo; Fujioka, Hisashi; Elston, Robert; Willis, Joseph E; Lynch, John P; Markowitz, Sanford D; Guda, Kishore; Chak, Amitabh

    2016-10-01

    Esophageal adenocarcinoma and its precursor lesion Barrett esophagus have seen a dramatic increase in incidence over the past 4 decades yet marked genetic heterogeneity of this disease has precluded advances in understanding its pathogenesis and improving treatment. To identify novel disease susceptibility variants in a familial syndrome of esophageal adenocarcinoma and Barrett esophagus, termed familial Barrett esophagus, by using high-throughput sequencing in affected individuals from a large, multigenerational family. We performed whole exome sequencing (WES) from peripheral lymphocyte DNA on 4 distant relatives from our multiplex, multigenerational familial Barrett esophagus family to identify candidate disease susceptibility variants. Gene variants were filtered, verified, and segregation analysis performed to identify a single candidate variant. Gene expression analysis was done with both quantitative real-time polymerase chain reaction and in situ RNA hybridization. A 3-dimensional organotypic cell culture model of esophageal maturation was utilized to determine the phenotypic effects of our gene variant. We used electron microscopy on esophageal mucosa from an affected family member carrying the gene variant to assess ultrastructural changes. Identification of a novel, germline disease susceptibility variant in a previously uncharacterized gene. A multiplex, multigenerational family with 14 members affected (3 members with esophageal adenocarcinoma and 11 with Barrett esophagus) was identified, and whole-exome sequencing identified a germline mutation (S631G) at a highly conserved serine residue in the uncharacterized gene VSIG10L that segregated in affected members. Transfection of S631G variant into a 3-dimensional organotypic culture model of normal esophageal squamous cells dramatically inhibited epithelial maturation compared with the wild-type. VSIG10L exhibited high expression in normal squamous esophagus with marked loss of expression in Barrett

  3. Screening for germline phosphatase and tensin homolog-mutations in suspected Cowden syndrome and Cowden syndrome-like families among uterine cancer patients

    Science.gov (United States)

    TZORTZATOS, GERASIMOS; ARAVIDIS, CHRISTOS; LINDBLOM, ANNIKA; MINTS, MIRIAM; THAM, EMMA

    2015-01-01

    Cowden syndrome (CS) is an autosomal dominant disorder characterized by multiple hamartomas in the breast, thyroid and endometrium, with a prevalence of 1 per 250,000. Females with CS have a 21–28% lifetime risk of developing uterine cancer. Germline mutations in the phosphatase and tensin homolog (PTEN) gene, a tumor suppressor gene, are responsible for 30–80% of CS cases. PTEN is a nine-exon gene, located on chromosome 10q23.3, which encodes the 403 amino acid PTEN protein. It negatively regulates the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway, affecting various cellular processes and signaling pathways. The present study examined whether PTEN mutations are present in CS-like families with uterine cancer (UC). UC patients underwent surgery at Karolinska University Hospital, Stockholm, Sweden (2008–2012). Pedigrees were analyzed and 54 unrelated CS-like families were identified. CS-like families were defined as having at least one occurrence of uterine cancer and one of breast cancer, as well as at least one additional Cowden-associated tumor (uterine, breast, thyroid, colon or kidney cancer) in the same individual or in first-degree relatives. Genomic DNA was amplified using polymerase chain reaction, and DNA sequencing analysis of all nine exons of the PTEN gene was conducted. No germline PTEN mutations or polymorphisms were identified. Germline PTEN mutations are rare in CS-like families with uterine cancer, therefore, genetic screening must be restricted to patients that meet the strict National Comprehensive Cancer Network criteria. Gynecologists must be aware of the CS criteria and identify potential cases of CS in females where uterine cancer is the sentinel cancer. PMID:25789042

  4. On the scientific and ethical issues of fetal somatic gene therapy.

    Science.gov (United States)

    Coutelle, C; Rodeck, C

    2002-06-01

    Fetal somatic gene therapy is often seen as an ethically particularly controversial field of gene therapy. This review outlines the hypothesis and scientific background of in utero gene therapy and addresses some of the frequently raised questions and concerns in relation to this still experimental, potentially preventive gene therapy approach. We discuss here the choice of vectors, of animal models and routes of administration to the fetus. We address the relation of fetal gene therapy to abortion, to post-implantation selection and postnatal gene therapy and the concerns of inadvertent germ-line modification. Our views on the specific risks of prenatal gene therapy and on the particular prerequisites that have to be met before human application can be considered are presented.

  5. Neurotransmitter Transporter-Like: a male germline-specific SLC6 transporter required for Drosophila spermiogenesis.

    Directory of Open Access Journals (Sweden)

    Nabanita Chatterjee

    2011-01-01

    Full Text Available The SLC6 class of membrane transporters, known primarily as neurotransmitter transporters, is increasingly appreciated for its roles in nutritional uptake of amino acids and other developmentally specific functions. A Drosophila SLC6 gene, Neurotransmitter transporter-like (Ntl, is expressed only in the male germline. Mobilization of a transposon inserted near the 3' end of the Ntl coding region yields male-sterile mutants defining a single complementation group. Germline transformation with Ntl cDNAs under control of male germline-specific control elements restores Ntl/Ntl homozygotes to normal fertility, indicating that Ntl is required only in the germ cells. In mutant males, sperm morphogenesis appears normal, with elongated, individualized and coiled spermiogenic cysts accumulating at the base of the testes. However, no sperm are transferred to the seminal vesicle. The level of polyglycylation of Ntl mutant sperm tubulin appears to be significantly lower than that of wild type controls. Glycine transporters are the most closely related SLC6 transporters to Ntl, suggesting that Ntl functions as a glycine transporter in developing sperm, where augmentation of the cytosolic pool of glycine may be required for the polyglycylation of the massive amounts of tubulin in the fly's giant sperm. The male-sterile phenotype of Ntl mutants may provide a powerful genetic system for studying the function of an SLC6 transporter family in a model organism.

  6. Association of the germline TP53 R72P and MDM2 SNP309 variants with breast cancer survival in specific breast tumor subgroups

    NARCIS (Netherlands)

    van den Broek, Alexandra J.; Broeks, Annegien; Horlings, Hugo M.; Canisius, Sander V. M.; Braaf, Linde M.; Langerød, Anita; van't Veer, Laura J.; Schmidt, Marjanka K.

    2011-01-01

    The tumor suppressor gene TP53 and its regulator MDM2 are both important players in the DNA-damage repair "TP53 response pathway". Common germline polymorphisms in these genes may affect outcome in patients with tumors characterized by additional somatic changes in the same or a related pathway. To

  7. RAD50 germline mutations are associated with poor survival in BRCA1/2-negative breast cancer patients.

    Science.gov (United States)

    Fan, Cong; Zhang, Juan; Ouyang, Tao; Li, Jinfeng; Wang, Tianfeng; Fan, Zhaoqing; Fan, Tie; Lin, Benyao; Xie, Yuntao

    2018-05-04

    RAD50 is a highly conserved DNA double-strand break (DSB) repair gene. However, the associations between RAD50 germline mutations and the survival and risk of breast cancer have not been fully elucidated. Here, we aimed to investigate the clinical impact of RAD50 germline mutations in a large cohort of unselected breast cancer patients. In this study, RAD50 germline mutations were determined using next-generation sequencing in 7657 consecutive unselected breast cancer patients without BRCA1/2 mutations. We also screened for RAD50 recurrent mutations (L719fs, K994fs, and H1269fs) in 5000 healthy controls using Sanger sequencing. We found that 26 out of 7657 (0.34%) patients had RAD50 pathogenic mutations, and 16 patients carried one of the three recurrent mutations (L719fs, n=6 cases; K994fs, n=5 cases; and H1269fs, n=5 cases); the recurrent mutation rate was 0.21%. The frequency of the three recurrent mutations in the 5000 healthy controls was 0.18% (9/5000). These mutations did not confer an increased risk of breast cancer in the studied patients [odds ratios (OR), 1.16; 95% confidence interval (CI), 0.51-2.63; P = 0.72]. Nevertheless, multivariate analysis revealed that RAD50 pathogenic mutations were an independent unfavourable predictor of recurrence-free survival (RFS) [adjusted hazard ratio (HR) 2.66; 95% CI, 1.18-5.98; P=0.018] and disease-specific survival (DSS) (adjusted HR 4.36; 95% CI, 1.58-12.03; P=0.004) in the entire study cohort. Our study suggested that RAD50 germline mutations are not associated with an increased risk of breast cancer, but patients with RAD50 germline mutations have unfavourable survival compared with patients without these mutations. This article is protected by copyright. All rights reserved. © 2018 UICC.

  8. Pediatric MDS: GATA screen the germline.

    Science.gov (United States)

    Stieglitz, Elliot; Loh, Mignon L

    2016-03-17

    In this issue of Blood, Wlodarski and colleagues demonstrate that as many as 72% of adolescents diagnosed with myelodysplastic syndrome (MDS) and monosomy 7 harbor germline mutations in GATA2. Although pediatric MDS is a very rare diagnosis, occurring in 0.8 to 4 cases per million, Wlodarski et al screened >600 cases of primary or secondary MDS in children and adolescents who were enrolled in the European Working Group on MDS consortium over a period of 15 years. The overall frequency of germline GATA2 mutations in children with primary MDS was 7%, and 15% in those presenting with advanced disease. Notably, mutations in GATA2 were absent in patients with therapy-related MDS or acquired aplastic anemia.

  9. An Abundant Class of Non-coding DNA Can Prevent Stochastic Gene Silencing in the C. elegans Germline

    DEFF Research Database (Denmark)

    Frøkjær-Jensen, Christian; Jain, Nimit; Hansen, Loren

    2016-01-01

    /or structure. Here, we demonstrate that a pervasive non-coding DNA feature in Caenorhabditis elegans, characterized by 10-base pair periodic An/Tn-clusters (PATCs), can license transgenes for germline expression within repressive chromatin domains. Transgenes containing natural or synthetic PATCs are resistant...

  10. File list: His.Adl.50.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.50.AllAg.Germline_containing_young_adult ce10 Histone Adult Germline containing young adult...osciencedbc.jp/kyushu-u/ce10/assembled/His.Adl.50.AllAg.Germline_containing_young_adult.bed ...

  11. Effect of BRCA germline mutations on breast cancer prognosis

    Science.gov (United States)

    Baretta, Zora; Mocellin, Simone; Goldin, Elena; Olopade, Olufunmilayo I.; Huo, Dezheng

    2016-01-01

    Abstract Background: The contribution of BRCA germline mutational status to breast cancer patients’ prognosis is unclear. We aimed to systematically review and perform meta-analysis of the available evidence of effects of BRCA germline mutations on multiple survival outcomes of breast cancer patients as a whole and in specific subgroups of interest, including those with triple negative breast cancer, those with Ashkenazi Jewish ancestry, and patients with stage I–III disease. Methods: Sixty studies met all inclusion criteria and were considered for this meta-analysis. These studies involved 105,220 breast cancer patients, whose 3588 (3.4%) were BRCA mutations carriers. The associations between BRCA genes mutational status and overall survival (OS), breast cancer-specific survival (BCSS), recurrence-free survival (RFS), and distant metastasis-free survival (DMFS) were evaluated using random-effect models. Results: BRCA1 mutation carriers have worse OS than BRCA-negative/sporadic cases (hazard ratio, HR 1.30, 95% CI: 1.11–1.52) and worse BCSS than sporadic/BRCA-negative cases among patients with stage I–III breast cancer (HR 1.45, 95% CI: 1.01–2.07). BRCA2 mutation carriers have worse BCSS than sporadic/BRCA-negative cases (HR 1.29, 95% CI: 1.03–1.62), although they have similar OS. Among triple negative breast cancer, BRCA1/2 mutations carriers had better OS than BRCA-negative counterpart (HR 0.49, 95% CI: 0.26–0.92). Among Ashkenazi Jewish women, BRCA1/2 mutations carriers presented higher risk of death from breast cancer (HR 1.44, 95% CI: 1.05–1.97) and of distant metastases (HR 1.82, 95% CI: 1.05–3.16) than sporadic/BRCA-negative patients. Conclusion: Our results support the evaluation of BRCA mutational status in patients with high risk of harboring BRCA germline mutations to better define the prognosis of breast cancer in these patients. PMID:27749552

  12. Correlation of FCGR3A and EGFR germline polymorphisms with the efficacy of cetuximab in KRAS wild-type metastatic colorectal cancer

    NARCIS (Netherlands)

    Pander, Jan; Gelderblom, Hans; Antonini, Ninja F.; Tol, Jolien; van Krieken, Johan H. J. M.; van der Straaten, Tahar; Punt, Cornelis J. A.; Guchelaar, Henk-Jan

    2010-01-01

    Next to KRAS mutation status, additional predictive markers are needed for the response to cetuximab in patients with metastatic colorectal cancer (mCRC). Previous studies indicated that germline polymorphisms in specific genes may predict efficacy and toxicity of cetuximab in mCRC patients.

  13. File list: His.Adl.05.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.05.AllAg.Germline_containing_young_adult ce10 Histone Adult Germline containing young adult...archive.biosciencedbc.jp/kyushu-u/ce10/assembled/His.Adl.05.AllAg.Germline_containing_young_adult.bed ...

  14. File list: Oth.Adl.05.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.05.AllAg.Germline_containing_young_adult ce10 TFs and others Adult Germline containing young adult....jp/kyushu-u/ce10/assembled/Oth.Adl.05.AllAg.Germline_containing_young_adult.bed ...

  15. File list: Oth.Adl.20.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.20.AllAg.Germline_containing_young_adult ce10 TFs and others Adult Germline containing young adult....jp/kyushu-u/ce10/assembled/Oth.Adl.20.AllAg.Germline_containing_young_adult.bed ...

  16. File list: His.Adl.10.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.10.AllAg.Germline_containing_young_adult ce10 Histone Adult Germline containing young adult...archive.biosciencedbc.jp/kyushu-u/ce10/assembled/His.Adl.10.AllAg.Germline_containing_young_adult.bed ...

  17. File list: His.Adl.20.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.20.AllAg.Germline_containing_young_adult ce10 Histone Adult Germline containing young adult...archive.biosciencedbc.jp/kyushu-u/ce10/assembled/His.Adl.20.AllAg.Germline_containing_young_adult.bed ...

  18. File list: Oth.Adl.10.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.10.AllAg.Germline_containing_young_adult ce10 TFs and others Adult Germline containing young adult....jp/kyushu-u/ce10/assembled/Oth.Adl.10.AllAg.Germline_containing_young_adult.bed ...

  19. File list: Oth.Adl.50.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.50.AllAg.Germline_containing_young_adult ce10 TFs and others Adult Germline containing young adult....jp/kyushu-u/ce10/assembled/Oth.Adl.50.AllAg.Germline_containing_young_adult.bed ...

  20. Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon

    Directory of Open Access Journals (Sweden)

    Hackett Perry B

    2006-06-01

    Full Text Available Abstract Background Insertional mutagenesis techniques with transposable elements have been popular among geneticists studying model organisms from E. coli to Drosophila and, more recently, the mouse. One such element is the Sleeping Beauty (SB transposon that has been shown in several studies to be an effective insertional mutagen in the mouse germline. SB transposon vector studies have employed different functional elements and reporter molecules to disrupt and report the expression of endogenous mouse genes. We sought to generate a transposon system that would be capable of reporting the expression pattern of a mouse gene while allowing for conditional expression of a gene of interest in a tissue- or temporal-specific pattern. Results Here we report the systematic development and testing of a transposon-based gene-trap system incorporating the doxycycline-repressible Tet-Off (tTA system that is capable of activating the expression of genes under control of a Tet response element (TRE promoter. We demonstrate that the gene trap system is fully functional in vitro by introducing the "gene-trap tTA" vector into human cells by transposition and identifying clones that activate expression of a TRE-luciferase transgene in a doxycycline-dependent manner. In transgenic mice, we mobilize gene-trap tTA vectors, discover parameters that can affect germline mobilization rates, and identify candidate gene insertions to demonstrate the in vivo functionality of the vector system. We further demonstrate that the gene-trap can act as a reporter of endogenous gene expression and it can be coupled with bioluminescent imaging to identify genes with tissue-specific expression patterns. Conclusion Akin to the GAL4/UAS system used in the fly, we have made progress developing a tool for mutating and revealing the expression of mouse genes by generating the tTA transactivator in the presence of a secondary TRE-regulated reporter molecule. A vector like the gene

  1. Human small-cell lung cancers show amplification and expression of the N-myc gene

    International Nuclear Information System (INIS)

    Nau, M.M.; Brooks, B.J. Jr.; Carney, D.N.; Gazdar, A.F.; Battey, J.F.; Sausville, E.A.; Minna, J.D.

    1986-01-01

    The authors have found that 6 of 31 independently derived human small-cell lung cancer (SCLC) cell lines have 5- to 170-fold amplified N-myc gene sequences. The amplification is seen with probes from two separate exons of N-myc, which are homologous to either the second or the third exon of the c-myc gene. Amplified N-myc sequences were found in a tumor cell line started prior to chemotherapy, in SCLC tumor samples harvested directly from tumor metastases at autopsy, and from a resected primary lung cancer. Several N-myc-amplified tumor cell lines also exhibited N-myc hybridizing fragments not in the germ-line position. In one patient's tumor, an additional amplitifed N-myc DNA fragment was observed and this fragment was heterogeneously distributed in liver metastases. In contrast to SCLC with neuroendocrine properties, no non-small-cell lung cancer lines examined were found to have N-myc amplification. Fragments encoding two N-myc exons also detect increased amounts of a 3.1-kilobase N-myc mRNA in N-myc-amplified SCLC lines and in one cell line that does not show N-myc gene amplification. Both DNA and RNA hybridization experiments, using a 32 P-labelled restriction probe, show that in any one SCLC cell line, only one myc-related gene is amplified and expressed. They conclude that N-myc amplification is both common and potentially significant in the tumorigenesis or tumor progression of SCLC

  2. File list: Unc.Adl.10.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adl.10.AllAg.Germline_containing_young_adult ce10 Unclassified Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Unc.Adl.10.AllAg.Germline_containing_young_adult.bed ...

  3. File list: Unc.Adl.20.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adl.20.AllAg.Germline_containing_young_adult ce10 Unclassified Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Unc.Adl.20.AllAg.Germline_containing_young_adult.bed ...

  4. File list: Unc.Adl.50.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adl.50.AllAg.Germline_containing_young_adult ce10 Unclassified Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Unc.Adl.50.AllAg.Germline_containing_young_adult.bed ...

  5. File list: ALL.Adl.50.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.50.AllAg.Germline_containing_young_adult ce10 All antigens Adult Germline containing young adult...e.biosciencedbc.jp/kyushu-u/ce10/assembled/ALL.Adl.50.AllAg.Germline_containing_young_adult.bed ...

  6. File list: Pol.Adl.20.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.20.AllAg.Germline_containing_young_adult ce10 RNA polymerase Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Adl.20.AllAg.Germline_containing_young_adult.bed ...

  7. File list: Pol.Adl.50.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.50.AllAg.Germline_containing_young_adult ce10 RNA polymerase Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Adl.50.AllAg.Germline_containing_young_adult.bed ...

  8. File list: Pol.Adl.05.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.05.AllAg.Germline_containing_young_adult ce10 RNA polymerase Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Adl.05.AllAg.Germline_containing_young_adult.bed ...

  9. Probing the germline-dependence of epigenetic inheritance using artificial insemination in mice

    Science.gov (United States)

    Bohacek, Johannes; von Werdt, Sarah; Mansuy, Isabelle M.

    2016-01-01

    Abstract We developed a simple, noninvasive artificial insemination technique to study epigenetic germline inheritance in mice. This technique avoids interfering factors introduced by superovulation, surgery, in vitro culture or mating that can confound the transmission of acquired epigenetic information through the germline. Using a stress model, we demonstrate that our method is suited to test the causal involvement of the male germline in transmitting acquired information from father to offspring. PMID:29492284

  10. Spliced DNA Sequences in the Paramecium Germline: Their Properties and Evolutionary Potential

    Science.gov (United States)

    Catania, Francesco; McGrath, Casey L.; Doak, Thomas G.; Lynch, Michael

    2013-01-01

    Despite playing a crucial role in germline-soma differentiation, the evolutionary significance of developmentally regulated genome rearrangements (DRGRs) has received scant attention. An example of DRGR is DNA splicing, a process that removes segments of DNA interrupting genic and/or intergenic sequences. Perhaps, best known for shaping immune-system genes in vertebrates, DNA splicing plays a central role in the life of ciliated protozoa, where thousands of germline DNA segments are eliminated after sexual reproduction to regenerate a functional somatic genome. Here, we identify and chronicle the properties of 5,286 sequences that putatively undergo DNA splicing (i.e., internal eliminated sequences [IESs]) across the genomes of three closely related species of the ciliate Paramecium (P. tetraurelia, P. biaurelia, and P. sexaurelia). The study reveals that these putative IESs share several physical characteristics. Although our results are consistent with excision events being largely conserved between species, episodes of differential IES retention/excision occur, may have a recent origin, and frequently involve coding regions. Our findings indicate interconversion between somatic—often coding—DNA sequences and noncoding IESs, and provide insights into the role of DNA splicing in creating potentially functional genetic innovation. PMID:23737328

  11. Sex-lethal enables germline stem cell differentiation by down-regulating Nanos protein levels during Drosophila oogenesis.

    Science.gov (United States)

    Chau, Johnnie; Kulnane, Laura Shapiro; Salz, Helen K

    2012-06-12

    Drosophila ovarian germ cells require Sex-lethal (Sxl) to exit from the stem cell state and to enter the differentiation pathway. Sxl encodes a female-specific RNA binding protein and in somatic cells serves as the developmental switch gene for somatic sex determination and X-chromosome dosage compensation. None of the known Sxl target genes are required for germline differentiation, leaving open the question of how Sxl promotes the transition from stem cell to committed daughter cell. We address the mechanism by which Sxl regulates this transition through the identification of nanos as one of its target genes. Previous studies have shown that Nanos protein is necessary for GSC self-renewal and is rapidly down-regulated in the daughter cells fated to differentiate in the adult ovary. We find that this dynamic expression pattern is limited to female germ cells and is under Sxl control. In the absence of Sxl, or in male germ cells, Nanos protein is continuously expressed. Furthermore, this female-specific expression pattern is dependent on the presence of canonical Sxl binding sites located in the nanos 3' untranslated region. These results, combined with the observation that nanos RNA associates with the Sxl protein in ovarian extracts and loss and gain of function studies, suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional down-regulation of nanos expression. These findings connect sexual identity to the stem cell self-renewal/differentiation decision and highlight the importance of posttranscriptional gene regulatory networks in controlling stem cell behavior.

  12. FDA Regulation of Clinical Applications of CRISPR-CAS Gene-Editing Technology.

    Science.gov (United States)

    Grant, Evita V

    Scientists have repurposed an adaptive immune system of single cell organisms to create a new type of gene-editing tool: CRISPR (clustered regularly interspaced short palindromic repeats)-Cas technology. Scientists in China have reported its use in the genome modification of non-viable human embryos. This has ignited a spirited debate about the moral, ethical, scientific, and social implications of human germline genome engineering. There have also been calls for regulations; however, FDA has yet to formally announce its oversight of clinical applications of CRISPR-Cas systems. This paper reviews FDA regulation of previously controversial biotechnology breakthroughs, recombinant DNA and human cloning. It then shows that FDA is well positioned to regulate CRISPR-Cas clinical applications, due to its legislative mandates, its existing regulatory frameworks for gene therapies and assisted reproductive technologies, and other considerations.

  13. Satellite DNA-based artificial chromosomes for use in gene therapy.

    Science.gov (United States)

    Hadlaczky, G

    2001-04-01

    Satellite DNA-based artificial chromosomes (SATACs) can be made by induced de novo chromosome formation in cells of different mammalian species. These artificially generated accessory chromosomes are composed of predictable DNA sequences and they contain defined genetic information. Prototype human SATACs have been successfully constructed in different cell types from 'neutral' endogenous DNA sequences from the short arm of the human chromosome 15. SATACs have already passed a number of hurdles crucial to their further development as gene therapy vectors, including: large-scale purification; transfer of purified artificial chromosomes into different cells and embryos; generation of transgenic animals and germline transmission with purified SATACs; and the tissue-specific expression of a therapeutic gene from an artificial chromosome in the milk of transgenic animals.

  14. Germline Cas9 expression yields highly efficient genome engineering in a major worldwide disease vector, Aedes aegypti.

    Science.gov (United States)

    Li, Ming; Bui, Michelle; Yang, Ting; Bowman, Christian S; White, Bradley J; Akbari, Omar S

    2017-12-05

    The development of CRISPR/Cas9 technologies has dramatically increased the accessibility and efficiency of genome editing in many organisms. In general, in vivo germline expression of Cas9 results in substantially higher activity than embryonic injection. However, no transgenic lines expressing Cas9 have been developed for the major mosquito disease vector Aedes aegypti Here, we describe the generation of multiple stable, transgenic Ae. aegypti strains expressing Cas9 in the germline, resulting in dramatic improvements in both the consistency and efficiency of genome modifications using CRISPR. Using these strains, we disrupted numerous genes important for normal morphological development, and even generated triple mutants from a single injection. We have also managed to increase the rates of homology-directed repair by more than an order of magnitude. Given the exceptional mutagenic efficiency and specificity of the Cas9 strains we engineered, they can be used for high-throughput reverse genetic screens to help functionally annotate the Ae. aegypti genome. Additionally, these strains represent a step toward the development of novel population control technologies targeting Ae. aegypti that rely on Cas9-based gene drives. Copyright © 2017 the Author(s). Published by PNAS.

  15. A systems genetics approach identifies CXCL14, ITGAX, and LPCAT2 as novel aggressive prostate cancer susceptibility genes.

    Directory of Open Access Journals (Sweden)

    Kendra A Williams

    2014-11-01

    Full Text Available Although prostate cancer typically runs an indolent course, a subset of men develop aggressive, fatal forms of this disease. We hypothesize that germline variation modulates susceptibility to aggressive prostate cancer. The goal of this work is to identify susceptibility genes using the C57BL/6-Tg(TRAMP8247Ng/J (TRAMP mouse model of neuroendocrine prostate cancer. Quantitative trait locus (QTL mapping was performed in transgene-positive (TRAMPxNOD/ShiLtJ F2 intercross males (n = 228, which facilitated identification of 11 loci associated with aggressive disease development. Microarray data derived from 126 (TRAMPxNOD/ShiLtJ F2 primary tumors were used to prioritize candidate genes within QTLs, with candidate genes deemed as being high priority when possessing both high levels of expression-trait correlation and a proximal expression QTL. This process enabled the identification of 35 aggressive prostate tumorigenesis candidate genes. The role of these genes in aggressive forms of human prostate cancer was investigated using two concurrent approaches. First, logistic regression analysis in two human prostate gene expression datasets revealed that expression levels of five genes (CXCL14, ITGAX, LPCAT2, RNASEH2A, and ZNF322 were positively correlated with aggressive prostate cancer and two genes (CCL19 and HIST1H1A were protective for aggressive prostate cancer. Higher than average levels of expression of the five genes that were positively correlated with aggressive disease were consistently associated with patient outcome in both human prostate cancer tumor gene expression datasets. Second, three of these five genes (CXCL14, ITGAX, and LPCAT2 harbored polymorphisms associated with aggressive disease development in a human GWAS cohort consisting of 1,172 prostate cancer patients. This study is the first example of using a systems genetics approach to successfully identify novel susceptibility genes for aggressive prostate cancer. Such

  16. Cloning humans? Biological, ethical, and social considerations.

    Science.gov (United States)

    Ayala, Francisco J

    2015-07-21

    There are, in mankind, two kinds of heredity: biological and cultural. Cultural inheritance makes possible for humans what no other organism can accomplish: the cumulative transmission of experience from generation to generation. In turn, cultural inheritance leads to cultural evolution, the prevailing mode of human adaptation. For the last few millennia, humans have been adapting the environments to their genes more often than their genes to the environments. Nevertheless, natural selection persists in modern humans, both as differential mortality and as differential fertility, although its intensity may decrease in the future. More than 2,000 human diseases and abnormalities have a genetic causation. Health care and the increasing feasibility of genetic therapy will, although slowly, augment the future incidence of hereditary ailments. Germ-line gene therapy could halt this increase, but at present, it is not technically feasible. The proposal to enhance the human genetic endowment by genetic cloning of eminent individuals is not warranted. Genomes can be cloned; individuals cannot. In the future, therapeutic cloning will bring enhanced possibilities for organ transplantation, nerve cells and tissue healing, and other health benefits.

  17. Parent-of-origin and trans-generational germline influences on behavioral development: the interacting roles of mothers, fathers, and grandparents.

    Science.gov (United States)

    Curley, J P; Mashoodh, R

    2010-05-01

    Mothers and fathers do not contribute equally to the development of their offspring. In addition to the differential investment of mothers versus fathers in the rearing of offspring, there are also a number of germline factors that are transmitted unequally from one parent or the other that contribute significantly to offspring development. This article shall review four major sources of such parent-of-origin effects. Firstly, there is increasing evidence that genes inherited on the sex chromosomes including the nonpseudoautosomal part of the Y chromosome that is only inherited from fathers to sons, contribute to brain development and behavior independently of the organizing effects of sex hormones. Secondly, recent work has demonstrated that mitochondrial DNA that is primarily inherited only from mothers may play a much greater than anticipated role in neurobehavioral development. Thirdly, there exists a class of genes known as imprinted genes that are epigenetically silenced when passed on in a parent-of-origin specific manner and have been shown to regulate brain development and a variety of behaviors. Finally, there is converging evidence from several disciplines that environmental variations experienced by mothers and fathers may lead to plasticity in the development and behavior of offspring and that this phenotypic inheritance can be solely transmitted through the germline. Mechanistically, this may be achieved through altered programming within germ cells of the epigenetic status of particular genes such as retrotransposons and imprinted genes or potentially through altered expression of RNAs within gametes.

  18. Pan-cancer analysis reveals technical artifacts in TCGA germline variant calls.

    Science.gov (United States)

    Buckley, Alexandra R; Standish, Kristopher A; Bhutani, Kunal; Ideker, Trey; Lasken, Roger S; Carter, Hannah; Harismendy, Olivier; Schork, Nicholas J

    2017-06-12

    Cancer research to date has largely focused on somatically acquired genetic aberrations. In contrast, the degree to which germline, or inherited, variation contributes to tumorigenesis remains unclear, possibly due to a lack of accessible germline variant data. Here we called germline variants on 9618 cases from The Cancer Genome Atlas (TCGA) database representing 31 cancer types. We identified batch effects affecting loss of function (LOF) variant calls that can be traced back to differences in the way the sequence data were generated both within and across cancer types. Overall, LOF indel calls were more sensitive to technical artifacts than LOF Single Nucleotide Variant (SNV) calls. In particular, whole genome amplification of DNA prior to sequencing led to an artificially increased burden of LOF indel calls, which confounded association analyses relating germline variants to tumor type despite stringent indel filtering strategies. The samples affected by these technical artifacts include all acute myeloid leukemia and practically all ovarian cancer samples. We demonstrate how technical artifacts induced by whole genome amplification of DNA can lead to false positive germline-tumor type associations and suggest TCGA whole genome amplified samples be used with caution. This study draws attention to the need to be sensitive to problems associated with a lack of uniformity in data generation in TCGA data.

  19. File list: InP.Adl.50.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adl.50.AllAg.Germline_containing_young_adult ce10 Input control Adult Germline containing young adult...p/kyushu-u/ce10/assembled/InP.Adl.50.AllAg.Germline_containing_young_adult.bed ...

  20. File list: ALL.Adl.20.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.20.AllAg.Germline_containing_young_adult ce10 All antigens Adult Germline containing young adult...6563,SRX495065,SRX495061,SRX495102,SRX495062,SRX494887,SRX495066 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/ALL.Adl.20.AllAg.Germline_containing_young_adult.bed ...

  1. File list: ALL.Adl.05.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.05.AllAg.Germline_containing_young_adult ce10 All antigens Adult Germline containing young adult...4871,SRX494938,SRX495065,SRX495061,SRX494933,SRX495042,SRX495102 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/ALL.Adl.05.AllAg.Germline_containing_young_adult.bed ...

  2. File list: ALL.Adl.10.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.10.AllAg.Germline_containing_young_adult ce10 All antigens Adult Germline containing young adult...4938,SRX466563,SRX495065,SRX495061,SRX494933,SRX495102,SRX494887 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/ALL.Adl.10.AllAg.Germline_containing_young_adult.bed ...

  3. Patenting human genes: Chinese academic articles' portrayal of gene patents.

    Science.gov (United States)

    Du, Li

    2018-04-24

    The patenting of human genes has been the subject of debate for decades. While China has gradually come to play an important role in the global genomics-based testing and treatment market, little is known about Chinese scholars' perspectives on patent protection for human genes. A content analysis of academic literature was conducted to identify Chinese scholars' concerns regarding gene patents, including benefits and risks of patenting human genes, attitudes that researchers hold towards gene patenting, and any legal and policy recommendations offered for the gene patent regime in China. 57.2% of articles were written by law professors, but scholars from health sciences, liberal arts, and ethics also participated in discussions on gene patent issues. While discussions of benefits and risks were relatively balanced in the articles, 63.5% of the articles favored gene patenting in general and, of the articles (n = 41) that explored gene patents in the Chinese context, 90.2% supported patent protections for human genes in China. The patentability of human genes was discussed in 33 articles, and 75.8% of these articles reached the conclusion that human genes are patentable. Chinese scholars view the patent regime as an important legal tool to protect the interests of inventors and inventions as well as the genetic resources of China. As such, many scholars support a gene patent system in China. These attitudes towards gene patents remain unchanged following the court ruling in the Myriad case in 2013, but arguments have been raised about the scope of gene patents, in particular that the increasing numbers of gene patents may negatively impact public health in China.

  4. AluY-mediated germline deletion, duplication and somatic stem cell reversion in UBE2T defines a new subtype of Fanconi anemia.

    Science.gov (United States)

    Virts, Elizabeth L; Jankowska, Anna; Mackay, Craig; Glaas, Marcel F; Wiek, Constanze; Kelich, Stephanie L; Lottmann, Nadine; Kennedy, Felicia M; Marchal, Christophe; Lehnert, Erik; Scharf, Rüdiger E; Dufour, Carlo; Lanciotti, Marina; Farruggia, Piero; Santoro, Alessandra; Savasan, Süreyya; Scheckenbach, Kathrin; Schipper, Jörg; Wagenmann, Martin; Lewis, Todd; Leffak, Michael; Farlow, Janice L; Foroud, Tatiana M; Honisch, Ellen; Niederacher, Dieter; Chakraborty, Sujata C; Vance, Gail H; Pruss, Dmitry; Timms, Kirsten M; Lanchbury, Jerry S; Alpi, Arno F; Hanenberg, Helmut

    2015-09-15

    Fanconi anemia (FA) is a rare inherited disorder clinically characterized by congenital malformations, progressive bone marrow failure and cancer susceptibility. At the cellular level, FA is associated with hypersensitivity to DNA-crosslinking genotoxins. Eight of 17 known FA genes assemble the FA E3 ligase complex, which catalyzes monoubiquitination of FANCD2 and is essential for replicative DNA crosslink repair. Here, we identify the first FA patient with biallelic germline mutations in the ubiquitin E2 conjugase UBE2T. Both mutations were aluY-mediated: a paternal deletion and maternal duplication of exons 2-6. These loss-of-function mutations in UBE2T induced a cellular phenotype similar to biallelic defects in early FA genes with the absence of FANCD2 monoubiquitination. The maternal duplication produced a mutant mRNA that could encode a functional protein but was degraded by nonsense-mediated mRNA decay. In the patient's hematopoietic stem cells, the maternal allele with the duplication of exons 2-6 spontaneously reverted to a wild-type allele by monoallelic recombination at the duplicated aluY repeat, thereby preventing bone marrow failure. Analysis of germline DNA of 814 normal individuals and 850 breast cancer patients for deletion or duplication of UBE2T exons 2-6 identified the deletion in only two controls, suggesting aluY-mediated recombinations within the UBE2T locus are rare and not associated with an increased breast cancer risk. Finally, a loss-of-function germline mutation in UBE2T was detected in a high-risk breast cancer patient with wild-type BRCA1/2. Cumulatively, we identified UBE2T as a bona fide FA gene (FANCT) that also may be a rare cancer susceptibility gene. © The Author 2015. Published by Oxford University Press.

  5. Biased Immunoglobulin Light Chain Gene Usage in the Shark.

    Science.gov (United States)

    Iacoangeli, Anna; Lui, Anita; Naik, Ushma; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen

    2015-10-15

    This study of a large family of κ L chain clusters in nurse shark completes the characterization of its classical Ig gene content (two H chain isotypes, μ and ω, and four L chain isotypes, κ, λ, σ, and σ-2). The shark κ clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over an ~500-bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ~39 κ clusters are prerearranged in the germline (germline joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, nonproductive, and sterile transcripts of the κ clusters compared with the other three L chain isotypes. κ cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and nonproductive rearrangements. These results show that the individual activation of the spatially distant κ clusters is nonrandom. Although both split and germline-joined κ genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. Germline Mutations in Mtap Cooperate with Myc to Accelerate Tumorigenesis in Mice.

    Directory of Open Access Journals (Sweden)

    Yuwaraj Kadariya

    Full Text Available The gene encoding the methionine salvage pathway methylthioadenosine phosphorylase (MTAP is a tumor suppressor gene that is frequently inactivated in a wide variety of human cancers. In this study, we have examined if heterozygosity for a null mutation in Mtap (Mtap(lacZ could accelerate tumorigenesis development in two different mouse cancer models, Eμ-myc transgenic and Pten(+/- .Mtap Eμ-myc and Mtap Pten mice were generated and tumor-free survival was monitored over time. Tumors were also examined for a variety of histological and protein markers. In addition, microarray analysis was performed on the livers of Mtap(lacZ/+ and Mtap (+/+ mice.Survival in both models was significantly decreased in Mtap(lacZ/+ compared to Mtap(+/+ mice. In Eµ-myc mice, Mtap mutations accelerated the formation of lymphomas from cells in the early pre-B stage, and these tumors tended to be of higher grade and have higher expression levels of ornithine decarboxylase compared to those observed in control Eµ-myc Mtap(+/+ mice. Surprisingly, examination of Mtap status in lymphomas in Eµ-myc Mtap(lacZ/+ and Eµ-myc Mtap(+/+ animals did not reveal significant differences in the frequency of loss of Mtap protein expression, despite having shorter latency times, suggesting that haploinsufficiency of Mtap may be playing a direct role in accelerating tumorigenesis. Consistent with this idea, microarray analysis on liver tissue from age and sex matched Mtap(+/+ and Mtap(lacZ/+ animals found 363 transcripts whose expression changed at least 1.5-fold (P<0.01. Functional categorization of these genes reveals enrichments in several pathways involved in growth control and cancer.Our findings show that germline inactivation of a single Mtap allele alters gene expression and enhances lymphomagenesis in Eµ-myc mice.

  7. Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9.

    Science.gov (United States)

    Honda, Arata; Hirose, Michiko; Sankai, Tadashi; Yasmin, Lubna; Yuzawa, Kazuaki; Honsho, Kimiko; Izu, Haruna; Iguchi, Atsushi; Ikawa, Masahito; Ogura, Atsuo

    2015-01-01

    Targeted genome editing of nonrodent mammalian species has provided the potential for highly accurate interventions into gene function in humans and the generation of useful animal models of human diseases. Here we show successful clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (Cas)-mediated gene targeting via circular plasmid injection in rabbits. The rabbit tyrosinase gene (TYR) was effectively disrupted, and we confirmed germline transmission by pronuclear injection of a circular plasmid expressing humanized Cas9 (hCas9) and single-guide RNA. Direct injection into pronuclear stage zygotes was possible following an in vitro validation assay. Neither off-target mutagenesis nor hCas9 transgenesis was detected in any of the genetically targeted pups and embryos examined. Gene targeting with this rapid and simplified strategy will help accelerate the development of translational research using other nonrodent mammalian species.

  8. File list: NoD.Adl.05.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adl.05.AllAg.Germline_containing_young_adult ce10 No description Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/NoD.Adl.05.AllAg.Germline_containing_young_adult.bed ...

  9. File list: NoD.Adl.10.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adl.10.AllAg.Germline_containing_young_adult ce10 No description Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/NoD.Adl.10.AllAg.Germline_containing_young_adult.bed ...

  10. File list: NoD.Adl.20.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adl.20.AllAg.Germline_containing_young_adult ce10 No description Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/NoD.Adl.20.AllAg.Germline_containing_young_adult.bed ...

  11. File list: NoD.Adl.50.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adl.50.AllAg.Germline_containing_young_adult ce10 No description Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/NoD.Adl.50.AllAg.Germline_containing_young_adult.bed ...

  12. Quantitative analysis of DNA methylation at all human imprinted regions reveals preservation of epigenetic stability in adult somatic tissue

    Directory of Open Access Journals (Sweden)

    Woodfine Kathryn

    2011-01-01

    Full Text Available Abstract Background Genes subject to genomic imprinting are mono-allelically expressed in a parent-of-origin dependent manner. Each imprinted locus has at least one differentially methylated region (DMR which has allele specific DNA methylation and contributes to imprinted gene expression. Once DMRs are established, they are potentially able to withstand normal genome reprogramming events that occur during cell differentiation and germ-line DMRs are stably maintained throughout development. These DMRs, in addition to being either maternally or paternally methylated, have differences in whether methylation was acquired in the germ-line or post fertilization and are present in a variety of genomic locations with different Cytosine-phosphate guanine (CpG densities and CTCF binding capacities. We therefore examined the stability of maintenance of DNA methylation imprints and determined the normal baseline DNA methylation levels in several adult tissues for all imprinted genes. In order to do this, we first developed and validated 50 highly specific, quantitative DNA methylation pyrosequencing assays for the known DMRs associated with human imprinted genes. Results Remarkable stability of the DNA methylation imprint was observed in all germ-line DMRs and paternally methylated somatic DMRs (which maintained average methylation levels of between 35% - 65% in all somatic tissues, independent of gene expression. Maternally methylated somatic DMRs were found to have more variation with tissue specific methylation patterns. Most DMRs, however, showed some intra-individual variability for DNA methylation levels in peripheral blood, suggesting that more than one DMR needs to be examined in order to get an overall impression of the epigenetic stability in a tissue. The plasticity of DNA methylation at imprinted genes was examined in a panel of normal and cancer cell lines. All cell lines showed changes in DNA methylation, especially at the paternal germ-line

  13. Genetic screening of the FLCN gene identify six novel variants and a Danish founder mutation

    DEFF Research Database (Denmark)

    Rossing, Maria; Albrechtsen, Anders; Skytte, Anne-Bine

    2016-01-01

    Pathogenic germline mutations in the folliculin (FLCN) tumor suppressor gene predispose to Birt-Hogg-Dubé (BHD) syndrome, a rare disease characterized by the development of cutaneous hamartomas (fibrofolliculomas), multiple lung cysts, spontaneous pneumothoraces and renal cell cancer. In this stu...... understanding of BHD syndrome and management of BHD patients.Journal of Human Genetics advance online publication, 13 October 2016; doi:10.1038/jhg.2016.118....

  14. Germline Mutations and Polymorphisms in the Origins of Cancers in Women

    Directory of Open Access Journals (Sweden)

    Kim M. Hirshfield

    2010-01-01

    Full Text Available Several female malignancies including breast, ovarian, and endometrial cancers can be characterized based on known somatic and germline mutations. Initiation and propagation of tumors reflect underlying genomic alterations such as mutations, polymorphisms, and copy number variations found in genes of multiple cellular pathways. The contributions of any single genetic variation or mutation in a population depend on its frequency and penetrance as well as tissue-specific functionality. Genome wide association studies, fluorescence in situ hybridization, comparative genomic hybridization, and candidate gene studies have enumerated genetic contributors to cancers in women. These include p53, BRCA1, BRCA2, STK11, PTEN, CHEK2, ATM, BRIP1, PALB2, FGFR2, TGFB1, MDM2, MDM4 as well as several other chromosomal loci. Based on the heterogeneity within a specific tumor type, a combination of genomic alterations defines the cancer subtype, biologic behavior, and in some cases, response to therapeutics. Consideration of tumor heterogeneity is therefore important in the critical analysis of gene associations in cancer.

  15. Genetic errors of the human caspase recruitment domain-B-cell lymphoma 10-mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (CBM) complex: Molecular, immunologic, and clinical heterogeneity.

    Science.gov (United States)

    Pérez de Diego, Rebeca; Sánchez-Ramón, Silvia; López-Collazo, Eduardo; Martínez-Barricarte, Rubén; Cubillos-Zapata, Carolina; Ferreira Cerdán, Antonio; Casanova, Jean-Laurent; Puel, Anne

    2015-11-01

    Three members of the caspase recruitment domain (CARD) family of adaptors (CARD9, CARD10, and CARD11) are known to form heterotrimers with B-cell lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (MALT1). These 3 CARD-BCL10-MALT1 (CBM) complexes activate nuclear factor κB in both the innate and adaptive arms of immunity. Human inherited defects of the 3 components of the CBM complex, including the 2 adaptors CARD9 and CARD11 and the 2 core components BCL10 and MALT1, have recently been reported. Biallelic loss-of-function mutant alleles underlie several different immunologic and clinical phenotypes, which can be assigned to 2 distinct categories. Isolated invasive fungal infections of unclear cellular basis are associated with CARD9 deficiency, whereas a broad range of clinical manifestations, including those characteristic of T- and B-lymphocyte defects, are associated with CARD11, MALT1, and BCL10 deficiencies. Interestingly, human subjects with these mutations have some features in common with the corresponding knockout mice, but other features are different between human subjects and mice. Moreover, germline and somatic gain-of-function mutations of MALT1, BCL10, and CARD11 have also been found in patients with other lymphoproliferative disorders. This broad range of germline and somatic CBM lesions, including loss-of-function and gain-of-function mutations, highlights the contribution of each of the components of the CBM complex to human immunity. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Hermes (Rbpms is a Critical Component of RNP Complexes that Sequester Germline RNAs during Oogenesis

    Directory of Open Access Journals (Sweden)

    Tristan Aguero

    2016-01-01

    Full Text Available The germ cell lineage in Xenopus is specified by the inheritance of germ plasm that assembles within the mitochondrial cloud or Balbiani body in stage I oocytes. Specific RNAs, such as nanos1, localize to the germ plasm. nanos1 has the essential germline function of blocking somatic gene expression and thus preventing Primordial Germ Cell (PGC loss and sterility. Hermes/Rbpms protein and nanos RNA co-localize within germinal granules, diagnostic electron dense particles found within the germ plasm. Previous work indicates that nanos accumulates within the germ plasm through a diffusion/entrapment mechanism. Here we show that Hermes/Rbpms interacts with nanos through sequence specific RNA localization signals found in the nanos-3′UTR. Importantly, Hermes/Rbpms specifically binds nanos, but not Vg1 RNA in the nucleus of stage I oocytes. In vitro binding data show that Hermes/Rbpms requires additional factors that are present in stage I oocytes in order to bind nanos1. One such factor may be hnRNP I, identified in a yeast-2-hybrid screen as directly interacting with Hermes/Rbpms. We suggest that Hermes/Rbpms functions as part of a RNP complex in the nucleus that facilitates selection of germline RNAs for germ plasm localization. We propose that Hermes/Rbpms is required for nanos RNA to form within the germinal granules and in this way, participates in the germline specific translational repression and sequestration of nanos RNA.

  17. Hermes (Rbpms) is a Critical Component of RNP Complexes that Sequester Germline RNAs during Oogenesis.

    Science.gov (United States)

    Aguero, Tristan; Zhou, Yi; Kloc, Malgorzata; Chang, Patrick; Houliston, Evelyn; King, Mary Lou

    2016-03-01

    The germ cell lineage in Xenopus is specified by the inheritance of germ plasm that assembles within the mitochondrial cloud or Balbiani body in stage I oocytes. Specific RNAs, such as nanos1 , localize to the germ plasm. nanos1 has the essential germline function of blocking somatic gene expression and thus preventing Primordial Germ Cell (PGC) loss and sterility. Hermes/Rbpms protein and nanos RNA co-localize within germinal granules, diagnostic electron dense particles found within the germ plasm. Previous work indicates that nanos accumulates within the germ plasm through a diffusion/entrapment mechanism. Here we show that Hermes/Rbpms interacts with nanos through sequence specific RNA localization signals found in the nanos -3'UTR. Importantly, Hermes/Rbpms specifically binds nanos , but not Vg1 RNA in the nucleus of stage I oocytes. In vitro binding data show that Hermes/Rbpms requires additional factors that are present in stage I oocytes in order to bind nanos1 . One such factor may be hnRNP I, identified in a yeast-2-hybrid screen as directly interacting with Hermes/Rbpms. We suggest that Hermes/Rbpms functions as part of a RNP complex in the nucleus that facilitates selection of germline RNAs for germ plasm localization. We propose that Hermes/Rbpms is required for nanos RNA to form within the germinal granules and in this way, participates in the germline specific translational repression and sequestration of nanos RNA .

  18. Identification of Two Novel HOXB13 Germline Mutations in Portuguese Prostate Cancer Patients

    Science.gov (United States)

    Maia, Sofia; Cardoso, Marta; Pinto, Pedro; Pinheiro, Manuela; Santos, Catarina; Peixoto, Ana; Bento, Maria José; Oliveira, Jorge; Henrique, Rui; Jerónimo, Carmen; Teixeira, Manuel R.

    2015-01-01

    The HOXB13 germline variant G84E (rs138213197) was recently described in men of European descent, with the highest prevalence in Northern Europe. The G84E mutation has not been found in patients of African or Asian ancestry, which may carry other HOXB13 variants, indicating allelic heterogeneity depending on the population. In order to gain insight into the full scope of coding HOXB13 mutations in Portuguese prostate cancer patients, we decided to sequence the entire coding region of the HOXB13 gene in 462 early-onset or familial/hereditary cases. Additionally, we searched for somatic HOXB13 mutations in 178 prostate carcinomas to evaluate their prevalence in prostate carcinogenesis. Three different patients were found to carry in their germline DNA two novel missense variants, which were not identified in 132 control subjects. Both variants are predicted to be deleterious by different in silico tools. No somatic mutations were found. These findings further support the hypothesis that different rare HOXB13 mutations may be found in different ethnic groups. Detection of mutations predisposing to prostate cancer may require re-sequencing rather than genotyping, as appropriate to the population under investigation. PMID:26176944

  19. Integrated tumor and germline whole-exome sequencing identifies mutations in MAPK and PI3K pathway genes in an adolescent with rosette-forming glioneuronal tumor of the fourth ventricle

    Science.gov (United States)

    Lin, Frank Y.; Bergstrom, Katie; Person, Richard; Bavle, Abhishek; Ballester, Leomar Y.; Scollon, Sarah; Raesz-Martinez, Robin; Jea, Andrew; Birchansky, Sherri; Wheeler, David A.; Berg, Stacey L.; Chintagumpala, Murali M.; Adesina, Adekunle M.; Eng, Christine; Roy, Angshumoy; Plon, Sharon E.; Parsons, D. Williams

    2016-01-01

    The integration of genome-scale studies such as whole-exome sequencing (WES) into the clinical care of children with cancer has the potential to provide insight into the genetic basis of an individual's cancer with implications for clinical management. This report describes the results of clinical tumor and germline WES for a patient with a rare tumor diagnosis, rosette-forming glioneuronal tumor of the fourth ventricle (RGNT). Three pathogenic gene alterations with implications for clinical care were identified: somatic activating hotspot mutations in FGFR1 (p.N546K) and PIK3CA (p.H1047R) and a germline pathogenic variant in PTPN11 (p.N308S) diagnostic for Noonan syndrome. The molecular landscape of RGNT is not well-described, but these data are consistent with prior observations regarding the importance of the interconnected MAPK and PI3K/AKT/mTOR signaling pathways in this rare tumor. The co-occurrence of FGFR1, PIK3CA, and PTPN11 alterations provides further evidence for consideration of RGNT as a distinct molecular entity from pediatric low-grade gliomas and suggests potential therapeutic strategies for this patient in the event of tumor recurrence as novel agents targeting these pathways enter pediatric clinical trials. Although RGNT has not been definitively linked with cancer predisposition syndromes, two prior cases have been reported in patients with RASopathies (Noonan syndrome and neurofibromatosis type 1 [NF1]), providing an additional link between these tumors and the mitogen-activated protein kinase (MAPK) signaling pathway. In summary, this case provides an example of the potential for genome-scale sequencing technologies to provide insight into the biology of rare tumors and yield both tumor and germline results of potential relevance to patient care. PMID:27626068

  20. CDC91L1 (PIG-U) is a newly discovered oncogene in human bladder cancer.

    NARCIS (Netherlands)

    Guo, Z.; Linn, J.F.; Wu, G.; Anzick, S.L.; Eisenberger, C.F.; Halachmi, S.; Cohen, Y.; Fomenkov, A.; Hoque, M.O.; Okami, K.; Steiner, G.; Engles, J.M.; Osada, M.; Moon, C.; Ratovitski, E.; Trent, J.M.; Meltzer, P.S.; Westra, W.H.; Kiemeney, L.A.L.M.; Schoenberg, M.P.; Sidransky, D.; Trink, B.

    2004-01-01

    Genomic amplification at 20q11-13 is a common event in human cancers. We isolated a germline translocation breakpoint at 20q11 from a bladder cancer patient. We identified CDC91L1, the gene encoding CDC91L1 (also called phosphatidylinositol glycan class U (PIG-U), a transamidase complex unit in the

  1. C. elegans germline-deficient mutants respond to pathogen infection using shared and distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Michael TeKippe

    2010-07-01

    Full Text Available Reproduction extracts a cost in resources that organisms are then unable to utilize to deal with a multitude of environmental stressors. In the nematode C. elegans, development of the germline shortens the lifespan of the animal and increases its susceptibility to microbial pathogens. Prior studies have demonstrated germline-deficient nematodes to have increased resistance to gram negative bacteria. We show that germline-deficient strains display increased resistance across a broad range of pathogens including gram positive and gram negative bacteria, and the fungal pathogen Cryptococcus neoformans. Furthermore, we show that the FOXO transcription factor DAF-16, which regulates longevity and immunity in C. elegans, appears to be crucial for maintaining longevity in both wild-type and germline-deficient backgrounds. Our studies indicate that germline-deficient mutants glp-1 and glp-4 respond to pathogen infection using common and different mechanisms that involve the activation of DAF-16.

  2. A role of BRCA1 and BRCA2 germline mutations in breast cancer susceptibility within Sardinian population

    International Nuclear Information System (INIS)

    Palomba, Grazia; Tanda, Francesco; Farris, Antonio; Orrù, Sandra; Floris, Carlo; Pisano, Marina; Lovicu, Mario; Santona, Maria Cristina; Landriscina, Gennaro; Crisponi, Laura; Palmieri, Giuseppe; Loi, Angela; Monne, Maria; Uras, Antonella; Fancello, Patrizia; Piras, Giovanna; Gabbas, Attilio; Cossu, Antonio; Budroni, Mario; Contu, Antonio

    2009-01-01

    In recent years, numerous studies have assessed the prevalence of germline mutations in BRCA1 and BRCA2 genes in various cohorts. We here extensively investigated the prevalence and geographical distribution of BRCA1-2 mutations in the entire genetically-homogeneous Sardinian population. The occurrence of phenotypic characteristics which may be predictive for the presence of BRCA1-2 germline mutations was also evaluated. Three hundred and forty-eight breast cancer patients presenting a familial recurrence of invasive breast or ovarian carcinoma with at least two affected family members were screened for BRCA1-2 mutations by DHPLC analysis and DNA sequencing. Association of BRCA1 and BRCA2 mutational status with clinical and pathological parameters was evaluated by Pearson's Chi-Squared test. Overall, 8 BRCA1 and 5 BRCA2 deleterious mutations were detected in 35/348 (10%) families; majority (23/35;66%) of mutations was found in BRCA2 gene. The geographical distribution of BRCA1-2 mutations was related to three specific large areas of Sardinia, reflecting its ancient history: a) the Northern area, linguistically different from the rest of the island (where a BRCA2 c.8764-8765delAG mutation with founder effect was predominant); b) the Middle area, land of the ancient Sardinian population (where BRCA2 mutations are still more common than BRCA1 mutations); and c) the South-Western area, with many Phoenician and Carthaginian locations (where BRCA1 mutations are prevalent). We also found that phenotypic features such as high tumor grading and lack of expression of estrogen/progesterone receptors together with age at diagnosis and presence of ovarian cancer in the family may be predictive for the presence of BRCA1-2 germline mutations

  3. File list: InP.Adl.05.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adl.05.AllAg.Germline_containing_young_adult ce10 Input control Adult Germline containing young adult...X495065,SRX495061,SRX495042,SRX495102 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/InP.Adl.05.AllAg.Germline_containing_young_adult.bed ...

  4. File list: InP.Adl.10.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adl.10.AllAg.Germline_containing_young_adult ce10 Input control Adult Germline containing young adult...X466563,SRX495065,SRX495061,SRX495102 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/InP.Adl.10.AllAg.Germline_containing_young_adult.bed ...

  5. File list: InP.Adl.20.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adl.20.AllAg.Germline_containing_young_adult ce10 Input control Adult Germline containing young adult...X495061,SRX495102,SRX495062,SRX495066 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/InP.Adl.20.AllAg.Germline_containing_young_adult.bed ...

  6. Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche.

    Science.gov (United States)

    Wang, Xiaoxi; Page-McCaw, Andrea

    2018-02-07

    Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In Drosophila ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or hid expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal. © 2018. Published by The Company of Biologists Ltd.

  7. Isolation and characterization of string-forming female germline stem cells from ovaries of neonatal mice.

    Science.gov (United States)

    Liu, Jing; Shang, Dantong; Xiao, Yao; Zhong, Pei; Cheng, Hanhua; Zhou, Rongjia

    2017-09-29

    Germline stem cells are essential in the generation of both male and female gametes. In mammals, the male testis produces sperm throughout the entire lifetime, facilitated by testicular germline stem cells. Oocyte renewal ceases in postnatal or adult life in mammalian females, suggesting that germline stem cells are absent from the mammalian ovary. However, studies in mice, rats, and humans have recently provided evidence for ovarian female germline stem cells (FGSCs). A better understanding of the role of FGSCs in ovaries could help improve fertility treatments. Here, we developed a rapid and efficient method for isolating FGSCs from ovaries of neonatal mice. Notably, our FGSC isolation method could efficiently isolate on average 15 cell "strings" per ovary from mice at 1-3 days postpartum. FGSCs isolated from neonatal mice displayed the string-forming cell configuration at mitosis ( i.e. a "stringing" FGSC (sFGSC) phenotype) and a disperse phenotype in postnatal mice. We also found that sFGSCs undergo vigorous mitosis especially at 1-3 days postpartum. After cell division, the sFGSC membranes tended to be connected to form sFGSCs. Moreover, F-actin filaments exhibited a cell-cortex distribution in sFGSCs, and E-cadherin converged in cell-cell connection regions, resulting in the string-forming morphology. Our new method provides a platform for isolating FGSCs from the neonatal ovary, and our findings indicate that FGCSs exhibit string-forming features in neonatal mice. The sFGSCs represent a valuable resource for analysis of ovary function and an in vitro model for future clinical use to address ovarian dysfunction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Analysis of functional germline variants in APOBEC3 and driver genes on breast cancer risk in Moroccan study population

    International Nuclear Information System (INIS)

    Marouf, Chaymaa; Göhler, Stella; Filho, Miguel Inacio Da Silva; Hajji, Omar; Hemminki, Kari; Nadifi, Sellama; Försti, Asta

    2016-01-01

    Breast cancer (BC) is the most prevalent cancer in women and a major public health problem in Morocco. Several Moroccan studies have focused on studying this disease, but more are needed, especially at the genetic and molecular levels. Therefore, we investigated the potential association of several functional germline variants in the genes commonly mutated in sporadic breast cancer. In this case–control study, we examined 36 single nucleotide polymorphisms (SNPs) in 13 genes (APOBEC3A, APOBEC3B, ARID1B, ATR, MAP3K1, MLL2, MLL3, NCOR1, RUNX1, SF3B1, SMAD4, TBX3, TTN), which were located in the core promoter, 5’-and 3’UTR or which were nonsynonymous SNPs to assess their potential association with inherited predisposition to breast cancer development. Additionally, we identified a ~29.5-kb deletion polymorphism between APOBEC3A and APOBEC3B and explored possible associations with BC. A total of 226 Moroccan breast cancer cases and 200 matched healthy controls were included in this study. The analysis showed that12 SNPs in 8 driver genes, 4 SNPs in APOBEC3B gene and 1 SNP in APOBEC3A gene were associated with BC risk and/or clinical outcome at P ≤ 0.05 level. RUNX1-rs8130963 (odds ratio (OR) = 2.25; 95 % CI 1.42-3.56; P = 0.0005; dominant model), TBX3-rs8853 (OR = 2.04; 95 % CI 1.38-3.01; P = 0.0003; dominant model), TBX3-rs1061651 (OR = 2.14; 95 % CI1.43-3.18; P = 0.0002; dominant model), TTN-rs12465459 (OR = 2.02; 95 % confidence interval 1.33-3.07; P = 0.0009; dominant model), were the most significantly associated SNPs with BC risk. A strong association with clinical outcome were detected for the genes SMAD4 -rs3819122 with tumor size (OR = 0.45; 95 % CI 0.25-0.82; P = 0.009) and TTN-rs2244492 with estrogen receptor (OR = 0.45; 95 % CI 0.25-0.82; P = 0.009). Our results suggest that genetic variations in driver and APOBEC3 genes were associated with the risk of BC and may have impact on clinical outcome. However, the reported association between the

  9. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types.

    Science.gov (United States)

    Kilian, A; Bowtell, D D; Abud, H E; Hime, G R; Venter, D J; Keese, P K; Duncan, E L; Reddel, R R; Jefferson, R A

    1997-11-01

    Telomerase is a multicomponent reverse transcriptase enzyme that adds DNA repeats to the ends of chromosomes using its RNA component as a template for synthesis. Telomerase activity is detected in the germline as well as the majority of tumors and immortal cell lines, and at low levels in several types of normal cells. We have cloned a human gene homologous to a protein from Saccharomyces cerevisiae and Euplotes aediculatus that has reverse transcriptase motifs and is thought to be the catalytic subunit of telomerase in those species. This gene is present in the human genome as a single copy sequence with a dominant transcript of approximately 4 kb in a human colon cancer cell line, LIM1215. The cDNA sequence was determined using clones from a LIM1215 cDNA library and by RT-PCR, cRACE and 3'RACE on mRNA from the same source. We show that the gene is expressed in several normal tissues, telomerase-positive post-crisis (immortal) cell lines and various tumors but is not expressed in the majority of normal tissues analyzed, pre-crisis (non-immortal) cells and telomerase-negative immortal (ALT) cell lines. Multiple products were identified by RT-PCR using primers within the reverse transcriptase domain. Sequencing of these products suggests that they arise by alternative splicing. Strikingly, various tumors, cell lines and even normal tissues (colonic crypt and testis) showed considerable differences in the splicing patterns. Alternative splicing of the telomerase catalytic subunit transcript may be important for the regulation of telomerase activity and may give rise to proteins with different biochemical functions.

  10. Germline variants in Hamartomatous Polyposis Syndrome-associated genes from patients with one or few hamartomatous polyps

    DEFF Research Database (Denmark)

    Jelsig, Anne Marie; Brusgaard, Klaus; Hansen, Tine Plato

    2016-01-01

    OBJECTIVE: A subgroup of patients with hamartomatous polyps in the GI tract has a hereditary Hamartomatous Polyposis Syndrome with an increased risk of cancer. The distinction between patients with one or few polyps and patients with a syndrome can be difficult. A pathogenic germline mutation can...... significance of genetic variants can be difficult to interpret. A family history of polyps, cancer, or extraintestinal findings or a minimum of 3-5 polyps seems to be relevant information to include before genetic testing....

  11. Germline mutations in candidate predisposition genes in individuals with cutaneous melanoma and at least two independent additional primary cancers.

    Science.gov (United States)

    Pritchard, Antonia L; Johansson, Peter A; Nathan, Vaishnavi; Howlie, Madeleine; Symmons, Judith; Palmer, Jane M; Hayward, Nicholas K

    2018-01-01

    higher overall burden of mutations in all cancer genes. We identified several pathogenic variants that likely predispose to at least one of the tumours in patients with multiple cancers. We additionally present evidence that there may be a higher burden of variants of unknown significance in 'cancer genes' in patients with multiple cancer types. Further screens of this nature need to be carried out to build evidence to show if the cancers observed in these patients form part of a cancer spectrum associated with single germline variants in these genes, whether multiple layers of susceptibility exist (oligogenic or polygenic), or if the occurrence of multiple different cancers is due to random chance.

  12. Automated analysis of high-throughput B-cell sequencing data reveals a high frequency of novel immunoglobulin V gene segment alleles.

    Science.gov (United States)

    Gadala-Maria, Daniel; Yaari, Gur; Uduman, Mohamed; Kleinstein, Steven H

    2015-02-24

    Individual variation in germline and expressed B-cell immunoglobulin (Ig) repertoires has been associated with aging, disease susceptibility, and differential response to infection and vaccination. Repertoire properties can now be studied at large-scale through next-generation sequencing of rearranged Ig genes. Accurate analysis of these repertoire-sequencing (Rep-Seq) data requires identifying the germline variable (V), diversity (D), and joining (J) gene segments used by each Ig sequence. Current V(D)J assignment methods work by aligning sequences to a database of known germline V(D)J segment alleles. However, existing databases are likely to be incomplete and novel polymorphisms are hard to differentiate from the frequent occurrence of somatic hypermutations in Ig sequences. Here we develop a Tool for Ig Genotype Elucidation via Rep-Seq (TIgGER). TIgGER analyzes mutation patterns in Rep-Seq data to identify novel V segment alleles, and also constructs a personalized germline database containing the specific set of alleles carried by a subject. This information is then used to improve the initial V segment assignments from existing tools, like IMGT/HighV-QUEST. The application of TIgGER to Rep-Seq data from seven subjects identified 11 novel V segment alleles, including at least one in every subject examined. These novel alleles constituted 13% of the total number of unique alleles in these subjects, and impacted 3% of V(D)J segment assignments. These results reinforce the highly polymorphic nature of human Ig V genes, and suggest that many novel alleles remain to be discovered. The integration of TIgGER into Rep-Seq processing pipelines will increase the accuracy of V segment assignments, thus improving B-cell repertoire analyses.

  13. Remobilization of Sleeping Beauty transposons in the germline of Xenopus tropicalis

    Directory of Open Access Journals (Sweden)

    Yergeau Donald A

    2011-11-01

    Full Text Available Abstract Background The Sleeping Beauty (SB transposon system has been used for germline transgenesis of the diploid frog, Xenopus tropicalis. Injecting one-cell embryos with plasmid DNA harboring an SB transposon substrate together with mRNA encoding the SB transposase enzyme resulted in non-canonical integration of small-order concatemers of the transposon. Here, we demonstrate that SB transposons stably integrated into the frog genome are effective substrates for remobilization. Results Transgenic frogs that express the SB10 transposase were bred with SB transposon-harboring animals to yield double-transgenic 'hopper' frogs. Remobilization events were observed in the progeny of the hopper frogs and were verified by Southern blot analysis and cloning of the novel integrations sites. Unlike the co-injection method used to generate founder lines, transgenic remobilization resulted in canonical transposition of the SB transposons. The remobilized SB transposons frequently integrated near the site of the donor locus; approximately 80% re-integrated with 3 Mb of the donor locus, a phenomenon known as 'local hopping'. Conclusions In this study, we demonstrate that SB transposons integrated into the X. tropicalis genome are effective substrates for excision and re-integration, and that the remobilized transposons are transmitted through the germline. This is an important step in the development of large-scale transposon-mediated gene- and enhancer-trap strategies in this highly tractable developmental model system.

  14. Lynch Syndrome Caused by Germline PMS2 Mutations

    DEFF Research Database (Denmark)

    Ten Broeke, Sanne W; Brohet, Richard M; Tops, Carli M

    2015-01-01

    PURPOSE: The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. METHODS: Data were collected from 98...... PMS2 families ascertained from family cancer clinics that included a total of 2,548 family members and 377 proven mutation carriers. To adjust for potential ascertainment bias, a modified segregation analysis model was used to calculate colorectal cancer (CRC) and endometrial cancer (EC) risks....... Standardized incidence ratios (SIRs) were calculated to estimate risks for other Lynch syndrome-associated cancers. RESULTS: The cumulative risk (CR) of CRC for male mutation carriers by age 70 years was 19%. The CR among female carriers was 11% for CRC and 12% for EC. The mean age of CRC development was 52...

  15. Cell lineage analysis of the mammalian female germline.

    Directory of Open Access Journals (Sweden)

    Yitzhak Reizel

    Full Text Available Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote. We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development.

  16. Unique signatures of natural background radiation on human Y chromosomes from Kerala, India.

    Directory of Open Access Journals (Sweden)

    Sanjay Premi

    Full Text Available The most frequently observed major consequences of ionizing radiation are chromosomal lesions and cancers, although the entire genome may be affected. Owing to its haploid status and absence of recombination, the human Y chromosome is an ideal candidate to be assessed for possible genetic alterations induced by ionizing radiation. We studied the human Y chromosome in 390 males from the South Indian state of Kerala, where the level of natural background radiation (NBR is ten-fold higher than the worldwide average, and that from 790 unexposed males as control.We observed random microdeletions in the Azoospermia factor (AZF a, b and c regions in >90%, and tandem duplication and copy number polymorphism (CNP of 11 different Y-linked genes in about 80% of males exposed to NBR. The autosomal homologues of Y-linked CDY genes largely remained unaffected. Multiple polymorphic copies of the Y-linked genes showing single Y-specific signals suggested their tandem duplication. Some exposed males showed unilocus duplication of DAZ genes resulting in six copies. Notably, in the AZFa region, approximately 25% of exposed males showed deletion of the DBY gene, whereas flanking genes USP9Y and UTY remained unaffected. All these alterations were detected in blood samples but not in the germline (sperm samples.Exposure to high levels of NBR correlated with several interstitial polymorphisms of the human Y chromosome. CNPs and enhanced transcription of the SRY gene after duplication are envisaged to compensate for the loss of Y chromosome in some cells. The aforesaid changes, confined to peripheral blood lymphocytes, suggest a possible innate mechanism protecting the germline DNA from the NBR. Genome analysis of a larger population focusing on greater numbers of genes may provide new insights into the mechanisms and risks of the resultant genetic damages. The present work demonstrates unique signatures of NBR on human Y chromosomes from Kerala, India.

  17. Gene therapy: theoretical and bioethical concepts.

    Science.gov (United States)

    Smith, Kevin R

    2003-01-01

    Gene therapy holds great promise. Somatic gene therapy has the potential to treat a wide range of disorders, including inherited conditions, cancers, and infectious diseases. Early progress has already been made in the treatment of a range of disorders. Ethical issues surrounding somatic gene therapy are primarily those concerned with safety. Germline gene therapy is theoretically possible but raises serious ethical concerns concerning future generations.

  18. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer | Office of Cancer Genomics

    Science.gov (United States)

    Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways.

  19. Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD.

    Science.gov (United States)

    Andrews, Katrina A; Ascher, David B; Pires, Douglas Eduardo Valente; Barnes, Daniel R; Vialard, Lindsey; Casey, Ruth T; Bradshaw, Nicola; Adlard, Julian; Aylwin, Simon; Brennan, Paul; Brewer, Carole; Cole, Trevor; Cook, Jackie A; Davidson, Rosemarie; Donaldson, Alan; Fryer, Alan; Greenhalgh, Lynn; Hodgson, Shirley V; Irving, Richard; Lalloo, Fiona; McConachie, Michelle; McConnell, Vivienne P M; Morrison, Patrick J; Murday, Victoria; Park, Soo-Mi; Simpson, Helen L; Snape, Katie; Stewart, Susan; Tomkins, Susan E; Wallis, Yvonne; Izatt, Louise; Goudie, David; Lindsay, Robert S; Perry, Colin G; Woodward, Emma R; Antoniou, Antonis C; Maher, Eamonn R

    2018-06-01

    Germline pathogenic variants in SDHB/SDHC / SDHD are the most frequent causes of inherited phaeochromocytomas/paragangliomas. Insufficient information regarding penetrance and phenotypic variability hinders optimum management of mutation carriers. We estimate penetrance for symptomatic tumours and elucidate genotype-phenotype correlations in a large cohort of SDHB/SDHC / SDHD mutation carriers. A retrospective survey of 1832 individuals referred for genetic testing due to a personal or family history of phaeochromocytoma/paraganglioma. 876 patients (401 previously reported) had a germline mutation in SDHB/SDHC / SDHD (n=673/43/160). Tumour risks were correlated with in silico structural prediction analyses. Tumour risks analysis provided novel penetrance estimates and genotype-phenotype correlations. In addition to tumour type susceptibility differences for individual genes, we confirmed that the SDHD: p.Pro81Leu mutation has a distinct phenotype and identified increased age-related tumour risks with highly destabilising SDHB missense mutations. By Kaplan-Meier analysis, the penetrance (cumulative risk of clinically apparent tumours) in SDHB and (paternally inherited) SDHD mutation-positive non-probands (n=371/67 with detailed clinical information) by age 60 years was 21.8% (95% CI 15.2% to 27.9%) and 43.2% (95% CI 25.4% to 56.7%), respectively. Risk of malignant disease at age 60 years in non-proband SDHB mutation carriers was 4.2%(95% CI 1.1% to 7.2%). With retrospective cohort analysis to adjust for ascertainment, cumulative tumour risks for SDHB mutation carriers at ages 60 years and 80 years were 23.9% (95% CI 20.9% to 27.4%) and 30.6% (95% CI 26.8% to 34.7%). Overall risks of clinically apparent tumours for SDHB mutation carriers are substantially lower than initially estimated and will improve counselling of affected families. Specific genotype-tumour risk associations provides a basis for novel investigative strategies into succinate dehydrogenase

  20. Natural Gene Therapy in Dystrophic Epidermolysis Bullosa

    NARCIS (Netherlands)

    van den Akker, Peter C.; Nijenhuis, Albertine; Hofstra, Robert M. W.; Jonkman, Marcel F.; Pasmooij, Anna M. G.; Meijer, G.

    Background: Dystrophic epidermolysis bullosa is a genetic blistering disorder caused by mutations in the type VII collagen gene, COL7A1. In revertant mosaicism, germline mutations are corrected by somatic events resulting in a mosaic disease distribution. This "natural gene therapy" phenomenon long

  1. The Paramecium germline genome provides a niche for intragenic parasitic DNA: evolutionary dynamics of internal eliminated sequences.

    Science.gov (United States)

    Arnaiz, Olivier; Mathy, Nathalie; Baudry, Céline; Malinsky, Sophie; Aury, Jean-Marc; Denby Wilkes, Cyril; Garnier, Olivier; Labadie, Karine; Lauderdale, Benjamin E; Le Mouël, Anne; Marmignon, Antoine; Nowacki, Mariusz; Poulain, Julie; Prajer, Malgorzata; Wincker, Patrick; Meyer, Eric; Duharcourt, Sandra; Duret, Laurent; Bétermier, Mireille; Sperling, Linda

    2012-01-01

    Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of -45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a -10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the

  2. The Paramecium germline genome provides a niche for intragenic parasitic DNA: evolutionary dynamics of internal eliminated sequences.

    Directory of Open Access Journals (Sweden)

    Olivier Arnaiz

    Full Text Available Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of -45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a -10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a

  3. Clinical Assessment and Diagnosis of Germline Predisposition to Hematopoietic Malignancies: The University of Chicago Experience

    Directory of Open Access Journals (Sweden)

    Ami V. Desai

    2017-12-01

    Full Text Available With the increasing use of clinical genomics to guide cancer treatment and management, there is a rise in the identification of germline cancer predisposition syndromes and a critical need for patients with germline findings to be referred for surveillance and care. The University of Chicago Hematopoietic Malignancies Cancer Risk Team has established a unique approach to patient care for individuals with hereditary hematologic malignancies through close communication and coordination between our pediatric and adult programs. Dedicated program members, including physicians, nurses, genetic counselors, and clinical research assistants, screen individuals for cancer predisposition at initial diagnosis through survivorship, in addition to testing individuals with an established family history of a cancer predisposition syndrome. Sample procurement, such as a skin biopsy at the time of bone marrow aspirate/biopsy in individuals with a positive screen, has facilitated timely identification of clinical germline findings or has served as a pipeline for translational research. Our integrated translational research program has led to the identification of novel syndromes in collaboration with other investigators, which have been incorporated iteratively into our clinical pipeline. Individuals are referred for clinical assessment based on personal and family history, identification of variants in susceptibility genes via molecular tumor testing, and during evaluation for matched related allogeneic stem cell transplantation. Upon referral, genetic counseling incorporates education with mindfulness of the psychosocial issues surrounding germline testing at different ages. The training and role of genetic counselors continues to grow, with the discovery of new predisposition syndromes, in the age of improved molecular diagnostics and new models for service delivery, such as telemedicine. With the identification of new syndromes that may predispose individuals

  4. SMARCB1/INI1 germline mutations contribute to 10% of sporadic schwannomatosis

    Directory of Open Access Journals (Sweden)

    Bourdon Violaine

    2011-01-01

    Full Text Available Abstract Background Schwannomatosis is a disease characterized by multiple non-vestibular schwannomas. Although biallelic NF2 mutations are found in schwannomas, no germ line event is detected in schwannomatosis patients. In contrast, germline mutations of the SMARCB1 (INI1 tumor suppressor gene were described in familial and sporadic schwannomatosis patients. Methods To delineate the SMARCB1 gene contribution, the nine coding exons were sequenced in a series of 56 patients affected with a variable number of non-vestibular schwannomas. Results Nine variants scattered along the sequence of SMARCB1 were identified. Five of them were classified as deleterious. All five patients carrying a SMARCB1 mutation had more multiple schwannomas, corresponding to 10.2% of patients with schwannomatosis. They were also diagnosed before 35 years of age. Conclusions These results suggest that patients with schwannomas have a significant probability of carrying a SMARCB1 mutation. Combined with data available from other studies, they confirm the clinical indications for genetic screening of the SMARCB1 gene.

  5. Transposon Invasion of the Paramecium Germline Genome Countered by a Domesticated PiggyBac Transposase and the NHEJ Pathway

    Science.gov (United States)

    Dubois, Emeline; Bischerour, Julien; Marmignon, Antoine; Mathy, Nathalie; Régnier, Vinciane; Bétermier, Mireille

    2012-01-01

    Sequences related to transposons constitute a large fraction of extant genomes, but insertions within coding sequences have generally not been tolerated during evolution. Thanks to their unique nuclear dimorphism and to their original mechanism of programmed DNA elimination from their somatic nucleus (macronucleus), ciliates are emerging model organisms for the study of the impact of transposable elements on genomes. The germline genome of the ciliate Paramecium, located in its micronucleus, contains thousands of short intervening sequences, the IESs, which interrupt 47% of genes. Recent data provided support to the hypothesis that an evolutionary link exists between Paramecium IESs and Tc1/mariner transposons. During development of the macronucleus, IESs are excised precisely thanks to the coordinated action of PiggyMac, a domesticated piggyBac transposase, and of the NHEJ double-strand break repair pathway. A PiggyMac homolog is also required for developmentally programmed DNA elimination in another ciliate, Tetrahymena. Here, we present an overview of the life cycle of these unicellular eukaryotes and of the developmentally programmed genome rearrangements that take place at each sexual cycle. We discuss how ancient domestication of a piggyBac transposase might have allowed Tc1/mariner elements to spread throughout the germline genome of Paramecium, without strong counterselection against insertion within genes. PMID:22888464

  6. Constitutional von Hippel-Lindau (VHL) gene deletions detected in VHL families by fluorescence in situ hybridization.

    Science.gov (United States)

    Pack, S D; Zbar, B; Pak, E; Ault, D O; Humphrey, J S; Pham, T; Hurley, K; Weil, R J; Park, W S; Kuzmin, I; Stolle, C; Glenn, G; Liotta, L A; Lerman, M I; Klausner, R D; Linehan, W M; Zhuang, Z

    1999-11-01

    von Hippel-Lindau (VHL) disease is an autosomal dominantly inherited cancer syndrome predisposing to a variety of tumor types that include retinal hemangioblastomas, hemangioblastomas of the central nervous system, renal cell carcinomas, pancreatic cysts and tumors, pheochromocytomas, endolymphatic sac tumors, and epididymal cystadenomas [W. M. Linehan et al., J. Am. Med. Assoc., 273: 564-570, 1995; E. A. Maher and W. G. Kaelin, Jr., Medicine (Baltimore), 76: 381-391, 1997; W. M. Linehan and R. D. Klausner, In: B. Vogelstein and K. Kinzler (eds.), The Genetic Basis of Human Cancer, pp. 455-473, McGraw-Hill, 1998]. The VHL gene was localized to chromosome 3p25-26 and cloned [F. Latif et al., Science (Washington DC), 260: 1317-1320, 1993]. Germline mutations in the VHL gene have been detected in the majority of VHL kindreds. The reported frequency of detection of VHL germline mutations has varied from 39 to 80% (J. M. Whaley et al., Am. J. Hum. Genet., 55: 1092-1102, 1994; Clinical Research Group for Japan, Hum. Mol. Genet., 4: 2233-2237, 1995; F. Chen et al., Hum. Mutat., 5: 66-75, 1995; E. R. Maher et al., J. Med. Genet., 33: 328-332, 1996; B. Zbar, Cancer Surv., 25: 219-232, 1995). Recently a quantitative Southern blotting procedure was found to improve this frequency (C. Stolle et al., Hum. Mutat., 12: 417-423, 1998). In the present study, we report the use of fluorescence in situ hybridization (FISH) as a method to detect and characterize VHL germline deletions. We reexamined a group of VHL patients shown previously by single-strand conformation and sequencing analysis not to harbor point mutations in the VHL locus. We found constitutional deletions in 29 of 30 VHL patients in this group using cosmid and P1 probes that cover the VHL locus. We then tested six phenotypically normal offspring from four of these VHL families: two were found to carry the deletion and the other four were deletion-free. In addition, germline mosaicism of the VHL gene was identified in

  7. A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal.

    Directory of Open Access Journals (Sweden)

    James X Sun

    2018-02-01

    Full Text Available A key constraint in genomic testing in oncology is that matched normal specimens are not commonly obtained in clinical practice. Thus, while well-characterized genomic alterations do not require normal tissue for interpretation, a significant number of alterations will be unknown in whether they are germline or somatic, in the absence of a matched normal control. We introduce SGZ (somatic-germline-zygosity, a computational method for predicting somatic vs. germline origin and homozygous vs. heterozygous or sub-clonal state of variants identified from deep massively parallel sequencing (MPS of cancer specimens. The method does not require a patient matched normal control, enabling broad application in clinical research. SGZ predicts the somatic vs. germline status of each alteration identified by modeling the alteration's allele frequency (AF, taking into account the tumor content, tumor ploidy, and the local copy number. Accuracy of the prediction depends on the depth of sequencing and copy number model fit, which are achieved in our clinical assay by sequencing to high depth (>500x using MPS, covering 394 cancer-related genes and over 3,500 genome-wide single nucleotide polymorphisms (SNPs. Calls are made using a statistic based on read depth and local variability of SNP AF. To validate the method, we first evaluated performance on samples from 30 lung and colon cancer patients, where we sequenced tumors and matched normal tissue. We examined predictions for 17 somatic hotspot mutations and 20 common germline SNPs in 20,182 clinical cancer specimens. To assess the impact of stromal admixture, we examined three cell lines, which were titrated with their matched normal to six levels (10-75%. Overall, predictions were made in 85% of cases, with 95-99% of variants predicted correctly, a significantly superior performance compared to a basic approach based on AF alone. We then applied the SGZ method to the COSMIC database of known somatic variants

  8. Human proton/oligopeptide transporter (POT) genes

    DEFF Research Database (Denmark)

    Botka, C. W.; Wittig, T. W.; Graul, R. C.

    2000-01-01

    The proton-dependent oligopeptide transporters (POT) gene family currently consists of approximately 70 cloned cDNAs derived from diverse organisms. In mammals, two genes encoding peptide transporters, PepT1 and PepT2 have been cloned in several species including humans, in addition to a rat...... histidine/peptide transporter (rPHT1). Because the Candida elegans genome contains five putative POT genes, we searched the available protein and nucleic acid databases for additional mammalian/human POT genes, using iterative BLAST runs and the human expressed sequence tags (EST) database. The apparent...... and introns of the likely human orthologue (termed hPHT2). Northern analyses with EST clones indicated that hPHT1 is primarily expressed in skeletal muscle and spleen, whereas hPHT2 is found in spleen, placenta, lung, leukocytes, and heart. These results suggest considerable complexity of the human POT gene...

  9. TGF-β superfamily signaling in testis formation and early male germline development.

    Science.gov (United States)

    Young, Julia C; Wakitani, Shoichi; Loveland, Kate L

    2015-09-01

    The TGF-β ligand superfamily contains at least 40 members, many of which are produced and act within the mammalian testis to facilitate formation of sperm. Their progressive expression at key stages and in specific cell types determines the fertility of adult males, influencing testis development and controlling germline differentiation. BMPs are essential for the interactive instructions between multiple cell types in the early embryo that drive initial specification of gamete precursors. In the nascent foetal testis, several ligands including Nodal, TGF-βs, Activins and BMPs, serve as key masculinizing switches by regulating male germline pluripotency, somatic and germline proliferation, and testicular vascularization and architecture. In postnatal life, local production of these factors determine adult testis size by regulating Sertoli cell multiplication and differentiation, in addition to specifying germline differentiation and multiplication. Because TGF-β superfamily signaling is integral to testis formation, it affects processes that underlie testicular pathologies, including testicular cancer, and its potential to contribute to subfertility is beginning to be understood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Detection and precise mapping of germline rearrangements in BRCA1, BRCA2, MSH2, and MLH1 using zoom-in array comparative genomic hybridization (aCGH)

    DEFF Research Database (Denmark)

    Staaf, Johan; Törngren, Therese; Rambech, Eva

    2008-01-01

    Disease-predisposing germline mutations in cancer susceptibility genes may consist of large genomic rearrangements that are challenging to detect and characterize using standard PCR-based mutation screening methods. Here, we describe a custom-made zoom-in microarray comparative genomic hybridizat......Disease-predisposing germline mutations in cancer susceptibility genes may consist of large genomic rearrangements that are challenging to detect and characterize using standard PCR-based mutation screening methods. Here, we describe a custom-made zoom-in microarray comparative genomic...... deletions or duplications occurring in BRCA1 (n=11), BRCA2 (n=2), MSH2 (n=7), or MLH1 (n=9). Additionally, we demonstrate its applicability for uncovering complex somatic rearrangements, exemplified by zoom-in analysis of the PTEN and CDKN2A loci in breast cancer cells. The sizes of rearrangements ranged...... from several 100 kb, including large flanking regions, to rearrangements, allowing convenient design...

  11. Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May Affect Clinical Decision Making.

    Science.gov (United States)

    Abida, Wassim; Armenia, Joshua; Gopalan, Anuradha; Brennan, Ryan; Walsh, Michael; Barron, David; Danila, Daniel; Rathkopf, Dana; Morris, Michael; Slovin, Susan; McLaughlin, Brigit; Curtis, Kristen; Hyman, David M; Durack, Jeremy C; Solomon, Stephen B; Arcila, Maria E; Zehir, Ahmet; Syed, Aijazuddin; Gao, Jianjiong; Chakravarty, Debyani; Vargas, Hebert Alberto; Robson, Mark E; Joseph, Vijai; Offit, Kenneth; Donoghue, Mark T A; Abeshouse, Adam A; Kundra, Ritika; Heins, Zachary J; Penson, Alexander V; Harris, Christopher; Taylor, Barry S; Ladanyi, Marc; Mandelker, Diana; Zhang, Liying; Reuter, Victor E; Kantoff, Philip W; Solit, David B; Berger, Michael F; Sawyers, Charles L; Schultz, Nikolaus; Scher, Howard I

    2017-07-01

    A long natural history and a predominant osseous pattern of metastatic spread are impediments to the adoption of precision medicine in patients with prostate cancer. To establish the feasibility of clinical genomic profiling in the disease, we performed targeted deep sequencing of tumor and normal DNA from patients with locoregional, metastatic non-castrate, and metastatic castration-resistant prostate cancer (CRPC). Patients consented to genomic analysis of their tumor and germline DNA. A hybridization capture-based clinical assay was employed to identify single nucleotide variations, small insertions and deletions, copy number alterations and structural rearrangements in over 300 cancer-related genes in tumors and matched normal blood. We successfully sequenced 504 tumors from 451 patients with prostate cancer. Potentially actionable alterations were identified in DNA damage repair (DDR), PI3K, and MAP kinase pathways. 27% of patients harbored a germline or a somatic alteration in a DDR gene that may predict for response to PARP inhibition. Profiling of matched tumors from individual patients revealed that somatic TP53 and BRCA2 alterations arose early in tumors from patients who eventually developed metastatic disease. In contrast, comparative analysis across disease states revealed that APC alterations were enriched in metastatic tumors, while ATM alterations were specifically enriched in CRPC. Through genomic profiling of prostate tumors representing the disease clinical spectrum, we identified a high frequency of potentially actionable alterations and possible drivers of disease initiation, metastasis and castration-resistance. Our findings support the routine use of tumor and germline DNA profiling for patients with advanced prostate cancer, for the purpose of guiding enrollment in targeted clinical trials and counseling families at increased risk of malignancy.

  12. A 44 bp intestine-specific hermaphrodite-specific enhancer from the C. elegans vit-2 vitellogenin gene is directly regulated by ELT-2, MAB-3, FKH-9 and DAF-16 and indirectly regulated by the germline, by daf-2/insulin signaling and by the TGF-β/Sma/Mab pathway.

    Science.gov (United States)

    Goszczynski, Barbara; Captan, Vasile V; Danielson, Alicia M; Lancaster, Brett R; McGhee, James D

    2016-05-01

    The Caenorhabditis elegans vitellogenin genes are transcribed in the intestine of adult hermaphrodites but not of males. A 44-bp region from the vit-2 gene promoter is able largely to reconstitute this tissue-, stage- and sex-specific-expression. This "enhancer" contains a binding site for the DM-domain factor MAB-3, the male-specific repressor of vitellogenesis, as well as an activator site that we show is the direct target of the intestinal GATA factor ELT-2. We further show that the enhancer is directly activated by the winged-helix/forkhead-factor FKH-9, (whose gene has been shown by others to be a direct target of DAF-16), by an unknown activator binding to the MAB-3 site, and by the full C. elegans TGF-β/Sma/Mab pathway acting within the intestine. The vit-2 gene has been shown by others to be repressed by the daf-2/daf-16 insulin signaling pathway, which so strongly influences aging and longevity in C. elegans. We show that the activity of the 44 bp vit-2 enhancer is abolished by loss of daf-2 but is restored by simultaneous loss of daf-16. DAF-2 acts from outside of the intestine but DAF-16 acts both from outside of the intestine and from within the intestine where it binds directly to the same non-canonical target site that interacts with FKH-9. Activity of the 44 bp vit-2 enhancer is also inhibited by loss of the germline, in a manner that is only weakly influenced by DAF-16 but that is strongly influenced by KRI-1, a key downstream effector in the pathway by which germline loss increases C. elegans lifespan. The complex behavior of this enhancer presumably allows vitellogenin gene transcription to adjust to demands of body size, germline proliferation and nutritional state but we suggest that the apparent involvement of this enhancer in aging and longevity "pathways" could be incidental. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Germ-line origins of mutation in families with hemophilia B: The sex ratio varies with the type of mutation

    Energy Technology Data Exchange (ETDEWEB)

    Ketterling, R.P.; Vielhaber, E.; Bottema, C.D.K.; Schaid, D.J.; Sommer, S.S. (Mayo Clinic/Foundation, Rochester, MN (United States)); Cohen, M.P. (Vanderbilt Univ., Nashville, TN (United States)); Sexauer, C.L. (Children' s Hospital, Oklahoma City, OK (United States))

    1993-01-01

    Previous epidemiological and biochemical studies have generated conflicting estimates of the sex ratio of mutation. Direct genomic sequencing in combination with haplotype analysis extends previous analyses by allowing the precise mutation to be determined in a given family. From analysis of the factor IX gene of 260 consecutive families with hemophilia B, the authors report the germ-line origin of mutation in 25 families. When combined with 14 origins of mutation reported by others and with 4 origins previously reported by them, a total of 25 occur in the female germ line, and 18 occur in the male germ line. The excess of germ-line origins in females does not imply an overall excess mutation rate per base pair in the female germ line. Bayesian analysis of the data indicates that the sex ratio varies with the type of mutation. The aggregate of single-base substitutions shows a male predominance of germ-line mutations (P < .002). The maximum-likelihood estimate of the male predominance is 3.5-fold. Of the single-base substitutions, deletions display a sex ratio of unity. Analysis of the parental age at transmission of a new mutation suggests that germ-line mutations are associated with a small increase in parental age in females but little, if any, increase in males. Although direct genomic sequencing offers a general method for defining the origin of mutation in specific families, accurate estimates of the sex ratios of different mutational classes require large sample sizes and careful correction for multiple biases of ascertainment. The biases in the present data result in an underestimate of the enhancement of mutation in males. 62 refs., 1 fig., 5 tabs.

  14. Lineage-specific expansions of retroviral insertions within the genomes of African great apes but not humans and orangutans.

    Directory of Open Access Journals (Sweden)

    Chris T Yohn

    2005-04-01

    Full Text Available Retroviral infections of the germline have the potential to episodically alter gene function and genome structure during the course of evolution. Horizontal transmissions between species have been proposed, but little evidence exists for such events in the human/great ape lineage of evolution. Based on analysis of finished BAC chimpanzee genome sequence, we characterize a retroviral element (Pan troglodytes endogenous retrovirus 1 [PTERV1] that has become integrated in the germline of African great ape and Old World monkey species but is absent from humans and Asian ape genomes. We unambiguously map 287 retroviral integration sites and determine that approximately 95.8% of the insertions occur at non-orthologous regions between closely related species. Phylogenetic analysis of the endogenous retrovirus reveals that the gorilla and chimpanzee elements share a monophyletic origin with a subset of the Old World monkey retroviral elements, but that the average sequence divergence exceeds neutral expectation for a strictly nuclear inherited DNA molecule. Within the chimpanzee, there is a significant integration bias against genes, with only 14 of these insertions mapping within intronic regions. Six out of ten of these genes, for which there are expression data, show significant differences in transcript expression between human and chimpanzee. Our data are consistent with a retroviral infection that bombarded the genomes of chimpanzees and gorillas independently and concurrently, 3-4 million years ago. We speculate on the potential impact of such recent events on the evolution of humans and great apes.

  15. The ethics of human genetic intervention: a postmodern perspective.

    Science.gov (United States)

    Dyer, A R

    1997-03-01

    Gene therapy for a particular disease like Parkinson's involves ethical principles worked out for other diseases. The major ethical issues for gene therapy (and the corresponding ethical principles) are safety (nonmalfeasance), efficacy (beneficence), informed consent (autonomy), and allocation of resources (justice). Yet genetic engineering (germ-line interventions or interventions to enhance human potentialities) raises emotions and fears that might cause resistance to gene therapies. Looking at these technologies in a postmodern perspective helps one to appreciate the issues at stake in social and cultural change with a new technology such as gene therapy. While "modern" technology and ethics have focused on the autonomy of the individual, we are beginning to see a lessening of such emphasis on individualism and autonomy and more emphasis on the health of the population. Such a social change could cause technologies about which society may currently be cautious (such as human genetic interventions) to become more acceptable or even expected.

  16. More than 9,000,000 unique genes in human gut bacterial community: estimating gene numbers inside a human body.

    Science.gov (United States)

    Yang, Xing; Xie, Lu; Li, Yixue; Wei, Chaochun

    2009-06-29

    Estimating the number of genes in human genome has been long an important problem in computational biology. With the new conception of considering human as a super-organism, it is also interesting to estimate the number of genes in this human super-organism. We presented our estimation of gene numbers in the human gut bacterial community, the largest microbial community inside the human super-organism. We got 552,700 unique genes from 202 complete human gut bacteria genomes. Then, a novel gene counting model was built to check the total number of genes by combining culture-independent sequence data and those complete genomes. 16S rRNAs were used to construct a three-level tree and different counting methods were introduced for the three levels: strain-to-species, species-to-genus, and genus-and-up. The model estimates that the total number of genes is about 9,000,000 after those with identity percentage of 97% or up were merged. By combining completed genomes currently available and culture-independent sequencing data, we built a model to estimate the number of genes in human gut bacterial community. The total number of genes is estimated to be about 9 million. Although this number is huge, we believe it is underestimated. This is an initial step to tackle this gene counting problem for the human super-organism. It will still be an open problem in the near future. The list of genomes used in this paper can be found in the supplementary table.

  17. Developmental expression of “germline”- and “sex determination”-related genes in the ctenophore Mnemiopsis leidyi

    Directory of Open Access Journals (Sweden)

    Adam M. Reitzel

    2016-08-01

    Full Text Available Abstract Background An essential developmental pathway in sexually reproducing animals is the specification of germ cells and the differentiation of mature gametes, sperm and oocytes. The “germline” genes vasa, nanos and piwi are commonly identified in primordial germ cells, suggesting a molecular signature for the germline throughout animals. However, these genes are also expressed in a diverse set of somatic stem cells throughout the animal kingdom leaving open significant questions for whether they are required for germline specification. Similarly, members of the Dmrt gene family are essential components regulating sex determination and differentiation in bilaterian animals, but the functions of these transcription factors, including potential roles in sex determination, in early diverging animals remain unknown. The phylogenetic position of ctenophores and the genome sequence of the lobate Mnemiopsis leidyi motivated us to determine the compliment of these gene families in this species and determine expression patterns during development. Results Our phylogenetic analyses of the vasa, piwi and nanos gene families show that Mnemiopsis has multiple genes in each family with multiple lineage-specific paralogs. Expression domains of Mnemiopsis nanos, vasa and piwi, during embryogenesis from fertilization to the cydippid stage, were diverse, with little overlapping expression and no or little expression in what we think are the germ cells or gametogenic regions. piwi paralogs in Mnemiopsis had distinct expression domains in the ectoderm during development. We observed overlapping expression domains in the apical organ and tentacle apparatus of the cydippid for a subset of “germline genes,” which are areas of high cell proliferation, suggesting that these genes are involved with “stem cell” specification and maintenance. Similarly, the five Dmrt genes show diverse non-overlapping expression domains, with no clear evidence for

  18. Germline HVR-II mitochondrial polymorphisms associated with breast cancer in Tunisian women.

    Science.gov (United States)

    Yacoubi Loueslati, B; Troudi, W; Cherni, L; Rhomdhane, K B; Mota-Vieira, L

    2010-08-31

    A high incidence of somatic mtDNA polymorphisms has been reported in a wide variety of human cancers; some of them have been proposed as markers for the early detection of breast cancer. However, little attention has been paid to the potential of germline mitochondrial sequence variations as genetic risk factors for cancer. We performed a case-control study of 70 unrelated Tunisian women with breast cancer and 80 healthy age- and gender-matched blood donors, taking into account clinicopathological data, to evaluate germline polymorphism of mitochondrial HVR-II region as a genetic risk factor for breast cancer. Through direct sequencing, we detected 351 polymorphisms in controls and 248 variants in patients, with 47 and 39 segregating sites, respectively. In both groups, more than 50% of the polymorphisms were due to four variants: 315 ins C, 309 ins C, 263 A>G, and 73 A>G. The HVR-II sequences were also classified into haplotypes on the basis of the polymorphisms. Fifty-nine different haplotypes were found, 20 of them shared between patients and controls. Both groups had specific haplotypes, 18 in breast cancer patients and 21 in controls. Statistical analysis revealed a weak protective effect against breast cancer risk for two mitochondrial polymorphisms - 152 T>C (odds ratio (OR) = 0.33, 95% confidence interval (CI) = 0.12-0.91) and 263 A>G (OR = 0.17, 95%CI = 0.06-0.47). In contrast, an increased risk of breast cancer was detected for the 315+C haplotype (OR = 11.66, 95%CI = 1.44-252.23). We conclude that mitochondrial variants can affect breast cancer risk. More extensive studies, involving different types of cancer and patients with different genetic makeup, will be required to improve our understanding of the effects of germline mtDNA polymorphisms on carcinogenesis.

  19. LINE FUSION GENES: a database of LINE expression in human genes

    Directory of Open Access Journals (Sweden)

    Park Hong-Seog

    2006-06-01

    Full Text Available Abstract Background Long Interspersed Nuclear Elements (LINEs are the most abundant retrotransposons in humans. About 79% of human genes are estimated to contain at least one segment of LINE per transcription unit. Recent studies have shown that LINE elements can affect protein sequences, splicing patterns and expression of human genes. Description We have developed a database, LINE FUSION GENES, for elucidating LINE expression throughout the human gene database. We searched the 28,171 genes listed in the NCBI database for LINE elements and analyzed their structures and expression patterns. The results show that the mRNA sequences of 1,329 genes were affected by LINE expression. The LINE expression types were classified on the basis of LINEs in the 5' UTR, exon or 3' UTR sequences of the mRNAs. Our database provides further information, such as the tissue distribution and chromosomal location of the genes, and the domain structure that is changed by LINE integration. We have linked all the accession numbers to the NCBI data bank to provide mRNA sequences for subsequent users. Conclusion We believe that our work will interest genome scientists and might help them to gain insight into the implications of LINE expression for human evolution and disease. Availability http://www.primate.or.kr/line

  20. Cancer-germline antigen vaccines and epigenetic enhancers

    DEFF Research Database (Denmark)

    Gjerstorff, Morten Frier; Burns, Jorge; Ditzel, Henrik Jorn

    2010-01-01

    IMPORTANCE OF THE FIELD: Immunotherapy holds great potential for disseminated cancer, and cancer-germline (CG) antigens are among the most promising tumor targets. They are widely expressed in different cancer types and are essentially tumor-specific, since their expression in normal tissues is l...

  1. The generation and utilization of a cancer-oriented representation of the human transcriptome by using expressed sequence tags

    DEFF Research Database (Denmark)

    Brentani, Helena; Caballero, Otávia L; Camargo, Anamaria A

    2003-01-01

    expressed sequence tags (ESTs) from human tumors and their corresponding normal tissues in the public databases. The data currently define approximately 23,500 genes, of which only approximately 1,250 are still represented only by ESTs. Examination of the EST coverage of known cancer-related (CR) genes...... reveals that ESTs, indicating that the representation of genes associated with commonly studied tumors is high. The careful recording of the origin of all ESTs we have produced has enabled detailed definition of where the genes they represent are expressed in the human body....... More than 100,000 ESTs are available for seven tissues, indicating a surprising variability of gene usage that has led to the discovery of a significant number of genes with restricted expression, and that may thus be therapeutically useful. The ESTs also reveal novel nonsynonymous germline variants...

  2. Doxycyclin ameliorates a starvation-induced germline tumor in C. elegans daf-18/PTEN mutant background.

    Science.gov (United States)

    Wolf, Tim; Qi, Wenjing; Schindler, Verena; Runkel, Eva Diana; Baumeister, Ralf

    2014-08-01

    Managing available resources is a key necessity of each organism to cope with the environment. The nematode C. elegans responds to nutritional deprivation or harsh environmental conditions with a multitude of developmental adaptations, among them a starvation-induced quiescence at early larval development (L1). daf-18, the C. elegans homolog of the human tumor suppressor gene PTEN, is essential for the maintenance of survival and germline stem cell arrest during the L1 diapause. We show here that daf-18 mutants, independently to their failure to maintain G2 arrest of the primordial germ cells, develop a gonad phenotype after refeeding. This highly penetrant gonadal phenotype is further enhanced by a mutation in shc-1, encoding a protein homologous to the human adaptor ShcA. Features of this phenotype are a tumor-like phenotype encompassing hyper-proliferation of germ cell nuclei and disruption/invasion of the basement membrane surrounding the gonad. The penetrance of this phenotype is reduced by decreasing starvation temperature. In addition, it is also ameliorated in a dose-dependent way by exposure to the antibiotic doxycyclin either during starvation or during subsequent refeeding. Since, in eukaryotic cells, doxycyclin specifically blocks mitochondrial translation, our results suggest that daf-18 and shc-1;daf-18 mutants fail to adapt mitochondrial activity to reduced nutritional availability during early larval developing. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. CSR-1 and P granules suppress sperm-specific transcription in the C. elegans germline.

    Science.gov (United States)

    Campbell, Anne C; Updike, Dustin L

    2015-05-15

    Germ granules (P granules) in C. elegans are required for fertility and function to maintain germ cell identity and pluripotency. Sterility in the absence of P granules is often accompanied by the misexpression of soma-specific proteins and the initiation of somatic differentiation in germ cells. To investigate whether this is caused by the accumulation of somatic transcripts, we performed mRNA-seq on dissected germlines with and without P granules. Strikingly, we found that somatic transcripts do not increase in the young adult germline when P granules are impaired. Instead, we found that impairing P granules causes sperm-specific mRNAs to become highly overexpressed. This includes the accumulation of major sperm protein (MSP) transcripts in germ cells, a phenotype that is suppressed by feminization of the germline. A core component of P granules, the endo-siRNA-binding Argonaute protein CSR-1, has recently been ascribed with the ability to license transcripts for germline expression. However, impairing CSR-1 has very little effect on the accumulation of its mRNA targets. Instead, we found that CSR-1 functions with P granules to prevent MSP and sperm-specific mRNAs from being transcribed in the hermaphrodite germline. These findings suggest that P granules protect germline integrity through two different mechanisms, by (1) preventing the inappropriate expression of somatic proteins at the level of translational regulation, and by (2) functioning with CSR-1 to limit the domain of sperm-specific expression at the level of transcription. © 2015. Published by The Company of Biologists Ltd.

  4. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells.

    Science.gov (United States)

    Braydich-Stolle, Laura; Hussain, Saber; Schlager, John J; Hofmann, Marie-Claude

    2005-12-01

    Gametogenesis is a complex biological process that is particularly sensitive to environmental insults such as chemicals. Many chemicals have a negative impact on the germline, either by directly affecting the germ cells, or indirectly through their action on the somatic nursing cells. Ultimately, these effects can inhibit fertility, and they may have negative consequences for the development of the offspring. Recently, nanomaterials such as nanotubes, nanowires, fullerene derivatives (buckyballs), and quantum dots have received enormous national attention in the creation of new types of analytical tools for biotechnology and the life sciences. Despite the wide application of nanomaterials, there is a serious lack of information concerning their impact on human health and the environment. Thus, there are limited studies available on toxicity of nanoparticles for risk assessment of nanomaterials. The purpose of this study was to assess the suitability of a mouse spermatogonial stem cell line as a model to assess nanotoxicity in the male germline in vitro. The effects of different types of nanoparticles on these cells were evaluated by light microscopy, and by cell proliferation and standard cytotoxicity assays. Our results demonstrate a concentration-dependent toxicity for all types of particles tested, whereas the corresponding soluble salts had no significant effect. Silver nanoparticles were the most toxic while molybdenum trioxide (MoO(3)) nanoparticles were the least toxic. Our results suggest that this cell line provides a valuable model with which to assess the cytotoxicity of nanoparticles in the germ line in vitro.

  5. Sequencing analysis of SLX4/FANCP gene in Italian familial breast cancer cases.

    Directory of Open Access Journals (Sweden)

    Irene Catucci

    Full Text Available Breast cancer can be caused by germline mutations in several genes that are responsible for different hereditary cancer syndromes. Some of the genes causing the Fanconi anemia (FA syndrome, such as BRCA2, BRIP1, PALB2, and RAD51C, are associated with high or moderate risk of developing breast cancer. Very recently, SLX4 has been established as a new FA gene raising the question of its implication in breast cancer risk. This study aimed at answering this question sequencing the entire coding region of SLX4 in 526 familial breast cancer cases from Italy. We found 81 different germline variants and none of these were clearly pathogenic. The statistical power of our sample size allows concluding that in Italy the frequency of carriers of truncating mutations of SLX4 may not exceed 0.6%. Our results indicate that testing for SLX4 germline mutations is unlikely to be relevant for the identification of individuals at risk of breast cancer, at least in the Italian population.

  6. Pathological assessment of mismatch repair gene variants in Lynch syndrome

    DEFF Research Database (Denmark)

    Rasmussen, Lene Juel; Heinen, Christopher D; Royer-Pokora, Brigitte

    2012-01-01

    Lynch syndrome (LS) is caused by germline mutations in DNA mismatch repair (MMR) genes and is the most prevalent hereditary colorectal cancer syndrome. A significant proportion of variants identified in MMR and other common cancer susceptibility genes are missense or noncoding changes whose...

  7. APC gene mutations and extraintestinal phenotype of familial adenomatous polyposis

    NARCIS (Netherlands)

    Giardiello, F. M.; Petersen, G. M.; Piantadosi, S.; Gruber, S. B.; Traboulsi, E. I.; Offerhaus, G. J.; Muro, K.; Krush, A. J.; Booker, S. V.; Luce, M. C.; Laken, S. J.; Kinzler, K. W.; Vogelstein, B.; Hamilton, S. R.

    1997-01-01

    Familial adenomatous polyposis (FAP) is caused by germline mutation of the adenomatous polyposis coli (APC) gene on chromosome 5q. This study assessed genotype-phenotype correlations for extraintestinal lesions in FAP. Mutations of the APC gene were compared with the occurrence of seven

  8. Ancient genes establish stress-induced mutation as a hallmark of cancer.

    Science.gov (United States)

    Cisneros, Luis; Bussey, Kimberly J; Orr, Adam J; Miočević, Milica; Lineweaver, Charles H; Davies, Paul

    2017-01-01

    Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after the emergence of multicellularity. This leads to two related, but distinct hypotheses: 1) Somatic mutations in cancer will occur in genes that are younger than the emergence of multicellularity (1000 million years [MY]); and 2) genes that are frequently mutated in cancer and whose mutations are functionally important for the emergence of the cancer phenotype evolved within the past 1000 million years, and thus would exhibit an age distribution that is skewed to younger genes. In order to investigate these hypotheses we estimated the evolutionary ages of all human genes and then studied the probability of mutation and their biological function in relation to their age and genomic location for both normal germline and cancer contexts. We observed that under a model of uniform random mutation across the genome, controlled for gene size, genes less than 500 MY were more frequently mutated in both cases. Paradoxically, causal genes, defined in the COSMIC Cancer Gene Census, were depleted in this age group. When we used functional enrichment analysis to explain this unexpected result we discovered that COSMIC genes with recessive disease phenotypes were enriched for DNA repair and cell cycle control. The non-mutated genes in these pathways are orthologous to those underlying stress-induced mutation in bacteria, which results in the clustering of single nucleotide variations. COSMIC genes were less common in regions where the probability of observing mutational clusters is high, although they are approximately 2-fold more likely to harbor mutational clusters compared to other human genes. Our results suggest this ancient mutational response to

  9. Widespread of horizontal gene transfer in the human genome.

    Science.gov (United States)

    Huang, Wenze; Tsai, Lillian; Li, Yulong; Hua, Nan; Sun, Chen; Wei, Chaochun

    2017-04-04

    A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. From the pair-wise alignments between human genome and 53 vertebrate genomes, 1,467 human genome regions (2.6 M bases) from all chromosomes were found to be more conserved with non-mammals than with most mammals. These human genome regions involve 642 known genes, which are enriched with ion binding. Compared to known horizontal gene transfer regions in the human genome, there were few overlapping regions, which indicated horizontal gene transfer is more common than we expected in the human genome. Horizontal gene transfer impacts hundreds of human genes and this study provided insight into potential mechanisms of HGT in the human genome.

  10. Role of key-regulator genes in melanoma susceptibility and pathogenesis among patients from South Italy

    International Nuclear Information System (INIS)

    Casula, Milena; Sini, MariaCristina; Palomba, Grazia; The Italian Melanoma Intergroup; Palmieri, Giuseppe; Muggiano, Antonio; Cossu, Antonio; Budroni, Mario; Caracò, Corrado; Ascierto, Paolo A; Pagani, Elena; Stanganelli, Ignazio; Canzanella, Sergio

    2009-01-01

    Several genetic alterations have been demonstrated to contribute to the development and progression of melanoma. In this study, we further investigated the impact of key-regulator genes in susceptibility and pathogenesis of such a disease. A large series (N = 846) of sporadic and familial cases originating from South Italy was screened for germline mutations in p16 CDKN2A , BRCA2, and MC1R genes by DHPLC analysis and automated DNA sequencing. Paired primary melanomas and lymph node metastases from same patients (N = 35) as well as melanoma cell lines (N = 18) were analyzed for somatic mutations in NRAS, BRAF, and p16 CDKN2A genes. For melanoma susceptibility, investigations at germline level indicated that p16 CDKN2A was exclusively mutated in 16/545 (2.9%) non-Sardinian patients, whereas BRCA2 germline mutations were observed in 4/91 (4.4%) patients from North Sardinia only. Two MC1R germline variants, Arg151Cys and Asp294His, were significantly associated with melanoma in Sardinia. Regarding genetic events involved in melanoma pathogenesis at somatic level, mutually-exclusive mutations of NRAS and BRAF genes were observed at quite same rate (about two thirds) in cultured and in vivo melanomas (either primary or metastatic lesions). Conversely, p16 CDKN2A gene alterations were observed at increased rates moving from primary to metastatic melanomas and melanoma cell lines. Activation of the ERK gene product was demonstrated to be consistently induced by a combination of molecular alterations (NRAS/BRAF mutations and p16 CDKN2A silencing). Our findings further clarified that: a) mutation prevalence in melanoma susceptibility genes may vary within each specific geographical area; b) multiple molecular events are accumulating during melanomagenesis

  11. Prevalence of deleterious germline variants in risk genes including BRCA1/2 in consecutive ovarian cancer patients (AGO-TR-1.

    Directory of Open Access Journals (Sweden)

    Philipp Harter

    Full Text Available Identification of families at risk for ovarian cancer offers the opportunity to consider prophylactic surgery thus reducing ovarian cancer mortality. So far, identification of potentially affected families in Germany was solely performed via family history and numbers of affected family members with breast or ovarian cancer. However, neither the prevalence of deleterious variants in BRCA1/2 in ovarian cancer in Germany nor the reliability of family history as trigger for genetic counselling has ever been evaluated.Prospective counseling and germline testing of consecutive patients with primary diagnosis or with platinum-sensitive relapse of an invasive epithelial ovarian cancer. Testing included 25 candidate and established risk genes. Among these 25 genes, 16 genes (ATM, BRCA1, BRCA2, CDH1, CHEK2, MLH1, MSH2, MSH6, NBN, PMS2, PTEN, PALB2, RAD51C, RAD51D, STK11, TP53 were defined as established cancer risk genes. A positive family history was defined as at least one relative with breast cancer or ovarian cancer or breast cancer in personal history.In total, we analyzed 523 patients: 281 patients with primary diagnosis of ovarian cancer and 242 patients with relapsed disease. Median age at primary diagnosis was 58 years (range 16-93 and 406 patients (77.6% had a high-grade serous ovarian cancer. In total, 27.9% of the patients showed at least one deleterious variant in all 25 investigated genes and 26.4% in the defined 16 risk genes. Deleterious variants were most prevalent in the BRCA1 (15.5%, BRCA2 (5.5%, RAD51C (2.5% and PALB2 (1.1% genes. The prevalence of deleterious variants did not differ significantly between patients at primary diagnosis and relapse. The prevalence of deleterious variants in BRCA1/2 (and in all 16 risk genes in patients <60 years was 30.2% (33.2% versus 10.6% (18.9% in patients ≥60 years. Family history was positive in 43% of all patients. Patients with a positive family history had a prevalence of deleterious variants

  12. Human gene therapy: novel approaches to improve the current gene delivery systems.

    Science.gov (United States)

    Cucchiarini, Magali

    2016-06-01

    Even though gene therapy made its way through the clinics to treat a number of human pathologies since the early years of experimental research and despite the recent approval of the first gene-based product (Glybera) in Europe, the safe and effective use of gene transfer vectors remains a challenge in human gene therapy due to the existence of barriers in the host organism. While work is under active investigation to improve the gene transfer systems themselves, the use of controlled release approaches may offer alternative, convenient tools of vector delivery to achieve a performant gene transfer in vivo while overcoming the various physiological barriers that preclude its wide use in patients. This article provides an overview of the most significant contributions showing how the principles of controlled release strategies may be adapted for human gene therapy.

  13. Universal screening for Lynch syndrome in endometrial cancers: frequency of germline mutations and identification of patients with Lynch-like syndrome.

    Science.gov (United States)

    Dillon, Jessica L; Gonzalez, Jorge L; DeMars, Leslie; Bloch, Katarzyna J; Tafe, Laura J

    2017-12-01

    Lynch syndrome (LS) is an inherited clinical syndrome characterized by a high risk of colorectal, endometrial (lifetime risk of up to 60%), ovarian, and urinary tract cancers. The diagnosis is confirmed by identification of germline mutations in the DNA mismatch repair genes MLH1, PMS2, MSH2, MSH6, or EPCAM. In 2015, our institution implemented universal screening of endometrial cancer (EC) hysterectomy specimens by mismatch repair immunohistochemistry (IHC) with reflex MLH1 promoter hypermethylation analysis for tumors with loss of MLH1/PMS2 expression. Patients with tumors negative for MLH1 methylation and those with a loss of the heterodimer pair MSH2 and MSH6, or isolated loss of either PMS2 or MSH6 were referred to the Familial Cancer Program for genetic counseling and consideration of germline testing. Between May 2015 to Dec 2016, 233 EC patients were screened by IHC for LS with a median age of 63 years. Sixty tumors (27%) had abnormal IHC staining results. Fifty-one (22%) harbored heterodimeric loss of MLH1 and PMS2, 49 of which showed MLH1 promoter methylation (1 failure, 1 negative). One showed loss of MLH1/PMS2 and MSH6, 2 showed loss of MSH2/MSH6, and 6 had isolated loss of MSH6 only. Ten patients underwent genetic counseling, and germline testing was performed in 8; LS was confirmed in 5 patients (2.1%). In addition, 3 patients with negative germline testing and presumed Lynch-like syndrome were identified and offered additional somatic testing. Universal screening for LS in EC patients has yielded positive results for identification of patients at risk for this inherited syndrome. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Germ-line CAG repeat instability causes extreme CAG repeat expansion with infantile-onset spinocerebellar ataxia type 2

    DEFF Research Database (Denmark)

    Vinther-Jensen, Tua; Ek, Jakob; Duno, Morten

    2013-01-01

    The spinocerebellar ataxias (SCA) are a genetically and clinically heterogeneous group of diseases, characterized by dominant inheritance, progressive cerebellar ataxia and diverse extracerebellar symptoms. A subgroup of the ataxias is caused by unstable CAG-repeat expansions in their respective ...... of paternal germ-line repeat sequence instability of the expanded SCA2 locus.European Journal of Human Genetics advance online publication, 10 October 2012; doi:10.1038/ejhg.2012.231....

  15. In-silico human genomics with GeneCards

    Directory of Open Access Journals (Sweden)

    Stelzer Gil

    2011-10-01

    Full Text Available Abstract Since 1998, the bioinformatics, systems biology, genomics and medical communities have enjoyed a synergistic relationship with the GeneCards database of human genes (http://www.genecards.org. This human gene compendium was created to help to introduce order into the increasing chaos of information flow. As a consequence of viewing details and deep links related to specific genes, users have often requested enhanced capabilities, such that, over time, GeneCards has blossomed into a suite of tools (including GeneDecks, GeneALaCart, GeneLoc, GeneNote and GeneAnnot for a variety of analyses of both single human genes and sets thereof. In this paper, we focus on inhouse and external research activities which have been enabled, enhanced, complemented and, in some cases, motivated by GeneCards. In turn, such interactions have often inspired and propelled improvements in GeneCards. We describe here the evolution and architecture of this project, including examples of synergistic applications in diverse areas such as synthetic lethality in cancer, the annotation of genetic variations in disease, omics integration in a systems biology approach to kidney disease, and bioinformatics tools.

  16. Differential impact of the HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Leonie M Kamminga

    Full Text Available RNA interference (RNAi-related pathways affect gene activity by sequence-specific recruitment of Ago proteins to mRNA target molecules. The sequence specificity of this process stems from small RNA (sRNA co-factors bound by the Ago protein. Stability of sRNA molecules in some pathways is in part regulated by Hen1-mediated methylation of their 3' ends. Here we describe the effects of the Caenorhabditis elegans HEN1 RNA-methyl-transferase homolog, HENN-1, on the different RNAi pathways in this nematode. We reveal differential effects of HENN-1 on the two pathways that are known to employ methylated sRNA molecules: the 26G and 21U pathways. Surprisingly, in the germline, stability of 21U RNAs, the C. elegans piRNAs, is only mildly affected by loss of methylation; and introduction of artificial 21U target RNA does not further destabilize non-methylated 21U RNAs. In contrast, most 26G RNAs display reduced stability and respond to loss of HENN-1 by displaying increased 3'-uridylation frequencies. Within the 26G RNA class, we find that specifically ERGO-1-bound 26G RNAs are modified by HENN-1, while ALG-3/ALG-4-bound 26G RNAs are not. Global gene expression analysis of henn-1 mutants reveals mild effects, including down-regulation of many germline-expressed genes. Our data suggest that, apart from direct effects of reduced 26G RNA levels of henn-1 on gene expression, most effects on global gene expression are indirect. These studies further refine our understanding of endogenous RNAi in C. elegans and the roles for Hen1 like enzymes in these pathways.

  17. Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Vipin Narang

    Full Text Available Human gene regulatory networks (GRN can be difficult to interpret due to a tangle of edges interconnecting thousands of genes. We constructed a general human GRN from extensive transcription factor and microRNA target data obtained from public databases. In a subnetwork of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells, we benchmarked automated algorithms for identifying core regulatory genes (transcription factors and microRNAs. Among these algorithms, we identified K-core decomposition, pagerank and betweenness centrality algorithms as the most effective for discovering core regulatory genes in the network evaluated based on previously known roles of these genes in MCF-7 biology as well as in their ability to explain the up or down expression status of up to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organizing the GRN in an easier to interpret layered hierarchy where more influential regulatory genes percolate towards the inner layers. The integrated human gene and miRNA network and software used in this study are provided as supplementary materials (S1 Data accompanying this manuscript.

  18. Germline genetic variants in the Wnt/beta-catenin pathway as predictors of colorectal cancer risk

    Science.gov (United States)

    Hildebrandt, Michelle A.T.; Reyes, Monica E.; Lin, Moubin; He, Yonggang; Nguyen, Son V.; Hawk, Ernest T.; Wu, Xifeng

    2016-01-01

    Background The Wnt/beta-catenin signaling pathway plays a key role in stem cell maintenance in the colorectum. Rare high penetrance genetic mutations in components of this pathway result in familial colorectal cancer, yet the impact of common, germline variants remains unknown. Methods We assessed 172 variants in 26 genes from the Wnt/beta-catenin pathway in 809 CRC cases and 814 healthy controls, followed by replication of the top findings in another 691 cases and 775 controls. In silico informatic tools were used to predict functional effects of variants. Results Eighteen SNPs in the pathway were significantly associated with CRC risk (P <0.05) in the discovery phase. We observed a significant dose-response increase in CRC risk by number of risk genotypes carried (P = 4.19 × 10−8). Gene-based analysis implicated CSNK1D (P = 0.014), FZD3 (P = 0.023), and APC (P = 0.027) as significant for CRC risk. In the replication phase, FZD3:rs11775139 remained significantly associated with reduced risk with a pooled OR of 0.85 (95% CI: 0.76–0.94, P = 0.001). Although borderline significant in the replication population, APC:rs2545162 was highly significant in the pooled analysis - OR: 1.42, 95% CI: 1.16–1.74, P =0.00085. Functional assessment identified several potential biological mechanisms underlying these associations. Conclusions Our findings suggest that common germline variants in the Wnt/beta-catenin pathway maybe involved in CRC development. Impact These variants may be informative in CRC risk assessment to identify individuals at increased risk who would be candidates for screening. PMID:26809274

  19. Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4.

    Science.gov (United States)

    Guven-Ozkan, Tugba; Nishi, Yuichi; Robertson, Scott M; Lin, Rueyling

    2008-10-03

    In C. elegans, four asymmetric divisions, beginning with the zygote (P0), generate transcriptionally repressed germline blastomeres (P1-P4) and somatic sisters that become transcriptionally active. The protein PIE-1 represses transcription in the later germline blastomeres but not in the earlier germline blastomeres P0 and P1. We show here that OMA-1 and OMA-2, previously shown to regulate oocyte maturation, repress transcription in P0 and P1 by binding to and sequestering in the cytoplasm TAF-4, a component critical for assembly of TFIID and the pol II preinitiation complex. OMA-1/2 binding to TAF-4 is developmentally regulated, requiring phosphorylation by the DYRK kinase MBK-2, which is activated at meiosis II after fertilization. OMA-1/2 are normally degraded after the first mitosis, but ectopic expression of wild-type OMA-1 is sufficient to repress transcription in both somatic and later germline blastomeres. We propose that phosphorylation by MBK-2 serves as a developmental switch, converting OMA-1/2 from oocyte to embryo regulators.

  20. Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans

    Science.gov (United States)

    Kramer, Maxwell; Rao, Prashant; Ercan, Sevinc

    2016-01-01

    Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal’s sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function. PMID:27356611

  1. Infrequent detection of germline allele-specific expression of TGFBR1 in lymphoblasts and tissues of colon cancer patients.

    LENUS (Irish Health Repository)

    Guda, Kishore

    2009-06-15

    Recently, germline allele-specific expression (ASE) of the gene encoding for transforming growth factor-beta type I receptor (TGFBR1) has been proposed to be a major risk factor for cancer predisposition in the colon. Germline ASE results in a lowered expression of one of the TGFBR1 alleles (>1.5-fold), and was shown to occur in approximately 20% of informative familial and sporadic colorectal cancer (CRC) cases. In the present study, using the highly quantitative pyrosequencing technique, we estimated the frequency of ASE in TGFBR1 in a cohort of affected individuals from familial clusters of advanced colon neoplasias (cancers and adenomas with high-grade dysplasia), and also from a cohort of individuals with sporadic CRCs. Cases were considered positive for the presence of ASE if demonstrating an allelic expression ratio <0.67 or >1.5. Using RNA derived from lymphoblastoid cell lines, we find that of 46 informative Caucasian advanced colon neoplasia cases with a family history, only 2 individuals display a modest ASE, with allelic ratios of 1.65 and 1.73, respectively. Given that ASE of TGFBR1, if present, would likely be more pronounced in the colon compared with other tissues, we additionally determined the allele ratios of TGFBR1 in the RNA derived from normal-appearing colonic mucosa of sporadic CRC cases. We, however, found no evidence of ASE in any of 44 informative sporadic cases analyzed. Taken together, we find that germline ASE of TGFBR1, as assayed in lymphoblastoid and colon epithelial cells of colon cancer patients, is a relatively rare event.

  2. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  3. Cloning human DNA repair genes

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Carr, A.M.; Lehmann, A.R.

    1994-01-01

    Many human genes involved in the repair of UV damage have been cloned using different procedures and they have been of great value in assisting the understanding of the mechanism of nucleotide excision-repair. Genes involved in repair of ionizing radiation damage have proved more difficult to isolate. Positional cloning has localized the XRCC5 gene to a small region of chromosome 2q33-35, and a series of yeast artificial chromosomes covering this region have been isolated. Very recent work has shown that the XRCC5 gene encodes the 80 kDa subunit of the Ku DNA-binding protein. The Ku80 gene also maps to this region. Studies with fission yeast have shown that radiation sensitivity can result not only from defective DNA repair but also from abnormal cell cycle control following DNA damage. Several genes involved in this 'check-point' control in fission yeast have been isolated and characterized in detail. It is likely that a similar checkpoint control mechanism exists in human cells. (author)

  4. Molecular and phenotypic abnormalities in individuals with germline heterozygous PTEN mutations and autism.

    Science.gov (United States)

    Frazier, T W; Embacher, R; Tilot, A K; Koenig, K; Mester, J; Eng, C

    2015-09-01

    PTEN is a tumor suppressor associated with an inherited cancer syndrome and an important regulator of ongoing neural connectivity and plasticity. The present study examined molecular and phenotypic characteristics of individuals with germline heterozygous PTEN mutations and autism spectrum disorder (ASD) (PTEN-ASD), with the aim of identifying pathophysiologic markers that specifically associate with PTEN-ASD and that may serve as targets for future treatment trials. PTEN-ASD patients (n=17) were compared with idiopathic (non-PTEN) ASD patients with (macro-ASD, n=16) and without macrocephaly (normo-ASD, n=38) and healthy controls (n=14). Group differences were evaluated for PTEN pathway protein expression levels, global and regional structural brain volumes and cortical thickness measures, neurocognition and adaptive behavior. RNA expression patterns and brain characteristics of a murine model of Pten mislocalization were used to further evaluate abnormalities observed in human PTEN-ASD patients. PTEN-ASD had a high proportion of missense mutations and showed reduced PTEN protein levels. Compared with the other groups, prominent white-matter and cognitive abnormalities were specifically associated with PTEN-ASD patients, with strong reductions in processing speed and working memory. White-matter abnormalities mediated the relationship between PTEN protein reductions and reduced cognitive ability. The Pten(m3m4) murine model had differential expression of genes related to myelination and increased corpus callosum. Processing speed and working memory deficits and white-matter abnormalities may serve as useful features that signal clinicians that PTEN is etiologic and prompting referral to genetic professionals for gene testing, genetic counseling and cancer risk management; and could reveal treatment targets in trials of treatments for PTEN-ASD.

  5. DNA segment containing C/sub β1/, a gene for the constant region of the β chain of the T-cell antigen receptor, was inserted into chromosome 6 in cells from one patients with human T-cell leukemia

    International Nuclear Information System (INIS)

    Ino, T.; Kurosawa, Y.; Yoshida, M.C.; Hirano, M.

    1987-01-01

    DNA rearrangements that occurred in the vicinity of T-cell antigen receptor β-chain gene clusters residing on chromosome 7 were examined in human T-cell acute lymphoblastic leukemia cells. In one patient, it was observed that, for the T-cell receptor β-chain genes, a D/sub β 1/-J/sub β2.3/ (where D is diversity and J is joining) junction was found on one chromosome, while the other chromosome kept the germ-line configuration. If this D/sub β/-J/sub β/ junction was formed by the customary deletion mechanism, the C/sub β1/ gene (where C is constant) located between the D/sub β1/ and J/sub Β2.3/ loci should have disappeared from this chromosome. The C/sub β1/ gene indeed was absent from the rearranged chromosome 7, but it was found on chromosome 6 as an inserted segment. The implications of the observations are discussed

  6. Germline Hypermethylation of MLH1 and EPCAM Deletions Are a Frequent Cause of Lynch Syndrome

    NARCIS (Netherlands)

    Niessen, Renee C.; Hofstra, Robert M. W.; Westers, Helga; Ligtenberg, Marjolijn J. L.; Kooi, Krista; Jager, Paul O. J.; de Groote, Marloes L.; Dijkhuizen, Trijnie; Olderode-Berends, Maran J. W.; Hollema, Harry; Kleibeuker, Jan H.; Sijmons, Rolf H.

    It was shown that Lynch syndrome can be caused by germline hypermethylation of the MLH1 and MSH2 promoters. Furthermore, it has been demonstrated very recently that germline deletions of the 3' region of EPCAM cause transcriptional read-through which results in silencing of MSH2 by hypermethylation.

  7. Germline hypermethylation of MLH1 and EPCAM deletions are a frequent cause of Lynch syndrome.

    NARCIS (Netherlands)

    Niessen, R.C.; Hofstra, R.M.; Westers, H.; Ligtenberg, M.J.L.; Kooi, K.; Jager, P.O.; Groote, M.L. de; Dijkhuizen, T.; Olderode-Berends, M.J.; Hollema, H.; Kleibeuker, J.H.; Sijmons, R.H.

    2009-01-01

    It was shown that Lynch syndrome can be caused by germline hypermethylation of the MLH1 and MSH2 promoters. Furthermore, it has been demonstrated very recently that germline deletions of the 3' region of EPCAM cause transcriptional read-through which results in silencing of MSH2 by hypermethylation.

  8. Human reporter genes: potential use in clinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Serganova, Inna [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Ponomarev, Vladimir [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Blasberg, Ronald [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States)], E-mail: blasberg@neuro1.mskcc.org

    2007-10-15

    The clinical application of positron-emission-tomography-based reporter gene imaging will expand over the next several years. The translation of reporter gene imaging technology into clinical applications is the focus of this review, with emphasis on the development and use of human reporter genes. Human reporter genes will play an increasingly more important role in this development, and it is likely that one or more reporter systems (human gene and complimentary radiopharmaceutical) will take leading roles. Three classes of human reporter genes are discussed and compared: receptors, transporters and enzymes. Examples of highly expressed cell membrane receptors include specific membrane somatostatin receptors (hSSTrs). The transporter group includes the sodium iodide symporter (hNIS) and the norepinephrine transporter (hNET). The endogenous enzyme classification includes human mitochondrial thymidine kinase 2 (hTK2). In addition, we also discuss the nonhuman dopamine 2 receptor and two viral reporter genes, the wild-type herpes simplex virus 1 thymidine kinase (HSV1-tk) gene and the HSV1-tk mutant (HSV1-sr39tk). Initial applications of reporter gene imaging in patients will be developed within two different clinical disciplines: (a) gene therapy and (b) adoptive cell-based therapies. These studies will benefit from the availability of efficient human reporter systems that can provide critical monitoring information for adenoviral-based, retroviral-based and lenteviral-based gene therapies, oncolytic bacterial and viral therapies, and adoptive cell-based therapies. Translational applications of noninvasive in vivo reporter gene imaging are likely to include: (a) quantitative monitoring of gene therapy vectors for targeting and transduction efficacy in clinical protocols by imaging the location, extent and duration of transgene expression; (b) monitoring of cell trafficking, targeting, replication and activation in adoptive T-cell and stem/progenitor cell therapies

  9. Human reporter genes: potential use in clinical studies

    International Nuclear Information System (INIS)

    Serganova, Inna; Ponomarev, Vladimir; Blasberg, Ronald

    2007-01-01

    The clinical application of positron-emission-tomography-based reporter gene imaging will expand over the next several years. The translation of reporter gene imaging technology into clinical applications is the focus of this review, with emphasis on the development and use of human reporter genes. Human reporter genes will play an increasingly more important role in this development, and it is likely that one or more reporter systems (human gene and complimentary radiopharmaceutical) will take leading roles. Three classes of human reporter genes are discussed and compared: receptors, transporters and enzymes. Examples of highly expressed cell membrane receptors include specific membrane somatostatin receptors (hSSTrs). The transporter group includes the sodium iodide symporter (hNIS) and the norepinephrine transporter (hNET). The endogenous enzyme classification includes human mitochondrial thymidine kinase 2 (hTK2). In addition, we also discuss the nonhuman dopamine 2 receptor and two viral reporter genes, the wild-type herpes simplex virus 1 thymidine kinase (HSV1-tk) gene and the HSV1-tk mutant (HSV1-sr39tk). Initial applications of reporter gene imaging in patients will be developed within two different clinical disciplines: (a) gene therapy and (b) adoptive cell-based therapies. These studies will benefit from the availability of efficient human reporter systems that can provide critical monitoring information for adenoviral-based, retroviral-based and lenteviral-based gene therapies, oncolytic bacterial and viral therapies, and adoptive cell-based therapies. Translational applications of noninvasive in vivo reporter gene imaging are likely to include: (a) quantitative monitoring of gene therapy vectors for targeting and transduction efficacy in clinical protocols by imaging the location, extent and duration of transgene expression; (b) monitoring of cell trafficking, targeting, replication and activation in adoptive T-cell and stem/progenitor cell therapies

  10. Germline variant FGFR4  p.G388R exposes a membrane-proximal STAT3 binding site.

    Science.gov (United States)

    Ulaganathan, Vijay K; Sperl, Bianca; Rapp, Ulf R; Ullrich, Axel

    2015-12-24

    Variant rs351855-G/A is a commonly occurring single-nucleotide polymorphism of coding regions in exon 9 of the fibroblast growth factor receptor FGFR4 (CD334) gene (c.1162G>A). It results in an amino-acid change at codon 388 from glycine to arginine (p.Gly388Arg) in the transmembrane domain of the receptor. Despite compelling genetic evidence for the association of this common variant with cancers of the bone, breast, colon, prostate, skin, lung, head and neck, as well as soft-tissue sarcomas and non-Hodgkin lymphoma, the underlying biological mechanism has remained elusive. Here we show that substitution of the conserved glycine 388 residue to a charged arginine residue alters the transmembrane spanning segment and exposes a membrane-proximal cytoplasmic signal transducer and activator of transcription 3 (STAT3) binding site Y(390)-(P)XXQ(393). We demonstrate that such membrane-proximal STAT3 binding motifs in the germline of type I membrane receptors enhance STAT3 tyrosine phosphorylation by recruiting STAT3 proteins to the inner cell membrane. Remarkably, such germline variants frequently co-localize with somatic mutations in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Using Fgfr4 single nucleotide polymorphism knock-in mice and transgenic mouse models for breast and lung cancers, we validate the enhanced STAT3 signalling induced by the FGFR4 Arg388-variant in vivo. Thus, our findings elucidate the molecular mechanism behind the genetic association of rs351855 with accelerated cancer progression and suggest that germline variants of cell-surface molecules that recruit STAT3 to the inner cell membrane are a significant risk for cancer prognosis and disease progression.

  11. Impact of functional germline variants and a deletion polymorphism in APOBEC3A and APOBEC3B on breast cancer risk and survival in a Swedish study population.

    Science.gov (United States)

    Göhler, Stella; Da Silva Filho, Miguel Inacio; Johansson, Robert; Enquist-Olsson, Kerstin; Henriksson, Roger; Hemminki, Kari; Lenner, Per; Försti, Asta

    2016-01-01

    The C → T mutation signature caused by APOBEC family members contributes to the development of breast cancer (BC). Also overexpression of APOBEC3B and a ~29.5-kb deletion polymorphism between APOBEC3A and APOBEC3B have been associated with increased BC risk. We investigated in a population-based study, with 782 Swedish BC cases and 1559 controls, associations between potentially functional germline variants in APOBEC3A or APOBEC3B gene and BC risk and survival. Additionally, we identified deletion polymorphism carriers and explored possible associations with BC. No evidence of association between any germline variant, including the deletion polymorphism, and BC risk or survival was observed. Only APOBEC3A promoter polymorphism rs5757402 was associated with low stage (OR = 0.69, 95 % CI 0.50-0.96, dominant model). The reported association between the deletion polymorphism and BC risk was not confirmed in the Swedish population, nor did any genotyped germline variant show any association with BC risk or survival.

  12. Good genes, complementary genes and human mate preferences.

    Science.gov (United States)

    Roberts, S Craig; Little, Anthony C

    2008-09-01

    The past decade has witnessed a rapidly growing interest in the biological basis of human mate choice. Here we review recent studies that demonstrate preferences for traits which might reveal genetic quality to prospective mates, with potential but still largely unknown influence on offspring fitness. These include studies assessing visual, olfactory and auditory preferences for potential good-gene indicator traits, such as dominance or bilateral symmetry. Individual differences in these robust preferences mainly arise through within and between individual variation in condition and reproductive status. Another set of studies have revealed preferences for traits indicating complementary genes, focussing on discrimination of dissimilarity at genes in the major histocompatibility complex (MHC). As in animal studies, we are only just beginning to understand how preferences for specific traits vary and inter-relate, how consideration of good and compatible genes can lead to substantial variability in individual mate choice decisions and how preferences expressed in one sensory modality may reflect those in another. Humans may be an ideal model species in which to explore these interesting complexities.

  13. Assignment of adenosine deaminase complexing protein (ADCP) gene(s) to human chromosome 2 in rodent-human somatic cell hybrids.

    Science.gov (United States)

    Herbschleb-Voogt, E; Grzeschik, K H; Pearson, P L; Meera Khan, P

    1981-01-01

    The experiments reported in this paper indicate that the expression of human adenosine deaminase complexing protein (ADCP) in the human-rodent somatic cell hybrids is influenced by the state of confluency of the cells and the background rodent genome. Thus, the complement of the L-cell derived A9 or B82 mouse parent apparently prevents the expression of human ADCP in the interspecific somatic cell hybrids. In the a3, E36, or RAG hybrids the human ADCP expression was not prevented by the rodent genome and was found to be proportional to the degree of confluency of the cell in the culture as in the case of primary human fibroblasts. An analysis of human chromosomes, chromosome specific enzyme markers, and ADCP in a panel of rodent-human somatic cell hybrids optimally maintained and harvested at full confluency has shown that the expression of human ADCP in the mouse (RAG)-human as well as in the hamster (E36 or a3)-human hybrids is determined by a gene(s) in human chromosome 2 and that neither chromosome 6 nor any other of the chromosomes of man carry any gene(s) involved in the formation of human ADCP at least in the Chinese hamster-human hybrids. A series of rodent-human hybrid clones exhibiting a mitotic separation of IDH1 and MDH1 indicated that ADCP is most probably situated between corresponding loci in human chromosome 2.

  14. Synchronous lung tumours in a patient with metachronous colorectal carcinoma and a germline MSH2 mutation.

    LENUS (Irish Health Repository)

    Canney, A

    2012-02-01

    Mutations of DNA mismatch repair genes are characterised by microsatellite instability and are implicated in carcinogenesis. This mutation susceptible phenotype has been extensively studied in patients with hereditary non-polyposis colon carcinoma, but little is known of the contribution of such mutations in other tumour types, particularly non-small-cell lung carcinoma. This report describes the occurrence of two synchronous lung tumours, one mimicking a metastatic colon carcinoma, in a male patient with a history of metachronous colonic carcinoma. Immunohistochemistry supported a pulmonary origin for both lesions. Mismatch repair protein immunohistochemistry showed loss of MSH2 and MSH6 expression in both colonic tumours and in one lung tumour showing enteric differentiation. Subsequent mutational analysis demonstrated a deleterious germline mutation of the MSH2 mismatch repair gene. The significance of these findings and the practical diagnostic difficulties encountered in this case are discussed.

  15. Intraovarian Transplantation of Female Germline Stem Cells Rescue Ovarian Function in Chemotherapy-Injured Ovaries.

    Directory of Open Access Journals (Sweden)

    Jiaqiang Xiong

    Full Text Available Early menopause and infertility often occur in female cancer patients after chemotherapy (CTx. For these patients, oocyte/embryo cryopreservation or ovarian tissue cryopreservation is the current modality for fertility preservation. However, the above methods are limited in the long-term protection of ovarian function, especially for fertility preservation (very few females with cancer have achieved pregnancy with cryopreserved ovarian tissue or eggs until now. In addition, the above methods are subject to their scope (females with no husband or prepubertal females with no mature oocytes. Thus, many females who suffer from cancers would not adopt the above methods pre- and post-CTx due to their uncertainty, safety and cost-effectiveness. Therefore, millions of women have achieved long-term survival after thorough CTx treatment and have desired to rescue their ovarian function and fertility with economic, durable and reliable methods. Recently, some studies showed that mice with infertility caused by CTx can produce normal offspring through intraovarian injection of exogenous female germline stem cells (FGSCs. Though exogenous FGSC can be derived from mice without immune rejection in the same strain, it is difficult to obtain human female germline stem cells (hFGSCs, and immune rejection could occur between different individuals. In this study, infertility in mice was caused by CTx, and the ability of FGSCs to restore ovarian function or even produce offspring was assessed. We had successfully isolated and purified the FGSCs from adult female mice two weeks after CTx. After infection with GFP-carrying virus, the FGSCs were transplanted into ovaries of mice with infertility caused by CTx. Finally, ovarian function was restored and the recipients produced offspring long-term. These findings showed that mice with CTx possessed FGSCs, restoring ovarian function and avoiding immune rejection from exogenous germline stem cells.

  16. Intraovarian Transplantation of Female Germline Stem Cells Rescue Ovarian Function in Chemotherapy-Injured Ovaries.

    Science.gov (United States)

    Xiong, Jiaqiang; Lu, Zhiyong; Wu, Meng; Zhang, Jinjin; Cheng, Jing; Luo, Aiyue; Shen, Wei; Fang, Li; Zhou, Su; Wang, Shixuan

    2015-01-01

    Early menopause and infertility often occur in female cancer patients after chemotherapy (CTx). For these patients, oocyte/embryo cryopreservation or ovarian tissue cryopreservation is the current modality for fertility preservation. However, the above methods are limited in the long-term protection of ovarian function, especially for fertility preservation (very few females with cancer have achieved pregnancy with cryopreserved ovarian tissue or eggs until now). In addition, the above methods are subject to their scope (females with no husband or prepubertal females with no mature oocytes). Thus, many females who suffer from cancers would not adopt the above methods pre- and post-CTx due to their uncertainty, safety and cost-effectiveness. Therefore, millions of women have achieved long-term survival after thorough CTx treatment and have desired to rescue their ovarian function and fertility with economic, durable and reliable methods. Recently, some studies showed that mice with infertility caused by CTx can produce normal offspring through intraovarian injection of exogenous female germline stem cells (FGSCs). Though exogenous FGSC can be derived from mice without immune rejection in the same strain, it is difficult to obtain human female germline stem cells (hFGSCs), and immune rejection could occur between different individuals. In this study, infertility in mice was caused by CTx, and the ability of FGSCs to restore ovarian function or even produce offspring was assessed. We had successfully isolated and purified the FGSCs from adult female mice two weeks after CTx. After infection with GFP-carrying virus, the FGSCs were transplanted into ovaries of mice with infertility caused by CTx. Finally, ovarian function was restored and the recipients produced offspring long-term. These findings showed that mice with CTx possessed FGSCs, restoring ovarian function and avoiding immune rejection from exogenous germline stem cells.

  17. Different level of population differentiation among human genes.

    Science.gov (United States)

    Wu, Dong-Dong; Zhang, Ya-Ping

    2011-01-14

    During the colonization of the world, after dispersal out of African, modern humans encountered changeable environments and substantial phenotypic variations that involve diverse behaviors, lifestyles and cultures, were generated among the different modern human populations. Here, we study the level of population differentiation among different populations of human genes. Intriguingly, genes involved in osteoblast development were identified as being enriched with higher FST SNPs, a result consistent with the proposed role of the skeletal system in accounting for variation among human populations. Genes involved in the development of hair follicles, where hair is produced, were also found to have higher levels of population differentiation, consistent with hair morphology being a distinctive trait among human populations. Other genes that showed higher levels of population differentiation include those involved in pigmentation, spermatid, nervous system and organ development, and some metabolic pathways, but few involved with the immune system. Disease-related genes demonstrate excessive SNPs with lower levels of population differentiation, probably due to purifying selection. Surprisingly, we find that Mendelian-disease genes appear to have a significant excessive of SNPs with high levels of population differentiation, possibly because the incidence and susceptibility of these diseases show differences among populations. As expected, microRNA regulated genes show lower levels of population differentiation due to purifying selection. Our analysis demonstrates different level of population differentiation among human populations for different gene groups.

  18. Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE

    Science.gov (United States)

    Wang, Xin; Zhao, Yongjun; Wong, Kim; Ehlers, Peter; Kohara, Yuji; Jones, Steven J; Marra, Marco A; Holt, Robert A; Moerman, Donald G; Hansen, Dave

    2009-01-01

    Background Germ cells must progress through elaborate developmental stages from an undifferentiated germ cell to a fully differentiated gamete. Some of these stages include exiting mitosis and entering meiosis, progressing through the various stages of meiotic prophase, adopting either a male (sperm) or female (oocyte) fate, and completing meiosis. Additionally, many of the factors needed to drive embryogenesis are synthesized in the germ line. To increase our understanding of the genes that might be necessary for the formation and function of the germ line, we have constructed a SAGE library from hand dissected C. elegans hermaphrodite gonads. Results We found that 4699 genes, roughly 21% of all known C. elegans genes, are expressed in the adult hermaphrodite germ line. Ribosomal genes are highly expressed in the germ line; roughly four fold above their expression levels in the soma. We further found that 1063 of the germline-expressed genes have enriched expression in the germ line as compared to the soma. A comparison of these 1063 germline-enriched genes with a similar list of genes prepared using microarrays revealed an overlap of 460 genes, mutually reinforcing the two lists. Additionally, we identified 603 germline-enriched genes, supported by in situ expression data, which were not previously identified. We also found >4 fold enrichment for RNA binding proteins in the germ line as compared to the soma. Conclusion Using multiple technological platforms provides a more complete picture of global gene expression patterns. Genes involved in RNA metabolism are expressed at a significantly higher level in the germ line than the soma, suggesting a stronger reliance on RNA metabolism for control of the expression of genes in the germ line. Additionally, the number and expression level of germ line expressed genes on the X chromosome is lower than expected based on a random distribution. PMID:19426519

  19. Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE

    Directory of Open Access Journals (Sweden)

    Holt Robert A

    2009-05-01

    Full Text Available Abstract Background Germ cells must progress through elaborate developmental stages from an undifferentiated germ cell to a fully differentiated gamete. Some of these stages include exiting mitosis and entering meiosis, progressing through the various stages of meiotic prophase, adopting either a male (sperm or female (oocyte fate, and completing meiosis. Additionally, many of the factors needed to drive embryogenesis are synthesized in the germ line. To increase our understanding of the genes that might be necessary for the formation and function of the germ line, we have constructed a SAGE library from hand dissected C. elegans hermaphrodite gonads. Results We found that 4699 genes, roughly 21% of all known C. elegans genes, are expressed in the adult hermaphrodite germ line. Ribosomal genes are highly expressed in the germ line; roughly four fold above their expression levels in the soma. We further found that 1063 of the germline-expressed genes have enriched expression in the germ line as compared to the soma. A comparison of these 1063 germline-enriched genes with a similar list of genes prepared using microarrays revealed an overlap of 460 genes, mutually reinforcing the two lists. Additionally, we identified 603 germline-enriched genes, supported by in situ expression data, which were not previously identified. We also found >4 fold enrichment for RNA binding proteins in the germ line as compared to the soma. Conclusion Using multiple technological platforms provides a more complete picture of global gene expression patterns. Genes involved in RNA metabolism are expressed at a significantly higher level in the germ line than the soma, suggesting a stronger reliance on RNA metabolism for control of the expression of genes in the germ line. Additionally, the number and expression level of germ line expressed genes on the X chromosome is lower than expected based on a random distribution.

  20. Genes, Environment, and Human Behavior.

    Science.gov (United States)

    Bloom, Mark V.; Cutter, Mary Ann; Davidson, Ronald; Dougherty, Michael J.; Drexler, Edward; Gelernter, Joel; McCullough, Laurence B.; McInerney, Joseph D.; Murray, Jeffrey C.; Vogler, George P.; Zola, John

    This curriculum module explores genes, environment, and human behavior. This book provides materials to teach about the nature and methods of studying human behavior, raise some of the ethical and public policy dilemmas emerging from the Human Genome Project, and provide professional development for teachers. An extensive Teacher Background…

  1. Characterization of human septic sera induced gene expression modulation in human myocytes

    Science.gov (United States)

    Hussein, Shaimaa; Michael, Paul; Brabant, Danielle; Omri, Abdelwahab; Narain, Ravin; Passi, Kalpdrum; Ramana, Chilakamarti V.; Parrillo, Joseph E.; Kumar, Anand; Parissenti, Amadeo; Kumar, Aseem

    2009-01-01

    To gain a better understanding of the gene expression changes that occurs during sepsis, we have performed a cDNA microarray study utilizing a tissue culture model that mimics human sepsis. This study utilized an in vitro model of cultured human fetal cardiac myocytes treated with 10% sera from septic patients or 10% sera from healthy volunteers. A 1700 cDNA expression microarray was used to compare the transcription profile from human cardiac myocytes treated with septic sera vs normal sera. Septic sera treatment of myocytes resulted in the down-regulation of 178 genes and the up-regulation of 4 genes. Our data indicate that septic sera induced cell cycle, metabolic, transcription factor and apoptotic gene expression changes in human myocytes. Identification and characterization of gene expression changes that occur during sepsis may lead to the development of novel therapeutics and diagnostics. PMID:19684886

  2. Gene expression studies on human keratinocytes transduced with human growth hormone gene for a possible utilization in gene therapy

    International Nuclear Information System (INIS)

    Mathor, Monica Beatriz.

    1994-01-01

    Taking advantage of the recent progress in the DNA-recombinant techniques and of the potentiality of normal human keratinocytes primary culture to reconstitute the epidermis, it was decided to genetically transform these keratinocytes to produce human growth hormone under controllable conditions that would be used in gene therapy at this hormone deficient patients. The first step to achieve this goal was to standardize infection of keratinocytes with retrovirus producer cells containing a construct which included the gene of bacterial b-galactosidase. The best result was obtained cultivating the keratinocytes for 3 days in a 2:1 mixture of retrovirus producer cells and 3T3-J2 fibroblasts irradiated with 60 Gy, and splitting these infected keratinocytes on 3T3-J2 fibroblasts feeder layer. Another preliminary experiment was to infect normal human keratinocytes with interleukin-6 gene (hIL-6) that, in pathologic conditions, could be reproduced by keratinocytes and secreted to the blood stream. Thus, we verify that infected keratinocytes secrete an average amount of 500 ng/10 6 cell/day of cytokin during the in vitro life time, that certify the stable character of the injection. These keratinocytes, when grafted in mice, secrete hIL-6 to the blood stream reaching levels of 40 pg/ml of serum. After these preliminary experiments, we construct a retroviral vector with the human growth hormone gene (h GH) driven by human metallothionein promoter (h PMT), designated DChPMTGH. Normal human keratinocytes were infected with DChPMTGH producer cells, following previously standardized protocol, obtaining infected keratinocytes secreting to the culture media 340 ng h GH/10 6 cell/day without promoter activation. This is the highest level of h GH secreted in human keratinocytes primary culture described in literature. The h GH value increases approximately 10 times after activation with 100 μM Zn +2 for 8-12 hours. (author). 158 refs., 42 figs., 6 tabs

  3. Human gene therapy and imaging: cardiology

    International Nuclear Information System (INIS)

    Wu, Joseph C.; Yla-Herttuala, Seppo

    2005-01-01

    This review discusses the basics of cardiovascular gene therapy, the results of recent human clinical trials, and the rapid progress in imaging techniques in cardiology. Improved understanding of the molecular and genetic basis of coronary heart disease has made gene therapy a potential new alternative for the treatment of cardiovascular diseases. Experimental studies have established the proof-of-principle that gene transfer to the cardiovascular system can achieve therapeutic effects. First human clinical trials provided initial evidence of feasibility and safety of cardiovascular gene therapy. However, phase II/III clinical trials have so far been rather disappointing and one of the major problems in cardiovascular gene therapy has been the inability to verify gene expression in the target tissue. New imaging techniques could significantly contribute to the development of better gene therapeutic approaches. Although the exact choice of imaging modality will depend on the biological question asked, further improvement in image resolution and detection sensitivity will be needed for all modalities as we move from imaging of organs and tissues to imaging of cells and genes. (orig.)

  4. Methylation of Breast Cancer Predisposition Genes in Early-Onset Breast Cancer: Australian Breast Cancer Family Registry.

    Directory of Open Access Journals (Sweden)

    Cameron M Scott

    Full Text Available DNA methylation can mimic the effects of both germline and somatic mutations for cancer predisposition genes such as BRCA1 and p16INK4a. Constitutional DNA methylation of the BRCA1 promoter has been well described and is associated with an increased risk of early-onset breast cancers that have BRCA1-mutation associated histological features. The role of methylation in the context of other breast cancer predisposition genes has been less well studied and often with conflicting or ambiguous outcomes. We examined the role of methylation in known breast cancer susceptibility genes in breast cancer predisposition and tumor development. We applied the Infinium HumanMethylation450 Beadchip (HM450K array to blood and tumor-derived DNA from 43 women diagnosed with breast cancer before the age of 40 years and measured the methylation profiles across promoter regions of BRCA1, BRCA2, ATM, PALB2, CDH1, TP53, FANCM, CHEK2, MLH1, MSH2, MSH6 and PMS2. Prior genetic testing had demonstrated that these women did not carry a germline mutation in BRCA1, ATM, CHEK2, PALB2, TP53, BRCA2, CDH1 or FANCM. In addition to the BRCA1 promoter region, this work identified regions with variable methylation at multiple breast cancer susceptibility genes including PALB2 and MLH1. Methylation at the region of MLH1 in these breast cancers was not associated with microsatellite instability. This work informs future studies of the role of methylation in breast cancer susceptibility gene silencing.

  5. Evaluation of NTHL1, NEIL1, NEIL2, MPG, TDG, UNG and SMUG1 genes in familial colorectal cancer predisposition

    International Nuclear Information System (INIS)

    Broderick, Peter; Bagratuni, Tina; Vijayakrishnan, Jairam; Lubbe, Steven; Chandler, Ian; Houlston, Richard S

    2006-01-01

    The observation that germline mutations in the oxidative DNA damage repair gene MUTYH cause colorectal cancer (CRC) provides strong evidence that dysregulation of the base excision repair (BER) pathway influences disease susceptibility. It is conceivable that germline sequence variation in other BER pathway genes such as NTHL1, NEIL1, NEIL2, MPG, TDG, UNG and SMUG1 also contribute to CRC susceptibility. To evaluate whether sequence variants of NTHL1, NEIL1, NEIL2, MPG, TDG, UNG and SMUG1 genes might act as CRC susceptibility alleles, we screened the coding sequence and intron-exon boundaries of these genes in 94 familial CRC cases in which involvement of known genes had been excluded. Three novel missense variants were identified NEIL2 C367A, TDG3 A196G and UNG2 C262T in patients, which were not observed in 188 healthy control DNAs. We detected novel germline alterations in NEIL2, TDG and UNG patients with CRC. The results suggest a limited role for NTHL1, NEIL1, NEIL2, MPG, TDG, UNG and SMUG1 in development of CRC

  6. Evaluation of NTHL1, NEIL1, NEIL2, MPG, TDG, UNG and SMUG1 genes in familial colorectal cancer predisposition

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Peter; Bagratuni, Tina; Vijayakrishnan, Jairam; Lubbe, Steven; Chandler, Ian; Houlston, Richard S [Section of Cancer Genetics, Brookes Lawley Building, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG (United Kingdom)

    2006-10-09

    The observation that germline mutations in the oxidative DNA damage repair gene MUTYH cause colorectal cancer (CRC) provides strong evidence that dysregulation of the base excision repair (BER) pathway influences disease susceptibility. It is conceivable that germline sequence variation in other BER pathway genes such as NTHL1, NEIL1, NEIL2, MPG, TDG, UNG and SMUG1 also contribute to CRC susceptibility. To evaluate whether sequence variants of NTHL1, NEIL1, NEIL2, MPG, TDG, UNG and SMUG1 genes might act as CRC susceptibility alleles, we screened the coding sequence and intron-exon boundaries of these genes in 94 familial CRC cases in which involvement of known genes had been excluded. Three novel missense variants were identified NEIL2 C367A, TDG3 A196G and UNG2 C262T in patients, which were not observed in 188 healthy control DNAs. We detected novel germline alterations in NEIL2, TDG and UNG patients with CRC. The results suggest a limited role for NTHL1, NEIL1, NEIL2, MPG, TDG, UNG and SMUG1 in development of CRC.

  7. Different level of population differentiation among human genes

    Directory of Open Access Journals (Sweden)

    Zhang Ya-Ping

    2011-01-01

    Full Text Available Abstract Background During the colonization of the world, after dispersal out of African, modern humans encountered changeable environments and substantial phenotypic variations that involve diverse behaviors, lifestyles and cultures, were generated among the different modern human populations. Results Here, we study the level of population differentiation among different populations of human genes. Intriguingly, genes involved in osteoblast development were identified as being enriched with higher FST SNPs, a result consistent with the proposed role of the skeletal system in accounting for variation among human populations. Genes involved in the development of hair follicles, where hair is produced, were also found to have higher levels of population differentiation, consistent with hair morphology being a distinctive trait among human populations. Other genes that showed higher levels of population differentiation include those involved in pigmentation, spermatid, nervous system and organ development, and some metabolic pathways, but few involved with the immune system. Disease-related genes demonstrate excessive SNPs with lower levels of population differentiation, probably due to purifying selection. Surprisingly, we find that Mendelian-disease genes appear to have a significant excessive of SNPs with high levels of population differentiation, possibly because the incidence and susceptibility of these diseases show differences among populations. As expected, microRNA regulated genes show lower levels of population differentiation due to purifying selection. Conclusion Our analysis demonstrates different level of population differentiation among human populations for different gene groups.

  8. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  9. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene

    Science.gov (United States)

    Genome editing tools have revolutionized the generation of genetically modified animals including livestock. In particular, the domestic pig is a proven model of human physiology and an agriculturally important species. In this study, we utilized the CRISPR/Cas9 system to edit the NANOS2 gene in p...

  10. Familial isolated primary hyperparathyroidism/hyperparathyroidism-jaw tumour syndrome caused by germline gross deletion or point mutations of CDC73 gene in Chinese.

    Science.gov (United States)

    Kong, Jing; Wang, Ou; Nie, Min; Shi, Jie; Hu, Yingying; Jiang, Yan; Li, Mei; Xia, Weibo; Meng, Xunwu; Xing, Xiaoping

    2014-08-01

    Hyperparathyroidism-jaw tumour syndrome (HPT-JT) and familial isolated primary hyperparathyroidism (FIHP) are two subtypes of familial primary hyperparathyroidism, which are rarely reported in Chinese population. Here, we reported three FIHP families and one HPT-JT family with long-term follow-up and genetic analysis. A total of 22 patients, from four FIHP/HPT-JT families of Chinese descent, were recruited and genomic DNA was extracted from their peripheral blood lymphocytes. Direct sequencing for MEN1, CDC73, CASR gene was conducted. Reverse transcription PCR (RT-PCR) and quantitative real-time PCR (qRT-PCR) were used to study the effect of splice site mutations and gross deletion mutations. Immunohistochemistry was performed to analyse parafibromin expression in parathyroid tumours. Genotype-phenotype correlations were assessed through clinical characteristics and long-term follow-up data. Genetic analysis revealed four CDC73 germline mutations that were responsible for the four kindreds, including two novel point mutation (c.157 G>T and IVS3+1 G>A), one recurrent point mutation (c.664 C>T) and one deletion mutation (c.307+?_513-?del exons 4, 5, 6). RT-PCR confirmed that IVS3+1 G>A generated an aberrant transcript with exon3 deletion. Immunohistochemical analysis demonstrated reduced nuclear parafibromin expression in tumours supporting the pathogenic effects of these mutations. This study supplies information on mutations and phenotypes of HPT-JT/FIHP syndrome in Chinese. Screening for gross deletion and point mutations of the CDC73 gene is necessary in susceptible subjects. © 2014 John Wiley & Sons Ltd.

  11. Structure and chromosomal localization of the human lymphotoxin gene

    International Nuclear Information System (INIS)

    Nedwin, G.E.; Jarrett-Nedwin, J.; Smith, D.H.; Naylor, S.L.; Sakaguchi, A.Y.; Goeddel, D.V.; Gray, P.W.

    1987-01-01

    The authors have isolated, sequenced, and determined the chromosomal localization of the gene encoding human lymphotoxin (LT). The single copy gene was isolated from a human genomic library using a /sup 32/P-labeled 116 bp synthetic DNA fragment whose sequence was based on the NH/sub 2/-terminal amino acid sequence of LT. The gene spans 3 kb of DNA and is interrupted by three intervening sequences. The LT gene is located on human chromosome 6, as determined by Southern blot analysis of human-murine hybrid DNA. Putative transcriptional control regions and areas of homology with the promoters of interferon and other genes are identified

  12. Post-mortem testing; germline BRCA1/2 variant detection using archival FFPE non-tumor tissue

    DEFF Research Database (Denmark)

    Petersen, Annabeth Høgh; Jørgensen, Mads Malik Aagaard; Nielsen, Henriette Roed

    2016-01-01

    Accurate estimation of cancer risk in HBOC families often requires BRCA1/2 testing, but this may be impossible in deceased family members. Previous, testing archival formalin-fixed, paraffin-embedded (FFPE) tissue for germline BRCA1/2 variants was unsuccessful, except for the Jewish founder mutat...... samples from non-tumor tissue. Accurate genetic counseling is achievable in families where variant testing would otherwise be impossible.European Journal of Human Genetics advance online publication, 6 January 2016; doi:10.1038/ejhg.2015.268....

  13. Targeting the human lysozyme gene on bovine αs1- casein gene ...

    African Journals Online (AJOL)

    Targeting an exogenous gene into a favorable gene locus and for expression under endogenous regulators is an ideal method in mammary gland bioreactor research. For this purpose, a gene targeting vector was constructed to targeting the human lysozyme gene on bovine αs1-casein gene locus. In this case, the ...

  14. High-resolution melting (HRM) assay for the detection of recurrent BRCA1/BRCA2 germline mutations in Tunisian breast/ovarian cancer families.

    Science.gov (United States)

    Riahi, Aouatef; Kharrat, Maher; Lariani, Imen; Chaabouni-Bouhamed, Habiba

    2014-12-01

    Germline deleterious mutations in the BRCA1/BRCA2 genes are associated with an increased risk for the development of breast and ovarian cancer. Given the large size of these genes the detection of such mutations represents a considerable technical challenge. Therefore, the development of cost-effective and rapid methods to identify these mutations became a necessity. High resolution melting analysis (HRM) is a rapid and efficient technique extensively employed as high-throughput mutation scanning method. The purpose of our study was to assess the specificity and sensitivity of HRM for BRCA1 and BRCA2 genes scanning. As a first step we estimate the ability of HRM for detection mutations in a set of 21 heterozygous samples harboring 8 different known BRCA1/BRCA2 variations, all samples had been preliminarily investigated by direct sequencing, and then we performed a blinded analysis by HRM in a set of 68 further sporadic samples of unknown genotype. All tested heterozygous BRCA1/BRCA2 variants were easily identified. However the HRM assay revealed further alteration that we initially had not searched (one unclassified variant). Furthermore, sequencing confirmed all the HRM detected mutations in the set of unknown samples, including homozygous changes, indicating that in this cohort, with the optimized assays, the mutations detections sensitivity and specificity were 100 %. HRM is a simple, rapid and efficient scanning method for known and unknown BRCA1/BRCA2 germline mutations. Consequently the method will allow for the economical screening of recurrent mutations in Tunisian population.

  15. Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TFIID component TAF-4

    Science.gov (United States)

    Guven-Ozkan, Tugba; Nishi, Yuichi; Robertson, Scott M.; Lin, Rueyling

    2008-01-01

    In C. elegans, four asymmetric divisions, beginning with the zygote (P0), generate transcriptionally repressed germline blastomeres (P1–P4) and somatic sisters that become transcriptionally active. The protein PIE-1 represses transcription in the later germline blastomeres, but not in the earlier germline blastomeres P0 and P1. We show here that OMA-1 and OMA-2, previously shown to regulate oocyte maturation, repress transcription in P0 and P1 by binding to and sequestering in the cytoplasm TAF-4, a component critical for assembly of TFIID and the pol II preinitiation complex. OMA-1/2 binding to TAF-4 is developmentally regulated, requiring phosphorylation by the DYRK kinase MBK-2, which is activated at meiosis II following fertilization. OMA-1/2 are normally degraded after the first mitosis, but ectopic expression of wildtype OMA-1 is sufficient to repress transcription in both somatic and later germline blastomeres. We propose that phosphorylation by MBK-2 serves as a developmental switch, converting OMA-1/2 from oocyte to embryo regulators. PMID:18854162

  16. Human genetics: international projects and personalized medicine.

    Science.gov (United States)

    Apellaniz-Ruiz, Maria; Gallego, Cristina; Ruiz-Pinto, Sara; Carracedo, Angel; Rodríguez-Antona, Cristina

    2016-03-01

    In this article, we present the progress driven by the recent technological advances and new revolutionary massive sequencing technologies in the field of human genetics. We discuss this knowledge in relation with drug response prediction, from the germline genetic variation compiled in the 1000 Genomes Project or in the Genotype-Tissue Expression project, to the phenome-genome archives, the international cancer projects, such as The Cancer Genome Atlas or the International Cancer Genome Consortium, and the epigenetic variation and its influence in gene expression, including the regulation of drug metabolism. This review is based on the lectures presented by the speakers of the Symposium "Human Genetics: International Projects & New Technologies" from the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society, held on the 20th and 21st of April 2015.

  17. Exploring the potential relevance of human-specific genes to complex disease

    Directory of Open Access Journals (Sweden)

    Cooper David N

    2011-01-01

    Full Text Available Abstract Although human disease genes generally tend to be evolutionarily more ancient than non-disease genes, complex disease genes appear to be represented more frequently than Mendelian disease genes among genes of more recent evolutionary origin. It is therefore proposed that the analysis of human-specific genes might provide new insights into the genetics of complex disease. Cross-comparison with the Human Gene Mutation Database (http://www.hgmd.org revealed a number of examples of disease-causing and disease-associated mutations in putatively human-specific genes. A sizeable proportion of these were missense polymorphisms associated with complex disease. Since both human-specific genes and genes associated with complex disease have often experienced particularly rapid rates of evolutionary change, either due to weaker purifying selection or positive selection, it is proposed that a significant number of human-specific genes may play a role in complex disease.

  18. International regulatory landscape and integration of corrective genome editing into in vitro fertilization.

    Science.gov (United States)

    Araki, Motoko; Ishii, Tetsuya

    2014-11-24

    Genome editing technology, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas, has enabled far more efficient genetic engineering even in non-human primates. This biotechnology is more likely to develop into medicine for preventing a genetic disease if corrective genome editing is integrated into assisted reproductive technology, represented by in vitro fertilization. Although rapid advances in genome editing are expected to make germline gene correction feasible in a clinical setting, there are many issues that still need to be addressed before this could occur. We herein examine current status of genome editing in mammalian embryonic stem cells and zygotes and discuss potential issues in the international regulatory landscape regarding human germline gene modification. Moreover, we address some ethical and social issues that would be raised when each country considers whether genome editing-mediated germline gene correction for preventive medicine should be permitted.

  19. Identification and characterization of human GUKH2 gene in silico.

    Science.gov (United States)

    Katoh, Masuko; Katoh, Masaru

    2004-04-01

    Drosophila Guanylate-kinase holder (Gukh) is an adaptor molecule bridging Discs large (Dlg) and Scribble (Scrib), which are implicated in the establishment and maintenance of epithelial polarity. Here, we searched for human homologs of Drosophila gukh by using bioinformatics, and identified GUKH1 and GUKH2 genes. GUKH1 was identical to Nance-Horan syndrome (NHS) gene, while GUKH2 was a novel gene. FLJ35425 (AK092744.1), DKFZp686P1949 (BX647246.1) and KIAA1357 (AB037778.1) cDNAs were derived from human GUKH2 gene. Nucleotide sequence of GUKH2 cDNA was determined by assembling 5'-part of FLJ35425 cDNA and entire region of DKFZp686P1949 cDNA. Human GUKH2 gene consists of 8 exons. Exon 5 (132 bp) of GUKH2 gene was spliced out in GUKH2 cDNA due to alternative splicing. GUKH2-REPS1 locus at human chromosome 6q24.1 and GUKH1-REPS2 locus at human chromosome Xp22.22-p22.13 are paralogous regions within the human genome. Mouse Gukh2 and zebrafish gukh2 genes were also identified. N-terminal part of human GUKH2, mouse Gukh2 and zebrafish gukh2 proteins were completely divergent from human GUKH1 protein. Human GUKH2 and GUKH1, consisting of eight GUKH homology (GKH1-GKH8) domains and Proline-rich domain, showed 28.5% total-amino-acid identity. GKH1, GKH4, GKH5, GKH7 and GKH8 domains were conserved among human GUKH1, human GUKH2 and Drosophila Gukh. Because human homologs of Drosophila dlg (DLG1-DLG7) as well as human homologs of Drosophila scrib (SCRIB, ERBB2IP and Densin-180) are cancer-associated genes, human homologs of Drosophila gukh (GUKH1 and GUKH2) are predicted cancer-associated genes.

  20. A Model of Evolution of Development Based on Germline Penetration of New “No-Junk” DNA

    Directory of Open Access Journals (Sweden)

    Borys Wróbel

    2012-08-01

    Full Text Available There is a mounting body of evidence that somatic transposition may be involved in normal development of multicellular organisms and in pathology, especially cancer. Epigenetic Tracking (ET is an abstract model of multicellular development, able to generate complex 3-dimensional structures. Its aim is not to model the development of a particular organism nor to merely summarise mainstream knowledge on genetic regulation of development. Rather, the goal of ET is to provide a theoretical framework to test new postulated genetic mechanisms, not fully established yet in mainstream biology. The first proposal is that development is orchestrated through a subset of cells which we call driver cells. In these cells, the cellular state determines a specific pattern of gene activation which leads to the occurrence of developmental events. The second proposal is that evolution of development is affected by somatic transposition events. We postulate that when the genome of a driver cell does not specify what developmental event should be undertaken when the cell is in a particular cellular state, somatic transposition events can reshape the genome, build new regulatory regions, and lead to a new pattern of gene activation in the cell. Our third hypothesis, not supported yet by direct evidence, but consistent with some experimental observations, is that these new “no-junk” sequences—regulatory regions created by transposable elements at new positions in the genome—can exit the cell and enter the germline, to be incorporated in the genome of the progeny. We call this mechanism germline penetration. This process allows heritable incorporation of novel developmental events in the developmental trajectory. In this paper we will present the model and link these three postulated mechanisms to biological observations.

  1. Cloning and characterization of human DNA repair genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Brookman, K.W.; Weber, C.A.; Salazar, E.P.; Stewart, S.A.; Carrano, A.V.

    1987-01-01

    The isolation of two addition human genes that give efficient restoration of the repair defects in other CHO mutant lines is reported. The gene designated ERCC2 (Excision Repair Complementing Chinese hamster) corrects mutant UV5 from complementation group 1. They recently cloned this gene by first constructing a secondary transformant in which the human gene was shown to have become physically linked to the bacterial gpt dominant-marker gene by cotransfer in calcium phosphate precipitates in the primary transfection. Transformants expressing both genes were recovered by selecting for resistance to both UV radiation and mycophenolic acid. Using similar methods, the human gene that corrects CHO mutant EM9 was isolated in cosmids and named XRCC1 (X-ray Repair Complementing Chinese hamster). In this case, transformants were recovered by selecting for resistance to CldUrd, which kills EM9 very efficiently. In both genomic and cosmid transformants, the XRCC1 gene restored resistance to the normal range. DNA repair was studied using the kinetics of strand-break rejoining, which was measured after exposure to 137 Cs γ-rays

  2. Germline mutations of BRCA1 gene exon 11 are not associated with platinum response neither with survival advantage in patients with primary ovarian cancer: understanding the clinical importance of one of the biggest human exons. A study of the Tumor Bank Ovarian Cancer (TOC) Consortium.

    Science.gov (United States)

    Dimitrova, Desislava; Ruscito, Ilary; Olek, Sven; Richter, Rolf; Hellwag, Alexander; Türbachova, Ivana; Woopen, Hannah; Baron, Udo; Braicu, Elena Ioana; Sehouli, Jalid

    2016-09-01

    Germline mutations in BRCA1 gene have been reported in up to 20 % of epithelial ovarian cancer (EOC) patients. Distinct clinical characteristics have been attributed to this special EOC population. We hypothesized that mutations in different BRCA1 gene exons may differently affect the clinical course of the disease. The aim of this study was to analyze, in a large cohort of primary EOCs, the clinical impact of mutations in BRCA1 gene exon 11, the largest exon of the gene sequence encoding the 60 % of BRCA1 protein. Two hundred sixty-three primary EOC patients, treated between 2000 and 2008 at Charité University Hospital of Berlin, were included. Patients' blood samples were obtained from the Tumor Ovarian Cancer (TOC) Network ( www.toc-network.de ). Direct sequencing of BRCA1 gene exon 11 was performed for each patient to detect mutations. Based on their BRCA1 exon 11 mutational status, patients were compared regarding clinico-pathological variables and survival. Mutations in BRCA1 exon 11 were found in 18 out of 263 patients (6.8 %). Further 10/263 (3.8 %) cases showed variants of uncertain significance (VUS). All exon 11 BRCA1-positive tumors (100 %) were Type 2 ovarian carcinomas (p = 0.05). Age at diagnosis was significantly younger in Type 2 exon 11 mutated patients (p = 0.01). On multivariate analysis, BRCA1 exon 11 mutational status was not found to be an independent predictive factor for optimal cytoreduction, platinum response, or survival. Mutations in BRCA1 gene exon 11 seem to predispose women to exclusively develop a Type 2 ovarian cancer at younger age. Exon 11 BRCA1-mutated EOC patients showed distinct clinico-pathological features but similar clinical outcome with respect to sporadic EOC patients.

  3. C. elegans AMPKs promote survival and arrest germline development during nutrient stress

    Directory of Open Access Journals (Sweden)

    Masamitsu Fukuyama

    2012-08-01

    Mechanisms controlling development, growth, and metabolism are coordinated in response to changes in environmental conditions, enhancing the likelihood of survival to reproductive maturity. Much remains to be learned about the molecular basis underlying environmental influences on these processes. C. elegans larvae enter a developmentally dormant state called L1 diapause when hatched into nutrient-poor conditions. The nematode pten homologue daf-18 is essential for maintenance of survival and germline stem cell quiescence during this period (Fukuyama et al., 2006; Sigmond et al., 2008, but the details of the signaling network(s in which it functions remain to be elucidated. Here, we report that animals lacking both aak-1 and aak-2, which encode the two catalytic α subunits of AMP-activated protein kinase (AMPK, show reduced viability and failure to maintain mitotic quiescence in germline stem cells during L1 diapause. Furthermore, failure to arrest germline proliferation has a long term consequence; aak double mutants that have experienced L1 diapause develop into sterile adults when returned to food, whereas their continuously fed siblings are fertile. Both aak and daf-18 appear to maintain germline quiescence by inhibiting activity of the common downstream target, TORC1 (TOR Complex 1. In contrast, rescue of the lethality phenotype indicates that aak-2 acts not only in the intestine, as does daf-18, but also in neurons, likely promoting survival by preventing energy deprivation during L1 diapause. These results not only provide evidence that AMPK contributes to survival during L1 diapause in a manner distinct from that by which it controls dauer diapause, but they also suggest that AMPK suppresses TORC1 activity to maintain stem cell quiescence.

  4. Identification of ALK as the Major Familial Neuroblastoma Predisposition Gene

    Science.gov (United States)

    Mossë, Yalë P; Laudenslager, Marci; Longo, Luca; Cole, Kristina A; Wood, Andrew; Attiyeh, Edward F; Laquaglia, Michael J; Sennett, Rachel; Lynch, Jill E; Perri, Patrizia; Laureys, Geneviève; Speleman, Frank; Hakonarson, Hakon; Torkamani, Ali; Schork, Nicholas J; Brodeur, Garrett M; Tonini, Gian Paolo; Rappaport, Eric; Devoto, Marcella; Maris, John M

    2009-01-01

    SUMMARY Survival rates for the childhood cancer neuroblastoma have not substantively improved despite dramatic escalation in chemotherapy intensity. Like most human cancers, this embryonal malignancy can be inherited, but the genetic etiology of familial and sporadically occurring neuroblastoma was largely unknown. Here we show that germline mutations in the anaplastic lymphoma kinase gene (ALK) explain the majority of hereditary neuroblastomas, and that activating mutations can also be somatically acquired. We first identified a significant linkage signal at the short arm of chromosome 2 (maximum nonparametric LOD=4.23 at rs1344063) using a whole-genome scan in neuroblastoma pedigrees. Resequencing of regional candidate genes identified three separate missense mutations in the tyrosine kinase domain of ALK (G1128A, R1192P and R1275Q) that segregated with the disease in eight separate families. Examination of 491 sporadically occurring human neuroblastoma samples showed that the ALK locus was gained in 22.8%, and highly amplified in an additional 3.3%, and that these aberrations were highly associated with death from disease (P=0.0003). Resequencing of 194 high-risk neuroblastoma samples showed somatically acquired mutations within the tyrosine kinase domain in 12.4%. Nine of the ten mutations map to critical regions of the kinase domain and were predicted to be oncogenic drivers with high probability. Mutations resulted in constitutive phosphorylation consistent with activation, and targeted knockdown of ALK mRNA resulted in profound growth inhibition of 4 of 4 cell lines harboring mutant or amplified ALK, as well as 2 of 6 wild type for ALK. Our results demonstrate that heritable mutations of ALK are the major cause of familial neuroblastoma, and that germline or acquired activation of this cell surface kinase is a tractable therapeutic target for this lethal pediatric malignancy. PMID:18724359

  5. Bioinformatic prediction and functional characterization of human KIAA0100 gene

    Directory of Open Access Journals (Sweden)

    He Cui

    2017-02-01

    Full Text Available Our previous study demonstrated that human KIAA0100 gene was a novel acute monocytic leukemia-associated antigen (MLAA gene. But the functional characterization of human KIAA0100 gene has remained unknown to date. Here, firstly, bioinformatic prediction of human KIAA0100 gene was carried out using online softwares; Secondly, Human KIAA0100 gene expression was downregulated by the clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas 9 system in U937 cells. Cell proliferation and apoptosis were next evaluated in KIAA0100-knockdown U937 cells. The bioinformatic prediction showed that human KIAA0100 gene was located on 17q11.2, and human KIAA0100 protein was located in the secretory pathway. Besides, human KIAA0100 protein contained a signalpeptide, a transmembrane region, three types of secondary structures (alpha helix, extended strand, and random coil , and four domains from mitochondrial protein 27 (FMP27. The observation on functional characterization of human KIAA0100 gene revealed that its downregulation inhibited cell proliferation, and promoted cell apoptosis in U937 cells. To summarize, these results suggest human KIAA0100 gene possibly comes within mitochondrial genome; moreover, it is a novel anti-apoptotic factor related to carcinogenesis or progression in acute monocytic leukemia, and may be a potential target for immunotherapy against acute monocytic leukemia.

  6. Combining molecular and immunohistochemical analyses of key drivers in primary melanomas: interplay between germline and somatic variations.

    Science.gov (United States)

    Bruno, William; Martinuzzi, Claudia; Dalmasso, Bruna; Andreotti, Virginia; Pastorino, Lorenza; Cabiddu, Francesco; Gualco, Marina; Spagnolo, Francesco; Ballestrero, Alberto; Queirolo, Paola; Grillo, Federica; Mastracci, Luca; Ghiorzo, Paola

    2018-01-19

    Due to the high mutational somatic burden of Cutaneous Malignant Melanoma (CMM) a thorough profiling of the driver mutations and their interplay is necessary to explain the timing of tumorigenesis or for the identification of actionable genetic events. The aim of this study was to establish the mutation rate of some of the key drivers in melanoma tumorigenesis combining molecular analyses and/or immunohistochemistry in 93 primary CMMs from an Italian cohort also characterized for germline status, and to investigate an interplay between germline and somatic variants. BRAF mutations were present in 68% of cases, while CDKN2A germline mutations were found in 16 % and p16 loss in tissue was found in 63%. TERT promoter somatic mutations were detected in 38% of cases while the TERT -245T>C polymorphism was found in 51% of cases. NRAS mutations were found in 39% of BRAF negative or undetermined cases. NF1 was expressed in all cases analysed. MC1R variations were both considered as a dichotomous variable or scored. While a positive, although not significant association between CDKN2A germline mutations, but not MC1R variants, and BRAF somatic mutation was found, we did not observe other associations between germline and somatic events. A yet undescribed inverse correlation between TERT -245T>C polymorphism and the presence of BRAF mutation was found. It is possible to hypothesize that -245T>C polymorphism could be included in those genotypes which may influence the occurrence of BRAF mutations. Further studies are needed to investigate the role of -245T>C polymorphism as a germline predictor of BRAF somatic mutation status.

  7. Deep sequencing of atrial fibrillation patients with mitral valve regurgitation shows no evidence of mosaicism but reveals novel rare germline variants

    DEFF Research Database (Denmark)

    Gregers, Emilie; Ahlberg, Gustav; Christensen, Thea

    2017-01-01

    the HaloPlex Target Enrichment System. MuTect software was used for identification of somatic point variants. We functionally characterized selected variants using electrophysiologic techniques. RESULTS: No somatic variants were identified in the cardiac tissue. Thirty-three patients (75%) had a rare...... patient population undergoing surgery for mitral valve regurgitation (MVR) to determine whether these patients are genetically predisposed to AF. METHODS: DNA was extracted from blood and left atrial tissue from 44 AF patients with MVR. Using next-generation sequencing, we investigated 110 genes using...... germline variation in ≥1 candidate genes. Fourteen variants were novel. Fifteen variants were predicted damaging or likely damaging in ≥6 in silico predictions. We identified rare variants in genes never directly associated with AF: KCNE4, SCN4B, NEURL1, and CAND2. Interestingly, 7 patients (16%) had...

  8. Duplicability of self-interacting human genes.

    LENUS (Irish Health Repository)

    Pérez-Bercoff, Asa

    2010-01-01

    BACKGROUND: There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome. RESULTS: We investigated the patterns of self-interaction and duplication among 34808 interactions encoded by 8881 human genes, and show that self-interacting proteins are encoded by genes with higher duplicability than genes whose proteins lack this type of interaction. We show that this result is robust against the system used to define duplicate genes. Finally we compared the presence of self-interactions amongst proteins whose genes have duplicated either through whole-genome duplication (WGD) or small-scale duplication (SSD), and show that the former tend to have more interactions in general. After controlling for age differences between the two sets of duplicates this result can be explained by the time since the gene duplication. CONCLUSIONS: Genes encoding self-interacting proteins tend to have higher duplicability than proteins lacking self-interactions. Moreover these duplicate genes have more often arisen through whole-genome rather than small-scale duplication. Finally, self-interacting WGD genes tend to have more interaction partners in general in the PIN, which can be explained by their overall greater age. This work adds to our growing knowledge of the importance of contextual factors in gene duplicability.

  9. Are mice pigmentary genes throwing light on humans?

    Directory of Open Access Journals (Sweden)

    Bose S

    1993-01-01

    Full Text Available In this article the rapid advances made in the molecular genetics of inherited disorders of hypo and hyperpigmentation during the past three years are reviewed. The main focus is on studies in mice as compared to homologues in humans. The main hypomelanotic diseases included are, piebaldism (white spotting due to mutations of c-KIT, PDGF and MGF genes; vitiligo (microphathalmia mice mutations of c-Kit and c-fms genes; Waardenburg syndrome (splotch locus mutations of mice PAX-3 or human Hup-2 genes; albinism (mutations of tyrosinase genes, Menkes disease (Mottled mouse, premature graying (mutations in light/brown locus/gp75/ TRP-1; Griscelli disease (mutations in TRP-1 and steel; Prader-willi and Angelman syndromes, tyrosinase-positive oculocutaneous albinism and hypomelanosis of lto (mutations of pink-eyed dilution gene/mapping to human chromosomes 15 q 11.2 - q12; and human platelet storage pool deficiency diseases due to defects in pallidin, an erythrocyte membrane protein (pallid mouse / mapping to 4.2 pallidin gene. The genetic characterization of hypermelanosis includes, neurofibromatosis 1 (Café-au-lait spots and McCune-Albright Syndrome. Rapid evolving knowledge about pigmentary genes will increase further the knowledge about these hypo and hyperpigmentary disorders.

  10. Induction of atherosclerosis in mice and hamsters without germline genetic engineering

    DEFF Research Database (Denmark)

    Bjørklund, Martin Mæng; Hollensen, Anne Kruse; Hagensen, Mette Kallestrup

    2014-01-01

    RATIONALE: Atherosclerosis can be achieved in animals by germline genetic engineering, leading to hypercholesterolemia, but such models are constrained to few species and strains, and they are difficult to combine with other powerful techniques involving genetic manipulation or variation. OBJECTIVE......: To develop a method for induction of atherosclerosis without germline genetic engineering. METHODS AND RESULTS: Recombinant adeno-associated viral vectors were engineered to encode gain-of-function proprotein convertase subtilisin/kexin type 9 mutants, and mice were given a single intravenous vector...... injection followed by high-fat diet feeding. Plasma proprotein convertase subtilisin/kexin type 9 and total cholesterol increased rapidly and were maintained at high levels, and after 12 weeks, mice had atherosclerotic lesions in the aorta. Histology of the aortic root showed progression of lesions...

  11. Feline hypersomatotropism and acromegaly tumorigenesis: a potential role for the AIP gene.

    Science.gov (United States)

    Scudder, C J; Niessen, S J; Catchpole, B; Fowkes, R C; Church, D B; Forcada, Y

    2017-04-01

    Acromegaly in humans is usually sporadic, however up to 20% of familial isolated pituitary adenomas are caused by germline sequence variants of the aryl-hydrocarbon-receptor interacting protein (AIP) gene. Feline acromegaly has similarities to human acromegalic families with AIP mutations. The aim of this study was to sequence the feline AIP gene, identify sequence variants and compare the AIP gene sequence between feline acromegalic and control cats, and in acromegalic siblings. The feline AIP gene was amplified through PCR using whole blood genomic DNA from 10 acromegalic and 10 control cats, and 3 sibling pairs affected by acromegaly. PCR products were sequenced and compared with the published predicted feline AIP gene. A single nonsynonymous SNP was identified in exon 1 (AIP:c.9T > G) of two acromegalic cats and none of the control cats, as well as both members of one sibling pair. The region of this SNP is considered essential for the interaction of the AIP protein with its receptor. This sequence variant has not previously been reported in humans. Two additional synonymous sequence variants were identified (AIP:c.481C > T and AIP:c.826C > T). This is the first molecular study to investigate a potential genetic cause of feline acromegaly and identified a nonsynonymous AIP single nucleotide polymorphism in 20% of the acromegalic cat population evaluated, as well as in one of the sibling pairs evaluated. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Familial adenomatous polyposis patients without an identified APC germline mutation have a severe phenotype

    DEFF Research Database (Denmark)

    Bisgaard, M L; Ripa, R; Knudsen, Anne Louise

    2004-01-01

    BACKGROUND: Development of more than 100 colorectal adenomas is diagnostic of the dominantly inherited autosomal disease familial adenomatous polyposis (FAP). Germline mutations can be identified in the adenomatous polyposis coli (APC) gene in approximately 80% of patients. The APC protein...... comprises several regions and domains for interaction with other proteins, and specific clinical manifestations are associated with the mutation assignment to one of these regions or domains. AIMS: The phenotype in patients without an identified causative APC mutation was compared with the phenotype...... in patients with a known APC mutation and with the phenotypes characteristic of patients with mutations in specific APC regions and domains. PATIENTS: Data on 121 FAP probands and 149 call up patients from 70 different families were extracted from the Danish Polyposis register. METHODS: Differences in 16...

  13. Two Sets of Piwi Proteins Are Involved in Distinct sRNA Pathways Leading to Elimination of Germline-Specific DNA

    Directory of Open Access Journals (Sweden)

    Dominique I. Furrer

    2017-07-01

    Full Text Available Piwi proteins and piRNAs protect eukaryotic germlines against the spread of transposons. During development in the ciliate Paramecium, two Piwi-dependent sRNA classes are involved in the elimination of transposons and transposon-derived DNA: scan RNAs (scnRNAs, associated with Ptiwi01 and Ptiwi09, and iesRNAs, whose binding partners we now identify as Ptiwi10 and Ptiwi11. scnRNAs derive from the maternal genome and initiate DNA elimination during development, whereas iesRNAs continue DNA targeting until the removal process is complete. Here, we show that scnRNAs and iesRNAs are processed by distinct Dicer-like proteins and bind Piwi proteins in a mutually exclusive manner, suggesting separate biogenesis pathways. We also demonstrate that the PTIWI10 gene is transcribed from the developing nucleus and that its transcription depends on prior DNA excision, suggesting a mechanism of gene expression control triggered by the removal of short DNA segments interrupting the gene.

  14. Somatic VHL gene alterations in MEN2-associated medullary thyroid carcinoma

    International Nuclear Information System (INIS)

    Koch, Christian A; Brouwers, Frederieke M; Vortmeyer, Alexander O; Tannapfel, Andrea; Libutti, Steven K; Zhuang, Zhengping; Pacak, Karel; Neumann, Hartmut PH; Paschke, Ralf

    2006-01-01

    Germline mutations in RET are responsible for multiple endocrine neoplasia type 2 (MEN2), an autosomal dominantly inherited cancer syndrome that is characterized by medullary thyroid carcinoma (MTC), pheochromocytoma, and parathyroid hyperplasia/adenoma. Recent studies suggest a 'second hit' mechanism resulting in amplification of mutant RET. Somatic VHL gene alterations are implicated in the pathogenesis of MEN2 pheochromocytomas. We hypothesized that somatic VHL gene alterations are also important in the pathogenesis of MEN2-associated MTC. We analyzed 6 MTCs and 1 C-cell hyperplasia (CCH) specimen from 7 patients with MEN2A and RET germline mutations in codons 609, 618, 620, or 634, using microdissection, microsatellite analysis, phosphorimage densitometry, and VHL mutation analysis. First, we searched for allelic imbalance between mutant and wild-type RET by using the polymorphic markers D10S677, D10S1239, and RET on thyroid tissue from these patients. Evidence for RET amplification by this technique could be demonstrated in 3 of 6 MTCs. We then performed LOH analysis using D3S1038 and D3S1110 which map to the VHL gene locus at 3p25/26. VHL gene deletion was present in 3 MTCs. These 3 MTCs also had an allelic imbalance between mutant and wild-type RET. Mutation analysis of the VHL gene showed a somatic frameshift mutation in 1 MTC that also demonstrated LOH at 3p25/26. In the 2 other MTCs with allelic imbalance of RET and somatic VHL gene deletion, no somatic VHL mutation could be detected. The CCH specimen did neither reveal RET imbalance nor somatic VHL gene alterations. These data suggest that a RET germline mutation is necessary for development of CCH, that allelic imbalance between mutant and wild-type RET may set off tumorigenesis, and that somatic VHL gene alterations may not play a major role in tumorigenesis of MEN2A-associated MTC

  15. Germ-line PHD1 and PHD2 mutations detected in patients with pheochromocytoma/paraganglioma-polycythemia.

    Science.gov (United States)

    Yang, Chunzhang; Zhuang, Zhengping; Fliedner, Stephanie M J; Shankavaram, Uma; Sun, Michael G; Bullova, Petra; Zhu, Roland; Elkahloun, Abdel G; Kourlas, Peter J; Merino, Maria; Kebebew, Electron; Pacak, Karel

    2015-01-01

    We have investigated genetic/pathogenetic factors associated with a new clinical entity in patients presenting with pheochromocytoma/paraganglioma (PHEO/PGL) and polycythemia. Two patients without hypoxia-inducible factor 2α (HIF2A) mutations, who presented with similar clinical manifestations, were analyzed for other gene mutations, including prolyl hydroxylase (PHD) mutations. We have found for the first time a germ-line mutation in PHD1 in one patient and a novel germ-line PHD2 mutation in a second patient. Both mutants exhibited reduced protein stability with substantial quantitative protein loss and thus compromised catalytic activities. Due to the unique association of patients' polycythemia with borderline or mildly elevated erythropoietin (EPO) levels, we also performed an in vitro sensitivity assay of erythroid progenitors to EPO and for EPO receptor (EPOR) expression. The results show inappropriate hypersensitivity of erythroid progenitors to EPO in these patients, indicating increased EPOR expression/activity. In addition, the present study indicates that HIF dysregulation due to PHD mutations plays an important role in the pathogenesis of these tumors and associated polycythemia. The PHD1 mutation appears to be a new member contributing to the genetic landscape of this novel clinical entity. Our results support the existence of a specific PHD1- and PHD2-associated PHEO/PGL-polycythemia disorder. • A novel germ-l i n e PHD1 mutation causing heochromocytoma/paraganglioma and polycythemia. • Increased EPOR activity and inappropriate hypersensitivity of erythroid progenitors to EPO.

  16. Isolating human DNA repair genes using rodent-cell mutants

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A.; Mitchell, D.L.

    1987-01-01

    The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab

  17. Mutagenesis and phenotyping resources in zebrafish for studying development and human disease

    Science.gov (United States)

    Varshney, Gaurav Kumar

    2014-01-01

    The zebrafish (Danio rerio) is an important model organism for studying development and human disease. The zebrafish has an excellent reference genome and the functions of hundreds of genes have been tested using both forward and reverse genetic approaches. Recent years have seen an increasing number of large-scale mutagenesis projects and the number of mutants or gene knockouts in zebrafish has increased rapidly, including for the first time conditional knockout technologies. In addition, targeted mutagenesis techniques such as zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short sequences (CRISPR) or CRISPR-associated (Cas), have all been shown to effectively target zebrafish genes as well as the first reported germline homologous recombination, further expanding the utility and power of zebrafish genetics. Given this explosion of mutagenesis resources, it is now possible to perform systematic, high-throughput phenotype analysis of all zebrafish gene knockouts. PMID:24162064

  18. Mismatch repair genes in Lynch syndrome: a review

    Directory of Open Access Journals (Sweden)

    Felipe Cavalcanti Carneiro da Silva

    Full Text Available Lynch syndrome represents 1-7% of all cases of colorectal cancer and is an autosomal-dominant inherited cancer predisposition syndrome caused by germline mutations in deoxyribonucleic acid (DNA mismatch repair genes. Since the discovery of the major human genes with DNA mismatch repair function, mutations in five of them have been correlated with susceptibility to Lynch syndrome: mutS homolog 2 (MSH2; mutL homolog 1 (MLH1; mutS homolog 6 (MSH6; postmeiotic segregation increased 2 (PMS2; and postmeiotic segregation increased 1 (PMS1. It has been proposed that one additional mismatch repair gene, mutL homolog 3 (MLH3, also plays a role in Lynch syndrome predisposition, but the clinical significance of mutations in this gene is less clear. According to the InSiGHT database (International Society for Gastrointestinal Hereditary Tumors, approximately 500 different LS-associated mismatch repair gene mutations are known, primarily involving MLH1 (50% and MSH2 (40%, while others account for 10%. Much progress has been made in understanding the molecular basis of Lynch Syndrome. Molecular characterization will be the most accurate way of defining Lynch syndrome and will provide predictive information of greater accuracy regarding the risks of colon and extracolonic cancer and enable optimal cancer surveillance regimens.

  19. Injury, inflammation and the emergence of human specific genes

    Science.gov (United States)

    2016-07-12

    genes in circulating and resident human immune cells can be studied in mice after the transplantation and engraft- ment of human hemato- lymphoid immune...Martinek J, Strowig T, Gearty SV, Teichmann LL, et al. Development and function of human innate immune cells in a humanized mouse model. Nat Bio...normal wound repair and regeneration, we hypothesize that the preponderance of human-specific genes expressed in human inflammatory cells is commensurate

  20. The Circadian Rhythm Gene Arntl2 Is a Metastasis Susceptibility Gene for Estrogen Receptor-Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Ngoc-Han Ha

    2016-09-01

    Full Text Available Breast cancer mortality is primarily due to metastasis rather than primary tumors, yet relatively little is understood regarding the etiology of metastatic breast cancer. Previously, using a mouse genetics approach, we demonstrated that inherited germline polymorphisms contribute to metastatic disease, and that these single nucleotide polymorphisms (SNPs could be used to predict outcome in breast cancer patients. In this study, a backcross between a highly metastatic (FVB/NJ and low metastatic (MOLF/EiJ mouse strain identified Arntl2, a gene encoding a circadian rhythm transcription factor, as a metastasis susceptibility gene associated with progression, specifically in estrogen receptor-negative breast cancer patients. Integrated whole genome sequence analysis with DNase hypersensitivity sites reveals SNPs in the predicted promoter of Arntl2. Using CRISPR/Cas9-mediated substitution of the MOLF promoter, we demonstrate that the SNPs regulate Arntl2 transcription and affect metastatic burden. Finally, analysis of SNPs associated with ARNTL2 expression in human breast cancer patients revealed reproducible associations of ARNTL2 expression quantitative trait loci (eQTL SNPs with disease-free survival, consistent with the mouse studies.

  1. Chromosomal localization of the human diazepam binding inhibitor gene

    International Nuclear Information System (INIS)

    DeBernardi, M.A.; Crowe, R.R.; Mocchetti, I.; Shows, T.B.; Eddy, R.L.; Costa, E.

    1988-01-01

    The authors have used in situ chromosome hybridization and human-mouse somatic cell hybrids to map the gene(s) for human diazepam binding inhibitor (DBI), an endogenous putative modulator of the γ-aminobutyric acid receptor acting at the allosteric regulatory center of this receptor that includes the benzodiazepine recognition site. In 784 chromosome spreads hybridized with human DBI cDNA, the distribution of 1,476 labeled sites revealed a significant clustering of autoradiographic grains (11.3% of total label) on the long arm of chromosome 2 (2q). Furthermore, 63.5% of the grains found on 2q were located on 2q12-21, suggesting regional mapping of DBI gene(s) to this segment. Secondary hybridization signals were frequently observed on other chromosomes and they were statistically significant mainly for chromosomes 5, 6, 11, and 14. In addition, DNA from 32 human-mouse cell hybrids was digested with BamHI and probed with human DBI cDNA. A 3.5-kilobase band, which probably represents the human DBI gene, was assigned to chromosome 2. Four higher molecular weight bands, also detected in BamHI digests, could not be unequivocally assigned. A chromosome 2 location was excluded for the 27-, 13-, and 10-kilobase bands. These results assign a human DBI gene to chromosome 2 (2q12-21) and indicate that three of the four homologous sequences detected by the human DBI probe are located on three other chromosomes

  2. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    Science.gov (United States)

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional

  3. Seeking perfection: a Kantian look at human genetic engineering.

    Science.gov (United States)

    Gunderson, Martin

    2007-01-01

    It is tempting to argue that Kantian moral philosophy justifies prohibiting both human germ-line genetic engineering and non-therapeutic genetic engineering because they fail to respect human dignity. There are, however, good reasons for resisting this temptation. In fact, Kant's moral philosophy provides reasons that support genetic engineering-even germ-line and non-therapeutic. This is true of Kant's imperfect duties to seek one's own perfection and the happiness of others. It is also true of the categorical imperative. Kant's moral philosophy does, however, provide limits to justifiable genetic engineering.

  4. The mechanism of gene targeting in human somatic cells.

    Directory of Open Access Journals (Sweden)

    Yinan Kan

    2014-04-01

    Full Text Available Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB repair known as homologous recombination (HR. The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.

  5. A novel germ-line point mutation in RET exon 8 (Gly(533)Cys) in a large kindred with familial medullary thyroid carcinoma

    OpenAIRE

    Silva, Adriana Madeira Alvares da [UNIFESP; Maciel, Rui Monteiro de Barros [UNIFESP; Dias-da-Silva, Magnus Régios [UNIFESP; Toledo, Silvia Regina Caminada de [UNIFESP; De Carvalho, Marcos B.; Cerutti, Janete Maria [UNIFESP

    2003-01-01

    Familial medullary thyroid carcinoma is related to germ-line mutations in the RET oncogene, mainly in cysteine codon 10 or 11, whereas noncysteine mutations in codons 13 - 15 are rare. We now report a new missense point mutation in exon 8 of the RET gene (1597G-->T) corresponding to a Gly(533)Cys substitution in the cystein-rich domain of RET protein in 76 patients from a 6-generation Brazilian family with 229 subjects, with ascendants from Spain. It is likely that the mutation causes familia...

  6. De novo origin of human protein-coding genes.

    Directory of Open Access Journals (Sweden)

    Dong-Dong Wu

    2011-11-01

    Full Text Available The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA-seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes.

  7. De Novo Origin of Human Protein-Coding Genes

    Science.gov (United States)

    Wu, Dong-Dong; Irwin, David M.; Zhang, Ya-Ping

    2011-01-01

    The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA–seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes. PMID:22102831

  8. A novel c. 204 Ile68Met germline variant in exon 2 of the mutL homolog 1 gene in a colorectal cancer patient

    Czech Academy of Sciences Publication Activity Database

    Vodička, Pavel; Caja, F.; Vymetálková, Veronika; Procházka, Pavel; Vodičková, Ludmila; Schwarzová, L.; Slyšková, Jana; Kumar, R.; Schneiderová, M.

    2015-01-01

    Roč. 9, č. 1 (2015), s. 183-186 ISSN 1792-1074 R&D Projects: GA ČR GPP304/11/P715; GA ČR(CZ) GAP304/12/1585 Institutional support: RVO:68378041 Keywords : mutL homolog 1 * germline mutation * colorectal cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.482, year: 2015

  9. Parallel germline infiltration of a lentivirus in two Malagasy lemurs.

    Directory of Open Access Journals (Sweden)

    Clément Gilbert

    2009-03-01

    Full Text Available Retroviruses normally infect the somatic cells of their host and are transmitted horizontally, i.e., in an exogenous way. Occasionally, however, some retroviruses can also infect and integrate into the genome of germ cells, which may allow for their vertical inheritance and fixation in a given species; a process known as endogenization. Lentiviruses, a group of mammalian retroviruses that includes HIV, are known to infect primates, ruminants, horses, and cats. Unlike many other retroviruses, these viruses have not been demonstrably successful at germline infiltration. Here, we report on the discovery of endogenous lentiviral insertions in seven species of Malagasy lemurs from two different genera -- Cheirogaleus and Microcebus. Combining molecular clock analyses and cross-species screening of orthologous insertions, we show that the presence of this endogenous lentivirus in six species of Microcebus is the result of one endogenization event that occurred about 4.2 million years ago. In addition, we demonstrate that this lentivirus independently infiltrated the germline of Cheirogaleus and that the two endogenization events occurred quasi-simultaneously. Using multiple proviral copies, we derive and characterize an apparently full length and intact consensus for this lentivirus. These results provide evidence that lentiviruses have repeatedly infiltrated the germline of prosimian species and that primates have been exposed to lentiviruses for a much longer time than what can be inferred based on sequence comparison of circulating lentiviruses. The study sets the stage for an unprecedented opportunity to reconstruct an ancestral primate lentivirus and thereby advance our knowledge of host-virus interactions.

  10. Radiation-induced germ-line mutations detected by a direct comparison of parents and children DNA sequences containing SNPs

    International Nuclear Information System (INIS)

    Morimyo, M.; Hongo, E.; Higashi, T.; Wu, J.; Matsumoto, I.; Okamoto, M.; Kawano, A.; Tsuji, S.

    2003-01-01

    Full text: Germ-line mutation is detected in mice but not in humans. To estimate genetic risk of humans, a new approach to extrapolate from animal data to humans or to directly detect radiation-induced mutations in man is expected. We have developed a new method to detect germ-line mutations by directly comparing DNA sequences of parents and children. The nucleotide sequences among mouse strains are almost identical except SNP markers that are detected at 1/1000 frequency. When gamma-irradiated male mice are mated with female mice, heterogeneous nucleotide sequences induced in children DNA are a candidate of mutation, whose assignment can be done by SNP analysis. This system can easily detect all types of mutations such as transition, transversion, frameshift and deletion induced by radiation and can be applied to humans having genetically heterogeneous nucleotide sequences and many SNP markers. C3H male mice of 8 weeks of gestation were irradiated with gamma rays of 3 and 1 Gy and after 3 weeks, they were mated with the same aged C57BL female mice. After 3 weeks breeding, DNA was extracted from parents and children mice. The nucleotide sequences of 150 STS markers containing 300-900 bp and SNPs of parents and children DNA were determined by a direct sequencing; amplification of STS markers by Taq DNA polymerase, purification of PCR products, and DNA sequencing with a dye-terminator method. At each radiation dose, a total amount of 5 Mb DNA sequences were examined to detect radiation-induced mutations. We could find 6 deletions in 3 Gy irradiated mice but not in 1 Gy and control mice. The mutation frequency was about 4.0 x 10 -7 /bp/ Gy or 1.6 x 10 -4 /locus/Gy, and suggested the non-linear increase of mutation rate with dose

  11. Autosomal dominant polycystic kidney disease caused by somatic and germline mosaicism.

    Science.gov (United States)

    Tan, A Y; Blumenfeld, J; Michaeel, A; Donahue, S; Bobb, W; Parker, T; Levine, D; Rennert, H

    2015-04-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder caused by loss of function mutations of PKD1 or PKD2 genes. Although PKD1 is highly polymorphic and the new mutation rate is relatively high, the role of mosaicism is incompletely defined. Herein, we describe the molecular analysis of ADPKD in a 19-year-old female proband and her father. The proband had a PKD1 truncation mutation c.10745dupC (p.Val3584ArgfsX43), which was absent in paternal peripheral blood lymphocytes (PBL). However, very low quantities of this mutation were detected in the father's sperm DNA, but not in DNA from his buccal cells or urine sediment. Next generation sequencing (NGS) analysis determined the level of this mutation in the father's PBL, buccal cells and sperm to be ∼3%, 4.5% and 10%, respectively, consistent with somatic and germline mosaicism. The PKD1 mutation in ∼10% of her father's sperm indicates that it probably occurred early in embryogenesis. In ADPKD cases where a de novo mutation is suspected because of negative PKD gene testing of PBL, additional evaluation with more sensitive methods (e.g. NGS) of the proband PBL and paternal sperm can enhance detection of mosaicism and facilitate genetic counseling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Genetic Basis for Developmental Homeostasis of Germline Stem Cell Niche Number: A Network of Tramtrack-Group Nuclear BTB Factors

    Science.gov (United States)

    Chalvet, Fabienne; Netter, Sophie; Dos Santos, Nicolas; Poisot, Emilie; Paces-Fessy, Mélanie; Cumenal, Delphine; Peronnet, Frédérique; Pret, Anne-Marie; Théodore, Laurent

    2012-01-01

    The potential to produce new cells during adult life depends on the number of stem cell niches and the capacity of stem cells to divide, and is therefore under the control of programs ensuring developmental homeostasis. However, it remains generally unknown how the number of stem cell niches is controlled. In the insect ovary, each germline stem cell (GSC) niche is embedded in a functional unit called an ovariole. The number of ovarioles, and thus the number of GSC niches, varies widely among species. In Drosophila, morphogenesis of ovarioles starts in larvae with the formation of terminal filaments (TFs), each made of 8–10 cells that pile up and sort in stacks. TFs constitute organizers of individual germline stem cell niches during larval and early pupal development. In the Drosophila melanogaster subgroup, the number of ovarioles varies interspecifically from 8 to 20. Here we show that pipsqueak, Trithorax-like, batman and the bric-à-brac (bab) locus, all encoding nuclear BTB/POZ factors of the Tramtrack Group, are involved in limiting the number of ovarioles in D. melanogaster. At least two different processes are differentially perturbed by reducing the function of these genes. We found that when the bab dose is reduced, sorting of TF cells into TFs was affected such that each TF contains fewer cells and more TFs are formed. In contrast, psq mutants exhibited a greater number of TF cells per ovary, with a normal number of cells per TF, thereby leading to formation of more TFs per ovary than in the wild type. Our results indicate that two parallel genetic pathways under the control of a network of nuclear BTB factors are combined in order to negatively control the number of germline stem cell niches. PMID:23185495

  13. High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta

    Directory of Open Access Journals (Sweden)

    Clark Taane G

    2010-04-01

    Full Text Available Abstract Background Imprinted genes show expression from one parental allele only and are important for development and behaviour. This extreme mode of allelic imbalance has been described for approximately 56 human genes. Imprinting status is often disrupted in cancer and dysmorphic syndromes. More subtle variation of gene expression, that is not parent-of-origin specific, termed 'allele-specific gene expression' (ASE is more common and may give rise to milder phenotypic differences. Using two allele-specific high-throughput technologies alongside bioinformatics predictions, normal term human placenta was screened to find new imprinted genes and to ascertain the extent of ASE in this tissue. Results Twenty-three family trios of placental cDNA, placental genomic DNA (gDNA and gDNA from both parents were tested for 130 candidate genes with the Sequenom MassArray system. Six genes were found differentially expressed but none imprinted. The Illumina ASE BeadArray platform was then used to test 1536 SNPs in 932 genes. The array was enriched for the human orthologues of 124 mouse candidate genes from bioinformatics predictions and 10 human candidate imprinted genes from EST database mining. After quality control pruning, a total of 261 informative SNPs (214 genes remained for analysis. Imprinting with maternal expression was demonstrated for the lymphocyte imprinted gene ZNF331 in human placenta. Two potential differentially methylated regions (DMRs were found in the vicinity of ZNF331. None of the bioinformatically predicted candidates tested showed imprinting except for a skewed allelic expression in a parent-specific manner observed for PHACTR2, a neighbour of the imprinted PLAGL1 gene. ASE was detected for two or more individuals in 39 candidate genes (18%. Conclusions Both Sequenom and Illumina assays were sensitive enough to study imprinting and strong allelic bias. Previous bioinformatics approaches were not predictive of new imprinted genes

  14. Translational selection in human: More pronounced in housekeeping genes

    KAUST Repository

    Ma, Lina

    2014-07-10

    Background: Translational selection is a ubiquitous and significant mechanism to regulate protein expression in prokaryotes and unicellular eukaryotes. Recent evidence has shown that translational selection is weakly operative in highly expressed genes in human and other vertebrates. However, it remains unclear whether translational selection acts differentially on human genes depending on their expression patterns.Results: Here we report that human housekeeping (HK) genes that are strictly defined as genes that are expressed ubiquitously and consistently in most or all tissues, are under stronger translational selection.Conclusions: These observations clearly show that translational selection is also closely associated with expression pattern. Our results suggest that human HK genes are more efficiently and/or accurately translated into proteins, which will inevitably open up a new understanding of HK genes and the regulation of gene expression.Reviewers: This article was reviewed by Yuan Yuan, Baylor College of Medicine; Han Liang, University of Texas MD Anderson Cancer Center (nominated by Dr Laura Landweber) Eugene Koonin, NCBI, NLM, NIH, United States of America Sandor Pongor, International Centre for Genetic Engineering and biotechnology (ICGEB), Italy. © 2014 Ma et al.; licensee BioMed Central Ltd.

  15. Targeting the human lysozyme gene on bovine αs1- casein gene ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... Targeting an exogenous gene into a favorable gene locus and for expression under endogenous regulators is ... case, the expression of human lysozyme could be regulated by the endogenous cis-element of αs1- casein gene in .... Mouse mammary epithelial C127 cells (Cell Bank, Chinese. Academy of ...

  16. Isolation and characterization of a PUF-domain of pumilio gene from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... study, a partial pumilio gene with complete PUF-domain in Bombyx mori has been ... Key words: Bombyx mori, pumilio, PUF-domain, RACE, germline stem cell. .... The first-strand cDNA was synthesized from 2 ug of total. RNA.

  17. Characterization of human cardiac myosin heavy chain genes

    International Nuclear Information System (INIS)

    Yamauchi-Takihara, K.; Sole, M.J.; Liew, J.; Ing, D.; Liew, C.C.

    1989-01-01

    The authors have isolated and analyzed the structure of the genes coding for the α and β forms of the human cardiac myosin heavy chain (MYHC). Detailed analysis of four overlapping MYHC genomic clones shows that the α-MYHC and β-MYHC genes constitute a total length of 51 kilobases and are tandemly linked. The β-MYHC-encoding gene, predominantly expressed in the normal human ventricle and also in slow-twitch skeletal muscle, is located 4.5 kilobases upstream of the α-MYHC-encoding gene, which is predominantly expressed in normal human atrium. The authors have determined the nucleotide sequences of the β form of the MYHC gene, which is 100% homologous to the cardiac MYHC cDNA clone (pHMC3). It is unlikely that the divergence of a few nucleotide sequences from the cardiac β-MYHC cDNA clone (pHMC3) reported in a MYHC cDNA clone (PSMHCZ) from skeletal muscle is due to a splicing mechanism. This finding suggests that the same β form of the cardiac MYHC gene is expressed in both ventricular and slow-twitch skeletal muscle. The promoter regions of both α- and β-MYHC genes, as well as the first four coding regions in the respective genes, have also been sequenced. The sequences in the 5'-flanking region of the α- and β-MYHC-encoding genes diverge extensively from one another, suggesting that expression of the α- and β-MYHC genes is independently regulated

  18. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries.

    Science.gov (United States)

    Zhang, Hua; Zheng, Wenjing; Shen, Yan; Adhikari, Deepak; Ueno, Hiroo; Liu, Kui

    2012-07-31

    It has been generally accepted for more than half a century that, in most mammalian species, oocytes cannot renew themselves in postnatal or adult life, and that the number of oocytes is already fixed in fetal or neonatal ovaries. This assumption, however, has been challenged over the past decade. In this study, we have taken an endogenous genetic approach to this question and generated a multiple fluorescent Rosa26(rbw/+);Ddx4-Cre germline reporter mouse model for in vivo and in vitro tracing of the development of female germline cell lineage. Through live cell imaging and de novo folliculogenesis experiments, we show that the Ddx4-expressing cells from postnatal mouse ovaries did not enter mitosis, nor did they contribute to oocytes during de novo folliculogenesis. Our results provide evidence that supports the traditional view that no postnatal follicular renewal occurs in mammals, and no mitotically active Ddx4-expressing female germline progenitors exist in postnatal mouse ovaries.

  19. Chromosomal localization of the human vesicular amine transporter genes

    Energy Technology Data Exchange (ETDEWEB)

    Peter, D.; Finn, P.; Liu, Y.; Roghani, A.; Edwards, R.H.; Klisak, I.; Kojis, T.; Heinzmann, C.; Sparkes, R.S. (UCLA School of Medicine, Los Angeles, CA (United States))

    1993-12-01

    The physiologic and behavioral effects of pharmacologic agents that interfere with the transport of monoamine neurotransmitters into vesicles suggest that vesicular amine transport may contribute to human neuropsychiatric disease. To determine whether an alteration in the genes that encode vesicular amine transport contributes to the inherited component of these disorders, the authors have isolated a human cDNA for the brain transporter and localized the human vesciular amine transporter genes. The human brain synaptic vesicle amine transporter (SVAT) shows unexpected conservation with rat SVAT in the regions that diverge extensively between rat SVAT and the rat adrenal chromaffin granule amine transporter (CGAT). Using the cloned sequences with a panel of mouse-human hybrids and in situ hybridization for regional localization, the adrenal CGAT gene (or VAT1) maps to human chromosome 8p21.3 and the brain SVAT gene (or VAT2) maps to chromosome 10q25. Both of these sites occur very close to if not within previously described deletions that produce severe but viable phenotypes. 26 refs., 3 figs., 1 tab.

  20. Identifying human disease genes through cross-species gene mapping of evolutionary conserved processes.

    Directory of Open Access Journals (Sweden)

    Martin Poot

    2011-05-01

    Full Text Available Understanding complex networks that modulate development in humans is hampered by genetic and phenotypic heterogeneity within and between populations. Here we present a method that exploits natural variation in highly diverse mouse genetic reference panels in which genetic and environmental factors can be tightly controlled. The aim of our study is to test a cross-species genetic mapping strategy, which compares data of gene mapping in human patients with functional data obtained by QTL mapping in recombinant inbred mouse strains in order to prioritize human disease candidate genes.We exploit evolutionary conservation of developmental phenotypes to discover gene variants that influence brain development in humans. We studied corpus callosum volume in a recombinant inbred mouse panel (C57BL/6J×DBA/2J, BXD strains using high-field strength MRI technology. We aligned mouse mapping results for this neuro-anatomical phenotype with genetic data from patients with abnormal corpus callosum (ACC development.From the 61 syndromes which involve an ACC, 51 human candidate genes have been identified. Through interval mapping, we identified a single significant QTL on mouse chromosome 7 for corpus callosum volume with a QTL peak located between 25.5 and 26.7 Mb. Comparing the genes in this mouse QTL region with those associated with human syndromes (involving ACC and those covered by copy number variations (CNV yielded a single overlap, namely HNRPU in humans and Hnrpul1 in mice. Further analysis of corpus callosum volume in BXD strains revealed that the corpus callosum was significantly larger in BXD mice with a B genotype at the Hnrpul1 locus than in BXD mice with a D genotype at Hnrpul1 (F = 22.48, p<9.87*10(-5.This approach that exploits highly diverse mouse strains provides an efficient and effective translational bridge to study the etiology of human developmental disorders, such as autism and schizophrenia.

  1. Breast cancer in patients carrying a germ-line CHEK2 mutation: Outcome after breast conserving surgery and adjuvant radiotherapy

    International Nuclear Information System (INIS)

    Meyer, Andreas; Doerk, Thilo; Sohn, Christof; Karstens, Johann H.; Bremer, Michael

    2007-01-01

    Background and purpose: Women carrying mutations in the CHEK2 gene are at an increased breast cancer risk. Data about outcome and prognosis for these patients after standard multimodality treatment are scarce at present. Materials and methods: One-hundred and fifty (150) patients with non-metastasized early-stage breast cancer (T1-2) receiving postoperative radiotherapy following breast-conservative surgery at our department were included in this analysis. Carriers were identified using mutation-specific restriction enzyme-based screening assays in previous investigations. Twenty-five breast cancer patients were heterozygous for one of three CHEK2 gene mutations (I157T, n = 13; 1100delC, n = 10; IVS2+1G > A, n = 2). The comparison group consisted of 125 early-stage breast cancer patients without a CHEK2 gene mutation (non-carriers). Median follow-up was 87 months for the total cohort of patients. Results: Local recurrences occurred in 13 patients (carriers, 3 (12%); non-carriers, 10 (8%)) and distant metastases occurred in 27 patients (carriers, 8 (32%); non-carriers, 19 (15%)). Twenty-five patients had deceased (carriers, 8 (32%); non-carriers, 17 (14%)) with all but 3 deaths related to breast cancer. Actuarial 7-year local relapse-free survival was 86% in carriers versus 90% in non-carriers (p = 0.48). Actuarial metastasis-free, disease-free and overall survival at 7 years were 64% vs. 84% (p = 0.045), 59% vs. 78% (p = 0.07) and 69% vs. 87% (p = 0.10), respectively. In a multivariate step-wise Cox regression analysis presence of a CHEK2 mutation remained a borderline significant discriminator for metastasis-free survival (p = 0.048; OR = 0.4; 95% CI 0.2-1.0) next to T-stage (p = 0.001; OR 0.3; 95% CI 0.1-0.6). Conclusions: Heterozygosity for a germline CHEK2 mutation appears to represent an adverse prognostic factor in patients with early-stage breast cancer. If confirmed in larger studies these data may serve as a basis for future surveillance and treatment

  2. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  3. Approaches to diagnose DNA mismatch repair gene defects in cancer

    DEFF Research Database (Denmark)

    Peña-Diaz, Javier; Rasmussen, Lene Juel

    2016-01-01

    development was first observed in colorectal cancer patients that carried inactivating germline mutations in MMR genes and the disease was named as hereditary non-polyposis colorectal cancer (HNPCC). Currently, a growing list of cancers is found to be MMR defective and HNPCC has been renamed Lynch syndrome...

  4. Von Hippel-Lindau (VHL inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors.

    Directory of Open Access Journals (Sweden)

    Lee E Moore

    2011-10-01

    Full Text Available Renal tumor heterogeneity studies have utilized the von Hippel-Lindau VHL gene to classify disease into molecularly defined subtypes to examine associations with etiologic risk factors and prognosis. The aim of this study was to provide a comprehensive analysis of VHL inactivation in clear cell renal tumors (ccRCC and to evaluate relationships between VHL inactivation subgroups with renal cancer risk factors and VHL germline single nucleotide polymorphisms (SNPs. VHL genetic and epigenetic inactivation was examined among 507 sporadic RCC/470 ccRCC cases using endonuclease scanning and using bisulfite treatment and Sanger sequencing across 11 CpG sites within the VHL promoter. Case-only multivariate analyses were conducted to identify associations between alteration subtypes and risk factors. VHL inactivation, either through sequence alterations or promoter methylation in tumor DNA, was observed among 86.6% of ccRCC cases. Germline VHL SNPs and a haplotype were associated with promoter hypermethylation in tumor tissue (OR = 6.10; 95% CI: 2.28-16.35, p = 3.76E-4, p-global = 8E-5. Risk of having genetic VHL inactivation was inversely associated with smoking due to a higher proportion of wild-type ccRCC tumors [former: OR = 0.70 (0.20-1.31 and current: OR = 0.56 (0.32-0.99; P-trend = 0.04]. Alteration prevalence did not differ by histopathologic characteristics or occupational exposure to trichloroethylene. ccRCC cases with particular VHL germline polymorphisms were more likely to have VHL inactivation through promoter hypermethylation than through sequence alterations in tumor DNA, suggesting that the presence of these SNPs may represent an example of facilitated epigenetic variation (an inherited propensity towards epigenetic variation in renal tissue. A proportion of tumors from current smokers lacked VHL alterations and may represent a biologically distinct clinical entity from inactivated cases.

  5. Cloning, characterization and targeting of the mouse HEXA gene

    Energy Technology Data Exchange (ETDEWEB)

    Wakamatsu, N.; Trasler, J.M.; Gravel, R.A. [McGill Univ., Quebec (Canada)] [and others

    1994-09-01

    The HEXA gene, encoding the {alpha} subunit of {beta}-hexosaminidase A, is essential for the metabolism of ganglioside G{sub M2}, and defects in this gene cause Tay-Sachs disease in humans. To elucidate the role of the gene in the nervous system of the mouse and to establish a mouse model of Tay-Sachs disease, we have cloned and characterized the HEXA gene and targeted a disruption of the gene in mouse ES cells. The mouse HEXA gene spans {approximately}26 kb and consists of 14 exons, similar to the human gene. A heterogeneous transcription initiation site was identified 21-42 bp 5{prime} of the initiator ATG, with two of the sites fitting the consensus CTCA (A = start) as seen for some weak initiator systems. Promoter analysis showed that the first 150 bp 5{prime} of the ATG contained 85% of promoter activity observed in constructs containing up to 1050 bp of 5{prime} sequence. The active region contained a sequence matching that of the adenovirus major late promoter upstream element factor. A survey of mouse tissues showed that the highest mRNA levels were in (max to min): testis (5.5 x brain cortex), adrenal, epididymis, heart, brain, lung, kidney, and liver (0.3 x brain cortex). A 12 kb BstI/SalI fragment containing nine exons was disrupted with the insertion of the bacterial neo{sup r} gene in exon 11 and was targeted into 129/Sv ES cells by homologous recombination. Nine of 153 G418 resistant clones were correctly targeted as confirmed by Southern blotting. The heterozygous ES cells were microinjected into mouse blastocysts and implanted into pseudo-pregnant mice. Nine male chimeric mice, showing that 40-95% chimerism for the 129/Sv agouti coat color marker, are being bred in an effort to generate germline transmission of the disrupted HEXA gene.

  6. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  7. Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs.

    Directory of Open Access Journals (Sweden)

    Simon Leuchs

    Full Text Available Mutation of the tumor suppressor p53 plays a major role in human carcinogenesis. Here we describe gene-targeted porcine mesenchymal stem cells (MSCs and live pigs carrying a latent TP53(R167H mutant allele, orthologous to oncogenic human mutant TP53(R175H and mouse Trp53(R172H, that can be activated by Cre recombination. MSCs carrying the latent TP53(R167H mutant allele were analyzed in vitro. Homozygous cells were p53 deficient, and on continued culture exhibited more rapid proliferation, anchorage independent growth, and resistance to the apoptosis-inducing chemotherapeutic drug doxorubicin, all characteristic of cellular transformation. Cre mediated recombination activated the latent TP53(R167H allele as predicted, and in homozygous cells expressed mutant p53-R167H protein at a level ten-fold greater than wild-type MSCs, consistent with the elevated levels found in human cancer cells. Gene targeted MSCs were used for nuclear transfer and fifteen viable piglets were produced carrying the latent TP53(R167H mutant allele in heterozygous form. These animals will allow study of p53 deficiency and expression of mutant p53-R167H to model human germline, or spontaneous somatic p53 mutation. This work represents the first inactivation and mutation of the gatekeeper tumor suppressor gene TP53 in a non-rodent mammal.

  8. Aggressive pituitary adenomas occurring in young patients in a large Polynesian kindred with a germline R271W mutation in the AIP gene.

    OpenAIRE

    Jennings, J. E.; Georgitsi, M.; Holdaway, I.; Daly, Adrian; Tichomirowa, M.; Beckers, Albert; Aaltonen, Lauri A; Karhu, A.; Cameron, F. J.

    2009-01-01

    OBJECTIVE: Mutations in the aryl hydrocarbon receptor-interacting protein (AIP) were recently shown to confer a pituitary adenoma predisposition in patients with familial isolated pituitary adenomas (FIPA). We report a large Samoan FIPA kindred from Australia/New Zealand with an R271W mutation that was associated with aggressive pituitary tumors. DESIGN AND METHODS: Case series with germline screening of AIP and haplotype analyses among R271W families. RESULTS: This previously unreported kind...

  9. Inherited germline ATRX mutation in two brothers with ATR-X syndrome and osteosarcoma.

    Science.gov (United States)

    Ji, Jianling; Quindipan, Catherine; Parham, David; Shen, Lishuang; Ruble, David; Bootwalla, Moiz; Maglinte, Dennis T; Gai, Xiaowu; Saitta, Sulagna C; Biegel, Jaclyn A; Mascarenhas, Leo

    2017-05-01

    We report a family in which two brothers had an undiagnosed genetic disorder comprised of dysmorphic features, microcephaly, severe intellectual disability (non-verbal), mild anemia, and cryptorchidism. Both developed osteosarcoma. Trio exome sequencing (using blood samples from the younger brother and both parents) was performed and a nonsense NM_000489.4:c.7156C>T (p.Arg2386*) mutation in the ATRX gene was identified in the proband (hemizygous) and in the mother's peripheral blood DNA (heterozygous). The mother is healthy, does not exhibit any clinical manifestations of ATR-X syndrome and there was no family history of cancer. The same hemizygous pathogenic variant was confirmed in the affected older brother's skin tissue by subsequent Sanger sequencing. Chromosomal microarray studies of both brothers' osteosarcomas revealed complex copy number alterations consistent with the clinical diagnosis of osteosarcoma. Recently, somatic mutations in the ATRX gene have been observed as recurrent alterations in both osteosarcoma and brain tumors. However, it is unclear if there is any association between osteosarcoma and germline ATRX mutations, specifically in patients with constitutional ATR-X syndrome. This is the first report of osteosarcoma diagnosed in two males with ATR-X syndrome, suggesting a potential increased risk for cancer in patients with this disorder. © 2017 Wiley Periodicals, Inc.

  10. Germline BAP1 inactivation is preferentially associated with metastatic ocular melanoma and cutaneous-ocular melanoma families.

    Directory of Open Access Journals (Sweden)

    Ching-Ni Jenny Njauw

    Full Text Available BAP1 has been shown to be a target of both somatic alteration in high-risk ocular melanomas (OM and germline inactivation in a few individuals from cancer-prone families. These findings suggest that constitutional BAP1 changes may predispose individuals to metastatic OM and that familial permeation of deleterious alleles could delineate a new cancer syndrome.To characterize BAP1's contribution to melanoma risk, we sequenced BAP1 in a set of 100 patients with OM, including 50 metastatic OM cases and 50 matched non-metastatic OM controls, and 200 individuals with cutaneous melanoma (CM including 7 CM patients from CM-OM families and 193 CM patients from CM-non-OM kindreds.Germline BAP1 mutations were detected in 4/50 patients with metastatic OM and 0/50 cases of non-metastatic OM (8% vs. 0%, p = 0.059. Since 2/4 of the BAP1 carriers reported a family history of CM, we analyzed 200 additional hereditary CM patients and found mutations in 2/7 CM probands from CM-OM families and 1/193 probands from CM-non-OM kindreds (29% vs. 0.52%, p = .003. Germline mutations co-segregated with both CM and OM phenotypes and were associated with the presence of unique nevoid melanomas and highly atypical nevoid melanoma-like melanocytic proliferations (NEMMPs. Interestingly, 7/14 germline variants identified to date reside in C-terminus suggesting that the BRCA1 binding domain is important in cancer predisposition.Germline BAP1 mutations are associated with a more aggressive OM phenotype and a recurrent phenotypic complex of cutaneous/ocular melanoma, atypical melanocytic proliferations and other internal neoplasms (ie. COMMON syndrome, which could be a useful clinical marker for constitutive BAP1 inactivation.

  11. High-resolution array CGH profiling identifies Na/K transporting ATPase interacting 2 (NKAIN2) as a predisposing candidate gene in neuroblastoma.

    Science.gov (United States)

    Romania, Paolo; Castellano, Aurora; Surace, Cecilia; Citti, Arianna; De Ioris, Maria Antonietta; Sirleto, Pietro; De Mariano, Marilena; Longo, Luca; Boldrini, Renata; Angioni, Adriano; Locatelli, Franco; Fruci, Doriana

    2013-01-01

    Neuroblastoma (NB), the most common solid cancer in early childhood, usually occurs sporadically but also its familial occurance is known in 1-2% of NB patients. Germline mutations in the ALK and PHOX2B genes have been found in a subset of familial NBs. However, because some individuals harbouring mutations in these genes do not develop this tumor, additional genetic alterations appear to be required for NB pathogenesis. Herein, we studied an Italian family with three NB patients, two siblings and a first cousin, carrying an ALK germline-activating mutation R1192P, that was inherited from their unaffected mothers and with no mutations in the PHOX2B gene. A comparison between somatic and germline DNA copy number changes in the two affected siblings by a high resolution array-based Comparative Genomic Hybridization (CGH) analysis revealed a germline gain at NKAIN2 (Na/K transporting ATPase interacting 2) locus in one of the sibling, that was inherited from the parent who does not carry the ALK mutation. Surprisingly, NKAIN2 was expressed at high levels also in the affected sibling that lacks the genomic gain at this locus, clearly suggesting the existance of other regulatory mechanisms. High levels of NKAIN2 were detected in the MYCN-amplified NB cell lines and in the most aggressive NB lesions as well as in the peripheral blood of a large cohort of NB patients. Consistent with a role of NKAIN2 in NB development, NKAIN2 was down-regulated during all-trans retinoic acid differentiation in two NB cell lines. Taken together, these data indicate a potential role of NKAIN2 gene in NB growth and differentiation.

  12. High-resolution array CGH profiling identifies Na/K transporting ATPase interacting 2 (NKAIN2 as a predisposing candidate gene in neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Paolo Romania

    Full Text Available Neuroblastoma (NB, the most common solid cancer in early childhood, usually occurs sporadically but also its familial occurance is known in 1-2% of NB patients. Germline mutations in the ALK and PHOX2B genes have been found in a subset of familial NBs. However, because some individuals harbouring mutations in these genes do not develop this tumor, additional genetic alterations appear to be required for NB pathogenesis. Herein, we studied an Italian family with three NB patients, two siblings and a first cousin, carrying an ALK germline-activating mutation R1192P, that was inherited from their unaffected mothers and with no mutations in the PHOX2B gene. A comparison between somatic and germline DNA copy number changes in the two affected siblings by a high resolution array-based Comparative Genomic Hybridization (CGH analysis revealed a germline gain at NKAIN2 (Na/K transporting ATPase interacting 2 locus in one of the sibling, that was inherited from the parent who does not carry the ALK mutation. Surprisingly, NKAIN2 was expressed at high levels also in the affected sibling that lacks the genomic gain at this locus, clearly suggesting the existance of other regulatory mechanisms. High levels of NKAIN2 were detected in the MYCN-amplified NB cell lines and in the most aggressive NB lesions as well as in the peripheral blood of a large cohort of NB patients. Consistent with a role of NKAIN2 in NB development, NKAIN2 was down-regulated during all-trans retinoic acid differentiation in two NB cell lines. Taken together, these data indicate a potential role of NKAIN2 gene in NB growth and differentiation.

  13. Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study.

    Science.gov (United States)

    Iacovazzo, Donato; Caswell, Richard; Bunce, Benjamin; Jose, Sian; Yuan, Bo; Hernández-Ramírez, Laura C; Kapur, Sonal; Caimari, Francisca; Evanson, Jane; Ferraù, Francesco; Dang, Mary N; Gabrovska, Plamena; Larkin, Sarah J; Ansorge, Olaf; Rodd, Celia; Vance, Mary L; Ramírez-Renteria, Claudia; Mercado, Moisés; Goldstone, Anthony P; Buchfelder, Michael; Burren, Christine P; Gurlek, Alper; Dutta, Pinaki; Choong, Catherine S; Cheetham, Timothy; Trivellin, Giampaolo; Stratakis, Constantine A; Lopes, Maria-Beatriz; Grossman, Ashley B; Trouillas, Jacqueline; Lupski, James R; Ellard, Sian; Sampson, Julian R; Roncaroli, Federico; Korbonits, Márta

    2016-06-01

    Non-syndromic pituitary gigantism can result from AIP mutations or the recently identified Xq26.3 microduplication causing X-linked acrogigantism (XLAG). Within Xq26.3, GPR101 is believed to be the causative gene, and the c.924G > C (p.E308D) variant in this orphan G protein-coupled receptor has been suggested to play a role in the pathogenesis of acromegaly.We studied 153 patients (58 females and 95 males) with pituitary gigantism. AIP mutation-negative cases were screened for GPR101 duplication through copy number variation droplet digital PCR and high-density aCGH. The genetic, clinical and histopathological features of XLAG patients were studied in detail. 395 peripheral blood and 193 pituitary tumor DNA samples from acromegaly patients were tested for GPR101 variants.We identified 12 patients (10 females and 2 males; 7.8 %) with XLAG. In one subject, the duplicated region only contained GPR101, but not the other three genes in found to be duplicated in the previously reported patients, defining a new smallest region of overlap of duplications. While females presented with germline mutations, the two male patients harbored the mutation in a mosaic state. Nine patients had pituitary adenomas, while three had hyperplasia. The comparison of the features of XLAG, AIP-positive and GPR101&AIP-negative patients revealed significant differences in sex distribution, age at onset, height, prolactin co-secretion and histological features. The pathological features of XLAG-related adenomas were remarkably similar. These tumors had a sinusoidal and lobular architecture. Sparsely and densely granulated somatotrophs were admixed with lactotrophs; follicle-like structures and calcifications were commonly observed. Patients with sporadic of familial acromegaly did not have an increased prevalence of the c.924G > C (p.E308D) GPR101 variant compared to public databases.In conclusion, XLAG can result from germline or somatic duplication of GPR101. Duplication of GPR101

  14. Pharmacogenetic characterization of naturally occurring germline NT5C1A variants to chemotherapeutic nucleoside analogs

    Science.gov (United States)

    Saliba, Jason; Zabriskie, Ryan; Ghosh, Rajarshi; Powell, Bradford C; Hicks, Stephanie; Kimmel, Marek; Meng, Qingchang; Ritter, Deborah I; Wheeler, David A; Gibbs, Richard A; Tsai, Francis T F; Plon, Sharon E

    2016-01-01

    Background Mutations or alteration in expression of the 5’ nucleotidase gene family can confer altered responses to treatment with nucleoside analogs. While investigating leukemia susceptibility genes, we discovered a very rare p.L254P NT5C1A missense variant in the substrate recognition motif. Given the paucity of cellular drug response data from NT5C1A germline variation, we characterized p.L254P and eight rare variants of NT5C1A from genomic databases. Methods Through lentiviral infection, we created HEK293 cell lines that stably overexpress wildtype NT5C1A, p.L254P, or eight NT5C1A variants reported in the NHLBI Exome Variant server (one truncating and seven missense). IC50 values were determined by cytotoxicity assays after exposure to chemotherapeutic nucleoside analogs (Cladribine, Gemcitabine, 5-Fluorouracil). In addition, we used structure-based homology modeling to generate a 3D model for the C-terminal region of NT5C1A. Results The p.R180X (truncating), p.A214T, and p.L254P missense changes were the only variants that significantly impaired protein function across all nucleotide analogs tested (>5-fold difference versus WT; p<.05). Several of the remaining variants individually displayed differential effects (both more and less resistant) across the analogs tested. The homology model provided a structural framework to understand the impact of NT5C1A mutants on catalysis and drug processing. The model predicted active site residues within NT5C1A motif III and we experimentally confirmed that p.K314 (not p.K320) is required for NT5C1A activity. Conclusion We characterized germline variation and predicted protein structures of NT5C1A. Individual missense changes showed substantial variation in response to the different nucleoside analogs tested, which may impact patients’ responses to treatment. PMID:26906009

  15. Germline mutations in MAP3K6 are associated with familial gastric cancer.

    Directory of Open Access Journals (Sweden)

    Daniel Gaston

    2014-10-01

    Full Text Available Gastric cancer is among the leading causes of cancer-related deaths worldwide. While heritable forms of gastric cancer are relatively rare, identifying the genes responsible for such cases can inform diagnosis and treatment for both hereditary and sporadic cases of gastric cancer. Mutations in the E-cadherin gene, CDH1, account for 40% of the most common form of familial gastric cancer (FGC, hereditary diffuse gastric cancer (HDGC. The genes responsible for the remaining forms of FGC are currently unknown. Here we examined a large family from Maritime Canada with FGC without CDH1 mutations, and identified a germline coding variant (p.P946L in mitogen-activated protein kinase kinase kinase 6 (MAP3K6. Based on conservation, predicted pathogenicity and a known role of the gene in cancer predisposition, MAP3K6 was considered a strong candidate and was investigated further. Screening of an additional 115 unrelated individuals with non-CDH1 FGC identified the p.P946L MAP3K6 variant, as well as four additional coding variants in MAP3K6 (p.F849Sfs*142, p.P958T, p.D200Y and p.V207G. A somatic second-hit variant (p.H506Y was present in DNA obtained from one of the tumor specimens, and evidence of DNA hypermethylation within the MAP3K6 gene was observed in DNA from the tumor of another affected individual. These findings, together with previous evidence from mouse models that MAP3K6 acts as a tumor suppressor, and studies showing the presence of somatic mutations in MAP3K6 in non-hereditary gastric cancers and gastric cancer cell lines, point towards MAP3K6 variants as a predisposing factor for FGC.

  16. Complex expression patterns of lymphocyte-specific genes during the development of cartilaginous fish implicate unique lymphoid tissues in generating an immune repertoire

    Science.gov (United States)

    Miracle, A. L.; Anderson, M. K.; Litman, R. T.; Walsh, C. J.; Luer, C. A.; Rothenberg, E. V.; Litman, G. W.

    2001-01-01

    Cartilaginous fish express canonical B and T cell recognition genes, but their lymphoid organs and lymphocyte development have been poorly defined. Here, the expression of Ig, TCR, recombination-activating gene (Rag)-1 and terminal deoxynucleosidase (TdT) genes has been used to identify roles of various lymphoid tissues throughout development in the cartilaginous fish, Raja eglanteria (clearnose skate). In embryogenesis, Ig and TCR genes are sharply up-regulated at 8 weeks of development. At this stage TCR and TdT expression is limited to the thymus; later, TCR gene expression appears in peripheral sites in hatchlings and adults, suggesting that the thymus is a source of T cells as in mammals. B cell gene expression indicates more complex roles for the spleen and two special organs of cartilaginous fish-the Leydig and epigonal (gonad-associated) organs. In the adult, the Leydig organ is the site of the highest IgM and IgX expression. However, the spleen is the first site of IgM expression, while IgX is expressed first in gonad, liver, Leydig and even thymus. Distinctive spatiotemporal patterns of Ig light chain gene expression also are seen. A subset of Ig genes is pre-rearranged in the germline of the cartilaginous fish, making expression possible without rearrangement. To assess whether this allows differential developmental regulation, IgM and IgX heavy chain cDNA sequences from specific tissues and developmental stages have been compared with known germline-joined genomic sequences. Both non-productively rearranged genes and germline-joined genes are transcribed in the embryo and hatchling, but not in the adult.

  17. Comprehensive identification of genes driven by ERV9-LTRs reveals TNFRSF10B as a re-activatable mediator of testicular cancer cell death

    Science.gov (United States)

    Beyer, U; Krönung, S K; Leha, A; Walter, L; Dobbelstein, M

    2016-01-01

    The long terminal repeat (LTR) of human endogenous retrovirus type 9 (ERV9) acts as a germline-specific promoter that induces the expression of a proapoptotic isoform of the tumor suppressor homologue p63, GTAp63, in male germline cells. Testicular cancer cells silence this promoter, but inhibitors of histone deacetylases (HDACs) restore GTAp63 expression and give rise to apoptosis. We show here that numerous additional transcripts throughout the genome are driven by related ERV9-LTRs. 3' Rapid amplification of cDNA ends (3'RACE) was combined with next-generation sequencing to establish a large set of such mRNAs. HDAC inhibitors induce these ERV9-LTR-driven genes but not the LTRs from other ERVs. In particular, a transcript encoding the death receptor DR5 originates from an ERV9-LTR inserted upstream of the protein coding regions of the TNFRSF10B gene, and it shows an expression pattern similar to GTAp63. When treating testicular cancer cells with HDAC inhibitors as well as the death ligand TNF-related apoptosis-inducing ligand (TRAIL), rapid cell death was observed, which depended on TNFRSF10B expression. HDAC inhibitors also cooperate with cisplatin (cDDP) to promote apoptosis in testicular cancer cells. ERV9-LTRs not only drive a large set of human transcripts, but a subset of them acts in a proapoptotic manner. We propose that this avoids the survival of damaged germ cells. HDAC inhibition represents a strategy of restoring the expression of a class of ERV9-LTR-mediated genes in testicular cancer cells, thereby re-enabling tumor suppression. PMID:26024393

  18. Contemporary Animal Models For Human Gene Therapy Applications.

    Science.gov (United States)

    Gopinath, Chitra; Nathar, Trupti Job; Ghosh, Arkasubhra; Hickstein, Dennis Durand; Nelson, Everette Jacob Remington

    2015-01-01

    Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial.

  19. Subset of Kappa and Lambda Germline Sequences Result in Light Chains with a Higher Molecular Mass Phenotype.

    Science.gov (United States)

    Barnidge, David R; Lundström, Susanna L; Zhang, Bo; Dasari, Surendra; Murray, David L; Zubarev, Roman A

    2015-12-04

    In our previous work, we showed that electrospray ionization of intact polyclonal kappa and lambda light chains isolated from normal serum generates two distinct, Gaussian-shaped, molecular mass distributions representing the light-chain repertoire. During the analysis of a large (>100) patient sample set, we noticed a low-intensity molecular mass distribution with a mean of approximately 24 250 Da, roughly 800 Da higher than the mean of the typical kappa molecular-mass distribution mean of 23 450 Da. We also observed distinct clones in this region that did not appear to contain any typical post-translational modifications that would account for such a large mass shift. To determine the origin of the high molecular mass clones, we performed de novo bottom-up mass spectrometry on a purified IgM monoclonal light chain that had a calculated molecular mass of 24 275.03 Da. The entire sequence of the monoclonal light chain was determined using multienzyme digestion and de novo sequence-alignment software and was found to belong to the germline allele IGKV2-30. The alignment of kappa germline sequences revealed ten IGKV2 and one IGKV4 sequences that contained additional amino acids in their CDR1 region, creating the high-molecular-mass phenotype. We also performed an alignment of lambda germline sequences, which showed additional amino acids in the CDR2 region, and the FR3 region of functional germline sequences that result in a high-molecular-mass phenotype. The work presented here illustrates the ability of mass spectrometry to provide information on the diversity of light-chain molecular mass phenotypes in circulation, which reflects the germline sequences selected by the immunoglobulin-secreting B-cell population.

  20. Mapping and annotating obesity-related genes in pig and human genomes.

    Science.gov (United States)

    Martelli, Pier Luigi; Fontanesi, Luca; Piovesan, Damiano; Fariselli, Piero; Casadio, Rita

    2014-01-01

    Background. Obesity is a major health problem in both developed and emerging countries. Obesity is a complex disease whose etiology involves genetic factors in strong interplay with environmental determinants and lifestyle. The discovery of genetic factors and biological pathways underlying human obesity is hampered by the difficulty in controlling the genetic background of human cohorts. Animal models are then necessary to further dissect the genetics of obesity. Pig has emerged as one of the most attractive models, because of the similarity with humans in the mechanisms regulating the fat deposition. Results. We collected the genes related to obesity in humans and to fat deposition traits in pig. We localized them on both human and pig genomes, building a map useful to interpret comparative studies on obesity. We characterized the collected genes structurally and functionally with BAR+ and mapped them on KEGG pathways and on STRING protein interaction network. Conclusions. The collected set consists of 361 obesity related genes in human and pig genomes. All genes were mapped on the human genome, and 54 could not be localized on the pig genome (release 2012). Only for 3 human genes there is no counterpart in pig, confirming that this animal is a good model for human obesity studies. Obesity related genes are mostly involved in regulation and signaling processes/pathways and relevant connection emerges between obesity-related genes and diseases such as cancer and infectious diseases.

  1. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans

    Directory of Open Access Journals (Sweden)

    Benjamin Mayne

    2016-10-01

    Full Text Available The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analysed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes, followed by the heart (375 genes, kidney (224 genes, colon (218 genes and thyroid (163 genes. More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  2. Thyroid cancer in a patient with a germline MSH2 mutation. Case report and review of the Lynch syndrome expanding tumour spectrum

    Directory of Open Access Journals (Sweden)

    Stulp Rein P

    2008-02-01

    Full Text Available Abstract Lynch syndrome (HNPCC is a dominantly inherited disorder characterized by germline defects in DNA mismatch repair (MMR genes and the development of a variety of cancers, predominantly colorectal and endometrial. We present a 44-year-old woman who was shown to carry the truncating MSH2 gene mutation that had previously been identified in her family. Recently, she had been diagnosed with an undifferentiated carcinoma of the thyroid and an adenoma of her coecum. Although the thyroid carcinoma was not MSI-high (1 out of 5 microsatellites instable, it did show complete loss of immunohistochemical expression for the MSH2 protein, suggesting that this tumour was not coincidental. Although the risks for some tumour types, including breast cancer, soft tissue sarcoma and prostate cancer, are not significantly increased in Lynch syndrome, MMR deficiency in the presence of a corresponding germline defect has been demonstrated in incidental cases of a growing range of tumour types, which is reviewed in this paper. Interestingly, the MSH2-associated tumour spectrum appears to be wider than that of MLH1 and generally the risk for most extra-colonic cancers appears to be higher for MSH2 than for MLH1 mutation carriers. Together with a previously reported case, our findings show that anaplastic thyroid carcinoma can develop in the setting of Lynch syndrome. Uncommon Lynch syndrome-associated tumour types might be useful in the genetic analysis of a Lynch syndrome suspected family if samples from typical Lynch syndrome tumours are unavailable.

  3. Nucleotide sequence of the human N-myc gene

    International Nuclear Information System (INIS)

    Stanton, L.W.; Schwab, M.; Bishop, J.M.

    1986-01-01

    Human neuroblastomas frequently display amplification and augmented expression of a gene known as N-myc because of its similarity to the protooncogene c-myc. It has therefore been proposed that N-myc is itself a protooncogene, and subsequent tests have shown that N-myc and c-myc have similar biological activities in cell culture. The authors have now detailed the kinship between N-myc and c-myc by determining the nucleotide sequence of human N-myc and deducing the amino acid sequence of the protein encoded by the gene. The topography of N-myc is strikingly similar to that of c-myc: both genes contain three exons of similar lengths; the coding elements of both genes are located in the second and third exons; and both genes have unusually long 5' untranslated regions in their mRNAs, with features that raise the possibility that expression of the genes may be subject to similar controls of translation. The resemblance between the proteins encoded by N-myc and c-myc sustains previous suspicions that the genes encode related functions

  4. Human serum amyloid genes--molecular characterization

    International Nuclear Information System (INIS)

    Sack, G.H.; Lease, J.J.

    1986-01-01

    Three clones containing human genes for serum amyloid A protein (SAA) have been isolated and characterized. Each of two clones, GSAA 1 and 2 (of 12.8 and 15.9 kilobases, respectively), contains two exons, accouting for amino acids 12-58 and 58-103 of mature SAA; the extreme 5' termini and 5' untranslated regions have not yet been defined but are anticipated to be close based on studies of murine SAA genes. Initial amino acid sequence comparisons show 78/89 identical residues. At 4 of the 11 discrepant residues, the amino acid specified by the codon is the same as the corresponding residue in murine SAA. Identification of regions containing coding regions has permitted use of selected subclones for blot hybridization studies of larger human SAA chromosomal gene organization. The third clone, GSAA 3 also contains SAA coding information by DNA sequence analysis but has a different organization which has not yet been fully described. We have reported the isolation of clones of human DNA hybridizing with pRS48 - a plasmid containing a complementary DNA (cDNA) clone for murine serum amyloid A (SAA; 1, 2). We now present more detailed data confirming the identity and defining some of the organizational features of these clones

  5. Retroviral-mediated transfer and expression of human β-globin genes in cultured murine and human erythroid cells

    International Nuclear Information System (INIS)

    Weber-Benarous, A.; Cone, R.D.; London, I.M.; Mulligan, R.C.

    1988-01-01

    The authors cloned human β-globin DNA sequences from a genomic library prepared from DNA isolated from the human leukemia cell line K562 and have used the retroviral vector pZip-NeoSV(X)1 to introduce a 3.0-kilobase segment encompassing the globin gene into mouse erythroleukemia cells. Whereas the endogenous K562 β-globin gene is repressed in K562 cells, when introduced into mouse erythroleukemia cells by retroviral-mediated gene transfer, the β-globin gene from K562 cells was transcribed and induced 5-20-fold after treatment of the cells with dimethyl sulfoxide. The transcripts were correctly initiated, and expression and regulation of the K562 gene were identical to the expression of a normal human β-globin gene transferred into mouse erythroleukemia cells in the same way. They have also introduced the normal human β-globin gene into K562 cells using the same retrovirus vector. SP6 analysis of the RNA isolated from the transduced cells showed that the normal β-globin gene was transcribed at a moderately high level, before or after treatment with hemin. Based on these data, they suggest that the lack of expression of the endogenous β-globin gene in K562 cells does not result from an alteration in the gene itself and may not result from a lack of factor(s) necessary for β-lobin gene transcription. Retroviral-mediated transfer of the human β-globin gene may, however, uniquely influence expression of the gene K562 cells

  6. Radioactive probes for human gene localisation by in situ hybridisation

    International Nuclear Information System (INIS)

    Fennell, S.J.

    1980-07-01

    Radioactive probes of high specific activity have been used for human gene localisation on metaphase chromosome preparations. Human 5S ribosomal RNA was used as a model system, as a probe for the localisation of human 5S ribosomal genes. 125 I-labelled mouse 5S ribosomal RNA was used to study the 5S ribosomal gene content and arrangement in families with translocations on the long arm of chromosome 1 close to or containing the 5S ribosomal RNA locus, by in situ hybridisation to human metaphase chromosomes from peripheral blood cultures. This confirmed the chromosomal assignment of 5S ribosomal genes to 1q 42-43. In situ hybridisation probes were also prepared from recombinant plasmids containing Xenopus laevis oocyte 5S or 28S/18S gene sequences to give [ 3 H]-labelled cRNA and [ 3 H]-labelled nick-translated plasmid DNA. Studies on the kinetics of hybridisation of plasmid probes with and without ribosomal gene sequences questioned the role of plasmid DNA for amplification of signal during gene localisation. Gene localisation was obtained with nick-translated plasmid DNA containing the 28S/18S ribosomal DNA insert after short exposure times, but poor results were obtained using a [ 3 H]-labelled cRNA probe transcribed from the plasmid with the 5S gene insert. (author)

  7. The Canonical E2Fs Are Required for Germline Development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Xiaozhen Yao

    2018-05-01

    Full Text Available A number of cell fate determinations, including cell division, cell differentiation, and programmed cell death, intensely occur during plant germline development. How these cell fate determinations are regulated remains largely unclear. The transcription factor E2F is a core cell cycle regulator. Here we show that the Arabidopsis canonical E2Fs, including E2Fa, E2Fb, and E2Fc, play a redundant role in plant germline development. The e2fa e2fb e2fc (e2fabc triple mutant is sterile, although its vegetative development appears normal. On the one hand, the e2fabc microspores undergo cell death during pollen mitosis. Microspores start to die at the bicellular stage. By the tricellular stage, the majority of the e2fabc microspores are degenerated. On the other hand, a wild type ovule often has one megaspore mother cell (MMC, whereas the majority of e2fabc ovules have two to three MMCs. The subsequent female gametogenesis of e2fabc mutant is aborted and the vacuole is severely impaired in the embryo sac. Analysis of transmission efficiency showed that the canonical E2Fs from both male and female gametophyte are essential for plant gametogenesis. Our study reveals that the canonical E2Fs are required for plant germline development, especially the pollen mitosis and the archesporial cell (AC-MMC transition.

  8. Maternal Metabolic Syndrome Programs Mitochondrial Dysfunction via Germline Changes across Three Generations

    Directory of Open Access Journals (Sweden)

    Jessica L. Saben

    2016-06-01

    Full Text Available Maternal obesity impairs offspring health, but the responsible mechanisms are not fully established. To address this question, we fed female mice a high-fat/high-sugar diet from before conception until weaning and then followed the outcomes in the next three generations of offspring, all fed a control diet. We observed that female offspring born to obese mothers had impaired peripheral insulin signaling that was associated with mitochondrial dysfunction and altered mitochondrial dynamic and complex proteins in skeletal muscle. This mitochondrial phenotype persisted through the female germline and was passed down to the second and third generations. Our results indicate that maternal programming of metabolic disease can be passed through the female germline and that the transfer of aberrant oocyte mitochondria to subsequent generations may contribute to the increased risk for developing insulin resistance.

  9. Inactivation of promoter 1B of APC causes partial gene silencing: evidence for a significant role of the promoter in regulation and causative of familial adenomatous polyposis

    DEFF Research Database (Denmark)

    Rohlin, A; Engwall, Y; Fritzell, K

    2011-01-01

    Familial adenomatous polyposis (FAP) is caused by germline mutations in the adenomatous polyposis coli (APC) gene. Two promoters, 1A and 1B, have been recognized in APC, and 1B is thought to have a minor role in the regulation of the gene. We have identified a novel deletion encompassing half of ...... homozygous inactivation of APC allowing for alternative genetic models as basis for adenoma formation.Oncogene advance online publication, 6 June 2011; doi:10.1038/onc.2011.201....... in a panel of 20 various normal tissues examined. In FAP-related tumors, the APC germline mutation is proposed to dictate the second hit. Mutations leaving two or three out of seven 20-amino-acid repeats in the central domain of APC intact seem to be required for tumorigenesis. We examined adenomas from...... mutation carriers in Family 1 for second hits in the entire gene without any findings, however, loss of the residual expression of the deleterious allele was observed. Three major conclusions of significant importance in relation to the function of APC can be drawn from this study; (i) germline...

  10. Familial isolated primary hyperparathyroidism associated with germline GCM2 mutations is more aggressive and has a lesser rate of biochemical cure.

    Science.gov (United States)

    El Lakis, Mustapha; Nockel, Pavel; Guan, Bin; Agarwal, Sunita; Welch, James; Simonds, William F; Marx, Stephen; Li, Yulong; Nilubol, Naris; Patel, Dhaval; Yang, Lily; Merkel, Roxanne; Kebebew, Electron

    2018-01-01

    Hereditary primary hyperparathyroidism may be syndromic or nonsyndromic (familial isolated hyperparathyroidism). Recently, germline activating mutations in the GCM2 gene were identified in a subset of familial isolated hyperparathyroidism. This study examined the clinical and biochemical characteristics and the treatment outcomes of GCM2 mutation-positive familial isolated hyperparathyroidism as compared to sporadic primary hyperparathyroidism. We performed a retrospective analysis of clinical features, parathyroid pathology, and operative outcomes in 18 patients with GCM2 germline mutations and 457 patients with sporadic primary hyperparathyroidism. Age at diagnosis, sex distribution, race/ethnicity, and preoperative serum calcium concentrations were similar between the 2 groups. The preoperative serum levels of intact parathyroid hormone was greater in patients with GCM2-associated primary hyperparathyroidism (239 ± 394 vs 136 ± 113, P = .005) as were rates of multigland disease and parathyroid carcinoma in the GCM2 group (78% vs 14.3%, P hyperparathyroidism patients have greater preoperative parathyroid hormone levels, a greater rate of multigland disease, a lesser rate of biochemical cure, and a substantial risk of parathyroid carcinoma. Knowledge of these clinical characteristics could optimize the surgical management of GCM2-associated familial isolated hyperparathyroidism. Published by Elsevier Inc.

  11. Alterations in tumour suppressor gene p53 in human gliomas from ...

    Indian Academy of Sciences (India)

    Unknown

    Alterations in the tumour suppressor p53 gene are among the most common defects seen in a variety of human cancers. ..... rangement of the EGF receptor gene in primary human brain tumors ... the INK4A gene in superficial bladder tumors.

  12. Germline Missense Changes in the APC Gene and Their Relationship to Disease.

    Science.gov (United States)

    Scott, Rodney J; Crooks, Renee; Rose, Lindy; Attia, John; Thakkinstian, Ammarin; Thomas, Lesley; Spigelman, Allan D; Meldrum, Cliff J

    2004-05-15

    Familial adenomatous polyposis (FAP) is characterized by the presence of hundreds to thousands of adenomas that carpet the entire colon and rectum. Nonsense and frameshift mutations in the adenomatous polyposis coli (APC) gene account for the majority of mutations identified to date and predispose primarily to the typical disease phenotype. Some APC mutations are associated with a milder form of the disease known as attenuated FAP. Virtually all mutations that have been described in the APC gene result in the formation of a premature stop codon and very little is known about missense mutations apart from a common Ashkenazi Jewish mutation (1307 K) and a British E1317Q missense change. The incidence of missense mutations in the APC gene has been underreported since the APC gene lends itself to analysis using an artificial transcription and translation assay known as the Protein Truncation Test (PTT) or the In Vitro Synthetic Protein assay (IVSP).In this report we have used denaturing high performance liquid chromatography to analyse the entire coding sequence of the APC gene to determine if a cohort of patients adhering to the diagnostic criteria of FAP to assess the frequency of missense mutations in the APC gene. Altogether 112 patients were studied and 22 missense mutations were identified. From the total of 22 missense changes, 13 were silent changes and the remaining 9 resulted in amino acid substitutions. One or more of these changes were identified multiple times in 62.5% of the population under study.The results reveal that missense mutations in the APC gene appear not to radically alter protein function but may be associated with more subtle processing of RNA transcripts which in turn could result in the expression of differentially spliced forms of the APC gene which may interfere with the functional activity of the APC protein.

  13. Germline Missense Changes in the APC Gene and Their Relationship to Disease

    Directory of Open Access Journals (Sweden)

    Scott Rodney J

    2004-05-01

    Full Text Available Abstract Familial adenomatous polyposis (FAP is characterized by the presence of hundreds to thousands of adenomas that carpet the entire colon and rectum. Nonsense and frameshift mutations in the adenomatous polyposis coli (APC gene account for the majority of mutations identified to date and predispose primarily to the typical disease phenotype. Some APC mutations are associated with a milder form of the disease known as attenuated FAP. Virtually all mutations that have been described in the APC gene result in the formation of a premature stop codon and very little is known about missense mutations apart from a common Ashkenazi Jewish mutation (1307 K and a British E1317Q missense change. The incidence of missense mutations in the APC gene has been underreported since the APC gene lends itself to analysis using an artificial transcription and translation assay known as the Protein Truncation Test (PTT or the In Vitro Synthetic Protein assay (IVSP. In this report we have used denaturing high performance liquid chromatography to analyse the entire coding sequence of the APC gene to determine if a cohort of patients adhering to the diagnostic criteria of FAP to assess the frequency of missense mutations in the APC gene. Altogether 112 patients were studied and 22 missense mutations were identified. From the total of 22 missense changes, 13 were silent changes and the remaining 9 resulted in amino acid substitutions. One or more of these changes were identified multiple times in 62.5% of the population under study. The results reveal that missense mutations in the APC gene appear not to radically alter protein function but may be associated with more subtle processing of RNA transcripts which in turn could result in the expression of differentially spliced forms of the APC gene which may interfere with the functional activity of the APC protein.

  14. Identification of DNA repair genes in the human genome

    International Nuclear Information System (INIS)

    Hoeijmakers, J.H.J.; van Duin, M.; Westerveld, A.; Yasui, A.; Bootsma, D.

    1986-01-01

    To identify human DNA repair genes we have transfected human genomic DNA ligated to a dominant marker to excision repair deficient xeroderma pigmentosum (XP) and CHO cells. This resulted in the cloning of a human gene, ERCC-1, that complements the defect of a UV- and mitomycin-C sensitive CHO mutant 43-3B. The ERCC-1 gene has a size of 15 kb, consists of 10 exons and is located in the region 19q13.2-q13.3. Its primary transcript is processed into two mRNAs by alternative splicing of an internal coding exon. One of these transcripts encodes a polypeptide of 297 aminoacids. A putative DNA binding protein domain and nuclear location signal could be identified. Significant AA-homology is found between ERCC-1 and the yeast excision repair gene RAD10. 58 references, 6 figures, 1 table

  15. Gene expression variability in human hepatic drug metabolizing enzymes and transporters.

    Directory of Open Access Journals (Sweden)

    Lun Yang

    Full Text Available Interindividual variability in the expression of drug-metabolizing enzymes and transporters (DMETs in human liver may contribute to interindividual differences in drug efficacy and adverse reactions. Published studies that analyzed variability in the expression of DMET genes were limited by sample sizes and the number of genes profiled. We systematically analyzed the expression of 374 DMETs from a microarray data set consisting of gene expression profiles derived from 427 human liver samples. The standard deviation of interindividual expression for DMET genes was much higher than that for non-DMET genes. The 20 DMET genes with the largest variability in the expression provided examples of the interindividual variation. Gene expression data were also analyzed using network analysis methods, which delineates the similarities of biological functionalities and regulation mechanisms for these highly variable DMET genes. Expression variability of human hepatic DMET genes may affect drug-gene interactions and disease susceptibility, with concomitant clinical implications.

  16. Expression of human Piwi-like genes is associated with prognosis for soft tissue sarcoma patients

    International Nuclear Information System (INIS)

    Greither, Thomas; Taubert, Helge; Koser, Franziska; Kappler, Matthias; Bache, Matthias; Lautenschläger, Christine; Göbel, Steffen; Holzhausen, Hans-Jürgen; Wach, Sven; Würl, Peter

    2012-01-01

    Argonaute genes are essential for RNA interference, stem cell maintenance and differentiation. The Piwi-like genes, a subclass of the Argonaute genes, are expressed mainly in the germline. These genes may be re-expressed in tumors, and expression of the Piwi-like genes is associated with prognosis in several types of tumors. We measured the expression of Piwi-like mRNAs (Piwi-like 2–4) in 125 soft tissue sarcoma (STS) samples by qPCRs. Statistical tests were applied to study the correlation of expression levels with tumor-specific survival for STS patients. In multivariate Cox’s regression analyses, we showed that low Piwi-like 2 and Piwi-like 4 mRNA expression were significantly associated with a worse prognosis (RR = 1.87; p = 0.032 and RR = 1.82; p = 0.039). Low expression of both genes was associated with a 2.58-fold increased risk of tumor-related death (p = 0.01). Piwi-like 4 and combined Piwi-like 2 and 4 mRNA levels correlated significantly with prognosis (RR = 3.53; p = 0.002 and RR = 5.23; p = 0.004) only for female but not for male patients. However, combined low Piwi-like 2 and 3 transcript levels were associated with worse survival (RR = 5.90; p = 0.02) for male patients. In this study, we identified a significant association between the expression of Piwi-like 2 and 4 mRNAs and the tumor-specific survival of soft tissue sarcoma patients. Furthermore, a connection between sex and the impact of Piwi-like mRNA expressions on STS patients’ prognosis was shown for the first time

  17. SSX2 is a novel DNA-binding protein that antagonizes polycomb group body formation and gene repression

    DEFF Research Database (Denmark)

    Gjerstorff, Morten Frier; Relster, Mette Marie; Greve, Katrine Buch Viden

    2014-01-01

    Polycomb group (PcG) complexes regulate cellular identity through epigenetic programming of chromatin. Here, we show that SSX2, a germline-specific protein ectopically expressed in melanoma and other types of human cancers, is a chromatin-associated protein that antagonizes BMI1 and EZH2 PcG body...... formation and derepresses PcG target genes. SSX2 further negatively regulates the level of the PcG-associated histone mark H3K27me3 in melanoma cells, and there is a clear inverse correlation between SSX2/3 expression and H3K27me3 in spermatogenesis. However, SSX2 does not affect the overall composition...

  18. Evolutionary Conservation in Genes Underlying Human Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Lisa Michelle Ogawa

    2014-05-01

    Full Text Available Many psychiatric diseases observed in humans have tenuous or absent analogs in other species. Most notable among these are schizophrenia and autism. One hypothesis has posited that these diseases have arisen as a consequence of human brain evolution, for example, that the same processes that led to advances in cognition, language, and executive function also resulted in novel diseases in humans when dysfunctional. Here, the molecular evolution of genes associated with these and other psychiatric disorders are compared among species. Genes associated with psychiatric disorders are drawn from the literature and orthologous sequences are collected from eleven primate species (human, chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, baboon, marmoset, squirrel monkey, and galago and thirty one non-primate mammalian species. Evolutionary parameters, including dN/dS, are calculated for each gene and compared between disease classes and among species, focusing on humans and primates compared to other mammals and on large-brained taxa (cetaceans, rhinoceros, walrus, bear, and elephant compared to their small-brained sister species. Evidence of differential selection in primates supports the hypothesis that schizophrenia and autism are a cost of higher brain function. Through this work a better understanding of the molecular evolution of the human brain, the pathophysiology of disease, and the genetic basis of human psychiatric disease is gained.

  19. Expression of germline markers in three species of amphioxus supports a preformation mechanism of germ cell development in cephalochordates

    Science.gov (United States)

    2013-01-01

    Background In a previous study, we showed that the cephalochordate amphioxus Branchiostoma floridae has localized maternal transcripts of conserved germ cell markers Vasa and Nanos in its early embryos. These results provided strong evidence to support a preformation mechanism for primordial germ cell (PGC) development in B. floridae. Results In this study, we further characterize the expression of B. floridae homologs of Piwi and Tudor, which play important roles in germline development in diverse metazoan animals. We show that maternal mRNA of one of the identified Piwi-like homologs, Bf-Piwil1, also colocalizes with Vasa in the vegetal germ plasm and has zygotic expression in both the putative PGCs and the tail bud, suggesting it may function in both germline and somatic stem cells. More interestingly, one Tudor family gene, Bf-Tdrd7, is only expressed maternally and colocalizes with Vasa in germ plasm, suggesting that it may function exclusively in germ cell specification. To evaluate the conservation of the preformation mechanism among amphioxus species, we further analyze Vasa, Nanos, Piwil1, and Tdrd7 expression in two Asian amphioxus species, B. belcheri and B. japonicum. Their maternal transcripts all localize in similar patterns to those seen in B. floridae. In addition, we labeled putative PGCs with Vasa antibody to trace their dynamic distribution in developing larvae. Conclusions We identify additional germ plasm components in amphioxus and demonstrate the molecular distinction between the putative germline stem cells and somatic stem cells. Moreover, our results suggest that preformation may be a conserved mechanism for PGC specification among Branchiostoma species. Our Vasa antibody staining results suggest that after the late neurula stage, amphioxus PGCs probably proliferate with the tail bud cells during posterior elongation and are deposited near the forming myomere boundaries. Subsequently, these PGCs would concentrate at the ventral tip of the

  20. No germline mutations in the histone acetyltransferase gene EP300 in BRCA1 and BRCA2 negative families with breast cancer and gastric, pancreatic, or colorectal cancer

    International Nuclear Information System (INIS)

    Campbell, Ian G; Choong, David; Chenevix-Trench, Georgia

    2004-01-01

    Mutations in BRCA1, BRCA2, ATM, TP53, CHK2 and PTEN account for many, but not all, multiple-case breast and ovarian cancer families. The histone acetyltransferase gene EP300 may function as a tumour suppressor gene because it is sometimes somatically mutated in breast, colorectal, gastric and pancreatic cancers, and is located on a region of chromosome 22 that frequently undergoes loss of heterozygosity in many cancer types. We hypothesized that germline mutations in EP300 may account for some breast cancer families that include cases of gastric, pancreatic and/or colorectal cancer. We screened the entire coding region of EP300 for mutations in the youngest affected members of 23 non-BRCA1/BRCA2 breast cancer families with at least one confirmed case of gastric, pancreatic and/or colorectal cancer. These families were ascertained in Australia through the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer. Denaturing HPLC analysis identified a heterozygous alteration at codon 211, specifically a GGC to AGC (glycine to serine) alteration, in two individuals. This conservative amino acid change was not within any known functional domains of EP300. The frequency of the Ser211 variant did not differ significanlty between a series of 352 breast cancer patients (4.0%) and 254 control individuals (2.8%; P = 0.5). The present study does not support a major role for EP300 mutations in breast and ovarian cancer families with a history of gastric, pancreatic and/or colorectal cancer

  1. Frequency of CDH1 germline mutations in gastric carcinoma coming from high- and low-risk areas: metanalysis and systematic review of the literature

    International Nuclear Information System (INIS)

    Corso, Giovanni; Marrelli, Daniele; Pascale, Valeria; Vindigni, Carla; Roviello, Franco

    2012-01-01

    The frequency of E-cadherin germline mutations in countries with different incidence rates for gastric carcinoma has not been well established. The goal of this study was to assess the worldwide frequency of CDH1 germline mutations in gastric cancers coming from low- and high-risk areas. English articles using MEDLINE access (from 1998 to 2011). Search terms included CDH1, E-cadherin, germline mutation, gastric cancer, hereditary, familial and diffuse histotype. The study included all E-cadherin germline mutations identified in gastric cancer patients; somatic mutations and germline mutations reported in other tumors were excluded. The method of this study was scheduled in accordance with the 'PRISMA statement for reporting systematic reviews and meta-analyses'. Countries were classified as low- or middle/high risk-areas for gastric carcinoma incidence. Statistical analysis was performed to correlate the CDH1 mutation frequency with gastric cancer incidence areas. A total of 122 E-cadherin germline mutations have been identified; the majority (87.5%) occurred in gastric cancers coming from low-risk areas. In high-risk areas, we identified 16 mutations in which missense mutations were predominant. (68.8%). We verified a significant association between the mutation frequency and the gastric cancer risk area (p < 0.001: overall identified mutations in low- vs. middle/high-risk areas). E-cadherin genetic screenings performed in low-risk areas for gastric cancer identified a higher frequency of CDH1 germline mutations. This data could open new approaches in the gastric cancer prevention test; before proposing a proband candidate for the CDH1 genetic screening, geographic variability, alongside the family history should be considered

  2. Human transporter database: comprehensive knowledge and discovery tools in the human transporter genes.

    Directory of Open Access Journals (Sweden)

    Adam Y Ye

    Full Text Available Transporters are essential in homeostatic exchange of endogenous and exogenous substances at the systematic, organic, cellular, and subcellular levels. Gene mutations of transporters are often related to pharmacogenetics traits. Recent developments in high throughput technologies on genomics, transcriptomics and proteomics allow in depth studies of transporter genes in normal cellular processes and diverse disease conditions. The flood of high throughput data have resulted in urgent need for an updated knowledgebase with curated, organized, and annotated human transporters in an easily accessible way. Using a pipeline with the combination of automated keywords query, sequence similarity search and manual curation on transporters, we collected 1,555 human non-redundant transporter genes to develop the Human Transporter Database (HTD (http://htd.cbi.pku.edu.cn. Based on the extensive annotations, global properties of the transporter genes were illustrated, such as expression patterns and polymorphisms in relationships with their ligands. We noted that the human transporters were enriched in many fundamental biological processes such as oxidative phosphorylation and cardiac muscle contraction, and significantly associated with Mendelian and complex diseases such as epilepsy and sudden infant death syndrome. Overall, HTD provides a well-organized interface to facilitate research communities to search detailed molecular and genetic information of transporters for development of personalized medicine.

  3. A germline RET proto-oncogene mutation in multiple members of an ...

    African Journals Online (AJOL)

    Background: Multiple endocrine neoplasia type 2A (MEN2A) is a rare cancer associated-syndrome, inherited in an autosomal dominant fashion and caused by germline mutation in RET proto-oncogene. Clinical diagnosis depends on the manifestation of two or more certain endocrine tumors in an individual, such as ...

  4. Asynchronous DNA replication within the human β-globin gene locus

    International Nuclear Information System (INIS)

    Epner, E.; Forrester, W.C.; Groudine, M.

    1988-01-01

    The timing of DNA replication of the human β-globin gene locus has been studied by blot hybridization of newly synthesized BrdUrd-substituted DNA from cells in different stages of the S phase. Using probes that span >120 kilobases across the human β-globin gene locus, the authors show that the majority of this domain replicates in early S phase in the human erythroleukemia cell line K562 and in middle-to-late S phase in the lymphoid cell line Manca. However, in K562 cells three small regions display a strikingly different replication pattern than adjacent sequences. These islands, located in the inter-γ-globin gene region and approximately 20 kilobases 5' to the ε-globin gene and 20 kilobases 3' to the β-globin gene, replicate later and throughout S phase. A similar area is also present in the α-globin gene region in K562 cells. They suggest that these regions may represent sites of termination of replication forks

  5. Systematic identification of human housekeeping genes possibly useful as references in gene expression studies.

    Science.gov (United States)

    Caracausi, Maria; Piovesan, Allison; Antonaros, Francesca; Strippoli, Pierluigi; Vitale, Lorenza; Pelleri, Maria Chiara

    2017-09-01

    The ideal reference, or control, gene for the study of gene expression in a given organism should be expressed at a medium‑high level for easy detection, should be expressed at a constant/stable level throughout different cell types and within the same cell type undergoing different treatments, and should maintain these features through as many different tissues of the organism. From a biological point of view, these theoretical requirements of an ideal reference gene appear to be best suited to housekeeping (HK) genes. Recent advancements in the quality and completeness of human expression microarray data and in their statistical analysis may provide new clues toward the quantitative standardization of human gene expression studies in biology and medicine, both cross‑ and within‑tissue. The systematic approach used by the present study is based on the Transcriptome Mapper tool and exploits the automated reassignment of probes to corresponding genes, intra‑ and inter‑sample normalization, elaboration and representation of gene expression values in linear form within an indexed and searchable database with a graphical interface recording quantitative levels of expression, expression variability and cross‑tissue width of expression for more than 31,000 transcripts. The present study conducted a meta‑analysis of a pool of 646 expression profile data sets from 54 different human tissues and identified actin γ 1 as the HK gene that best fits the combination of all the traditional criteria to be used as a reference gene for general use; two ribosomal protein genes, RPS18 and RPS27, and one aquaporin gene, POM121 transmembrane nucleporin C, were also identified. The present study provided a list of tissue‑ and organ‑specific genes that may be most suited for the following individual tissues/organs: Adipose tissue, bone marrow, brain, heart, kidney, liver, lung, ovary, skeletal muscle and testis; and also provides in these cases a representative

  6. Localization of early germ cells in a stony coral, Euphyllia ancora: potential implications for a germline stem cell system in coral gametogenesis

    Science.gov (United States)

    Shikina, Shinya; Chung, Yi-Jou; Wang, Hsiang-Ming; Chiu, Yi-Ling; Shao, Zih-Fang; Lee, Yan-Horn; Chang, Ching-Fong

    2015-06-01

    Most corals exhibit annual or multiple gametogenic cycles. Thus far, coral gametogenesis has been studied in many species and locations during the past three decades; however, currently, only a few papers exist that describe the origin of germ cells, such as germline stem cells (GSCs), which support the continuous production of gametes in every reproductive cycle. To address this issue, in this study, we focused on and identified piwi gene, which has been used as a marker of germline cells, including GSCs, in various metazoans, in a scleractinian coral, Euphyllia ancora. Reverse-transcription PCR and Western blotting analyses revealed that E. ancora piwi-like ( Eapiwi) is expressed in mesentery tissues where the sites of gametogenesis are located for both sexes. Immunohistochemistry with a specific antibody against Eapiwi revealed strong immunoreactivity in the spermatogonia in males and in the oogonia and early oocytes in females, demonstrating that Eapiwi could be used as an early germ cell marker in E. ancora. Subsequent immunohistochemical analyses regarding the spatial and temporal distribution patterns of early germ cells in mesentery tissues revealed that early germ cells were present throughout the year in the mesentery tissue we examined, regardless of the sexual reproductive cycle. In particular, small numbers of early germ cells were observed in specific sites of mesentery tissues with fully matured gonads in both sexes. These early germ cells were not released together with mature gametes during the spawning period and remained in the mesentery tissues. These results suggested that these early germ cells most likely serve as a reservoir of germline cells and that some of these cells would produce differentiated germ cells for the upcoming sexual reproduction period; hence, these cells would function as GSCs. Our data provide new information for understanding continuous gamete production in corals.

  7. Congenital Neonatal Hyperthyroidism Caused by Germline Mutations in the TSH Receptor Gene: Case Report and Review of the Literature

    Science.gov (United States)

    Chester, Jeremy; Rotenstein, Deborah; Ringkananont, Usanee; Steuer, Guy; Carlin, Beatrice; Stewart, Lindsay; Grasberger, Helmut; Refetoff, Samuel

    2018-01-01

    Neonatal hyperthyroidism, a rare and serious disorder occurs in two forms. An autoimmune form associated with maternal Graves’ disease, resulting from transplacental passage of maternal thyroid-stimulating antibodies, and a nonautoimmune form, resulting from mutations in the stimulatory G protein or the thyrotropin receptor (TSHR) causing constitutive activation of intracellular signaling cascades. To date, 29 separate cases of thyrotoxicosis caused by germline mutations of the TSHR have been documented. These cases have expressed themselves in a range of clinical consequences. This report describes a new case of a newborn with nonautoimmune hyperthyroidism secondary to a constitutively active TSHR mutation (S281N) whose clinical course was complicated by severe respiratory compromise. Typical clinical findings in this disorder are discussed by a review of all previously published cases. PMID:18655531

  8. Human gene therapy and imaging in neurological diseases

    International Nuclear Information System (INIS)

    Jacobs, Andreas H.; Winkler, Alexandra; Castro, Maria G.; Lowenstein, Pedro

    2005-01-01

    Molecular imaging aims to assess non-invasively disease-specific biological and molecular processes in animal models and humans in vivo. Apart from precise anatomical localisation and quantification, the most intriguing advantage of such imaging is the opportunity it provides to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Further, molecular imaging can be used to address basic scientific questions, e.g. transcriptional regulation, signal transduction or protein/protein interaction, and will be essential in developing treatment strategies based on gene therapy. Most importantly, molecular imaging is a key technology in translational research, helping to develop experimental protocols which may later be applied to human patients. Over the past 20 years, imaging based on positron emission tomography (PET) and magnetic resonance imaging (MRI) has been employed for the assessment and ''phenotyping'' of various neurological diseases, including cerebral ischaemia, neurodegeneration and brain gliomas. While in the past neuro-anatomical studies had to be performed post mortem, molecular imaging has ushered in the era of in vivo functional neuro-anatomy by allowing neuroscience to image structure, function, metabolism and molecular processes of the central nervous system in vivo in both health and disease. Recently, PET and MRI have been successfully utilised together in the non-invasive assessment of gene transfer and gene therapy in humans. To assess the efficiency of gene transfer, the same markers are being used in animals and humans, and have been applied for phenotyping human disease. Here, we review the imaging hallmarks of focal and disseminated neurological diseases, such as cerebral ischaemia, neurodegeneration and glioblastoma multiforme, as well as the attempts to translate gene therapy's experimental knowledge into clinical applications and the way in which this process is being promoted through the use of

  9. Human DNA repair and recombination genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs

  10. SLX-1 is required for maintaining genomic integrity and promoting meiotic noncrossovers in the Caenorhabditis elegans germline.

    Directory of Open Access Journals (Sweden)

    Takamune T Saito

    2012-08-01

    Full Text Available Although the SLX4 complex, which includes structure-specific nucleases such as XPF, MUS81, and SLX1, plays important roles in the repair of several kinds of DNA damage, the function of SLX1 in the germline remains unknown. Here we characterized the endonuclease activities of the Caenorhabditis elegans SLX-1-HIM-18/SLX-4 complex co-purified from human 293T cells and determined SLX-1 germline function via analysis of slx-1(tm2644 mutants. SLX-1 shows a HIM-18/SLX-4-dependent endonuclease activity toward replication forks, 5'-flaps, and Holliday junctions. slx-1 mutants exhibit hypersensitivity to UV, nitrogen mustard, and camptothecin, but not gamma irradiation. Consistent with a role in DNA repair, recombination intermediates accumulate in both mitotic and meiotic germ cells in slx-1 mutants. Importantly, meiotic crossover distribution, but not crossover frequency, is altered on chromosomes in slx-1 mutants compared to wild type. This alteration is not due to changes in either the levels or distribution of double-strand breaks (DSBs along chromosomes. We propose that SLX-1 is required for repair at stalled or collapsed replication forks, interstrand crosslink repair, and nucleotide excision repair during mitosis. Moreover, we hypothesize that SLX-1 regulates the crossover landscape during meiosis by acting as a noncrossover-promoting factor in a subset of DSBs.

  11. Sequences of the joining region genes for immunoglobulin heavy chains and their role in generation of antibody diversity.

    OpenAIRE

    Gough, N M; Bernard, O

    1981-01-01

    To assess the contribution to immunoglobulin heavy chain diversity made by recombination between variable region (VH) genes and joining region (JH) genes, we have determined the sequence of about 2000 nucleotides spanning the rearranged JH gene cluster associated with the VH gene expressed in plasmacytoma HPC76. The active VH76 gene has recombined with the second germ-line JH gene. The region we have studied contains two other JH genes, designated JH3 and JH4. No other JH gene was found withi...

  12. Cloning and characterization of a mouse gene with homology to the human von Hippel-Lindau disease tumor suppressor gene: implications for the potential organization of the human von Hippel-Lindau disease gene.

    Science.gov (United States)

    Gao, J; Naglich, J G; Laidlaw, J; Whaley, J M; Seizinger, B R; Kley, N

    1995-02-15

    The human von Hippel-Lindau disease (VHL) gene has recently been identified and, based on the nucleotide sequence of a partial cDNA clone, has been predicted to encode a novel protein with as yet unknown functions [F. Latif et al., Science (Washington DC), 260: 1317-1320, 1993]. The length of the encoded protein and the characteristics of the cellular expressed protein are as yet unclear. Here we report the cloning and characterization of a mouse gene (mVHLh1) that is widely expressed in different mouse tissues and shares high homology with the human VHL gene. It predicts a protein 181 residues long (and/or 162 amino acids, considering a potential alternative start codon), which across a core region of approximately 140 residues displays a high degree of sequence identity (98%) to the predicted human VHL protein. High stringency DNA and RNA hybridization experiments and protein expression analyses indicate that this gene is the most highly VHL-related mouse gene, suggesting that it represents the mouse VHL gene homologue rather than a related gene sharing a conserved functional domain. These findings provide new insights into the potential organization of the VHL gene and nature of its encoded protein.

  13. Germline mutation of CBL is associated with moyamoya disease in a child with juvenile myelomonocytic leukemia and Noonan syndrome-like disorder.

    Science.gov (United States)

    Hyakuna, Nobuyuki; Muramatsu, Hideki; Higa, Takeshi; Chinen, Yasutsugu; Wang, Xinan; Kojima, Seiji

    2015-03-01

    Germline mutations in CBL have been identified in patients with Noonan syndrome-like phenotypes, while juvenile myelomonocytic leukemia (JMML) harbors duplication of a germline CBL, resulting in acquired isodisomy. The association between moyamoya disease and Noonan syndrome carrying a PTPN11 mutation has recently been reported. We present a patient with JMML who developed moyamoya disease and neovascular glaucoma. Our patient exhibited a Noonan syndrome-like phenotype. Genetic analysis revealed acquired isodisomy and a germline heterozygous mutation in CBL. This is a rare case of CBL mutation associated with moyamoya disease. Prolonged RAS pathway signaling may cause disruption of cerebrovascular development. © 2014 Wiley Periodicals, Inc.

  14. Cloning and sequencing of the gene for human β-casein

    International Nuclear Information System (INIS)

    Loennerdal, B.; Bergstroem, S.; Andersson, Y.; Hialmarsson, K.; Sundgyist, A.; Hernell, O.

    1990-01-01

    Human β-casein is a major protein in human milk. This protein is part of the casein micelle and has been suggested to have several physiological functions in the newborn. Since there is limited information on βcasein and the factors that affect its concentration in human milk, the authors have isolated and sequenced the gene for this protein. A human mammary gland cDNA library (Clontech) in gt 11 was screened by plaque hy-hybridization using a 42-mer synthetic 32 p-labelled oligo-nucleotide. Positive clones were identified and isolated, DNA was prepared and the gene isolated by cleavage with EcoR1. Following subcloning (PUC18), restriction mapping and Southern blotting, DNA for sequencing was prepared. The gene was sequenced by the dideoxy method. Human β-casein has 212 amino acids and the amino acid sequence deducted from the nucleotide sequence is to 91% identical to the published sequence for human β-casein show a high degree of conservation at the leader peptide and the highly phosphorylated sequences, but also deletions and divergence at several positions. These results provide insight into the structure of the human β-casein gene and will facilitate studies on factors affecting its expression

  15. Methylation Analysis of DNA Mismatch Repair Genes Using DNA Derived from the Peripheral Blood of Patients with Endometrial Cancer: Epimutation in Endometrial Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Takashi Takeda

    2016-10-01

    Full Text Available Germline mutation of DNA mismatch repair (MMR genes is a cause of Lynch syndrome. Methylation of MutL homolog 1 (MLH1 and MutS homolog 2 (MSH2 has been detected in peripheral blood cells of patients with colorectal cancer. This methylation is referred to as epimutation. Methylation of these genes has not been studied in an unselected series of endometrial cancer cases. Therefore, we examined methylation of MLH1, MSH2, and MSH6 promoter regions of peripheral blood cells in 206 patients with endometrial cancer using a methylation-specific polymerase chain reaction (MSP. Germline mutation of MMR genes, microsatellite instability (MSI, and immunohistochemistry (IHC were also analyzed in each case with epimutation. MLH1 epimutation was detected in a single patient out of a total of 206 (0.49%—1 out of 58 (1.72% with an onset age of less than 50 years. The patient with MLH1 epimutation showed high level MSI (MSI-H, loss of MLH1 expression and had developed endometrial cancer at 46 years old, complicated with colorectal cancer. No case had epimutation of MSH2 or MSH6. The MLH1 epimutation detected in a patient with endometrial cancer may be a cause of endometrial carcinogenesis. This result indicates that it is important to check epimutation in patients with endometrial cancer without a germline mutation of MMR genes.

  16. Clone and expression of human transferrin receptor gene: a marker gene for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Li Li; Liu Lizhi; Lv Yanchun; Liu Xuewen; Cui Chunyan; Wu Peihong; Liu Qicai; Ou Shanxing

    2007-01-01

    Objective: To clone human transferrin receptor (hTfR) gene and construct expression vector producing recombination protein. Methods: Human transferrin receptor gene cDNA was amplified by RT-PCR from human embryonic liver and lung tissue. Recombinant pcDNA3-hTfR and pEGFP-Cl-hTfR plasmids were constructed and confirmed by DNA sequencing. These plasmids were stably transfected into the HEK293 cells. The protein expression in vitro was confirmed by Western Blot. The efficiency of expression and the location of hTfR were also investigated by fluorescence microscopy and confocal fluorescence microscopy. Results: The full length cDNA of hTfR gene (2332 bp) was cloned and sequenced. The hTfR (190 000) was overexpressed in transfected HEK293 cells by Western blot analysis. Fluorescence micrographs displayed that the hTfR was expressed at high level and located predominantly in the cell surface. Conclusions: Human transferrin receptor (hTfR) gene has been successfully cloned and obtained high-level expression in HEK293 cells, and the recombination protein of hTfR distributed predominantly in the cell membrane. (authors)

  17. Transgenic rabbits as a model organism for production of human clotting factor VIII

    International Nuclear Information System (INIS)

    Vasicek, D.; Chrenek, P.; Makarevich, A.; Bauer, M.; Jurcik, R.; Suvegova, K.; Rafay, J.; Bulla, J.; Hetenyi, L.; Erickson, J.; Paleyanda, R.K.

    2005-01-01

    Human clotting factor VIII (hFVIII) is a very complex and large protein whose expression is difficult, as hFVIII requires extensive post-translational modification to be biologically active. This paper reports the generation of transgenic rabbits as a model species for testing the expression of hFVIII in the mammary gland. For micro-injection, a fusion gene construct was used, consisting of 2.5 kb murine whey acidic protein (mWAP) promoter, 7.2 kb cDNA of hFVIII, and 4.6 kb of 3' flanking sequences of the mWAP gene. from 130 micro-injected zygotes transferred into recipients, 30 offspring were delivered. The pups were screened for the transgene by PCR, using DNA isolated from the ear, and results were confirmed by Southern blot analysis. The transgene was identified in one female founder animal, and it was transmitted to the offspring in a Mendelian fashion, thus demonstrating stable integration of the gene construct into the germline of the transgenic rabbits. (author)

  18. Analysis of APOBEC3A/3B germline deletion polymorphism in breast, cervical and oral cancers from South India and its impact on miRNA regulation.

    Science.gov (United States)

    Revathidevi, Sundaramoorthy; Manikandan, Mayakannan; Rao, Arunagiri Kuha Deva Magendhra; Vinothkumar, Vilvanathan; Arunkumar, Ganesan; Rajkumar, Kottayasamy Seenivasagam; Ramani, Rajendran; Rajaraman, Ramamurthy; Ajay, Chandrasekar; Munirajan, Arasambattu Kannan

    2016-09-01

    Breast cancer and cervical cancer are the leading causes of death in women worldwide as well as in India, whilst oral cancer is the top most common cancer among Asian especially in Indian men in terms of both incidence and mortality rate. Genetic factors determining the predisposition to cancer are being explored to identify the signature genetic variations associated with these cancers. Recently, a germline deletion polymorphism in APOBEC3 gene cluster which completely deletes APOBEC3B coding region has been studied for its association with cancer risk. We screened the germline deletion polymorphism in 409 cancer patients (224 breast cancer, 88 cervical cancer and 97 oral cancer samples), 478 controls and 239 cervical cancer tissue DNAs of South Indian origin. The results suggest that the APOBEC3A/3B deletion polymorphism is not significantly associated with cancer risk in our study population (OR 0.739, 95 % CI, p value 0.91457). Considering the viral restriction property of APOBEC3s, we also screened cervical cancer tissue DNAs for the human papilloma virus infection. We observed a gradual increase in the frequency of HPV16 infection from AA/BB cases (66.86 %) to AA/-- cases (71.43) which signifies the impact of this deletion polymorphism in HPV infection. In addition, we performed in silico analysis to understand the effect of this polymorphism on miRNA regulation of the APOBEC3A/3B fusion transcript. Only 8 APOBEC3B targeting miRNAs were observed to regulate the fusion transcript of which miR-34b-3p and miR-138-5p were found to be frequently downregulated in cancers suggesting miRNA-mediated deregulation of APOBEC3A expression in cancer patients harbouring this particular deletion polymorphism.

  19. Using reporter gene assays to identify cis regulatory differences between humans and chimpanzees.

    Science.gov (United States)

    Chabot, Adrien; Shrit, Ralla A; Blekhman, Ran; Gilad, Yoav

    2007-08-01

    Most phenotypic differences between human and chimpanzee are likely to result from differences in gene regulation, rather than changes to protein-coding regions. To date, however, only a handful of human-chimpanzee nucleotide differences leading to changes in gene regulation have been identified. To hone in on differences in regulatory elements between human and chimpanzee, we focused on 10 genes that were previously found to be differentially expressed between the two species. We then designed reporter gene assays for the putative human and chimpanzee promoters of the 10 genes. Of seven promoters that we found to be active in human liver cell lines, human and chimpanzee promoters had significantly different activity in four cases, three of which recapitulated the gene expression difference seen in the microarray experiment. For these three genes, we were therefore able to demonstrate that a change in cis influences expression differences between humans and chimpanzees. Moreover, using site-directed mutagenesis on one construct, the promoter for the DDA3 gene, we were able to identify three nucleotides that together lead to a cis regulatory difference between the species. High-throughput application of this approach can provide a map of regulatory element differences between humans and our close evolutionary relatives.

  20. Expression analysis of asthma candidate genes during human and murine lung development.

    Science.gov (United States)

    Melén, Erik; Kho, Alvin T; Sharma, Sunita; Gaedigk, Roger; Leeder, J Steven; Mariani, Thomas J; Carey, Vincent J; Weiss, Scott T; Tantisira, Kelan G

    2011-06-23

    Little is known about the role of most asthma susceptibility genes during human lung development. Genetic determinants for normal lung development are not only important early in life, but also for later lung function. To investigate the role of expression patterns of well-defined asthma susceptibility genes during human and murine lung development. We hypothesized that genes influencing normal airways development would be over-represented by genes associated with asthma. Asthma genes were first identified via comprehensive search of the current literature. Next, we analyzed their expression patterns in the developing human lung during the pseudoglandular (gestational age, 7-16 weeks) and canalicular (17-26 weeks) stages of development, and in the complete developing lung time series of 3 mouse strains: A/J, SW, C57BL6. In total, 96 genes with association to asthma in at least two human populations were identified in the literature. Overall, there was no significant over-representation of the asthma genes among genes differentially expressed during lung development, although trends were seen in the human (Odds ratio, OR 1.22, confidence interval, CI 0.90-1.62) and C57BL6 mouse (OR 1.41, CI 0.92-2.11) data. However, differential expression of some asthma genes was consistent in both developing human and murine lung, e.g. NOD1, EDN1, CCL5, RORA and HLA-G. Among the asthma genes identified in genome wide association studies, ROBO1, RORA, HLA-DQB1, IL2RB and PDE10A were differentially expressed during human lung development. Our data provide insight about the role of asthma susceptibility genes during lung development and suggest common mechanisms underlying lung morphogenesis and pathogenesis of respiratory diseases.

  1. An Evolutionary Genomic Approach to Identify Genes Involved in Human Birth Timing

    Science.gov (United States)

    Orabona, Guilherme; Morgan, Thomas; Haataja, Ritva; Hallman, Mikko; Puttonen, Hilkka; Menon, Ramkumar; Kuczynski, Edward; Norwitz, Errol; Snegovskikh, Victoria; Palotie, Aarno; Fellman, Vineta; DeFranco, Emily A.; Chaudhari, Bimal P.; McGregor, Tracy L.; McElroy, Jude J.; Oetjens, Matthew T.; Teramo, Kari; Borecki, Ingrid; Fay, Justin; Muglia, Louis

    2011-01-01

    Coordination of fetal maturation with birth timing is essential for mammalian reproduction. In humans, preterm birth is a disorder of profound global health significance. The signals initiating parturition in humans have remained elusive, due to divergence in physiological mechanisms between humans and model organisms typically studied. Because of relatively large human head size and narrow birth canal cross-sectional area compared to other primates, we hypothesized that genes involved in parturition would display accelerated evolution along the human and/or higher primate phylogenetic lineages to decrease the length of gestation and promote delivery of a smaller fetus that transits the birth canal more readily. Further, we tested whether current variation in such accelerated genes contributes to preterm birth risk. Evidence from allometric scaling of gestational age suggests human gestation has been shortened relative to other primates. Consistent with our hypothesis, many genes involved in reproduction show human acceleration in their coding or adjacent noncoding regions. We screened >8,400 SNPs in 150 human accelerated genes in 165 Finnish preterm and 163 control mothers for association with preterm birth. In this cohort, the most significant association was in FSHR, and 8 of the 10 most significant SNPs were in this gene. Further evidence for association of a linkage disequilibrium block of SNPs in FSHR, rs11686474, rs11680730, rs12473870, and rs1247381 was found in African Americans. By considering human acceleration, we identified a novel gene that may be associated with preterm birth, FSHR. We anticipate other human accelerated genes will similarly be associated with preterm birth risk and elucidate essential pathways for human parturition. PMID:21533219

  2. Structure of gene and pseudogenes of human apoferritin H

    Energy Technology Data Exchange (ETDEWEB)

    Costanzo, F; Colombo, M; Staempfli, S; Santoro, C; Marone, M; Frank, K; Delius, H; Cortese, R

    1986-01-24

    Ferritin is composed of two subunits, H and L. cDNA's coding for these proteins from human liver, lymphocytes and from the monocyte-like cell line U937 have been cloned and sequenced. Southern blot analysis on total human DNA reveals that there are many DNA segments hybridizing to the apoferritin H and L cDNA probes. In view of the tissue heterogeneity of ferritin molecules, it appeared possible that apoferritin molecules could be coded by a family of genes differentially expressed in various tissues. In this paper, the authors describe the cloning and sequencing of the gene coding for human apoferritin H. This gene has three introns; the exon sequence is identical to that of cDNAs isolated from human liver, lymphocytes, HeLa cells and endothelial cells. In addition they show that at least 15 intronless pseudogenes exist, with features suggesting that there were originated by reverse transcription and insertion. On the basis of these results they conclude that only one gene is responsible for the synthesis of the majority of apoferritin H mRNA in various tissues examined, and that probably all the other DNA segments hybridizing with apoferritin cDNA are pseudogenes.

  3. Gene expression in the aging human brain: an overview.

    Science.gov (United States)

    Mohan, Adith; Mather, Karen A; Thalamuthu, Anbupalam; Baune, Bernhard T; Sachdev, Perminder S

    2016-03-01

    The review aims to provide a summary of recent developments in the study of gene expression in the aging human brain. Profiling differentially expressed genes or 'transcripts' in the human brain over the course of normal aging has provided valuable insights into the biological pathways that appear activated or suppressed in late life. Genes mediating neuroinflammation and immune system activation in particular, show significant age-related upregulation creating a state of vulnerability to neurodegenerative and neuropsychiatric disease in the aging brain. Cellular ionic dyshomeostasis and age-related decline in a host of molecular influences on synaptic efficacy may underlie neurocognitive decline in later life. Critically, these investigations have also shed light on the mobilization of protective genetic responses within the aging human brain that help determine health and disease trajectories in older age. There is growing interest in the study of pre and posttranscriptional regulators of gene expression, and the role of noncoding RNAs in particular, as mediators of the phenotypic diversity that characterizes human brain aging. Gene expression studies in healthy brain aging offer an opportunity to unravel the intricately regulated cellular underpinnings of neurocognitive aging as well as disease risk and resiliency in late life. In doing so, new avenues for early intervention in age-related neurodegenerative disease could be investigated with potentially significant implications for the development of disease-modifying therapies.

  4. Characterization of the human gene (TBXAS1) encoding thromboxane synthase.

    Science.gov (United States)

    Miyata, A; Yokoyama, C; Ihara, H; Bandoh, S; Takeda, O; Takahashi, E; Tanabe, T

    1994-09-01

    The gene encoding human thromboxane synthase (TBXAS1) was isolated from a human EMBL3 genomic library using human platelet thromboxane synthase cDNA as a probe. Nucleotide sequencing revealed that the human thromboxane synthase gene spans more than 75 kb and consists of 13 exons and 12 introns, of which the splice donor and acceptor sites conform to the GT/AG rule. The exon-intron boundaries of the thromboxane synthase gene were similar to those of the human cytochrome P450 nifedipine oxidase gene (CYP3A4) except for introns 9 and 10, although the primary sequences of these enzymes exhibited 35.8% identity each other. The 1.2-kb of the 5'-flanking region sequence contained potential binding sites for several transcription factors (AP-1, AP-2, GATA-1, CCAAT box, xenobiotic-response element, PEA-3, LF-A1, myb, basic transcription element and cAMP-response element). Primer-extension analysis indicated the multiple transcription-start sites, and the major start site was identified as an adenine residue located 142 bases upstream of the translation-initiation site. However, neither a typical TATA box nor a typical CAAT box is found within the 100-b upstream of the translation-initiation site. Southern-blot analysis revealed the presence of one copy of the thromboxane synthase gene per haploid genome. Furthermore, a fluorescence in situ hybridization study revealed that the human gene for thromboxane synthase is localized to band q33-q34 of the long arm of chromosome 7. A tissue-distribution study demonstrated that thromboxane synthase mRNA is widely expressed in human tissues and is particularly abundant in peripheral blood leukocyte, spleen, lung and liver. The low but significant levels of mRNA were observed in kidney, placenta and thymus.

  5. Effect of ATM heterozygosity on heritable DNA damage in mice following paternal F0 germline irradiation

    International Nuclear Information System (INIS)

    Baulch, Janet E.; Li, M.-W.; Raabe, Otto G.

    2007-01-01

    The ataxia telangiectasia mutated (ATM) gene product maintains genome integrity and initiates cellular DNA repair pathways following exposures to genotoxic agents. ATM also plays a significant role in meiotic recombination during spermatogenesis. Fertilization with sperm carrying damaged DNA could lead to adverse effects in offspring including developmental defects or increased cancer susceptibility. Currently, there is little information regarding the effect of ATM heterozygosity on germline DNA repair and heritable effects of paternal germline-ionizing irradiation. We used neutral pH comet assays to evaluate spermatozoa 45 days after acute whole-body irradiation of male mice (0.1 Gy, attenuated 137 Cs γ rays) to determine the effect of ATM heterozygosity on delayed DNA damage effects of Type A/B spermatogonial irradiation. Using the neutral pH sperm comet assay, significant irradiation-related differences were found in comet tail length, percent tail DNA and tail extent moment, but there were no observed differences in effect between wild-type and ATM +/- mice. However, evaluation of spermatozoa from third generation descendants of irradiated male mice for heritable chromatin effects revealed significant differences in DNA electrophoretic mobility in the F 3 descendants that were based upon the irradiated F 0 sire's genotype. In this study, radiation-induced chromatin alterations to Type A/B spermatogonia, detected in mature sperm 45 days post-irradiation, led to chromatin effects in mature sperm three generations later. The early cellular response to and repair of DNA damage is critical and appears to be affected by ATM zygosity. Our results indicate that there is potential for heritable genetic or epigenetic changes following Type A/B spermatogonial irradiation and that ATM heterozygosity increases this effect

  6. Efficient procedure for transferring specific human genes into Chinese hamster cell mutants: interspecific transfer of the human genes encoding leucyl- and asparaginyl-tRNA synthetases

    International Nuclear Information System (INIS)

    Cirullo, R.E.; Dana, S.; Wasmuth, J.J.

    1983-01-01

    A simple and efficient procedure for transferring specific human genes into mutant Chinese hamster ovary cell recipients has been developed that does not rely on using calcium phosphate-precipitated high-molecular-weight DNA. Interspecific cell hybrids between human leukocytes and temperature-sensitive Chinese hamster cell mutants with either a thermolabile leucyl-tRNA synthetase or a thermolabile asparaginyl-tRNA synthetase were used as the starting material in these experiments. These hybrids contain only one or a few human chromosomes and require expression of the appropriate human aminoacyl-tRNA synthetase gene to grow at 39 degrees C. Hybrids were exposed to very high doses of gamma-irradiation to extensively fragment the chromosomes and re-fused immediately to the original temperature-sensitive Chinese hamster mutant, and secondary hybrids were isolated at 39 degrees C. Secondary hybrids, which had retained small fragments of the human genome containing the selected gene, were subjected to another round of irradiation, refusion, and selection at 39 degrees C to reduce the amount of human DNA even further. Using this procedure, Chinese hamster cell lines have been constructed that express the human genes encoding either asparaginyl- or leucyl-tRNA synthetase, yet less than 0.1% of their DNA is derived from the human genome, as quantitated by a sensitive dot-blot nucleic acid hybridization procedure

  7. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology.

    Science.gov (United States)

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang; Wang, Yadong; Jin, Shuilin; Cheng, Liang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e - 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e - 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

  8. A global evolutionary and metabolic analysis of human obesity gene risk variants.

    Science.gov (United States)

    Castillo, Joseph J; Hazlett, Zachary S; Orlando, Robert A; Garver, William S

    2017-09-05

    It is generally accepted that the selection of gene variants during human evolution optimized energy metabolism that now interacts with our obesogenic environment to increase the prevalence of obesity. The purpose of this study was to perform a global evolutionary and metabolic analysis of human obesity gene risk variants (110 human obesity genes with 127 nearest gene risk variants) identified using genome-wide association studies (GWAS) to enhance our knowledge of early and late genotypes. As a result of determining the mean frequency of these obesity gene risk variants in 13 available populations from around the world our results provide evidence for the early selection of ancestral risk variants (defined as selection before migration from Africa) and late selection of derived risk variants (defined as selection after migration from Africa). Our results also provide novel information for association of these obesity genes or encoded proteins with diverse metabolic pathways and other human diseases. The overall results indicate a significant differential evolutionary pattern for the selection of obesity gene ancestral and derived risk variants proposed to optimize energy metabolism in varying global environments and complex association with metabolic pathways and other human diseases. These results are consistent with obesity genes that encode proteins possessing a fundamental role in maintaining energy metabolism and survival during the course of human evolution. Copyright © 2017. Published by Elsevier B.V.

  9. A Gene Implicated in Activation of Retinoic Acid Receptor Targets Is a Novel Renal Agenesis Gene in Humans

    DEFF Research Database (Denmark)

    Brophy, Patrick D.; Rasmussen, Maria; Parida, Mrutyunjaya

    2017-01-01

    investigations have identified several gene variants that cause RA, including EYA1, LHX1, and WT1 However, whereas compound null mutations of genes encoding α and γ retinoic acid receptors (RARs) cause RA in mice, to date there have been no reports of variants in RAR genes causing RA in humans. In this study, we...... in humans....

  10. Germline disruption of Pten localization causes enhanced sex-dependent social motivation and increased glial production.

    Science.gov (United States)

    Tilot, Amanda K; Gaugler, Mary K; Yu, Qi; Romigh, Todd; Yu, Wanfeng; Miller, Robert H; Frazier, Thomas W; Eng, Charis

    2014-06-15

    PTEN Hamartoma Tumor Syndrome (PHTS) is an autosomal-dominant genetic condition underlying a subset of autism spectrum disorder (ASD) with macrocephaly. Caused by germline mutations in PTEN, PHTS also causes increased risks of multiple cancers via dysregulation of the PI3K and MAPK signaling pathways. Conditional knockout models have shown that neural Pten regulates social behavior, proliferation and cell size. Although much is known about how the intracellular localization of PTEN regulates signaling in cancer cell lines, we know little of how PTEN localization influences normal brain physiology and behavior. To address this, we generated a germline knock-in mouse model of cytoplasm-predominant Pten and characterized its behavioral and cellular phenotypes. The homozygous Pten(m3m4) mice have decreased total Pten levels including a specific drop in nuclear Pten and exhibit region-specific increases in brain weight. The Pten(m3m4) model displays sex-specific increases in social motivation, poor balance and normal recognition memory-a profile reminiscent of some individuals with high functioning ASD. The cytoplasm-predominant protein caused cellular hypertrophy limited to the soma and led to increased NG2 cell proliferation and accumulation of glia. The animals also exhibit significant astrogliosis and microglial activation, indicating a neuroinflammatory phenotype. At the signaling level, Pten(m3m4) mice show brain region-specific differences in Akt activation. These results demonstrate that differing alterations to the same autism-linked gene can cause distinct behavioral profiles. The Pten(m3m4) model is the first murine model of inappropriately elevated social motivation in the context of normal cognition and may expand the range of autism-related behaviors replicated in animal models. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Dynamic gene expression response to altered gravity in human T cells.

    Science.gov (United States)

    Thiel, Cora S; Hauschild, Swantje; Huge, Andreas; Tauber, Svantje; Lauber, Beatrice A; Polzer, Jennifer; Paulsen, Katrin; Lier, Hartwin; Engelmann, Frank; Schmitz, Burkhard; Schütte, Andreas; Layer, Liliana E; Ullrich, Oliver

    2017-07-12

    We investigated the dynamics of immediate and initial gene expression response to different gravitational environments in human Jurkat T lymphocytic cells and compared expression profiles to identify potential gravity-regulated genes and adaptation processes. We used the Affymetrix GeneChip® Human Transcriptome Array 2.0 containing 44,699 protein coding genes and 22,829 non-protein coding genes and performed the experiments during a parabolic flight and a suborbital ballistic rocket mission to cross-validate gravity-regulated gene expression through independent research platforms and different sets of control experiments to exclude other factors than alteration of gravity. We found that gene expression in human T cells rapidly responded to altered gravity in the time frame of 20 s and 5 min. The initial response to microgravity involved mostly regulatory RNAs. We identified three gravity-regulated genes which could be cross-validated in both completely independent experiment missions: ATP6V1A/D, a vacuolar H + -ATPase (V-ATPase) responsible for acidification during bone resorption, IGHD3-3/IGHD3-10, diversity genes of the immunoglobulin heavy-chain locus participating in V(D)J recombination, and LINC00837, a long intergenic non-protein coding RNA. Due to the extensive and rapid alteration of gene expression associated with regulatory RNAs, we conclude that human cells are equipped with a robust and efficient adaptation potential when challenged with altered gravitational environments.

  12. Low prevalence of CHEK2 gene mutations in multiethnic cohorts of breast cancer patients in Malaysia.

    Science.gov (United States)

    Mohamad, Suriati; Isa, Nurismah Md; Muhammad, Rohaizak; Emran, Nor Aina; Kitan, Nor Mayah; Kang, Peter; Kang, In Nee; Taib, Nur Aishah Mohd; Teo, Soo Hwang; Akmal, Sharifah Noor

    2015-01-01

    CHEK2 is a protein kinase that is involved in cell-cycle checkpoint control after DNA damage. Germline mutations in CHEK2 gene have been associated with increase in breast cancer risk. The aim of this study is to identify the CHEK2 gene germline mutations among high-risk breast cancer patients and its contribution to the multiethnic population in Malaysia. We screened the entire coding region of CHEK2 gene on 59 high-risk breast cancer patients who tested negative for BRCA1/2 germline mutations from UKM Medical Centre (UKMMC), Hospital Kuala Lumpur (HKL) and Hospital Putrajaya (HPJ). Sequence variants identified were screened further in case-control cohorts consisting of 878 unselected invasive breast cancer patients (180 Malays, 526 Chinese and 172 Indian) and 270 healthy individuals (90 Malays, 90 Chinese and 90 Indian). By screening the entire coding region of the CHEK2 gene, two missense mutations, c.480A>G (p.I160M) and c.538C>T (p.R180C) were identified in two unrelated patients (3.4%). Further screening of these missense mutations on the case-control cohorts unveiled the variant p.I160M in 2/172 (1.1%) Indian cases and 1/90 (1.1%) Indian control, variant p.R180C in 2/526 (0.38%) Chinese cases and 0/90 Chinese control, and in 2/180 (1.1%) of Malay cases and 1/90 (1.1%) of Malay control. The results of this study suggest that CHEK2 mutations are rare among high-risk breast cancer patients and may play a minor contributing role in breast carcinogenesis among Malaysian population.

  13. Identification of a novel gene family that includes the interferon-inducible human genes 6–16 and ISG12

    Directory of Open Access Journals (Sweden)

    Parker Nadeene

    2004-01-01

    Full Text Available Abstract Background The human 6–16 and ISG12 genes are transcriptionally upregulated in a variety of cell types in response to type I interferon (IFN. The predicted products of these genes are small (12.9 and 11.5 kDa respectively, hydrophobic proteins that share 36% overall amino acid identity. Gene disruption and over-expression studies have so far failed to reveal any biochemical or cellular roles for these proteins. Results We have used in silico analyses to identify a novel family of genes (the ISG12 gene family related to both the human 6–16 and ISG12 genes. Each ISG12 family member codes for a small hydrophobic protein containing a conserved ~80 amino-acid motif (the ISG12 motif. So far we have detected 46 family members in 25 organisms, ranging from unicellular eukaryotes to humans. Humans have four ISG12 genes: the 6–16 gene at chromosome 1p35 and three genes (ISG12(a, ISG12(b and ISG12(c clustered at chromosome 14q32. Mice have three family members (ISG12(a, ISG12(b1 and ISG12(b2 clustered at chromosome 12F1 (syntenic with human chromosome 14q32. There does not appear to be a murine 6–16 gene. On the basis of phylogenetic analyses, genomic organisation and intron-alignments we suggest that this family has arisen through divergent inter- and intra-chromosomal gene duplication events. The transcripts from human and mouse genes are detectable, all but two (human ISG12(b and ISG12(c being upregulated in response to type I IFN in the cell lines tested. Conclusions Members of the eukaryotic ISG12 gene family encode a small hydrophobic protein with at least one copy of a newly defined motif of ~80 amino-acids (the ISG12 motif. In higher eukaryotes, many of the genes have acquired a responsiveness to type I IFN during evolution suggesting that a role in resisting cellular or environmental stress may be a unifying property of all family members. Analysis of gene-function in higher eukaryotes is complicated by the possibility of

  14. Lynch syndrome-associated endometrial carcinoma with MLH1 germline mutation and MLH1 promoter hypermethylation: a case report and literature review.

    Science.gov (United States)

    Yokoyama, Takanori; Takehara, Kazuhiro; Sugimoto, Nao; Kaneko, Keika; Fujimoto, Etsuko; Okazawa-Sakai, Mika; Okame, Shinichi; Shiroyama, Yuko; Yokoyama, Takashi; Teramoto, Norihiro; Ohsumi, Shozo; Saito, Shinya; Imai, Kazuho; Sugano, Kokichi

    2018-05-21

    Lynch syndrome is an autosomal dominant inherited disease caused by germline mutations in mismatch repair genes. Analysis for microsatellite instability (MSI) and immunohistochemistry (IHC) of protein expressions of disease-associated genes is used to screen for Lynch syndrome in endometrial cancer patients. When losses of both MLH1 and PMS2 proteins are observed by IHC, MLH1 promoter methylation analysis is conducted to distinguish Lynch syndrome-associated endometrial cancer from sporadic cancer. Here we report a woman who developed endometrial cancer at the age of 49 years. She had a family history of colorectal cancer (first-degree relative aged 52 years) and stomach cancer (second-degree relative with the age of onset unknown). No other family history was present, and she failed to meet the Amsterdam II criteria for the diagnosis of Lynch syndrome. Losses of MLH1 and PMS2, but not MSH2 and MSH6, proteins were observed by IHC in endometrial cancer tissues. Because MLH1 promoter hypermethylation was detected in endometrial cancer tissue samples, the epigenetic silencing of MLH1 was suspected as the cause of the protein loss. However, because of the early onset of endometrial cancer and the positive family history, a diagnosis of Lynch syndrome was also suspected. Therefore, we provided her with genetic counseling. After obtaining her consent, MLH1 promoter methylation testing and genetic testing of peripheral blood were performed. MLH1 promoter methylation was not observed in peripheral blood. However, genetic testing revealed a large deletion of exon 5 in MLH1; thus, we diagnosed the presence of Lynch syndrome. Both MLH1 germline mutation and MLH1 promoter hypermethylation may be observed in endometrial cancer. Therefore, even if MLH1 promoter hypermethylation is detected, a diagnosis of Lynch syndrome cannot be excluded.

  15. Widespread of horizontal gene transfer in the human genome

    OpenAIRE

    Huang, Wenze; Tsai, Lillian; Li, Yulong; Hua, Nan; Sun, Chen; Wei, Chaochun

    2017-01-01

    Background A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. Results From the pa...

  16. Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from GWAS.

    Science.gov (United States)

    Pan, David Z; Garske, Kristina M; Alvarez, Marcus; Bhagat, Yash V; Boocock, James; Nikkola, Elina; Miao, Zong; Raulerson, Chelsea K; Cantor, Rita M; Civelek, Mete; Glastonbury, Craig A; Small, Kerrin S; Boehnke, Michael; Lusis, Aldons J; Sinsheimer, Janet S; Mohlke, Karen L; Laakso, Markku; Pajukanta, Päivi; Ko, Arthur

    2018-04-17

    Increased adiposity is a hallmark of obesity and overweight, which affect 2.2 billion people world-wide. Understanding the genetic and molecular mechanisms that underlie obesity-related phenotypes can help to improve treatment options and drug development. Here we perform promoter Capture Hi-C in human adipocytes to investigate interactions between gene promoters and distal elements as a transcription-regulating mechanism contributing to these phenotypes. We find that promoter-interacting elements in human adipocytes are enriched for adipose-related transcription factor motifs, such as PPARG and CEBPB, and contribute to heritability of cis-regulated gene expression. We further intersect these data with published genome-wide association studies for BMI and BMI-related metabolic traits to identify the genes that are under genetic cis regulation in human adipocytes via chromosomal interactions. This integrative genomics approach identifies four cis-eQTL-eGene relationships associated with BMI or obesity-related traits, including rs4776984 and MAP2K5, which we further confirm by EMSA, and highlights 38 additional candidate genes.

  17. Use of Germline Polymorphisms in Predicting Concurrent Chemoradiotherapy Response in Esophageal Cancer

    International Nuclear Information System (INIS)

    Chen, Pei-Chun; Chen, Yen-Ching; Lai, Liang-Chuan; Tsai, Mong-Hsun; Chen, Shin-Kuang; Yang, Pei-Wen; Lee, Yung-Chie; Hsiao, Chuhsing K.; Lee, Jang-Ming; Chuang, Eric Y.

    2012-01-01

    Purpose: To identify germline polymorphisms to predict concurrent chemoradiation therapy (CCRT) response in esophageal cancer patients. Materials and Methods: A total of 139 esophageal cancer patients treated with CCRT (cisplatin-based chemotherapy combined with 40 Gy of irradiation) and subsequent esophagectomy were recruited at the National Taiwan University Hospital between 1997 and 2008. After excluding confounding factors (i.e., females and patients aged ≥70 years), 116 patients were enrolled to identify single nucleotide polymorphisms (SNPs) associated with specific CCRT responses. Genotyping arrays and mass spectrometry were used sequentially to determine germline polymorphisms from blood samples. These polymorphisms remain stable throughout disease progression, unlike somatic mutations from tumor tissues. Two-stage design and additive genetic models were adopted in this study. Results: From the 26 SNPs identified in the first stage, 2 SNPs were found to be significantly associated with CCRT response in the second stage. Single nucleotide polymorphism rs16863886, located between SGPP2 and FARSB on chromosome 2q36.1, was significantly associated with a 3.93-fold increase in pathologic complete response to CCRT (95% confidence interval 1.62–10.30) under additive models. Single nucleotide polymorphism rs4954256, located in ZRANB3 on chromosome 2q21.3, was associated with a 3.93-fold increase in pathologic complete response to CCRT (95% confidence interval 1.57–10.87). The predictive accuracy for CCRT response was 71.59% with these two SNPs combined. Conclusions: This is the first study to identify germline polymorphisms with a high accuracy for predicting CCRT response in the treatment of esophageal cancer.

  18. Efficient and safe gene delivery to human corneal endothelium using magnetic nanoparticles.

    Science.gov (United States)

    Czugala, Marta; Mykhaylyk, Olga; Böhler, Philip; Onderka, Jasmine; Stork, Björn; Wesselborg, Sebastian; Kruse, Friedrich E; Plank, Christian; Singer, Bernhard B; Fuchsluger, Thomas A

    2016-07-01

    To develop a safe and efficient method for targeted, anti-apoptotic gene therapy of corneal endothelial cells (CECs). Magnetofection (MF), a combination of lipofection with magnetic nanoparticles (MNPs; PEI-Mag2, SO-Mag5, PalD1-Mag1), was tested in human CECs and in explanted human corneas. Effects on cell viability and function were investigated. Immunocompatibility was assessed in human peripheral blood mononuclear cells. Silica iron-oxide MNPs (SO-Mag5) combined with X-tremeGENE-HP achieved high transfection efficiency in human CECs and explanted human corneas, without altering cell viability or function. Magnetofection caused no immunomodulatory effects in human peripheral blood mononuclear cells. Magnetofection with anti-apoptotic P35 gene effectively blocked apoptosis in CECs. Magnetofection is a promising tool for gene therapy of corneal endothelial cells with potential for targeted on-site delivery.

  19. In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells

    OpenAIRE

    Braydich-Stolle, Laura; Hussain, Saber; Schlager, John J.; Hofmann, Marie-Claude

    2005-01-01

    Gametogenesis is a complex biological process that is particularly sensitive to environmental insults such as chemicals. Many chemicals have a negative impact on the germline, either by directly affecting the germ cells, or indirectly through their action on the somatic nursing cells. Ultimately, these effects can inhibit fertility, and they may have negative consequences for the development of the offspring. Recently, nanomaterials such as nanotubes, nanowires, fullerene derivatives (buckyba...

  20. Differential expression gene profiling in human lymphocyte after 6 h irradiated

    International Nuclear Information System (INIS)

    Li Jianguo; Qin Xiujun; Zhang Wei; Xu Chaoqi; Li Weibin; Dang Xuhong; Zuo Yahui

    2011-01-01

    Objective: To provide the evidence of health damage for the staff irradiated from the gene level. Methods: The study analyzed the differential transcriptional profile of normal human lymphocyte and human lymphocyte irradiated with 0.1 Gy, 0.2 Gy, 0.5 Gy, 1.0 Gy by whole genome chip after 6 h irradiated. Results: The results showed that there were 1177 differentially expressed genes with 0.1 Gy after 6 h irradiation, and there were 1922 differentially expressed genes with 0.2 Gy after 6 h irradiation, and there were 492 differentially expressed genes with 0.5 Gy after 6 h irradiation, 2615 differentially expressed genes with 1.0 Gy after 6 h irradiation, 114 differentially expressed genes in 4 dose points after 6 h irradiation. RT-PCR results indicated that the relative quantity's result of EGR1, HLA-DMB and TAIAP1 was consistent with gene chip data. Conclusion: The study found many significant different genes in human lymphocyte with different doses after 6 h irradiation, which will provide a basis for the further radiation-different-genes and the mechanism of radiation damage. (authors)

  1. Human genetics of infectious diseases: Unique insights into immunological redundancy.

    Science.gov (United States)

    Casanova, Jean-Laurent; Abel, Laurent

    2018-04-01

    For almost any given human-tropic virus, bacterium, fungus, or parasite, the clinical outcome of primary infection is enormously variable, ranging from asymptomatic to lethal infection. This variability has long been thought to be largely determined by the germline genetics of the human host, and this is increasingly being demonstrated to be the case. The number and diversity of known inborn errors of immunity is continually increasing, and we focus here on autosomal and X-linked recessive traits underlying complete deficiencies of the encoded protein. Schematically, four types of infectious phenotype have been observed in individuals with such deficiencies, each providing information about the redundancy of the corresponding human gene, in terms of host defense in natural conditions. The lack of a protein can confer vulnerability to a broad range of microbes in most, if not all patients, through the disruption of a key immunological component. In such cases, the gene concerned is of low redundancy. However, the lack of a protein may also confer vulnerability to a narrow range of microbes, sometimes a single pathogen, and not necessarily in all patients. In such cases, the gene concerned is highly redundant. Conversely, the deficiency may be apparently neutral, conferring no detectable predisposition to infection in any individual. In such cases, the gene concerned is completely redundant. Finally, the lack of a protein may, paradoxically, be advantageous to the host, conferring resistance to one or more infections. In such cases, the gene is considered to display beneficial redundancy. These findings reflect the current state of evolution of humans and microbes, and should not be considered predictive of redundancy, or of a lack of redundancy, in the distant future. Nevertheless, these observations are of potential interest to present-day biologists testing immunological hypotheses experimentally and physicians managing patients with immunological or infectious

  2. Structure and function of the human metallothionein gene family: Final technical report

    International Nuclear Information System (INIS)

    Karin, M.

    1986-01-01

    The full nucleotide sequence of two additional human metallothionein (hMT) genes has been determined. These genes, hMT-I/sub B/ and hMT-I/sub F/, are located within the MT-I gene cluster we have described originally. The hMT-I/sub F/ gene is the first hMT-I gene whose amino acid sequence is in complete agreement with the published sequence of the human MT-I proteins. Therefore it is likely to be an active gene encoding a functional protein. However, since we have just completed the sequence analysis, we have not characterized this gene further yet. The hMT-I/sub B/ gene is closely linked to the hMT-I/sub A/ gene, and two pseudogenes, hMT-I/sub C/ and hMT-I/sub D/ separate the two. From its nucleotide sequence hMT-I/sub B/ seems to be an active gene, encoding a functional protein even though it differs in four positions from the published sequence of human MT-I proteins. This gene is expressed in a human hepatoma cell line, HepG2, and its expression is stimulated by Cd ++ . Using gene fusions to the viral thymidine-kinase gene we find that hMT-I/sub B/, like the hMT-I/sub A/ and hMT-II/sub A/ genes, contains a heavy metal responsive promoterregulatory element within its 5' flanking region. We analyzed the level of hMT-I/sub B/ mRNA in a variety of human cell lines by the S1 nuclease technique, and compared it to the expression of the hMT-II/sub A/ gene. While the hMT-II/sub A/ gene was expressed in all of the cell lines analyzed, the hMT-I/sub B/ gene was expressed in liver and kidney derived cell lines cells. This suggest that the expression of the hMT-I/sub B/ gene is controlled in a tissue specific manner. 13 refs

  3. Genetic effects on gene expression across human tissues

    NARCIS (Netherlands)

    Battle, Alexis; Brown, Christopher D.; Engelhardt, Barbara E.; Montgomery, Stephen B.; Aguet, François; Ardlie, Kristin G.; Cummings, Beryl B.; Gelfand, Ellen T.; Getz, Gad; Hadley, Kane; Handsaker, Robert E.; Huang, Katherine H.; Kashin, Seva; Karczewski, Konrad J.; Lek, Monkol; Li, Xiao; MacArthur, Daniel G.; Nedzel, Jared L.; Nguyen, Duyen T.; Noble, Michael S.; Segrè, Ayellet V.; Trowbridge, Casandra A.; Tukiainen, Taru; Abell, Nathan S.; Balliu, Brunilda; Barshir, Ruth; Basha, Omer; Bogu, Gireesh K.; Brown, Andrew; Castel, Stephane E.; Chen, Lin S.; Chiang, Colby; Conrad, Donald F.; Cox, Nancy J.; Damani, Farhan N.; Davis, Joe R.; Delaneau, Olivier; Dermitzakis, Emmanouil T.; Eskin, Eleazar; Ferreira, Pedro G.; Frésard, Laure; Gamazon, Eric R.; Garrido-Martín, Diego; Gewirtz, Ariel D. H.; Gliner, Genna; Gloudemans, Michael J.; Guigo, Roderic; Hall, Ira M.; Han, Buhm; He, Yuan

    2017-01-01

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression

  4. Germline PMS2 and somatic POLE exonuclease mutations cause hypermutability of the leading DNA strand in biallelic mismatch repair deficiency syndrome brain tumours.

    Science.gov (United States)

    Andrianova, Maria A; Chetan, Ghati Kasturirangan; Sibin, Madathan Kandi; Mckee, Thomas; Merkler, Doron; Narasinga, Rao Kvl; Ribaux, Pascale; Blouin, Jean-Louis; Makrythanasis, Periklis; Seplyarskiy, Vladimir B; Antonarakis, Stylianos E; Nikolaev, Sergey I

    2017-11-01

    Biallelic mismatch repair deficiency (bMMRD) in tumours is frequently associated with somatic mutations in the exonuclease domains of DNA polymerases POLE or POLD1, and results in a characteristic mutational profile. In this article, we describe the genetic basis of ultramutated high-grade brain tumours in the context of bMMRD. We performed exome sequencing of two second-cousin patients from a large consanguineous family of Indian origin with early onset of high-grade glioblastoma and astrocytoma. We identified a germline homozygous nonsense variant, p.R802*, in the PMS2 gene. Additionally, by genome sequencing of these tumours, we found extremely high somatic mutation rates (237/Mb and 123/Mb), as well as somatic mutations in the proofreading domain of POLE polymerase (p.P436H and p.L424V), which replicates the leading DNA strand. Most interestingly, we found, in both cancers, that the vast majority of mutations were consistent with the signature of POLE exo - , i.e. an abundance of C>A and C>T mutations, particularly in special contexts, on the leading strand. We showed that the fraction of mutations under positive selection among mutations in tumour suppressor genes is more than two-fold lower in ultramutated tumours than in other glioblastomas. Genetic analyses enabled the diagnosis of the two consanguineous childhood brain tumours as being due to a combination of PMS2 germline and POLE somatic variants, and confirmed them as bMMRD/POLE exo - disorders. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  5. Human γ-globin genes silenced independently of other genes in the β-globin locus.

    NARCIS (Netherlands)

    N.O. Dillon (Niall); F.G. Grosveld (Frank)

    1991-01-01

    textabstractErythropoiesis during human development is characterized by switches in expression of beta-like globin genes during the transition from the embryonic through fetal to adult stages. Activation and high-level expression of the genes is directed by the locus control region (LCR), located 5'

  6. Eco RI RFLP in the human IGF II gene

    Energy Technology Data Exchange (ETDEWEB)

    Cocozza, S; Garofalo, S; Robledo, R; Monticelli, A; Conti, A; Chiarotti, L; Frunzio, R; Bruni, C B; Varrone, S

    1988-03-25

    The probe was a 500 bp cDNA containing exons 2-3 and 4 of the human IGF II gene. The clone was isolated by screening a human liver cDNA library with synthetic oligonucleotides. Eco RI digestion of genomic DNA and hybridization with the IGF II probe detects a two allele polymorphism with allelic fragments of 13.5 kb and 10.5 kb. The frequency was studied 38 unrelated Caucasians: Human IGF II gene was localized on the short arm of chromosome 11 (p15) by in situ hybridization. Codominant segregation was observed in 2 Caucasian families (10 individuals).

  7. An existential analysis of genetic engineering and human rights ...

    African Journals Online (AJOL)

    Genetic engineering for purposes of human enhancement poses risks that justify regulation. However, this paper argues philosophically that it is inappropriate to use human rights treaties to prohibit germ-line genetic engineering whether therapeutic or for purposes of enhancement. When also looked at existentially, the ...

  8. Determining the functional significance of mismatch repair gene missense variants using biochemical and cellular assays

    DEFF Research Database (Denmark)

    Heinen, Christopher D; Juel Rasmussen, Lene

    2012-01-01

    ABSTRACT: With the discovery that the hereditary cancer susceptibility disease Lynch syndrome (LS) is caused by deleterious germline mutations in the DNA mismatch repair (MMR) genes nearly 20 years ago, genetic testing can now be used to diagnose this disorder in patients. A definitive diagnosis...

  9. Subclinical hyperthyroidism due to a thyrotropin receptor (TSHR) gene mutation (S505R).

    Science.gov (United States)

    Pohlenz, Joachim; Pfarr, Nicole; Krüger, Silvia; Hesse, Volker

    2006-12-01

    To identify the molecular defect by which non-autoimmune subclinical hyperthyroidism was caused in a 6-mo-old infant who presented with weight loss. Congenital non-autoimmune hyperthyroidism is caused by activating germline mutations in the thyrotropin receptor (TSHR) gene. Therefore, the TSHR gene was sequenced directly from the patient's genomic DNA. Molecular analysis revealed a heterozygous point mutation (S505R) in the TSHR gene as the underlying defect. A constitutively activating mutation in the TSHR gene has to be considered not only in patients with severe congenital non-autoimmune hyperthyroidism, but also in children with subclinical non-autoimmune hyperthyroidism.

  10. Law-medicine interfacing: patenting of human genes and mutations.

    Science.gov (United States)

    Fialho, Arsenio M; Chakrabarty, Ananda M

    2011-08-01

    Mutations, Single Nucleotide Polymorphisms (SNPs), deletions and genetic rearrangements in specific genes in the human genome account for not only our physical characteristics and behavior, but can lead to many in-born and acquired diseases. Such changes in the genome can also predispose people to cancers, as well as significantly affect the metabolism and efficacy of many drugs, resulting in some cases in acute toxicity to the drug. The testing of the presence of such genetic mutations and rearrangements is of great practical and commercial value, leading many of these genes and their mutations/deletions and genetic rearrangements to be patented. A recent decision by a judge in the Federal District Court in the Southern District of New York, has created major uncertainties, based on the revocation of BRCA1 and BRCA2 gene patents, in the eligibility of all human and presumably other gene patents. This article argues that while patents on BRCA1 and BRCA2 genes could be challenged based on a lack of utility, the patenting of the mutations and genetic rearrangements is of great importance to further development and commercialization of genetic tests that can save human lives and prevent suffering, and should be allowed.

  11. Gene expression, nucleotide composition and codon usage bias of genes associated with human Y chromosome.

    Science.gov (United States)

    Choudhury, Monisha Nath; Uddin, Arif; Chakraborty, Supriyo

    2017-06-01

    Analysis of codon usage pattern is important to understand the genetic and evolutionary characteristics of genomes. We have used bioinformatic approaches to analyze the codon usage bias (CUB) of the genes located in human Y chromosome. Codon bias index (CBI) indicated that the overall extent of codon usage bias was low. The relative synonymous codon usage (RSCU) analysis suggested that approximately half of the codons out of 59 synonymous codons were most frequently used, and possessed a T or G at the third codon position. The codon usage pattern was different in different genes as revealed from correspondence analysis (COA). A significant correlation between effective number of codons (ENC) and various GC contents suggests that both mutation pressure and natural selection affect the codon usage pattern of genes located in human Y chromosome. In addition, Y-linked genes have significant difference in GC contents at the second and third codon positions, expression level, and codon usage pattern of some codons like the SPANX genes in X chromosome.

  12. Germline mutations in people descendants occupationally exposed to ionizing radiation from Cesium 137

    International Nuclear Information System (INIS)

    Silva, Juliana Ferreira da

    2016-01-01

    significant differences between exposed and control groups using the Mann-Whitney U test. Thus, our data showed that CNVs are induced by IR exposure in a human population, while the losses were more frequent the gains in the exposed group. In addition, progeny from a population occupationally exposed to IR ∼ 1.15x showed CNV more new than healthy controls. Therefore, with the present study was possible to validate the use of a high resolution method to describe a mutagenic exposure by IR signature, thus legitimized the use of CNVs as a useful biomarker to assess germline mutation military occupationally exposed to RI. In addition to validating the use of this marker, the study also pioneered research germline mutation in humans exposed to RI. (author)

  13. Gene expression and adaptive noncoding changes during human evolution.

    Science.gov (United States)

    Babbitt, Courtney C; Haygood, Ralph; Nielsen, William J; Wray, Gregory A

    2017-06-05

    Despite evidence for adaptive changes in both gene expression and non-protein-coding, putatively regulatory regions of the genome during human evolution, the relationship between gene expression and adaptive changes in cis-regulatory regions remains unclear. Here we present new measurements of gene expression in five tissues of humans and chimpanzees, and use them to assess this relationship. We then compare our results with previous studies of adaptive noncoding changes, analyzing correlations at the level of gene ontology groups, in order to gain statistical power to detect correlations. Consistent with previous studies, we find little correlation between gene expression and adaptive noncoding changes at the level of individual genes; however, we do find significant correlations at the level of biological function ontology groups. The types of function include processes regulated by specific transcription factors, responses to genetic or chemical perturbations, and differentiation of cell types within the immune system. Among functional categories co-enriched with both differential expression and noncoding adaptation, prominent themes include cancer, particularly epithelial cancers, and neural development and function.

  14. Gene expression and functional annotation of the human and mouse choroid plexus epithelium.

    Directory of Open Access Journals (Sweden)

    Sarah F Janssen

    Full Text Available BACKGROUND: The choroid plexus epithelium (CPE is a lobed neuro-epithelial structure that forms the outer blood-brain barrier. The CPE protrudes into the brain ventricles and produces the cerebrospinal fluid (CSF, which is crucial for brain homeostasis. Malfunction of the CPE is possibly implicated in disorders like Alzheimer disease, hydrocephalus or glaucoma. To study human genetic diseases and potential new therapies, mouse models are widely used. This requires a detailed knowledge of similarities and differences in gene expression and functional annotation between the species. The aim of this study is to analyze and compare gene expression and functional annotation of healthy human and mouse CPE. METHODS: We performed 44k Agilent microarray hybridizations with RNA derived from laser dissected healthy human and mouse CPE cells. We functionally annotated and compared the gene expression data of human and mouse CPE using the knowledge database Ingenuity. We searched for common and species specific gene expression patterns and function between human and mouse CPE. We also made a comparison with previously published CPE human and mouse gene expression data. RESULTS: Overall, the human and mouse CPE transcriptomes are very similar. Their major functionalities included epithelial junctions, transport, energy production, neuro-endocrine signaling, as well as immunological, neurological and hematological functions and disorders. The mouse CPE presented two additional functions not found in the human CPE: carbohydrate metabolism and a more extensive list of (neural developmental functions. We found three genes specifically expressed in the mouse CPE compared to human CPE, being ACE, PON1 and TRIM3 and no human specifically expressed CPE genes compared to mouse CPE. CONCLUSION: Human and mouse CPE transcriptomes are very similar, and display many common functionalities. Nonetheless, we also identified a few genes and pathways which suggest that the CPE

  15. BRCA1 and BRCA2 Germline Mutations in Asian and European Populations

    Directory of Open Access Journals (Sweden)

    Ute Hamann

    2017-02-01

    Full Text Available Women who carry a pathogenic mutation in the breast cancer susceptibility genes BRCA1 or BRCA2 (BRCA have markedly increased risks of developing breast and ovarian cancers during their lifetime. It has been estimated that their breast and ovarian cancer risks are in the range of 46-87% and 15-68%, respectively. Therefore it is of utmost clinical importance to identify BRCA mutation carriers in order to target unaffected women for prevention and/or close surveillance and to help affected women choose the best chemotherapy regimen. Genetic testing for BRCA germline mutations is expanding in clinical oncology centers worldwide. Given the high costs of complete BRCA gene screens, a lot of effort has been expended on deciding upon whom to test. Relevant issues involved in decision making include the prior probability of a woman having a BRCA mutation, which is a function of her age and her disease status, her ethnic group, and her family history of breast or ovarian cancer. The frequency and spectrum of mutations in these genes show considerable variation by ethnic groups and by geographic regions. Most studies have been conducted in European and North American populations, while studies in Asian, Hispanic, and African populations are fewer. In most populations, many BRCA mutations were identified, which were distributed all over the genes. However, in some populations, a relatively small number of specific BRCA mutations are recurrent and account for the majority of all mutations in that population. Many of the recurrent mutations are founder mutations, which were derived from a common ancestor. Founder mutations are present in Ashkenazi Jewish, European, and Islander (Faroe, Easter, and Pitcairn populations. Such mutations have also been identified in patients from several Asian, South American, and African countries. Population-specific genetic risk assessment and genetic mutation screening have been facilitated at low costs. Given that mutations

  16. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    International Nuclear Information System (INIS)

    Hofmann, M.; Gazdhar, A.; Weitzel, T.; Schmid, R.; Krause, T.

    2006-01-01

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and humans

  17. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, M. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland)]. E-mail: Michael.Hofmann@insel.ch; Gazdhar, A. [Division of Pulmonary Medicine, University Hospital Bern (Switzerland); Weitzel, T. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland); Schmid, R. [Division of Thoracic Surgery, University Hospital Bern (Switzerland); Krause, T. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland)

    2006-12-20

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and human000.

  18. Biased immunoglobulin light chain gene usage in the shark1

    Science.gov (United States)

    Iacoangeli, Anna; Lui, Anita; Naik, Ushma; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen

    2015-01-01

    This study of a large family of kappa light (L) chain clusters in nurse shark completes the characterization of its classical immunoglobulin (Ig) gene content (two heavy chain classes, mu and omega, and four L chain isotopes, kappa, lambda, sigma, and sigma-2). The shark kappa clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over a ~500 bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ca. 39 kappa clusters are pre-rearranged in the germline (GL-joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, non-productive, and sterile transcripts of the kappa clusters compared to the other three L chain isotypes. Kappa cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and non-productive rearrangements. These results show that the individual activation of the spatially distant kappa clusters is non-random. Although both split and GL-joined kappa genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing. PMID:26342033

  19. Cognitive genomics: Linking genes to behavior in the human brain

    Directory of Open Access Journals (Sweden)

    Genevieve Konopka

    2017-02-01

    Full Text Available Correlations of genetic variation in DNA with functional brain activity have already provided a starting point for delving into human cognitive mechanisms. However, these analyses do not provide the specific genes driving the associations, which are complicated by intergenic localization as well as tissue-specific epigenetics and expression. The use of brain-derived expression datasets could build upon the foundation of these initial genetic insights and yield genes and molecular pathways for testing new hypotheses regarding the molecular bases of human brain development, cognition, and disease. Thus, coupling these human brain gene expression data with measurements of brain activity may provide genes with critical roles in brain function. However, these brain gene expression datasets have their own set of caveats, most notably a reliance on postmortem tissue. In this perspective, I summarize and examine the progress that has been made in this realm to date, and discuss the various frontiers remaining, such as the inclusion of cell-type-specific information, additional physiological measurements, and genomic data from patient cohorts.

  20. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes.

    Science.gov (United States)

    Macdonald, Lynn E; Karow, Margaret; Stevens, Sean; Auerbach, Wojtek; Poueymirou, William T; Yasenchak, Jason; Frendewey, David; Valenzuela, David M; Giallourakis, Cosmas C; Alt, Frederick W; Yancopoulos, George D; Murphy, Andrew J

    2014-04-08

    Genetic humanization, which involves replacing mouse genes with their human counterparts, can create powerful animal models for the study of human genes and diseases. One important example of genetic humanization involves mice humanized for their Ig genes, allowing for human antibody responses within a mouse background (HumAb mice) and also providing a valuable platform for the generation of fully human antibodies as therapeutics. However, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which they were genetically humanized. Heretofore, most genetic humanizations have involved disruption of the endogenous mouse gene with simultaneous introduction of a human transgene at a new and random location (so-called KO-plus-transgenic humanization). More recent efforts have attempted to replace mouse genes with their human counterparts at the same genetic location (in situ humanization), but such efforts involved laborious procedures and were limited in size and precision. We describe a general and efficient method for very large, in situ, and precise genetic humanization using large compound bacterial artificial chromosome-based targeting vectors introduced into mouse ES cells. We applied this method to genetically humanize 3-Mb segments of both the mouse heavy and κ light chain Ig loci, by far the largest genetic humanizations ever described. This paper provides a detailed description of our genetic humanization approach, and the companion paper reports that the humoral immune systems of mice bearing these genetically humanized loci function as efficiently as those of WT mice.