WorldWideScience

Sample records for human genome project

  1. The human genome project

    International Nuclear Information System (INIS)

    Worton, R.

    1996-01-01

    The Human Genome Project is a massive international research project, costing 3 to 5 billion dollars and expected to take 15 years, which will identify the all the genes in the human genome - i.e. the complete sequence of bases in human DNA. The prize will be the ability to identify genes causing or predisposing to disease, and in some cases the development of gene therapy, but this new knowledge will raise important ethical issues

  2. Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Block, S. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Cornwall, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dally, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, F. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Fortson, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Joyce, G. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Kimble, H. J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Lewis, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Max, C. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Prince, T. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, R. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Weinberger, P. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Woodin, W. H. [The MITRE Corporation, McLean, VA (US). JASON Program Office

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  3. The Human Genome Diversity Project

    Energy Technology Data Exchange (ETDEWEB)

    Cavalli-Sforza, L. [Stanford Univ., CA (United States)

    1994-12-31

    The Human Genome Diversity Project (HGD Project) is an international anthropology project that seeks to study the genetic richness of the entire human species. This kind of genetic information can add a unique thread to the tapestry knowledge of humanity. Culture, environment, history, and other factors are often more important, but humanity`s genetic heritage, when analyzed with recent technology, brings another type of evidence for understanding species` past and present. The Project will deepen the understanding of this genetic richness and show both humanity`s diversity and its deep and underlying unity. The HGD Project is still largely in its planning stages, seeking the best ways to reach its goals. The continuing discussions of the Project, throughout the world, should improve the plans for the Project and their implementation. The Project is as global as humanity itself; its implementation will require the kinds of partnerships among different nations and cultures that make the involvement of UNESCO and other international organizations particularly appropriate. The author will briefly discuss the Project`s history, describe the Project, set out the core principles of the Project, and demonstrate how the Project will help combat the scourge of racism.

  4. All about the Human Genome Project (HGP)

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  5. Genomics and the human genome project: implications for psychiatry

    OpenAIRE

    Kelsoe, J R

    2004-01-01

    In the past decade the Human Genome Project has made extraordinary strides in understanding of fundamental human genetics. The complete human genetic sequence has been determined, and the chromosomal location of almost all human genes identified. Presently, a large international consortium, the HapMap Project, is working to identify a large portion of genetic variation in different human populations and the structure and relationship of these variants to each other. The Human Genome Project h...

  6. Origins of the Human Genome Project.

    Science.gov (United States)

    Watson, J D; Cook-Deegan, R M

    1991-01-01

    The Human Genome Project has become a reality. Building on a debate that dates back to 1985, several genome projects are now in full stride around the world, and more are likely to form in the next several years. Italy began its genome program in 1987, and the United Kingdom and U.S.S.R. in 1988. The European communities mounted several genome projects on yeast, bacteria, Drosophila, and Arabidospis thaliana (a rapidly growing plant with a small genome) in 1988, and in 1990 commenced a new 2-year program on the human genome. In the United States, we have completed the first year of operation of the National Center for Human Genome Research at the National Institutes of Health (NIH), now the largest single funding source for genome research in the world. There have been dedicated budgets focused on genome-scale research at NIH, the U.S. Department of Energy, and the Howard Hughes Medical Institute for several years, and results are beginning to accumulate. There were three annual meetings on genome mapping and sequencing at Cold Spring Harbor, New York, in the spring of 1988, 1989, and 1990; the talks have shifted from a discussion about how to approach problems to presenting results from experiments already performed. We have finally begun to work rather than merely talk. The purpose of genome projects is to assemble data on the structure of DNA in human chromosomes and those of other organisms. A second goal is to develop new technologies to perform mapping and sequencing. There have been impressive technical advances in the past 5 years since the debate about the human genome project began. We are on the verge of beginning pilot projects to test several approaches to sequencing long stretches of DNA, using both automation and manual methods. Ordered sets of yeast artificial chromosome and cosmid clones have been assembled to span more than 2 million base pairs of several human chromosomes, and a region of 10 million base pairs has been assembled for

  7. Attitudes towards the Human Genome Project.

    Science.gov (United States)

    Shahroudi, Julie; Shaw, Geraldine

    Attitudes concerning the Human Genome Project were reported by faculty (N=40) and students (N=66) from a liberal arts college. Positive attitudes toward the project involved privacy, insurance and health, economic purposes, reproductive purposes, genetic counseling, religion and overall opinions. Negative attitudes were expressed regarding…

  8. Implications of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Kitcher, P.

    1998-11-01

    The Human Genome Project (HGP), launched in 1991, aims to map and sequence the human genome by 2006. During the fifteen-year life of the project, it is projected that $3 billion in federal funds will be allocated to it. The ultimate aims of spending this money are to analyze the structure of human DNA, to identify all human genes, to recognize the functions of those genes, and to prepare for the biology and medicine of the twenty-first century. The following summary examines some of the implications of the program, concentrating on its scientific import and on the ethical and social problems that it raises. Its aim is to expose principles that might be used in applying the information which the HGP will generate. There is no attempt here to translate the principles into detailed proposals for legislation. Arguments and discussion can be found in the full report, but, like this summary, that report does not contain any legislative proposals.

  9. Human genomics projects and precision medicine.

    Science.gov (United States)

    Carrasco-Ramiro, F; Peiró-Pastor, R; Aguado, B

    2017-09-01

    The completion of the Human Genome Project (HGP) in 2001 opened the floodgates to a deeper understanding of medicine. There are dozens of HGP-like projects which involve from a few tens to several million genomes currently in progress, which vary from having specialized goals or a more general approach. However, data generation, storage, management and analysis in public and private cloud computing platforms have raised concerns about privacy and security. The knowledge gained from further research has changed the field of genomics and is now slowly permeating into clinical medicine. The new precision (personalized) medicine, where genome sequencing and data analysis are essential components, allows tailored diagnosis and treatment according to the information from the patient's own genome and specific environmental factors. P4 (predictive, preventive, personalized and participatory) medicine is introducing new concepts, challenges and opportunities. This review summarizes current sequencing technologies, concentrates on ongoing human genomics projects, and provides some examples in which precision medicine has already demonstrated clinical impact in diagnosis and/or treatment.

  10. The Human Genome Project and Biology Education.

    Science.gov (United States)

    McInerney, Joseph D.

    1996-01-01

    Highlights the importance of the Human Genome Project in educating the public about genetics. Discusses four challenges that science educators must address: teaching for conceptual understanding, the nature of science, the personal and social impact of science and technology, and the principles of technology. Contains 45 references. (JRH)

  11. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. (eds.)

    1992-01-01

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  12. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. [eds.

    1992-12-31

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  13. An overview of the human genome project

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.

    1994-01-01

    The human genome project is one of the most ambitious scientific projects to date, with the ultimate goal being a nucleotide sequence for all four billion bases of human DNA. In the process of determining the nucleotide sequence for each base, the location, function, and regulatory regions from the estimated 100,000 human genes will be identified. The genome project itself relies upon maps of the human genetic code derived from several different levels of resolution. Genetic linkage analysis provides a low resolution genome map. The information for genetic linkage maps is derived from the analysis of chromosome specific markers such as Sequence Tagged Sites (STSs), Variable Number of Tandem Repeats (VNTRs) or other polymorphic (highly informative) loci in a number of different-families. Using this information the location of an unknown disease gene can be limited to a region comprised of one million base pairs of DNA or less. After this point, one must construct or have access to a physical map of the region of interest. Physical mapping involves the construction of an ordered overlapping (contiguous) set of recombinant DNA clones. These clones may be derived from a number of different vectors including cosmids, Bacterial Artificial Chromosomes (BACs), P1 derived Artificial Chromosomes (PACs), somatic cell hybrids, or Yeast Artificial Chromosomes (YACs). The ultimate goal for physical mapping is to establish a completely overlapping (contiguous) set of clones for the entire genome. After a gene or region of interest has been localized using physical mapping the nucleotide sequence is determined. The overlap between genetic mapping, physical mapping and DNA sequencing has proven to be a powerful tool for the isolation of disease genes through positional cloning.

  14. Origins of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Cook-Deegan, Robert

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the US and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  15. Origins of the Human Genome Project

    Science.gov (United States)

    Cook-Deegan, Robert (Affiliation: Institute of Medicine, National Academy of Sciences)

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the United States and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  16. The Human Genome Project (HGP): dividends and challenges: a ...

    African Journals Online (AJOL)

    The Human Genome Project (HGP): dividends and challenges: a review. ... Genomic studies have given profound insights into the genetic organization of ... with it will be an essential part of modern medicine and biology for years to come.

  17. The Human Genome Project: how do we protect Australians?

    Science.gov (United States)

    Stott Despoja, N

    It is the moon landing of the nineties: the ambitious Human Genome Project--identifying the up to 100,000 genes that make up human DNA and the sequences of the three billion base-pairs that comprise the human genome. However, unlike the moon landing, the effects of the genome project will have a fundamental impact on the way we see ourselves and each other.

  18. The Human Genome Project: An Imperative for International Collaboration.

    Science.gov (United States)

    Allende, J. E.

    1989-01-01

    Discussed is the Human Genome Project which aims to decipher the totality of the human genetic information. The historical background, the objectives, international cooperation, ethical discussion, and the role of UNESCO are included. (KR)

  19. The Human Genome Project: big science transforms biology and medicine.

    Science.gov (United States)

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  20. The Human Genome Project: big science transforms biology and medicine

    OpenAIRE

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called ‘big science’ - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and a...

  1. The human genome project and the future of medical practice ...

    African Journals Online (AJOL)

    Contrary to the scepticism that characterised the planning stages of the human genome project, the technology and sequence data resulting from the project are set to revolutionise medical practice for good. The expected benefits include: enhanced discovery of disease genes, which will lead to improved knowledge on the ...

  2. National human genome projects: an update and an agenda.

    Science.gov (United States)

    An, Joon Yong

    2017-01-01

    Population genetic and human genetic studies are being accelerated with genome technology and data sharing. Accordingly, in the past 10 years, several countries have initiated genetic research using genome technology and identified the genetic architecture of the ethnic groups living in the corresponding country or suggested the genetic foundation of a social phenomenon. Genetic research has been conducted from epidemiological studies that previously described the health or disease conditions in defined population. This perspective summarizes national genome projects conducted in the past 10 years and introduces case studies to utilize genomic data in genetic research.

  3. Human genome project: revolutionizing biology through leveraging technology

    Science.gov (United States)

    Dahl, Carol A.; Strausberg, Robert L.

    1996-04-01

    The Human Genome Project (HGP) is an international project to develop genetic, physical, and sequence-based maps of the human genome. Since the inception of the HGP it has been clear that substantially improved technology would be required to meet the scientific goals, particularly in order to acquire the complete sequence of the human genome, and that these technologies coupled with the information forthcoming from the project would have a dramatic effect on the way biomedical research is performed in the future. In this paper, we discuss the state-of-the-art for genomic DNA sequencing, technological challenges that remain, and the potential technological paths that could yield substantially improved genomic sequencing technology. The impact of the technology developed from the HGP is broad-reaching and a discussion of other research and medical applications that are leveraging HGP-derived DNA analysis technologies is included. The multidisciplinary approach to the development of new technologies that has been successful for the HGP provides a paradigm for facilitating new genomic approaches toward understanding the biological role of functional elements and systems within the cell, including those encoded within genomic DNA and their molecular products.

  4. The human Genome project and the future of oncology

    International Nuclear Information System (INIS)

    Collins, Francis S.

    1996-01-01

    The Human Genome Project is an ambitious 15-year effort to devise maps and sequence of the 3-billion base pair human genome, including all 100,000 genes. The project is running ahead of schedule and under budget. Already the effects on progress in disease gene discovery have been dramatic, especially for cancer. The most appropriate uses of susceptibility testing for breast, ovarian, and colon cancer are being investigated in research protocols, and the need to prevent genetic discrimination in employment and health insurance is becoming more urgent. In the longer term, these gene discoveries are likely to usher in a new era of therapeutic molecular medicine

  5. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Science.gov (United States)

    Cooper, N. G.; Shea, N. eds.

    1992-01-01

    This document provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  6. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N G; Shea, N [eds.

    1992-01-01

    This article provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  7. Reconsidering democracy. History of the Human Genome Project.

    NARCIS (Netherlands)

    Marli Huijer

    2003-01-01

    What options are open for people—citizens, politicians, and other nonscientists—to become actively involved in and anticipate new directions in the life sciences? In addressing this question, this article focuses on the start of the Human Genome Project (1985-1990). By contrasting various models of

  8. The Human Genome Project: Biology, Computers, and Privacy.

    Science.gov (United States)

    Cutter, Mary Ann G.; Drexler, Edward; Gottesman, Kay S.; Goulding, Philip G.; McCullough, Laurence B.; McInerney, Joseph D.; Micikas, Lynda B.; Mural, Richard J.; Murray, Jeffrey C.; Zola, John

    This module, for high school teachers, is the second of two modules about the Human Genome Project (HGP) produced by the Biological Sciences Curriculum Study (BSCS). The first section of this module provides background information for teachers about the structure and objectives of the HGP, aspects of the science and technology that underlie the…

  9. Reconsidering democracy - History of the human genome project

    NARCIS (Netherlands)

    Huijer, M

    What options are open for people-citizens, politicians, and other nonscientists-to become actively involved in and anticipate new directions in the life sciences? In addressing this question, this article focuses on the start of the Human Genome Project (1985-1990). By contrasting various models of

  10. Enhancing Biology Instruction with the Human Genome Project

    Science.gov (United States)

    Buxeda, Rosa J.; Moore-Russo, Deborah A.

    2003-01-01

    The Human Genome Project (HGP) is a recent scientific milestone that has received notable attention. This article shows how a biology course is using the HGP to enhance students' experiences by providing awareness of cutting edge research, with information on new emerging career options, and with opportunities to consider ethical questions raised…

  11. A decade of human genome project conclusion: Scientific diffusion about our genome knowledge.

    Science.gov (United States)

    Moraes, Fernanda; Góes, Andréa

    2016-05-06

    The Human Genome Project (HGP) was initiated in 1990 and completed in 2003. It aimed to sequence the whole human genome. Although it represented an advance in understanding the human genome and its complexity, many questions remained unanswered. Other projects were launched in order to unravel the mysteries of our genome, including the ENCyclopedia of DNA Elements (ENCODE). This review aims to analyze the evolution of scientific knowledge related to both the HGP and ENCODE projects. Data were retrieved from scientific articles published in 1990-2014, a period comprising the development and the 10 years following the HGP completion. The fact that only 20,000 genes are protein and RNA-coding is one of the most striking HGP results. A new concept about the organization of genome arose. The ENCODE project was initiated in 2003 and targeted to map the functional elements of the human genome. This project revealed that the human genome is pervasively transcribed. Therefore, it was determined that a large part of the non-protein coding regions are functional. Finally, a more sophisticated view of chromatin structure emerged. The mechanistic functioning of the genome has been redrafted, revealing a much more complex picture. Besides, a gene-centric conception of the organism has to be reviewed. A number of criticisms have emerged against the ENCODE project approaches, raising the question of whether non-conserved but biochemically active regions are truly functional. Thus, HGP and ENCODE projects accomplished a great map of the human genome, but the data generated still requires further in depth analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:215-223, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  12. The Human Genome Diversity (HGD) Project. Summary document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    In 1991 a group of human geneticists and molecular biologists proposed to the scientific community that a world wide survey be undertaken of variation in the human genome. To aid their considerations, the committee therefore decided to hold a small series of international workshops to explore the major scientific issues involved. The intention was to define a framework for the project which could provide a basis for much wider and more detailed discussion and planning--it was recognized that the successful implementation of the proposed project, which has come to be known as the Human Genome Diversity (HGD) Project, would not only involve scientists but also various national and international non-scientific groups all of which should contribute to the project`s development. The international HGD workshop held in Sardinia in September 1993 was the last in the initial series of planning workshops. As such it not only explored new ground but also pulled together into a more coherent form much of the formal and informal discussion that had taken place in the preceding two years. This report presents the deliberations of the Sardinia workshop within a consideration of the overall development of the HGD Project to date.

  13. The human genome project and the Catholic Church (1)

    Science.gov (United States)

    Moraczewski, Albert S

    1991-12-01

    The Cathlic Church has not made any formal statements about the Human Genome Project as such. But the present Pope, John Paul II, has commented, albeit very briefly, on various aspects of genetic manipulation. Genetic interventions which are therapeutic (e.g. gene therapy), namely, directed to the correction or amelioration of a disorder are acceptable, in principle, provided they promote the personal well being of the individual being so treated. Genetic interventions which are not therapeutic for the specific individual involved but are experimental and directed primarily to improving humans as biological entities are of dubious moral probity, but are not necessarily to be totally rejected out of hand. To be morally acceptable such genetic intervention should meet certain conditions which include due respect for the given psychological nature of each individual human being. In addition, no harm should be inflicted on the process of human generation, and its fundamental design should not be altered. Any genetic manipulation which results in, or tends to, the creation of groups with different qualities such that there would result a fresh marginalization of these people must be avoided. It has been also suggested by a few that because the Son of God took on a human nature in Jesus Christ, one may not so alter the human genome that a new distinct species would be created....

  14. The UK Human Genome Mapping Project online computing service.

    Science.gov (United States)

    Rysavy, F R; Bishop, M J; Gibbs, G P; Williams, G W

    1992-04-01

    This paper presents an overview of computing and networking facilities developed by the Medical Research Council to provide online computing support to the Human Genome Mapping Project (HGMP) in the UK. The facility is connected to a number of other computing facilities in various centres of genetics and molecular biology research excellence, either directly via high-speed links or through national and international wide-area networks. The paper describes the design and implementation of the current system, a 'client/server' network of Sun, IBM, DEC and Apple servers, gateways and workstations. A short outline of online computing services currently delivered by this system to the UK human genetics research community is also provided. More information about the services and their availability could be obtained by a direct approach to the UK HGMP-RC.

  15. The impact of the human genome project on risk assessment

    International Nuclear Information System (INIS)

    Katarzyna Doerffer; Paul Unrau.

    1996-01-01

    The radiation protection approach to risk assessment assumes that cancer induction following radiation exposure is purely random. Present risk assessment methods derive risk from cancer incidence frequencies in exposed populations and associate disease outcomes totally with the level of exposure to ionizing red aeon. Exposure defines a risk factor that affects the probability of the disease outcome. But cancer risk can be affected by other risk factors such as underlying genetic factors (predisposition) of the exposed organism. These genetic risk factors are now becoming available for incorporation into ionizing radiation risk assessment Progress in the Human Genome Project (HOP) will lead to direct assays to measure the effects of genetic risk determinants in disease outcomes. When all genetic risk determinants are known and incorporated into risk assessment it will be possible to reevaluate the role of ionizing radiation in the causation of cancer. (author)

  16. The lawful uses of knowledge from the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Grad, F.P.

    1994-04-15

    Part I of this study deals with the right to know or not to know personal genetic information, and examines available legal protections of the right of privacy and the adverse effect of the disclosure of genetic information both on employment and insurance interests and on self esteem and protection of personal integrity. The study examines the rationale for the legal protection of privacy as the protection of a public interest. It examines the very limited protections currently available for privacy interests, including genetic privacy interests, and concludes that there is a need for broader, more far-reaching legal protections. The second part of the study is based on the assumption that as major a project as the Human Genome Project, spending billions of dollars on science which is health related, will indeed be applied for preventive and therapeutic public health purposes, as it has been in the past. It also addresses the recurring fear that public health initiatives in the genetic area must evolve a new eugenic agenda, that we must not repeat the miserable discriminatory experiences of the past.

  17. National human genome projects: an update and an agenda

    OpenAIRE

    An, Joon Yong

    2017-01-01

    Population genetic and human genetic studies are being accelerated with genome technology and data sharing. Accordingly, in the past 10 years, several countries have initiated genetic research using genome technology and identified the genetic architecture of the ethnic groups living in the corresponding country or suggested the genetic foundation of a social phenomenon. Genetic research has been conducted from epidemiological studies that previously described the health or disease conditions...

  18. Human Genome Teacher Networking Project, Final Report, April 1, 1992 - March 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Debra

    1999-10-01

    Project to provide education regarding ethical legal and social implications of Human Genome Project to high school science teachers through two consecutive summer workshops, in class activities, and peer teaching workshops.

  19. Documenting genomics: Applying archival theory to preserving the records of the Human Genome Project.

    Science.gov (United States)

    Shaw, Jennifer

    2016-02-01

    The Human Genome Archive Project (HGAP) aimed to preserve the documentary heritage of the UK's contribution to the Human Genome Project (HGP) by using archival theory to develop a suitable methodology for capturing the results of modern, collaborative science. After assessing past projects and different archival theories, the HGAP used an approach based on the theory of documentation strategy to try to capture the records of a scientific project that had an influence beyond the purely scientific sphere. The HGAP was an archival survey that ran for two years. It led to ninety scientists being contacted and has, so far, led to six collections being deposited in the Wellcome Library, with additional collections being deposited in other UK repositories. In applying documentation strategy the HGAP was attempting to move away from traditional archival approaches to science, which have generally focused on retired Nobel Prize winners. It has been partially successful in this aim, having managed to secure collections from people who are not 'big names', but who made an important contribution to the HGP. However, the attempt to redress the gender imbalance in scientific collections and to improve record-keeping in scientific organisations has continued to be difficult to achieve. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  20. Human genome education model project. Ethical, legal, and social implications of the human genome project: Education of interdisciplinary professionals

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, J.O. [Alliance of Genetic Support Groups, Chevy Chase, MD (United States); Lapham, E.V. [Georgetown Univ., Washington, DC (United States). Child Development Center

    1996-12-31

    This meeting was held June 10, 1996 at Georgetown University. The purpose of this meeting was to provide a multidisciplinary forum for exchange of state-of-the-art information on the human genome education model. Topics of discussion include the following: psychosocial issues; ethical issues for professionals; legislative issues and update; and education issues.

  1. Understanding the Human Genome Project — A Fact Sheet | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... The Human Genome Project spurred a revolution in biotechnology innovation around the world and played a key ... the U.S. the global leader in the new biotechnology sector. In April 2003, researchers successfully completed the ...

  2. The Human Genome Project: Information access, management, and regulation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.D.; Micikas, L.B.

    1996-08-31

    The Human Genome Project is a large, internationally coordinated effort in biological research directed at creating a detailed map of human DNA. This report describes the access of information, management, and regulation of the project. The project led to the development of an instructional module titled The Human Genome Project: Biology, Computers, and Privacy, designed for use in high school biology classes. The module consists of print materials and both Macintosh and Windows versions of related computer software-Appendix A contains a copy of the print materials and discs containing the two versions of the software.

  3. The Human Genome Project: applications in the diagnosis and treatment of neurologic disease.

    Science.gov (United States)

    Evans, G A

    1998-10-01

    The Human Genome Project (HGP), an international program to decode the entire DNA sequence of the human genome in 15 years, represents the largest biological experiment ever conducted. This set of information will contain the blueprint for the construction and operation of a human being. While the primary driving force behind the genome project is the potential to vastly expand the amount of genetic information available for biomedical research, the ramifications for other fields of study in biological research, the biotechnology and pharmaceutical industry, our understanding of evolution, effects on agriculture, and implications for bioethics are likely to be profound.

  4. The Human Genome Project and the social contract: a law policy approach.

    Science.gov (United States)

    Byk, C

    1992-08-01

    For the first time in history, genetics will enable science to completely identify each human as genetically unique. Will this knowledge reinforce the trend for more individual liberties or will it create a 'brave new world'? A law policy approach to the problems raised by the human genome project shows how far our democratic institutions are from being the proper forum to discuss such issues. Because of the fears and anxiety raised in the population, and also because of its wide implications on the everyday life, the human genome analysis more than any other project needs to succeed in setting up such a social assessment.

  5. RadGenomics project

    Energy Technology Data Exchange (ETDEWEB)

    Iwakawa, Mayumi; Imai, Takashi; Harada, Yoshinobu [National Inst. of Radiological Sciences, Chiba (Japan). Frontier Research Center] [and others

    2002-06-01

    Human health is determined by a complex interplay of factors, predominantly between genetic susceptibility, environmental conditions and aging. The ultimate aim of the RadGenomics (Radiation Genomics) project is to understand the implications of heterogeneity in responses to ionizing radiation arising from genetic variation between individuals in the human population. The rapid progression of the human genome sequencing and the recent development of new technologies in molecular genetics are providing us with new opportunities to understand the genetic basis of individual differences in susceptibility to natural and/or artificial environmental factors, including radiation exposure. The RadGenomics project will inevitably lead to improved protocols for personalized radiotherapy and reductions in the potential side effects of such treatment. The project will contribute to future research into the molecular mechanisms of radiation sensitivity in humans and will stimulate the development of new high-throughput technologies for a broader application of biological and medical sciences. The staff members are specialists in a variety of fields, including genome science, radiation biology, medical science, molecular biology, and informatics, and have joined the RadGenomics project from various universities, companies, and research institutes. The project started in April 2001. (author)

  6. RadGenomics project

    International Nuclear Information System (INIS)

    Iwakawa, Mayumi; Imai, Takashi; Harada, Yoshinobu

    2002-01-01

    Human health is determined by a complex interplay of factors, predominantly between genetic susceptibility, environmental conditions and aging. The ultimate aim of the RadGenomics (Radiation Genomics) project is to understand the implications of heterogeneity in responses to ionizing radiation arising from genetic variation between individuals in the human population. The rapid progression of the human genome sequencing and the recent development of new technologies in molecular genetics are providing us with new opportunities to understand the genetic basis of individual differences in susceptibility to natural and/or artificial environmental factors, including radiation exposure. The RadGenomics project will inevitably lead to improved protocols for personalized radiotherapy and reductions in the potential side effects of such treatment. The project will contribute to future research into the molecular mechanisms of radiation sensitivity in humans and will stimulate the development of new high-throughput technologies for a broader application of biological and medical sciences. The staff members are specialists in a variety of fields, including genome science, radiation biology, medical science, molecular biology, and informatics, and have joined the RadGenomics project from various universities, companies, and research institutes. The project started in April 2001. (author)

  7. Human Genome Diversity Project. Summary of planning workshop 3(B): Ethical and human-rights implications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The third planning workshop of the Human Genome Diversity Project was held on the campus of the US National Institutes of Health in Bethesda, Maryland, from February 16 through February 18, 1993. The second day of the workshop was devoted to an exploration of the ethical and human-rights implications of the Project. This open meeting centered on three roundtables, involving 12 invited participants, and the resulting discussions among all those present. Attendees and their affiliations are listed in the attached Appendix A. The discussion was guided by a schedule and list of possible issues, distributed to all present and attached as Appendix B. This is a relatively complete, and thus lengthy, summary of the comments at the meeting. The beginning of the summary sets out as conclusions some issues on which there appeared to be widespread agreement, but those conclusions are not intended to serve as a set of detailed recommendations. The meeting organizer is distributing his recommendations in a separate memorandum; recommendations from others who attended the meeting are welcome and will be distributed by the meeting organizer to the participants and to the Project committee.

  8. The Human Genome Project and Eugenics: Identifying the Impact on Individuals with Mental Retardation.

    Science.gov (United States)

    Kuna, Jason

    2001-01-01

    This article explores the impact of the mapping work of the Human Genome Project on individuals with mental retardation and the negative effects of genetic testing. The potential to identify disabilities and the concept of eugenics are discussed, along with ethical issues surrounding potential genetic therapies. (Contains references.) (CR)

  9. Reflections on Mental Retardation and Eugenics, Old and New: Mensa and the Human Genome Project.

    Science.gov (United States)

    Smith, J. David

    1994-01-01

    This article addresses the moral and ethical issues of mental retardation and a continuing legacy of belief in eugenics. It discusses the involuntary sterilization of Carrie Buck in 1927, support for legalized killing of subnormal infants by 47% of respondents to a Mensa survey, and implications of the Human Genome Project for the field of mental…

  10. Democratizing Human Genome Project Information: A Model Program for Education, Information and Debate in Public Libraries.

    Science.gov (United States)

    Pollack, Miriam

    The "Mapping the Human Genome" project demonstrated that librarians can help whomever they serve in accessing information resources in the areas of biological and health information, whether it is the scientists who are developing the information or a member of the public who is using the information. Public libraries can guide library…

  11. From Mendel to the Human Genome Project: The Implications for Nurse Education.

    Science.gov (United States)

    Burton, Hilary; Stewart, Alison

    2003-01-01

    The Human Genome Project is brining new opportunities to predict and prevent diseases. Although pediatric nurses are the closest to these developments, most nurses will encounter genetic aspects of practice and must understand the basic science and its ethical, legal, and social dimensions. (Includes commentary by Peter Birchenall.) (SK)

  12. Sequence Analysis and Characterization of Active Human Alu Subfamilies Based on the 1000 Genomes Pilot Project.

    Science.gov (United States)

    Konkel, Miriam K; Walker, Jerilyn A; Hotard, Ashley B; Ranck, Megan C; Fontenot, Catherine C; Storer, Jessica; Stewart, Chip; Marth, Gabor T; Batzer, Mark A

    2015-08-29

    The goal of the 1000 Genomes Consortium is to characterize human genome structural variation (SV), including forms of copy number variations such as deletions, duplications, and insertions. Mobile element insertions, particularly Alu elements, are major contributors to genomic SV among humans. During the pilot phase of the project we experimentally validated 645 (611 intergenic and 34 exon targeted) polymorphic "young" Alu insertion events, absent from the human reference genome. Here, we report high resolution sequencing of 343 (322 unique) recent Alu insertion events, along with their respective target site duplications, precise genomic breakpoint coordinates, subfamily assignment, percent divergence, and estimated A-rich tail lengths. All the sequenced Alu loci were derived from the AluY lineage with no evidence of retrotransposition activity involving older Alu families (e.g., AluJ and AluS). AluYa5 is currently the most active Alu subfamily in the human lineage, followed by AluYb8, and many others including three newly identified subfamilies we have termed AluYb7a3, AluYb8b1, and AluYa4a1. This report provides the structural details of 322 unique Alu variants from individual human genomes collectively adding about 100 kb of genomic variation. Many Alu subfamilies are currently active in human populations, including a surprising level of AluY retrotransposition. Human Alu subfamilies exhibit continuous evolution with potential drivers sprouting new Alu lineages. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Getting the Word Out on the Human Genome Project: A Course for Physicians

    Energy Technology Data Exchange (ETDEWEB)

    Sara L. Tobin

    2004-09-29

    Our project, ''Getting the Word Out on the Human Genome Project: A Course for Physicians,'' presented educational goals to convey the power and promise of the Human Genome Program to a variety of professional, educational, and public audiences. Our initial goal was to provide practicing physicians with a comprehensive multimedia tool to update their skills in the genomic era. We therefore created the multimedia courseware, ''The New Genetics: Courseware for Physicians. Molecular Concepts, Applications, and Ramifications.'' However, as the project moved forward, several unanticipated audiences found the courseware to be useful for instruction and for self-education, so an additional edition of the courseware ''The New Genetics: Medicine and the Human Genome. Molecular Concepts, Applications, and Ramifications'' was published simultaneously with the physician version. At the time that both versions of the courseware were being completed, Stanford's Office of Technology Licensing opted not to commercialize the courseware and offered a license-back agreement if the authors founded a commercial business. The authors thus became closely involved in marketing and sales, and several thousand copies of the courseware have been sold. Surprisingly, the non-physician version has turned out to be more in demand, and this has led us in several new directions, most of which involve undergraduate education. These are discussed in detail in the Report.

  14. The Human Genome Project and Mental Retardation: An Educational Program. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Sharon

    1999-05-03

    The Arc, a national organization on mental retardation, conducted an educational program for members, many of whom have a family member with a genetic condition causing mental retardation. The project informed members about the Human Genome scientific efforts, conducted training regarding ethical, legal and social implications and involved members in issue discussions. Short reports and fact sheets on genetic and ELSI topics were disseminated to 2,200 of the Arc's leaders across the country and to other interested individuals. Materials produced by the project can e found on the Arc's web site, TheArc.org.

  15. The Ensembl genome database project.

    Science.gov (United States)

    Hubbard, T; Barker, D; Birney, E; Cameron, G; Chen, Y; Clark, L; Cox, T; Cuff, J; Curwen, V; Down, T; Durbin, R; Eyras, E; Gilbert, J; Hammond, M; Huminiecki, L; Kasprzyk, A; Lehvaslaiho, H; Lijnzaad, P; Melsopp, C; Mongin, E; Pettett, R; Pocock, M; Potter, S; Rust, A; Schmidt, E; Searle, S; Slater, G; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Stupka, E; Ureta-Vidal, A; Vastrik, I; Clamp, M

    2002-01-01

    The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of the human genome sequence, with confirmed gene predictions that have been integrated with external data sources, and is available as either an interactive web site or as flat files. It is also an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements from sequence analysis to data storage and visualisation. The Ensembl site is one of the leading sources of human genome sequence annotation and provided much of the analysis for publication by the international human genome project of the draft genome. The Ensembl system is being installed around the world in both companies and academic sites on machines ranging from supercomputers to laptops.

  16. Human genome I

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    An international conference, Human Genome I, was held Oct. 2-4, 1989 in San Diego, Calif. Selected speakers discussed: Current Status of the Genome Project; Technique Innovations; Interesting regions; Applications; and Organization - Different Views of Current and Future Science and Procedures. Posters, consisting of 119 presentations, were displayed during the sessions. 119 were indexed for inclusion to the Energy Data Base

  17. The human genome project: Information management, access, and regulation. Technical progress report, 1 April--31 August 1993

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.D.; Micikas, L.B.

    1993-09-10

    Efforts are described to prepare educational materials including computer based as well as conventional type teaching materials for training interested high school and elementary students in aspects of Human Genome Project.

  18. ELSI Bibliography: Ethical legal and social implications of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Yesley, M.S. [comp.

    1993-11-01

    This second edition of the ELSI Bibliography provides a current and comprehensive resource for identifying publications on the major topics related to the ethical, legal and social issues (ELSI) of the Human Genome Project. Since the first edition of the ELSI Bibliography was printed last year, new publications and earlier ones identified by additional searching have doubled our computer database of ELSI publications to over 5600 entries. The second edition of the ELSI Bibliography reflects this growth of the underlying computer database. Researchers should note that an extensive collection of publications in the database is available for public use at the General Law Library of Los Alamos National Laboratory (LANL).

  19. Human Genome Project discoveries: Dialectics and rhetoric in the science of genetics

    Science.gov (United States)

    Robidoux, Charlotte A.

    The Human Genome Project (HGP), a $437 million effort that began in 1990 to chart the chemical sequence of our three billion base pairs of DNA, was completed in 2003, marking the 50th anniversary that proved the definitive structure of the molecule. This study considered how dialectical and rhetorical arguments functioned in the science, political, and public forums over a 20-year period, from 1980 to 2000, to advance human genome research and to establish the official project. I argue that Aristotle's continuum of knowledge--which ranges from the probable on one end to certified or demonstrated knowledge on the other--provides useful distinctions for analyzing scientific reasoning. While contemporary scientific research seeks to discover certified knowledge, investigators generally employ the hypothetico-deductive or scientific method, which often yields probable rather than certain findings, making these dialectical in nature. Analysis of the discourse describing human genome research revealed the use of numerous rhetorical figures and topics. Persuasive and probable reasoning were necessary for scientists to characterize unknown genetic phenomena, to secure interest in and funding for large-scale human genome research, to solve scientific problems, to issue probable findings, to convince colleagues and government officials that the findings were sound and to disseminate information to the public. Both government and private venture scientists drew on these tools of reasoning to promote their methods of mapping and sequencing the genome. The debate over how to carry out sequencing was rooted in conflicting values. Scientists representing the academic tradition valued a more conservative method that would establish high quality results, and those supporting private industry valued an unconventional approach that would yield products and profits more quickly. Values in turn influenced political and public forum arguments. Agency representatives and investors sided

  20. National Human Genome Research Institute

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  1. Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  2. Understanding the Human Genome Project: Using Stations to Provide a Comprehensive Overview

    Science.gov (United States)

    Soto, Julio G.

    2005-01-01

    A lesson was designed for lower division general education, non-major biology lecture-only course that included the historical and scientific context, some of the skills used to study the human genome, results, conclusions and ethical consideration. Students learn to examine and compare the published Human Genome maps, and employ the strategies…

  3. Understanding our genetic inheritance: The US Human Genome Project, The first five years FY 1991--1995

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-04-01

    The Human Genome Initiative is a worldwide research effort with the goal of analyzing the structure of human DNA and determining the location of the estimated 100,000 human genes. In parallel with this effort, the DNA of a set of model organisms will be studied to provide the comparative information necessary for understanding the functioning of the human genome. The information generated by the human genome project is expected to be the source book for biomedical science in the 21st century and will by of immense benefit to the field of medicine. It will help us to understand and eventually treat many of the more than 4000 genetic diseases that affect mankind, as well as the many multifactorial diseases in which genetic predisposition plays an important role. A centrally coordinated project focused on specific objectives is believed to be the most efficient and least expensive way of obtaining this information. The basic data produced will be collected in electronic databases that will make the information readily accessible on convenient form to all who need it. This report describes the plans for the U.S. human genome project and updates those originally prepared by the Office of Technology Assessment (OTA) and the National Research Council (NRC) in 1988. In the intervening two years, improvements in technology for almost every aspect of genomics research have taken place. As a result, more specific goals can now be set for the project.

  4. Decoding the human genome

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Antonerakis, S E

    2002-01-01

    Decoding the Human genome is a very up-to-date topic, raising several questions besides purely scientific, in view of the two competing teams (public and private), the ethics of using the results, and the fact that the project went apparently faster and easier than expected. The lecture series will address the following chapters: Scientific basis and challenges. Ethical and social aspects of genomics.

  5. The human genome project and novel aspects of cytochrome P450 research

    International Nuclear Information System (INIS)

    Ingelman-Sundberg, Magnus

    2005-01-01

    Currently, 57 active cytochrome P450 (CYP) genes and 58 pseudogenes are known to be present in the human genome. Among the genes discovered by initiatives in the human genome project are CYP2R1, CYP2W1, CYP2S1, CYP2U1 and CYP3A43, the latter apparently encoding a pseudoenzyme. The function, polymorphism and regulation of these genes are still to be discovered to a great extent. The polymorphism of drug metabolizing CYPs is extensive and influences the outcome of drug therapy causing lack of response or adverse drug reactions. The basis for the differences in the global distribution of the polymorphic variants is inactivating gene mutations and subsequent genetic drift. However, polymorphic alleles carrying multiple active gene copies also exist and are suggested in case of CYP2D6 to be caused by positive selection due to development of alkaloid resistance in North East Africa about 10,000-5000 BC. The knowledge about the CYP genes and their polymorphisms is of fundamental importance for effective drug therapy and for drug development as well as for understanding metabolic activation of carcinogens and other xenobiotics. Here, a short review of the current knowledge is given

  6. BIOETHICS METHODS IN THE ETHICAL, LEGAL, AND SOCIAL IMPLICATIONS OF THE HUMAN GENOME PROJECT LITERATURE

    Science.gov (United States)

    Walker, Rebecca; Morrissey, Clair

    2013-01-01

    While bioethics as a field has concerned itself with methodological issues since the early years, there has been no systematic examination of how ethics is incorporated into research on the Ethical, Legal and Social Implications (ELSI) of the Human Genome Project. Yet ELSI research may bear a particular burden of investigating and substantiating its methods given public funding, an explicitly cross-disciplinary approach, and the perceived significance of adequate responsiveness to advances in genomics. We undertook a qualitative content analysis of a sample of ELSI publications appearing between 2003-2008 with the aim of better understanding the methods, aims, and approaches to ethics that ELSI researchers employ. We found that the aims of ethics within ELSI are largely prescriptive and address multiple groups. We also found that the bioethics methods used in the ELSI literature are both diverse between publications and multiple within publications, but are usually not themselves discussed or employed as suggested by bioethics method proponents. Ethics in ELSI is also sometimes undistinguished from related inquiries (such as social, legal, or political investigations). PMID:23796275

  7. Deep brain stimulation, brain maps and personalized medicine: lessons from the human genome project.

    Science.gov (United States)

    Fins, Joseph J; Shapiro, Zachary E

    2014-01-01

    Although the appellation of personalized medicine is generally attributed to advanced therapeutics in molecular medicine, deep brain stimulation (DBS) can also be so categorized. Like its medical counterpart, DBS is a highly personalized intervention that needs to be tailored to a patient's individual anatomy. And because of this, DBS like more conventional personalized medicine, can be highly specific where the object of care is an N = 1. But that is where the similarities end. Besides their differing medical and surgical provenances, these two varieties of personalized medicine have had strikingly different impacts. The molecular variant, though of a more recent vintage has thrived and is experiencing explosive growth, while DBS still struggles to find a sustainable therapeutic niche. Despite its promise, and success as a vetted treatment for drug resistant Parkinson's Disease, DBS has lagged in broadening its development, often encountering regulatory hurdles and financial barriers necessary to mount an adequate number of quality trials. In this paper we will consider why DBS-or better yet neuromodulation-has encountered these challenges and contrast this experience with the more successful advance of personalized medicine. We will suggest that personalized medicine and DBS's differential performance can be explained as a matter of timing and complexity. We believe that DBS has struggled because it has been a journey of scientific exploration conducted without a map. In contrast to molecular personalized medicine which followed the mapping of the human genome and the Human Genome Project, DBS preceded plans for the mapping of the human brain. We believe that this sequence has given personalized medicine a distinct advantage and that the fullest potential of DBS will be realized both as a cartographical or electrophysiological probe and as a modality of personalized medicine.

  8. O admirável Projeto Genoma Humano The brave New Human Genome Project

    Directory of Open Access Journals (Sweden)

    Marilena V. Corrêa

    2002-12-01

    Full Text Available Este artigo apresenta um panorama das implicações sociais, éticas e legais do Projeto Genoma Humano. Os benefícios desse megaprojeto, traduzidos em promessas de uma revolução terapêutica na medicina, não se realizarão sem conflitos. O processo de inovação tecnológica na genética traz problemas de ordens diversas: por um lado, pesquisas em consórcio, patenteamento de genes e produtos da genômica apontam interesses comerciais e dificuldades de gerenciamento dos resultados dessas pesquisas. Esses problemas colocam desafios em termos de uma possível desigualdade no acesso aos benefícios das pesquisas. Por outro lado, temos a questão da informação genética e da proteção de dados individuais sobre riscos e suscetibilidades a doenças e atributos humanos. O problema da definição de homens e mulheres em função de traços genéticos traz uma ameaça discriminatória clara, e se torna agudo em função do reducionismo genético que a mídia ajuda a propagar. As respostas a esses problemas não podem ser esperadas apenas da bioética. A abordagem bioética deve poder combinar-se a análises políticas da reprodução, da sexualidade, da saúde e da medicina. Um vastíssimo espectro de problemas como estes não pode ser discutido em profundidade em um artigo. Optou-se por mapeá-los no sentido de enfatizar em que medida, na reflexão sobre o projeto genoma, a genômica e a pós-genômica, enfrenta-se o desafio de articular aspectos tão diferenciados.This article presents an overview of the social, ethical, and legal implications of the Human Genome Project. The benefits of this mega-project, expressed as promises of a therapeutic revolution in medicine, will not be achieved without conflict. The process of technological innovation in genetics poses problems of various orders: on the one hand, consortium-based research, gene patenting, and genomic products tend to feature commercial interests and management of the results of such

  9. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project

    DEFF Research Database (Denmark)

    Birney, Ewan; Stamatoyannopoulos, John A; Dutta, Anindya

    2007-01-01

    We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses...

  10. The post-Human Genome Project mindset: race, reliability, and health care.

    Science.gov (United States)

    Kimmelman, J

    2006-11-01

    The following essay reports on the first session of a 2-day workshop on genetic diversity and science communication, organized by the Institute of Genetics. I argue that the four talks in this session reflected two different facets of a 'post-Human Genome Project (HGP)' view of human genetics. The first is characterized by an increasing interest in genetic differences. Two speakers - Troy Duster and Jasber Singh - expressed skepticism about one aspect of this trend: an emphasis on race in medicine and genetics. The other two speakers - Kenneth Weiss and Gustavo Turecki - spoke to a second facet of the post-HGP view: a recognition of the difficulty in translating genetic discovery into medical or public health applications. Though both sets of talks were highly critical of current trends in genetic research, they pulled in opposite directions: one warned about the role of genetics in stabilizing racial categories, while the other lamented the failure of any genetic claims or categories to stabilize at all. I argue that the use of racial categories in medicine seems likely to encounter scientific, medical, and social challenges.

  11. Annotating individual human genomes.

    Science.gov (United States)

    Torkamani, Ali; Scott-Van Zeeland, Ashley A; Topol, Eric J; Schork, Nicholas J

    2011-10-01

    Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. ANNOTATING INDIVIDUAL HUMAN GENOMES*

    Science.gov (United States)

    Torkamani, Ali; Scott-Van Zeeland, Ashley A.; Topol, Eric J.; Schork, Nicholas J.

    2014-01-01

    Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely to amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants. PMID:21839162

  13. Lawrence Livermore National Laboratory- Completing the Human Genome Project and Triggering Nearly $1 Trillion in U.S. Economic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Jeffrey S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-28

    The success of the Human Genome project is already nearing $1 Trillion dollars of U.S. economic activity. Lawrence Livermore National Laboratory (LLNL) was a co-leader in one of the biggest biological research effort in history, sequencing the Human Genome Project. This ambitious research effort set out to sequence the approximately 3 billion nucleotides in the human genome, an effort many thought was nearly impossible. Deoxyribonucleic acid (DNA) was discovered in 1869, and by 1943 came the discovery that DNA was a molecule that encodes the genetic instructions used in the development and functioning of living organisms and many viruses. To make full use of the information, scientists needed to first sequence the billions of nucleotides to begin linking them to genetic traits and illnesses, and eventually more effective treatments. New medical discoveries and improved agriculture productivity were some of the expected benefits. While the potential benefits were vast, the timeline (over a decade) and cost ($3.8 Billion) exceeded what the private sector would normally attempt, especially when this would only be the first phase toward the path to new discoveries and market opportunities. The Department of Energy believed its best research laboratories could meet this Grand Challenge and soon convinced the National Institute of Health to formally propose the Human Genome project to the federal government. The U.S. government accepted the risk and challenge to potentially create new healthcare and food discoveries that could benefit the world and the U.S. Industry.

  14. ELSI Bibliography: Ethical, legal and social implications of the Human Genome Project. 1994 Supplement

    Energy Technology Data Exchange (ETDEWEB)

    Yesley, M.S.; Ossorio, P.N. [comps.

    1994-09-01

    This report updates and expands the second edition of the ELSI Bibliography, published in 1993. The Bibliography and Supplement provides a comprehensive resource for identifying publications on the major topics related to the ethical, legal and social issues (ELSI) of the Human Genome Project. The Bibliography and Supplement are extracted from a database compiled at Los Alamos National Laboratory with the support of the Office of Energy Research, US Department of Energy. The second edition of the ELSI Bibliography was dated May 1993 but included publications added to the database until fall 1993. This Supplement reflects approximately 1,000 entries added to the database during the past year, bringing the total to approximately 7,000 entries. More than half of the new entries were published in the last year, and the remainder are earlier publications not previously included in the database. Most of the new entries were published in the academic and professional literature. The remainder are press reports from newspapers of record and scientific journals. The topical listing of the second edition has been followed in the Supplement, with a few changes. The topics of Cystic Fibrosis, Huntington`s Disease, and Sickle Cell Anemia have been combined in a single topic, Disorders. Also, all the entries published in the past year are included in a new topic, Publications: September 1993--September 1994, which provides a comprehensive view of recent reporting and commentary on the science and ELSI of genetics.

  15. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.

    Science.gov (United States)

    Birney, Ewan; Stamatoyannopoulos, John A; Dutta, Anindya; Guigó, Roderic; Gingeras, Thomas R; Margulies, Elliott H; Weng, Zhiping; Snyder, Michael; Dermitzakis, Emmanouil T; Thurman, Robert E; Kuehn, Michael S; Taylor, Christopher M; Neph, Shane; Koch, Christoph M; Asthana, Saurabh; Malhotra, Ankit; Adzhubei, Ivan; Greenbaum, Jason A; Andrews, Robert M; Flicek, Paul; Boyle, Patrick J; Cao, Hua; Carter, Nigel P; Clelland, Gayle K; Davis, Sean; Day, Nathan; Dhami, Pawandeep; Dillon, Shane C; Dorschner, Michael O; Fiegler, Heike; Giresi, Paul G; Goldy, Jeff; Hawrylycz, Michael; Haydock, Andrew; Humbert, Richard; James, Keith D; Johnson, Brett E; Johnson, Ericka M; Frum, Tristan T; Rosenzweig, Elizabeth R; Karnani, Neerja; Lee, Kirsten; Lefebvre, Gregory C; Navas, Patrick A; Neri, Fidencio; Parker, Stephen C J; Sabo, Peter J; Sandstrom, Richard; Shafer, Anthony; Vetrie, David; Weaver, Molly; Wilcox, Sarah; Yu, Man; Collins, Francis S; Dekker, Job; Lieb, Jason D; Tullius, Thomas D; Crawford, Gregory E; Sunyaev, Shamil; Noble, William S; Dunham, Ian; Denoeud, France; Reymond, Alexandre; Kapranov, Philipp; Rozowsky, Joel; Zheng, Deyou; Castelo, Robert; Frankish, Adam; Harrow, Jennifer; Ghosh, Srinka; Sandelin, Albin; Hofacker, Ivo L; Baertsch, Robert; Keefe, Damian; Dike, Sujit; Cheng, Jill; Hirsch, Heather A; Sekinger, Edward A; Lagarde, Julien; Abril, Josep F; Shahab, Atif; Flamm, Christoph; Fried, Claudia; Hackermüller, Jörg; Hertel, Jana; Lindemeyer, Manja; Missal, Kristin; Tanzer, Andrea; Washietl, Stefan; Korbel, Jan; Emanuelsson, Olof; Pedersen, Jakob S; Holroyd, Nancy; Taylor, Ruth; Swarbreck, David; Matthews, Nicholas; Dickson, Mark C; Thomas, Daryl J; Weirauch, Matthew T; Gilbert, James; Drenkow, Jorg; Bell, Ian; Zhao, XiaoDong; Srinivasan, K G; Sung, Wing-Kin; Ooi, Hong Sain; Chiu, Kuo Ping; Foissac, Sylvain; Alioto, Tyler; Brent, Michael; Pachter, Lior; Tress, Michael L; Valencia, Alfonso; Choo, Siew Woh; Choo, Chiou Yu; Ucla, Catherine; Manzano, Caroline; Wyss, Carine; Cheung, Evelyn; Clark, Taane G; Brown, James B; Ganesh, Madhavan; Patel, Sandeep; Tammana, Hari; Chrast, Jacqueline; Henrichsen, Charlotte N; Kai, Chikatoshi; Kawai, Jun; Nagalakshmi, Ugrappa; Wu, Jiaqian; Lian, Zheng; Lian, Jin; Newburger, Peter; Zhang, Xueqing; Bickel, Peter; Mattick, John S; Carninci, Piero; Hayashizaki, Yoshihide; Weissman, Sherman; Hubbard, Tim; Myers, Richard M; Rogers, Jane; Stadler, Peter F; Lowe, Todd M; Wei, Chia-Lin; Ruan, Yijun; Struhl, Kevin; Gerstein, Mark; Antonarakis, Stylianos E; Fu, Yutao; Green, Eric D; Karaöz, Ulaş; Siepel, Adam; Taylor, James; Liefer, Laura A; Wetterstrand, Kris A; Good, Peter J; Feingold, Elise A; Guyer, Mark S; Cooper, Gregory M; Asimenos, George; Dewey, Colin N; Hou, Minmei; Nikolaev, Sergey; Montoya-Burgos, Juan I; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Huang, Haiyan; Zhang, Nancy R; Holmes, Ian; Mullikin, James C; Ureta-Vidal, Abel; Paten, Benedict; Seringhaus, Michael; Church, Deanna; Rosenbloom, Kate; Kent, W James; Stone, Eric A; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross C; Haussler, David; Miller, Webb; Sidow, Arend; Trinklein, Nathan D; Zhang, Zhengdong D; Barrera, Leah; Stuart, Rhona; King, David C; Ameur, Adam; Enroth, Stefan; Bieda, Mark C; Kim, Jonghwan; Bhinge, Akshay A; Jiang, Nan; Liu, Jun; Yao, Fei; Vega, Vinsensius B; Lee, Charlie W H; Ng, Patrick; Shahab, Atif; Yang, Annie; Moqtaderi, Zarmik; Zhu, Zhou; Xu, Xiaoqin; Squazzo, Sharon; Oberley, Matthew J; Inman, David; Singer, Michael A; Richmond, Todd A; Munn, Kyle J; Rada-Iglesias, Alvaro; Wallerman, Ola; Komorowski, Jan; Fowler, Joanna C; Couttet, Phillippe; Bruce, Alexander W; Dovey, Oliver M; Ellis, Peter D; Langford, Cordelia F; Nix, David A; Euskirchen, Ghia; Hartman, Stephen; Urban, Alexander E; Kraus, Peter; Van Calcar, Sara; Heintzman, Nate; Kim, Tae Hoon; Wang, Kun; Qu, Chunxu; Hon, Gary; Luna, Rosa; Glass, Christopher K; Rosenfeld, M Geoff; Aldred, Shelley Force; Cooper, Sara J; Halees, Anason; Lin, Jane M; Shulha, Hennady P; Zhang, Xiaoling; Xu, Mousheng; Haidar, Jaafar N S; Yu, Yong; Ruan, Yijun; Iyer, Vishwanath R; Green, Roland D; Wadelius, Claes; Farnham, Peggy J; Ren, Bing; Harte, Rachel A; Hinrichs, Angie S; Trumbower, Heather; Clawson, Hiram; Hillman-Jackson, Jennifer; Zweig, Ann S; Smith, Kayla; Thakkapallayil, Archana; Barber, Galt; Kuhn, Robert M; Karolchik, Donna; Armengol, Lluis; Bird, Christine P; de Bakker, Paul I W; Kern, Andrew D; Lopez-Bigas, Nuria; Martin, Joel D; Stranger, Barbara E; Woodroffe, Abigail; Davydov, Eugene; Dimas, Antigone; Eyras, Eduardo; Hallgrímsdóttir, Ingileif B; Huppert, Julian; Zody, Michael C; Abecasis, Gonçalo R; Estivill, Xavier; Bouffard, Gerard G; Guan, Xiaobin; Hansen, Nancy F; Idol, Jacquelyn R; Maduro, Valerie V B; Maskeri, Baishali; McDowell, Jennifer C; Park, Morgan; Thomas, Pamela J; Young, Alice C; Blakesley, Robert W; Muzny, Donna M; Sodergren, Erica; Wheeler, David A; Worley, Kim C; Jiang, Huaiyang; Weinstock, George M; Gibbs, Richard A; Graves, Tina; Fulton, Robert; Mardis, Elaine R; Wilson, Richard K; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B; Chang, Jean L; Lindblad-Toh, Kerstin; Lander, Eric S; Koriabine, Maxim; Nefedov, Mikhail; Osoegawa, Kazutoyo; Yoshinaga, Yuko; Zhu, Baoli; de Jong, Pieter J

    2007-06-14

    We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.

  16. Genomics: The Science and Technology Behind the Human Genome Project (by Charles R. Cantor and Cassandra L. Smith)

    Science.gov (United States)

    Serra, Reviewed By Martin J.

    2000-01-01

    Genomics is one of the most rapidly expanding areas of science. This book is an outgrowth of a series of lectures given by one of the former heads (CRC) of the Human Genome Initiative. The book is designed to reach a wide audience, from biologists with little chemical or physical science background through engineers, computer scientists, and physicists with little current exposure to the chemical or biological principles of genetics. The text starts with a basic review of the chemical and biological properties of DNA. However, without either a biochemistry background or a supplemental biochemistry text, this chapter and much of the rest of the text would be difficult to digest. The second chapter is designed to put DNA into the context of the larger chromosomal unit. Specialized chromosomal structures and sequences (centromeres, telomeres) are introduced, leading to a section on chromosome organization and purification. The next 4 chapters cover the physical (hybridization, electrophoresis), chemical (polymerase chain reaction), and biological (genetic) techniques that provide the backbone of genomic analysis. These chapters cover in significant detail the fundamental principles underlying each technique and provide a firm background for the remainder of the text. Chapters 7­9 consider the need and methods for the development of physical maps. Chapter 7 primarily discusses chromosomal localization techniques, including in situ hybridization, FISH, and chromosome paintings. The next two chapters focus on the development of libraries and clones. In particular, Chapter 9 considers the limitations of current mapping and clone production. The current state and future of DNA sequencing is covered in the next three chapters. The first considers the current methods of DNA sequencing - especially gel-based methods of analysis, although other possible approaches (mass spectrometry) are introduced. Much of the chapter addresses the limitations of current methods, including

  17. Proyecto genoma humano: un arma de doble filo The Human Genome Project: A double edge weapon

    Directory of Open Access Journals (Sweden)

    Elizabeth Hernández Moore

    2001-04-01

    Full Text Available Después de breve reseña histórica que informa sobre los sorprendentes avances de la genética a partir del descubrimiento de la estructura helicoidal del DNA, el artículo centra su atención en el nacimiento de los estudios genómicos en los Estados Unidos de Norteamérica, las causas y condiciones que los motivaron, hasta desembocar en el multinacional Proyecto Genoma Humano. Sin olvidar la estatura científica de tal empresa, se intenta una mirada desde la perspectiva de las relaciones Norte-Sur, remitiéndonos de modo más incisivo a los aspectos éticos más controvertidos del PGH. Argumentamos que en las sociedades del Sur debemos ocuparnos en jerarquizar los principales problemas bioéticos que nos aquejan y que están aún muy distantes de los que se "encargan" al PGH . Referimos que las sociedades del Sur deben insertar en su agenda, proyecciones en Ciencia, Tecnología y Sociedad, entre las que el PGH no califica como una prioridad autóctona, aún cuando no descalificamos en su esencia tales megaproyectos, originados en los centros y circuitos propios de la ciencia del NorteAlter brief historical review that informs on the surprising advances of the genetics starting from the discovery of the spiral structure of the DNA, the article centres its attention in the birth of the genetic studies in the United Status of America, the causes and conditions that motivated them, intil ending in the I multinacional Human Genome Project without forgetting the scientific stature of such Project. It is attempted a llok from the perspective of the North-South relationships, remiting us of the more incisive way to the most controversial ethical aspects of the HPG. We argue that in the societies of the South we shoujd be in charge of organizing hierchically the main bioethical problems that we suffer and they are even very distant of those that are in charge of the HGP. We refer that the societies of the South should insert in their calendar

  18. Human genome. 1993 Program report

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.

  19. Big Data Analysis of Human Genome Variations

    KAUST Repository

    Gojobori, Takashi

    2016-01-01

    Since the human genome draft sequence was in public for the first time in 2000, genomic analyses have been intensively extended to the population level. The following three international projects are good examples for large-scale studies of human

  20. HGVA: the Human Genome Variation Archive

    OpenAIRE

    Lopez, Javier; Coll, Jacobo; Haimel, Matthias; Kandasamy, Swaathi; Tarraga, Joaquin; Furio-Tari, Pedro; Bari, Wasim; Bleda, Marta; Rueda, Antonio; Gr?f, Stefan; Rendon, Augusto; Dopazo, Joaquin; Medina, Ignacio

    2017-01-01

    Abstract High-profile genomic variation projects like the 1000 Genomes project or the Exome Aggregation Consortium, are generating a wealth of human genomic variation knowledge which can be used as an essential reference for identifying disease-causing genotypes. However, accessing these data, contrasting the various studies and integrating those data in downstream analyses remains cumbersome. The Human Genome Variation Archive (HGVA) tackles these challenges and facilitates access to genomic...

  1. Controlling our destinies: Historical, philosophical, social and ethical perspectives on the Human Genome Project: Final report, July 1, 1995-June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, P.R.

    1996-09-25

    This report briefly describes the efforts by the organizing committee in preparation for the conference entitled Controlling Our Destinies: Historical, Philosophical, Social, and Ethical Perspectives on the Human Genome Project. The conference was held October 5-8, 1995.

  2. Parasite Genome Projects and the Trypanosoma cruzi Genome Initiative

    Directory of Open Access Journals (Sweden)

    Wim Degrave

    1997-11-01

    Full Text Available Since the start of the human genome project, a great number of genome projects on other "model" organism have been initiated, some of them already completed. Several initiatives have also been started on parasite genomes, mainly through support from WHO/TDR, involving North-South and South-South collaborations, and great hopes are vested in that these initiatives will lead to new tools for disease control and prevention, as well as to the establishment of genomic research technology in developing countries. The Trypanosoma cruzi genome project, using the clone CL-Brener as starting point, has made considerable progress through the concerted action of more than 20 laboratories, most of them in the South. A brief overview of the current state of the project is given

  3. Whitehead Policy Symposium. The Human Genome Project: Science, law, and social change in the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, E.K.

    2000-02-17

    Advances in the biomedical sciences, especially in human genomics, will dramatically influence law, medicine, public health, and many other sectors of our society in the decades ahead. The public already senses the revolutionary nature of genomic knowledge. In the US and Europe, we have seen widespread discussions about genetic discrimination in health insurance; privacy issues raised by the proliferation of DNA data banks; the challenge of interpreting new DNA diagnostic tests; changing definitions of what it means to be healthy; and the science and ethics of cloning animals and human beings. The primary goal of the Whitehead/ASLME Policy Symposium was to provide a bridge between the research community and professionals, who were just beginning to grasp the potential impact of new genetic technologies on their fields. The ''Human Genome Project: Science, Law, and Social Change in the 21st Century'' initially was designed as a forum for 300-500 physicians, lawyers, consumers, ethicists, and scientists to explore the impact of new genetic technologies and prepare for the challenges ahead.

  4. The New World of Human Genetics: A dialogue between Practitioners & the General Public on Ethical, Legal & Social Implications of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Amy

    2014-12-08

    The history and reasons for launching the Human Genome project and the current uses of genetic human material; Identifying and discussing the major issues stemming directly from genetic research and therapy-including genetic discrimination, medical/ person privacy, allocation of government resources and individual finances, and the effect on the way in which we perceive the value of human life; Discussing the sometimes hidden ethical, social and legislative implications of genetic research and therapy such as informed consent, screening and preservation of genetic materials, efficacy of medical procedures, the role of the government, and equal access to medical coverage.

  5. Integrating Public Health and Deliberative Public Bioethics: Lessons from the Human Genome Project Ethical, Legal, and Social Implications Program.

    Science.gov (United States)

    Meagher, Karen M; Lee, Lisa M

    2016-01-01

    Public health policy works best when grounded in firm public health standards of evidence and widely shared social values. In this article, we argue for incorporating a specific method of ethical deliberation--deliberative public bioethics--into public health. We describe how deliberative public bioethics is a method of engagement that can be helpful in public health. Although medical, research, and public health ethics can be considered some of what bioethics addresses, deliberative public bioethics offers both a how and where. Using the Human Genome Project Ethical, Legal, and Social Implications program as an example of effective incorporation of deliberative processes to integrate ethics into public health policy, we examine how deliberative public bioethics can integrate both public health and bioethics perspectives into three areas of public health practice: research, education, and health policy. We then offer recommendations for future collaborations that integrate deliberative methods into public health policy and practice.

  6. An information and dialogue conference on the human genome project (HGP) for the minority communities in the state of Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Zeta Phi Beta Sorority National Educational Foundation, in cooperation with Xavier University of New Orleans, and the New Orleans District Office of the United States Equal Employment Opportunity Commission, held the Information and Dialogue Conference on the Human Genome Project for the Minority Communities in the State of Louisiana on April 16-17, 1999. The Conference was held on the campus of Xavier University in New Orleans. Community leaders, government officials, minority professional and social organizations leaders, religious leaders, persons from the educational and academic community, and students were invited. Conference objectives included bringing HGP information and a focus in the minority community on the project, in clear and understandable terms, to spread the work in the minority community about the project; to explore the likely positive implications with respect to health care and related matters; to explore possible negative results and strategies to meet them; to discuss the social, legal, and ethical implications; and to facilitate minority input into the HGP as it develops.

  7. Human social genomics.

    Directory of Open Access Journals (Sweden)

    Steven W Cole

    2014-08-01

    Full Text Available A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conserved transcriptional response to adversity (CTRA characterized by increased expression of proinflammatory genes and decreased expression of genes involved in innate antiviral responses and antibody synthesis. Mechanistic analyses have mapped the neural "social signal transduction" pathways that stimulate CTRA gene expression in response to social threat and may contribute to social gradients in health. Research has also begun to analyze the functional genomics of optimal health and thriving. Two emerging opportunities now stand to revolutionize our understanding of the everyday life of the human genome: network genomics analyses examining how systems-level capabilities emerge from groups of individual socially sensitive genomes and near-real-time transcriptional biofeedback to empirically optimize individual well-being in the context of the unique genetic, geographic, historical, developmental, and social contexts that jointly shape the transcriptional realization of our innate human genomic potential for thriving.

  8. Human Germline Genome Editing

    OpenAIRE

    Ormond, Kelly E.; Mortlock, Douglas P.; Scholes, Derek T.; Bombard, Yvonne; Brody, Lawrence C.; Faucett, W. Andrew; Garrison, Nanibaa’ A.; Hercher, Laura; Isasi, Rosario; Middleton, Anna; Musunuru, Kiran; Shriner, Daniel; Virani, Alice; Young, Caroline E.

    2017-01-01

    With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Gen...

  9. Poor man’s 1000 genome project: Recent human population expansion confounds the detection of disease alleles in 7,098 complete mitochondrial genomes

    Directory of Open Access Journals (Sweden)

    Hie Lim eKim

    2013-02-01

    Full Text Available Rapid growth of the human population has caused the accumulation of rare genetic variants that may play a role in the origin of genetic diseases. However, it is challenging to identify those rare variants responsible for specific diseases without genetic data from an extraordinarily large population sample. Here we focused on the accumulated data from the human mitochondrial (mt genome sequences because this data provided 7,098 whole genomes for analysis. In this dataset we identified 6,110 single nucleotide variants (SNVs and their frequency and determined that the best-fit demographic model for the 7,098 genomes included severe population bottlenecks and exponential expansions of the non-African population. Using this model, we simulated the evolution of mt genomes in order to ascertain the behavior of deleterious mutations. We found that such deleterious mutations barely survived during population expansion. We derived the threshold frequency of a deleterious mutation in separate African, Asian, and European populations and used it to identify pathogenic mutations in our dataset. Although threshold frequency was very low, the proportion of variants showing a lower frequency than that threshold was 82%, 83%, and 91% of the total variants for the African, Asian, and European populations, respectively. Within these variants, only 18 known pathogenic mutations were detected in the 7,098 genomes. This result showed the difficulty of detecting a pathogenic mutation within an abundance of rare variants in the human population, even with a large number of genomes available for study.

  10. The Pediatric Cancer Genome Project

    Science.gov (United States)

    Downing, James R; Wilson, Richard K; Zhang, Jinghui; Mardis, Elaine R; Pui, Ching-Hon; Ding, Li; Ley, Timothy J; Evans, William E

    2013-01-01

    The St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project (PCGP) is participating in the international effort to identify somatic mutations that drive cancer. These cancer genome sequencing efforts will not only yield an unparalleled view of the altered signaling pathways in cancer but should also identify new targets against which novel therapeutics can be developed. Although these projects are still deep in the phase of generating primary DNA sequence data, important results are emerging and valuable community resources are being generated that should catalyze future cancer research. We describe here the rationale for conducting the PCGP, present some of the early results of this project and discuss the major lessons learned and how these will affect the application of genomic sequencing in the clinic. PMID:22641210

  11. Human Germline Genome Editing.

    Science.gov (United States)

    Ormond, Kelly E; Mortlock, Douglas P; Scholes, Derek T; Bombard, Yvonne; Brody, Lawrence C; Faucett, W Andrew; Garrison, Nanibaa' A; Hercher, Laura; Isasi, Rosario; Middleton, Anna; Musunuru, Kiran; Shriner, Daniel; Virani, Alice; Young, Caroline E

    2017-08-03

    With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Genetic Counselors. These groups, as well as the American Society for Reproductive Medicine, Asia Pacific Society of Human Genetics, British Society for Genetic Medicine, Human Genetics Society of Australasia, Professional Society of Genetic Counselors in Asia, and Southern African Society for Human Genetics, endorsed the final statement. The statement includes the following positions. (1) At this time, given the nature and number of unanswered scientific, ethical, and policy questions, it is inappropriate to perform germline gene editing that culminates in human pregnancy. (2) Currently, there is no reason to prohibit in vitro germline genome editing on human embryos and gametes, with appropriate oversight and consent from donors, to facilitate research on the possible future clinical applications of gene editing. There should be no prohibition on making public funds available to support this research. (3) Future clinical application of human germline genome editing should not proceed unless, at a minimum, there is (a) a compelling medical rationale, (b) an evidence base that supports its clinical use, (c) an ethical justification, and (d) a transparent public process to solicit and incorporate stakeholder input. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  12. The 1000 bull genome project

    Science.gov (United States)

    To meet growing global demands for high value protein from milk and meat, rates of genetic gain in domestic cattle must be accelerated. At the same time, animal health and welfare must be considered. The 1000 bull genomes project supports these goals by providing annotated sequence variants and ge...

  13. Human Genome Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Richard Myers; Lane Conn

    2000-05-01

    The funds from the DOE Human Genome Program, for the project period 2/1/96 through 1/31/98, have provided major support for the curriculum development and field testing efforts for two high school level instructional units: Unit 1, ''Exploring Genetic Conditions: Genes, Culture and Choices''; and Unit 2, ''DNA Snapshots: Peaking at Your DNA''. In the original proposal, they requested DOE support for the partial salary and benefits of a Field Test Coordinator position to: (1) complete the field testing and revision of two high school curriculum units, and (2) initiate the education of teachers using these units. During the project period of this two-year DOE grant, a part-time Field-Test Coordinator was hired (Ms. Geraldine Horsma) and significant progress has been made in both of the original proposal objectives. Field testing for Unit 1 has occurred in over 12 schools (local and non-local sites with diverse student populations). Field testing for Unit 2 has occurred in over 15 schools (local and non-local sites) and will continue in 12-15 schools during the 96-97 school year. For both curricula, field-test sites and site teachers were selected for their interest in genetics education and in hands-on science education. Many of the site teachers had no previous experience with HGEP or the unit under development. Both of these first-year biology curriculum units, which contain genetics, biotechnology, societal, ethical and cultural issues related to HGP, are being implemented in many local and non-local schools (SF Bay Area, Southern California, Nebraska, Hawaii, and Texas) and in programs for teachers. These units will reach over 10,000 students in the SF Bay Area and continues to receive support from local corporate and private philanthropic organizations. Although HGEP unit development is nearing completion for both units, data is still being gathered and analyzed on unit effectiveness and student learning. The final field

  14. The Human Variome Project.

    Science.gov (United States)

    Burn, John; Watson, Michael

    2016-06-01

    The practical realization of genomics has meant a growing realization that variant interpretation is a major barrier to practical use of DNA sequence data. The late Professor Dick Cotton devoted his life to innovation in molecular genetics and was a prime mover in the international response to the need to understand the "variome." His leadership resulted in the launch first of the Human Genetic Variation Society and then, in 2006, an international agreement to launch the Human Variome Project (HVP), aimed at data integration enabled by standards and infrastructure of the databases of variants being identified in families with a range of inherited disorders. The project attracted a network of affiliates across 81 countries and earned formal recognition by UNESCO, which now hosts its biennial meetings. It has also signed a Memorandum of Understanding with the World Health Organization. Future progress will depend on longer term secure funding and integration with the efforts of the genomics community where the rapid advances in sequencing technology have enabled variant capture on a previously unimaginable scale. Efforts are underway to integrate the efforts of HVP with those of the Global Alliance for Genomics and Health to provide a lasting legacy of Dick Cotton's vision. © 2016 WILEY PERIODICALS, INC.

  15. A 1000 Arab genome project to study the Emirati population.

    Science.gov (United States)

    Al-Ali, Mariam; Osman, Wael; Tay, Guan K; AlSafar, Habiba S

    2018-04-01

    Discoveries from the human genome, HapMap, and 1000 genome projects have collectively contributed toward the creation of a catalog of human genetic variations that has improved our understanding of human diversity. Despite the collegial nature of many of these genome study consortiums, which has led to the cataloging of genetic variations of different ethnic groups from around the world, genome data on the Arab population remains overwhelmingly underrepresented. The National Arab Genome project in the United Arab Emirates (UAE) aims to address this deficiency by using Next Generation Sequencing (NGS) technology to provide data to improve our understanding of the Arab genome and catalog variants that are unique to the Arab population of the UAE. The project was conceived to shed light on the similarities and differences between the Arab genome and those of the other ethnic groups.

  16. Genome projects and the functional-genomic era.

    Science.gov (United States)

    Sauer, Sascha; Konthur, Zoltán; Lehrach, Hans

    2005-12-01

    The problems we face today in public health as a result of the -- fortunately -- increasing age of people and the requirements of developing countries create an urgent need for new and innovative approaches in medicine and in agronomics. Genomic and functional genomic approaches have a great potential to at least partially solve these problems in the future. Important progress has been made by procedures to decode genomic information of humans, but also of other key organisms. The basic comprehension of genomic information (and its transfer) should now give us the possibility to pursue the next important step in life science eventually leading to a basic understanding of biological information flow; the elucidation of the function of all genes and correlative products encoded in the genome, as well as the discovery of their interactions in a molecular context and the response to environmental factors. As a result of the sequencing projects, we are now able to ask important questions about sequence variation and can start to comprehensively study the function of expressed genes on different levels such as RNA, protein or the cell in a systematic context including underlying networks. In this article we review and comment on current trends in large-scale systematic biological research. A particular emphasis is put on technology developments that can provide means to accomplish the tasks of future lines of functional genomics.

  17. the human genome project

    African Journals Online (AJOL)

    Enrique

    have resulted in the biological diversity, both past and present, on this planet. ... Consortium. He is principal investigator on ... Leeuwenhoek was a necessary prerequisite to the vast array of high-definition .... with evidence left at crime scenes.

  18. HGVA: the Human Genome Variation Archive.

    Science.gov (United States)

    Lopez, Javier; Coll, Jacobo; Haimel, Matthias; Kandasamy, Swaathi; Tarraga, Joaquin; Furio-Tari, Pedro; Bari, Wasim; Bleda, Marta; Rueda, Antonio; Gräf, Stefan; Rendon, Augusto; Dopazo, Joaquin; Medina, Ignacio

    2017-07-03

    High-profile genomic variation projects like the 1000 Genomes project or the Exome Aggregation Consortium, are generating a wealth of human genomic variation knowledge which can be used as an essential reference for identifying disease-causing genotypes. However, accessing these data, contrasting the various studies and integrating those data in downstream analyses remains cumbersome. The Human Genome Variation Archive (HGVA) tackles these challenges and facilitates access to genomic data for key reference projects in a clean, fast and integrated fashion. HGVA provides an efficient and intuitive web-interface for easy data mining, a comprehensive RESTful API and client libraries in Python, Java and JavaScript for fast programmatic access to its knowledge base. HGVA calculates population frequencies for these projects and enriches their data with variant annotation provided by CellBase, a rich and fast annotation solution. HGVA serves as a proof-of-concept of the genome analysis developments being carried out by the University of Cambridge together with UK's 100 000 genomes project and the National Institute for Health Research BioResource Rare-Diseases, in particular, deploying open-source for Computational Biology (OpenCB) software platform for storing and analyzing massive genomic datasets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. [The human variome project and its progress].

    Science.gov (United States)

    Gao, Shan; Zhang, Ning; Zhang, Lei; Duan, Guang-You; Zhang, Tao

    2010-11-01

    The main goal of post genomics is to explain how the genome, the map of which has been constructed in the Human Genome Project, affacts activities of life. This leads to generate multiple "omics": structural genomics, functional genomics, proteomics, metabonomics, et al. In Jun. 2006, Melbourne, Australia, Human Genome Variation Society (HGVS) initiated the Human Variome Project (HVP) to collect all the sequence variation and polymorphism data worldwidely. HVP is to search and determine those mutations related with human diseases by association study between genetype and phenotype on the scale of genome level and other methods. Those results will be translated into clinical application. Considering the potential effects of this project on human health, this paper introduced its origin and main content in detail and discussed its meaning and prospect.

  20. Big Data Analysis of Human Genome Variations

    KAUST Repository

    Gojobori, Takashi

    2016-01-25

    Since the human genome draft sequence was in public for the first time in 2000, genomic analyses have been intensively extended to the population level. The following three international projects are good examples for large-scale studies of human genome variations: 1) HapMap Data (1,417 individuals) (http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-08_phaseII+III/forward/), 2) HGDP (Human Genome Diversity Project) Data (940 individuals) (http://www.hagsc.org/hgdp/files.html), 3) 1000 genomes Data (2,504 individuals) http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ If we can integrate all three data into a single volume of data, we should be able to conduct a more detailed analysis of human genome variations for a total number of 4,861 individuals (= 1,417+940+2,504 individuals). In fact, we successfully integrated these three data sets by use of information on the reference human genome sequence, and we conducted the big data analysis. In particular, we constructed a phylogenetic tree of about 5,000 human individuals at the genome level. As a result, we were able to identify clusters of ethnic groups, with detectable admixture, that were not possible by an analysis of each of the three data sets. Here, we report the outcome of this kind of big data analyses and discuss evolutionary significance of human genomic variations. Note that the present study was conducted in collaboration with Katsuhiko Mineta and Kosuke Goto at KAUST.

  1. Analysing human genomes at different scales

    DEFF Research Database (Denmark)

    Liu, Siyang

    The thriving of the Next-Generation sequencing (NGS) technologies in the past decade has dramatically revolutionized the field of human genetics. We are experiencing a wave of several large-scale whole genome sequencing studies of humans in the world. Those studies vary greatly regarding cohort...... will be reflected by the analysis of real data. This thesis covers studies in two human genome sequencing projects that distinctly differ in terms of studied population, sample size and sequencing depth. In the first project, we sequenced 150 Danish individuals from 50 trio families to 78x coverage....... The sophisticated experimental design enables high-quality de novo assembly of the genomes and provides a good opportunity for mapping the structural variations in the human population. We developed the AsmVar approach to discover, genotype and characterize the structural variations from the assemblies. Our...

  2. Genome engineering in human cells.

    Science.gov (United States)

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  3. Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 Genomes Project dataset.

    Science.gov (United States)

    Ignatieva, Elena V; Levitsky, Victor G; Yudin, Nikolay S; Moshkin, Mikhail P; Kolchanov, Nikolay A

    2014-01-01

    The molecular mechanism of olfactory cognition is very complicated. Olfactory cognition is initiated by olfactory receptor proteins (odorant receptors), which are activated by olfactory stimuli (ligands). Olfactory receptors are the initial player in the signal transduction cascade producing a nerve impulse, which is transmitted to the brain. The sensitivity to a particular ligand depends on the expression level of multiple proteins involved in the process of olfactory cognition: olfactory receptor proteins, proteins that participate in signal transduction cascade, etc. The expression level of each gene is controlled by its regulatory regions, and especially, by the promoter [a region of DNA about 100-1000 base pairs long located upstream of the transcription start site (TSS)]. We analyzed single nucleotide polymorphisms using human whole-genome data from the 1000 Genomes Project and revealed an extremely high level of single nucleotide polymorphisms in promoter regions of olfactory receptor genes and HLA genes. We hypothesized that the high level of polymorphisms in olfactory receptor promoters was responsible for the diversity in regulatory mechanisms controlling the expression levels of olfactory receptor proteins. Such diversity of regulatory mechanisms may cause the great variability of olfactory cognition of numerous environmental olfactory stimuli perceived by human beings (air pollutants, human body odors, odors in culinary etc.). In turn, this variability may provide a wide range of emotional and behavioral reactions related to the vast variety of olfactory stimuli.

  4. Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 Genomes Project dataset

    Directory of Open Access Journals (Sweden)

    Elena V. Ignatieva

    2014-03-01

    Full Text Available The molecular mechanism of olfactory cognition is very complicated. Olfactory cognition is initiated by olfactory receptor proteins (odorant receptors, which are activated by olfactory stimuli (ligands. Olfactory receptors are the initial player in the signal transduction cascade producing a nerve impulse, which is transmitted to the brain. The sensitivity to a particular ligand depends on the expression level of multiple proteins involved in the process of olfactory cognition: olfactory receptor proteins, proteins that participate in signal transduction cascade, etc. The expression level of each gene is controlled by its regulatory regions, and especially, by the promoter (a region of DNA about 100–1000 base pairs long located upstream of the transcription start site. We analyzed single nucleotide polymorphisms using human whole-genome data from the 1000 Genomes Project and revealed an extremely high level of single nucleotide polymorphisms in promoter regions of olfactory receptor genes and HLA genes. We hypothesized that the high level of polymorphisms in olfactory receptor promoters was responsible for the diversity in regulatory mechanisms controlling the expression levels of olfactory receptor proteins. Such diversity of regulatory mechanisms may cause the great variability of olfactory cognition of numerous environmental olfactory stimuli perceived by human beings (air pollutants, human body odors, odors in culinary etc.. In turn, this variability may provide a wide range of emotional and behavioral reactions related to the vast variety of olfactory stimuli.

  5. Humane Education Projects Handbook.

    Science.gov (United States)

    Junior League of Ogden, UT.

    This handbook was developed to promote interest in humane education and to encourage the adoption of humane education projects. Although specifically designed to assist Junior Leagues in developing such projects, the content should prove valuable to animal welfare organizations, zoos, aquariums, nature centers, and other project-oriented groups…

  6. The Chlamydomonas genome project: a decade on

    Science.gov (United States)

    Blaby, Ian K.; Blaby-Haas, Crysten; Tourasse, Nicolas; Hom, Erik F. Y.; Lopez, David; Aksoy, Munevver; Grossman, Arthur; Umen, James; Dutcher, Susan; Porter, Mary; King, Stephen; Witman, George; Stanke, Mario; Harris, Elizabeth H.; Goodstein, David; Grimwood, Jane; Schmutz, Jeremy; Vallon, Olivier; Merchant, Sabeeha S.; Prochnik, Simon

    2014-01-01

    The green alga Chlamydomonas reinhardtii is a popular unicellular organism for studying photosynthesis, cilia biogenesis and micronutrient homeostasis. Ten years since its genome project was initiated, an iterative process of improvements to the genome and gene predictions has propelled this organism to the forefront of the “omics” era. Housed at Phytozome, the Joint Genome Institute’s (JGI) plant genomics portal, the most up-to-date genomic data include a genome arranged on chromosomes and high-quality gene models with alternative splice forms supported by an abundance of RNA-Seq data. Here, we present the past, present and future of Chlamydomonas genomics. Specifically, we detail progress on genome assembly and gene model refinement, discuss resources for gene annotations, functional predictions and locus ID mapping between versions and, importantly, outline a standardized framework for naming genes. PMID:24950814

  7. Development and application of Human Genome Epidemiology

    Science.gov (United States)

    Xu, Jingwen

    2017-12-01

    Epidemiology is a science that studies distribution of diseases and health in population and its influencing factors, it also studies how to prevent and cure disease and promote health strategies and measures. Epidemiology has developed rapidly in recent years and it is an intercross subject with various other disciplines to form a series of branch disciplines such as Genetic epidemiology, molecular epidemiology, drug epidemiology and tumor epidemiology. With the implementation and completion of Human Genome Project (HGP), Human Genome Epidemiology (HuGE) has emerged at this historic moment. In this review, the development of Human Genome Epidemiology, research content, the construction and structure of relevant network, research standards, as well as the existing results and problems are briefly outlined.

  8. Human Genome Research: Decoding DNA

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Human Genome Research: Decoding DNA Resources with of the DNA double helix during April 2003. James D. Watson, Francis Crick, and Maurice Wilkins were company Celera announced the completion of a "working draft" reference DNA sequence of the human

  9. Human genetics and genomics a decade after the release of the draft sequence of the human genome

    Science.gov (United States)

    2011-01-01

    Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade. PMID:22155605

  10. Social implications of the Human Genome Project: Policy roundtable series and journals. Final progress report, March 15, 2001 - March 15, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Seiguer, Erica

    2002-12-30

    This report reflects the activities of the Harvard Health Caucus at Harvard Medical School that were supported, in part, by the Department of Energy. The following policy roundtables and panels were held: Spring 2001 Policy Roundtable Series: The social implications of the Human Genome Project; Spring 2002 Policy Roundtable Series: Managing globalization to improve health; 13 February 2002 Keynote Address: The globalization of health; 25 February 2002 Healthier or Wealthier: Which comes first in the new global era?; 28 February 2002 The crisis of neglected diseases: Creating R&D incentives for diseases of developing countries; 7 March 2002 Health care education in the developing world: Bridging global and local health care practices; 20 March 2002 Building a legal framework for global health: How can the US and UN work to reduce global disparities?; 25 April 2002 The role of mass media and tobacco control efforts. Caucus organizational information is also included.

  11. Helminth genome projects: all or nothing

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Julius; Horák, Aleš; Scholz, Tomáš

    2005-01-01

    Roč. 21, č. 6 (2005), s. 265-266 ISSN 1471-4922 Institutional research plan: CEZ:AV0Z60220518 Keywords : genome project * helminth * Dracunculus Subject RIV: EG - Zoology Impact factor: 4.526, year: 2005

  12. Sequencing of a new target genome: the Pediculus humanus humanus (Phthiraptera: Pediculidae) genome project.

    Science.gov (United States)

    Pittendrigh, B R; Clark, J M; Johnston, J S; Lee, S H; Romero-Severson, J; Dasch, G A

    2006-11-01

    The human body louse, Pediculus humanus humanus (L.), and the human head louse, Pediculus humanus capitis, belong to the hemimetabolous order Phthiraptera. The body louse is the primary vector that transmits the bacterial agents of louse-borne relapsing fever, trench fever, and epidemic typhus. The genomes of the bacterial causative agents of several of these aforementioned diseases have been sequenced. Thus, determining the body louse genome will enhance studies of host-vector-pathogen interactions. Although not important as a major disease vector, head lice are of major social concern. Resistance to traditional pesticides used to control head and body lice have developed. It is imperative that new molecular targets be discovered for the development of novel compounds to control these insects. No complete genome sequence exists for a hemimetabolous insect species primarily because hemimetabolous insects often have large (2000 Mb) to very large (up to 16,300 Mb) genomes. Fortuitously, we determined that the human body louse has one of the smallest genome sizes known in insects, suggesting it may be a suitable choice as a minimal hemimetabolous genome in which many genes have been eliminated during its adaptation to human parasitism. Because many louse species infest birds and mammals, the body louse genome-sequencing project will facilitate studies of their comparative genomics. A 6-8X coverage of the body louse genome, plus sequenced expressed sequence tags, should provide the entomological, evolutionary biology, medical, and public health communities with useful genetic information.

  13. VALUACIÓN BIOÉTICA DEL PROYECTO "GENOMA HUMANO" AVALIAÇÃO BIOÉTICA DO PROJETO "GENOME HUMANO" BIOETHICAL VALIDATION OF THE "HUMAN GENOME PROJECT"

    Directory of Open Access Journals (Sweden)

    Leonides Santos y Vargas

    2002-01-01

    Full Text Available Este texto propone una serie de reflexiones que se desprenden de los recientes progresos acaecidos en las investigaciones sobre el Proyecto del Genoma Humano, los cuales conducen al fortalecimiento acelerado de conocimientos y tecnologías biomédicas. Las nuevas afirmaciones sobre la naturaleza biológica de la especie humana, legitimadas por estos nuevos progresos, posibilitan reexaminar explicaciones mitológicas y metafísicas acumuladas desde hace milenios, en el contexto de una nueva antropología filosófica. Los progresos en las intervenciones de la ciencia médica sobre la salud y la calidad de la vida humana permiten evaluar nuevamente la legitimidad de una serie de nuevas posibilidades biomédicas. Es así como este texto aborda también, de manera particular, la temática de la clonación y de sus distintos aspectos económicos y políticosEste texto propõe reflexões sobre os recentes progressos apresentados pelas investigações decorrentes do Projeto Genoma Humano que conduzem a sólidos conhecimentos em tecnologias biomedicas. As novas informações sobre a natureza da espécie humana obtidas por esses avanços permitem reexaminar explicações mitológicas e metafísicas acumuladas por milênios através da ótica da antropologia filosófica. Os progressos nas intervenções da ciência sobre a saúde e qualidade de vida humana permitem avaliar a legitimidade de uma série de proposições biomédicas. Nesse sentido, o presente texto apresenta reflexões sobre o tema da clonagem e seus diferentes aspectos econômicos e políticosThis text proposes a number of reflections that issue fron the recent advancements that have taken place in investigations on the Human Genoma Project, which lead to the accelerated reinforcement of biomedical knowledge and technologies. The new statements upon human species’ biological nature, legitimated by these new progress, allow us to reexamine the mythological and metaphysical explanations

  14. Comparative genomic data of the Avian Phylogenomics Project.

    Science.gov (United States)

    Zhang, Guojie; Li, Bo; Li, Cai; Gilbert, M Thomas P; Jarvis, Erich D; Wang, Jun

    2014-01-01

    The evolutionary relationships of modern birds are among the most challenging to understand in systematic biology and have been debated for centuries. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders, and used the genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomics analyses (Jarvis et al. in press; Zhang et al. in press). Here we release assemblies and datasets associated with the comparative genome analyses, which include 38 newly sequenced avian genomes plus previously released or simultaneously released genomes of Chicken, Zebra finch, Turkey, Pigeon, Peregrine falcon, Duck, Budgerigar, Adelie penguin, Emperor penguin and the Medium Ground Finch. We hope that this resource will serve future efforts in phylogenomics and comparative genomics. The 38 bird genomes were sequenced using the Illumina HiSeq 2000 platform and assembled using a whole genome shotgun strategy. The 48 genomes were categorized into two groups according to the N50 scaffold size of the assemblies: a high depth group comprising 23 species sequenced at high coverage (>50X) with multiple insert size libraries resulting in N50 scaffold sizes greater than 1 Mb (except the White-throated Tinamou and Bald Eagle); and a low depth group comprising 25 species sequenced at a low coverage (~30X) with two insert size libraries resulting in an average N50 scaffold size of about 50 kb. Repetitive elements comprised 4%-22% of the bird genomes. The assembled scaffolds allowed the homology-based annotation of 13,000 ~ 17000 protein coding genes in each avian genome relative to chicken, zebra finch and human, as well as comparative and sequence conservation analyses. Here we release full genome assemblies of 38 newly sequenced avian species, link genome assembly downloads for the 7 of the remaining 10 species, and provide a guideline of

  15. The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects.

    Science.gov (United States)

    Papanicolaou, Alexie

    2016-01-01

    Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called "genome projects". The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure.

  16. Human genetics: international projects and personalized medicine.

    Science.gov (United States)

    Apellaniz-Ruiz, Maria; Gallego, Cristina; Ruiz-Pinto, Sara; Carracedo, Angel; Rodríguez-Antona, Cristina

    2016-03-01

    In this article, we present the progress driven by the recent technological advances and new revolutionary massive sequencing technologies in the field of human genetics. We discuss this knowledge in relation with drug response prediction, from the germline genetic variation compiled in the 1000 Genomes Project or in the Genotype-Tissue Expression project, to the phenome-genome archives, the international cancer projects, such as The Cancer Genome Atlas or the International Cancer Genome Consortium, and the epigenetic variation and its influence in gene expression, including the regulation of drug metabolism. This review is based on the lectures presented by the speakers of the Symposium "Human Genetics: International Projects & New Technologies" from the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society, held on the 20th and 21st of April 2015.

  17. Human Document Project

    NARCIS (Netherlands)

    de Vries, Jeroen; Abelmann, Leon; Manz, A; Elwenspoek, Michael Curt

    2012-01-01

    “The Human Document Project‿ is a project which tries to answer all of the questions related to preserving information about the human race for tens of generations of humans to come or maybe even for a future intelligence which can emerge in the coming thousands of years. This document mainly

  18. Fiscal 1998 achievement report. Industrial technology research and development project. (Strategic human cDNA genome application technology development); 1998 nendo senryakuteki hito cDNA genome oyo gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A human genome related project named above was started, and studies were conducted for base sequence determination and function analysis for approximately 10,000 kinds of full-length or long-chain human cDNA clones owned by research organizations in this country. The Institute of Medical Science of University of Tokyo and Helix Research Institute dealt with a full-length human cDNA library constructed by oligo-capping, and determined the base sequences of all specimens in the library. The Kazusa DNA Research Institute determined partial sequences for long-chain clones which are not shorter than 4-5kbp, and determined entire sequences for some bases. The obtained base sequence data were subjected to homology analysis, the base sequences were converted into amino acid sequences, and functions of proteins were predicted. In the analysis of gene functions, ATAC-PCR (adaptor tagged competitive-polymerase chain reaction) was applied to the clones covered by this project, and a database was prepared by use of the results of analyses of frequency-related information. For the preparation of a comprehensive gene expression profile, technologies for cDNA microarray construction were established. (NEDO)

  19. Learning about the Human Genome. Part 2: Resources for Science Educators. ERIC Digest.

    Science.gov (United States)

    Haury, David L.

    This ERIC Digest identifies how the human genome project fits into the "National Science Education Standards" and lists Human Genome Project Web sites found on the World Wide Web. It is a resource companion to "Learning about the Human Genome. Part 1: Challenge to Science Educators" (Haury 2001). The Web resources and…

  20. Mapping our genes: The genome projects: How big, how fast

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1988-04-01

    For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technology, and politics. Congress is responsible for /open quotes/writing the rules/close quotes/ of what various federal agencies do and for funding their work. This report surveys the points made so far in the debate, focusing on those that most directly influence the policy options facing the US Congress. Congressional interest focused on how to assess the rationales for conducting human genome projects, how to fund human genome projects (at what level and through which mechanisms), how to coordinate the scientific and technical programs of the several federal agencies and private interests already supporting various genome projects, and how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology. OTA prepared this report with the assistance of several hundred experts throughout the world. 342 refs., 26 figs., 11 tabs.

  1. Mapping Our Genes: The Genome Projects: How Big, How Fast

    Science.gov (United States)

    1988-04-01

    For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technology, and politics. Congress is responsible for ?writing the rules? of what various federal agencies do and for funding their work. This report surveys the points made so far in the debate, focusing on those that most directly influence the policy options facing the US Congress. Congressional interest focused on how to assess the rationales for conducting human genome projects, how to fund human genome projects (at what level and through which mechanisms), how to coordinate the scientific and technical programs of the several federal agencies and private interests already supporting various genome projects, and how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology. The Office of Technology Assessment (OTA) prepared this report with the assistance of several hundred experts throughout the world.

  2. About human genome Acerca del genoma humano

    Directory of Open Access Journals (Sweden)

    Mojica Tobias

    2000-12-01

    Full Text Available The sequence ofthe human genome, an undertaking ofadvanced countries, is nearly complete. In fact The Human Genome Project has around 85% ofthe genome sequenced 4 times on the average, with an accuracy of roughly 1 in 1000 nucleotides. Celera Genomics, on the other hand, has 99% of the sequence of one person, with an accuracy of slightly less than 1 in 100. The Human Genome project trives to produce a physical map for public consumption following a step by step strategy, in which the researcher sequences short DNA fragments belonging to Iarger fragments of known relative
    position. Celera Genomics wants to have very rapidly a physical map which can be quickly used to develop genetic tests and drugs, which can be later sold. We feel that the sequence ofthe human genome is something, which will widen the gap between advanced and backward countries.En este artículo se revisan los eventos, alrededor del secuenciamiento del genoma humano, que han llevado a tanta excitación en los medios noticiosos y académicos en meses recientes. Se explican las estrategias que han llevado a que tengamos dos borradores diferentes pero complementarios, la estrategia llevada a cabo con el dinero
    de los contribuyentes que consiste en establecer el orden de fragmentos grandes de DNA antes de ser secuenciados y la estrategia llevada a cabo con dineros aportados por la industria privada, con la intención de explotar gananciosamente el conocimiento derivado del genoma humano. El genoma humano a mediados del año 2000 es
    un borrador incompleto que cubre aliededor del 85% de la secuencia con una precisión de un error en 1000 y el 99% de la secuencia con una precisión menor de 1 en 100 nucleótidos, También se discuten algunas de las posibles avenidas

  3. Beyond the human genome: Microbes, methaphors and what it means to be human in an interconnected post-genomic world

    NARCIS (Netherlands)

    Nerlich, B.; Hellsten, I.R.

    2009-01-01

    Four years after the completion of the Human Genome Project, the US National Institutes for Health launched the Human Microbiome Project on 19 December 2007. Using metaphor analysis, this article investigates reporting in English-language newspapers on advances in microbiomics from 2003 onwards,

  4. Genomic Prediction from Whole Genome Sequence in Livestock: The 1000 Bull Genomes Project

    DEFF Research Database (Denmark)

    Hayes, Benjamin J; MacLeod, Iona M; Daetwyler, Hans D

    Advantages of using whole genome sequence data to predict genomic estimated breeding values (GEBV) include better persistence of accuracy of GEBV across generations and more accurate GEBV across breeds. The 1000 Bull Genomes Project provides a database of whole genome sequenced key ancestor bulls....... In a dairy data set, predictions using BayesRC and imputed sequence data from 1000 Bull Genomes were 2% more accurate than with 800k data. We could demonstrate the method identified causal mutations in some cases. Further improvements will come from more accurate imputation of sequence variant genotypes...

  5. The Past, Present, and Future of Human Centromere Genomics

    Directory of Open Access Journals (Sweden)

    Megan E. Aldrup-MacDonald

    2014-01-01

    Full Text Available The centromere is the chromosomal locus essential for chromosome inheritance and genome stability. Human centromeres are located at repetitive alpha satellite DNA arrays that compose approximately 5% of the genome. Contiguous alpha satellite DNA sequence is absent from the assembled reference genome, limiting current understanding of centromere organization and function. Here, we review the progress in centromere genomics spanning the discovery of the sequence to its molecular characterization and the work done during the Human Genome Project era to elucidate alpha satellite structure and sequence variation. We discuss exciting recent advances in alpha satellite sequence assembly that have provided important insight into the abundance and complex organization of this sequence on human chromosomes. In light of these new findings, we offer perspectives for future studies of human centromere assembly and function.

  6. The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data.

    Science.gov (United States)

    Clarke, Laura; Fairley, Susan; Zheng-Bradley, Xiangqun; Streeter, Ian; Perry, Emily; Lowy, Ernesto; Tassé, Anne-Marie; Flicek, Paul

    2017-01-04

    The International Genome Sample Resource (IGSR; http://www.internationalgenome.org) expands in data type and population diversity the resources from the 1000 Genomes Project. IGSR represents the largest open collection of human variation data and provides easy access to these resources. IGSR was established in 2015 to maintain and extend the 1000 Genomes Project data, which has been widely used as a reference set of human variation and by researchers developing analysis methods. IGSR has mapped all of the 1000 Genomes sequence to the newest human reference (GRCh38), and will release updated variant calls to ensure maximal usefulness of the existing data. IGSR is collecting new structural variation data on the 1000 Genomes samples from long read sequencing and other technologies, and will collect relevant functional data into a single comprehensive resource. IGSR is extending coverage with new populations sequenced by collaborating groups. Here, we present the new data and analysis that IGSR has made available. We have also introduced a new data portal that increases discoverability of our data-previously only browseable through our FTP site-by focusing on particular samples, populations or data sets of interest. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Human Contamination in Public Genome Assemblies.

    Science.gov (United States)

    Kryukov, Kirill; Imanishi, Tadashi

    2016-01-01

    Contamination in genome assembly can lead to wrong or confusing results when using such genome as reference in sequence comparison. Although bacterial contamination is well known, the problem of human-originated contamination received little attention. In this study we surveyed 45,735 available genome assemblies for evidence of human contamination. We used lineage specificity to distinguish between contamination and conservation. We found that 154 genome assemblies contain fragments that with high confidence originate as contamination from human DNA. Majority of contaminating human sequences were present in the reference human genome assembly for over a decade. We recommend that existing contaminated genomes should be revised to remove contaminated sequence, and that new assemblies should be thoroughly checked for presence of human DNA before submitting them to public databases.

  8. A comprehensive crop genome research project: the Superhybrid Rice Genome Project in China.

    Science.gov (United States)

    Yu, Jun; Wong, Gane Ka-Shu; Liu, Siqi; Wang, Jian; Yang, Huanming

    2007-06-29

    In May 2000, the Beijing Institute of Genomics formally announced the launch of a comprehensive crop genome research project on rice genomics, the Chinese Superhybrid Rice Genome Project. SRGP is not simply a sequencing project targeted to a single rice (Oryza sativa L.) genome, but a full-swing research effort with an ultimate goal of providing inclusive basic genomic information and molecular tools not only to understand biology of the rice, both as an important crop species and a model organism of cereals, but also to focus on a popular superhybrid rice landrace, LYP9. We have completed the first phase of SRGP and provide the rice research community with a finished genome sequence of an indica variety, 93-11 (the paternal cultivar of LYP9), together with ample data on subspecific (between subspecies) polymorphisms, transcriptomes and proteomes, useful for within-species comparative studies. In the second phase, we have acquired the genome sequence of the maternal cultivar, PA64S, together with the detailed catalogues of genes uniquely expressed in the parental cultivars and the hybrid as well as allele-specific markers that distinguish parental alleles. Although SRGP in China is not an open-ended research programme, it has been designed to pave a way for future plant genomics research and application, such as to interrogate fundamentals of plant biology, including genome duplication, polyploidy and hybrid vigour, as well as to provide genetic tools for crop breeding and to carry along a social burden-leading a fight against the world's hunger. It began with genomics, the newly developed and industry-scale research field, and from the world's most populous country. In this review, we summarize our scientific goals and noteworthy discoveries that exploit new territories of systematic investigations on basic and applied biology of rice and other major cereal crops.

  9. The bonobo genome compared with the chimpanzee and human genomes

    Science.gov (United States)

    Prüfer, Kay; Munch, Kasper; Hellmann, Ines; Akagi, Keiko; Miller, Jason R.; Walenz, Brian; Koren, Sergey; Sutton, Granger; Kodira, Chinnappa; Winer, Roger; Knight, James R.; Mullikin, James C.; Meader, Stephen J.; Ponting, Chris P.; Lunter, Gerton; Higashino, Saneyuki; Hobolth, Asger; Dutheil, Julien; Karakoç, Emre; Alkan, Can; Sajjadian, Saba; Catacchio, Claudia Rita; Ventura, Mario; Marques-Bonet, Tomas; Eichler, Evan E.; André, Claudine; Atencia, Rebeca; Mugisha, Lawrence; Junhold, Jörg; Patterson, Nick; Siebauer, Michael; Good, Jeffrey M.; Fischer, Anne; Ptak, Susan E.; Lachmann, Michael; Symer, David E.; Mailund, Thomas; Schierup, Mikkel H.; Andrés, Aida M.; Kelso, Janet; Pääbo, Svante

    2012-01-01

    Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours1–4, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other. PMID:22722832

  10. Planning the human variome project: the Spain report.

    OpenAIRE

    Kaput, Jim; Cotton, Richard G H; Hardman, Lauren; Watson, Michael; Al Aqeel, Aida I; Al-Aama, Jumana Y; Al-Mulla, Fahd; Alonso, Santos; Aretz, Stefan; Auerbach, Arleen D; Bapat, Bharati; Bernstein, Inge T; Bhak, Jong; Bleoo, Stacey L; Blöcker, Helmut

    2009-01-01

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data from diverse studies proves this perception inaccurate at best, and at worst, an impediment for further efforts to characterize the variation in the human genome. Because variation in genotype and e...

  11. The African Genome Variation Project shapes medical genetics in Africa.

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O; Choudhury, Ananyo; Ritchie, Graham R S; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N; Young, Elizabeth H; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S

    2015-01-15

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  12. The African Genome Variation Project shapes medical genetics in Africa

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2015-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  13. Human Genome Sequencing in Health and Disease

    Science.gov (United States)

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  14. Human genome and genetic sequencing research and informed consent

    International Nuclear Information System (INIS)

    Iwakawa, Mayumi

    2003-01-01

    On March 29, 2001, the Ethical Guidelines for Human Genome and Genetic Sequencing Research were established. They have intended to serve as ethical guidelines for all human genome and genetic sequencing research practice, for the purpose of upholding respect for human dignity and rights and enforcing use of proper methods in the pursuit of human genome and genetic sequencing research, with the understanding and cooperation of the public. The RadGenomics Project has prepared a research protocol and informed consent document that follow these ethical guidelines. We have endeavored to protect the privacy of individual information, and have established a procedure for examination of research practices by an ethics committee. Here we report our procedure in order to offer this concept to the patients. (authors)

  15. The African Genome Variation Project shapes medical genetics in Africa

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2014-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterisation of African genetic diversity is needed. The African Genome Variation Project (AGVP) provides a resource to help design, implement and interpret genomic studies in sub-Saharan Africa (SSA) and worldwide. The AGVP represents dense genotypes from 1,481 and whole genome sequences (WGS) from 320 individuals across SSA. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across SSA. We identify new loci under selection, including for malaria and hypertension. We show that modern imputation panels can identify association signals at highly differentiated loci across populations in SSA. Using WGS, we show further improvement in imputation accuracy supporting efforts for large-scale sequencing of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa, showing for the first time that such designs are feasible. PMID:25470054

  16. Planning the Human Variome Project : The Spain Report

    NARCIS (Netherlands)

    Kaput, Jim; Cotton, Richard G. H.; Hardman, Lauren; Watson, Michael; Al Aqeel, Aida I.; Al-Aama, Jumana Y.; Al-Mulla, Fahd; Alonso, Santos; Aretz, Stefan; Auerbach, Arleen D.; Bapat, Bharati; Bernstein, Inge T.; Bhak, Jong; Bleoo, Stacey L.; Bloecker, Helmut; Brenner, Steven E.; Burn, John; Bustamante, Mariona; Calone, Rita; Cambon-Thomsen, Anne; Cargill, Michele; Carrera, Paola; Cavedon, Lawrence; Cho, Yoon Shin; Chung, Yeun-Jun; Claustres, Mireille; Cutting, Garry; Dalgleish, Raymond; den Dunnen, Johan T.; Diaz, Carlos; Dobrowolski, Steven; dos Santos, M. Rosario N.; Ekong, Rosemary; Flanagan, Simon B.; Flicek, Paul; Furukawa, Yoichi; Genuardi, Maurizio; Ghang, Ho; Golubenko, Maria V.; Greenblatt, Marc S.; Hamosh, Ada; Hancock, John M.; Hardison, Ross; Harrison, Terence M.; Hoffmann, Robert; Horaitis, Rania; Howard, Heather J.; Barash, Carol Isaacson; Izagirre, Neskuts; Sijmons, Rolf H.

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data

  17. Planning the human variome project: the Spain report

    DEFF Research Database (Denmark)

    Kaput, Jim; Cotton, Richard G H; Hardman, Lauren

    2009-01-01

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of dat...

  18. Planning the human variome project: the Spain report.

    NARCIS (Netherlands)

    Kaput, J.; Cotton, R.G.; Hardman, L.; Watson, M.; Aqeel, A.I. Al; Al-Aama, J.Y.; Al-Mulla, F.; Alonso, S.; Aretz, S.; Auerbach, A.D.; Bapat, B.; Bernstein, I.T.; Bhak, J.; Bleoo, S.L.; Blocker, H.; Brenner, S.E.; Burn, J.; Bustamante, M.; Calzone, R.; Cambon-Thomsen, A.; Cargill, M.; Carrera, P.; Cavedon, L.; Cho, Y.S.; Chung, Y.J.; Claustres, M.; Cutting, G.; Dalgleish, R.; Dunnen, J.T. den; Diaz, C.; Dobrowolski, S.; Santos, M.R. dos; Ekong, R.; Flanagan, S.B.; Flicek, P.; Furukawa, Y.; Genuardi, M.; Ghang, H.; Golubenko, M.V.; Greenblatt, M.S.; Hamosh, A.; Hancock, J.M.; Hardison, R.; Harrison, T.M.; Hoffmann, R.; Horaitis, R.; Howard, H.J.; Barash, C.I.; Izagirre, N.; Jung, J.; Kojima, T.; Laradi, S.; Lee, Y.S.; Lee, J.Y.; Gil-da-Silva-Lopes, V.L.; Macrae, F.A.; Maglott, D.; Marafie, M.J.; Marsh, S.G.; Matsubara, Y.; Messiaen, L.M.; Moslein, G.; Netea, M.G.; Norton, M.L.; Oefner, P.J.; Oetting, W.S.; O'Leary, J.C.; Ramirez, A.M. de; Paalman, M.H.; Parboosingh, J.; Patrinos, G.P.; Perozzi, G.; Phillips, I.R.; Povey, S.; Prasad, S.; Qi, M.; Quin, D.J.; Ramesar, R.S.; Richards, C.S.; Savige, J.; Scheible, D.G.; Scott, R.J.; Seminara, D.; Shephard, E.A.; Sijmons, R.H.; Smith, T.D.; Sobrido, M.J.; Tanaka, T.; Tavtigian, S.V.; Taylor, G.R.; Teague, J.; Topel, T.; Ullman-Cullere, M.; Utsunomiya, J.; Kranen, H.J. van; Vihinen, M.; Webb, E.; Weber, T.K.; Yeager, M.

    2009-01-01

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data

  19. Primer on molecular genetics. DOE Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  20. Human genome and open source: balancing ethics and business.

    Science.gov (United States)

    Marturano, Antonio

    2011-01-01

    The Human Genome Project has been completed thanks to a massive use of computer techniques, as well as the adoption of the open-source business and research model by the scientists involved. This model won over the proprietary model and allowed a quick propagation and feedback of research results among peers. In this paper, the author will analyse some ethical and legal issues emerging by the use of such computer model in the Human Genome property rights. The author will argue that the Open Source is the best business model, as it is able to balance business and human rights perspectives.

  1. Insights from Human/Mouse genome comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

  2. nGASP - the nematode genome annotation assessment project

    Energy Technology Data Exchange (ETDEWEB)

    Coghlan, A; Fiedler, T J; McKay, S J; Flicek, P; Harris, T W; Blasiar, D; Allen, J; Stein, L D

    2008-12-19

    While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C. elegans genome. Predictions were compared to reference gene sets consisting of confirmed or manually curated gene models from WormBase. The most accurate gene-finders were 'combiner' algorithms, which made use of transcript- and protein-alignments and multi-genome alignments, as well as gene predictions from other gene-finders. Gene-finders that used alignments of ESTs, mRNAs and proteins came in second place. There was a tie for third place between gene-finders that used multi-genome alignments and ab initio gene-finders. The median gene level sensitivity of combiners was 78% and their specificity was 42%, which is nearly the same accuracy as reported for combiners in the human genome. C. elegans genes with exons of unusual hexamer content, as well as those with many exons, short exons, long introns, a weak translation start signal, weak splice sites, or poorly conserved orthologs were the most challenging for gene-finders. While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C

  3. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute's genomic medicine portfolio.

    Science.gov (United States)

    Manolio, Teri A

    2016-10-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual's genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of "Genomic Medicine Meetings," under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and difficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI's genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so. Published by Elsevier Ireland Ltd.

  4. DOE Human Genome Program contractor-grantee workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This volume contains the proceedings for the DOE Human Genome Program`s Contractor-Grantee Workshop V held in Sante Fe, New Mexico January 28, February 1, 1996. Presentations were divided into sessions entitled Sequencing; Mapping; Informatics; Ethical, Legal, and Social Issues; and Infrastructure. Reports of individual projects described herein are separately indexed and abstracted for the database.

  5. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

    OpenAIRE

    Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

    2015-01-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with...

  6. The human genome: Some assembly required. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Human Genome Project promises to be one of the most rewarding endeavors in modern biology. The cost and the ethical and social implications, however, have made this project the source of considerable debate both in the scientific community and in the public at large. The 1994 Graduate Student Symposium addresses the scientific merits of the project, the technical issues involved in accomplishing the task, as well as the medical and social issues which stem from the wealth of knowledge which the Human Genome Project will help create. To this end, speakers were brought together who represent the diverse areas of expertise characteristic of this multidisciplinary project. The keynote speaker addresses the project`s motivations and goals in the larger context of biological and medical sciences. The first two sessions address relevant technical issues, data collection with a focus on high-throughput sequencing methods and data analysis with an emphasis on identification of coding sequences. The third session explores recent advances in the understanding of genetic diseases and possible routes to treatment. Finally, the last session addresses some of the ethical, social and legal issues which will undoubtedly arise from having a detailed knowledge of the human genome.

  7. Radiation-induced instability of human genome

    International Nuclear Information System (INIS)

    Ryabchenko, N.N.; Demina, Eh.A.

    2014-01-01

    A brief review is dedicated to the phenomenon of radiation-induced genomic instability where the increased level of genomic changes in the offspring of irradiated cells is characteristic. Particular attention is paid to the problems of genomic instability induced by the low-dose radiation, role of the bystander effect in formation of radiation-induced instability, and its relationship with individual radiosensitivity. We believe that in accordance with the paradigm of modern radiobiology the increased human individual radiosensitivity can be formed due to the genome instability onset and is a significant risk factor for radiation-induced cancer

  8. The Digital Humanities as a Humanities Project

    Science.gov (United States)

    Svensson, Patrik

    2012-01-01

    This article argues that the digital humanities can be seen as a humanities project in a time of significant change in the academy. The background is a number of scholarly, educational and technical challenges, the multiple epistemic traditions linked to the digital humanities, the potential reach of the field across and outside the humanities,…

  9. The modest beginnings of one genome project.

    Science.gov (United States)

    Kaback, David B

    2013-06-01

    One of the top things on a geneticist's wish list has to be a set of mutants for every gene in their particular organism. Such a set was produced for the yeast, Saccharomyces cerevisiae near the end of the 20th century by a consortium of yeast geneticists. However, the functional genomic analysis of one chromosome, its smallest, had already begun more than 25 years earlier as a project that was designed to define most or all of that chromosome's essential genes by temperature-sensitive lethal mutations. When far fewer than expected genes were uncovered, the relatively new field of molecular cloning enabled us and indeed, the entire community of yeast researchers to approach this problem more definitively. These studies ultimately led to cloning, genomic sequencing, and the production and phenotypic analysis of the entire set of knockout mutations for this model organism as well as a better concept of what defines an essential function, a wish fulfilled that enables this model eukaryote to continue at the forefront of research in modern biology.

  10. Unexplored therapeutic opportunities in the human genome

    DEFF Research Database (Denmark)

    Oprea, Tudor I; Bologa, Cristian G; Brunak, Søren

    2018-01-01

    A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially d...... as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development....

  11. Defining functional DNA elements in the human genome

    Science.gov (United States)

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  12. Body maps on the human genome.

    Science.gov (United States)

    Cherniak, Christopher; Rodriguez-Esteban, Raul

    2013-12-20

    Chromosomes have territories, or preferred locales, in the cell nucleus. When these sites are taken into account, some large-scale structure of the human genome emerges. The synoptic picture is that genes highly expressed in particular topologically compact tissues are not randomly distributed on the genome. Rather, such tissue-specific genes tend to map somatotopically onto the complete chromosome set. They seem to form a "genome homunculus": a multi-dimensional, genome-wide body representation extending across chromosome territories of the entire spermcell nucleus. The antero-posterior axis of the body significantly corresponds to the head-tail axis of the nucleus, and the dorso-ventral body axis to the central-peripheral nucleus axis. This large-scale genomic structure includes thousands of genes. One rationale for a homuncular genome structure would be to minimize connection costs in genetic networks. Somatotopic maps in cerebral cortex have been reported for over a century.

  13. The characterization of twenty sequenced human genomes.

    Directory of Open Access Journals (Sweden)

    Kimberly Pelak

    2010-09-01

    Full Text Available We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten "case" genomes from individuals with severe hemophilia A and ten "control" genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways.

  14. Skate Genome Project: Cyber-Enabled Bioinformatics Collaboration

    Science.gov (United States)

    Vincent, J.

    2011-01-01

    The Skate Genome Project, a pilot project of the North East Cyber infrastructure Consortium, aims to produce a draft genome sequence of Leucoraja erinacea, the Little Skate. The pilot project was designed to also develop expertise in large scale collaborations across the NECC region. An overview of the bioinformatics and infrastructure challenges faced during the first year of the project will be presented. Results to date and lessons learned from the perspective of a bioinformatics core will be highlighted.

  15. Human-specific HERV-K insertion causes genomic variations in the human genome.

    Directory of Open Access Journals (Sweden)

    Wonseok Shin

    Full Text Available Human endogenous retroviruses (HERV sequences account for about 8% of the human genome. Through comparative genomics and literature mining, we identified a total of 29 human-specific HERV-K insertions. We characterized them focusing on their structure and flanking sequence. The results showed that four of the human-specific HERV-K insertions deleted human genomic sequences via non-classical insertion mechanisms. Interestingly, two of the human-specific HERV-K insertion loci contained two HERV-K internals and three LTR elements, a pattern which could be explained by LTR-LTR ectopic recombination or template switching. In addition, we conducted a polymorphic test and observed that twelve out of the 29 elements are polymorphic in the human population. In conclusion, human-specific HERV-K elements have inserted into human genome since the divergence of human and chimpanzee, causing human genomic changes. Thus, we believe that human-specific HERV-K activity has contributed to the genomic divergence between humans and chimpanzees, as well as within the human population.

  16. The Genome of the Netherlands: design, and project goals

    Science.gov (United States)

    Boomsma, Dorret I; Wijmenga, Cisca; Slagboom, Eline P; Swertz, Morris A; Karssen, Lennart C; Abdellaoui, Abdel; Ye, Kai; Guryev, Victor; Vermaat, Martijn; van Dijk, Freerk; Francioli, Laurent C; Hottenga, Jouke Jan; Laros, Jeroen F J; Li, Qibin; Li, Yingrui; Cao, Hongzhi; Chen, Ruoyan; Du, Yuanping; Li, Ning; Cao, Sujie; van Setten, Jessica; Menelaou, Androniki; Pulit, Sara L; Hehir-Kwa, Jayne Y; Beekman, Marian; Elbers, Clara C; Byelas, Heorhiy; de Craen, Anton J M; Deelen, Patrick; Dijkstra, Martijn; den Dunnen, Johan T; de Knijff, Peter; Houwing-Duistermaat, Jeanine; Koval, Vyacheslav; Estrada, Karol; Hofman, Albert; Kanterakis, Alexandros; Enckevort, David van; Mai, Hailiang; Kattenberg, Mathijs; van Leeuwen, Elisabeth M; Neerincx, Pieter B T; Oostra, Ben; Rivadeneira, Fernanodo; Suchiman, Eka H D; Uitterlinden, Andre G; Willemsen, Gonneke; Wolffenbuttel, Bruce H; Wang, Jun; de Bakker, Paul I W; van Ommen, Gert-Jan; van Duijn, Cornelia M

    2014-01-01

    Within the Netherlands a national network of biobanks has been established (Biobanking and Biomolecular Research Infrastructure-Netherlands (BBMRI-NL)) as a national node of the European BBMRI. One of the aims of BBMRI-NL is to enrich biobanks with different types of molecular and phenotype data. Here, we describe the Genome of the Netherlands (GoNL), one of the projects within BBMRI-NL. GoNL is a whole-genome-sequencing project in a representative sample consisting of 250 trio-families from all provinces in the Netherlands, which aims to characterize DNA sequence variation in the Dutch population. The parent–offspring trios include adult individuals ranging in age from 19 to 87 years (mean=53 years; SD=16 years) from birth cohorts 1910–1994. Sequencing was done on blood-derived DNA from uncultured cells and accomplished coverage was 14–15x. The family-based design represents a unique resource to assess the frequency of regional variants, accurately reconstruct haplotypes by family-based phasing, characterize short indels and complex structural variants, and establish the rate of de novo mutational events. GoNL will also serve as a reference panel for imputation in the available genome-wide association studies in Dutch and other cohorts to refine association signals and uncover population-specific variants. GoNL will create a catalog of human genetic variation in this sample that is uniquely characterized with respect to micro-geographic location and a wide range of phenotypes. The resource will be made available to the research and medical community to guide the interpretation of sequencing projects. The present paper summarizes the global characteristics of the project. PMID:23714750

  17. Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome.

    Directory of Open Access Journals (Sweden)

    Jian Li

    Full Text Available The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR mediated by low-copy repeats (LCRs. Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ~1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR-mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease.

  18. Initial genomics of the human nucleolus.

    Directory of Open Access Journals (Sweden)

    Attila Németh

    2010-03-01

    Full Text Available We report for the first time the genomics of a nuclear compartment of the eukaryotic cell. 454 sequencing and microarray analysis revealed the pattern of nucleolus-associated chromatin domains (NADs in the linear human genome and identified different gene families and certain satellite repeats as the major building blocks of NADs, which constitute about 4% of the genome. Bioinformatic evaluation showed that NAD-localized genes take part in specific biological processes, like the response to other organisms, odor perception, and tissue development. 3D FISH and immunofluorescence experiments illustrated the spatial distribution of NAD-specific chromatin within interphase nuclei and its alteration upon transcriptional changes. Altogether, our findings describe the nature of DNA sequences associated with the human nucleolus and provide insights into the function of the nucleolus in genome organization and establishment of nuclear architecture.

  19. Initial Genomics of the Human Nucleolus

    Science.gov (United States)

    Németh, Attila; Conesa, Ana; Santoyo-Lopez, Javier; Medina, Ignacio; Montaner, David; Péterfia, Bálint; Solovei, Irina; Cremer, Thomas; Dopazo, Joaquin; Längst, Gernot

    2010-01-01

    We report for the first time the genomics of a nuclear compartment of the eukaryotic cell. 454 sequencing and microarray analysis revealed the pattern of nucleolus-associated chromatin domains (NADs) in the linear human genome and identified different gene families and certain satellite repeats as the major building blocks of NADs, which constitute about 4% of the genome. Bioinformatic evaluation showed that NAD–localized genes take part in specific biological processes, like the response to other organisms, odor perception, and tissue development. 3D FISH and immunofluorescence experiments illustrated the spatial distribution of NAD–specific chromatin within interphase nuclei and its alteration upon transcriptional changes. Altogether, our findings describe the nature of DNA sequences associated with the human nucleolus and provide insights into the function of the nucleolus in genome organization and establishment of nuclear architecture. PMID:20361057

  20. Inversion variants in human and primate genomes.

    Science.gov (United States)

    Catacchio, Claudia Rita; Maggiolini, Flavia Angela Maria; D'Addabbo, Pietro; Bitonto, Miriana; Capozzi, Oronzo; Signorile, Martina Lepore; Miroballo, Mattia; Archidiacono, Nicoletta; Eichler, Evan E; Ventura, Mario; Antonacci, Francesca

    2018-05-18

    For many years, inversions have been proposed to be a direct driving force in speciation since they suppress recombination when heterozygous. Inversions are the most common large-scale differences among humans and great apes. Nevertheless, they represent large events easily distinguishable by classical cytogenetics, whose resolution, however, is limited. Here, we performed a genome-wide comparison between human, great ape, and macaque genomes using the net alignments for the most recent releases of genome assemblies. We identified a total of 156 putative inversions, between 103 kb and 91 Mb, corresponding to 136 human loci. Combining literature, sequence, and experimental analyses, we analyzed 109 of these loci and found 67 regions inverted in one or multiple primates, including 28 newly identified inversions. These events overlap with 81 human genes at their breakpoints, and seven correspond to sites of recurrent rearrangements associated with human disease. This work doubles the number of validated primate inversions larger than 100 kb, beyond what was previously documented. We identified 74 sites of errors, where the sequence has been assembled in the wrong orientation, in the reference genomes analyzed. Our data serve two purposes: First, we generated a map of evolutionary inversions in these genomes representing a resource for interrogating differences among these species at a functional level; second, we provide a list of misassembled regions in these primate genomes, involving over 300 Mb of DNA and 1978 human genes. Accurately annotating these regions in the genome references has immediate applications for evolutionary and biomedical studies on primates. © 2018 Catacchio et al.; Published by Cold Spring Harbor Laboratory Press.

  1. In the Beginning was the Genome: Genomics and the Bi-textuality of Human Existence.

    Science.gov (United States)

    Zwart, H A E Hub

    2018-04-01

    This paper addresses the cultural impact of genomics and the Human Genome Project (HGP) on human self-understanding. Notably, it addresses the claim made by Francis Collins (director of the HGP) that the genome is the language of God and the claim made by Max Delbrück (founding father of molecular life sciences research) that Aristotle must be credited with having predicted DNA as the soul that organises bio-matter. From a continental philosophical perspective I will argue that human existence results from a dialectical interaction between two types of texts: the language of molecular biology and the language of civilisation; the language of the genome and the language of our socio-cultural, symbolic ambiance. Whereas the former ultimately builds on the alphabets of genes and nucleotides, the latter is informed by primordial texts such as the Bible and the Quran. In applied bioethics deliberations on genomics, science is easily framed as liberating and progressive, religious world-views as conservative and restrictive (Zwart 1993). This paper focusses on the broader cultural ambiance of the debate to discern how the bi-textuality of human existence is currently undergoing a transition, as not only the physiological, but also the normative dimension is being reframed in biomolecular and terabyte terms.

  2. Human Genome Editing and Ethical Considerations.

    Science.gov (United States)

    Krishan, Kewal; Kanchan, Tanuj; Singh, Bahadur

    2016-04-01

    Editing human germline genes may act as boon in some genetic and other disorders. Recent editing of the genome of the human embryo with the CRISPR/Cas9 editing tool generated a debate amongst top scientists of the world for the ethical considerations regarding its effect on the future generations. It needs to be seen as to what transformation human gene editing brings to humankind in the times to come.

  3. GI-POP: a combinational annotation and genomic island prediction pipeline for ongoing microbial genome projects.

    Science.gov (United States)

    Lee, Chi-Ching; Chen, Yi-Ping Phoebe; Yao, Tzu-Jung; Ma, Cheng-Yu; Lo, Wei-Cheng; Lyu, Ping-Chiang; Tang, Chuan Yi

    2013-04-10

    Sequencing of microbial genomes is important because of microbial-carrying antibiotic and pathogenetic activities. However, even with the help of new assembling software, finishing a whole genome is a time-consuming task. In most bacteria, pathogenetic or antibiotic genes are carried in genomic islands. Therefore, a quick genomic island (GI) prediction method is useful for ongoing sequencing genomes. In this work, we built a Web server called GI-POP (http://gipop.life.nthu.edu.tw) which integrates a sequence assembling tool, a functional annotation pipeline, and a high-performance GI predicting module, in a support vector machine (SVM)-based method called genomic island genomic profile scanning (GI-GPS). The draft genomes of the ongoing genome projects in contigs or scaffolds can be submitted to our Web server, and it provides the functional annotation and highly probable GI-predicting results. GI-POP is a comprehensive annotation Web server designed for ongoing genome project analysis. Researchers can perform annotation and obtain pre-analytic information include possible GIs, coding/non-coding sequences and functional analysis from their draft genomes. This pre-analytic system can provide useful information for finishing a genome sequencing project. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Visible Human Project

    Science.gov (United States)

    ... cryosections are associated with anatomical terminology. AnatLine : A prototype system consisting of an anatomical image database and ... further information is available Publications VHJOE: Visible Human Journal of Endoscopy. NLM's Current Bibliographies in Medicine, Visible ...

  5. Genome Editing in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Carlson-Stevermer, Jared; Saha, Krishanu

    2017-01-01

    Genome editing in human pluripotent stem cells (hPSCs) enables the generation of reporter lines and knockout cell lines. Zinc finger nucleases, transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9 technology have recently increased the efficiency of proper gene editing by creating double strand breaks (DSB) at defined sequences in the human genome. These systems typically use plasmids to transiently transcribe nucleases within the cell. Here, we describe the process for preparing hPSCs for transient expression of nucleases via electroporation and subsequent analysis to create genetically modified stem cell lines.

  6. Relationship between Deleterious Variation, Genomic Autozygosity, and Disease Risk: Insights from The 1000 Genomes Project.

    Science.gov (United States)

    Pemberton, Trevor J; Szpiech, Zachary A

    2018-04-05

    Genomic regions of autozygosity (ROAs) represent segments of individual genomes that are homozygous for haplotypes inherited identical-by-descent (IBD) from a common ancestor. ROAs are nonuniformly distributed across the genome, and increased ROA levels are a reported risk factor for numerous complex diseases. Previously, we hypothesized that long ROAs are enriched for deleterious homozygotes as a result of young haplotypes with recent deleterious mutations-relatively untouched by purifying selection-being paired IBD as a consequence of recent parental relatedness, a pattern supported by ROA and whole-exome sequence data on 27 individuals. Here, we significantly bolster support for our hypothesis and expand upon our original analyses using ROA and whole-genome sequence data on 2,436 individuals from The 1000 Genomes Project. Considering CADD deleteriousness scores, we reaffirm our previous observation that long ROAs are enriched for damaging homozygotes worldwide. We show that strongly damaging homozygotes experience greater enrichment than weaker damaging homozygotes, while overall enrichment varies appreciably among populations. Mendelian disease genes and those encoding FDA-approved drug targets have significantly increased rates of gain in damaging homozygotes with increasing ROA coverage relative to all other genes. In genes implicated in eight complex phenotypes for which ROA levels have been identified as a risk factor, rates of gain in damaging homozygotes vary across phenotypes and populations but frequently differ significantly from non-disease genes. These findings highlight the potential confounding effects of population background in the assessment of associations between ROA levels and complex disease risk, which might underlie reported inconsistencies in ROA-phenotype associations. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Directory of Open Access Journals (Sweden)

    Magness Charles L

    2007-01-01

    Full Text Available Abstract Background Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST-derived array. Results We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from

  8. Unexplored therapeutic opportunities in the human genome.

    Science.gov (United States)

    Oprea, Tudor I; Bologa, Cristian G; Brunak, Søren; Campbell, Allen; Gan, Gregory N; Gaulton, Anna; Gomez, Shawn M; Guha, Rajarshi; Hersey, Anne; Holmes, Jayme; Jadhav, Ajit; Jensen, Lars Juhl; Johnson, Gary L; Karlson, Anneli; Leach, Andrew R; Ma'ayan, Avi; Malovannaya, Anna; Mani, Subramani; Mathias, Stephen L; McManus, Michael T; Meehan, Terrence F; von Mering, Christian; Muthas, Daniel; Nguyen, Dac-Trung; Overington, John P; Papadatos, George; Qin, Jun; Reich, Christian; Roth, Bryan L; Schürer, Stephan C; Simeonov, Anton; Sklar, Larry A; Southall, Noel; Tomita, Susumu; Tudose, Ilinca; Ursu, Oleg; Vidovic, Dušica; Waller, Anna; Westergaard, David; Yang, Jeremy J; Zahoránszky-Köhalmi, Gergely

    2018-05-01

    A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially druggable, proteins, the US National Institutes of Health launched the Illuminating the Druggable Genome (IDG) initiative in 2014. In this article, we discuss how the systematic collection and processing of a wide array of genomic, proteomic, chemical and disease-related resource data by the IDG Knowledge Management Center have enabled the development of evidence-based criteria for tracking the target development level (TDL) of human proteins, which indicates a substantial knowledge deficit for approximately one out of three proteins in the human proteome. We then present spotlights on the TDL categories as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development.

  9. A computational genomics pipeline for prokaryotic sequencing projects.

    Science.gov (United States)

    Kislyuk, Andrey O; Katz, Lee S; Agrawal, Sonia; Hagen, Matthew S; Conley, Andrew B; Jayaraman, Pushkala; Nelakuditi, Viswateja; Humphrey, Jay C; Sammons, Scott A; Govil, Dhwani; Mair, Raydel D; Tatti, Kathleen M; Tondella, Maria L; Harcourt, Brian H; Mayer, Leonard W; Jordan, I King

    2010-08-01

    New sequencing technologies have accelerated research on prokaryotic genomes and have made genome sequencing operations outside major genome sequencing centers routine. However, no off-the-shelf solution exists for the combined assembly, gene prediction, genome annotation and data presentation necessary to interpret sequencing data. The resulting requirement to invest significant resources into custom informatics support for genome sequencing projects remains a major impediment to the accessibility of high-throughput sequence data. We present a self-contained, automated high-throughput open source genome sequencing and computational genomics pipeline suitable for prokaryotic sequencing projects. The pipeline has been used at the Georgia Institute of Technology and the Centers for Disease Control and Prevention for the analysis of Neisseria meningitidis and Bordetella bronchiseptica genomes. The pipeline is capable of enhanced or manually assisted reference-based assembly using multiple assemblers and modes; gene predictor combining; and functional annotation of genes and gene products. Because every component of the pipeline is executed on a local machine with no need to access resources over the Internet, the pipeline is suitable for projects of a sensitive nature. Annotation of virulence-related features makes the pipeline particularly useful for projects working with pathogenic prokaryotes. The pipeline is licensed under the open-source GNU General Public License and available at the Georgia Tech Neisseria Base (http://nbase.biology.gatech.edu/). The pipeline is implemented with a combination of Perl, Bourne Shell and MySQL and is compatible with Linux and other Unix systems.

  10. Viral symbiosis and the holobiontic nature of the human genome.

    Science.gov (United States)

    Ryan, Francis Patrick

    2016-01-01

    The human genome is a holobiontic union of the mammalian nuclear genome, the mitochondrial genome and large numbers of endogenized retroviral genomes. This article defines and explores this symbiogenetic pattern of evolution, looking at the implications for human genetics, epigenetics, embryogenesis, physiology and the pathogenesis of inborn errors of metabolism and many other diseases. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  11. "Orphan" retrogenes in the human genome.

    Science.gov (United States)

    Ciomborowska, Joanna; Rosikiewicz, Wojciech; Szklarczyk, Damian; Makałowski, Wojciech; Makałowska, Izabela

    2013-02-01

    Gene duplicates generated via retroposition were long thought to be pseudogenized and consequently decayed. However, a significant number of these genes escaped their evolutionary destiny and evolved into functional genes. Despite multiple studies, the number of functional retrogenes in human and other genomes remains unclear. We performed a comparative analysis of human, chicken, and worm genomes to identify "orphan" retrogenes, that is, retrogenes that have replaced their progenitors. We located 25 such candidates in the human genome. All of these genes were previously known, and the majority has been intensively studied. Despite this, they have never been recognized as retrogenes. Analysis revealed that the phenomenon of replacing parental genes with their retrocopies has been taking place over the entire span of animal evolution. This process was often species specific and contributed to interspecies differences. Surprisingly, these retrogenes, which should evolve in a more relaxed mode, are subject to a very strong purifying selection, which is, on average, two and a half times stronger than other human genes. Also, for retrogenes, they do not show a typical overall tendency for a testis-specific expression. Notably, seven of them are associated with human diseases. Recognizing them as "orphan" retrocopies, which have different regulatory machinery than their parents, is important for any disease studies in model organisms, especially when discoveries made in one species are transferred to humans.

  12. Genomic uracil and human disease

    DEFF Research Database (Denmark)

    Hagen, Lars; Pena Diaz, Javier; Kavli, Bodil

    2006-01-01

    Uracil is present in small amounts in DNA due to spontaneous deamination of cytosine and incorporation of dUMP during replication. While deamination generates mutagenic U:G mismatches, incorporated dUMP results in U:A pairs that are not directly mutagenic, but may be cytotoxic. In most cells, mut...... retroviral infections. Ung(-/-) mice have a similar phenotype and develop B-cell lymphomas late in life. However, there is no evidence indicating that UNG deficiency causes lymphomas in humans....

  13. Research for genetic instability of human genome

    Energy Technology Data Exchange (ETDEWEB)

    Hori, T.; Takahashi, E.; Tsuji, H.; Yamauchi, M. (National Inst. of Radiological Sciences, Chiba (Japan)); Murata, M.

    1992-01-01

    In the present review paper, the potential relevance of chromosomal fragile sites to carcinogenesis and mutagenesis is discussed based on our own and other's studies. Recent evidence indicate that fragile sites may act as predisposition factors involved in chromosomal instability of the human genome and that the sites may be preferential targets for various DNA damaging agents including ionizing radiation. It is also demonstrated that some critical genomic rearrangements at the fragile sites may contribute towards oncogenesis and that individuals carrying heritable form of fragile site may be at the risk. Although clinical significance of autosomal fragile sites has been a matter of discussion, a fragile site of the X chromosome is known to be associated with an X-linked genetic diseases, called fragile X syndrome. Molecular events leading to the fragile X syndrome have recently been elucidated. The fragile X genotype can be characterized by an increased amount of p(CCG)n repeat DNA sequence in the FMR-1 gene and the repeated sequences are shown to be unstable in both meiosis and mitosis. These repeats might exhibit higher mutation rate than is generally seen in the human genome. Further studies on the fragile sites in molecular biology and radiation biology will yield relevant data to the molecular mechanisms of genetic instability of the human genome as well as to better assessment of genetic effect of ionizing radiation. (author).

  14. Helminth Genomics: The Implications for Human Health

    Science.gov (United States)

    Brindley, Paul J.; Mitreva, Makedonka; Ghedin, Elodie; Lustigman, Sara

    2009-01-01

    More than two billion people (one-third of humanity) are infected with parasitic roundworms or flatworms, collectively known as helminth parasites. These infections cause diseases that are responsible for enormous levels of morbidity and mortality, delays in the physical development of children, loss of productivity among the workforce, and maintenance of poverty. Genomes of the major helminth species that affect humans, and many others of agricultural and veterinary significance, are now the subject of intensive genome sequencing and annotation. Draft genome sequences of the filarial worm Brugia malayi and two of the human schistosomes, Schistosoma japonicum and S. mansoni, are now available, among others. These genome data will provide the basis for a comprehensive understanding of the molecular mechanisms involved in helminth nutrition and metabolism, host-dependent development and maturation, immune evasion, and evolution. They are likely also to predict new potential vaccine candidates and drug targets. In this review, we present an overview of these efforts and emphasize the potential impact and importance of these new findings. PMID:19855829

  15. Research for genetic instability of human genome

    International Nuclear Information System (INIS)

    Hori, T.; Takahashi, E.; Tsuji, H.; Yamauchi, M.; Murata, M.

    1992-01-01

    In the present review paper, the potential relevance of chromosomal fragile sites to carcinogenesis and mutagenesis is discussed based on our own and other's studies. Recent evidence indicate that fragile sites may act as predisposition factors involved in chromosomal instability of the human genome and that the sites may be preferential targets for various DNA damaging agents including ionizing radiation. It is also demonstrated that some critical genomic rearrangements at the fragile sites may contribute towards oncogenesis and that individuals carrying heritable form of fragile site may be at the risk. Although clinical significance of autosomal fragile sites has been a matter of discussion, a fragile site of the X chromosome is known to be associated with an X-linked genetic diseases, called fragile X syndrome. Molecular events leading to the fragile X syndrome have recently been elucidated. The fragile X genotype can be characterized by an increased amount of p(CCG)n repeat DNA sequence in the FMR-1 gene and the repeated sequences are shown to be unstable in both meiosis and mitosis. These repeats might exhibit higher mutation rate than is generally seen in the human genome. Further studies on the fragile sites in molecular biology and radiation biology will yield relevant data to the molecular mechanisms of genetic instability of the human genome as well as to better assessment of genetic effect of ionizing radiation. (author)

  16. Functional Coverage of the Human Genome by Existing Structures, Structural Genomics Targets, and Homology Models.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The bias in protein structure and function space resulting from experimental limitations and targeting of particular functional classes of proteins by structural biologists has long been recognized, but never continuously quantified. Using the Enzyme Commission and the Gene Ontology classifications as a reference frame, and integrating structure data from the Protein Data Bank (PDB, target sequences from the structural genomics projects, structure homology derived from the SUPERFAMILY database, and genome annotations from Ensembl and NCBI, we provide a quantified view, both at the domain and whole-protein levels, of the current and projected coverage of protein structure and function space relative to the human genome. Protein structures currently provide at least one domain that covers 37% of the functional classes identified in the genome; whole structure coverage exists for 25% of the genome. If all the structural genomics targets were solved (twice the current number of structures in the PDB, it is estimated that structures of one domain would cover 69% of the functional classes identified and complete structure coverage would be 44%. Homology models from existing experimental structures extend the 37% coverage to 56% of the genome as single domains and 25% to 31% for complete structures. Coverage from homology models is not evenly distributed by protein family, reflecting differing degrees of sequence and structure divergence within families. While these data provide coverage, conversely, they also systematically highlight functional classes of proteins for which structures should be determined. Current key functional families without structure representation are highlighted here; updated information on the "most wanted list" that should be solved is available on a weekly basis from http://function.rcsb.org:8080/pdb/function_distribution/index.html.

  17. Opening plenary speaker: Human genomics, precision medicine, and advancing human health.

    Science.gov (United States)

    Green, Eric D

    2016-08-01

    Starting with the launch of the Human Genome Project in 1990, the past quarter-century has brought spectacular achievements in genomics that dramatically empower the study of human biology and disease. The human genomics enterprise is now in the midst of an important transition, as the growing foundation of genomic knowledge is being used by researchers and clinicians to tackle increasingly complex problems in biomedicine. Of particular prominence is the use of revolutionary new DNA sequencing technologies for generating prodigious amounts of DNA sequence data to elucidate the complexities of genome structure, function, and evolution, as well as to unravel the genomic bases of rare and common diseases. Together, these developments are ushering in the era of genomic medicine. Augmenting the advances in human genomics have been innovations in technologies for measuring environmental and lifestyle information, electronic health records, and data science; together, these provide opportunities of unprecedented scale and scope for investigating the underpinnings of health and disease. To capitalize on these opportunities, U.S. President Barack Obama recently announced a major new research endeavor - the U.S. Precision Medicine Initiative. This bold effort will be framed around several key aims, which include accelerating the use of genomically informed approaches to cancer care, making important policy and regulatory changes, and establishing a large research cohort of >1 million volunteers to facilitate precision medicine research. The latter will include making the partnership with all participants a centerpiece feature in the cohort's design and development. The Precision Medicine Initiative represents a broad-based research program that will allow new approaches for individualized medical care to be rigorously tested, so as to establish a new evidence base for advancing clinical practice and, eventually, human health.

  18. The Genome 10K Project: a way forward.

    Science.gov (United States)

    Koepfli, Klaus-Peter; Paten, Benedict; O'Brien, Stephen J

    2015-01-01

    The Genome 10K Project was established in 2009 by a consortium of biologists and genome scientists determined to facilitate the sequencing and analysis of the complete genomes of 10,000 vertebrate species. Since then the number of selected and initiated species has risen from ∼26 to 277 sequenced or ongoing with funding, an approximately tenfold increase in five years. Here we summarize the advances and commitments that have occurred by mid-2014 and outline the achievements and present challenges of reaching the 10,000-species goal. We summarize the status of known vertebrate genome projects, recommend standards for pronouncing a genome as sequenced or completed, and provide our present and future vision of the landscape of Genome 10K. The endeavor is ambitious, bold, expensive, and uncertain, but together the Genome 10K Consortium of Scientists and the worldwide genomics community are moving toward their goal of delivering to the coming generation the gift of genome empowerment for many vertebrate species.

  19. Proteogenomics Dashboard for the Human Proteome Project.

    Science.gov (United States)

    Tabas-Madrid, Daniel; Alves-Cruzeiro, Joao; Segura, Victor; Guruceaga, Elizabeth; Vialas, Vital; Prieto, Gorka; García, Carlos; Corrales, Fernando J; Albar, Juan Pablo; Pascual-Montano, Alberto

    2015-09-04

    dasHPPboard is a novel proteomics-based dashboard that collects and reports the experiments produced by the Spanish Human Proteome Project consortium (SpHPP) and aims to help HPP to map the entire human proteome. We have followed the strategy of analog genomics projects like the Encyclopedia of DNA Elements (ENCODE), which provides a vast amount of data on human cell lines experiments. The dashboard includes results of shotgun and selected reaction monitoring proteomics experiments, post-translational modifications information, as well as proteogenomics studies. We have also processed the transcriptomics data from the ENCODE and Human Body Map (HBM) projects for the identification of specific gene expression patterns in different cell lines and tissues, taking special interest in those genes having little proteomic evidence available (missing proteins). Peptide databases have been built using single nucleotide variants and novel junctions derived from RNA-Seq data that can be used in search engines for sample-specific protein identifications on the same cell lines or tissues. The dasHPPboard has been designed as a tool that can be used to share and visualize a combination of proteomic and transcriptomic data, providing at the same time easy access to resources for proteogenomics analyses. The dasHPPboard can be freely accessed at: http://sphppdashboard.cnb.csic.es.

  20. A compact view of isochores in the draft human genome sequence

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, Adam; Pačes, Jan; Clay, O.; Bernardi, G.

    2002-01-01

    Roč. 511, 1-3 (2002), s. 165-169 ISSN 0014-5793 R&D Projects: GA MŠk LN00A079 Keywords : genome organisation * mammalian DNA * human genome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.912, year: 2002

  1. An integrated map of genetic variation from 1.092 human genomes

    DEFF Research Database (Denmark)

    Abecasis, Goncalo R.; Auton, Adam; Brooks, Lisa D.

    2012-01-01

    By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination ...

  2. Annotating the human genome with Disease Ontology

    Science.gov (United States)

    Osborne, John D; Flatow, Jared; Holko, Michelle; Lin, Simon M; Kibbe, Warren A; Zhu, Lihua (Julie); Danila, Maria I; Feng, Gang; Chisholm, Rex L

    2009-01-01

    Background The human genome has been extensively annotated with Gene Ontology for biological functions, but minimally computationally annotated for diseases. Results We used the Unified Medical Language System (UMLS) MetaMap Transfer tool (MMTx) to discover gene-disease relationships from the GeneRIF database. We utilized a comprehensive subset of UMLS, which is disease-focused and structured as a directed acyclic graph (the Disease Ontology), to filter and interpret results from MMTx. The results were validated against the Homayouni gene collection using recall and precision measurements. We compared our results with the widely used Online Mendelian Inheritance in Man (OMIM) annotations. Conclusion The validation data set suggests a 91% recall rate and 97% precision rate of disease annotation using GeneRIF, in contrast with a 22% recall and 98% precision using OMIM. Our thesaurus-based approach allows for comparisons to be made between disease containing databases and allows for increased accuracy in disease identification through synonym matching. The much higher recall rate of our approach demonstrates that annotating human genome with Disease Ontology and GeneRIF for diseases dramatically increases the coverage of the disease annotation of human genome. PMID:19594883

  3. [Projective identification in human relations].

    Science.gov (United States)

    Göka, Erol; Yüksel, Fatih Volkan; Göral, F Sevinç

    2006-01-01

    Melanie Klein, one of the pioneers of Object Relations Theory, first defined "projective identification", which is regarded as one of the most efficacious psychoanalytic concepts after the discovery of the "unconscious". Examination of the literature on "projective identification" shows that there are various perspectives and theories suggesting different uses of this concept. Some clinicians argue that projective identification is a primitive defense mechanism observed in severe psychopathologies like psychotic disorder and borderline personality disorder, where the intra-psychic structure has been damaged severely. Others suggest it to be an indispensable part of the transference and counter-transference between the therapist and the patient during psychotherapy and it can be used as a treatment material in the therapy by a skillful therapist. The latter group expands the use of the concept through normal daily relationships by stating that projective identification is one type of communication and part of the main human relation mechanism operating in all close relationships. Therefore, they suggest that projective identification has benign forms experienced in human relations as well as malign forms seen in psychopathologies. Thus, discussions about the definition of the concept appear complex. In order to clarify and overcome the complexity of the concept, Melanie Klein's and other most important subsequent approaches are discussed in this review article. Thereby, the article aims to explain its important function in understanding the psychopathologies, psychotherapeutic relationships and different areas of normal human relations.

  4. De novo assembly of a haplotype-resolved human genome.

    Science.gov (United States)

    Cao, Hongzhi; Wu, Honglong; Luo, Ruibang; Huang, Shujia; Sun, Yuhui; Tong, Xin; Xie, Yinlong; Liu, Binghang; Yang, Hailong; Zheng, Hancheng; Li, Jian; Li, Bo; Wang, Yu; Yang, Fang; Sun, Peng; Liu, Siyang; Gao, Peng; Huang, Haodong; Sun, Jing; Chen, Dan; He, Guangzhu; Huang, Weihua; Huang, Zheng; Li, Yue; Tellier, Laurent C A M; Liu, Xiao; Feng, Qiang; Xu, Xun; Zhang, Xiuqing; Bolund, Lars; Krogh, Anders; Kristiansen, Karsten; Drmanac, Radoje; Drmanac, Snezana; Nielsen, Rasmus; Li, Songgang; Wang, Jian; Yang, Huanming; Li, Yingrui; Wong, Gane Ka-Shu; Wang, Jun

    2015-06-01

    The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-genome shotgun strategies, based solely on next-generation sequencing and hierarchical assembly methods. We applied our sequencing method to the genome of an Asian individual and generated a 5.15-Gb assembled genome with a haplotype N50 of 484 kb. Our analysis identified previously undetected indels and 7.49 Mb of novel coding sequences that could not be aligned to the human reference genome, which include at least six predicted genes. This haplotype-resolved genome represents the most complete de novo human genome assembly to date. Application of our approach to identify individual haplotype differences should aid in translating genotypes to phenotypes for the development of personalized medicine.

  5. Life Sciences Division and Center for Human Genome Studies 1994

    Energy Technology Data Exchange (ETDEWEB)

    Cram, L.S.; Stafford, C. [comp.

    1995-09-01

    This report summarizes the research and development activities of the Los Alamos National Laboratory`s Life Sciences Division and the biological aspects of the Center for Human Genome Studies for the calendar year 1994. The technical portion of the report is divided into two parts, (1) selected research highlights and (2) research projects and accomplishments. The research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail so that the informed reader will be able to assess the scope and significance of each project. Summaries useful to the casual reader desiring general information have been prepared by the group leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  6. Genome-wide associations of gene expression variation in humans.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  7. Genome-Wide Associations of Gene Expression Variation in Humans.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  8. A map to a new treasure island: the human genome and the concept of common heritage.

    Science.gov (United States)

    Byk, C

    1998-06-01

    While the 1970's have been called the environmental years, the 1990's could be seen as the genome years. As the challenge to map and to sequence the human genome mobilized the scientific community, risks and benefits of information and uses that would derive from this project have also raised ethical issues at the international level. The particular interest of the 1997 UNESCO Declaration relies on the fact that it emphasizes both the scientific importance of genetics and the appropriate reinforcement of human rights in this area. It considers the human genome, at least symbolically, as the common heritage of humanity.

  9. Report on the Human Genome Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, I.; Cahill, G.; Cantor, C.; Caskey, T.; Dulbecco, R.; Engelhardt, D. L.; Hood, L.; Lerman, L. S.; Mendelsohn, M. L.; Sinsheimer, R. L.; Smith, T.; Soll, D.; Stormo, G.; White, R. L.

    1987-04-01

    The report urges DOE and the Nation to commit to a large. multi-year. multidisciplinary. technological undertaking to order and sequence the human genome. This effort will first require significant innovation in general capability to manipulate DNA. major new analytical methods for ordering and sequencing. theoretical developments in computer science and mathematical biology, and great expansions in our ability to store and manipulate the information and to interface it with other large and diverse genetic databases. The actual ordering and sequencing involves the coordinated processing of some 3 billion bases from a reference human genome. Science is poised on the rudimentary edge of being able to read and understand human genes. A concerted. broadly based. scientific effort to provide new methods of sufficient power and scale should transform this activity from an inefficient one-gene-at-a-time. single laboratory effort into a coordinated. worldwide. comprehensive reading of "the book of man". The effort will be extraordinary in scope and magnitude. but so will be the benefit to biological understanding. new technology and the diagnosis and treatment of human disease.

  10. Harvard Personal Genome Project: lessons from participatory public research

    Science.gov (United States)

    2014-01-01

    Background Since its initiation in 2005, the Harvard Personal Genome Project has enrolled thousands of volunteers interested in publicly sharing their genome, health and trait data. Because these data are highly identifiable, we use an ‘open consent’ framework that purposefully excludes promises about privacy and requires participants to demonstrate comprehension prior to enrollment. Discussion Our model of non-anonymous, public genomes has led us to a highly participatory model of researcher-participant communication and interaction. The participants, who are highly committed volunteers, self-pursue and donate research-relevant datasets, and are actively engaged in conversations with both our staff and other Personal Genome Project participants. We have quantitatively assessed these communications and donations, and report our experiences with returning research-grade whole genome data to participants. We also observe some of the community growth and discussion that has occurred related to our project. Summary We find that public non-anonymous data is valuable and leads to a participatory research model, which we encourage others to consider. The implementation of this model is greatly facilitated by web-based tools and methods and participant education. Project results are long-term proactive participant involvement and the growth of a community that benefits both researchers and participants. PMID:24713084

  11. Harvard Personal Genome Project: lessons from participatory public research.

    Science.gov (United States)

    Ball, Madeleine P; Bobe, Jason R; Chou, Michael F; Clegg, Tom; Estep, Preston W; Lunshof, Jeantine E; Vandewege, Ward; Zaranek, Alexander; Church, George M

    2014-02-28

    Since its initiation in 2005, the Harvard Personal Genome Project has enrolled thousands of volunteers interested in publicly sharing their genome, health and trait data. Because these data are highly identifiable, we use an 'open consent' framework that purposefully excludes promises about privacy and requires participants to demonstrate comprehension prior to enrollment. Our model of non-anonymous, public genomes has led us to a highly participatory model of researcher-participant communication and interaction. The participants, who are highly committed volunteers, self-pursue and donate research-relevant datasets, and are actively engaged in conversations with both our staff and other Personal Genome Project participants. We have quantitatively assessed these communications and donations, and report our experiences with returning research-grade whole genome data to participants. We also observe some of the community growth and discussion that has occurred related to our project. We find that public non-anonymous data is valuable and leads to a participatory research model, which we encourage others to consider. The implementation of this model is greatly facilitated by web-based tools and methods and participant education. Project results are long-term proactive participant involvement and the growth of a community that benefits both researchers and participants.

  12. Report of the second Human Genome Diversity workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The Second Human Genome Diversity Workshop was successfully held at Penn State University from October 29--31, 1992. The Workshop was essentially organized around 7 groups, each comprising approximately 10 participants, representing the sampling issues in different regions of the world. These groups worked independently, using a common format provided by the organizers; this was adjusted as needed by the individual groups. The Workshop began with a presentation of the mandate to the participants, and of the procedures to be followed during the workshop. Dr. Feldman presented a summary of the results from the First Workshop. He and the other organizers also presented brief comments giving their perspective on the objectives of the Second Workshop. Dr. Julia Bodmer discussed the study of European genetic diversity, especially in the context of the HLA experience there, and of plans to extend such studies in the coming years. She also discussed surveys of world HLA laboratories in regard to resources related to Human Genome Diversity. Dr. Mark Weiss discussed the relevance of nonhuman primate studies for understanding how demographic processes, such as mate exchange between local groups, affected the local dispersion of genetic variation. Primate population geneticists have some relevant experience in interpreting variation at this local level, in particular, with various DNA fingerprinting methods. This experience may be relevant to the Human Genome Diversity Project, in terms of practical and statistical issues.

  13. Connecting the Human Variome Project to nutrigenomics.

    Science.gov (United States)

    Kaput, Jim; Evelo, Chris T; Perozzi, Giuditta; van Ommen, Ben; Cotton, Richard

    2010-12-01

    Nutrigenomics is the science of analyzing and understanding gene-nutrient interactions, which because of the genetic heterogeneity, varying degrees of interaction among gene products, and the environmental diversity is a complex science. Although much knowledge of human diversity has been accumulated, estimates suggest that ~90% of genetic variation has not yet been characterized. Identification of the DNA sequence variants that contribute to nutrition-related disease risk is essential for developing a better understanding of the complex causes of disease in humans, including nutrition-related disease. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) is an international effort to systematically identify genes, their mutations, and their variants associated with phenotypic variability and indications of human disease or phenotype. Since nutrigenomic research uses genetic information in the design and analysis of experiments, the HVP is an essential collaborator for ongoing studies of gene-nutrient interactions. With the advent of next generation sequencing methodologies and the understanding of the undiscovered variation in human genomes, the nutrigenomic community will be generating novel sequence data and results. The guidelines and practices of the HVP can guide and harmonize these efforts.

  14. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    Science.gov (United States)

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. Copyright © 2015 by the Genetics Society of America.

  15. Genomic landscape of human diversity across Madagascar

    Science.gov (United States)

    Pierron, Denis; Heiske, Margit; Razafindrazaka, Harilanto; Rakoto, Ignace; Rabetokotany, Nelly; Ravololomanga, Bodo; Rakotozafy, Lucien M.-A.; Rakotomalala, Mireille Mialy; Razafiarivony, Michel; Rasoarifetra, Bako; Raharijesy, Miakabola Andriamampianina; Razafindralambo, Lolona; Ramilisonina; Fanony, Fulgence; Lejamble, Sendra; Thomas, Olivier; Mohamed Abdallah, Ahmed; Rocher, Christophe; Arachiche, Amal; Tonaso, Laure; Pereda-loth, Veronica; Schiavinato, Stéphanie; Brucato, Nicolas; Ricaut, Francois-Xavier; Kusuma, Pradiptajati; Sudoyo, Herawati; Ni, Shengyu; Boland, Anne; Deleuze, Jean-Francois; Beaujard, Philippe; Grange, Philippe; Adelaar, Sander; Stoneking, Mark; Rakotoarisoa, Jean-Aimé; Radimilahy, Chantal; Letellier, Thierry

    2017-01-01

    Although situated ∼400 km from the east coast of Africa, Madagascar exhibits cultural, linguistic, and genetic traits from both Southeast Asia and Eastern Africa. The settlement history remains contentious; we therefore used a grid-based approach to sample at high resolution the genomic diversity (including maternal lineages, paternal lineages, and genome-wide data) across 257 villages and 2,704 Malagasy individuals. We find a common Bantu and Austronesian descent for all Malagasy individuals with a limited paternal contribution from Europe and the Middle East. Admixture and demographic growth happened recently, suggesting a rapid settlement of Madagascar during the last millennium. However, the distribution of African and Asian ancestry across the island reveals that the admixture was sex biased and happened heterogeneously across Madagascar, suggesting independent colonization of Madagascar from Africa and Asia rather than settlement by an already admixed population. In addition, there are geographic influences on the present genomic diversity, independent of the admixture, showing that a few centuries is sufficient to produce detectable genetic structure in human populations. PMID:28716916

  16. [Manipulation of the human genome: ethics and law].

    Science.gov (United States)

    Goulart, Maria Carolina Vaz; Iano, Flávia Godoy; Silva, Paulo Maurício; Sales-Peres, Silvia Helena de Carvalho; Sales-Peres, Arsênio

    2010-06-01

    The molecular biology has provided the basic tool for geneticists deepening in the molecular mechanisms that influence different diseases. It should be noted the scientific and moral responsibility of the researchers, because the scientists should imagine the moral consequences of the commercial application of genetic tests, since this fact involves not only the individual and their families, but the entire population. Besides being also necessary to make a reflection on how this information from the human genome will be used, for good or bad. The objective of this review was to bring the light of knowledge, data on characteristics of the ethical application of molecular biology, linking it with the rights of human beings. After studying literature, it might be observed that the Human Genome Project has generated several possibilities, such as the identification of genes associated with diseases with synergistic properties, but sometimes modifying behavior to genetically intervene in humans, bringing benefits or social harm. The big challenge is to decide what humanity wants on this giant leap.

  17. Virtual Northern analysis of the human genome.

    Directory of Open Access Journals (Sweden)

    Evan H Hurowitz

    2007-05-01

    Full Text Available We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale.We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90% confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs tend to be longer or shorter than average; these functional classes were similar in both human and yeast.Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes.

  18. Virtual Northern analysis of the human genome.

    Science.gov (United States)

    Hurowitz, Evan H; Drori, Iddo; Stodden, Victoria C; Donoho, David L; Brown, Patrick O

    2007-05-23

    We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale. We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90%) confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs) tend to be longer or shorter than average; these functional classes were similar in both human and yeast. Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes.

  19. The Human Genome Initiative of the Department of Energy

    Science.gov (United States)

    1988-01-01

    The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative.

  20. Comparing genetic variants detected in the 1000 genomes project ...

    Indian Academy of Sciences (India)

    Single-nucleotide polymorphisms (SNPs) determined based on SNP arrays from the international HapMap consortium (HapMap) and the genetic variants detected in the 1000 genomes project (1KGP) can serve as two references for genomewide association studies (GWAS). We conducted comparative analyses to provide ...

  1. The PCNA pseudogenes in the human genome

    Directory of Open Access Journals (Sweden)

    Stoimenov Ivaylo

    2012-02-01

    Full Text Available Abstract Background The proliferating cell nuclear antigen (PCNA is a key protein in the eukaryotic DNA replication and cell proliferation. Following the cloning and characterisation of the human PCNA gene, the question of the existence of pseudogenes in the human genome was raised. Findings In this short communication we summarise the existing information about the PCNA pseudogenes and critically assess their status. Conclusions We propose the existence of at least four valid PCNA pseudogenes, PCNAP1, PCNAP2, LOC392454 and LOC390102. We would like to recommend assignment of a name for LOC392454 as "proliferating cell nuclear antigen pseudogene 3" (alias PCNAP3 and a name for LOC390102 as "proliferating cell nuclear antigen pseudogene 4" (alias PCNAP4. We prompt for more critical evaluation of the existence of a PCNA pseudogene, designated as PCNAP.

  2. Comparative genomics of emerging human ehrlichiosis agents.

    Directory of Open Access Journals (Sweden)

    Julie C Dunning Hotopp

    2006-02-01

    Full Text Available Anaplasma (formerly Ehrlichia phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens.

  3. Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project : open letter

    NARCIS (Netherlands)

    Archibald, A.L.; Bottema, C.D.; Brauning, R.; Burgess, S.C.; Burt, D.W.; Casas, E.; Cheng, H.H.; Clarke, L.; Couldrey, C.; Dalrymple, B.P.; Elsik, C.G.; Foissac, S.; Giuffra, E.; Groenen, M.A.M.; Hayes, B.J.; Huang, L.S.; Khatib, H.; Kijas, J.W.; Kim, H.; Lunney, J.K.; McCarthy, F.M.; McEwan, J.; Moore, S.; Nanduri, B.; Notredame, C.; Palti, Y.; Plastow, G.S.; Reecy, J.M.; Rohrer, G.; Sarropoulou, E.; Schmidt, C.J.; Silverstein, J.; Tellam, R.L.; Tixier-Boichard, M.; Tosser-klopp, G.; Tuggle, C.K.; Vilkki, J.; White, S.N.; Zhao, S.; Zhou, H.

    2015-01-01

    We describe the organization of a nascent international effort, the Functional Annotation of Animal Genomes (FAANG) project, whose aim is to produce comprehensive maps of functional elements in the genomes of domesticated animal species.

  4. A set of BAC clones spanning the human genome.

    NARCIS (Netherlands)

    Krzywinski, M.; Bosdet, I.; Smailus, D.; Chiu, R.; Mathewson, C.; Wye, N.; Barber, S.; Brown-John, M.; Chan, S.; Chand, S.; Cloutier, A.; Girn, N.; Lee, D.; Masson, A.; Mayo, M.; Olson, T.; Pandoh, P.; Prabhu, A.L.; Schoenmakers, E.F.P.M.; Tsai, M.Y.; Albertson, D.; Lam, W.W.; Choy, C.O.; Osoegawa, K.; Zhao, S.; Jong, P.J. de; Schein, J.; Jones, S.; Marra, M.A.

    2004-01-01

    Using the human bacterial artificial chromosome (BAC) fingerprint-based physical map, genome sequence assembly and BAC end sequences, we have generated a fingerprint-validated set of 32 855 BAC clones spanning the human genome. The clone set provides coverage for at least 98% of the human

  5. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute’s genomic medicine portfolio

    Science.gov (United States)

    Manolio, Teri A.

    2016-01-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual’s genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of “Genomic Medicine Meetings,” under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and diffficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI’s genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so. PMID:27612677

  6. Recurrent DNA inversion rearrangements in the human genome

    DEFF Research Database (Denmark)

    Flores, Margarita; Morales, Lucía; Gonzaga-Jauregui, Claudia

    2007-01-01

    Several lines of evidence suggest that reiterated sequences in the human genome are targets for nonallelic homologous recombination (NAHR), which facilitates genomic rearrangements. We have used a PCR-based approach to identify breakpoint regions of rearranged structures in the human genome...... to human genomic variation is discussed........ In particular, we have identified intrachromosomal identical repeats that are located in reverse orientation, which may lead to chromosomal inversions. A bioinformatic workflow pathway to select appropriate regions for analysis was developed. Three such regions overlapping with known human genes, located...

  7. Human Rhinovirus B and C Genomes from Rural Coastal Kenya

    NARCIS (Netherlands)

    Agoti, Charles N.; Kiyuka, Patience K.; Kamau, Everlyn; Munywoki, Patrick K.; Bett, Anne; van der Hoek, Lia; Kellam, Paul; Nokes, D. James; Cotten, Matthew

    2016-01-01

    Primer-independent agnostic deep sequencing was used to generate three human rhinovirus (HRV) B genomes and one HRV C genome from samples collected in a household respiratory survey in rural coastal Kenya. The study provides the first rhinovirus genomes from Kenya and will help improve the

  8. Genomic stability of adipogenic human adenovirus 36.

    Science.gov (United States)

    Nam, J-H; Na, H-N; Atkinson, R L; Dhurandhar, N V

    2014-02-01

    Human adenovirus Ad36 increases adiposity in several animal models, including rodents and non-human primates. Importantly, Ad36 is associated with human obesity, which has prompted research to understand its epidemiology and to develop a vaccine to prevent a subgroup of obesity. For this purpose, understanding the genomic stability of Ad36 in vivo and in vitro infections is critical. Here, we examined whether in vitro cell passaging over a 14-year period introduced any genetic variation in Ad36. We sequenced the whole genome of Ad36-which was plaque purified in 1998 from the original strain obtained from American Type Culture Collection, and passaged approximately 12 times over the past 14 years (Ad36-2012). This DNA sequence was compared with a previously published sequence of Ad36 likely obtained from the same source (Ad36-1988). Compared with Ad36-1988, only two nucleotides were altered in Ad36-2012: a T insertion at nucleotide 1862, which may induce early termination of the E1B viral protein, and a T➝C transition at nucleotide 26 136. Virus with the T insertion (designated Ad36-2012-T6) was mixed with wild-type virus lacking the T insertion (designated Ad36-2012-T5) in the viral stock. The transition at nucleotide 26 136 does not change the encoded amino acid (aspartic acid) in the pVIII viral protein. The rate of genetic variation in Ad36 is ∼2.37 × 10(-6) mutations/nucleotide/passage. Of particular importance, there were no mutations in the E4orf1 gene, the critical gene for producing obesity. This very-low-variation rate should reduce concerns about genetic variability when developing Ad36 vaccines or developing assays for detecting Ad36 infection in populations.

  9. The Qatar genome project: translation of whole-genome sequencing into clinical practice.

    Science.gov (United States)

    Zayed, Hatem

    2016-10-01

    Qatar Genome Project was launched in 2013 with the intent to sequence the genome of each Qatari citizen in an effort to protect Qataris from the high rate of indigenous genetic diseases by allowing the mapping of disease-causing variants/rare variants and establishing a Qatari reference genome. Indeed, this project is expected to have numerous global benefits because the elevated homogeneity of the Qatari population, that will make Qatar an excellent genetic laboratory that will generate a wealth of data that will allow us to make sense of the genotype-phenotype correlations of many diseases, especially the complex multifactorial diseases, and will pave the way for changing the traditional medical practice of looking first at the phenotype rather than the genotype. © 2016 John Wiley & Sons Ltd.

  10. 75 FR 8374 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-02-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Officer, Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health...

  11. 77 FR 5035 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-02-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... Officer, Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health...

  12. 78 FR 64222 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2013-10-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... Review, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, 301...

  13. 77 FR 20646 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-04-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research.... Agenda: To review and evaluate grant applications. Place: National Human Genome Research Institute, 5635...

  14. 77 FR 58402 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-09-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research...: To review and evaluate grant applications. Place: National Human Genome Research Institute, 5635...

  15. 76 FR 65204 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2011-10-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... constitute a clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome... Review Officer, Scientific Review Branch, National Human Genome Research Institute, 5635 Fishers Lane...

  16. 77 FR 12604 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-03-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. >Name of Committee: National Human Genome Research... review and evaluate contract proposals. Place: National Human Genome Reseach Institute, 5635 Fishers Lane...

  17. 78 FR 55752 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2013-09-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research.... Pozzatti, Ph.D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research...

  18. 78 FR 56905 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-09-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research....m. Agenda: To review and evaluate grant applications. Place: National Human Genome Research...

  19. 76 FR 28056 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-05-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Counselors, National Human Genome Research Institute. The meeting will be closed to the public as indicated... National Human Genome Research Institute, including consideration of personnel qualifications and...

  20. 76 FR 17930 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-03-31

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Review Officer, Scientific Review Branch, National Human Genome Research Institute, 5635 Fishers Lane...

  1. 77 FR 59933 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research....D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research Institute...

  2. 78 FR 107 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-01-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... evaluate grant applications. Place: National Human Genome Research Institute, 3rd Floor Conference Room....D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research Institute...

  3. 76 FR 58023 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-09-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial..., Scientific Review Officer, Office of Scientific Review, National Human Genome Research Institute, National...

  4. 77 FR 28888 - National Human Genome Research Institute Notice of Closed Meeting

    Science.gov (United States)

    2012-05-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial...: To review and evaluate grant applications. Place: National Human Genome Research Institute, 3635...

  5. 78 FR 70063 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-11-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Counselors, National Human Genome Research Institute. The meeting will be closed to the public as indicated... NATIONAL HUMAN GENOME RESEARCH INSTITUTE, including consideration of personnel qualifications and...

  6. 78 FR 9707 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2013-02-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... Officer, Scientific Review Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076...

  7. 77 FR 71604 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-12-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special..., Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635...

  8. 76 FR 5390 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-01-31

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Place: National Human Genome Research Institute Special Emphasis... Officer, Scientific Review Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076...

  9. 75 FR 13558 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-03-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Counselors, National Human Genome Research Institute. The meeting will be closed to the public as indicated... National Human Genome Research Institute, including consideration of personnel qualifications and...

  10. 76 FR 29772 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2011-05-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... of Scientific Review, National Human Genome Research Institute, National Institutes of Health...

  11. The 1000 Genomes Project: new opportunities for research and social challenges

    Science.gov (United States)

    2010-01-01

    The 1000 Genomes Project, an international collaboration, is sequencing the whole genome of approximately 2,000 individuals from different worldwide populations. The central goal of this project is to describe most of the genetic variation that occurs at a population frequency greater than 1%. The results of this project will allow scientists to identify genetic variation at an unprecedented degree of resolution and will also help improve the imputation methods for determining unobserved genetic variants that are not represented on current genotyping arrays. By identifying novel or rare functional genetic variants, researchers will be able to pinpoint disease-causing genes in genomic regions initially identified by association studies. This level of detailed sequence information will also improve our knowledge of the evolutionary processes and the genomic patterns that have shaped the human species as we know it today. The new data will also lay the foundation for future clinical applications, such as prediction of disease susceptibility and drug response. However, the forthcoming availability of whole genome sequences at affordable prices will raise ethical concerns and pose potential threats to individual privacy. Nevertheless, we believe that these potential risks are outweighed by the benefits in terms of diagnosis and research, so long as rigorous safeguards are kept in place through legislation that prevents discrimination on the basis of the results of genetic testing. PMID:20193048

  12. Genomic features of human limb specific enhancers.

    Science.gov (United States)

    Ali, Shahid; Amina, Bibi; Anwar, Saneela; Minhas, Rashid; Parveen, Nazia; Nawaz, Uzma; Azam, Syed Sikandar; Abbasi, Amir Ali

    2016-10-01

    To elucidate important cellular and molecular interactions that regulate patterning and skeletal development, vertebrate limbs served as a model organ. A growing body of evidence from detailed studies on a subset of limb regulators like the HOXD cluster or SHH, reveals the importance of enhancers in limb related developmental and disease processes. Exploiting the recent genome-wide availability of functionally confirmed enhancer dataset, this study establishes regulatory interactions for dozens of human limb developmental genes. From these data, it appears that the long-range regulatory interactions are fairly common during limb development. This observation highlights the significance of chromosomal breaks/translocations in human limb deformities. Transcriptional factor (TF) analysis predicts that the differentiation of early nascent limb-bud into future territories entail distinct TF interaction networks. Conclusively, an important motivation for annotating the human limb specific regulatory networks is to pave way for the systematic exploration of their role in disease and evolution. Copyright © 2016. Published by Elsevier Inc.

  13. Molecular biologists backing effort to map entire human genome

    International Nuclear Information System (INIS)

    Zurer, P.S.

    1988-01-01

    This article discusses how the program to map and sequence the human genome will be managed. The National Research Council (NRC) recommends that a 15-year $200-million-a-year effort to map all human genes should begin immediately. However, some people have balked at the idea, saying it is a ploy to raise money. Part of the skeptic's uneasiness stems from the involvement of the Department of Energy (DOE), an agency not often linked with biological research. The DOE's interest arises from its commitment to understanding the biological effects of nuclear radiation. Critics say it is a budget-boosting tactic. This article explains some of the arguments for and against the project and explains exactly what it would involve

  14. Forces shaping the fastest evolving regions in the human genome

    DEFF Research Database (Denmark)

    Pollard, Katherine S; Salama, Sofie R; King, Bryan

    2006-01-01

    Comparative genomics allow us to search the human genome for segments that were extensively changed in the last approximately 5 million years since divergence from our common ancestor with chimpanzee, but are highly conserved in other species and thus are likely to be functional. We found 202...... genomic elements that are highly conserved in vertebrates but show evidence of significantly accelerated substitution rates in human. These are mostly in non-coding DNA, often near genes associated with transcription and DNA binding. Resequencing confirmed that the five most accelerated elements...... contributed to accelerated evolution of the fastest evolving elements in the human genome....

  15. Alignment of 1000 Genomes Project reads to reference assembly GRCh38.

    Science.gov (United States)

    Zheng-Bradley, Xiangqun; Streeter, Ian; Fairley, Susan; Richardson, David; Clarke, Laura; Flicek, Paul

    2017-07-01

    The 1000 Genomes Project produced more than 100 trillion basepairs of short read sequence from more than 2600 samples in 26 populations over a period of five years. In its final phase, the project released over 85 million genotyped and phased variants on human reference genome assembly GRCh37. An updated reference assembly, GRCh38, was released in late 2013, but there was insufficient time for the final phase of the project analysis to change to the new assembly. Although it is possible to lift the coordinates of the 1000 Genomes Project variants to the new assembly, this is a potentially error-prone process as coordinate remapping is most appropriate only for non-repetitive regions of the genome and those that did not see significant change between the two assemblies. It will also miss variants in any region that was newly added to GRCh38. Thus, to produce the highest quality variants and genotypes on GRCh38, the best strategy is to realign the reads and recall the variants based on the new alignment. As the first step of variant calling for the 1000 Genomes Project data, we have finished remapping all of the 1000 Genomes sequence reads to GRCh38 with alternative scaffold-aware BWA-MEM. The resulting alignments are available as CRAM, a reference-based sequence compression format. The data have been released on our FTP site and are also available from European Nucleotide Archive to facilitate researchers discovering variants on the primary sequences and alternative contigs of GRCh38. © The Authors 2017. Published by Oxford University Press.

  16. THE HUMAN GENOME PROJECT IN CLINICAL PERSPECTIVE ...

    African Journals Online (AJOL)

    Enrique

    as Huntington disease and spino- cerebellar ataxia. • skewed X-inactivation as an expla- nation for the unusual occurrence of X-linked recessive disorders in girls. All these advances, and others, partic- ularly in the field of epigenetic (non-. DNA) control of gene expression, have come in spite of, or preceded the publication ...

  17. Genome Architecture and Its Roles in Human Copy Number Variation

    Directory of Open Access Journals (Sweden)

    Lu Chen

    2014-12-01

    Full Text Available Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs, are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability.

  18. Complete Genome Sequence of the Human Gut Symbiont Roseburia hominis

    DEFF Research Database (Denmark)

    Travis, Anthony J.; Kelly, Denise; Flint, Harry J

    2015-01-01

    We report here the complete genome sequence of the human gut symbiont Roseburia hominis A2-183(T) (= DSM 16839(T) = NCIMB 14029(T)), isolated from human feces. The genome is represented by a 3,592,125-bp chromosome with 3,405 coding sequences. A number of potential functions contributing to host...

  19. Child Development and Structural Variation in the Human Genome

    Science.gov (United States)

    Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.

    2013-01-01

    Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…

  20. Widespread of horizontal gene transfer in the human genome.

    Science.gov (United States)

    Huang, Wenze; Tsai, Lillian; Li, Yulong; Hua, Nan; Sun, Chen; Wei, Chaochun

    2017-04-04

    A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. From the pair-wise alignments between human genome and 53 vertebrate genomes, 1,467 human genome regions (2.6 M bases) from all chromosomes were found to be more conserved with non-mammals than with most mammals. These human genome regions involve 642 known genes, which are enriched with ion binding. Compared to known horizontal gene transfer regions in the human genome, there were few overlapping regions, which indicated horizontal gene transfer is more common than we expected in the human genome. Horizontal gene transfer impacts hundreds of human genes and this study provided insight into potential mechanisms of HGT in the human genome.

  1. What does it mean to be genomically literate?: National Human Genome Research Institute Meeting Report.

    Science.gov (United States)

    Hurle, Belen; Citrin, Toby; Jenkins, Jean F; Kaphingst, Kimberly A; Lamb, Neil; Roseman, Jo Ellen; Bonham, Vence L

    2013-08-01

    Genomic discoveries will increasingly advance the science of medicine. Limited genomic literacy may adversely impact the public's understanding and use of the power of genetics and genomics in health care and public health. In November 2011, a meeting was held by the National Human Genome Research Institute to examine the challenge of achieving genomic literacy for the general public, from kindergarten to grade 12 to adult education. The role of the media in disseminating scientific messages and in perpetuating or reducing misconceptions was also discussed. Workshop participants agreed that genomic literacy will be achieved only through active engagement between genomics experts and the varied constituencies that comprise the public. This report summarizes the background, content, and outcomes from this meeting, including recommendations for a research agenda to inform decisions about how to advance genomic literacy in our society.

  2. Planning the Human Variome Project: The Spain Report†

    Science.gov (United States)

    Kaput, Jim; Cotton, Richard G. H.; Hardman, Lauren; Al Aqeel, Aida I.; Al-Aama, Jumana Y.; Al-Mulla, Fahd; Aretz, Stefan; Auerbach, Arleen D.; Axton, Myles; Bapat, Bharati; Bernstein, Inge T.; Bhak, Jong; Bleoo, Stacey L.; Blöcker, Helmut; Brenner, Steven E.; Burn, John; Bustamante, Mariona; Calzone, Rita; Cambon-Thomsen, Anne; Cargill, Michele; Carrera, Paola; Cavedon, Lawrence; Cho, Yoon Shin; Chung, Yeun-Jun; Claustres, Mireille; Cutting, Garry; Dalgleish, Raymond; den Dunnen, Johan T.; Díaz, Carlos; Dobrowolski, Steven; dos Santos, M. Rosário N.; Ekong, Rosemary; Flanagan, Simon B.; Flicek, Paul; Furukawa, Yoichi; Genuardi, Maurizio; Ghang, Ho; Golubenko, Maria V.; Greenblatt, Marc S.; Hamosh, Ada; Hancock, John M.; Hardison, Ross; Harrison, Terence M.; Hoffmann, Robert; Horaitis, Rania; Howard, Heather J.; Barash, Carol Isaacson; Izagirre, Neskuts; Jung, Jongsun; Kojima, Toshio; Laradi, Sandrine; Lee, Yeon-Su; Lee, Jong-Young; Gil-da-Silva-Lopes, Vera L.; Macrae, Finlay A.; Maglott, Donna; Marafie, Makia J.; Marsh, Steven G.E.; Matsubara, Yoichi; Messiaen, Ludwine M.; Möslein, Gabriela; Netea, Mihai G.; Norton, Melissa L.; Oefner, Peter J.; Oetting, William S.; O’Leary, James C.; de Ramirez, Ana Maria Oller; Paalman, Mark H.; Parboosingh, Jillian; Patrinos, George P.; Perozzi, Giuditta; Phillips, Ian R.; Povey, Sue; Prasad, Suyash; Qi, Ming; Quin, David J.; Ramesar, Rajkumar S.; Richards, C. Sue; Savige, Judith; Scheible, Dagmar G.; Scott, Rodney J.; Seminara, Daniela; Shephard, Elizabeth A.; Sijmons, Rolf H.; Smith, Timothy D.; Sobrido, María-Jesús; Tanaka, Toshihiro; Tavtigian, Sean V.; Taylor, Graham R.; Teague, Jon; Töpel, Thoralf; Ullman-Cullere, Mollie; Utsunomiya, Joji; van Kranen, Henk J.; Vihinen, Mauno; Watson, Michael; Webb, Elizabeth; Weber, Thomas K.; Yeager, Meredith; Yeom, Young I.; Yim, Seon-Hee; Yoo, Hyang-Sook

    2018-01-01

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data from diverse studies proves this perception inaccurate at best, and at worst, an impediment for further efforts to characterize the variation in the human genome. Since variation in genotype and environment are the fundamental basis to understand phenotypic variability and heritability at the population level, identifying the range of human genetic variation is crucial to the development of personalized nutrition and medicine. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) was proposed initially to systematically collect mutations that cause human disease and create a cyber infrastructure to link locus specific databases (LSDB). We report here the discussions and recommendations from the 2008 HVP planning meeting held in San Feliu de Guixols, Spain, in May 2008. PMID:19306394

  3. Planning the human variome project: the Spain report.

    Science.gov (United States)

    Kaput, Jim; Cotton, Richard G H; Hardman, Lauren; Watson, Michael; Al Aqeel, Aida I; Al-Aama, Jumana Y; Al-Mulla, Fahd; Alonso, Santos; Aretz, Stefan; Auerbach, Arleen D; Bapat, Bharati; Bernstein, Inge T; Bhak, Jong; Bleoo, Stacey L; Blöcker, Helmut; Brenner, Steven E; Burn, John; Bustamante, Mariona; Calzone, Rita; Cambon-Thomsen, Anne; Cargill, Michele; Carrera, Paola; Cavedon, Lawrence; Cho, Yoon Shin; Chung, Yeun-Jun; Claustres, Mireille; Cutting, Garry; Dalgleish, Raymond; den Dunnen, Johan T; Díaz, Carlos; Dobrowolski, Steven; dos Santos, M Rosário N; Ekong, Rosemary; Flanagan, Simon B; Flicek, Paul; Furukawa, Yoichi; Genuardi, Maurizio; Ghang, Ho; Golubenko, Maria V; Greenblatt, Marc S; Hamosh, Ada; Hancock, John M; Hardison, Ross; Harrison, Terence M; Hoffmann, Robert; Horaitis, Rania; Howard, Heather J; Barash, Carol Isaacson; Izagirre, Neskuts; Jung, Jongsun; Kojima, Toshio; Laradi, Sandrine; Lee, Yeon-Su; Lee, Jong-Young; Gil-da-Silva-Lopes, Vera L; Macrae, Finlay A; Maglott, Donna; Marafie, Makia J; Marsh, Steven G E; Matsubara, Yoichi; Messiaen, Ludwine M; Möslein, Gabriela; Netea, Mihai G; Norton, Melissa L; Oefner, Peter J; Oetting, William S; O'Leary, James C; de Ramirez, Ana Maria Oller; Paalman, Mark H; Parboosingh, Jillian; Patrinos, George P; Perozzi, Giuditta; Phillips, Ian R; Povey, Sue; Prasad, Suyash; Qi, Ming; Quin, David J; Ramesar, Rajkumar S; Richards, C Sue; Savige, Judith; Scheible, Dagmar G; Scott, Rodney J; Seminara, Daniela; Shephard, Elizabeth A; Sijmons, Rolf H; Smith, Timothy D; Sobrido, María-Jesús; Tanaka, Toshihiro; Tavtigian, Sean V; Taylor, Graham R; Teague, Jon; Töpel, Thoralf; Ullman-Cullere, Mollie; Utsunomiya, Joji; van Kranen, Henk J; Vihinen, Mauno; Webb, Elizabeth; Weber, Thomas K; Yeager, Meredith; Yeom, Young I; Yim, Seon-Hee; Yoo, Hyang-Sook

    2009-04-01

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data from diverse studies proves this perception inaccurate at best, and at worst, an impediment for further efforts to characterize the variation in the human genome. Because variation in genotype and environment are the fundamental basis to understand phenotypic variability and heritability at the population level, identifying the range of human genetic variation is crucial to the development of personalized nutrition and medicine. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) was proposed initially to systematically collect mutations that cause human disease and create a cyber infrastructure to link locus specific databases (LSDB). We report here the discussions and recommendations from the 2008 HVP planning meeting held in San Feliu de Guixols, Spain, in May 2008. (c) 2009 Wiley-Liss, Inc.

  4. New bioinformatic tool for quick identification of functionally relevant endogenous retroviral inserts in human genome.

    Science.gov (United States)

    Garazha, Andrew; Ivanova, Alena; Suntsova, Maria; Malakhova, Galina; Roumiantsev, Sergey; Zhavoronkov, Alex; Buzdin, Anton

    2015-01-01

    Endogenous retroviruses (ERVs) and LTR retrotransposons (LRs) occupy ∼8% of human genome. Deep sequencing technologies provide clues to understanding of functional relevance of individual ERVs/LRs by enabling direct identification of transcription factor binding sites (TFBS) and other landmarks of functional genomic elements. Here, we performed the genome-wide identification of human ERVs/LRs containing TFBS according to the ENCODE project. We created the first interactive ERV/LRs database that groups the individual inserts according to their familial nomenclature, number of mapped TFBS and divergence from their consensus sequence. Information on any particular element can be easily extracted by the user. We also created a genome browser tool, which enables quick mapping of any ERV/LR insert according to genomic coordinates, known human genes and TFBS. These tools can be used to easily explore functionally relevant individual ERV/LRs, and for studying their impact on the regulation of human genes. Overall, we identified ∼110,000 ERV/LR genomic elements having TFBS. We propose a hypothesis of "domestication" of ERV/LR TFBS by the genome milieu including subsequent stages of initial epigenetic repression, partial functional release, and further mutation-driven reshaping of TFBS in tight coevolution with the enclosing genomic loci.

  5. Segmenting the human genome based on states of neutral genetic divergence.

    Science.gov (United States)

    Kuruppumullage Don, Prabhani; Ananda, Guruprasad; Chiaromonte, Francesca; Makova, Kateryna D

    2013-09-03

    Many studies have demonstrated that divergence levels generated by different mutation types vary and covary across the human genome. To improve our still-incomplete understanding of the mechanistic basis of this phenomenon, we analyze several mutation types simultaneously, anchoring their variation to specific regions of the genome. Using hidden Markov models on insertion, deletion, nucleotide substitution, and microsatellite divergence estimates inferred from human-orangutan alignments of neutrally evolving genomic sequences, we segment the human genome into regions corresponding to different divergence states--each uniquely characterized by specific combinations of divergence levels. We then parsed the mutagenic contributions of various biochemical processes associating divergence states with a broad range of genomic landscape features. We find that high divergence states inhabit guanine- and cytosine (GC)-rich, highly recombining subtelomeric regions; low divergence states cover inner parts of autosomes; chromosome X forms its own state with lowest divergence; and a state of elevated microsatellite mutability is interspersed across the genome. These general trends are mirrored in human diversity data from the 1000 Genomes Project, and departures from them highlight the evolutionary history of primate chromosomes. We also find that genes and noncoding functional marks [annotations from the Encyclopedia of DNA Elements (ENCODE)] are concentrated in high divergence states. Our results provide a powerful tool for biomedical data analysis: segmentations can be used to screen personal genome variants--including those associated with cancer and other diseases--and to improve computational predictions of noncoding functional elements.

  6. Parallel or convergent evolution in human population genomic data revealed by genotype networks

    OpenAIRE

    Vahdati, Ali R; Wagner, Andreas

    2016-01-01

    Background Genotype networks are representations of genetic variation data that are complementary to phylogenetic trees. A genotype network is a graph whose nodes are genotypes (DNA sequences) with the same broadly defined phenotype. Two nodes are connected if they differ in some minimal way, e.g., in a single nucleotide. Results We analyze human genome variation data from the 1,000 genomes project, and construct haploid genotype (haplotype) networks for 12,235 protein coding genes. The struc...

  7. Tempo and mode of genomic mutations unveil human evolutionary history.

    Science.gov (United States)

    Hara, Yuichiro

    2015-01-01

    Mutations that have occurred in human genomes provide insight into various aspects of evolutionary history such as speciation events and degrees of natural selection. Comparing genome sequences between human and great apes or among humans is a feasible approach for inferring human evolutionary history. Recent advances in high-throughput or so-called 'next-generation' DNA sequencing technologies have enabled the sequencing of thousands of individual human genomes, as well as a variety of reference genomes of hominids, many of which are publicly available. These sequence data can help to unveil the detailed demographic history of the lineage leading to humans as well as the explosion of modern human population size in the last several thousand years. In addition, high-throughput sequencing illustrates the tempo and mode of de novo mutations, which are producing human genetic variation at this moment. Pedigree-based human genome sequencing has shown that mutation rates vary significantly across the human genome. These studies have also provided an improved timescale of human evolution, because the mutation rate estimated from pedigree analysis is half that estimated from traditional analyses based on molecular phylogeny. Because of the dramatic reduction in sequencing cost, sequencing on-demand samples designed for specific studies is now also becoming popular. To produce data of sufficient quality to meet the requirements of the study, it is necessary to set an explicit sequencing plan that includes the choice of sample collection methods, sequencing platforms, and number of sequence reads.

  8. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Hastie, Alex R.; Cao, Dandan

    2014-01-01

    mutations; however, none of the current detection methods are comprehensive, and currently available methodologies are incapable of providing sufficient resolution and unambiguous information across complex regions in the human genome. To address these challenges, we applied a high-throughput, cost......-effective genome mapping technology to comprehensively discover genome-wide SVs and characterize complex regions of the YH genome using long single molecules (>150 kb) in a global fashion. RESULTS: Utilizing nanochannel-based genome mapping technology, we obtained 708 insertions/deletions and 17 inversions larger...... fosmid data. Of the remaining 270 SVs, 260 are insertions and 213 overlap known SVs in the Database of Genomic Variants. Overall, 609 out of 666 (90%) variants were supported by experimental orthogonal methods or historical evidence in public databases. At the same time, genome mapping also provides...

  9. Linkage disequilibrium of evolutionarily conserved regions in the human genome

    Directory of Open Access Journals (Sweden)

    Johnson Todd A

    2006-12-01

    Full Text Available Abstract Background The strong linkage disequilibrium (LD recently found in genic or exonic regions of the human genome demonstrated that LD can be increased by evolutionary mechanisms that select for functionally important loci. This suggests that LD might be stronger in regions conserved among species than in non-conserved regions, since regions exposed to natural selection tend to be conserved. To assess this hypothesis, we used genome-wide polymorphism data from the HapMap project and investigated LD within DNA sequences conserved between the human and mouse genomes. Results Unexpectedly, we observed that LD was significantly weaker in conserved regions than in non-conserved regions. To investigate why, we examined sequence features that may distort the relationship between LD and conserved regions. We found that interspersed repeats, and not other sequence features, were associated with the weak LD tendency in conserved regions. To appropriately understand the relationship between LD and conserved regions, we removed the effect of repetitive elements and found that the high degree of sequence conservation was strongly associated with strong LD in coding regions but not with that in non-coding regions. Conclusion Our work demonstrates that the degree of sequence conservation does not simply increase LD as predicted by the hypothesis. Rather, it implies that purifying selection changes the polymorphic patterns of coding sequences but has little influence on the patterns of functional units such as regulatory elements present in non-coding regions, since the former are generally restricted by the constraint of maintaining a functional protein product across multiple exons while the latter may exist more as individually isolated units.

  10. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects.

    Science.gov (United States)

    Holt, Carson; Yandell, Mark

    2011-12-22

    Second-generation sequencing technologies are precipitating major shifts with regards to what kinds of genomes are being sequenced and how they are annotated. While the first generation of genome projects focused on well-studied model organisms, many of today's projects involve exotic organisms whose genomes are largely terra incognita. This complicates their annotation, because unlike first-generation projects, there are no pre-existing 'gold-standard' gene-models with which to train gene-finders. Improvements in genome assembly and the wide availability of mRNA-seq data are also creating opportunities to update and re-annotate previously published genome annotations. Today's genome projects are thus in need of new genome annotation tools that can meet the challenges and opportunities presented by second-generation sequencing technologies. We present MAKER2, a genome annotation and data management tool designed for second-generation genome projects. MAKER2 is a multi-threaded, parallelized application that can process second-generation datasets of virtually any size. We show that MAKER2 can produce accurate annotations for novel genomes where training-data are limited, of low quality or even non-existent. MAKER2 also provides an easy means to use mRNA-seq data to improve annotation quality; and it can use these data to update legacy annotations, significantly improving their quality. We also show that MAKER2 can evaluate the quality of genome annotations, and identify and prioritize problematic annotations for manual review. MAKER2 is the first annotation engine specifically designed for second-generation genome projects. MAKER2 scales to datasets of any size, requires little in the way of training data, and can use mRNA-seq data to improve annotation quality. It can also update and manage legacy genome annotation datasets.

  11. Recent and ongoing selection in the human genome

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Hellmann, Ines; Hubisz, Melissa

    2007-01-01

    The recent availability of genome-scale genotyping data has led to the identification of regions of the human genome that seem to have been targeted by selection. These findings have increased our understanding of the evolutionary forces that affect the human genome, have augmented our knowledge...... of gene function and promise to increase our understanding of the genetic basis of disease. However, inferences of selection are challenged by several confounding factors, especially the complex demographic history of human populations, and concordance between studies is variable. Although such studies...

  12. Explaining human uniqueness: genome interactions with environment, behaviour and culture.

    Science.gov (United States)

    Varki, Ajit; Geschwind, Daniel H; Eichler, Evan E

    2008-10-01

    What makes us human? Specialists in each discipline respond through the lens of their own expertise. In fact, 'anthropogeny' (explaining the origin of humans) requires a transdisciplinary approach that eschews such barriers. Here we take a genomic and genetic perspective towards molecular variation, explore systems analysis of gene expression and discuss an organ-systems approach. Rejecting any 'genes versus environment' dichotomy, we then consider genome interactions with environment, behaviour and culture, finally speculating that aspects of human uniqueness arose because of a primate evolutionary trend towards increasing and irreversible dependence on learned behaviours and culture - perhaps relaxing allowable thresholds for large-scale genomic diversity.

  13. Localizing recent adaptive evolution in the human genome

    DEFF Research Database (Denmark)

    Williamson, Scott H; Hubisz, Melissa J; Clark, Andrew G

    2007-01-01

    , clusters of olfactory receptors, genes involved in nervous system development and function, immune system genes, and heat shock genes. We also observe consistent evidence of selective sweeps in centromeric regions. In general, we find that recent adaptation is strikingly pervasive in the human genome......-nucleotide polymorphism ascertainment, while also providing fine-scale estimates of the position of the selected site, we analyzed a genomic dataset of 1.2 million human single-nucleotide polymorphisms genotyped in African-American, European-American, and Chinese samples. We identify 101 regions of the human genome...

  14. A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data.

    Science.gov (United States)

    Lu, Qiongshi; Hu, Yiming; Sun, Jiehuan; Cheng, Yuwei; Cheung, Kei-Hoi; Zhao, Hongyu

    2015-05-27

    Identifying functional regions in the human genome is a major goal in human genetics. Great efforts have been made to functionally annotate the human genome either through computational predictions, such as genomic conservation, or high-throughput experiments, such as the ENCODE project. These efforts have resulted in a rich collection of functional annotation data of diverse types that need to be jointly analyzed for integrated interpretation and annotation. Here we present GenoCanyon, a whole-genome annotation method that performs unsupervised statistical learning using 22 computational and experimental annotations thereby inferring the functional potential of each position in the human genome. With GenoCanyon, we are able to predict many of the known functional regions. The ability of predicting functional regions as well as its generalizable statistical framework makes GenoCanyon a unique and powerful tool for whole-genome annotation. The GenoCanyon web server is available at http://genocanyon.med.yale.edu.

  15. Transposable element activity, genome regulation and human health.

    Science.gov (United States)

    Wang, Lu; Jordan, I King

    2018-03-02

    A convergence of novel genome analysis technologies is enabling population genomic studies of human transposable elements (TEs). Population surveys of human genome sequences have uncovered thousands of individual TE insertions that segregate as common genetic variants, i.e. TE polymorphisms. These recent TE insertions provide an important source of naturally occurring human genetic variation. Investigators are beginning to leverage population genomic data sets to execute genome-scale association studies for assessing the phenotypic impact of human TE polymorphisms. For example, the expression quantitative trait loci (eQTL) analytical paradigm has recently been used to uncover hundreds of associations between human TE insertion variants and gene expression levels. These include population-specific gene regulatory effects as well as coordinated changes to gene regulatory networks. In addition, analyses of linkage disequilibrium patterns with previously characterized genome-wide association study (GWAS) trait variants have uncovered TE insertion polymorphisms that are likely causal variants for a variety of common complex diseases. Gene regulatory mechanisms that underlie specific disease phenotypes have been proposed for a number of these trait associated TE polymorphisms. These new population genomic approaches hold great promise for understanding how ongoing TE activity contributes to functionally relevant genetic variation within and between human populations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The Personal Genome Project Canada: findings from whole genome sequences of the inaugural 56 participants.

    Science.gov (United States)

    Reuter, Miriam S; Walker, Susan; Thiruvahindrapuram, Bhooma; Whitney, Joe; Cohn, Iris; Sondheimer, Neal; Yuen, Ryan K C; Trost, Brett; Paton, Tara A; Pereira, Sergio L; Herbrick, Jo-Anne; Wintle, Richard F; Merico, Daniele; Howe, Jennifer; MacDonald, Jeffrey R; Lu, Chao; Nalpathamkalam, Thomas; Sung, Wilson W L; Wang, Zhuozhi; Patel, Rohan V; Pellecchia, Giovanna; Wei, John; Strug, Lisa J; Bell, Sherilyn; Kellam, Barbara; Mahtani, Melanie M; Bassett, Anne S; Bombard, Yvonne; Weksberg, Rosanna; Shuman, Cheryl; Cohn, Ronald D; Stavropoulos, Dimitri J; Bowdin, Sarah; Hildebrandt, Matthew R; Wei, Wei; Romm, Asli; Pasceri, Peter; Ellis, James; Ray, Peter; Meyn, M Stephen; Monfared, Nasim; Hosseini, S Mohsen; Joseph-George, Ann M; Keeley, Fred W; Cook, Ryan A; Fiume, Marc; Lee, Hin C; Marshall, Christian R; Davies, Jill; Hazell, Allison; Buchanan, Janet A; Szego, Michael J; Scherer, Stephen W

    2018-02-05

    The Personal Genome Project Canada is a comprehensive public data resource that integrates whole genome sequencing data and health information. We describe genomic variation identified in the initial recruitment cohort of 56 volunteers. Volunteers were screened for eligibility and provided informed consent for open data sharing. Using blood DNA, we performed whole genome sequencing and identified all possible classes of DNA variants. A genetic counsellor explained the implication of the results to each participant. Whole genome sequencing of the first 56 participants identified 207 662 805 sequence variants and 27 494 copy number variations. We analyzed a prioritized disease-associated data set ( n = 1606 variants) according to standardized guidelines, and interpreted 19 variants in 14 participants (25%) as having obvious health implications. Six of these variants (e.g., in BRCA1 or mosaic loss of an X chromosome) were pathogenic or likely pathogenic. Seven were risk factors for cancer, cardiovascular or neurobehavioural conditions. Four other variants - associated with cancer, cardiac or neurodegenerative phenotypes - remained of uncertain significance because of discrepancies among databases. We also identified a large structural chromosome aberration and a likely pathogenic mitochondrial variant. There were 172 recessive disease alleles (e.g., 5 individuals carried mutations for cystic fibrosis). Pharmacogenomics analyses revealed another 3.9 potentially relevant genotypes per individual. Our analyses identified a spectrum of genetic variants with potential health impact in 25% of participants. When also considering recessive alleles and variants with potential pharmacologic relevance, all 56 participants had medically relevant findings. Although access is mostly limited to research, whole genome sequencing can provide specific and novel information with the potential of major impact for health care. © 2018 Joule Inc. or its licensors.

  17. Building the sequence map of the human pan-genome

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Li, Yingrui; Zheng, Hancheng

    2010-01-01

    analysis of predicted genes indicated that the novel sequences contain potentially functional coding regions. We estimate that a complete human pan-genome would contain approximately 19-40 Mb of novel sequence not present in the extant reference genome. The extensive amount of novel sequence contributing...

  18. Genome Editing: A New Approach to Human Therapeutics.

    Science.gov (United States)

    Porteus, Matthew

    2016-01-01

    The ability to manipulate the genome with precise spatial and nucleotide resolution (genome editing) has been a powerful research tool. In the past decade, the tools and expertise for using genome editing in human somatic cells and pluripotent cells have increased to such an extent that the approach is now being developed widely as a strategy to treat human disease. The fundamental process depends on creating a site-specific DNA double-strand break (DSB) in the genome and then allowing the cell's endogenous DSB repair machinery to fix the break such that precise nucleotide changes are made to the DNA sequence. With the development and discovery of several different nuclease platforms and increasing knowledge of the parameters affecting different genome editing outcomes, genome editing frequencies now reach therapeutic relevance for a wide variety of diseases. Moreover, there is a series of complementary approaches to assessing the safety and toxicity of any genome editing process, irrespective of the underlying nuclease used. Finally, the development of genome editing has raised the issue of whether it should be used to engineer the human germline. Although such an approach could clearly prevent the birth of people with devastating and destructive genetic diseases, questions remain about whether human society is morally responsible enough to use this tool.

  19. Field of genes: the politics of science and identity in the Estonian Genome Project.

    Science.gov (United States)

    Fletcher, Amy L

    2004-04-01

    This case study of the Estonian Genome Project (EGP) analyses the Estonian policy decision to construct a national human gene bank. Drawing upon qualitative data from newspaper articles and public policy documents, it focuses on how proponents use discourse to link the EGP to the broader political goal of securing Estonia's position within the Western/European scientific and cultural space. This dominant narrative is then situated within the analytical notion of the "brand state", which raises potentially negative political consequences for this type of market-driven genomic research. Considered against the increasing number of countries engaging in gene bank and/or gene database projects, this analysis of Estonia elucidates issues that cross national boundaries, while also illuminating factors specific to this small, post-Soviet state as it enters the global biocybernetic economy.

  20. Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project.

    Science.gov (United States)

    Higgins, Anne W; Alkuraya, Fowzan S; Bosco, Amy F; Brown, Kerry K; Bruns, Gail A P; Donovan, Diana J; Eisenman, Robert; Fan, Yanli; Farra, Chantal G; Ferguson, Heather L; Gusella, James F; Harris, David J; Herrick, Steven R; Kelly, Chantal; Kim, Hyung-Goo; Kishikawa, Shotaro; Korf, Bruce R; Kulkarni, Shashikant; Lally, Eric; Leach, Natalia T; Lemyre, Emma; Lewis, Janine; Ligon, Azra H; Lu, Weining; Maas, Richard L; MacDonald, Marcy E; Moore, Steven D P; Peters, Roxanna E; Quade, Bradley J; Quintero-Rivera, Fabiola; Saadi, Irfan; Shen, Yiping; Shendure, Jay; Williamson, Robin E; Morton, Cynthia C

    2008-03-01

    Apparently balanced chromosomal rearrangements in individuals with major congenital anomalies represent natural experiments of gene disruption and dysregulation. These individuals can be studied to identify novel genes critical in human development and to annotate further the function of known genes. Identification and characterization of these genes is the goal of the Developmental Genome Anatomy Project (DGAP). DGAP is a multidisciplinary effort that leverages the recent advances resulting from the Human Genome Project to increase our understanding of birth defects and the process of human development. Clinically significant phenotypes of individuals enrolled in DGAP are varied and, in most cases, involve multiple organ systems. Study of these individuals' chromosomal rearrangements has resulted in the mapping of 77 breakpoints from 40 chromosomal rearrangements by FISH with BACs and fosmids, array CGH, Southern-blot hybridization, MLPA, RT-PCR, and suppression PCR. Eighteen chromosomal breakpoints have been cloned and sequenced. Unsuspected genomic imbalances and cryptic rearrangements were detected, but less frequently than has been reported previously. Chromosomal rearrangements, both balanced and unbalanced, in individuals with multiple congenital anomalies continue to be a valuable resource for gene discovery and annotation.

  1. Long-term reinfection of the human genome by endogenous retroviruses

    Czech Academy of Sciences Publication Activity Database

    Belshaw, R.; Pereira, V.; Katzourakis, A.; Talbot, G.; Pačes, Jan; Burt, A.

    2004-01-01

    Roč. 101, č. 14 (2004), s. 4894-4899 ISSN 0027-8424 R&D Projects: GA MŠk LN00A079 Institutional research plan: CEZ:AV0Z5052915 Keywords : endogenous retroviruses * human genome * HERV Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.452, year: 2004

  2. Learning about the Human Genome. Part 1: Challenge to Science Educators. ERIC Digest.

    Science.gov (United States)

    Haury, David L.

    This digest explains how to inform high school students and their parents about the human genome project (HGP) and how the information from this milestone finding will affect future biological and medical research and challenge science educators. The sections include: (1) "The Emerging Legacy of the HGP"; (2) "Transforming How…

  3. The human genome as public: Justifications and implications.

    Science.gov (United States)

    Bayefsky, Michelle J

    2017-03-01

    Since the human genome was decoded, great emphasis has been placed on the unique, personal nature of the genome, along with the benefits that personalized medicine can bring to individuals and the importance of safeguarding genetic privacy. As a result, an equally important aspect of the human genome - its common nature - has been underappreciated and underrepresented in the ethics literature and policy dialogue surrounding genetics and genomics. This article will argue that, just as the personal nature of the genome has been used to reinforce individual rights and justify important privacy protections, so too the common nature of the genome can be employed to support protections of the genome at a population level and policies designed to promote the public's wellbeing. In order for public health officials to have the authority to develop genetics policies for the sake of the public good, the genome must have not only a common, but also a public, dimension. This article contends that DNA carries a public dimension through the use of two conceptual frameworks: the common heritage (CH) framework and the common resource (CR) framework. Both frameworks establish a public interest in the human genome, but the CH framework can be used to justify policies aimed at preserving and protecting the genome, while the CR framework can be employed to justify policies for utilizing the genome for the public benefit. A variety of possible policy implications are discussed, with special attention paid to the use of large-scale genomics databases for public health research. © Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  4. Earth BioGenome Project: Sequencing life for the future of life.

    Science.gov (United States)

    Lewin, Harris A; Robinson, Gene E; Kress, W John; Baker, William J; Coddington, Jonathan; Crandall, Keith A; Durbin, Richard; Edwards, Scott V; Forest, Félix; Gilbert, M Thomas P; Goldstein, Melissa M; Grigoriev, Igor V; Hackett, Kevin J; Haussler, David; Jarvis, Erich D; Johnson, Warren E; Patrinos, Aristides; Richards, Stephen; Castilla-Rubio, Juan Carlos; van Sluys, Marie-Anne; Soltis, Pamela S; Xu, Xun; Yang, Huanming; Zhang, Guojie

    2018-04-24

    Increasing our understanding of Earth's biodiversity and responsibly stewarding its resources are among the most crucial scientific and social challenges of the new millennium. These challenges require fundamental new knowledge of the organization, evolution, functions, and interactions among millions of the planet's organisms. Herein, we present a perspective on the Earth BioGenome Project (EBP), a moonshot for biology that aims to sequence, catalog, and characterize the genomes of all of Earth's eukaryotic biodiversity over a period of 10 years. The outcomes of the EBP will inform a broad range of major issues facing humanity, such as the impact of climate change on biodiversity, the conservation of endangered species and ecosystems, and the preservation and enhancement of ecosystem services. We describe hurdles that the project faces, including data-sharing policies that ensure a permanent, freely available resource for future scientific discovery while respecting access and benefit sharing guidelines of the Nagoya Protocol. We also describe scientific and organizational challenges in executing such an ambitious project, and the structure proposed to achieve the project's goals. The far-reaching potential benefits of creating an open digital repository of genomic information for life on Earth can be realized only by a coordinated international effort.

  5. Predicting Tissue-Specific Enhancers in the Human Genome

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2006-07-01

    Determining how transcriptional regulatory signals areencoded in vertebrate genomes is essential for understanding the originsof multi-cellular complexity; yet the genetic code of vertebrate generegulation remains poorly understood. In an attempt to elucidate thiscode, we synergistically combined genome-wide gene expression profiling,vertebrate genome comparisons, and transcription factor binding siteanalysis to define sequence signatures characteristic of candidatetissue-specific enhancers in the human genome. We applied this strategyto microarray-based gene expression profiles from 79 human tissues andidentified 7,187 candidate enhancers that defined their flanking geneexpression, the majority of which were located outside of knownpromoters. We cross-validated this method for its ability to de novopredict tissue-specific gene expression and confirmed its reliability in57 of the 79 available human tissues, with an average precision inenhancer recognition ranging from 32 percent to 63 percent, and asensitivity of 47 percent. We used the sequence signatures identified bythis approach to assign tissue-specific predictions to ~;328,000human-mouse conserved noncoding elements in the human genome. Byoverlapping these genome-wide predictions with a large in vivo dataset ofenhancers validated in transgenic mice, we confirmed our results with a28 percent sensitivity and 50 percent precision. These results indicatethe power of combining complementary genomic datasets as an initialcomputational foray into the global view of tissue-specific generegulation in vertebrates.

  6. Human · mouse genome analysis and radiation biology. Proceedings

    International Nuclear Information System (INIS)

    Hori, Tada-aki

    1994-03-01

    This issue is the collection of the papers presented at the 25th NIRS symposium on Human, Mouse Genome Analysis and Radiation Biology. The 14 of the presented papers are indexed individually. (J.P.N.)

  7. Crossed wires: 3D genome misfolding in human disease.

    Science.gov (United States)

    Norton, Heidi K; Phillips-Cremins, Jennifer E

    2017-11-06

    Mammalian genomes are folded into unique topological structures that undergo precise spatiotemporal restructuring during healthy development. Here, we highlight recent advances in our understanding of how the genome folds inside the 3D nucleus and how these folding patterns are miswired during the onset and progression of mammalian disease states. We discuss potential mechanisms underlying the link among genome misfolding, genome dysregulation, and aberrant cellular phenotypes. We also discuss cases in which the endogenous 3D genome configurations in healthy cells might be particularly susceptible to mutation or translocation. Together, these data support an emerging model in which genome folding and misfolding is critically linked to the onset and progression of a broad range of human diseases. © 2017 Norton and Phillips-Cremins.

  8. In-silico human genomics with GeneCards

    Directory of Open Access Journals (Sweden)

    Stelzer Gil

    2011-10-01

    Full Text Available Abstract Since 1998, the bioinformatics, systems biology, genomics and medical communities have enjoyed a synergistic relationship with the GeneCards database of human genes (http://www.genecards.org. This human gene compendium was created to help to introduce order into the increasing chaos of information flow. As a consequence of viewing details and deep links related to specific genes, users have often requested enhanced capabilities, such that, over time, GeneCards has blossomed into a suite of tools (including GeneDecks, GeneALaCart, GeneLoc, GeneNote and GeneAnnot for a variety of analyses of both single human genes and sets thereof. In this paper, we focus on inhouse and external research activities which have been enabled, enhanced, complemented and, in some cases, motivated by GeneCards. In turn, such interactions have often inspired and propelled improvements in GeneCards. We describe here the evolution and architecture of this project, including examples of synergistic applications in diverse areas such as synthetic lethality in cancer, the annotation of genetic variations in disease, omics integration in a systems biology approach to kidney disease, and bioinformatics tools.

  9. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project.

    OpenAIRE

    Spradling, A C; Stern, D M; Kiss, I; Roote, J; Laverty, T; Rubin, G M

    1995-01-01

    Biologists require genetic as well as molecular tools to decipher genomic information and ultimately to understand gene function. The Berkeley Drosophila Genome Project is addressing these needs with a massive gene disruption project that uses individual, genetically engineered P transposable elements to target open reading frames throughout the Drosophila genome. DNA flanking the insertions is sequenced, thereby placing an extensive series of genetic markers on the physical genomic map and a...

  10. Ancient Human Genome Sequence of an Extinct Palaeo-Eskimo

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Li, Yingrui; Lindgreen, Stinus

    2010-01-01

    We report here the genome sequence of an ancient human. Obtained from approximately 4,000-year-old permafrost-preserved hair, the genome represents a male individual from the first known culture to settle in Greenland. Sequenced to an average depth of 20x, we recover 79% of the diploid genome...... possible phenotypic characteristics of the individual that belonged to a culture whose location has yielded only trace human remains. We compare the high-confidence SNPs to those of contemporary populations to find the populations most closely related to the individual. This provides evidence...

  11. Genome editing: a robust technology for human stem cells.

    Science.gov (United States)

    Chandrasekaran, Arun Pandian; Song, Minjung; Ramakrishna, Suresh

    2017-09-01

    Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

  12. The human noncoding genome defined by genetic diversity.

    Science.gov (United States)

    di Iulio, Julia; Bartha, Istvan; Wong, Emily H M; Yu, Hung-Chun; Lavrenko, Victor; Yang, Dongchan; Jung, Inkyung; Hicks, Michael A; Shah, Naisha; Kirkness, Ewen F; Fabani, Martin M; Biggs, William H; Ren, Bing; Venter, J Craig; Telenti, Amalio

    2018-03-01

    Understanding the significance of genetic variants in the noncoding genome is emerging as the next challenge in human genomics. We used the power of 11,257 whole-genome sequences and 16,384 heptamers (7-nt motifs) to build a map of sequence constraint for the human species. This build differed substantially from traditional maps of interspecies conservation and identified regulatory elements among the most constrained regions of the genome. Using new Hi-C experimental data, we describe a strong pattern of coordination over 2 Mb where the most constrained regulatory elements associate with the most essential genes. Constrained regions of the noncoding genome are up to 52-fold enriched for known pathogenic variants as compared to unconstrained regions (21-fold when compared to the genome average). This map of sequence constraint across thousands of individuals is an asset to help interpret noncoding elements in the human genome, prioritize variants and reconsider gene units at a larger scale.

  13. Population genetic inference from personal genome data: impact of ancestry and admixture on human genomic variation.

    Science.gov (United States)

    Kidd, Jeffrey M; Gravel, Simon; Byrnes, Jake; Moreno-Estrada, Andres; Musharoff, Shaila; Bryc, Katarzyna; Degenhardt, Jeremiah D; Brisbin, Abra; Sheth, Vrunda; Chen, Rong; McLaughlin, Stephen F; Peckham, Heather E; Omberg, Larsson; Bormann Chung, Christina A; Stanley, Sarah; Pearlstein, Kevin; Levandowsky, Elizabeth; Acevedo-Acevedo, Suehelay; Auton, Adam; Keinan, Alon; Acuña-Alonzo, Victor; Barquera-Lozano, Rodrigo; Canizales-Quinteros, Samuel; Eng, Celeste; Burchard, Esteban G; Russell, Archie; Reynolds, Andy; Clark, Andrew G; Reese, Martin G; Lincoln, Stephen E; Butte, Atul J; De La Vega, Francisco M; Bustamante, Carlos D

    2012-10-05

    Full sequencing of individual human genomes has greatly expanded our understanding of human genetic variation and population history. Here, we present a systematic analysis of 50 human genomes from 11 diverse global populations sequenced at high coverage. Our sample includes 12 individuals who have admixed ancestry and who have varying degrees of recent (within the last 500 years) African, Native American, and European ancestry. We found over 21 million single-nucleotide variants that contribute to a 1.75-fold range in nucleotide heterozygosity across diverse human genomes. This heterozygosity ranged from a high of one heterozygous site per kilobase in west African genomes to a low of 0.57 heterozygous sites per kilobase in segments inferred to have diploid Native American ancestry from the genomes of Mexican and Puerto Rican individuals. We show evidence of all three continental ancestries in the genomes of Mexican, Puerto Rican, and African American populations, and the genome-wide statistics are highly consistent across individuals from a population once ancestry proportions have been accounted for. Using a generalized linear model, we identified subtle variations across populations in the proportion of neutral versus deleterious variation and found that genome-wide statistics vary in admixed populations even once ancestry proportions have been factored in. We further infer that multiple periods of gene flow shaped the diversity of admixed populations in the Americas-70% of the European ancestry in today's African Americans dates back to European gene flow happening only 7-8 generations ago. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Megabase replication domains along the human genome: relation to chromatin structure and genome organisation.

    Science.gov (United States)

    Audit, Benjamin; Zaghloul, Lamia; Baker, Antoine; Arneodo, Alain; Chen, Chun-Long; d'Aubenton-Carafa, Yves; Thermes, Claude

    2013-01-01

    In higher eukaryotes, the absence of specific sequence motifs, marking the origins of replication has been a serious hindrance to the understanding of (i) the mechanisms that regulate the spatio-temporal replication program, and (ii) the links between origins activation, chromatin structure and transcription. In this chapter, we review the partitioning of the human genome into megabased-size replication domains delineated as N-shaped motifs in the strand compositional asymmetry profiles. They collectively span 28.3% of the genome and are bordered by more than 1,000 putative replication origins. We recapitulate the comparison of this partition of the human genome with high-resolution experimental data that confirms that replication domain borders are likely to be preferential replication initiation zones in the germline. In addition, we highlight the specific distribution of experimental and numerical chromatin marks along replication domains. Domain borders correspond to particular open chromatin regions, possibly encoded in the DNA sequence, and around which replication and transcription are highly coordinated. These regions also present a high evolutionary breakpoint density, suggesting that susceptibility to breakage might be linked to local open chromatin fiber state. Altogether, this chapter presents a compartmentalization of the human genome into replication domains that are landmarks of the human genome organization and are likely to play a key role in genome dynamics during evolution and in pathological situations.

  15. JSC Human Life Sciences Project

    Science.gov (United States)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication includes articles entitled: (1) E029 - Magnetic Resonance Imaging after Exposure to Microgravity; (2) E030 - Extended Studies of Pulmonary Function in Weightlessness; (3) E074 - Direct Measurement of the Initial Bone Response to Spaceflight in Humans; (4) E401 - The Effects of Microgravity on Skeletal Muscle Contractile Properties; (5) E407 - Effects of Microgravity on the Biochemical and Bioenergetic Characteristics of Human Skeletal Muscle; (6) E410 - Torso Rotation Experiment; (7) E920 - Effect of Weightlessness on Human Single Muscle Fiber Function; (8) E948 - Human Sleep, Circadian Rhythms and Performance in Space; (9) E963 - Microgravity Effects on Standardized Cognitive Performance Measures; and (10) E971 - Measurement of Energy Expenditures During Spaceflight Using the Doubly Labeled Water Method

  16. Genomes to life project quarterly report June 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Heffelfinger, Grant S.

    2005-01-01

    This SAND report provides the technical progress through June 2004 of the Sandia-led project, ''Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling'', funded by the DOE Office of Science Genomes to Life Program. Understanding, predicting, and perhaps manipulating carbon fixation in the oceans has long been a major focus of biological oceanography and has more recently been of interest to a broader audience of scientists and policy makers. It is clear that the oceanic sinks and sources of CO{sub 2} are important terms in the global environmental response to anthropogenic atmospheric inputs of CO{sub 2} and that oceanic microorganisms play a key role in this response. However, the relationship between this global phenomenon and the biochemical mechanisms of carbon fixation in these microorganisms is poorly understood. In this project, we will investigate the carbon sequestration behavior of Synechococcus Sp., an abundant marine cyanobacteria known to be important to environmental responses to carbon dioxide levels, through experimental and computational methods. This project is a combined experimental and computational effort with emphasis on developing and applying new computational tools and methods. Our experimental effort will provide the biology and data to drive the computational efforts and include significant investment in developing new experimental methods for uncovering protein partners, characterizing protein complexes, identifying new binding domains. We will also develop and apply new data measurement and statistical methods for analyzing microarray experiments. Computational tools will be essential to our efforts to discover and characterize the function of the molecular machines of Synechococcus. To this end, molecular simulation methods will be coupled with knowledge discovery from diverse biological data sets for high-throughput discovery and characterization of protein-protein complexes

  17. The GenABEL Project for statistical genomics.

    Science.gov (United States)

    Karssen, Lennart C; van Duijn, Cornelia M; Aulchenko, Yurii S

    2016-01-01

    Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the "core team", facilitating agile statistical omics methodology development and fast dissemination.

  18. Space Mission Human Reliability Analysis (HRA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to extend current ground-based Human Reliability Analysis (HRA) techniques to a long-duration, space-based tool to more effectively...

  19. Genomes to Life Project Quartely Report October 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Heffelfinger, Grant S.; Martino, Anthony; Rintoul, Mark Daniel; Geist, Al; Gorin, Andrey; Xu, Ying; Palenik, Brian

    2005-02-01

    This SAND report provides the technical progress through October 2004 of the Sandia-led project, %22Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling,%22 funded by the DOE Office of Science Genomes to Life Program. Understanding, predicting, and perhaps manipulating carbon fixation in the oceans has long been a major focus of biological oceanography and has more recently been of interest to a broader audience of scientists and policy makers. It is clear that the oceanic sinks and sources of CO2 are important terms in the global environmental response to anthropogenic atmospheric inputs of CO2 and that oceanic microorganisms play a key role in this response. However, the relationship between this global phenomenon and the biochemical mechanisms of carbon fixation in these microorganisms is poorly understood. In this project, we will investigate the carbon sequestration behavior of Synechococcus Sp., an abundant marine cyanobacteria known to be important to environmental responses to carbon dioxide levels, through experimental and computational methods. This project is a combined experimental and computational effort with emphasis on developing and applying new computational tools and methods. Our experimental effort will provide the biology and data to drive the computational efforts and include significant investment in developing new experimental methods for uncovering protein partners, characterizing protein complexes, identifying new binding domains. We will also develop and apply new data measurement and statistical methods for analyzing microarray experiments. Computational tools will be essential to our efforts to discover and characterize the function of the molecular machines of Synechococcus. To this end, molecular simulation methods will be coupled with knowledge discovery from diverse biological data sets for high-throughput discovery and characterization of protein-protein complexes. In addition, we will develop

  20. Genomic divergences among cattle, dog and human estimated from large-scale alignments of genomic sequences

    Directory of Open Access Journals (Sweden)

    Shade Larry L

    2006-06-01

    Full Text Available Abstract Background Approximately 11 Mb of finished high quality genomic sequences were sampled from cattle, dog and human to estimate genomic divergences and their regional variation among these lineages. Results Optimal three-way multi-species global sequence alignments for 84 cattle clones or loci (each >50 kb of genomic sequence were constructed using the human and dog genome assemblies as references. Genomic divergences and substitution rates were examined for each clone and for various sequence classes under different functional constraints. Analysis of these alignments revealed that the overall genomic divergences are relatively constant (0.32–0.37 change/site for pairwise comparisons among cattle, dog and human; however substitution rates vary across genomic regions and among different sequence classes. A neutral mutation rate (2.0–2.2 × 10(-9 change/site/year was derived from ancestral repetitive sequences, whereas the substitution rate in coding sequences (1.1 × 10(-9 change/site/year was approximately half of the overall rate (1.9–2.0 × 10(-9 change/site/year. Relative rate tests also indicated that cattle have a significantly faster rate of substitution as compared to dog and that this difference is about 6%. Conclusion This analysis provides a large-scale and unbiased assessment of genomic divergences and regional variation of substitution rates among cattle, dog and human. It is expected that these data will serve as a baseline for future mammalian molecular evolution studies.

  1. From hacking the human genome to editing organs.

    Science.gov (United States)

    Tobita, Takamasa; Guzman-Lepe, Jorge; Collin de l'Hortet, Alexandra

    2015-01-01

    In the recent decades, human genome engineering has been one of the major interesting research subjects, essentially because it raises new possibilities for personalized medicine and biotechnologies. With the development of engineered nucleases such as the Zinc Finger Nucleases (ZFNs), the Transcription activator-like effector nucleases (TALENs) and more recently the Clustered Regularly Interspaced short Palindromic Repeats (CRISPR), the field of human genome edition has evolved very rapidly. Every new genetic tool is broadening the scope of applications on human tissues, even before we can completely master each of these tools. In this review, we will present the recent advances regarding human genome edition tools, we will discuss the numerous implications they have in research and medicine, and we will mention the limits and concerns about such technologies.

  2. Sequencing and analysis of an Irish human genome.

    LENUS (Irish Health Repository)

    Tong, Pin

    2010-01-01

    Recent studies generating complete human sequences from Asian, African and European subgroups have revealed population-specific variation and disease susceptibility loci. Here, choosing a DNA sample from a population of interest due to its relative geographical isolation and genetic impact on further populations, we extend the above studies through the generation of 11-fold coverage of the first Irish human genome sequence.

  3. The diploid genome sequence of an individual human.

    Directory of Open Access Journals (Sweden)

    Samuel Levy

    2007-09-01

    Full Text Available Presented here is a genome sequence of an individual human. It was produced from approximately 32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel included 3,213,401 single nucleotide polymorphisms (SNPs, 53,823 block substitutions (2-206 bp, 292,102 heterozygous insertion/deletion events (indels(1-571 bp, 559,473 homozygous indels (1-82,711 bp, 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.

  4. Learning about human population history from ancient and modern genomes.

    Science.gov (United States)

    Stoneking, Mark; Krause, Johannes

    2011-08-18

    Genome-wide data, both from SNP arrays and from complete genome sequencing, are becoming increasingly abundant and are now even available from extinct hominins. These data are providing new insights into population history; in particular, when combined with model-based analytical approaches, genome-wide data allow direct testing of hypotheses about population history. For example, genome-wide data from both contemporary populations and extinct hominins strongly support a single dispersal of modern humans from Africa, followed by two archaic admixture events: one with Neanderthals somewhere outside Africa and a second with Denisovans that (so far) has only been detected in New Guinea. These new developments promise to reveal new stories about human population history, without having to resort to storytelling.

  5. A periodic pattern of SNPs in the human genome

    DEFF Research Database (Denmark)

    Madsen, Bo Eskerod; Villesen, Palle; Wiuf, Carsten

    2007-01-01

    By surveying a filtered, high-quality set of SNPs in the human genome, we have found that SNPs positioned 1, 2, 4, 6, or 8 bp apart are more frequent than SNPs positioned 3, 5, 7, or 9 bp apart. The observed pattern is not restricted to genomic regions that are known to cause sequencing...... periodic DNA. Our results suggest that not all SNPs in the human genome are created by independent single nucleotide mutations, and that care should be taken in analysis of SNPs from periodic DNA. The latter may have important consequences for SNP and association studies....... or alignment errors, for example, transposable elements (SINE, LINE, and LTR), tandem repeats, and large duplicated regions. However, we found that the pattern is almost entirely confined to what we define as "periodic DNA." Periodic DNA is a genomic region with a high degree of periodicity in nucleotide usage...

  6. Saccharomyces genome database informs human biology

    OpenAIRE

    Skrzypek, Marek S; Nash, Robert S; Wong, Edith D; MacPherson, Kevin A; Hellerstedt, Sage T; Engel, Stacia R; Karra, Kalpana; Weng, Shuai; Sheppard, Travis K; Binkley, Gail; Simison, Matt; Miyasato, Stuart R; Cherry, J Michael

    2017-01-01

    Abstract The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is an expertly curated database of literature-derived functional information for the model organism budding yeast, Saccharomyces cerevisiae. SGD constantly strives to synergize new types of experimental data and bioinformatics predictions with existing data, and to organize them into a comprehensive and up-to-date information resource. The primary mission of SGD is to facilitate research into the biology of yeast and...

  7. The Epilepsy Phenome/Genome Project (EPGP) informatics platform.

    Science.gov (United States)

    Nesbitt, Gerry; McKenna, Kevin; Mays, Vickie; Carpenter, Alan; Miller, Kevin; Williams, Michael

    2013-04-01

    The Epilepsy Phenome/Genome Project (EPGP) is a large-scale, multi-institutional, collaborative network of 27 epilepsy centers throughout the U.S., Australia, and Argentina, with the objective of collecting detailed phenotypic and genetic data on a large number of epilepsy participants. The goals of EPGP are (1) to perform detailed phenotyping on 3750 participants with specific forms of non-acquired epilepsy and 1500 parents without epilepsy, (2) to obtain DNA samples on these individuals, and (3) to ultimately genotype the samples in order to discover novel genes that cause epilepsy. To carry out the project, a reliable and robust informatics platform was needed for standardized electronic data collection and storage, data quality review, and phenotypic analysis involving cases from multiple sites. EPGP developed its own suite of web-based informatics applications for participant tracking, electronic data collection (using electronic case report forms/surveys), data management, phenotypic data review and validation, specimen tracking, electroencephalograph and neuroimaging storage, and issue tracking. We implemented procedures to train and support end-users at each clinical site. Thus far, 3780 study participants have been enrolled and 20,957 web-based study activities have been completed using this informatics platform. Over 95% of respondents to an end-user satisfaction survey felt that the informatics platform was successful almost always or most of the time. The EPGP informatics platform has successfully and effectively allowed study management and efficient and reliable collection of phenotypic data. Our novel informatics platform met the requirements of a large, multicenter research project. The platform has had a high level of end-user acceptance by principal investigators and study coordinators, and can serve as a model for new tools to support future large scale, collaborative research projects collecting extensive phenotypic data. Copyright © 2012

  8. Ethical challenges and innovations in the dissemination of genomic data: the experience of the PERSPECTIVE project

    Directory of Open Access Journals (Sweden)

    Lévesque E

    2015-08-01

    Full Text Available Emmanuelle Lévesque,1 Bartha Maria Knoppers,1 Jacques Simard,2 1Department of Human Genetics, Centre for Genomics and Policy, McGill University, Montréal, 2Genomics Centre, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec City, QC, Canada Abstract: The importance of making genomic data available for future research is now widely recognized among the scientific community and policymakers. In this era of shared responsibility for data dissemination, improved patient care through research depends on the development of powerful and secure data-sharing systems. As part of the concerted effort to share research resources, the project entitled Personalized Risk Stratification for Prevention and Early Detection of Breast Cancer (PERSPECTIVE makes effective data sharing through the development of a data-sharing framework, one of its goals. The secondary uses of data from PERSPECTIVE for future research promise to enhance our knowledge of breast cancer etiologies without duplicating data-gathering efforts. Despite its benefit for research, we recognize the ethical challenges of data sharing on the local, national, and international levels. The effective management of ethical approvals for projects spanning across jurisdictions, the return of results to research participants, and research incentives and recognition for data production, are but a few pressing issues that need to be properly addressed. We discuss how we managed these issues and suggest how ongoing innovations might help to facilitate data sharing in future genomic research projects. Keywords: data sharing, research ethics, cancer

  9. Ethical considerations of research policy for personal genome analysis: the approach of the Genome Science Project in Japan.

    Science.gov (United States)

    Minari, Jusaku; Shirai, Tetsuya; Kato, Kazuto

    2014-12-01

    As evidenced by high-throughput sequencers, genomic technologies have recently undergone radical advances. These technologies enable comprehensive sequencing of personal genomes considerably more efficiently and less expensively than heretofore. These developments present a challenge to the conventional framework of biomedical ethics; under these changing circumstances, each research project has to develop a pragmatic research policy. Based on the experience with a new large-scale project-the Genome Science Project-this article presents a novel approach to conducting a specific policy for personal genome research in the Japanese context. In creating an original informed-consent form template for the project, we present a two-tiered process: making the draft of the template following an analysis of national and international policies; refining the draft template in conjunction with genome project researchers for practical application. Through practical use of the template, we have gained valuable experience in addressing challenges in the ethical review process, such as the importance of sharing details of the latest developments in genomics with members of research ethics committees. We discuss certain limitations of the conventional concept of informed consent and its governance system and suggest the potential of an alternative process using information technology.

  10. Genomic signatures of diet-related shifts during human origins.

    Science.gov (United States)

    Babbitt, Courtney C; Warner, Lisa R; Fedrigo, Olivier; Wall, Christine E; Wray, Gregory A

    2011-04-07

    There are numerous anthropological analyses concerning the importance of diet during human evolution. Diet is thought to have had a profound influence on the human phenotype, and dietary differences have been hypothesized to contribute to the dramatic morphological changes seen in modern humans as compared with non-human primates. Here, we attempt to integrate the results of new genomic studies within this well-developed anthropological context. We then review the current evidence for adaptation related to diet, both at the level of sequence changes and gene expression. Finally, we propose some ways in which new technologies can help identify specific genomic adaptations that have resulted in metabolic and morphological differences between humans and non-human primates.

  11. Natural selection and the distribution of identity-by-descent in the human genome

    DEFF Research Database (Denmark)

    Albrechtsen, Anders; Moltke, Ida; Nielsen, Rasmus

    2010-01-01

    There has recently been considerable interest in detecting natural selection in the human genome. Selection will usually tend to increase identity-by-descent (IBD) among individuals in a population, and many methods for detecting recent and ongoing positive selection indirectly take advantage...... of this. In this article we show that excess IBD sharing is a general property of natural selection and we show that this fact makes it possible to detect several types of selection including a type that is otherwise difficult to detect: selection acting on standing genetic variation. Motivated by this......, we use a recently developed method for identifying IBD sharing among individuals from genome-wide data to scan populations from the new HapMap phase 3 project for regions with excess IBD sharing in order to identify regions in the human genome that have been under strong, very recent selection...

  12. 78 FR 68856 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-11-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Nakamura, Ph.D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research...-402-0838. [[Page 68857

  13. Enabling a Community to Dissect an Organism: Overview of the Neurospora Functional Genomics Project

    OpenAIRE

    Dunlap, Jay C.; Borkovich, Katherine A.; Henn, Matthew R.; Turner, Gloria E.; Sachs, Matthew S.; Glass, N. Louise; McCluskey, Kevin; Plamann, Michael; Galagan, James E.; Birren, Bruce W.; Weiss, Richard L.; Townsend, Jeffrey P.; Loros, Jennifer J.; Nelson, Mary Anne; Lambreghts, Randy

    2007-01-01

    A consortium of investigators is engaged in a functional genomics project centered on the filamentous fungus Neurospora, with an eye to opening up the functional genomic analysis of all the filamentous fungi. The overall goal of the four interdependent projects in this effort is to acccomplish functional genomics, annotation, and expression analyses of Neurospora crassa, a filamentous fungus that is an established model for the assemblage of over 250,000 species of nonyeast fungi. Building fr...

  14. Continued colonization of the human genome by mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Miria Ricchetti

    2004-09-01

    Full Text Available Integration of mitochondrial DNA fragments into nuclear chromosomes (giving rise to nuclear DNA sequences of mitochondrial origin, or NUMTs is an ongoing process that shapes nuclear genomes. In yeast this process depends on double-strand-break repair. Since NUMTs lack amplification and specific integration mechanisms, they represent the prototype of exogenous insertions in the nucleus. From sequence analysis of the genome of Homo sapiens, followed by sampling humans from different ethnic backgrounds, and chimpanzees, we have identified 27 NUMTs that are specific to humans and must have colonized human chromosomes in the last 4-6 million years. Thus, we measured the fixation rate of NUMTs in the human genome. Six such NUMTs show insertion polymorphism and provide a useful set of DNA markers for human population genetics. We also found that during recent human evolution, Chromosomes 18 and Y have been more susceptible to colonization by NUMTs. Surprisingly, 23 out of 27 human-specific NUMTs are inserted in known or predicted genes, mainly in introns. Some individuals carry a NUMT insertion in a tumor-suppressor gene and in a putative angiogenesis inhibitor. Therefore in humans, but not in yeast, NUMT integrations preferentially target coding or regulatory sequences. This is indeed the case for novel insertions associated with human diseases and those driven by environmental insults. We thus propose a mutagenic phenomenon that may be responsible for a variety of genetic diseases in humans and suggest that genetic or environmental factors that increase the frequency of chromosome breaks provide the impetus for the continued colonization of the human genome by mitochondrial DNA.

  15. Microbial genome-wide association studies: lessons from human GWAS.

    Science.gov (United States)

    Power, Robert A; Parkhill, Julian; de Oliveira, Tulio

    2017-01-01

    The reduced costs of sequencing have led to whole-genome sequences for a large number of microorganisms, enabling the application of microbial genome-wide association studies (GWAS). Given the successes of human GWAS in understanding disease aetiology and identifying potential drug targets, microbial GWAS are likely to further advance our understanding of infectious diseases. These advances include insights into pressing global health problems, such as antibiotic resistance and disease transmission. In this Review, we outline the methodologies of GWAS, the current state of the field of microbial GWAS, and how lessons from human GWAS can direct the future of the field.

  16. Illuminating the Druggable Genome (IDG)

    Data.gov (United States)

    Federal Laboratory Consortium — Results from the Human Genome Project revealed that the human genome contains 20,000 to 25,000 genes. A gene contains (encodes) the information that each cell uses...

  17. Characterization of noncoding regulatory DNA in the human genome.

    Science.gov (United States)

    Elkon, Ran; Agami, Reuven

    2017-08-08

    Genetic variants associated with common diseases are usually located in noncoding parts of the human genome. Delineation of the full repertoire of functional noncoding elements, together with efficient methods for probing their biological roles, is therefore of crucial importance. Over the past decade, DNA accessibility and various epigenetic modifications have been associated with regulatory functions. Mapping these features across the genome has enabled researchers to begin to document the full complement of putative regulatory elements. High-throughput reporter assays to probe the functions of regulatory regions have also been developed but these methods separate putative regulatory elements from the chromosome so that any effects of chromatin context and long-range regulatory interactions are lost. Definitive assignment of function(s) to putative cis-regulatory elements requires perturbation of these elements. Genome-editing technologies are now transforming our ability to perturb regulatory elements across entire genomes. Interpretation of high-throughput genetic screens that incorporate genome editors might enable the construction of an unbiased map of functional noncoding elements in the human genome.

  18. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata

    Science.gov (United States)

    Liolios, Konstantinos; Chen, I-Min A.; Mavromatis, Konstantinos; Tavernarakis, Nektarios; Hugenholtz, Philip; Markowitz, Victor M.; Kyrpides, Nikos C.

    2010-01-01

    The Genomes On Line Database (GOLD) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2009, GOLD contains information for more than 5800 sequencing projects, of which 1100 have been completed and their sequence data deposited in a public repository. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about a (Meta)Genome Sequence (MIGS/MIMS) specification. GOLD is available at: http://www.genomesonline.org and has a mirror site at the Institute of Molecular Biology and Biotechnology, Crete, Greece, at: http://gold.imbb.forth.gr/ PMID:19914934

  19. The zebrafish reference genome sequence and its relationship to the human genome

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D.; Torroja, Carlos F.; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E.; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C.; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T.; Guerra-Assunção, José A.; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F.; Laird, Gavin K.; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M.; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Carter, Nigel P.; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M. J.; Enright, Anton; Geisler, Robert; Plasterk, Ronald H. A.; Lee, Charles; Westerfield, Monte; de Jong, Pieter J.; Zon, Leonard I.; Postlethwait, John H.; Nüsslein-Volhard, Christiane; Hubbard, Tim J. P.; Crollius, Hugues Roest; Rogers, Jane; Stemple, Derek L.

    2013-01-01

    Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination. PMID:23594743

  20. The zebrafish reference genome sequence and its relationship to the human genome.

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D; Torroja, Carlos F; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T; Guerra-Assunção, José A; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F; Laird, Gavin K; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Elliot, David; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Begum, Sharmin; Mortimore, Beverley; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Lloyd, Christine; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James D; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Lanz, Christa; Raddatz, Günter; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Schuster, Stephan C; Carter, Nigel P; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M J; Enright, Anton; Geisler, Robert; Plasterk, Ronald H A; Lee, Charles; Westerfield, Monte; de Jong, Pieter J; Zon, Leonard I; Postlethwait, John H; Nüsslein-Volhard, Christiane; Hubbard, Tim J P; Roest Crollius, Hugues; Rogers, Jane; Stemple, Derek L

    2013-04-25

    Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.

  1. Bat biology, genomes, and the Bat1K project

    DEFF Research Database (Denmark)

    Teeling, Emma C; Vernes, Sonja C; Dávalos, Liliana M

    2018-01-01

    and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n∼1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any...

  2. Rhipicephalus microplus strain Deutsch, whole genome shotgun sequencing project Version 2

    Science.gov (United States)

    The cattle tick, Rhipicephalus (Boophilus) microplus, has a genome over 2.4 times the size of the human genome, and with over 70% of repetitive DNA, this genome would prove very costly to sequence at today's prices and difficult to assemble and analyze. Cot filtration/selection techniques were used ...

  3. Characterize Human Forward Contamination Project

    Science.gov (United States)

    Rucker, Michelle

    2015-01-01

    Let's face it: wherever we go, we will inevitably carry along the little critters that live in and on us. Conventional wisdom has long held that it's unlikely those critters could survive the space environment, but in 2007 microscopic animals called Tardigrades survived exposure to space and in 2008 Cyanobacteria lived for 548 days outside the International Space Station (ISS). But what about the organisms we might reasonably expect a crewed spacecraft to leak or vent? Do we even know what they are? How long might our tiny hitch-hikers survive in close proximity to a warm spacecraft that periodically leaks/vents water or oxygen-and how might they mutate with long-duration exposure? Unlike the Mars rovers that we cleaned once and sent on their way, crew members will provide a constantly regenerating contaminant source. Are we prepared to certify that we can meet forward contamination protocols as we search for life at new destinations? This project has four technical objectives: 1. TEST: Develop a test plan to leverage existing equipment (i.e. ISS) to characterize the kinds of organisms we can reasonably expect pressurized, crewed volumes to vent or leak overboard; as part of testing, we'll need to develop an Extravehicular Activity (EVA)-compatible tool that can withstand the pressure and temperature extremes of space, as well as collect, separate, and store multiple samples; 2. ANALYSIS: Develop an analysis plan to study those organisms in relevant destination environments, including spacecraft-induced conditions; 3. MODEL: Develop a modeling plan to model organism transport mechanisms in relevant destination environments; 4. SHARE: Develop a plan to disseminate findings and integrate recommendations into exploration requirements & ops. In short, we propose a system engineering approach to roadmap the necessary experiments, analysis, and modeling up front--rather than try to knit together disparate chunks of data into a sensible conclusion after the fact.

  4. A map of recent positive selection in the human genome.

    Directory of Open Access Journals (Sweden)

    Benjamin F Voight

    2006-03-01

    Full Text Available The identification of signals of very recent positive selection provides information about the adaptation of modern humans to local conditions. We report here on a genome-wide scan for signals of very recent positive selection in favor of variants that have not yet reached fixation. We describe a new analytical method for scanning single nucleotide polymorphism (SNP data for signals of recent selection, and apply this to data from the International HapMap Project. In all three continental groups we find widespread signals of recent positive selection. Most signals are region-specific, though a significant excess are shared across groups. Contrary to some earlier low resolution studies that suggested a paucity of recent selection in sub-Saharan Africans, we find that by some measures our strongest signals of selection are from the Yoruba population. Finally, since these signals indicate the existence of genetic variants that have substantially different fitnesses, they must indicate loci that are the source of significant phenotypic variation. Though the relevant phenotypes are generally not known, such loci should be of particular interest in mapping studies of complex traits. For this purpose we have developed a set of SNPs that can be used to tag the strongest approximately 250 signals of recent selection in each population.

  5. Genomics and the Ark: an ecocentric perspective on human history.

    Science.gov (United States)

    Zwart, Hub; Penders, Bart

    2011-01-01

    Views of ourselves in relationship to the rest of the biosphere are changing. Theocentric and anthropocentric perspectives are giving way to more ecocentric views on the history, present, and future of humankind. Novel sciences, such as genomics, have deepened and broadened our understanding of the process of anthropogenesis, the coming into being of humans. Genomics suggests that early human history must be regarded as a complex narrative of evolving ecosystems, in which human evolution both influenced and was influenced by the evolution of companion species. During the agricultural revolution, human beings designed small-scale artificial ecosystems or evolutionary "Arks," in which networks of plants, animals, and microorganisms coevolved. Currently, our attitude towards this process seems subject to a paradoxical reversal. The boundaries of the Ark have dramatically broadened, and genomics is not only being used to increase our understanding of our ecological past, but may also help us to conserve, reconstruct, or even revivify species and ecosystems to whose degradation or (near) extinction we have contributed. This article explores the role of genomics in the elaboration of a more ecocentric view of ourselves with the help of two examples, namely the renaissance of Paleolithic diets and of Pleistocene parks. It argues that an understanding of the world in ecocentric terms requires new partnerships and mutually beneficial forms of collaboration and convergence between life sciences, social sciences, and the humanities.

  6. Forces shaping the fastest evolving regions in the human genome.

    Directory of Open Access Journals (Sweden)

    Katherine S Pollard

    2006-10-01

    Full Text Available Comparative genomics allow us to search the human genome for segments that were extensively changed in the last approximately 5 million years since divergence from our common ancestor with chimpanzee, but are highly conserved in other species and thus are likely to be functional. We found 202 genomic elements that are highly conserved in vertebrates but show evidence of significantly accelerated substitution rates in human. These are mostly in non-coding DNA, often near genes associated with transcription and DNA binding. Resequencing confirmed that the five most accelerated elements are dramatically changed in human but not in other primates, with seven times more substitutions in human than in chimp. The accelerated elements, and in particular the top five, show a strong bias for adenine and thymine to guanine and cytosine nucleotide changes and are disproportionately located in high recombination and high guanine and cytosine content environments near telomeres, suggesting either biased gene conversion or isochore selection. In addition, there is some evidence of directional selection in the regions containing the two most accelerated regions. A combination of evolutionary forces has contributed to accelerated evolution of the fastest evolving elements in the human genome.

  7. The "most wanted" taxa from the human microbiome for whole genome sequencing.

    Directory of Open Access Journals (Sweden)

    Anthony A Fodor

    Full Text Available The goal of the Human Microbiome Project (HMP is to generate a comprehensive catalog of human-associated microorganisms including reference genomes representing the most common species. Toward this goal, the HMP has characterized the microbial communities at 18 body habitats in a cohort of over 200 healthy volunteers using 16S rRNA gene (16S sequencing and has generated nearly 1,000 reference genomes from human-associated microorganisms. To determine how well current reference genome collections capture the diversity observed among the healthy microbiome and to guide isolation and future sequencing of microbiome members, we compared the HMP's 16S data sets to several reference 16S collections to create a 'most wanted' list of taxa for sequencing. Our analysis revealed that the diversity of commonly occurring taxa within the HMP cohort microbiome is relatively modest, few novel taxa are represented by these OTUs and many common taxa among HMP volunteers recur across different populations of healthy humans. Taken together, these results suggest that it should be possible to perform whole-genome sequencing on a large fraction of the human microbiome, including the 'most wanted', and that these sequences should serve to support microbiome studies across multiple cohorts. Also, in stark contrast to other taxa, the 'most wanted' organisms are poorly represented among culture collections suggesting that novel culture- and single-cell-based methods will be required to isolate these organisms for sequencing.

  8. Data mining and the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Abarbanel, Henry [The MITRE Corporation, McLean, VA (US). JASON Program Office; Callan, Curtis [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dally, William [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, Freeman [The MITRE Corporation, McLean, VA (US). JASON Program Office; Hwa, Terence [The MITRE Corporation, McLean, VA (US). JASON Program Office; Koonin, Steven [The MITRE Corporation, McLean, VA (US). JASON Program Office; Levine, Herbert [The MITRE Corporation, McLean, VA (US). JASON Program Office; Rothaus, Oscar [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, Roy [The MITRE Corporation, McLean, VA (US). JASON Program Office; Stubbs, Christopher [The MITRE Corporation, McLean, VA (US). JASON Program Office; Weinberger, Peter [The MITRE Corporation, McLean, VA (US). JASON Program Office

    2000-01-07

    As genomics research moves from an era of data acquisition to one of both acquisition and interpretation, new methods are required for organizing and prioritizing the data. These methods would allow an initial level of data analysis to be carried out before committing resources to a particular genetic locus. This JASON study sought to delineate the main problems that must be faced in bioinformatics and to identify information technologies that can help to overcome those problems. While the current influx of data greatly exceeds what biologists have experienced in the past, other scientific disciplines and the commercial sector have been handling much larger datasets for many years. Powerful datamining techniques have been developed in other fields that, with appropriate modification, could be applied to the biological sciences.

  9. Exploring Other Genomes: Bacteria.

    Science.gov (United States)

    Flannery, Maura C.

    2001-01-01

    Points out the importance of genomes other than the human genome project and provides information on the identified bacterial genomes Pseudomonas aeuroginosa, Leprosy, Cholera, Meningitis, Tuberculosis, Bubonic Plague, and plant pathogens. Considers the computer's use in genome studies. (Contains 14 references.) (YDS)

  10. Non-genomic effects of vitamin D in human spermatozoa

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Dissing, Steen

    2012-01-01

    The spectrum for vitamin D (VD) mediated effects has expanded in recent years. Activated VD (1,25(OH)(2)D(3)) binds to the VD receptor (VDR) and mediates non-genomic effects through the alternative ligand binding-pocket (VDR-ap) or regulates gene transcription through the genomic binding......-pocket. VDR and VD-metabolizing enzymes are expressed in human testis, male reproductive tract and mature spermatozoa, and VD is considered important for male reproduction. Expression of the VD-inactivating enzyme CYP24A1 at the annulus of human spermatozoa distinguish normal and infertile men with high...... specificity, and CYP24A1 expression is positively correlated with all semen variables and suggested as a marker for both semen quality and VD responsiveness. Moreover, spermatozoa are transcriptionally silent and are therefore a unique model to study non-genomic effects. 1,25(OH)(2)D(3) induced a rapid...

  11. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation

    Directory of Open Access Journals (Sweden)

    Anubhav Jain

    2013-07-01

    Full Text Available Accelerating the discovery of advanced materials is essential for human welfare and sustainable, clean energy. In this paper, we introduce the Materials Project (www.materialsproject.org, a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials. This open dataset can be accessed through multiple channels for both interactive exploration and data mining. The Materials Project also seeks to create open-source platforms for developing robust, sophisticated materials analyses. Future efforts will enable users to perform ‘‘rapid-prototyping’’ of new materials in silico, and provide researchers with new avenues for cost-effective, data-driven materials design.

  12. The longest (A+T) and (G+C) blocks in the human and other genomes

    Czech Academy of Sciences Publication Activity Database

    Hrabcová, Iva; Kypr, Jaroslav

    2008-01-01

    Roč. 25, č. 4 (2008), s. 337-345 ISSN 0739-1102 R&D Projects: GA AV ČR(CZ) IAA1004201; GA ČR(CZ) GA202/07/0094 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : genomes * human * chimp Subject RIV: BO - Biophysics Impact factor: 1.289, year: 2008

  13. Evolutionary forces shaping genomic islands of population differentiation in humans

    Directory of Open Access Journals (Sweden)

    Hofer Tamara

    2012-03-01

    Full Text Available Abstract Background Levels of differentiation among populations depend both on demographic and selective factors: genetic drift and local adaptation increase population differentiation, which is eroded by gene flow and balancing selection. We describe here the genomic distribution and the properties of genomic regions with unusually high and low levels of population differentiation in humans to assess the influence of selective and neutral processes on human genetic structure. Methods Individual SNPs of the Human Genome Diversity Panel (HGDP showing significantly high or low levels of population differentiation were detected under a hierarchical-island model (HIM. A Hidden Markov Model allowed us to detect genomic regions or islands of high or low population differentiation. Results Under the HIM, only 1.5% of all SNPs are significant at the 1% level, but their genomic spatial distribution is significantly non-random. We find evidence that local adaptation shaped high-differentiation islands, as they are enriched for non-synonymous SNPs and overlap with previously identified candidate regions for positive selection. Moreover there is a negative relationship between the size of islands and recombination rate, which is stronger for islands overlapping with genes. Gene ontology analysis supports the role of diet as a major selective pressure in those highly differentiated islands. Low-differentiation islands are also enriched for non-synonymous SNPs, and contain an overly high proportion of genes belonging to the 'Oncogenesis' biological process. Conclusions Even though selection seems to be acting in shaping islands of high population differentiation, neutral demographic processes might have promoted the appearance of some genomic islands since i as much as 20% of islands are in non-genic regions ii these non-genic islands are on average two times shorter than genic islands, suggesting a more rapid erosion by recombination, and iii most loci are

  14. Insights into Modern Human Prehistory Using Ancient Genomes.

    Science.gov (United States)

    Yang, Melinda A; Fu, Qiaomei

    2018-03-01

    The genetic relationship of past modern humans to today's populations and each other was largely unknown until recently, when advances in ancient DNA sequencing allowed for unprecedented analysis of the genomes of these early people. These ancient genomes reveal new insights into human prehistory not always observed studying present-day populations, including greater details on the genetic diversity, population structure, and gene flow that characterized past human populations, particularly in early Eurasia, as well as increased insight on the relationship between archaic and modern humans. Here, we review genetic studies on ∼45000- to 7500-year-old individuals associated with mainly preagricultural cultures found in Eurasia, the Americas, and Africa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Comparison of phasing strategies for whole human genomes.

    Science.gov (United States)

    Choi, Yongwook; Chan, Agnes P; Kirkness, Ewen; Telenti, Amalio; Schork, Nicholas J

    2018-04-01

    Humans are a diploid species that inherit one set of chromosomes paternally and one homologous set of chromosomes maternally. Unfortunately, most human sequencing initiatives ignore this fact in that they do not directly delineate the nucleotide content of the maternal and paternal copies of the 23 chromosomes individuals possess (i.e., they do not 'phase' the genome) often because of the costs and complexities of doing so. We compared 11 different widely-used approaches to phasing human genomes using the publicly available 'Genome-In-A-Bottle' (GIAB) phased version of the NA12878 genome as a gold standard. The phasing strategies we compared included laboratory-based assays that prepare DNA in unique ways to facilitate phasing as well as purely computational approaches that seek to reconstruct phase information from general sequencing reads and constructs or population-level haplotype frequency information obtained through a reference panel of haplotypes. To assess the performance of the 11 approaches, we used metrics that included, among others, switch error rates, haplotype block lengths, the proportion of fully phase-resolved genes, phasing accuracy and yield between pairs of SNVs. Our comparisons suggest that a hybrid or combined approach that leverages: 1. population-based phasing using the SHAPEIT software suite, 2. either genome-wide sequencing read data or parental genotypes, and 3. a large reference panel of variant and haplotype frequencies, provides a fast and efficient way to produce highly accurate phase-resolved individual human genomes. We found that for population-based approaches, phasing performance is enhanced with the addition of genome-wide read data; e.g., whole genome shotgun and/or RNA sequencing reads. Further, we found that the inclusion of parental genotype data within a population-based phasing strategy can provide as much as a ten-fold reduction in phasing errors. We also considered a majority voting scheme for the construction of a

  16. Human genome program report. Part 2, 1996 research abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  17. Human genome program report. Part 1, overview and progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  18. The human genome; you gain some, you lose some

    NARCIS (Netherlands)

    Kriek, Marjolein

    2007-01-01

    Copy number variations (CNVs) in the human genome are inherent in both evolutionary progression as well as the etiology of disease. The introduction of this thesis will review CNVs that appear to be neutral as well as CNVs that appear to be related to a phenotypic trait. This will be followed by a

  19. Genome-wide linkage analysis for human longevity

    DEFF Research Database (Denmark)

    Beekman, Marian; Blanché, Hélène; Perola, Markus

    2013-01-01

    Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian...

  20. Templated sequence insertion polymorphisms in the human genome

    Science.gov (United States)

    Onozawa, Masahiro; Aplan, Peter

    2016-11-01

    Templated Sequence Insertion Polymorphism (TSIP) is a recently described form of polymorphism recognized in the human genome, in which a sequence that is templated from a distant genomic region is inserted into the genome, seemingly at random. TSIPs can be grouped into two classes based on nucleotide sequence features at the insertion junctions; Class 1 TSIPs show features of insertions that are mediated via the LINE-1 ORF2 protein, including 1) target-site duplication (TSD), 2) polyadenylation 10-30 nucleotides downstream of a “cryptic” polyadenylation signal, and 3) preference for insertion at a 5’-TTTT/A-3’ sequence. In contrast, class 2 TSIPs show features consistent with repair of a DNA double-strand break via insertion of a DNA “patch” that is derived from a distant genomic region. Survey of a large number of normal human volunteers demonstrates that most individuals have 25-30 TSIPs, and that these TSIPs track with specific geographic regions. Similar to other forms of human polymorphism, we suspect that these TSIPs may be important for the generation of human diversity and genetic diseases.

  1. Genome Sequence of Novel Human Parechovirus Type 17

    OpenAIRE

    B?ttcher, Sindy; Obermeier, Patrick E.; Diedrich, Sabine; Kabor?, Yolande; D?Alfonso, Rossella; Pfister, Herbert; Kaiser, Rolf; Di Cristanziano, Veronica

    2017-01-01

    ABSTRACT Human parechoviruses (HPeV) circulate worldwide, causing a broad variety of symptoms, preferentially in early childhood. We report here the nearly complete genome sequence of a novel HPeV type, consisting of 7,062 nucleotides and encoding 2,179?amino acids. M36/CI/2014 was taxonomically classified as HPeV-17 by the picornavirus study group.

  2. Identification of endogenous retroviral reading frames in the human genome

    Directory of Open Access Journals (Sweden)

    Wiuf Carsten

    2004-10-01

    Full Text Available Abstract Background Human endogenous retroviruses (HERVs comprise a large class of repetitive retroelements. Most HERVs are ancient and invaded our genome at least 25 million years ago, except for the evolutionary young HERV-K group. The far majority of the encoded genes are degenerate due to mutational decay and only a few non-HERV-K loci are known to retain intact reading frames. Additional intact HERV genes may exist, since retroviral reading frames have not been systematically annotated on a genome-wide scale. Results By clustering of hits from multiple BLAST searches using known retroviral sequences we have mapped 1.1% of the human genome as retrovirus related. The coding potential of all identified HERV regions were analyzed by annotating viral open reading frames (vORFs and we report 7836 loci as verified by protein homology criteria. Among 59 intact or almost-intact viral polyproteins scattered around the human genome we have found 29 envelope genes including two novel gammaretroviral types. One encodes a protein similar to a recently discovered zebrafish retrovirus (ZFERV while another shows partial, C-terminal, homology to Syncytin (HERV-W/FRD. Conclusions This compilation of HERV sequences and their coding potential provide a useful tool for pursuing functional analysis such as RNA expression profiling and effects of viral proteins, which may, in turn, reveal a role for HERVs in human health and disease. All data are publicly available through a database at http://www.retrosearch.dk.

  3. 76 FR 66076 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-10-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: October 19...

  4. 77 FR 60706 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-10-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special.... Nakamura, Ph.D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research...

  5. 76 FR 19780 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-04-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program No. 93.172, Human Genome Research, National Institutes of...

  6. 76 FR 3917 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-01-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9306, Rockville, MD...

  7. 75 FR 56115 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-09-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS...

  8. 77 FR 2735 - National Human Genome Research Institute; Notice of Meetings

    Science.gov (United States)

    2012-01-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... personal privacy. Name of Committee: National Advisory Council for Human Genome Research. Date: February 13... Extramural Research National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9305...

  9. 76 FR 3643 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-01-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  10. 78 FR 24223 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-04-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial...: To review and evaluate grant applications. Place: National Human Genome Research Institute, 3rd floor...

  11. 77 FR 2304 - National Human Genome Research Institute; Notice of Meeting

    Science.gov (United States)

    2012-01-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome....S.C. 281(d)(4)), notice is hereby given that the National Human Genome Research Institute (NHGRI... meeting of the National Advisory Council for Human Genome Research. Background materials on the proposed...

  12. 78 FR 21382 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-04-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... applications. Place: National Human Genome Research Institute, Suite 4076, 5635 Fisher's Lane, Bethesda, MD..., National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4075...

  13. 78 FR 20933 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-04-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... review and evaluate grant applications. Place: National Human Genome Research Institute, Room 3055, 5635...

  14. 76 FR 22112 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-04-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special....nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  15. 78 FR 31953 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-05-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... review and evaluate grant applications. Place: National Human Genome Research Institute, 3rd Floor...

  16. 75 FR 10488 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2010-03-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research...- 4280, [email protected]gov . Name of Committee: National Human Genome Research Institute Special...

  17. 76 FR 35224 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-06-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome...). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIR, National Human Genome Research..., [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  18. 77 FR 64816 - National Human Genome Research Institute; Notice of Meeting

    Science.gov (United States)

    2012-10-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute. The meeting will be open to the public as indicated below, with... invasion of personal privacy. Name of Committee: Board of Scientific Counselors, National Human Genome...

  19. 75 FR 8373 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-02-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  20. 75 FR 2147 - National Human Genome Research Institute; Notice of Meetings

    Science.gov (United States)

    2010-01-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Council for Human Genome Research. The meetings will be open to the public as indicated below, with... Extramural Research, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9305...

  1. 77 FR 22332 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-04-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special.... Agenda: To review and evaluate grant applications. Place: National Human Genome Research Institute, 5635...

  2. 76 FR 65204 - National Human Genome Research Institute; Notice of Meeting

    Science.gov (United States)

    2011-10-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute. The meeting will be open to the public as indicated below, with... invasion of personal privacy. Name of Committee: Board of Scientific Counselors, National Human Genome...

  3. 76 FR 22407 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-04-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special.... (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  4. 77 FR 8268 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-02-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... applications. Place: National Human Genome Research Institute, 5635 Fisher's Lane, Room 4076, Rockville, MD..., CIDR, National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite...

  5. 75 FR 48977 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-08-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome.... Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research..., [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  6. 77 FR 74676 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-12-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4075, Bethesda.... 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: December 11, 2012. David...

  7. 75 FR 19984 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2010-04-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4075... Nakamura, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome Research...

  8. 75 FR 26762 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-05-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  9. 75 FR 44800 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-07-29

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... for Human Genome Research. The meeting will be closed to the public in accordance with the provisions... Committee: National Advisory Council for Human Genome Research. Date: August 18, 2010. Time: 1 p.m. to 3 p.m...

  10. 75 FR 35821 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  11. 76 FR 3642 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2011-01-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research....nih.gov . Name of Committee: National Human Genome Research Institute Special Emphasis Panel eMERGE...

  12. 78 FR 47715 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-08-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  13. 77 FR 31863 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-05-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special..., Human Genome Research, National Institutes of Health, HHS) Dated: May 22, 2012. Jennifer S. Spaeth...

  14. 75 FR 52537 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-08-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial....nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  15. 78 FR 61851 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-10-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... a.m. to 4:00 p.m. Agenda: To review and evaluate grant applications. Place: National Human Genome...

  16. 76 FR 79199 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-12-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome.... Contact Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research..., [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  17. 75 FR 80509 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-12-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: December 16...

  18. 76 FR 28056 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2011-05-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... D. Nakamura, PhD, Scientific Review Officer, Office of Scientific Review, National Human Genome...

  19. 75 FR 2148 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-01-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial....nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  20. 76 FR 66731 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-10-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: October 21, 2011...

  1. 76 FR 10909 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-02-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4076, MSC..., Human Genome Research, National Institutes of Health, HHS). Dated: February 18, 2011. Jennifer S. Spaeth...

  2. 75 FR 52538 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-08-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Person: Ken D. Nakamura, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome...

  3. 76 FR 35223 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-06-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Person: Rudy O. Pozzatti, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome...

  4. 76 FR 36930 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-06-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special..., Human Genome Research, National Institutes of Health, HHS) Dated: June 17, 2011. Jennifer S. Spaeth...

  5. 77 FR 35991 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-06-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4075, Bethesda.... 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: June 8, 2012. Jennifer S...

  6. 77 FR 61770 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-10-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) [[Page 61771...

  7. 76 FR 63932 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-10-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: October 7...

  8. 75 FR 8977 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-02-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4076, MSC..., Human Genome Research, National Institutes of Health, HHS) Dated: February 18, 2010. Jennifer Spaeth...

  9. 78 FR 66752 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2013-11-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... National Human Genome Research Institute Special Emphasis Panel, October 15, 2013, 01:00 p.m. to October 15, 2013, 02:30 p.m., National Human Genome Research Institute, 5635 Fishers Lane, Suite 3055, Rockville...

  10. 75 FR 32957 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... funding cycle. (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  11. 78 FR 14806 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-03-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... p.m. Agenda: To review and evaluate grant applications. Place: National Human Genome Research...

  12. 75 FR 53703 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-09-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635.... (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  13. 75 FR 51828 - National Human Genome Research Institute; Notice of Meetings

    Science.gov (United States)

    2010-08-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... personal privacy. Name of Committee: National Advisory Council for Human Genome Research. Date: February 7... Research, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9305, Bethesda, MD...

  14. 75 FR 60467 - National Human Genome Research Institute; Notice of Meeting

    Science.gov (United States)

    2010-09-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute. The meeting will be open to the public as indicated below, with... invasion of personal privacy. Name of Committee: Board of Scientific Counselors, National Human Genome...

  15. 75 FR 67380 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-11-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane.... (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  16. Human Cancer Models Initiative | Office of Cancer Genomics

    Science.gov (United States)

    The Human Cancer Models Initiative (HCMI) is an international consortium that is generating novel human tumor-derived culture models, which are annotated with genomic and clinical data. In an effort to advance cancer research and more fully understand how in vitro findings are related to clinical biology, HCMI-developed models and related data will be available as a community resource for cancer research.

  17. The Significance of UNESCO’s Universal Declaration on the Human Genome & Human Rights

    Directory of Open Access Journals (Sweden)

    Shawn H.E. Harmon

    2005-03-01

    Full Text Available Modern medical research, particularly genetic research, is changing the nature of medicine. Concerns surrounding these changes and their potential negative impact on human rights led UNESCO to spearhead collaboration by experts in the creation of an international instrument intended to provide guidance for the promotion of bioethics and the protection of human rights in the genetic context. The result was the Universal Declaration of the Human Genome and Human Rights. This article briefly highlights the scientific and social setting into which the Declaration was injected. This is followed by a consideration of the drafting body (the IBC so as to assess whether UNESCO was the appropriate body to lead this project. The process by which the Declaration was created is also considered so as to assess whether it represents an example of ethical and democratic drafting. Finally, the substantive content of the Declaration is considered and measured against the pre-existing regime so as to assess whether it represents an intelligible and coherent response to the concerns raised capable of offering guidance now and into the future. By assessing these procedural and substantive matters, one can draw some tentative conclusions about the utility and significance of the Declaration.

  18. The Saudi Human Genome Program: An oasis in the desert of Arab medicine is providing clues to genetic disease.

    Science.gov (United States)

    Project Team, Saudi Genome

    2015-01-01

    Oil wells, endless deserts, stifling heat, masses of pilgrims, and wealthy-looking urban areas still dominate the widespread mental image of Saudi Arabia. Currently, this image is being extended to include a recent endeavor that is reserving a global share in the limelight as one of the top ten genomics projects currently underway: the Saudi Human Genome Program (SHGP). With sound funding, dedicated resources, and national determination, the SHGP targets the sequencing of 100,000 human genomes over the next five years to conduct world-class genomics-based biomedical research in the Saudi population. Why this project was conceived and thought to be feasible, what is the ultimate target, and how it operates are the questions we answer in this article.

  19. The Complete Sequence of a Human Parainfluenzavirus 4 Genome

    Science.gov (United States)

    Yea, Carmen; Cheung, Rose; Collins, Carol; Adachi, Dena; Nishikawa, John; Tellier, Raymond

    2009-01-01

    Although the human parainfluenza virus 4 (HPIV4) has been known for a long time, its genome, alone among the human paramyxoviruses, has not been completely sequenced to date. In this study we obtained the first complete genomic sequence of HPIV4 from a clinical isolate named SKPIV4 obtained at the Hospital for Sick Children in Toronto (Ontario, Canada). The coding regions for the N, P/V, M, F and HN proteins show very high identities (95% to 97%) with previously available partial sequences for HPIV4B. The sequence for the L protein and the non-coding regions represent new information. A surprising feature of the genome is its length, more than 17 kb, making it the longest genome within the genus Rubulavirus, although the length is well within the known range of 15 kb to 19 kb for the subfamily Paramyxovirinae. The availability of a complete genomic sequence will facilitate investigations on a respiratory virus that is still not completely characterized. PMID:21994536

  20. The Complete Sequence of a Human Parainfluenzavirus 4 Genome

    Directory of Open Access Journals (Sweden)

    Carmen Yea

    2009-06-01

    Full Text Available Although the human parainfluenza virus 4 (HPIV4 has been known for a long time, its genome, alone among the human paramyxoviruses, has not been completely sequenced to date. In this study we obtained the first complete genomic sequence of HPIV4 from a clinical isolate named SKPIV4 obtained at the Hospital for Sick Children in Toronto (Ontario, Canada. The coding regions for the N, P/V, M, F and HN proteins show very high identities (95% to 97% with previously available partial sequences for HPIV4B. The sequence for the L protein and the non-coding regions represent new information. A surprising feature of the genome is its length, more than 17 kb, making it the longest genome within the genus Rubulavirus, although the length is well within the known range of 15 kb to 19 kb for the subfamily Paramyxovirinae. The availability of a complete genomic sequence will facilitate investigations on a respiratory virus that is still not completely characterized.

  1. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research.

    Science.gov (United States)

    Chaterji, Somali; Ahn, Eun Hyun; Kim, Deok-Ho

    2017-01-01

    The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic.

  2. The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata

    Science.gov (United States)

    Pagani, Ioanna; Liolios, Konstantinos; Jansson, Jakob; Chen, I-Min A.; Smirnova, Tatyana; Nosrat, Bahador; Markowitz, Victor M.; Kyrpides, Nikos C.

    2012-01-01

    The Genomes OnLine Database (GOLD, http://www.genomesonline.org/) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2011, GOLD, now on version 4.0, contains information for 11 472 sequencing projects, of which 2907 have been completed and their sequence data has been deposited in a public repository. Out of these complete projects, 1918 are finished and 989 are permanent drafts. Moreover, GOLD contains information for 340 metagenome studies associated with 1927 metagenome samples. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about any (x) Sequence specification and beyond. PMID:22135293

  3. Rhipicephalus (Boophilus) microplus strain Deutsch, whole genome shotgun sequencing project first submission of genome sequence

    Science.gov (United States)

    The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence difficult. Cot filtration/selection techniques were used to reduce the repetitive fraction of the tick genome and enrich for the fraction of DNA with gene-containing regions. The Cot-selected ...

  4. Think Big! The Human Condition Project

    Science.gov (United States)

    Metcalfe, Gareth

    2014-01-01

    How can educators provide children with a genuine experience of carrying out an extended scientific investigation? And can teachers change the perception of what it means to be a scientist? These were key questions that lay behind "The Human Condition" project, an initiative funded by the Primary Science Teaching Trust to explore a new…

  5. Rare and common regulatory variation in population-scale sequenced human genomes.

    Directory of Open Access Journals (Sweden)

    Stephen B Montgomery

    2011-07-01

    Full Text Available Population-scale genome sequencing allows the characterization of functional effects of a broad spectrum of genetic variants underlying human phenotypic variation. Here, we investigate the influence of rare and common genetic variants on gene expression patterns, using variants identified from sequencing data from the 1000 genomes project in an African and European population sample and gene expression data from lymphoblastoid cell lines. We detect comparable numbers of expression quantitative trait loci (eQTLs when compared to genotypes obtained from HapMap 3, but as many as 80% of the top expression quantitative trait variants (eQTVs discovered from 1000 genomes data are novel. The properties of the newly discovered variants suggest that mapping common causal regulatory variants is challenging even with full resequencing data; however, we observe significant enrichment of regulatory effects in splice-site and nonsense variants. Using RNA sequencing data, we show that 46.2% of nonsynonymous variants are differentially expressed in at least one individual in our sample, creating widespread potential for interactions between functional protein-coding and regulatory variants. We also use allele-specific expression to identify putative rare causal regulatory variants. Furthermore, we demonstrate that outlier expression values can be due to rare variant effects, and we approximate the number of such effects harboured in an individual by effect size. Our results demonstrate that integration of genomic and RNA sequencing analyses allows for the joint assessment of genome sequence and genome function.

  6. Space Mission Human Reliability Analysis (HRA) Project

    Science.gov (United States)

    Boyer, Roger

    2014-01-01

    The purpose of the Space Mission Human Reliability Analysis (HRA) Project is to extend current ground-based HRA risk prediction techniques to a long-duration, space-based tool. Ground-based HRA methodology has been shown to be a reasonable tool for short-duration space missions, such as Space Shuttle and lunar fly-bys. However, longer-duration deep-space missions, such as asteroid and Mars missions, will require the crew to be in space for as long as 400 to 900 day missions with periods of extended autonomy and self-sufficiency. Current indications show higher risk due to fatigue, physiological effects due to extended low gravity environments, and others, may impact HRA predictions. For this project, Safety & Mission Assurance (S&MA) will work with Human Health & Performance (HH&P) to establish what is currently used to assess human reliabiilty for human space programs, identify human performance factors that may be sensitive to long duration space flight, collect available historical data, and update current tools to account for performance shaping factors believed to be important to such missions. This effort will also contribute data to the Human Performance Data Repository and influence the Space Human Factors Engineering research risks and gaps (part of the HRP Program). An accurate risk predictor mitigates Loss of Crew (LOC) and Loss of Mission (LOM).The end result will be an updated HRA model that can effectively predict risk on long-duration missions.

  7. Getting Ready for the Human Phenome Project

    DEFF Research Database (Denmark)

    Oetting, William S; Robinson, Peter N; Greenblatt, Marc S

    2013-01-01

    A forum of the Human Variome Project (HVP) was held as a satellite to the 2012 Annual Meeting of the American Society of Human Genetics in San Francisco, California. The theme of this meeting was "Getting Ready for the Human Phenome Project". Understanding the genetic contribution to both rare si...... for studies attempting to identify novel disease genes or causative genetic variants. Improved systems and tools that enhance the collection of phenotype data from clinicians are urgently needed. This meeting begins the HVP's effort towards this important goal....... the impact of genetic variation on disease. To this end, there needs to be a greater sharing of phenotype and genotype data. For this to occur, the many databases that currently exist will need to become interoperable to allow for the combining of cohorts with similar phenotypes to increase statistical power...

  8. Genomic variation landscape of the human gut microbiome

    DEFF Research Database (Denmark)

    Schloissnig, Siegfried; Arumugam, Manimozhiyan; Sunagawa, Shinichi

    2013-01-01

    Whereas large-scale efforts have rapidly advanced the understanding and practical impact of human genomic variation, the practical impact of variation is largely unexplored in the human microbiome. We therefore developed a framework for metagenomic variation analysis and applied it to 252 faecal...... polymorphism rates of 0.11 was more variable between gut microbial species than across human hosts. Subjects sampled at varying time intervals exhibited individuality and temporal stability of SNP variation patterns, despite considerable composition changes of their gut microbiota. This indicates...

  9. Genomic characterization of large heterochromatic gaps in the human genome assembly.

    Directory of Open Access Journals (Sweden)

    Nicolas Altemose

    2014-05-01

    Full Text Available The largest gaps in the human genome assembly correspond to multi-megabase heterochromatic regions composed primarily of two related families of tandem repeats, Human Satellites 2 and 3 (HSat2,3. The abundance of repetitive DNA in these regions challenges standard mapping and assembly algorithms, and as a result, the sequence composition and potential biological functions of these regions remain largely unexplored. Furthermore, existing genomic tools designed to predict consensus-based descriptions of repeat families cannot be readily applied to complex satellite repeats such as HSat2,3, which lack a consistent repeat unit reference sequence. Here we present an alignment-free method to characterize complex satellites using whole-genome shotgun read datasets. Utilizing this approach, we classify HSat2,3 sequences into fourteen subfamilies and predict their chromosomal distributions, resulting in a comprehensive satellite reference database to further enable genomic studies of heterochromatic regions. We also identify 1.3 Mb of non-repetitive sequence interspersed with HSat2,3 across 17 unmapped assembly scaffolds, including eight annotated gene predictions. Finally, we apply our satellite reference database to high-throughput sequence data from 396 males to estimate array size variation of the predominant HSat3 array on the Y chromosome, confirming that satellite array sizes can vary between individuals over an order of magnitude (7 to 98 Mb and further demonstrating that array sizes are distributed differently within distinct Y haplogroups. In summary, we present a novel framework for generating initial reference databases for unassembled genomic regions enriched with complex satellite DNA, and we further demonstrate the utility of these reference databases for studying patterns of sequence variation within human populations.

  10. Genome-wide survey in African Americans demonstrates potential epistasis of fitness in the human genome.

    Science.gov (United States)

    Wang, Heming; Choi, Yoonha; Tayo, Bamidele; Wang, Xuefeng; Morris, Nathan; Zhang, Xiang; Broeckel, Uli; Hanis, Craig; Kardia, Sharon; Redline, Susan; Cooper, Richard S; Tang, Hua; Zhu, Xiaofeng

    2017-02-01

    The role played by epistasis between alleles at unlinked loci in shaping population fitness has been debated for many years and the existing evidence has been mainly accumulated from model organisms. In model organisms, fitness epistasis can be systematically inferred by detecting nonindependence of genotypic values between loci in a population and confirmed through examining the number of offspring produced in two-locus genotype groups. No systematic study has been conducted to detect epistasis of fitness in humans owing to experimental constraints. In this study, we developed a novel method to detect fitness epistasis by testing the correlation between local ancestries on different chromosomes in an admixed population. We inferred local ancestry across the genome in 16,252 unrelated African Americans and systematically examined the pairwise correlations between the genomic regions on different chromosomes. Our analysis revealed a pair of genomic regions on chromosomes 4 and 6 that show significant local ancestry correlation (P-value = 4.01 × 10 -8 ) that can be potentially attributed to fitness epistasis. However, we also observed substantial local ancestry correlation that cannot be explained by systemic ancestry inference bias. To our knowledge, this study is the first to systematically examine evidence of fitness epistasis across the human genome. © 2016 WILEY PERIODICALS, INC.

  11. Matching phenotypes to whole genomes: Lessons learned from four iterations of the personal genome project community challenges.

    Science.gov (United States)

    Cai, Binghuang; Li, Biao; Kiga, Nikki; Thusberg, Janita; Bergquist, Timothy; Chen, Yun-Ching; Niknafs, Noushin; Carter, Hannah; Tokheim, Collin; Beleva-Guthrie, Violeta; Douville, Christopher; Bhattacharya, Rohit; Yeo, Hui Ting Grace; Fan, Jean; Sengupta, Sohini; Kim, Dewey; Cline, Melissa; Turner, Tychele; Diekhans, Mark; Zaucha, Jan; Pal, Lipika R; Cao, Chen; Yu, Chen-Hsin; Yin, Yizhou; Carraro, Marco; Giollo, Manuel; Ferrari, Carlo; Leonardi, Emanuela; Tosatto, Silvio C E; Bobe, Jason; Ball, Madeleine; Hoskins, Roger A; Repo, Susanna; Church, George; Brenner, Steven E; Moult, John; Gough, Julian; Stanke, Mario; Karchin, Rachel; Mooney, Sean D

    2017-09-01

    The advent of next-generation sequencing has dramatically decreased the cost for whole-genome sequencing and increased the viability for its application in research and clinical care. The Personal Genome Project (PGP) provides unrestricted access to genomes of individuals and their associated phenotypes. This resource enabled the Critical Assessment of Genome Interpretation (CAGI) to create a community challenge to assess the bioinformatics community's ability to predict traits from whole genomes. In the CAGI PGP challenge, researchers were asked to predict whether an individual had a particular trait or profile based on their whole genome. Several approaches were used to assess submissions, including ROC AUC (area under receiver operating characteristic curve), probability rankings, the number of correct predictions, and statistical significance simulations. Overall, we found that prediction of individual traits is difficult, relying on a strong knowledge of trait frequency within the general population, whereas matching genomes to trait profiles relies heavily upon a small number of common traits including ancestry, blood type, and eye color. When a rare genetic disorder is present, profiles can be matched when one or more pathogenic variants are identified. Prediction accuracy has improved substantially over the last 6 years due to improved methodology and a better understanding of features. © 2017 Wiley Periodicals, Inc.

  12. The pig genome project has plenty to squeal about.

    Science.gov (United States)

    Fan, B; Gorbach, D M; Rothschild, M F

    2011-01-01

    Significant progress on pig genetics and genomics research has been witnessed in recent years due to the integration of advanced molecular biology techniques, bioinformatics and computational biology, and the collaborative efforts of researchers in the swine genomics community. Progress on expanding the linkage map has slowed down, but the efforts have created a higher-resolution physical map integrating the clone map and BAC end sequence. The number of QTL mapped is still growing and most of the updated QTL mapping results are available through PigQTLdb. Additionally, expression studies using high-throughput microarrays and other gene expression techniques have made significant advancements. The number of identified non-coding RNAs is rapidly increasing and their exact regulatory functions are being explored. A publishable draft (build 10) of the swine genome sequence was available for the pig genomics community by the end of December 2010. Build 9 of the porcine genome is currently available with Ensembl annotation; manual annotation is ongoing. These drafts provide useful tools for such endeavors as comparative genomics and SNP scans for fine QTL mapping. A recent community-wide effort to create a 60K porcine SNP chip has greatly facilitated whole-genome association analyses, haplotype block construction and linkage disequilibrium mapping, which can contribute to whole-genome selection. The future 'systems biology' that integrates and optimizes the information from all research levels can enhance the pig community's understanding of the full complexity of the porcine genome. These recent technological advances and where they may lead are reviewed. Copyright © 2011 S. Karger AG, Basel.

  13. Human genomic disease variants: a neutral evolutionary explanation.

    Science.gov (United States)

    Dudley, Joel T; Kim, Yuseob; Liu, Li; Markov, Glenn J; Gerold, Kristyn; Chen, Rong; Butte, Atul J; Kumar, Sudhir

    2012-08-01

    Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease.

  14. Multi-scale structural community organisation of the human genome.

    Science.gov (United States)

    Boulos, Rasha E; Tremblay, Nicolas; Arneodo, Alain; Borgnat, Pierre; Audit, Benjamin

    2017-04-11

    Structural interaction frequency matrices between all genome loci are now experimentally achievable thanks to high-throughput chromosome conformation capture technologies. This ensues a new methodological challenge for computational biology which consists in objectively extracting from these data the structural motifs characteristic of genome organisation. We deployed the fast multi-scale community mining algorithm based on spectral graph wavelets to characterise the networks of intra-chromosomal interactions in human cell lines. We observed that there exist structural domains of all sizes up to chromosome length and demonstrated that the set of structural communities forms a hierarchy of chromosome segments. Hence, at all scales, chromosome folding predominantly involves interactions between neighbouring sites rather than the formation of links between distant loci. Multi-scale structural decomposition of human chromosomes provides an original framework to question structural organisation and its relationship to functional regulation across the scales. By construction the proposed methodology is independent of the precise assembly of the reference genome and is thus directly applicable to genomes whose assembly is not fully determined.

  15. The noncoding human genome and the future of personalised medicine.

    Science.gov (United States)

    Cowie, Philip; Hay, Elizabeth A; MacKenzie, Alasdair

    2015-01-30

    Non-coding cis-regulatory sequences act as the 'eyes' of the genome and their role is to perceive, organise and relay cellular communication information to RNA polymerase II at gene promoters. The evolution of these sequences, that include enhancers, silencers, insulators and promoters, has progressed in multicellular organisms to the extent that cis-regulatory sequences make up as much as 10% of the human genome. Parallel evidence suggests that 75% of polymorphisms associated with heritable disease occur within predicted cis-regulatory sequences that effectively alter the 'perception' of cis-regulatory sequences or render them blind to cell communication cues. Cis-regulatory sequences also act as major functional targets of epigenetic modification thus representing an important conduit through which changes in DNA-methylation affects disease susceptibility. The objectives of the current review are (1) to describe what has been learned about identifying and characterising cis-regulatory sequences since the sequencing of the human genome; (2) to discuss their role in interpreting cell signalling pathways pathways; and (3) outline how this role may be altered by polymorphisms and epigenetic changes. We argue that the importance of the cis-regulatory genome for the interpretation of cellular communication pathways cannot be overstated and understanding its role in health and disease will be critical for the future development of personalised medicine.

  16. The mobile genetic element Alu in the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Novick, G.E. [Florida International Univ., Miami, FL (United States); Batzer, M.A.; Deininger, P.L. [Louisiana State Univ. Medical Center, New Orleans, LA (United States)] [and others

    1996-01-01

    Genetic material has been traditionally envisioned as relatively static with the exception of occasional, often deleterious mutations. The sequence DNA-to-RNA-to-protein represented for many years the central dogma relating gene structure and function. Recently, the field of molecular genetics has provided revolutionary information on the dynamic role of repetitive elements in the function of the genetic material and the evolution of humans and other organisms. Alu sequences represent the largest family of short interspersed repetitive elements (SINEs) in humans, being present in an excess of 500,000 copies per haploid genome. Alu elements, as well as the other repetitive elements, were once considered to be useless. Today, the biology of Alu transposable elements is being widely examined in order to determine the molecular basis of a growing number of identified diseases and to provide new directions in genome mapping and biomedical research. 66 refs., 5 figs.

  17. Targets of balancing selection in the human genome

    DEFF Research Database (Denmark)

    Andrés, Aida M; Hubisz, Melissa J; Indap, Amit

    2009-01-01

    Balancing selection is potentially an important biological force for maintaining advantageous genetic diversity in populations, including variation that is responsible for long-term adaptation to the environment. By serving as a means to maintain genetic variation, it may be particularly relevant...... to maintaining phenotypic variation in natural populations. Nevertheless, its prevalence and specific targets in the human genome remain largely unknown. We have analyzed the patterns of diversity and divergence of 13,400 genes in two human populations using an unbiased single-nucleotide polymorphism data set......, a genome-wide approach, and a method that incorporates demography in neutrality tests. We identified an unbiased catalog of genes with signatures of long-term balancing selection, which includes immunity genes as well as genes encoding keratins and membrane channels; the catalog also shows enrichment...

  18. A human genome-wide library of local phylogeny predictions for whole-genome inference problems

    Directory of Open Access Journals (Sweden)

    Schwartz Russell

    2008-08-01

    Full Text Available Abstract Background Many common inference problems in computational genetics depend on inferring aspects of the evolutionary history of a data set given a set of observed modern sequences. Detailed predictions of the full phylogenies are therefore of value in improving our ability to make further inferences about population history and sources of genetic variation. Making phylogenetic predictions on the scale needed for whole-genome analysis is, however, extremely computationally demanding. Results In order to facilitate phylogeny-based predictions on a genomic scale, we develop a library of maximum parsimony phylogenies within local regions spanning all autosomal human chromosomes based on Haplotype Map variation data. We demonstrate the utility of this library for population genetic inferences by examining a tree statistic we call 'imperfection,' which measures the reuse of variant sites within a phylogeny. This statistic is significantly predictive of recombination rate, shows additional regional and population-specific conservation, and allows us to identify outlier genes likely to have experienced unusual amounts of variation in recent human history. Conclusion Recent theoretical advances in algorithms for phylogenetic tree reconstruction have made it possible to perform large-scale inferences of local maximum parsimony phylogenies from single nucleotide polymorphism (SNP data. As results from the imperfection statistic demonstrate, phylogeny predictions encode substantial information useful for detecting genomic features and population history. This data set should serve as a platform for many kinds of inferences one may wish to make about human population history and genetic variation.

  19. The analysis of APOL1 genetic variation and haplotype diversity provided by 1000 Genomes project.

    Science.gov (United States)

    Peng, Ting; Wang, Li; Li, Guisen

    2017-08-11

    The APOL1 gene variants has been shown to be associated with an increased risk of multiple kinds of diseases, particularly in African Americans, but not in Caucasians and Asians. In this study, we explored the single nucleotide polymorphism (SNP) and haplotype diversity of APOL1 gene in different races provided by 1000 Genomes project. Variants of APOL1 gene in 1000 Genome Project were obtained and SNPs located in the regulatory region or coding region were selected for genetic variation analysis. Total 2504 individuals from 26 populations were classified as four groups that included Africa, Europe, Asia and Admixed populations. Tag SNPs were selected to evaluate the haplotype diversities in the four populations by HaploStats software. APOL1 gene was surrounded by some of the most polymorphic genes in the human genome, variation of APOL1 gene was common, with up to 613 SNP (1000 Genome Project reported) and 99 of them (16.2%) with MAF ≥ 1%. There were 79 SNPs in the URR and 92 SNPs in 3'UTR. Total 12 SNPs in URR and 24 SNPs in 3'UTR were considered as common variants with MAF ≥ 1%. It is worth noting that URR-1 was presents lower frequencies in European populations, while other three haplotypes taken an opposite pattern; 3'UTR presents several high-frequency variation sites in a short segment, and the differences of its haplotypes among different population were significant (P < 0.01), UTR-1 and UTR-5 presented much higher frequency in African population, while UTR-2, UTR-3 and UTR-4 were much lower. APOL1 coding region showed that two SNP of G1 with higher frequency are actually pull down the haplotype H-1 frequency when considering all populations pooled together, and the diversity among the four populations be widen by the G1 two mutation (P 1  = 3.33E-4 vs P 2  = 3.61E-30). The distributions of APOL1 gene variants and haplotypes were significantly different among the different populations, in either regulatory or coding regions. It could provide

  20. Widespread of horizontal gene transfer in the human genome

    OpenAIRE

    Huang, Wenze; Tsai, Lillian; Li, Yulong; Hua, Nan; Sun, Chen; Wei, Chaochun

    2017-01-01

    Background A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. Results From the pa...

  1. Linkage Disequilibrium between STRPs and SNPs across the Human Genome

    OpenAIRE

    Payseur, Bret A.; Place, Michael; Weber, James L.

    2008-01-01

    Patterns of linkage disequilibrium (LD) reveal the action of evolutionary processes and provide crucial information for association mapping of disease genes. Although recent studies have described the landscape of LD among single nucleotide polymorphisms (SNPs) from across the human genome, associations involving other classes of molecular variation remain poorly understood. In addition to recombination and population history, mutation rate and process are expected to shape LD. To test this i...

  2. Linkage disequilibrium between STRPs and SNPs across the human genome.

    Science.gov (United States)

    Payseur, Bret A; Place, Michael; Weber, James L

    2008-05-01

    Patterns of linkage disequilibrium (LD) reveal the action of evolutionary processes and provide crucial information for association mapping of disease genes. Although recent studies have described the landscape of LD among single nucleotide polymorphisms (SNPs) from across the human genome, associations involving other classes of molecular variation remain poorly understood. In addition to recombination and population history, mutation rate and process are expected to shape LD. To test this idea, we measured associations between short-tandem-repeat polymorphisms (STRPs), which can mutate rapidly and recurrently, and SNPs in 721 regions across the human genome. We directly compared STRP-SNP LD with SNP-SNP LD from the same genomic regions in the human HapMap populations. The intensity of STRP-SNP LD, measured by the average of D', was reduced, consistent with the action of recurrent mutation. Nevertheless, a higher fraction of STRP-SNP pairs than SNP-SNP pairs showed significant LD, on both short (up to 50 kb) and long (cM) scales. These results reveal the substantial effects of mutational processes on LD at STRPs and provide important measures of the potential of STRPs for association mapping of disease genes.

  3. The genomic signature of human rhinoviruses A, B and C.

    Directory of Open Access Journals (Sweden)

    Spyridon Megremis

    Full Text Available Human rhinoviruses are single stranded positive sense RNA viruses that are presented in more than 50% of acute upper respiratory tract infections. Despite extensive studies on the genetic diversity of the virus, little is known about the forces driving it. In order to explain this diversity, many research groups have focused on protein sequence requirements for viable, functional and transmissible virus but have missed out an important aspect of viral evolution such as the genomic ontology of the virus. This study presents for the first time the genomic signature of 111 fully sequenced HRV strains from all three groups HRV-A, HRV-B and HRV-C. We observed an HRV genome tendency to eliminate CpG and UpA dinucleotides, coupling with over-representation of UpG and CpA. We propose a specific mechanism which describes how rapid changes in the HRV genomic sequence can take place under the strict control of conservation of the polypeptide backbone. Moreover, the distribution of the observed under- and over-represented dinucleotides along the HRV genome is presented. Distance matrice tables based on CpG and UpA odds ratios were constructed and viewed as heatmaps and distance trees. None of the suppressions can be attributed to codon usage or in RNA secondary structure requirements. Since viral recognition is dependent on RNA motifs rich in CpG and UpA, it is possible that the overall described genome evolution mechanism acts in order to protect the virus from host recognition.

  4. De novo assembly of a haplotype-resolved human genome

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Wu, Honglong; Luo, Ruibang

    2015-01-01

    The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-...

  5. Experimental annotation of the human genome using microarray technology.

    Science.gov (United States)

    Shoemaker, D D; Schadt, E E; Armour, C D; He, Y D; Garrett-Engele, P; McDonagh, P D; Loerch, P M; Leonardson, A; Lum, P Y; Cavet, G; Wu, L F; Altschuler, S J; Edwards, S; King, J; Tsang, J S; Schimmack, G; Schelter, J M; Koch, J; Ziman, M; Marton, M J; Li, B; Cundiff, P; Ward, T; Castle, J; Krolewski, M; Meyer, M R; Mao, M; Burchard, J; Kidd, M J; Dai, H; Phillips, J W; Linsley, P S; Stoughton, R; Scherer, S; Boguski, M S

    2001-02-15

    The most important product of the sequencing of a genome is a complete, accurate catalogue of genes and their products, primarily messenger RNA transcripts and their cognate proteins. Such a catalogue cannot be constructed by computational annotation alone; it requires experimental validation on a genome scale. Using 'exon' and 'tiling' arrays fabricated by ink-jet oligonucleotide synthesis, we devised an experimental approach to validate and refine computational gene predictions and define full-length transcripts on the basis of co-regulated expression of their exons. These methods can provide more accurate gene numbers and allow the detection of mRNA splice variants and identification of the tissue- and disease-specific conditions under which genes are expressed. We apply our technique to chromosome 22q under 69 experimental condition pairs, and to the entire human genome under two experimental conditions. We discuss implications for more comprehensive, consistent and reliable genome annotation, more efficient, full-length complementary DNA cloning strategies and application to complex diseases.

  6. Chromatin structure and evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Dunlop Malcolm G

    2007-05-01

    Full Text Available Abstract Background Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time. Results In this study we have shown that, paradoxically, synonymous site divergence (dS at non-CpG sites is highest in regions of open chromatin, primarily as a result of an increased number of transitions, while the rates of other traditional measures of mutation (intergenic, intronic and ancient repeat divergence as well as SNP density are highest in closed regions of the genome. Analysis of human-chimpanzee divergence across intron-exon boundaries indicates that although genes in relatively open chromatin generally display little selection at their synonymous sites, those in closed regions show markedly lower divergence at their fourfold degenerate sites than in neighbouring introns and intergenic regions. Exclusion of known Exonic Splice Enhancer hexamers has little affect on the divergence observed at fourfold degenerate sites across chromatin categories; however, we show that closed chromatin is enriched with certain classes of ncRNA genes whose RNA secondary structure may be particularly important. Conclusion We conclude that, overall, non-CpG mutation rates are lowest in open regions of the genome and that regions of the genome with a closed chromatin structure have the highest background mutation rate. This might reflect lower rates of DNA damage or enhanced DNA repair processes in regions of open chromatin. Our results also indicate that dS is a poor

  7. A map of human genome variation from population-scale sequencing.

    Science.gov (United States)

    Abecasis, Gonçalo R; Altshuler, David; Auton, Adam; Brooks, Lisa D; Durbin, Richard M; Gibbs, Richard A; Hurles, Matt E; McVean, Gil A

    2010-10-28

    The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.

  8. Human genome sequencing with direct x-ray holographic imaging

    International Nuclear Information System (INIS)

    Rhodes, C.K.

    1993-01-01

    Direct holographic imaging of biological materials is widely applicable to the study of the structure, properties and action of genetic material. This particular application involves the sequencing of the human genome where prospective genomic imaging technology is composed of three subtechnologies, name an x-ray holographic camera, suitable chemistry and enzymology for the preparation of tagged DNA samples, and the illuminator in the form of an x-ray laser. We report appropriate x-ray camera, embodied by the instrument developed by MCR, is available and that suitable chemical and enzymatic procedures exist for the preparation of the necessary tagged DNA strands. Concerning the future development of the x-ray illuminator. We find that a practical small scale x-ray light source is indeed feasible. This outcome requires the use of unconventional physical processes in order to achieve the necessary power-compression in the amplifying medium. The understanding of these new physical mechanisms is developing rapidly. Importantly, although the x-ray source does not currently exist, the understanding of these new physical mechanisms is developing rapidly and the research has established the basic scaling laws that will determine the properties of the x-ray illuminator. When this x-ray source becomes available, an extremely rapid and cost effective instrument for 3-D imaging of biological materials can be applied to a wide range of biological structural assays, including the base-pair sequencing of the human genome and many questions regarding its higher levels of organization

  9. A framework for annotating human genome in disease context.

    Science.gov (United States)

    Xu, Wei; Wang, Huisong; Cheng, Wenqing; Fu, Dong; Xia, Tian; Kibbe, Warren A; Lin, Simon M

    2012-01-01

    Identification of gene-disease association is crucial to understanding disease mechanism. A rapid increase in biomedical literatures, led by advances of genome-scale technologies, poses challenge for manually-curated-based annotation databases to characterize gene-disease associations effectively and timely. We propose an automatic method-The Disease Ontology Annotation Framework (DOAF) to provide a comprehensive annotation of the human genome using the computable Disease Ontology (DO), the NCBO Annotator service and NCBI Gene Reference Into Function (GeneRIF). DOAF can keep the resulting knowledgebase current by periodically executing automatic pipeline to re-annotate the human genome using the latest DO and GeneRIF releases at any frequency such as daily or monthly. Further, DOAF provides a computable and programmable environment which enables large-scale and integrative analysis by working with external analytic software or online service platforms. A user-friendly web interface (doa.nubic.northwestern.edu) is implemented to allow users to efficiently query, download, and view disease annotations and the underlying evidences.

  10. Genomic sequencing in clinical trials

    OpenAIRE

    Mestan, Karen K; Ilkhanoff, Leonard; Mouli, Samdeep; Lin, Simon

    2011-01-01

    Abstract Human genome sequencing is the process by which the exact order of nucleic acid base pairs in the 24 human chromosomes is determined. Since the completion of the Human Genome Project in 2003, genomic sequencing is rapidly becoming a major part of our translational research efforts to understand and improve human health and disease. This article reviews the current and future directions of clinical research with respect to genomic sequencing, a technology that is just beginning to fin...

  11. The mouse-human anatomy ontology mapping project.

    Science.gov (United States)

    Hayamizu, Terry F; de Coronado, Sherri; Fragoso, Gilberto; Sioutos, Nicholas; Kadin, James A; Ringwald, Martin

    2012-01-01

    The overall objective of the Mouse-Human Anatomy Project (MHAP) was to facilitate the mapping and harmonization of anatomical terms used for mouse and human models by Mouse Genome Informatics (MGI) and the National Cancer Institute (NCI). The anatomy resources designated for this study were the Adult Mouse Anatomy (MA) ontology and the set of anatomy concepts contained in the NCI Thesaurus (NCIt). Several methods and software tools were identified and evaluated, then used to conduct an in-depth comparative analysis of the anatomy ontologies. Matches between mouse and human anatomy terms were determined and validated, resulting in a highly curated set of mappings between the two ontologies that has been used by other resources. These mappings will enable linking of data from mouse and human. As the anatomy ontologies have been expanded and refined, the mappings have been updated accordingly. Insights are presented into the overall process of comparing and mapping between ontologies, which may prove useful for further comparative analyses and ontology mapping efforts, especially those involving anatomy ontologies. Finally, issues concerning further development of the ontologies, updates to the mapping files, and possible additional applications and significance were considered. DATABASE URL: http://obofoundry.org/cgi-bin/detail.cgi?id=ma2ncit.

  12. Human Ageing Genomic Resources: new and updated databases

    Science.gov (United States)

    Tacutu, Robi; Thornton, Daniel; Johnson, Emily; Budovsky, Arie; Barardo, Diogo; Craig, Thomas; Diana, Eugene; Lehmann, Gilad; Toren, Dmitri; Wang, Jingwei; Fraifeld, Vadim E

    2018-01-01

    Abstract In spite of a growing body of research and data, human ageing remains a poorly understood process. Over 10 years ago we developed the Human Ageing Genomic Resources (HAGR), a collection of databases and tools for studying the biology and genetics of ageing. Here, we present HAGR’s main functionalities, highlighting new additions and improvements. HAGR consists of six core databases: (i) the GenAge database of ageing-related genes, in turn composed of a dataset of >300 human ageing-related genes and a dataset with >2000 genes associated with ageing or longevity in model organisms; (ii) the AnAge database of animal ageing and longevity, featuring >4000 species; (iii) the GenDR database with >200 genes associated with the life-extending effects of dietary restriction; (iv) the LongevityMap database of human genetic association studies of longevity with >500 entries; (v) the DrugAge database with >400 ageing or longevity-associated drugs or compounds; (vi) the CellAge database with >200 genes associated with cell senescence. All our databases are manually curated by experts and regularly updated to ensure a high quality data. Cross-links across our databases and to external resources help researchers locate and integrate relevant information. HAGR is freely available online (http://genomics.senescence.info/). PMID:29121237

  13. MALINA: a web service for visual analytics of human gut microbiota whole-genome metagenomic reads.

    Science.gov (United States)

    Tyakht, Alexander V; Popenko, Anna S; Belenikin, Maxim S; Altukhov, Ilya A; Pavlenko, Alexander V; Kostryukova, Elena S; Selezneva, Oksana V; Larin, Andrei K; Karpova, Irina Y; Alexeev, Dmitry G

    2012-12-07

    MALINA is a web service for bioinformatic analysis of whole-genome metagenomic data obtained from human gut microbiota sequencing. As input data, it accepts metagenomic reads of various sequencing technologies, including long reads (such as Sanger and 454 sequencing) and next-generation (including SOLiD and Illumina). It is the first metagenomic web service that is capable of processing SOLiD color-space reads, to authors' knowledge. The web service allows phylogenetic and functional profiling of metagenomic samples using coverage depth resulting from the alignment of the reads to the catalogue of reference sequences which are built into the pipeline and contain prevalent microbial genomes and genes of human gut microbiota. The obtained metagenomic composition vectors are processed by the statistical analysis and visualization module containing methods for clustering, dimension reduction and group comparison. Additionally, the MALINA database includes vectors of bacterial and functional composition for human gut microbiota samples from a large number of existing studies allowing their comparative analysis together with user samples, namely datasets from Russian Metagenome project, MetaHIT and Human Microbiome Project (downloaded from http://hmpdacc.org). MALINA is made freely available on the web at http://malina.metagenome.ru. The website is implemented in JavaScript (using Ext JS), Microsoft .NET Framework, MS SQL, Python, with all major browsers supported.

  14. Initiating a Human Variome Project Country Node.

    Science.gov (United States)

    AlAama, Jumana; Smith, Timothy D; Lo, Alan; Howard, Heather; Kline, Alexandria A; Lange, Matthew; Kaput, Jim; Cotton, Richard G H

    2011-05-01

    Genetic diseases are a pressing global health problem that requires comprehensive access to basic clinical and genetic data to counter. The creation of regional and international databases that can be easily accessed by clinicians and diagnostic labs will greatly improve our ability to accurately diagnose and treat patients with genetic disorders. The Human Variome Project is currently working in conjunction with human genetics societies to achieve this by establishing systems to collect every mutation reported by a diagnostic laboratory, clinic, or research laboratory in a country and store these within a national repository, or HVP Country Node. Nodes have already been initiated in Australia, Belgium, China, Egypt, Malaysia, and Kuwait. Each is examining how to systematically collect and share genetic, clinical, and biochemical information in a country-specific manner that is sensitive to local ethical and cultural issues. This article gathers cases of genetic data collection within countries and takes recommendations from the global community to develop a procedure for countries wishing to establish their own collection system as part of the Human Variome Project. We hope this may lead to standard practices to facilitate global collection of data and allow efficient use in clinical practice, research and therapy. © 2011 Wiley-Liss, Inc.

  15. GenPlay Multi-Genome, a tool to compare and analyze multiple human genomes in a graphical interface.

    Science.gov (United States)

    Lajugie, Julien; Fourel, Nicolas; Bouhassira, Eric E

    2015-01-01

    Parallel visualization of multiple individual human genomes is a complex endeavor that is rapidly gaining importance with the increasing number of personal, phased and cancer genomes that are being generated. It requires the display of variants such as SNPs, indels and structural variants that are unique to specific genomes and the introduction of multiple overlapping gaps in the reference sequence. Here, we describe GenPlay Multi-Genome, an application specifically written to visualize and analyze multiple human genomes in parallel. GenPlay Multi-Genome is ideally suited for the comparison of allele-specific expression and functional genomic data obtained from multiple phased genomes in a graphical interface with access to multiple-track operation. It also allows the analysis of data that have been aligned to custom genomes rather than to a standard reference and can be used as a variant calling format file browser and as a tool to compare different genome assembly, such as hg19 and hg38. GenPlay is available under the GNU public license (GPL-3) from http://genplay.einstein.yu.edu. The source code is available at https://github.com/JulienLajugie/GenPlay. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Predicting human height by Victorian and genomic methods.

    Science.gov (United States)

    Aulchenko, Yurii S; Struchalin, Maksim V; Belonogova, Nadezhda M; Axenovich, Tatiana I; Weedon, Michael N; Hofman, Albert; Uitterlinden, Andre G; Kayser, Manfred; Oostra, Ben A; van Duijn, Cornelia M; Janssens, A Cecile J W; Borodin, Pavel M

    2009-08-01

    In the Victorian era, Sir Francis Galton showed that 'when dealing with the transmission of stature from parents to children, the average height of the two parents, ... is all we need care to know about them' (1886). One hundred and twenty-two years after Galton's work was published, 54 loci showing strong statistical evidence for association to human height were described, providing us with potential genomic means of human height prediction. In a population-based study of 5748 people, we find that a 54-loci genomic profile explained 4-6% of the sex- and age-adjusted height variance, and had limited ability to discriminate tall/short people, as characterized by the area under the receiver-operating characteristic curve (AUC). In a family-based study of 550 people, with both parents having height measurements, we find that the Galtonian mid-parental prediction method explained 40% of the sex- and age-adjusted height variance, and showed high discriminative accuracy. We have also explored how much variance a genomic profile should explain to reach certain AUC values. For highly heritable traits such as height, we conclude that in applications in which parental phenotypic information is available (eg, medicine), the Victorian Galton's method will long stay unsurpassed, in terms of both discriminative accuracy and costs. For less heritable traits, and in situations in which parental information is not available (eg, forensics), genomic methods may provide an alternative, given that the variants determining an essential proportion of the trait's variation can be identified.

  17. Mi-DISCOVERER: A bioinformatics tool for the detection of mi-RNA in human genome.

    Science.gov (United States)

    Arshad, Saadia; Mumtaz, Asia; Ahmad, Freed; Liaquat, Sadia; Nadeem, Shahid; Mehboob, Shahid; Afzal, Muhammad

    2010-11-27

    MicroRNAs (miRNAs) are 22 nucleotides non-coding RNAs that play pivotal regulatory roles in diverse organisms including the humans and are difficult to be identified due to lack of either sequence features or robust algorithms to efficiently identify. Therefore, we made a tool that is Mi-Discoverer for the detection of miRNAs in human genome. The tools used for the development of software are Microsoft Office Access 2003, the JDK version 1.6.0, BioJava version 1.0, and the NetBeans IDE version 6.0. All already made miRNAs softwares were web based; so the advantage of our project was to make a desktop facility to the user for sequence alignment search with already identified miRNAs of human genome present in the database. The user can also insert and update the newly discovered human miRNA in the database. Mi-Discoverer, a bioinformatics tool successfully identifies human miRNAs based on multiple sequence alignment searches. It's a non redundant database containing a large collection of publicly available human miRNAs.

  18. 77 FR 50140 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-08-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., Human Genome Research, National Institutes of Health, HHS) Dated: August 13, 2012. Anna Snouffer, Deputy..., Bethesda, MD 20892. Contact Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human...

  19. 77 FR 64816 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-10-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., Human Genome Research, National Institutes of Health, HHS) Dated: October 16, 2012. David Clary, Program... Conference Call). Contact Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human...

  20. 76 FR 9031 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-02-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome...- 402-8837, [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human...

  1. 75 FR 62548 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-10-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome...- 402-8837, [email protected] . Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human...

  2. 78 FR 11898 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-02-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome....172, Human Genome Research, National Institutes of Health, HHS) Dated: February 13, 2013. David Clary... Conference Call). Contact Person: Camilla E. Day, Ph.D., Scientific Review Officer CIDR, National Human...

  3. 78 FR 77477 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-12-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., Human Genome Research, National Institutes of Health, HHS). Dated: December 17, 2013. David Clary... Conference Call). Contact Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human...

  4. 76 FR 50486 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-08-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Conference Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome...- 402-8837, [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human...

  5. De novo assembly and phasing of a Korean human genome.

    Science.gov (United States)

    Seo, Jeong-Sun; Rhie, Arang; Kim, Junsoo; Lee, Sangjin; Sohn, Min-Hwan; Kim, Chang-Uk; Hastie, Alex; Cao, Han; Yun, Ji-Young; Kim, Jihye; Kuk, Junho; Park, Gun Hwa; Kim, Juhyeok; Ryu, Hanna; Kim, Jongbum; Roh, Mira; Baek, Jeonghun; Hunkapiller, Michael W; Korlach, Jonas; Shin, Jong-Yeon; Kim, Changhoon

    2016-10-13

    Advances in genome assembly and phasing provide an opportunity to investigate the diploid architecture of the human genome and reveal the full range of structural variation across population groups. Here we report the de novo assembly and haplotype phasing of the Korean individual AK1 (ref. 1) using single-molecule real-time sequencing, next-generation mapping, microfluidics-based linked reads, and bacterial artificial chromosome (BAC) sequencing approaches. Single-molecule sequencing coupled with next-generation mapping generated a highly contiguous assembly, with a contig N50 size of 17.9 Mb and a scaffold N50 size of 44.8 Mb, resolving 8 chromosomal arms into single scaffolds. The de novo assembly, along with local assemblies and spanning long reads, closes 105 and extends into 72 out of 190 euchromatic gaps in the reference genome, adding 1.03 Mb of previously intractable sequence. High concordance between the assembly and paired-end sequences from 62,758 BAC clones provides strong support for the robustness of the assembly. We identify 18,210 structural variants by direct comparison of the assembly with the human reference, identifying thousands of breakpoints that, to our knowledge, have not been reported before. Many of the insertions are reflected in the transcriptome and are shared across the Asian population. We performed haplotype phasing of the assembly with short reads, long reads and linked reads from whole-genome sequencing and with short reads from 31,719 BAC clones, thereby achieving phased blocks with an N50 size of 11.6 Mb. Haplotigs assembled from single-molecule real-time reads assigned to haplotypes on phased blocks covered 89% of genes. The haplotigs accurately characterized the hypervariable major histocompatability complex region as well as demonstrating allele configuration in clinically relevant genes such as CYP2D6. This work presents the most contiguous diploid human genome assembly so far, with extensive investigation of

  6. Identification of DNA repair genes in the human genome

    International Nuclear Information System (INIS)

    Hoeijmakers, J.H.J.; van Duin, M.; Westerveld, A.; Yasui, A.; Bootsma, D.

    1986-01-01

    To identify human DNA repair genes we have transfected human genomic DNA ligated to a dominant marker to excision repair deficient xeroderma pigmentosum (XP) and CHO cells. This resulted in the cloning of a human gene, ERCC-1, that complements the defect of a UV- and mitomycin-C sensitive CHO mutant 43-3B. The ERCC-1 gene has a size of 15 kb, consists of 10 exons and is located in the region 19q13.2-q13.3. Its primary transcript is processed into two mRNAs by alternative splicing of an internal coding exon. One of these transcripts encodes a polypeptide of 297 aminoacids. A putative DNA binding protein domain and nuclear location signal could be identified. Significant AA-homology is found between ERCC-1 and the yeast excision repair gene RAD10. 58 references, 6 figures, 1 table

  7. Variation in heterozygosity predicts variation in human substitution rates between populations, individuals and genomic regions.

    Directory of Open Access Journals (Sweden)

    William Amos

    Full Text Available The "heterozygote instability" (HI hypothesis suggests that gene conversion events focused on heterozygous sites during meiosis locally increase the mutation rate, but this hypothesis remains largely untested. As humans left Africa they lost variability, which, if HI operates, should have reduced the mutation rate in non-Africans. Relative substitution rates were quantified in diverse humans using aligned whole genome sequences from the 1,000 genomes project. Substitution rate is consistently greater in Africans than in non-Africans, but only in diploid regions of the genome, consistent with a role for heterozygosity. Analysing the same data partitioned into a series of non-overlapping 2 Mb windows reveals a strong, non-linear correlation between the amount of heterozygosity lost "out of Africa" and the difference in substitution rate between Africans and non-Africans. Putative recent mutations, derived variants that occur only once among the 80 human chromosomes sampled, occur preferentially at the centre of 2 Kb windows that have elevated heterozygosity compared both with the same region in a closely related population and with an immediately adjacent region in the same population. More than half of all substitutions appear attributable to variation in heterozygosity. This observation provides strong support for HI with implications for many branches of evolutionary biology.

  8. Identification of copy number variants defining genomic differences among major human groups.

    Directory of Open Access Journals (Sweden)

    Lluís Armengol

    Full Text Available BACKGROUND: Understanding the genetic contribution to phenotype variation of human groups is necessary to elucidate differences in disease predisposition and response to pharmaceutical treatments in different human populations. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the genome-wide profile of structural variation on pooled samples from the three populations studied in the HapMap project by comparative genome hybridization (CGH in different array platforms. We have identified and experimentally validated 33 genomic loci that show significant copy number differences from one population to the other. Interestingly, we found an enrichment of genes related to environment adaptation (immune response, lipid metabolism and extracellular space within these regions and the study of expression data revealed that more than half of the copy number variants (CNVs translate into gene-expression differences among populations, suggesting that they could have functional consequences. In addition, the identification of single nucleotide polymorphisms (SNPs that are in linkage disequilibrium with the copy number alleles allowed us to detect evidences of population differentiation and recent selection at the nucleotide variation level. CONCLUSIONS: Overall, our results provide a comprehensive view of relevant copy number changes that might play a role in phenotypic differences among major human populations, and generate a list of interesting candidates for future studies.

  9. Rates of genomic divergence in humans, chimpanzees and their lice.

    Science.gov (United States)

    Johnson, Kevin P; Allen, Julie M; Olds, Brett P; Mugisha, Lawrence; Reed, David L; Paige, Ken N; Pittendrigh, Barry R

    2014-02-22

    The rate of DNA mutation and divergence is highly variable across the tree of life. However, the reasons underlying this variation are not well understood. Comparing the rates of genetic changes between hosts and parasite lineages that diverged at the same time is one way to begin to understand differences in genetic mutation and substitution rates. Such studies have indicated that the rate of genetic divergence in parasites is often faster than that of their hosts when comparing single genes. However, the variation in this relative rate of molecular evolution across different genes in the genome is unknown. We compared the rate of DNA sequence divergence between humans, chimpanzees and their ectoparasitic lice for 1534 protein-coding genes across their genomes. The rate of DNA substitution in these orthologous genes was on average 14 times faster for lice than for humans and chimpanzees. In addition, these rates were positively correlated across genes. Because this correlation only occurred for substitutions that changed the amino acid, this pattern is probably produced by similar functional constraints across the same genes in humans, chimpanzees and their ectoparasites.

  10. Dynamic association of NUP98 with the human genome.

    Directory of Open Access Journals (Sweden)

    Yun Liang

    Full Text Available Faithful execution of developmental gene expression programs occurs at multiple levels and involves many different components such as transcription factors, histone-modification enzymes, and mRNA processing proteins. Recent evidence suggests that nucleoporins, well known components that control nucleo-cytoplasmic trafficking, have wide-ranging functions in developmental gene regulation that potentially extend beyond their role in nuclear transport. Whether the unexpected role of nuclear pore proteins in transcription regulation, which initially has been described in fungi and flies, also applies to human cells is unknown. Here we show at a genome-wide level that the nuclear pore protein NUP98 associates with developmentally regulated genes active during human embryonic stem cell differentiation. Overexpression of a dominant negative fragment of NUP98 levels decreases expression levels of NUP98-bound genes. In addition, we identify two modes of developmental gene regulation by NUP98 that are differentiated by the spatial localization of NUP98 target genes. Genes in the initial stage of developmental induction can associate with NUP98 that is embedded in the nuclear pores at the nuclear periphery. Alternatively, genes that are highly induced can interact with NUP98 in the nuclear interior, away from the nuclear pores. This work demonstrates for the first time that NUP98 dynamically associates with the human genome during differentiation, revealing a role of a nuclear pore protein in regulating developmental gene expression programs.

  11. Enabling a community to dissect an organism: overview of the Neurospora functional genomics project.

    Science.gov (United States)

    Dunlap, Jay C; Borkovich, Katherine A; Henn, Matthew R; Turner, Gloria E; Sachs, Matthew S; Glass, N Louise; McCluskey, Kevin; Plamann, Michael; Galagan, James E; Birren, Bruce W; Weiss, Richard L; Townsend, Jeffrey P; Loros, Jennifer J; Nelson, Mary Anne; Lambreghts, Randy; Colot, Hildur V; Park, Gyungsoon; Collopy, Patrick; Ringelberg, Carol; Crew, Christopher; Litvinkova, Liubov; DeCaprio, Dave; Hood, Heather M; Curilla, Susan; Shi, Mi; Crawford, Matthew; Koerhsen, Michael; Montgomery, Phil; Larson, Lisa; Pearson, Matthew; Kasuga, Takao; Tian, Chaoguang; Baştürkmen, Meray; Altamirano, Lorena; Xu, Junhuan

    2007-01-01

    A consortium of investigators is engaged in a functional genomics project centered on the filamentous fungus Neurospora, with an eye to opening up the functional genomic analysis of all the filamentous fungi. The overall goal of the four interdependent projects in this effort is to accomplish functional genomics, annotation, and expression analyses of Neurospora crassa, a filamentous fungus that is an established model for the assemblage of over 250,000 species of non yeast fungi. Building from the completely sequenced 43-Mb Neurospora genome, Project 1 is pursuing the systematic disruption of genes through targeted gene replacements, phenotypic analysis of mutant strains, and their distribution to the scientific community at large. Project 2, through a primary focus in Annotation and Bioinformatics, has developed a platform for electronically capturing community feedback and data about the existing annotation, while building and maintaining a database to capture and display information about phenotypes. Oligonucleotide-based microarrays created in Project 3 are being used to collect baseline expression data for the nearly 11,000 distinguishable transcripts in Neurospora under various conditions of growth and development, and eventually to begin to analyze the global effects of loss of novel genes in strains created by Project 1. cDNA libraries generated in Project 4 document the overall complexity of expressed sequences in Neurospora, including alternative splicing alternative promoters and antisense transcripts. In addition, these studies have driven the assembly of an SNP map presently populated by nearly 300 markers that will greatly accelerate the positional cloning of genes.

  12. An Aboriginal Australian Genome Reveals Separate Human Dispersals into Asia

    OpenAIRE

    Rasmussen, Morten; Guo, Xiaosen; Wang, Yong; Lohmueller, Kirk E.; Rasmussen, Simon; Albrechtsen, Anders; Skotte, Line; Lindgreen, Stinus; Metspalu, Mait; Jombart, Thibaut; Kivisild, Toomas; Zhai, Weiwei; Eriksson, Anders; Manica, Andrea; Orlando, Ludovic

    2011-01-01

    We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Aboriginal Australians are descendants of an early human dispersal into eastern Asia, possibly 62,000 to 75,000 years ago. This dispersal is separate from the one that gave rise to modern Asians 25,000 to ...

  13. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome

    NARCIS (Netherlands)

    Sharp, Andrew J.; Hansen, Sierra; Selzer, Rebecca R.; Cheng, Ze; Regan, Regina; Hurst, Jane A.; Stewart, Helen; Price, Sue M.; Blair, Edward; Hennekam, Raoul C.; Fitzpatrick, Carrie A.; Segraves, Rick; Richmond, Todd A.; Guiver, Cheryl; Albertson, Donna G.; Pinkel, Daniel; Eis, Peggy S.; Schwartz, Stuart; Knight, Samantha J. L.; Eichler, Evan E.

    2006-01-01

    Genomic disorders are characterized by the presence of flanking segmental duplications that predispose these regions to recurrent rearrangement. Based on the duplication architecture of the genome, we investigated 130 regions that we hypothesized as candidates for previously undescribed genomic

  14. Telomeres and genomic damage repair. Their implication in human pathology

    International Nuclear Information System (INIS)

    Perez, Maria del R.; Dubner, Diana; Michelin, Severino; Gisone, Pablo; Carosella, Edgardo D.

    2002-01-01

    Telomeres, functional complexed that protect eukaryotic chromosome ends, participate in the regulation of cell proliferation and could play a role in the stabilization of genomic regions in response to genotoxic stress. Their significance in human pathology becomes evident in several diseases sharing genomic instability as a common trait, in which alterations of the telomere metabolism have been demonstrated. Many of them are also associated with hypersensitivity to ionizing radiation and cancer susceptibility. Besides the specific proteins belonging to the telomeric complex, other proteins involved in the DNA repair machinery, such as ATM, BRCA1, BRCA2, PARP/tankyrase system, DNA-PK and RAD50-MRE11-NBS1 complexes, are closely related with the telomere. This suggests that the telomere sequesters DNA repair proteins for its own structure maintenance, with could also be released toward damaged sites in the genomic DNA. This communication describes essential aspects of telomere structure and function and their links with homologous recombination, non-homologous end-joining (NHEJ), V(D)J system and mismatch-repair (MMR). Several pathological conditions exhibiting alterations in some of these mechanisms are also considered. The cell response to ionizing radiation and its relationship with the telomeric metabolism is particularly taken into account as a model for studying genotoxicity. (author)

  15. Competence development organizations in project management on the basis of genomic model methodologies

    OpenAIRE

    Бушуев, Сергей Дмитриевич; Рогозина, Виктория Борисовна; Ярошенко, Юрий Федерович

    2013-01-01

    The matrix technology for identification of organisational competencies in project management is presented in the article. Matrix elements are the components of organizational competence in the field of project management and project management methodology represented in the structure of the genome. The matrix model of competence in the framework of the adopted methodologies and scanning method for identifying organizational competences formalised. Proposed methods for building effective proj...

  16. Chromosomocentric approach to overcoming difficulties in implementation of international project Human Proteome

    Directory of Open Access Journals (Sweden)

    A. I. Archakov

    2013-12-01

    Full Text Available The international project Human Proteome (PHP, being a logical continuation of the project Human Genome, was started on September 23, 2010. In correspondence with the genocentric approach, the PHP aim is to prepare a catalogue of all human proteins and to decipher a network of their interactions. The PHP implementation difficulties arise because the research subject itself – proteome – is much more complicated than genome. The major problem is the insufficient sensitivity of proteome methods that does not allow detecting low- and ultralow-copy proteins. Bad reproducibility of proteome methods and the lack of so-called “gold standard” is the second major complicacy in PHP implementation. The third problem is the dynamic character of proteome, its instabili­ty in time. The paper deals with possible variants of overcoming these complicacies, preventing from successful implementation of PHP.

  17. A genomic atlas of human adrenal and gonad development

    Science.gov (United States)

    del Valle, Ignacio; Buonocore, Federica; Duncan, Andrew J.; Lin, Lin; Barenco, Martino; Parnaik, Rahul; Shah, Sonia; Hubank, Mike; Gerrelli, Dianne; Achermann, John C.

    2017-01-01

    Background: In humans, the adrenal glands and gonads undergo distinct biological events between 6-10 weeks post conception (wpc), such as testis determination, the onset of steroidogenesis and primordial germ cell development. However, relatively little is currently known about the genetic mechanisms underlying these processes. We therefore aimed to generate a detailed genomic atlas of adrenal and gonad development across these critical stages of human embryonic and fetal development. Methods: RNA was extracted from 53 tissue samples between 6-10 wpc (adrenal, testis, ovary and control). Affymetrix array analysis was performed and differential gene expression was analysed using Bioconductor. A mathematical model was constructed to investigate time-series changes across the dataset. Pathway analysis was performed using ClueGo and cellular localisation of novel factors confirmed using immunohistochemistry. Results: Using this approach, we have identified novel components of adrenal development (e.g. ASB4, NPR3) and confirmed the role of SRY as the main human testis-determining gene. By mathematical modelling time-series data we have found new genes up-regulated with SOX9 in the testis (e.g. CITED1), which may represent components of the testis development pathway. We have shown that testicular steroidogenesis has a distinct onset at around 8 wpc and identified potential novel components in adrenal and testicular steroidogenesis (e.g. MGARP, FOXO4, MAP3K15, GRAMD1B, RMND2), as well as testis biomarkers (e.g. SCUBE1). We have also shown that the developing human ovary expresses distinct subsets of genes (e.g. OR10G9, OR4D5), but enrichment for established biological pathways is limited. Conclusion: This genomic atlas is revealing important novel aspects of human development and new candidate genes for adrenal and reproductive disorders. PMID:28459107

  18. Towards precision medicine-based therapies for glioblastoma: interrogating human disease genomics and mouse phenotypes.

    Science.gov (United States)

    Chen, Yang; Gao, Zhen; Wang, Bingcheng; Xu, Rong

    2016-08-22

    Glioblastoma (GBM) is the most common and aggressive brain tumors. It has poor prognosis even with optimal radio- and chemo-therapies. Since GBM is highly heterogeneous, drugs that target on specific molecular profiles of individual tumors may achieve maximized efficacy. Currently, the Cancer Genome Atlas (TCGA) projects have identified hundreds of GBM-associated genes. We develop a drug repositioning approach combining disease genomics and mouse phenotype data towards predicting targeted therapies for GBM. We first identified disease specific mouse phenotypes using the most recently discovered GBM genes. Then we systematically searched all FDA-approved drugs for candidates that share similar mouse phenotype profiles with GBM. We evaluated the ranks for approved and novel GBM drugs, and compared with an existing approach, which also use the mouse phenotype data but not the disease genomics data. We achieved significantly higher ranks for the approved and novel GBM drugs than the earlier approach. For all positive examples of GBM drugs, we achieved a median rank of 9.2 45.6 of the top predictions have been demonstrated effective in inhibiting the growth of human GBM cells. We developed a computational drug repositioning approach based on both genomic and phenotypic data. Our approach prioritized existing GBM drugs and outperformed a recent approach. Overall, our approach shows potential in discovering new targeted therapies for GBM.

  19. Genomics England's implementation of its public engagement strategy: Blurred boundaries between engagement for the United Kingdom's 100,000 Genomes project and the need for public support.

    Science.gov (United States)

    Samuel, Gabrielle Natalie; Farsides, Bobbie

    2018-04-01

    The United Kingdom's 100,000 Genomes Project has the aim of sequencing 100,000 genomes from National Health Service patients such that whole genome sequencing becomes routine clinical practice. It also has a research-focused goal to provide data for scientific discovery. Genomics England is the limited company established by the Department of Health to deliver the project. As an innovative scientific/clinical venture, it is interesting to consider how Genomics England positions itself in relation to public engagement activities. We set out to explore how individuals working at, or associated with, Genomics England enacted public engagement in practice. Our findings show that individuals offered a narrative in which public engagement performed more than one function. On one side, public engagement was seen as 'good practice'. On the other, public engagement was presented as core to the project's success - needed to encourage involvement and ultimately recruitment. We discuss the implications of this in this article.

  20. Crowdfunding the Azolla fern genome project: a grassroots approach.

    Science.gov (United States)

    Li, Fay-Wei; Pryer, Kathleen M

    2014-01-01

    Much of science progresses within the tight boundaries of what is often seen as a "black box". Though familiar to funding agencies, researchers and the academic journals they publish in, it is an entity that outsiders rarely get to peek into. Crowdfunding is a novel means that allows the public to participate in, as well as to support and witness advancements in science. Here we describe our recent crowdfunding efforts to sequence the Azolla genome, a little fern with massive green potential. Crowdfunding is a worthy platform not only for obtaining seed money for exploratory research, but also for engaging directly with the general public as a rewarding form of outreach.

  1. An Aboriginal Australian genome reveals separate human dispersals into Asia.

    Science.gov (United States)

    Rasmussen, Morten; Guo, Xiaosen; Wang, Yong; Lohmueller, Kirk E; Rasmussen, Simon; Albrechtsen, Anders; Skotte, Line; Lindgreen, Stinus; Metspalu, Mait; Jombart, Thibaut; Kivisild, Toomas; Zhai, Weiwei; Eriksson, Anders; Manica, Andrea; Orlando, Ludovic; De La Vega, Francisco M; Tridico, Silvana; Metspalu, Ene; Nielsen, Kasper; Ávila-Arcos, María C; Moreno-Mayar, J Víctor; Muller, Craig; Dortch, Joe; Gilbert, M Thomas P; Lund, Ole; Wesolowska, Agata; Karmin, Monika; Weinert, Lucy A; Wang, Bo; Li, Jun; Tai, Shuaishuai; Xiao, Fei; Hanihara, Tsunehiko; van Driem, George; Jha, Aashish R; Ricaut, François-Xavier; de Knijff, Peter; Migliano, Andrea B; Gallego Romero, Irene; Kristiansen, Karsten; Lambert, David M; Brunak, Søren; Forster, Peter; Brinkmann, Bernd; Nehlich, Olaf; Bunce, Michael; Richards, Michael; Gupta, Ramneek; Bustamante, Carlos D; Krogh, Anders; Foley, Robert A; Lahr, Marta M; Balloux, Francois; Sicheritz-Pontén, Thomas; Villems, Richard; Nielsen, Rasmus; Wang, Jun; Willerslev, Eske

    2011-10-07

    We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Aboriginal Australians are descendants of an early human dispersal into eastern Asia, possibly 62,000 to 75,000 years ago. This dispersal is separate from the one that gave rise to modern Asians 25,000 to 38,000 years ago. We also find evidence of gene flow between populations of the two dispersal waves prior to the divergence of Native Americans from modern Asian ancestors. Our findings support the hypothesis that present-day Aboriginal Australians descend from the earliest humans to occupy Australia, likely representing one of the oldest continuous populations outside Africa.

  2. PROBING GENOME MAINTENANCE FUNCTIONS OF HUMAN RECQ1

    Directory of Open Access Journals (Sweden)

    Furqan Sami

    2013-03-01

    Full Text Available The RecQ helicases are a highly conserved family of DNA-unwinding enzymes that play key roles in protecting the genome stability in all kingdoms of life.'Human RecQ homologs include RECQ1, BLM, WRN, RECQ4, and RECQ5β.'Although the individual RecQ-related diseases are characterized by a variety of clinical features encompassing growth defects (Bloom Syndrome and Rothmund Thomson Syndrome to premature aging (Werner Syndrome, all these patients have a high risk of cancer predisposition.'Here, we present an overview of recent progress towards elucidating functions of RECQ1 helicase, the most abundant but poorly characterized RecQ homolog in humans.'Consistent with a conserved role in genome stability maintenance, deficiency of RECQ1 results in elevated frequency of spontaneous sister chromatid exchanges, chromosomal instability, increased DNA damage and greater sensitivity to certain genotoxic stress.'Delineating what aspects of RECQ1 catalytic functions contribute to the observed cellular phenotypes, and how this is regulated is critical to establish its biological functions in DNA metabolism.'Recent studies have identified functional specialization of RECQ1 in DNA repair; however, identification of fundamental similarities will be just as critical in developing a unifying theme for RecQ actions, allowing the functions revealed from studying one homolog to be extrapolated and generalized to other RecQ homologs.

  3. An Aboriginal Australian Genome Reveals Separate Human Dispersals into Asia

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Guo, Xiaosen; Wang, Yong

    2011-01-01

    We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Abori......We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show...... that Aboriginal Australians are descendants of an early human dispersal into eastern Asia, possibly 62,000 to 75,000 years ago. This dispersal is separate from the one that gave rise to modern Asians 25,000 to 38,000 years ago. We also find evidence of gene flow between populations of the two dispersal waves...... prior to the divergence of Native Americans from modern Asian ancestors. Our findings support the hypothesis that present-day Aboriginal Australians descend from the earliest humans to occupy Australia, likely representing one of the oldest continuous populations outside Africa....

  4. Genome-wide analysis of wild-type Epstein-Barr virus genomes derived from healthy individuals of the 1,000 Genomes Project.

    Science.gov (United States)

    Santpere, Gabriel; Darre, Fleur; Blanco, Soledad; Alcami, Antonio; Villoslada, Pablo; Mar Albà, M; Navarro, Arcadi

    2014-04-01

    Most people in the world (∼90%) are infected by the Epstein-Barr virus (EBV), which establishes itself permanently in B cells. Infection by EBV is related to a number of diseases including infectious mononucleosis, multiple sclerosis, and different types of cancer. So far, only seven complete EBV strains have been described, all of them coming from donors presenting EBV-related diseases. To perform a detailed comparative genomic analysis of EBV including, for the first time, EBV strains derived from healthy individuals, we reconstructed EBV sequences infecting lymphoblastoid cell lines (LCLs) from the 1000 Genomes Project. As strain B95-8 was used to transform B cells to obtain LCLs, it is always present, but a specific deletion in its genome sets it apart from natural EBV strains. After studying hundreds of individuals, we determined the presence of natural EBV in at least 10 of them and obtained a set of variants specific to wild-type EBV. By mapping the natural EBV reads into the EBV reference genome (NC007605), we constructed nearly complete wild-type viral genomes from three individuals. Adding them to the five disease-derived EBV genomic sequences available in the literature, we performed an in-depth comparative genomic analysis. We found that latency genes harbor more nucleotide diversity than lytic genes and that six out of nine latency-related genes, as well as other genes involved in viral attachment and entry into host cells, packaging, and the capsid, present the molecular signature of accelerated protein evolution rates, suggesting rapid host-parasite coevolution.

  5. Retrocopy contributions to the evolution of the human genome

    Directory of Open Access Journals (Sweden)

    Haussler David

    2008-10-01

    Full Text Available Abstract Background Evolution via point mutations is a relatively slow process and is unlikely to completely explain the differences between primates and other mammals. By contrast, 45% of the human genome is composed of retroposed elements, many of which were inserted in the primate lineage. A subset of retroposed mRNAs (retrocopies shows strong evidence of expression in primates, often yielding functional retrogenes. Results To identify and analyze the relatively recently evolved retrogenes, we carried out BLASTZ alignments of all human mRNAs against the human genome and scored a set of features indicative of retroposition. Of over 12,000 putative retrocopy-derived genes that arose mainly in the primate lineage, 726 with strong evidence of transcript expression were examined in detail. These mRNA retroposition events fall into three categories: I 34 retrocopies and antisense retrocopies that added potential protein coding space and UTRs to existing genes; II 682 complete retrocopy duplications inserted into new loci; and III an unexpected set of 13 retrocopies that contributed out-of-frame, or antisense sequences in combination with other types of transposed elements (SINEs, LINEs, LTRs, even unannotated sequence to form potentially novel genes with no homologs outside primates. In addition to their presence in human, several of the gene candidates also had potentially viable ORFs in chimpanzee, orangutan, and rhesus macaque, underscoring their potential of function. Conclusion mRNA-derived retrocopies provide raw material for the evolution of genes in a wide variety of ways, duplicating and amending the protein coding region of existing genes as well as generating the potential for new protein coding space, or non-protein coding RNAs, by unexpected contributions out of frame, in reverse orientation, or from previously non-protein coding sequence.

  6. Genomics in health and disease | Shawky | Egyptian Journal of ...

    African Journals Online (AJOL)

    Genomics is the study of all person's genes including interactions of those genes ... Our environment and our biology are two factors that strongly influence our health. ... The completion of the Human Genome Project signaled that the genome ...

  7. 77 FR 67385 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2012-11-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Human Genome Research Institute Special Emphasis Panel, October 29, 2012, 8:00 a.m. to October 30...

  8. 78 FR 65342 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2013-10-31

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Human Genome Research Institute Special Emphasis Panel, October 17, 2013, 08:00 a.m. to October 17...

  9. 76 FR 65738 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2011-10-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Human Genome Research Institute Special Emphasis Panel, November 29, 2011, 8 a.m. to November 29...

  10. 77 FR 55853 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2012-09-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Advisory Council for Human Genome Research, September 10, 2012, 8:30 a.m. to September 11, 2012, 5...

  11. 77 FR 27471 - National Human Genome Research Institute Amended Notice of Meeting

    Science.gov (United States)

    2012-05-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Advisory Council for Human Genome Research, May 21, 2012, 8:30 a.m. to May 22, 2012, 5:00 p.m...

  12. 76 FR 71581 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2011-11-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Human Genome Research Institute Special Emphasis Panel, November 22, 2011, 12 p.m. to November 22...

  13. Comparative genomics of human and non-human Listeria monocytogenes sequence type 121 strains.

    Directory of Open Access Journals (Sweden)

    Kathrin Rychli

    Full Text Available The food-borne pathogen Listeria (L. monocytogenes is able to survive for months and even years in food production environments. Strains belonging to sequence type (ST121 are particularly found to be abundant and to persist in food and food production environments. To elucidate genetic determinants characteristic for L. monocytogenes ST121, we sequenced the genomes of 14 ST121 strains and compared them with currently available L. monocytogenes ST121 genomes. In total, we analyzed 70 ST121 genomes deriving from 16 different countries, different years of isolation, and different origins-including food, animal and human ST121 isolates. All ST121 genomes show a high degree of conservation sharing at least 99.7% average nucleotide identity. The main differences between the strains were found in prophage content and prophage conservation. We also detected distinct highly conserved subtypes of prophages inserted at the same genomic locus. While some of the prophages showed more than 99.9% similarity between strains from different sources and years, other prophages showed a higher level of diversity. 81.4% of the strains harbored virtually identical plasmids. 97.1% of the ST121 strains contain a truncated internalin A (inlA gene. Only one of the seven human ST121 isolates encodes a full-length inlA gene, illustrating the need of better understanding their survival and virulence mechanisms.

  14. A scored human protein-protein interaction network to catalyze genomic interpretation

    DEFF Research Database (Denmark)

    Li, Taibo; Wernersson, Rasmus; Hansen, Rasmus B

    2017-01-01

    Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (InWeb_InBioMap,......Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (In...

  15. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes

    DEFF Research Database (Denmark)

    Parker, Brian John; Moltke, Ida; Roth, Adam

    2011-01-01

    a comparative method, EvoFam, for genome-wide identification of families of regulatory RNA structures, based on primary sequence and secondary structure similarity. We apply EvoFam to a 41-way genomic vertebrate alignment. Genome-wide, we identify 220 human, high-confidence families outside protein...

  16. Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human

    NARCIS (Netherlands)

    S.L. Macrae (Sheila L.); Q. Zhang (Quanwei); C. Lemetre (Christophe); I. Seim (Inge); R.B. Calder (Robert B.); J.H.J. Hoeijmakers (Jan); Y. Suh (Yousin); V.N. Gladyshev (Vadim N.); A. Seluanov (Andrei); V. Gorbunova (Vera); J. Vijg (Jan); Z.D. Zhang (Zhengdong D.)

    2015-01-01

    textabstractGenome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM

  17. Ascertainment bias in studies of human genome-wide polymorphism

    DEFF Research Database (Denmark)

    Clark, Andrew G.; Hubisz, Melissa J.; Bustamente, Carlos D.

    2005-01-01

    of the SNPs that are found are influenced by the discovery sampling effort. The International HapMap project relied on nearly any piece of information available to identify SNPs-including BAC end sequences, shotgun reads, and differences between public and private sequences-and even made use of chimpanzee...... was a resequencing-by-hybridization effort using the 24 people of diverse origin in the Polymorphism Discovery Resource. Here we take these two data sets and contrast two basic summary statistics, heterozygosity and FST, as well as the site frequency spectra, for 500-kb windows spanning the genome. The magnitude...... of disparity between these samples in these measures of variability indicates that population genetic analysis on the raw genotype data is ill advised. Given the knowledge of the discovery samples, we perform an ascertainment correction and show how the post-correction data are more consistent across...

  18. Genotype Imputation for Latinos Using the HapMap and 1000 Genomes Project Reference Panels

    Directory of Open Access Journals (Sweden)

    Xiaoyi eGao

    2012-06-01

    Full Text Available Genotype imputation is a vital tool in genome-wide association studies (GWAS and meta-analyses of multiple GWAS results. Imputation enables researchers to increase genomic coverage and to pool data generated using different genotyping platforms. HapMap samples are often employed as the reference panel. More recently, the 1000 Genomes Project resource is becoming the primary source for reference panels. Multiple GWAS and meta-analyses are targeting Latinos, the most populous and fastest growing minority group in the US. However, genotype imputation resources for Latinos are rather limited compared to individuals of European ancestry at present, largely because of the lack of good reference data. One choice of reference panel for Latinos is one derived from the population of Mexican individuals in Los Angeles contained in the HapMap Phase 3 project and the 1000 Genomes Project. However, a detailed evaluation of the quality of the imputed genotypes derived from the public reference panels has not yet been reported. Using simulation studies, the Illumina OmniExpress GWAS data from the Los Angles Latino Eye Study and the MACH software package, we evaluated the accuracy of genotype imputation in Latinos. Our results show that the 1000 Genomes Project AMR+CEU+YRI reference panel provides the highest imputation accuracy for Latinos, and that also including Asian samples in the panel can reduce imputation accuracy. We also provide the imputation accuracy for each autosomal chromosome using the 1000 Genomes Project panel for Latinos. Our results serve as a guide to future imputation-based analysis in Latinos.

  19. Human Papillomavirus Genome Integration and Head and Neck Cancer.

    Science.gov (United States)

    Pinatti, L M; Walline, H M; Carey, T E

    2018-06-01

    We conducted a critical review of human papillomavirus (HPV) integration into the host genome in oral/oropharyngeal cancer, reviewed the literature for HPV-induced cancers, and obtained current data for HPV-related oral and oropharyngeal cancers. In addition, we performed studies to identify HPV integration sites and the relationship of integration to viral-host fusion transcripts and whether integration is required for HPV-associated oncogenesis. Viral integration of HPV into the host genome is not required for the viral life cycle and might not be necessary for cellular transformation, yet HPV integration is frequently reported in cervical and head and neck cancer specimens. Studies of large numbers of early cervical lesions revealed frequent viral integration into gene-poor regions of the host genome with comparatively rare integration into cellular genes, suggesting that integration is a stochastic event and that site of integration may be largely a function of chance. However, more recent studies of head and neck squamous cell carcinomas (HNSCCs) suggest that integration may represent an additional oncogenic mechanism through direct effects on cancer-related gene expression and generation of hybrid viral-host fusion transcripts. In HNSCC cell lines as well as primary tumors, integration into cancer-related genes leading to gene disruption has been reported. The studies have shown that integration-induced altered gene expression may be associated with tumor recurrence. Evidence from several studies indicates that viral integration into genic regions is accompanied by local amplification, increased expression in some cases, interruption of gene expression, and likely additional oncogenic effects. Similarly, reported examples of viral integration near microRNAs suggest that altered expression of these regulatory molecules may also contribute to oncogenesis. Future work is indicated to identify the mechanisms of these events on cancer cell behavior.

  20. Human genome and philosophy: what ethical challenge will human genome studies bring to the medical practices in the 21st century?

    Science.gov (United States)

    Renzong, Q

    2001-12-01

    A human being or person cannot be reduced to a set of human genes, or human genome. Genetic essentialism is wrong, because as a person the entity should have self-conscious and social interaction capacity which is grown in an interpersonal relationship. Genetic determinism is wrong too, the relationship between a gene and a trait is not a linear model of causation, but rather a non-linear one. Human genome is a complexity system and functions in a complexity system of human body and a complexity of systems of natural/social environment. Genetic determinism also caused the issue of how much responsibility an agent should take for her/his action, and how much degrees of freedom will a human being have. Human genome research caused several conceptual issues. Can we call a gene 'good' or 'bad', 'superior' of 'inferior'? Is a boy who is detected to have the gene of Huntington's chorea or Alzheimer disease a patient? What should the term 'eugenics' mean? What do the terms such as 'gene therapy', 'treatment' and 'enhancement' and 'human cloning' mean etc.? The research of human genome and its application caused and will cause ethical issues. Can human genome research and its application be used for eugenics, or only for the treatment and prevention of diseases? Must the principle of informed consent/choice be insisted in human genome research and its application? How to protecting gene privacy and combating the discrimination on the basis of genes? How to promote the quality between persons, harmony between ethnic groups and peace between countries? How to establish a fair, just, equal and equitable relationship between developing and developed countries in regarding to human genome research and its application?

  1. Genome editing of human pluripotent stem cells to generate human cellular disease models

    Directory of Open Access Journals (Sweden)

    Kiran Musunuru

    2013-07-01

    Full Text Available Disease modeling with human pluripotent stem cells has come into the public spotlight with the awarding of the Nobel Prize in Physiology or Medicine for 2012 to Drs John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent. This discovery has opened the door for the generation of pluripotent stem cells from individuals with disease and the differentiation of these cells into somatic cell types for the study of disease pathophysiology. The emergence of genome-editing technology over the past few years has made it feasible to generate and investigate human cellular disease models with even greater speed and efficiency. Here, recent technological advances in genome editing, and its utility in human biology and disease studies, are reviewed.

  2. Genetical genomic determinants of alcohol consumption in rats and humans

    Directory of Open Access Journals (Sweden)

    Mangion Jonathan

    2009-10-01

    Full Text Available Abstract Background We have used a genetical genomic approach, in conjunction with phenotypic analysis of alcohol consumption, to identify candidate genes that predispose to varying levels of alcohol intake by HXB/BXH recombinant inbred rat strains. In addition, in two populations of humans, we assessed genetic polymorphisms associated with alcohol consumption using a custom genotyping array for 1,350 single nucleotide polymorphisms (SNPs. Our goal was to ascertain whether our approach, which relies on statistical and informatics techniques, and non-human animal models of alcohol drinking behavior, could inform interpretation of genetic association studies with human populations. Results In the HXB/BXH recombinant inbred (RI rats, correlation analysis of brain gene expression levels with alcohol consumption in a two-bottle choice paradigm, and filtering based on behavioral and gene expression quantitative trait locus (QTL analyses, generated a list of candidate genes. A literature-based, functional analysis of the interactions of the products of these candidate genes defined pathways linked to presynaptic GABA release, activation of dopamine neurons, and postsynaptic GABA receptor trafficking, in brain regions including the hypothalamus, ventral tegmentum and amygdala. The analysis also implicated energy metabolism and caloric intake control as potential influences on alcohol consumption by the recombinant inbred rats. In the human populations, polymorphisms in genes associated with GABA synthesis and GABA receptors, as well as genes related to dopaminergic transmission, were associated with alcohol consumption. Conclusion Our results emphasize the importance of the signaling pathways identified using the non-human animal models, rather than single gene products, in identifying factors responsible for complex traits such as alcohol consumption. The results suggest cross-species similarities in pathways that influence predisposition to consume

  3. Daedalus Project's Light Eagle - Human powered aircraft

    Science.gov (United States)

    1987-01-01

    The Michelob Light Eagle is seen here in flight over Rogers Dry Lake at the NASA Dryden Flight Research Center, Edwards, California. The Light Eagle and Daedalus human powered aircraft were testbeds for flight research conducted at Dryden between January 1987 and March 1988. These unique aircraft were designed and constructed by a group of students, professors, and alumni of the Massachusetts Institute of Technology within the context of the Daedalus project. The construction of the Light Eagle and Daedalus aircraft was funded primarily by the Anheuser Busch and United Technologies Corporations, respectively, with additional support from the Smithsonian Air and Space Museum, MIT, and a number of other sponsors. To celebrate the Greek myth of Daedalus, the man who constructed wings of wax and feathers to escape King Minos, the Daedalus project began with the goal of designing, building and testing a human-powered aircraft that could fly the mythical distance, 115 km. To achieve this goal, three aircraft were constructed. The Light Eagle was the prototype aircraft, weighing 92 pounds. On January 22, 1987, it set a closed course distance record of 59 km, which still stands. Also in January of 1987, the Light Eagle was powered by Lois McCallin to set the straight distance, the distance around a closed circuit, and the duration world records for the female division in human powered vehicles. Following this success, two more aircraft were built, the Daedalus 87 and Daedalus 88. Each aircraft weighed approximately 69 pounds. The Daedalus 88 aircraft was the ship that flew the 199 km from the Iraklion Air Force Base on Crete in the Mediterranean Sea, to the island of Santorini in 3 hours, 54 minutes. In the process, the aircraft set new records in distance and endurance for a human powered aircraft. The specific areas of flight research conducted at Dryden included characterizing the rigid body and flexible dynamics of the Light Eagle, investigating sensors for an

  4. Genome-Wide Association Studies of the Human Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Emily R Davenport

    Full Text Available The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both. These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%. For example, we identified an association between a taxon known to affect obesity (genus Akkermansia and a variant near PLD1, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10-7. Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.

  5. Comparing genetic variants detected in the 1000 genomes project ...

    Indian Academy of Sciences (India)

    2015-12-11

    Dec 11, 2015 ... three key benefits: better diagnoses and earlier interven- tions, more ... research field in human genetics and personalized medicine. Based on the ... to amino acid changes and were found associated with breast .... were common between two datasets or unique SNPs if they were found only in one dataset.

  6. Project Management Methodology in Human Resource Management

    Science.gov (United States)

    Josler, Cheryl; Burger, James

    2005-01-01

    When charged with overseeing a project, how can one ensure that the project will be completed on time, within budget, and to the satisfaction of everyone involved? In this article, the authors examine project management methodology as a means of ensuring that projects are conducted in a disciplined, well-managed and consistent manner that serves…

  7. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia.

    Directory of Open Access Journals (Sweden)

    David G Covell

    Full Text Available Developing reliable biomarkers of tumor cell drug sensitivity and resistance can guide hypothesis-driven basic science research and influence pre-therapy clinical decisions. A popular strategy for developing biomarkers uses characterizations of human tumor samples against a range of cancer drug responses that correlate with genomic change; developed largely from the efforts of the Cancer Cell Line Encyclopedia (CCLE and Sanger Cancer Genome Project (CGP. The purpose of this study is to provide an independent analysis of this data that aims to vet existing and add novel perspectives to biomarker discoveries and applications. Existing and alternative data mining and statistical methods will be used to a evaluate drug responses of compounds with similar mechanism of action (MOA, b examine measures of gene expression (GE, copy number (CN and mutation status (MUT biomarkers, combined with gene set enrichment analysis (GSEA, for hypothesizing biological processes important for drug response, c conduct global comparisons of GE, CN and MUT as biomarkers across all drugs screened in the CGP dataset, and d assess the positive predictive power of CGP-derived GE biomarkers as predictors of drug response in CCLE tumor cells. The perspectives derived from individual and global examinations of GEs, MUTs and CNs confirm existing and reveal unique and shared roles for these biomarkers in tumor cell drug sensitivity and resistance. Applications of CGP-derived genomic biomarkers to predict the drug response of CCLE tumor cells finds a highly significant ROC, with a positive predictive power of 0.78. The results of this study expand the available data mining and analysis methods for genomic biomarker development and provide additional support for using biomarkers to guide hypothesis-driven basic science research and pre-therapy clinical decisions.

  8. Functional food ingredients against colorectal cancer. An example project integrating functional genomics, nutrition and health

    NARCIS (Netherlands)

    Stierum, R.; Burgemeister, R.; Helvoort, van A.; Peijnenburg, A.; Schütze, K.; Seidelin, M.; Vang, O.; Ommen, van B.

    2001-01-01

    Functional Food Ingredients Against Colorectal Cancer is one of the first European Union funded Research Projects at the cross-road of functional genomics [comprising transcriptomics, the measurement of the expression of all messengers RNA (mRNAs) and proteomics, the measurement of expression/state

  9. Efficient identification of Y chromosome sequences in the human and Drosophila genomes

    Science.gov (United States)

    Carvalho, Antonio Bernardo; Clark, Andrew G.

    2013-01-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes. PMID:23921660

  10. Efficient identification of Y chromosome sequences in the human and Drosophila genomes.

    Science.gov (United States)

    Carvalho, Antonio Bernardo; Clark, Andrew G

    2013-11-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes.

  11. Site-Specific Genome Engineering in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Merkert, Sylvia; Martin, Ulrich

    2016-06-24

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies.

  12. Complete Genome Sequence of Treponema paraluiscuniculi, Strain Cuniculi A: The Loss of Infectivity to Humans Is Associated with Genome Decay

    Science.gov (United States)

    Šmajs, David; Zobaníková, Marie; Strouhal, Michal; Čejková, Darina; Dugan-Rocha, Shannon; Pospíšilová, Petra; Norris, Steven J.; Albert, Tom; Qin, Xiang; Hallsworth-Pepin, Kym; Buhay, Christian; Muzny, Donna M.; Chen, Lei; Gibbs, Richard A.; Weinstock, George M.

    2011-01-01

    Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp), arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51). In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84) affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9%) of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits) during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies. PMID:21655244

  13. Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay.

    Directory of Open Access Journals (Sweden)

    David Šmajs

    Full Text Available Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp, arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51. In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84 affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9% of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies.

  14. Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples

    Directory of Open Access Journals (Sweden)

    Maley Carlo C

    2008-10-01

    Full Text Available Abstract Background Genomes store information for building and maintaining organisms. Complete sequencing of many genomes provides the opportunity to study and compare global information properties of those genomes. Results We have analyzed aspects of the information content of Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli (K-12 genomes. Virtually all possible (> 98% 12 bp oligomers appear in vertebrate genomes while 98% to D. melanogaster (12–17 bp, C. elegans (11–17 bp, A. thaliana (11–17 bp, S. cerevisiae (10–16 bp and E. coli (9–15 bp. Frequencies of unique oligomers in the genomes follow similar patterns. We identified a set of 2.6 M 15-mers that are more than 1 nucleotide different from all 15-mers in the human genome and so could be used as probes to detect microbes in human samples. In a human sample, these probes would detect 100% of the 433 currently fully sequenced prokaryotes and 75% of the 3065 fully sequenced viruses. The human genome is significantly more compact in sequence space than a random genome. We identified the most frequent 5- to 20-mers in the human genome, which may prove useful as PCR primers. We also identified a bacterium, Anaeromyxobacter dehalogenans, which has an exceptionally low diversity of oligomers given the size of its genome and its GC content. The entropy of coding regions in the human genome is significantly higher than non-coding regions and chromosomes. However chromosomes 1, 2, 9, 12 and 14 have a relatively high proportion of coding DNA without high entropy, and chromosome 20 is the opposite with a low frequency of coding regions but relatively high entropy. Conclusion Measures of the frequency of oligomers are useful for designing PCR assays and for identifying chromosomes and organisms with hidden structure that had not been previously recognized. This information may be used to detect

  15. Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples

    Science.gov (United States)

    Liu, Zhandong; Venkatesh, Santosh S; Maley, Carlo C

    2008-01-01

    Background Genomes store information for building and maintaining organisms. Complete sequencing of many genomes provides the opportunity to study and compare global information properties of those genomes. Results We have analyzed aspects of the information content of Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli (K-12) genomes. Virtually all possible (> 98%) 12 bp oligomers appear in vertebrate genomes while 98% to < 2% of possible oligomers in D. melanogaster (12–17 bp), C. elegans (11–17 bp), A. thaliana (11–17 bp), S. cerevisiae (10–16 bp) and E. coli (9–15 bp). Frequencies of unique oligomers in the genomes follow similar patterns. We identified a set of 2.6 M 15-mers that are more than 1 nucleotide different from all 15-mers in the human genome and so could be used as probes to detect microbes in human samples. In a human sample, these probes would detect 100% of the 433 currently fully sequenced prokaryotes and 75% of the 3065 fully sequenced viruses. The human genome is significantly more compact in sequence space than a random genome. We identified the most frequent 5- to 20-mers in the human genome, which may prove useful as PCR primers. We also identified a bacterium, Anaeromyxobacter dehalogenans, which has an exceptionally low diversity of oligomers given the size of its genome and its GC content. The entropy of coding regions in the human genome is significantly higher than non-coding regions and chromosomes. However chromosomes 1, 2, 9, 12 and 14 have a relatively high proportion of coding DNA without high entropy, and chromosome 20 is the opposite with a low frequency of coding regions but relatively high entropy. Conclusion Measures of the frequency of oligomers are useful for designing PCR assays and for identifying chromosomes and organisms with hidden structure that had not been previously recognized. This information may be used to

  16. Genome-Wide Prediction and Analysis of 3D-Domain Swapped Proteins in the Human Genome from Sequence Information.

    Science.gov (United States)

    Upadhyay, Atul Kumar; Sowdhamini, Ramanathan

    2016-01-01

    3D-domain swapping is one of the mechanisms of protein oligomerization and the proteins exhibiting this phenomenon have many biological functions. These proteins, which undergo domain swapping, have acquired much attention owing to their involvement in human diseases, such as conformational diseases, amyloidosis, serpinopathies, proteionopathies etc. Early realisation of proteins in the whole human genome that retain tendency to domain swap will enable many aspects of disease control management. Predictive models were developed by using machine learning approaches with an average accuracy of 78% (85.6% of sensitivity, 87.5% of specificity and an MCC value of 0.72) to predict putative domain swapping in protein sequences. These models were applied to many complete genomes with special emphasis on the human genome. Nearly 44% of the protein sequences in the human genome were predicted positive for domain swapping. Enrichment analysis was performed on the positively predicted sequences from human genome for their domain distribution, disease association and functional importance based on Gene Ontology (GO). Enrichment analysis was also performed to infer a better understanding of the functional importance of these sequences. Finally, we developed hinge region prediction, in the given putative domain swapped sequence, by using important physicochemical properties of amino acids.

  17. Cognitive genomics: Linking genes to behavior in the human brain

    Directory of Open Access Journals (Sweden)

    Genevieve Konopka

    2017-02-01

    Full Text Available Correlations of genetic variation in DNA with functional brain activity have already provided a starting point for delving into human cognitive mechanisms. However, these analyses do not provide the specific genes driving the associations, which are complicated by intergenic localization as well as tissue-specific epigenetics and expression. The use of brain-derived expression datasets could build upon the foundation of these initial genetic insights and yield genes and molecular pathways for testing new hypotheses regarding the molecular bases of human brain development, cognition, and disease. Thus, coupling these human brain gene expression data with measurements of brain activity may provide genes with critical roles in brain function. However, these brain gene expression datasets have their own set of caveats, most notably a reliance on postmortem tissue. In this perspective, I summarize and examine the progress that has been made in this realm to date, and discuss the various frontiers remaining, such as the inclusion of cell-type-specific information, additional physiological measurements, and genomic data from patient cohorts.

  18. Amino acid changes in disease-associated variants differ radically from variants observed in the 1000 genomes project dataset.

    Directory of Open Access Journals (Sweden)

    Tjaart A P de Beer

    Full Text Available The 1000 Genomes Project data provides a natural background dataset for amino acid germline mutations in humans. Since the direction of mutation is known, the amino acid exchange matrix generated from the observed nucleotide variants is asymmetric and the mutabilities of the different amino acids are very different. These differences predominantly reflect preferences for nucleotide mutations in the DNA (especially the high mutation rate of the CpG dinucleotide, which makes arginine mutability very much higher than other amino acids rather than selection imposed by protein structure constraints, although there is evidence for the latter as well. The variants occur predominantly on the surface of proteins (82%, with a slight preference for sites which are more exposed and less well conserved than random. Mutations to functional residues occur about half as often as expected by chance. The disease-associated amino acid variant distributions in OMIM are radically different from those expected on the basis of the 1000 Genomes dataset. The disease-associated variants preferentially occur in more conserved sites, compared to 1000 Genomes mutations. Many of the amino acid exchange profiles appear to exhibit an anti-correlation, with common exchanges in one dataset being rare in the other. Disease-associated variants exhibit more extreme differences in amino acid size and hydrophobicity. More modelling of the mutational processes at the nucleotide level is needed, but these observations should contribute to an improved prediction of the effects of specific variants in humans.

  19. Locus Reference Genomic sequences: An improved basis for describing human DNA variants

    KAUST Repository

    Dalgleish, Raymond; Flicek, Paul; Cunningham, Fiona; Astashyn, Alex; Tully, Raymond E; Proctor, Glenn; Chen, Yuan; McLaren, William M; Larsson, Pontus; Vaughan, Brendan W; Bé roud, Christophe; Dobson, Glen; Lehvä slaiho, Heikki; Taschner, Peter EM; den Dunnen, Johan T; Devereau, Andrew; Birney, Ewan; Brookes, Anthony J; Maglott, Donna R

    2010-01-01

    As our knowledge of the complexity of gene architecture grows, and we increase our understanding of the subtleties of gene expression, the process of accurately describing disease-causing gene variants has become increasingly problematic. In part, this is due to current reference DNA sequence formats that do not fully meet present needs. Here we present the Locus Reference Genomic (LRG) sequence format, which has been designed for the specifi c purpose of gene variant reporting. The format builds on the successful National Center for Biotechnology Information (NCBI) RefSeqGene project and provides a single-fi le record containing a uniquely stable reference DNA sequence along with all relevant transcript and protein sequences essential to the description of gene variants. In principle, LRGs can be created for any organism, not just human. In addition, we recognize the need to respect legacy numbering systems for exons and amino acids and the LRG format takes account of these. We hope that widespread adoption of LRGs - which will be created and maintained by the NCBI and the European Bioinformatics Institute (EBI) - along with consistent use of the Human Genome Variation Society (HGVS)- approved variant nomenclature will reduce errors in the reporting of variants in the literature and improve communication about variants aff ecting human health. Further information can be found on the LRG web site (http://www.lrg-sequence.org). 2010 Dalgleish et al.; licensee BioMed Central Ltd.

  20. Locus Reference Genomic sequences: An improved basis for describing human DNA variants

    KAUST Repository

    Dalgleish, Raymond

    2010-04-15

    As our knowledge of the complexity of gene architecture grows, and we increase our understanding of the subtleties of gene expression, the process of accurately describing disease-causing gene variants has become increasingly problematic. In part, this is due to current reference DNA sequence formats that do not fully meet present needs. Here we present the Locus Reference Genomic (LRG) sequence format, which has been designed for the specifi c purpose of gene variant reporting. The format builds on the successful National Center for Biotechnology Information (NCBI) RefSeqGene project and provides a single-fi le record containing a uniquely stable reference DNA sequence along with all relevant transcript and protein sequences essential to the description of gene variants. In principle, LRGs can be created for any organism, not just human. In addition, we recognize the need to respect legacy numbering systems for exons and amino acids and the LRG format takes account of these. We hope that widespread adoption of LRGs - which will be created and maintained by the NCBI and the European Bioinformatics Institute (EBI) - along with consistent use of the Human Genome Variation Society (HGVS)- approved variant nomenclature will reduce errors in the reporting of variants in the literature and improve communication about variants aff ecting human health. Further information can be found on the LRG web site (http://www.lrg-sequence.org). 2010 Dalgleish et al.; licensee BioMed Central Ltd.

  1. A genomic point-of-view on environmental factors influencing the human brain methylome.

    Science.gov (United States)

    LaSalle, Janine M

    2011-07-01

    The etiologic paradigm of complex human disorders such as autism is that genetic and environmental risk factors are independent and additive, but the interactive effects at the epigenetic interface are largely ignored. Genomic technologies have radically changed perspective on the human genome and how the epigenetic interface may impact complex human disorders. Here, I review recent genomic, environmental, and epigenetic findings that suggest a new paradigm of "integrative genomics" in which genetic variation in genomic size may be impacted by dietary and environmental factors that influence the genomic saturation of DNA methylation. Human genomes are highly repetitive, but the interface of large-scale genomic differences with environmental factors that alter the DNA methylome such as dietary folate is under-explored. In addition to obvious direct effects of some environmental toxins on the genome by causing chromosomal breaks, non-mutagenic toxin exposures correlate with DNA hypomethylation that can lead to rearrangements between repeats or increased retrotransposition. Since human neurodevelopment appears to be particularly sensitive to alterations in epigenetic pathways, a further focus will be on how developing neurons may be particularly impacted by even subtle alterations to DNA methylation and proposing new directions towards understanding the quixotic etiology of autism by integrative genomic approaches.

  2. A BAC clone fingerprinting approach to the detection of human genome rearrangements

    Science.gov (United States)

    Krzywinski, Martin; Bosdet, Ian; Mathewson, Carrie; Wye, Natasja; Brebner, Jay; Chiu, Readman; Corbett, Richard; Field, Matthew; Lee, Darlene; Pugh, Trevor; Volik, Stas; Siddiqui, Asim; Jones, Steven; Schein, Jacquie; Collins, Collin; Marra, Marco

    2007-01-01

    We present a method, called fingerprint profiling (FPP), that uses restriction digest fingerprints of bacterial artificial chromosome clones to detect and classify rearrangements in the human genome. The approach uses alignment of experimental fingerprint patterns to in silico digests of the sequence assembly and is capable of detecting micro-deletions (1-5 kb) and balanced rearrangements. Our method has compelling potential for use as a whole-genome method for the identification and characterization of human genome rearrangements. PMID:17953769

  3. Progress on the HUPO Draft Human Proteome: 2017 Metrics of the Human Proteome Project.

    Science.gov (United States)

    Omenn, Gilbert S; Lane, Lydie; Lundberg, Emma K; Overall, Christopher M; Deutsch, Eric W

    2017-12-01

    The Human Proteome Organization (HUPO) Human Proteome Project (HPP) continues to make progress on its two overall goals: (1) completing the protein parts list, with an annual update of the HUPO draft human proteome, and (2) making proteomics an integrated complement to genomics and transcriptomics throughout biomedical and life sciences research. neXtProt version 2017-01-23 has 17 008 confident protein identifications (Protein Existence [PE] level 1) that are compliant with the HPP Guidelines v2.1 ( https://hupo.org/Guidelines ), up from 13 664 in 2012-12 and 16 518 in 2016-04. Remaining to be found by mass spectrometry and other methods are 2579 "missing proteins" (PE2+3+4), down from 2949 in 2016. PeptideAtlas 2017-01 has 15 173 canonical proteins, accounting for nearly all of the 15 290 PE1 proteins based on MS data. These resources have extensive data on PTMs, single amino acid variants, and splice isoforms. The Human Protein Atlas v16 has 10 492 highly curated protein entries with tissue and subcellular spatial localization of proteins and transcript expression. Organ-specific popular protein lists have been generated for broad use in quantitative targeted proteomics using SRM-MS or DIA-SWATH-MS studies of biology and disease.

  4. Human genome-microbiome interaction: metagenomics frontiers for the aetiopathology of autoimmune diseases.

    Science.gov (United States)

    Gundogdu, Aycan; Nalbantoglu, Ufuk

    2017-04-01

    A short while ago, the human genome and microbiome were analysed simultaneously for the first time as a multi-omic approach. The analyses of heterogeneous population cohorts showed that microbiome components were associated with human genome variations. In-depth analysis of these results reveals that the majority of those relationships are between immune pathways and autoimmune disease-associated microbiome components. Thus, it can be hypothesized that autoimmunity may be associated with homeostatic disequilibrium of the human-microbiome interactome. Further analysis of human genome-human microbiome relationships in disease contexts with tailored systems biology approaches may yield insights into disease pathogenesis and prognosis.

  5. Full genome sequences and molecular characterization of tick-borne encephalitis virus strains isolated from human patients

    Czech Academy of Sciences Publication Activity Database

    Formanová, P.; Černý, Jiří; Černá Bolfíková, B.; Valdés, James J.; Kozlová, I.; Dzhioev, Y.; Růžek, Daniel

    2015-01-01

    Roč. 6, č. 1 (2015), s. 38-46 ISSN 1877-959X R&D Projects: GA ČR GAP502/11/2116; GA ČR GAP302/12/2490 Institutional support: RVO:60077344 Keywords : tick-borne encephalitis virus * tick-borne encephalitis * genome analysis * human patient s Subject RIV: EE - Microbiology, Virology Impact factor: 2.690, year: 2015

  6. Standard development at the Human Variome Project.

    Science.gov (United States)

    Smith, Timothy D; Vihinen, Mauno

    2015-01-01

    The Human Variome Project (HVP) is a world organization working towards facilitating the collection, curation, interpretation and free and open sharing of genetic variation information. A key component of HVP activities is the development of standards and guidelines. HVP Standards are systems, procedures and technologies that the HVP Consortium has determined must be used by HVP-affiliated data sharing infrastructure and should be used by the broader community. HVP guidelines are considered to be beneficial for HVP affiliated data sharing infrastructure and the broader community to adopt. The HVP also maintains a process for assessing systems, processes and tools that implement HVP Standards and Guidelines. Recommended System Status is an accreditation process designed to encourage the adoption of HVP Standards and Guidelines. Here, we describe the HVP standards development process and discuss the accepted standards, guidelines and recommended systems as well as those under acceptance. Certain HVP Standards and Guidelines are already widely adopted by the community and there are committed users for the others. © The Author(s) 2015. Published by Oxford University Press.

  7. A Genomics-Based Classification of Human Lung Tumors

    NARCIS (Netherlands)

    Seidel, Danila; Zander, Thomas; Heukamp, Lukas C.; Peifer, Martin; Bos, Marc; Fernandez-Cuesta, Lynnette; Leenders, Frauke; Lu, Xin; Ansen, Sascha; Gardizi, Masyar; Nguyen, Chau; Berg, Johannes; Russell, Prudence; Wainer, Zoe; Schildhaus, Hans-Ulrich; Rogers, Toni-Maree; Solomon, Benjamin; Pao, William; Carter, Scott L.; Getz, Gad; Hayes, D. Neil; Wilkerson, Matthew D.; Thunnissen, Erik; Travis, William D.; Perner, Sven; Wright, Gavin; Brambilla, Elisabeth; Buettner, Reinhard; Wolf, Juergen; Thomas, Roman; Gabler, Franziska; Wilkening, Ines; Mueller, Christian; Dahmen, Ilona; Menon, Roopika; Koenig, Katharina; Albus, Kerstin; Merkelbach-Bruse, Sabine; Fassunke, Jana; Schmitz, Katja; Kuenstlinger, Helen; Kleine, Michaela; Binot, Elke; Querings, Silvia; Altmueller, Janine; Boessmann, Ingelore; Nuemberg, Peter; Schneider, Peter; Groen, Harry; Timens, Wim

    2013-01-01

    We characterized genome alterations in 1255 clinically annotated lung tumors of all histological subgroups to identify genetically defined and clinically relevant subtypes. More than 55% of all cases had at least one oncogenic genome alteration potentially amenable to specific therapeutic

  8. Parallel or convergent evolution in human population genomic data revealed by genotype networks.

    Science.gov (United States)

    R Vahdati, Ali; Wagner, Andreas

    2016-08-02

    Genotype networks are representations of genetic variation data that are complementary to phylogenetic trees. A genotype network is a graph whose nodes are genotypes (DNA sequences) with the same broadly defined phenotype. Two nodes are connected if they differ in some minimal way, e.g., in a single nucleotide. We analyze human genome variation data from the 1,000 genomes project, and construct haploid genotype (haplotype) networks for 12,235 protein coding genes. The structure of these networks varies widely among genes, indicating different patterns of variation despite a shared evolutionary history. We focus on those genes whose genotype networks show many cycles, which can indicate homoplasy, i.e., parallel or convergent evolution, on the sequence level. For 42 genes, the observed number of cycles is so large that it cannot be explained by either chance homoplasy or recombination. When analyzing possible explanations, we discovered evidence for positive selection in 21 of these genes and, in addition, a potential role for constrained variation and purifying selection. Balancing selection plays at most a small role. The 42 genes with excess cycles are enriched in functions related to immunity and response to pathogens. Genotype networks are representations of genetic variation data that can help understand unusual patterns of genomic variation.

  9. Whole genome analysis of Klebsiella pneumoniae T2-1-1 from human oral cavity

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2016-03-01

    Full Text Available Klebsiella pneumoniae T2-1-1 was isolated from the human tongue debris and subjected to whole genome sequencing on HiSeq platform and annotated on RAST. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession JAQL00000000. Keywords: Human tongue surface, Oral cavity, Oral bacteria, Virulence

  10. Human-specific protein isoforms produced by novel splice sites in the human genome after the human-chimpanzee divergence

    Directory of Open Access Journals (Sweden)

    Kim Dong Seon

    2012-11-01

    Full Text Available Abstract Background Evolution of splice sites is a well-known phenomenon that results in transcript diversity during human evolution. Many novel splice sites are derived from repetitive elements and may not contribute to protein products. Here, we analyzed annotated human protein-coding exons and identified human-specific splice sites that arose after the human-chimpanzee divergence. Results We analyzed multiple alignments of the annotated human protein-coding exons and their respective orthologous mammalian genome sequences to identify 85 novel splice sites (50 splice acceptors and 35 donors in the human genome. The novel protein-coding exons, which are expressed either constitutively or alternatively, produce novel protein isoforms by insertion, deletion, or frameshift. We found three cases in which the human-specific isoform conferred novel molecular function in the human cells: the human-specific IMUP protein isoform induces apoptosis of the trophoblast and is implicated in pre-eclampsia; the intronization of a part of SMOX gene exon produces inactive spermine oxidase; the human-specific NUB1 isoform shows reduced interaction with ubiquitin-like proteins, possibly affecting ubiquitin pathways. Conclusions Although the generation of novel protein isoforms does not equate to adaptive evolution, we propose that these cases are useful candidates for a molecular functional study to identify proteomic changes that might bring about novel phenotypes during human evolution.

  11. The RadGenomics project. Prediction for radio-susceptibility of individuals with genetic predisposition

    International Nuclear Information System (INIS)

    Imai, Takashi

    2003-01-01

    The ultimate goal of our project, named RadGenomics, is to elucidate the heterogeneity of the response to ionizing radiation arising from genetic variation among individuals, for the purpose of developing personalized radiation therapy regimens for cancer patients. Cancer patients exhibit patient-to-patient variability in normal tissue reactions after radiotherapy. Several observations support the hypothesis that the radiosensitivity of normal tissue is influenced by genetic factors. The rapid progression of human genome sequencing and the recent development of new technologies in molecular biology are providing new opportunities for elucidating the genetic basis of individual differences in susceptibility to radiation exposure. The development of a sufficiently robust, predictive assay enabling individual dose adjustment would improve the outcome of radiation therapy in patients. Our strategy for identification of DNA polymorphisms that contribute to the individual radiosensitivity is as follows. First, we have been categorizing DNA samples obtained from cancer patients, who have been kindly introduced to us through many collaborators, according to their clinical characteristics including the method and effect of treatment and side effects as scored by toxicity criteria, and also the result of an in vitro radiosensitivity assay, e.g., the micronuclei assay of their lymphocytes. Second, we have identified candidate genes for genotyping mainly by using our custom-designed oligonucleotide array with RNA samples, in which the probes were obtained from more than 40 cancer and 3 fibroblast cell lines whose radiosensitivity level was quite heterogeneous. We have also been studying the modification of proteins after irradiation of cells which may be caused by mainly phosphorylation or dephosphorylation, using mass spectrometry. Genes encoding the modified proteins and/or other proteins with which they interact such as specific protein kinases and phosphatases are also

  12. Functional assessment of human enhancer activities using whole-genome STARR-sequencing.

    Science.gov (United States)

    Liu, Yuwen; Yu, Shan; Dhiman, Vineet K; Brunetti, Tonya; Eckart, Heather; White, Kevin P

    2017-11-20

    Genome-wide quantification of enhancer activity in the human genome has proven to be a challenging problem. Recent efforts have led to the development of powerful tools for enhancer quantification. However, because of genome size and complexity, these tools have yet to be applied to the whole human genome.  In the current study, we use a human prostate cancer cell line, LNCaP as a model to perform whole human genome STARR-seq (WHG-STARR-seq) to reliably obtain an assessment of enhancer activity. This approach builds upon previously developed STARR-seq in the fly genome and CapSTARR-seq techniques in targeted human genomic regions. With an improved library preparation strategy, our approach greatly increases the library complexity per unit of starting material, which makes it feasible and cost-effective to explore the landscape of regulatory activity in the much larger human genome. In addition to our ability to identify active, accessible enhancers located in open chromatin regions, we can also detect sequences with the potential for enhancer activity that are located in inaccessible, closed chromatin regions. When treated with the histone deacetylase inhibitor, Trichostatin A, genes nearby this latter class of enhancers are up-regulated, demonstrating the potential for endogenous functionality of these regulatory elements. WHG-STARR-seq provides an improved approach to current pipelines for analysis of high complexity genomes to gain a better understanding of the intricacies of transcriptional regulation.

  13. Genome-wide binding and transcriptome analysis of human farnesoid X receptor in primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Le Zhan

    Full Text Available Farnesoid X receptor (FXR, NR1H4 is a ligand-activated transcription factor, belonging to the nuclear receptor superfamily. FXR is highly expressed in the liver and is essential in regulating bile acid homeostasis. FXR deficiency is implicated in numerous liver diseases and mice with modulation of FXR have been used as animal models to study liver physiology and pathology. We have reported genome-wide binding of FXR in mice by chromatin immunoprecipitation - deep sequencing (ChIP-seq, with results indicating that FXR may be involved in regulating diverse pathways in liver. However, limited information exists for the functions of human FXR and the suitability of using murine models to study human FXR functions.In the current study, we performed ChIP-seq in primary human hepatocytes (PHHs treated with a synthetic FXR agonist, GW4064 or DMSO control. In parallel, RNA deep sequencing (RNA-seq and RNA microarray were performed for GW4064 or control treated PHHs and wild type mouse livers, respectively.ChIP-seq showed similar profiles of genome-wide FXR binding in humans and mice in terms of motif analysis and pathway prediction. However, RNA-seq and microarray showed more different transcriptome profiles between PHHs and mouse livers upon GW4064 treatment.In summary, we have established genome-wide human FXR binding and transcriptome profiles. These results will aid in determining the human FXR functions, as well as judging to what level the mouse models could be used to study human FXR functions.

  14. The complete genome sequence and analysis of the human pathogen Campylobacter lari

    DEFF Research Database (Denmark)

    Miller, WG; Wang, G; Binnewies, Tim Terence

    2008-01-01

    Campylobacter lari is a member of the epsilon subdivision of the Proteobacteria and is part of the thermotolerant Campylobacter group, a clade that includes the human pathogen C. jejuni. Here we present the complete genome sequence of the human clinical isolate, C. lari RM2100. The genome of strain...... RM2100 is approximately 1.53 Mb and includes the 46 kb megaplasmid pCL2100. Also present within the strain RM2100 genome is a 36 kb putative prophage, termed CLIE1, which is similar to CJIE4, a putative prophage present within the C. jejuni RM1221 genome. Nearly all (90%) of the gene content...... in strain RM2100 is similar to genes present in the genomes of other characterized thermotolerant campylobacters. However, several genes involved in amino acid biosynthesis and energy metabolism, identified previously in other Campylobacter genomes, are absent from the C. lari RM2100 genome. Therefore, C...

  15. 137 ancient human genomes from across the Eurasian steppes.

    Science.gov (United States)

    Damgaard, Peter de Barros; Marchi, Nina; Rasmussen, Simon; Peyrot, Michaël; Renaud, Gabriel; Korneliussen, Thorfinn; Moreno-Mayar, J Víctor; Pedersen, Mikkel Winther; Goldberg, Amy; Usmanova, Emma; Baimukhanov, Nurbol; Loman, Valeriy; Hedeager, Lotte; Pedersen, Anders Gorm; Nielsen, Kasper; Afanasiev, Gennady; Akmatov, Kunbolot; Aldashev, Almaz; Alpaslan, Ashyk; Baimbetov, Gabit; Bazaliiskii, Vladimir I; Beisenov, Arman; Boldbaatar, Bazartseren; Boldgiv, Bazartseren; Dorzhu, Choduraa; Ellingvag, Sturla; Erdenebaatar, Diimaajav; Dajani, Rana; Dmitriev, Evgeniy; Evdokimov, Valeriy; Frei, Karin M; Gromov, Andrey; Goryachev, Alexander; Hakonarson, Hakon; Hegay, Tatyana; Khachatryan, Zaruhi; Khaskhanov, Ruslan; Kitov, Egor; Kolbina, Alina; Kubatbek, Tabaldiev; Kukushkin, Alexey; Kukushkin, Igor; Lau, Nina; Margaryan, Ashot; Merkyte, Inga; Mertz, Ilya V; Mertz, Viktor K; Mijiddorj, Enkhbayar; Moiyesev, Vyacheslav; Mukhtarova, Gulmira; Nurmukhanbetov, Bekmukhanbet; Orozbekova, Z; Panyushkina, Irina; Pieta, Karol; Smrčka, Václav; Shevnina, Irina; Logvin, Andrey; Sjögren, Karl-Göran; Štolcová, Tereza; Tashbaeva, Kadicha; Tkachev, Alexander; Tulegenov, Turaly; Voyakin, Dmitriy; Yepiskoposyan, Levon; Undrakhbold, Sainbileg; Varfolomeev, Victor; Weber, Andrzej; Kradin, Nikolay; Allentoft, Morten E; Orlando, Ludovic; Nielsen, Rasmus; Sikora, Martin; Heyer, Evelyne; Kristiansen, Kristian; Willerslev, Eske

    2018-05-09

    For thousands of years the Eurasian steppes have been a centre of human migrations and cultural change. Here we sequence the genomes of 137 ancient humans (about 1× average coverage), covering a period of 4,000 years, to understand the population history of the Eurasian steppes after the Bronze Age migrations. We find that the genetics of the Scythian groups that dominated the Eurasian steppes throughout the Iron Age were highly structured, with diverse origins comprising Late Bronze Age herders, European farmers and southern Siberian hunter-gatherers. Later, Scythians admixed with the eastern steppe nomads who formed the Xiongnu confederations, and moved westward in about the second or third century BC, forming the Hun traditions in the fourth-fifth century AD, and carrying with them plague that was basal to the Justinian plague. These nomads were further admixed with East Asian groups during several short-term khanates in the Medieval period. These historical events transformed the Eurasian steppes from being inhabited by Indo-European speakers of largely West Eurasian ancestry to the mostly Turkic-speaking groups of the present day, who are primarily of East Asian ancestry.

  16. Meta genome-wide network from functional linkages of genes in human gut microbial ecosystems.

    Science.gov (United States)

    Ji, Yan; Shi, Yixiang; Wang, Chuan; Dai, Jianliang; Li, Yixue

    2013-03-01

    The human gut microbial ecosystem (HGME) exerts an important influence on the human health. In recent researches, meta-genomics provided deep insights into the HGME in terms of gene contents, metabolic processes and genome constitutions of meta-genome. Here we present a novel methodology to investigate the HGME on the basis of a set of functionally coupled genes regardless of their genome origins when considering the co-evolution properties of genes. By analyzing these coupled genes, we showed some basic properties of HGME significantly associated with each other, and further constructed a protein interaction map of human gut meta-genome to discover some functional modules that may relate with essential metabolic processes. Compared with other studies, our method provides a new idea to extract basic function elements from meta-genome systems and investigate complex microbial environment by associating its biological traits with co-evolutionary fingerprints encoded in it.

  17. Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis.

    Directory of Open Access Journals (Sweden)

    Christopher A Desjardins

    2011-10-01

    Full Text Available Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18 and one strain of Paracoccidioides lutzii (Pb01. These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic

  18. Identification of balanced chromosomal rearrangements previously unknown among participants in the 1000 Genomes Project: implications for interpretation of structural variation in genomes and the future of clinical cytogenetics.

    Science.gov (United States)

    Dong, Zirui; Wang, Huilin; Chen, Haixiao; Jiang, Hui; Yuan, Jianying; Yang, Zhenjun; Wang, Wen-Jing; Xu, Fengping; Guo, Xiaosen; Cao, Ye; Zhu, Zhenzhen; Geng, Chunyu; Cheung, Wan Chee; Kwok, Yvonne K; Yang, Huanming; Leung, Tak Yeung; Morton, Cynthia C; Cheung, Sau Wai; Choy, Kwong Wai

    2017-11-02

    PurposeRecent studies demonstrate that whole-genome sequencing enables detection of cryptic rearrangements in apparently balanced chromosomal rearrangements (also known as balanced chromosomal abnormalities, BCAs) previously identified by conventional cytogenetic methods. We aimed to assess our analytical tool for detecting BCAs in the 1000 Genomes Project without knowing which bands were affected.MethodsThe 1000 Genomes Project provides an unprecedented integrated map of structural variants in phenotypically normal subjects, but there is no information on potential inclusion of subjects with apparent BCAs akin to those traditionally detected in diagnostic cytogenetics laboratories. We applied our analytical tool to 1,166 genomes from the 1000 Genomes Project with sufficient physical coverage (8.25-fold).ResultsWith this approach, we detected four reciprocal balanced translocations and four inversions, ranging in size from 57.9 kb to 13.3 Mb, all of which were confirmed by cytogenetic methods and polymerase chain reaction studies. One of these DNAs has a subtle translocation that is not readily identified by chromosome analysis because of the similarity of the banding patterns and size of exchanged segments, and another results in disruption of all transcripts of an OMIM gene.ConclusionOur study demonstrates the extension of utilizing low-pass whole-genome sequencing for unbiased detection of BCAs including translocations and inversions previously unknown in the 1000 Genomes Project.GENETICS in MEDICINE advance online publication, 2 November 2017; doi:10.1038/gim.2017.170.

  19. Getting ready for the Human Phenome Project: the 2012 forum of the Human Variome Project.

    Science.gov (United States)

    Oetting, William S; Robinson, Peter N; Greenblatt, Marc S; Cotton, Richard G; Beck, Tim; Carey, John C; Doelken, Sandra C; Girdea, Marta; Groza, Tudor; Hamilton, Carol M; Hamosh, Ada; Kerner, Berit; MacArthur, Jacqueline A L; Maglott, Donna R; Mons, Barend; Rehm, Heidi L; Schofield, Paul N; Searle, Beverly A; Smedley, Damian; Smith, Cynthia L; Bernstein, Inge Thomsen; Zankl, Andreas; Zhao, Eric Y

    2013-04-01

    A forum of the Human Variome Project (HVP) was held as a satellite to the 2012 Annual Meeting of the American Society of Human Genetics in San Francisco, California. The theme of this meeting was "Getting Ready for the Human Phenome Project." Understanding the genetic contribution to both rare single-gene "Mendelian" disorders and more complex common diseases will require integration of research efforts among many fields and better defined phenotypes. The HVP is dedicated to bringing together researchers and research populations throughout the world to provide the resources to investigate the impact of genetic variation on disease. To this end, there needs to be a greater sharing of phenotype and genotype data. For this to occur, many databases that currently exist will need to become interoperable to allow for the combining of cohorts with similar phenotypes to increase statistical power for studies attempting to identify novel disease genes or causative genetic variants. Improved systems and tools that enhance the collection of phenotype data from clinicians are urgently needed. This meeting begins the HVP's effort toward this important goal. © 2013 Wiley Periodicals, Inc.

  20. Environmental Medicine Genome Bank (EMGB): Current Composition

    National Research Council Canada - National Science Library

    Sonna, Larry

    2000-01-01

    The USARIEM Environmental Medicine Genome Bank (EMGB) project is an ongoing effort to identify and characterize genes relevant to environmental injuries and illnesses and to human physical performance...