WorldWideScience

Sample records for human gene map

  1. Identifying human disease genes through cross-species gene mapping of evolutionary conserved processes.

    Directory of Open Access Journals (Sweden)

    Martin Poot

    2011-05-01

    Full Text Available Understanding complex networks that modulate development in humans is hampered by genetic and phenotypic heterogeneity within and between populations. Here we present a method that exploits natural variation in highly diverse mouse genetic reference panels in which genetic and environmental factors can be tightly controlled. The aim of our study is to test a cross-species genetic mapping strategy, which compares data of gene mapping in human patients with functional data obtained by QTL mapping in recombinant inbred mouse strains in order to prioritize human disease candidate genes.We exploit evolutionary conservation of developmental phenotypes to discover gene variants that influence brain development in humans. We studied corpus callosum volume in a recombinant inbred mouse panel (C57BL/6J×DBA/2J, BXD strains using high-field strength MRI technology. We aligned mouse mapping results for this neuro-anatomical phenotype with genetic data from patients with abnormal corpus callosum (ACC development.From the 61 syndromes which involve an ACC, 51 human candidate genes have been identified. Through interval mapping, we identified a single significant QTL on mouse chromosome 7 for corpus callosum volume with a QTL peak located between 25.5 and 26.7 Mb. Comparing the genes in this mouse QTL region with those associated with human syndromes (involving ACC and those covered by copy number variations (CNV yielded a single overlap, namely HNRPU in humans and Hnrpul1 in mice. Further analysis of corpus callosum volume in BXD strains revealed that the corpus callosum was significantly larger in BXD mice with a B genotype at the Hnrpul1 locus than in BXD mice with a D genotype at Hnrpul1 (F = 22.48, p<9.87*10(-5.This approach that exploits highly diverse mouse strains provides an efficient and effective translational bridge to study the etiology of human developmental disorders, such as autism and schizophrenia.

  2. The mapping of novel genes to human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Buenaventura, J.M. [Sarah Lawrence College, Bronxville, NY (United States)

    1994-12-01

    The principle goal of our laboratory is the discovery of new genes on human chromosome 19. One of the strategies to achieve this goal is through the use of cDNA clones known as {open_quotes}expressed sequence tags{close_quotes} (ESTs). ESTs, short segments of sequence from a cDNA clone that correspond to the mRNA, occur as unique regions in the genome and, therefore, can be used as markers for specific positions. In collaboration with researchers from Genethon in France, fifteen cDNA clones from a normalized human infant brain cDNA library were tested and determined to map to chromosome 19. A verification procedure is then followed to confirm assignment to chromosome 19. First, primers for each cDNA clone are developed and then amplified by polymerase chain reaction from genomic DNA. Next, a {sup 32}P-radiolabeled probe is made by polymerase chain reaction for each clone and then hybridized against filters containing an LLNL chromosome 19-specific cosmid library to find putative locations on the chromosome. The location is then verified by running a polymerase chain reactions from the positive cosmids. With the Browser database at LLNL, additional information about the positive cosmids can be found. Through use of the BLAST database at the National Library of Medicine, homologous sequences to the clones can be found. Among the fifteen cDNA clones received from Genethon, all have been amplified by polymerase chain reaction. Three have turned out as repetitive elements in the genome. Ten have been mapped to specific locations on chromosome 19. Putative locations have been found for the remaining two clones and thus verification testing will proceed.

  3. Mapping and annotating obesity-related genes in pig and human genomes.

    Science.gov (United States)

    Martelli, Pier Luigi; Fontanesi, Luca; Piovesan, Damiano; Fariselli, Piero; Casadio, Rita

    2014-01-01

    Background. Obesity is a major health problem in both developed and emerging countries. Obesity is a complex disease whose etiology involves genetic factors in strong interplay with environmental determinants and lifestyle. The discovery of genetic factors and biological pathways underlying human obesity is hampered by the difficulty in controlling the genetic background of human cohorts. Animal models are then necessary to further dissect the genetics of obesity. Pig has emerged as one of the most attractive models, because of the similarity with humans in the mechanisms regulating the fat deposition. Results. We collected the genes related to obesity in humans and to fat deposition traits in pig. We localized them on both human and pig genomes, building a map useful to interpret comparative studies on obesity. We characterized the collected genes structurally and functionally with BAR+ and mapped them on KEGG pathways and on STRING protein interaction network. Conclusions. The collected set consists of 361 obesity related genes in human and pig genomes. All genes were mapped on the human genome, and 54 could not be localized on the pig genome (release 2012). Only for 3 human genes there is no counterpart in pig, confirming that this animal is a good model for human obesity studies. Obesity related genes are mostly involved in regulation and signaling processes/pathways and relevant connection emerges between obesity-related genes and diseases such as cancer and infectious diseases.

  4. Regional mapping of the phenylalanine hydroxylase gene and the phenylketonuria locus in the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Lidsky, A.S.; Law, M.L.; Morse, H.G.; Kao, F.T.; Rabin, M.; Ruddle, F.H.; Woo, S.L.C.

    1985-09-01

    Phenylketonuria (PKU) is an autosomal recessive disorder of amino acid metabolism caused by a deficiency of the hepatic enzyme phenylalanine hydroxylase. To define the regional map position of the disease locus and the PAH gene on human chromosome 12, DNA was isolated from human-hamster somatic cell hybrids with various deletions of human chromosome 12 and was analyzed by Southern blot analysis using the human cDNA PAH clone as a hybridization probe. From these results, together with detailed biochemical and cytogenetic characterization of the hybrid cells, the region on chromosome 12 containing the human PAH gene has been defined as 12q14.3..-->..qter. The PAH map position on chromosome 12 was further localized by in situ hybridization of /sup 125/I-labeled human PAH cDNA to chromosomes prepared from a human lymphoblastoid cell line. Results of these experiments demonstrated that the region on chromosome 12 containing the PAH gene and the PKU locus in man is 12q22..-->..12q24.1. These results not only provide a regionalized map position for a major human disease locus but also can serve as a reference point for linkage analysis with other DNA markers on human chromosome 12.

  5. Regional mapping of the phenylalanine hydroxylase gene and the phenylketonuria locus in the human genome

    International Nuclear Information System (INIS)

    Lidsky, A.S.; Law, M.L.; Morse, H.G.; Kao, F.T.; Rabin, M.; Ruddle, F.H.; Woo, S.L.C.

    1985-01-01

    Phenylketonuria (PKU) is an autosomal recessive disorder of amino acid metabolism caused by a deficiency of the hepatic enzyme phenylalanine hydroxylase. To define the regional map position of the disease locus and the PAH gene on human chromosome 12, DNA was isolated from human-hamster somatic cell hybrids with various deletions of human chromosome 12 and was analyzed by Southern blot analysis using the human cDNA PAH clone as a hybridization probe. From these results, together with detailed biochemical and cytogenetic characterization of the hybrid cells, the region on chromosome 12 containing the human PAH gene has been defined as 12q14.3→qter. The PAH map position on chromosome 12 was further localized by in situ hybridization of 125 I-labeled human PAH cDNA to chromosomes prepared from a human lymphoblastoid cell line. Results of these experiments demonstrated that the region on chromosome 12 containing the PAH gene and the PKU locus in man is 12q22→12q24.1. These results not only provide a regionalized map position for a major human disease locus but also can serve as a reference point for linkage analysis with other DNA markers on human chromosome 12

  6. Coverage and characteristics of the Affymetrix GeneChip Human Mapping 100K SNP set.

    Directory of Open Access Journals (Sweden)

    2006-05-01

    Full Text Available Improvements in technology have made it possible to conduct genome-wide association mapping at costs within reach of academic investigators, and experiments are currently being conducted with a variety of high-throughput platforms. To provide an appropriate context for interpreting results of such studies, we summarize here results of an investigation of one of the first of these technologies to be publicly available, the Affymetrix GeneChip Human Mapping 100K set of single nucleotide polymorphisms (SNPs. In a systematic analysis of the pattern and distribution of SNPs in the Mapping 100K set, we find that SNPs in this set are undersampled from coding regions (both nonsynonymous and synonymous and oversampled from regions outside genes, relative to SNPs in the overall HapMap database. In addition, we utilize a novel multilocus linkage disequilibrium (LD coefficient based on information content (analogous to the information content scores commonly used for linkage mapping that is equivalent to the familiar measure r2 in the special case of two loci. Using this approach, we are able to summarize for any subset of markers, such as the Affymetrix Mapping 100K set, the information available for association mapping in that subset, relative to the information available in the full set of markers included in the HapMap, and highlight circumstances in which this multilocus measure of LD provides substantial additional insight about the haplotype structure in a region over pairwise measures of LD.

  7. Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B

    International Nuclear Information System (INIS)

    Brown-Shimer, S.; Johnson, K.A.; Bruskin, A.; Green, N.R.; Hill, D.E.; Lawrence, J.B.; Johnson, C.

    1990-01-01

    The inactivation of growth suppressor genes appears to play a major role in the malignant process. To assess whether protein phosphotyrosyl phosphatases function as growth suppressors, the authors have isolated a cDNA clone encoding human protein phosphotyrosyl phosphatase 1B for structural and functional characterization. The translation product deduced from the 1,305-nucleotide open reading frame predicts a protein containing 435 amino acids and having a molecular mass of 49,966 Da. The amino-terminal 321 amino acids deduced from the cDNA sequence are identical to the empirically determined sequence of protein phosphotyrosyl phosphatase 1B. A genomic clone has been isolated and used in an in situ hybridization to banded metaphase chromosomes to determine that the gene encoding protein phosphotyrosyl phosphatase 1B maps as a single-copy gene to the long arm of chromosome 20 in the region q13.1-q13.2

  8. Mapping of repair genes

    International Nuclear Information System (INIS)

    Hori, Tadaaki

    1985-01-01

    Chromosome mapping of repair genes involved in U.V. sensitivity is reported. Twenty-three of 25 hybrid cells were resistant to U.V. light. Survival curves of 2 U.V.-resistant cell strains, which possessed mouse chromosomes and human chromosome No.7 - 16, were similar to those of wild strain (L5178Y). On the other hand, survival curves of U.V.-sensitive hybrid cells was analogous to those of Q31. There was a definitive difference in the frequency of inducible chromosome aberrations between U.V. resistant and sensitive mouse-human hybrid cells. U.V.-resistant cell strains possessed the ability of excision repair. Analysis of karyotype in hybrid cells showed that the difference in U.V. sensitivity is dependent upon whether or not human chromosome No.13 is present. Synteny test on esterase D-determining locus confirmed that there is an agreement between the presence of chromosome No.13 and the presence of human esterase D activity. These results led to a conclusion that human genes which compensate recessive character of U.V.-sensitive mutant strain, Q31, with mouse-human hybrid cells are located on the locus of chromosome No.13. (Namekawa, K.)

  9. Human Mind Maps

    Science.gov (United States)

    Glass, Tom

    2016-01-01

    When students generate mind maps, or concept maps, the maps are usually on paper, computer screens, or a blackboard. Human Mind Maps require few resources and little preparation. The main requirements are space where students can move around and a little creativity and imagination. Mind maps can be used for a variety of purposes, and Human Mind…

  10. The ZNF75 zinc finger gene subfamily: Isolation and mapping of the four members in humans and great apes

    Energy Technology Data Exchange (ETDEWEB)

    Villa, A.; Strina, D.; Frattini, A. [Consiglio Nazionale delle Ricerche, Milan (Italy)] [and others

    1996-07-15

    We have previously reported the characterization of the human ZNF75 gene located on Xq26, which has only limited homology (less than 65%) to other ZF genes in the databases. Here, we describe three human zinc finger genes with 86 to 95% homology to ZNF75 at the nucleotide level, which represent all the members of the human ZNF75 subfamily. One of these, ZNF75B, is a pseudogene mapped to chromosome 12q13. The other two, ZNF75A and ZNF75C, maintain on ORF in the sequenced region, and at least the latter is expressed in the U937 cell line. They were mapped to chromosomes 16 and 11, respectively. All these genes are conserved in chimpanzees, gorillas, and orangutans. The ZNF75B homologue is a pseudogene in all three great apes, and in chimpanzee it is located on chromosome 10 (phylogenetic XII), at p13 (corresponding to the human 12q13). The chimpanzee homologue of ZNF75 is also located on the Xq26 chromosome, in the same region, as detected by in situ hybridization. As expected, nucleotide changes were clearly more abundant between human and organutan than between human and chimpanzee or gorilla homologues. Members of the same class were more similar to each other than to the other homologues within the same species. This suggests that the duplication and/or retrotranscription events occurred in a common ancestor long before great ape speciation. This, together with the existance of at least two genes in cows and horses, suggests a relatively high conservation of this gene family. 20 refs., 5 figs., 1 tab.

  11. Isolation, characterization, and mapping of gene encoding dihydrolipoyl succinyltransferase (E2k) of human [alpha]-ketoglutarate dehydrogenase complex

    Energy Technology Data Exchange (ETDEWEB)

    Ali, G.; Cai, Xingang; Sheu, Kwan-Fu R.; Blass, J.P. (Cornell Univ. Medical College, White Plains, NY (United States)); Wasco, W.; Gaston, S.M.; Tanzi, R.E.; Cooper, A.J.L.; Gusella, J.F. (Massachusetts General Hospital, Charleston, MA (United States)); Szabo, P. (Cornell Univ. Medical College, New York, NY (United States))

    1994-03-01

    The authors have isolated and sequenced cDNAs representing the full-length (2987-bp) gene for dihydrolipoyl succinyltransferase (E2k component) of the human [alpha]-ketoglutarate dehydrogenase complex (KHDHC) from a human fetal brain cDNA library. The E2k cDNA was mapped to human chromosome 14 using a somatic cell hybrid panel, and more precisely to band 14q24.3 by in situ hybridization. This cDNA also cross-hybridized to an apparent E2k pseudogene on chromosome 1p31. Northern analysis revealed the E2k gene to be ubiquitously expressed in peripheral tissues and brain. Interestingly, chromosome 14q24.3 has recently been reported to contain gene defects for an early-onset form of familial Alzheimer's disease and for Machado-Joseph disease. Future studies will be necessary to determine whether the E2K gene plays a role in either of these two disorders.

  12. Assignment of the gene for human tetranectin (TNA) to chromosome 3p22-->p21.3 by somatic cell hybrid mapping

    DEFF Research Database (Denmark)

    Durkin, M E; Naylor, S L; Albrechtsen, R

    1997-01-01

    Tetranectin is a plasminogen-binding protein that is induced during the mineralization phase of osteogenesis. By screening a human chromosome 3 somatic cell hybrid mapping panel, we have localized the human tetranectin gene (TNA) to 3p22-->p21.3, which is distinct from the loci of two human...

  13. Cloning of the cDNA for a human homologue of the Drosophila white gene and mapping to chromosome 21q22.3.

    OpenAIRE

    Chen, H.; Rossier, C.; Lalioti, M. D.; Lynn, A.; Chakravarti, A.; Perrin, G.; Antonarakis, S. E.

    1996-01-01

    In an effort to contribute to the transcript map of human chromosome 21 and the understanding of the pathophysiology of trisomy 21, we have used exon trapping to identify fragments of chromosome 21 genes. Two trapped exons, from pools of chromosome 21-specific cosmids, showed homology to the Drosophila white (w) gene. We subsequently cloned the corresponding cDNA for a human homologue of the Drosophila w gene (hW) from human retina and fetal brain cDNA libraries. The gene belongs to the ATP-b...

  14. Neuropeptide Y receptor genes on human chromosome 4q31-q32 map to conserved linkage groups on mouse chromosomes 3 and 8

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, C.M.; Frankel, W.N. [Jackson Lab., Bar Harbor, ME (United States); Richards, J.E. [Univ. of Michigan Medical School, Ann Arbor, MI (United States)] [and others

    1997-05-01

    Npy1r and Npy2r, the genes encoding mouse type 1 and type 2 neuropeptide Y receptors, have been mapped by interspecific backcross analysis. Previous studies have localized the human genes encoding these receptors to chromosome 4q31-q32. We have now assigned Npy1r and Npy2r to conserved linkage groups on mouse Chr 8 and Chr 3, respectively, which correspond to the distal region of human chromosome 4q. Using yeast artificial chromosomes, we have estimated the distance between the human genes to be approximately 6 cM. Although ancient tandem duplication events may account for some closely spaced G-protein-coupled receptor genes, the large genetic distance between the human type 1 and type 2 neuropeptide Y receptor genes raises questions about whether this mechanism accounts for their proximity. 20 refs., 1 fig.

  15. Interference, heterogeneity and disease gene mapping

    Energy Technology Data Exchange (ETDEWEB)

    Keats, B. [Louisiana State Univ. Medical Center, New Orleans, LA (United States)

    1996-12-31

    The Human Genome Project has had a major impact on genetic research over the past five years. The number of mapped genes is now over 3,000 compared with approximately 1,600 in 1989 and only about 260 ten years before that. The realization that extensive variation could be detected in anonymous DNA segments greatly enhanced the potential for mapping by linkage analysis. Previously, linkage studies had depended on polymorphisms that could be detected in red blood cell antigens, proteins (revealed by electrophoresis and isoelectric focusing), and cytogenetic heteromorphisms. The identification of thousands of polymorphic DNA markers throughout the human genome has led to the construction of high density genetic linkage maps. These maps provide the data necessary to test hypotheses concerning differences in recombination rates and levels of interference. They are also important for disease gene mapping because the existence of these genes must be inferred from the phenotype. Showing linkage of a disease gene to a DNA marker is the first step towards isolating the disease gene, determining its protein product, and developing effective therapies. However, interpretation of results is not always straightforward. Factors such as etiological heterogeneity and undetected irregular segregation can lead to confusing linkage results and incorrect conclusions about the locations of disease genes. This paper will discuss these phenomena and present examples that illustrate the problems, as well as approaches to dealing with them. 23 refs., 3 figs., 3 tabs.

  16. European gene mapping project (EUROGEM) : Breakpoint panels for human chromosomes based on the CEPH reference families

    NARCIS (Netherlands)

    Attwood, J; Bryant, SP; Bains, R; Povey, R; Povey, S; Rebello, M; Kapsetaki, M; Moschonas, NK; Grzeschik, KH; Otto, M; Dixon, M; Sudworth, HE; Kooy, RF; Wright, A; Teague, P; Terrenato, L; Vergnaud, G; Monfouilloux, S; Weissenbach, J; Alibert, O; Dib, C; Faure, S; Bakker, E; Pearson, NM; Vossen, RHAM; Gal, A; MuellerMyhsok, B; Cann, HM; Spurr, NK

    Meiotic breakpoint panels for human chromosomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17; 18, 20 and X were constructed from genotypes from the CEPH reference families. Each recombinant chromosome included has a breakpoint well-supported with reference to defined quantitative criteria. The panels

  17. Physical mapping of a commonly deleted region, the site of a candidate tumor suppressor gene, at 12q22 in human male germ cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Murty, V.V.V.S.; Bosl, G.J.; Chaganti, R.S.K. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)] [and others

    1996-08-01

    A candidate tumor suppressor gene (TSG) site at 12q22 characterized by a high frequency of loss of heterozygosity (LOH) and a homozygous deletion has previously (LOH) and a homozygous deletion has previously been reported in human male germ cell tumors (GCTs). In a detailed deletion mapping analysis of 67 normal-tumor DNAs utilizing 20 polymorphic markers mapped to 12q22-q24, we identified the limits of the minimal region of deletion at 12q22 between D12S377 (priximal) and D12S296 (distal). We have constructed a YAC contig map of a 3-cM region of this band between the proximal marker D12S101 and the distal marker D12S346, which contained the minimal region of deletion in GCTs. The map is composed of 53 overlapping YACs and 3 cosmids onto which 25 polymorphic and nonpolymorphic sequence-tagged sites (STSs) were placed in a unique order. The size of the minimal region of deletion was approximately 2 Mb from overlapping, nonchimeric YACs that spanned the region. We also developed a radiation hybrid (RH) map of the region between D12S101 and D12S346 containing 17 loci. The consensus order developed by RH mapping is in good agreement with the YAC STS-content map order. The RH map estimated the distance between D12S101 and D12S346 to be 246 cR{sub 8000} and the minimal region of deletion to be 141 cR{sub 8000}. In addition, four genes that were previously mapped to 12q22 have been excluded as candidate genes. The leads gained from the deletion mapping and physical maps should expedite the isolation and characterization of the TSG at 12q22. 35 refs., 4 figs., 2 tabs.

  18. Tissue-specific expression of the human laminin alpha5-chain, and mapping of the gene to human chromosome 20q13.2-13.3 and to distal mouse chromosome 2 near the locus for the ragged (Ra) mutation

    DEFF Research Database (Denmark)

    Durkin, M E; Loechel, F; Mattei, M G

    1997-01-01

    , heart, lung, skeletal muscle, kidney, and pancreas. The human laminin alpha5-chain gene (LAMA5) was assigned to chromosome 20q13.2-q13.3 by in situ hybridization, and the mouse gene (Lama5) was mapped by linkage analysis to a syntonic region of distal chromosome 2, close to the locus for the ragged (Ra...

  19. Mapping and polymorphism of bovine ghreline gene

    OpenAIRE

    Colinet, Frédéric; Eggen, André; Halleux, Caroline; Arnould, Valérie; Portetelle, Daniel; Renaville, Robert

    2006-01-01

    Bovine ghrelin, a 27-amino-acid peptide has been identified in bovine oxyntic glands of the abomasum. It is an endogenous growth hormone secretagogue. Total mRNA was extracted from abomasum and complete ghrelin mRNA was sequenced by rapid amplification of cDNA ends. The gene contains five exons and four introns with a short noncoding first exon of 17 bp similar to mouse and human ghrelin gene. Using a radiation hybrid panel, the gene was mapped to chromosome 22 near microsat...

  20. A 1.7-Mb YAC contig around the human BDNF gene (11p13): integration of the physical, genetic, and cytogenetic maps in relation to WAGR syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Rosier, M.F.; Martin, A.; Houlgatte, R. [Genetique Moleculaire et Biologie du Development, Villejuif (France)] [and others

    1994-11-01

    WAGR (Wilms tumor, aniridia, genito-urinary abnormalities, mental retardation) syndrome in humans is associated with deletions of the 11p13 region. The brain-derived neurotrophic factor (BDNF) gene maps to this region, and its deletion seems to contribute to the severity of the patient`s mental retardation. Yeast artificial chromosomes (YACs) carrying the BDNF gene have been isolated and characterized. Localization of two known exons of this gene leads to a minimal estimation of its size of about 40 kb. Chimerism of the BDNF YACs has been investigated by fluorescence in situ hybridization and chromosome assignment on somatic cell hybrids. Using the BDNF gene, YAC end sequence tagged sites (STS), and Genethon microsatellite markers, the authors constructed a 1.7-Mb contig and refined the cytogenetic map at 11p13. The resulting integrated physical, genetic, and cytogenetic map constitutes a resource for the characterization of genes that may be involved in the WAGR syndrome. 42 refs., 2 figs., 3 tabs.

  1. Analysis of a human brain transcriptome map

    Directory of Open Access Journals (Sweden)

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  2. Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites

    Directory of Open Access Journals (Sweden)

    Pierce Levi CT

    2009-01-01

    Full Text Available Abstract Background Gene rearrangements such as chromosomal translocations have been shown to contribute to cancer development. Human chromosomal fragile sites are regions of the genome especially prone to breakage, and have been implicated in various chromosome abnormalities found in cancer. However, there has been no comprehensive and quantitative examination of the location of fragile sites in relation to all chromosomal aberrations. Results Using up-to-date databases containing all cancer-specific recurrent translocations, we have examined 444 unique pairs of genes involved in these translocations to determine the correlation of translocation breakpoints and fragile sites in the gene pairs. We found that over half (52% of translocation breakpoints in at least one gene of these gene pairs are mapped to fragile sites. Among these, we examined the DNA sequences within and flanking three randomly selected pairs of translocation-prone genes, and found that they exhibit characteristic features of fragile DNA, with frequent AT-rich flexibility islands and the potential of forming highly stable secondary structures. Conclusion Our study is the first to examine gene pairs involved in all recurrent chromosomal translocations observed in tumor cells, and to correlate the location of more than half of breakpoints to positions of known fragile sites. These results provide strong evidence to support a causative role for fragile sites in the generation of cancer-specific chromosomal rearrangements.

  3. The amyloid precursor-like protein (APLP) gene maps to the long arm of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Wasco, W.; Tanzi, R.E. (Harvard Medical School, Boston, MA (United States)); Brook, J.D. (Center for Medical Genetics, Nottingham (United Kingdom))

    1993-01-01

    We have recently isolated a cDNA from a mouse brain library that encodes a protein whose predicted amino acid sequence is 42% identical and 64% similar to that of the amyloid [beta] protein precursor (APP; 16). This 653-amino-acid amyloid precursor-like protein (APLP) is similar to APP in overall structure as well as amino acid sequence. The amino acid homologies are particularly strong in three distinct regions of the proteins where the identities are 47, 54, and 56% (16). All three of these regions are also conserved in the Drosophila APP-like gene, APPL (11). Notably, 12 cysteine residues and a N -glyco-sylation site are conserved in the extracellular portion of APLP and APP, and a clathrin-binding domain is conserved in the cytoplasmic domain. The cytoplasmic domain is also conserved in a partial CDNA reported to encode an APP-like gene in rat testes (17), These data suggest that APLP and APP are members of a highly conserved gene family. A panel of DNAs from 31 human-rodent somatic cell lines of known karyotype was digested with EcoR1. These DNAs were then probed with the human APLP cDNA clone and the hybridization pattern was consistent with the assignment of the APLP locus to chromosome 19. 17 refs., 1 fig.

  4. Hyper-radiation sensitivity of murine scid mutation and mapping of the human homologue HYRC1 gene

    International Nuclear Information System (INIS)

    Komatsu, Kenshi; Ohta, Tohru; Niikawa, Norio; Okumura, Yutaka; Kubota, Nobuo.

    1994-01-01

    The murine severe combined immunodeficient mutation (scid) is characterized by a lack of both B and T cells, due to a defect in lymphoid variable-(diversity)-joining(V(D)J) rearrangement. Scid cells are highly sensitive to both radiation-induced killing and chromosomal aberrations. Present experiments also demonstrated the high sensitivity of scid cells to killing, because of a deficient repair of double strand breaks(DSB). Scid cells can repair only 60% of radiation-induced DSB for 3 hours, while normal cells repair 85% of the DSB. Significantly reduced Do and n values were obtained from survival curves of scid cells and were similar to ataxia-telangiectasia(AT) cells (a unique human disease conferring whole body radiosensitivity). However, the kinetics of DNA synthesis after irradiation were different between the two cell types. In contrast with the radioresistant DNA synthesis of AT cells, DNA synthesis of scid cells was markedly inhibited after irradiation. The existence of different mutations was also supported by evidence of complementation in somatic cell hybrids between scid cells and AT cells. Using these hybrid cells, fragments of human chromosome 8 were introduced into scid cells HPRT mutant via X-irradiation and somatic cell fusion. The resulting hybrid clones contained human DNA fragment(s) which complemented the hyper-radiosensitivity of the scid cells. Alu-PCR products from these hybrids were used for chromosome painting using the technique of chromosome in situ suppression hybridization, allowing assignment of the human HYRC1 (hyper-radiosensitivity of murine scid mutation, complementing 1) gene, a candidate for a V(D)J recombinant gene, to human chromosome 8q11. (author)

  5. Linkage mapping of the gene for Type III collagen (COL3A1) to human chromosome 2q using a VNTR polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Tiller, G.E.; Polumbo, P.A.; Summar, M.L. (Vanderbilt Univ. Medical Center, Nashville, TN (United States))

    1994-03-15

    The gene for the [alpha]1(III) chain of type III collagen, COL3A1, has been previously mapped to human chromosome 2q24.3-q31 by in situ hybridization. Physical mapping by pulsed-field gel electrophoresis has demonstrated that COL3A1 lies within 35 kb of COL5A2. The authors genotyped the CEPH families at the COL3A2 locus using a pentanucleotide repeat polymorphism within intron 25. They demonstrated significant linkage to 18 anonymous markers as well as the gene for carbamyl phosphate synthetase (CPSI), which had been previously mapped to this region. No recombination was seen between COL3A1 and COL5A2 (Z = 9.93 at [theta] = 0) or D2S24 (Z = 10.55 at [theta] = 0). The locus order is (D2S32-D2S138-D2S148)-(D2S24-COL5A2-COL3A1)-(D2S118-D2S161), with odds of 1:2300 for the next most likely order. These relationships are consistent with the physical mapping of COL3A1 to the distal portion of 2q and place it proximal to CPSI by means of multipoint analysis. These linkage relationships should prove useful in further studies of Ehlers-Danlos syndrome type IV and carbamyl phosphate synthetase I deficiency and provide an additional framework for localizing other genes in this region. 13 refs., 2 figs., 1 tab.

  6. Comparative mapping of DNA probes derived from the V{sub k} immunoglobulin gene regions on human and great ape chromosomes by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, N.; Wienberg, J.; Ermert, K. [Universitaet Muenchen (Germany)] [and others

    1995-03-01

    Fluorescence in situ hybridization (FISH) of cosmid clones of human V{sub K} gene regions to human and primate chromosomes contributed to the dating of chromosome reorganizations in evolution. A clone from the K locus at 2p11-p12 (cos 106) hybridized to the assumed homologous chromosome bands in the chimpanzees Pan troglodytes (PTR) and P. paniscus (PPA), the Gorilla gorilla (GGO), and the orangutan Pongo Pygmaeus (PPY). Human and both chimpanzees differed from gorilla and orangutan by the mapping of cos 170, a clone derived from chromosome 2cen-q11.2; the transposition of this orphon to the other side of the centromere can, therefore, be dated after the human/chimpanzee and gorilla divergence. Hybridization to homologous bands was also found with a cosmid clone containing a V{sub K}I orphon located on chromosome 1 (cos 115, main signal at 1q31-q32), although the probe is not fully unique. Also, a clone derived from the orphon V{sub K} region on chromosome 22q11 (cos 121) hybridized to the homologous bands in the great apes. This indicates that the orphons on human chromosomes 1 and 22 had been translocated early in primate evolution. 18 refs., 2 figs.

  7. Mapping of the human APOB gene to chromosome 2p and demonstration of a two-allele restriction fragment length polymorphism

    International Nuclear Information System (INIS)

    Huang, L.; Miller, D.A.; Bruns, G.A.P.; Breslow, J.L.

    1986-01-01

    ApoB is a large glycoprotein with an apparent molecular mass of 550 kDa on NaDodSO 4 /PAGE. Recently, apoB cDNA clones have been isolated from an expression library made with mRNA from a human hepatoma cell line. These clones, which were all 1.5-1.6 kilobases (kb) long and corresponded to the 3' end of apoB mRNA, were used to demonstrate that hepatic apoB mRNA is ≅ 22 kb long. In the current report, a probe derived from one of these cDNA clones, pB8, was used for in situ hybridization experiments to map the human gene for apoB, APOB, to the distal half of the short arm of chromosome 2. This probe was also used to analyze somatic cell hybrids and, in agreement with the in situ hybridization studies, concordancy was demonstrated with chromosome 2. In addition, two hybrids with chromosome 2 translocations that contain only the short arm reacted with the pB8 probe. A third hybrid with a complex rearrangement of chromosome 2, which deleted an interstitial region and the tip of the short arm of chromosome 2, did not react. These data indicate that APOB maps to either 2p21-p23 or 2p24-pter. In further studies, DNA from normal individuals, digested with the restriction endonuclease EcoRI and subjected to Southern blot analysis with the pB8 probe, revealed a two-allele restriction fragment length polymorphism (RFLP). The mapping studies provide the means for understanding the relationship of the APOB locus to others in the human genome, whereas the demonstration of an APOB RFLP increases their ability to assess the role of this locus in determining plasma lipoprotein levels

  8. NEUROD2 and NEUROD3 genes map to human chromosomes 17q12 and 5q23-q31 and mouse chromosomes 11 and 13, respectively

    Energy Technology Data Exchange (ETDEWEB)

    Tamimi, R.M.; Montgomery-Dyer, K.; Tapscott, S.J. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States)] [and others

    1997-03-01

    NEUROD2 and NEUROD3 are transcription factors involved in neurogenesis that are related to the basic helix-loop-helix protein NEUROD. NEUROD2 maps to human chromosome 17q12 and mouse chromosome 11. NEUROD3 maps to human chromosome 5q23-q31 and mouse chromosome 13. 16 refs., 2 figs.

  9. A fruit quality gene map of Prunus

    Directory of Open Access Journals (Sweden)

    Bliss Fredrick A

    2009-12-01

    Full Text Available Abstract Background Prunus fruit development, growth, ripening, and senescence includes major biochemical and sensory changes in texture, color, and flavor. The genetic dissection of these complex processes has important applications in crop improvement, to facilitate maximizing and maintaining stone fruit quality from production and processing through to marketing and consumption. Here we present an integrated fruit quality gene map of Prunus containing 133 genes putatively involved in the determination of fruit texture, pigmentation, flavor, and chilling injury resistance. Results A genetic linkage map of 211 markers was constructed for an intraspecific peach (Prunus persica progeny population, Pop-DG, derived from a canning peach cultivar 'Dr. Davis' and a fresh market cultivar 'Georgia Belle'. The Pop-DG map covered 818 cM of the peach genome and included three morphological markers, 11 ripening candidate genes, 13 cold-responsive genes, 21 novel EST-SSRs from the ChillPeach database, 58 previously reported SSRs, 40 RAFs, 23 SRAPs, 14 IMAs, and 28 accessory markers from candidate gene amplification. The Pop-DG map was co-linear with the Prunus reference T × E map, with 39 SSR markers in common to align the maps. A further 158 markers were bin-mapped to the reference map: 59 ripening candidate genes, 50 cold-responsive genes, and 50 novel EST-SSRs from ChillPeach, with deduced locations in Pop-DG via comparative mapping. Several candidate genes and EST-SSRs co-located with previously reported major trait loci and quantitative trait loci for chilling injury symptoms in Pop-DG. Conclusion The candidate gene approach combined with bin-mapping and availability of a community-recognized reference genetic map provides an efficient means of locating genes of interest in a target genome. We highlight the co-localization of fruit quality candidate genes with previously reported fruit quality QTLs. The fruit quality gene map developed here is a

  10. Body maps on the human genome.

    Science.gov (United States)

    Cherniak, Christopher; Rodriguez-Esteban, Raul

    2013-12-20

    Chromosomes have territories, or preferred locales, in the cell nucleus. When these sites are taken into account, some large-scale structure of the human genome emerges. The synoptic picture is that genes highly expressed in particular topologically compact tissues are not randomly distributed on the genome. Rather, such tissue-specific genes tend to map somatotopically onto the complete chromosome set. They seem to form a "genome homunculus": a multi-dimensional, genome-wide body representation extending across chromosome territories of the entire spermcell nucleus. The antero-posterior axis of the body significantly corresponds to the head-tail axis of the nucleus, and the dorso-ventral body axis to the central-peripheral nucleus axis. This large-scale genomic structure includes thousands of genes. One rationale for a homuncular genome structure would be to minimize connection costs in genetic networks. Somatotopic maps in cerebral cortex have been reported for over a century.

  11. Genome-wide association mapping in dogs enables identification of the homeobox gene, NKX2-8, as a genetic component of neural tube defects in humans.

    Directory of Open Access Journals (Sweden)

    Noa Safra

    Full Text Available Neural tube defects (NTDs is a general term for central nervous system malformations secondary to a failure of closure or development of the neural tube. The resulting pathologies may involve the brain, spinal cord and/or vertebral column, in addition to associated structures such as soft tissue or skin. The condition is reported among the more common birth defects in humans, leading to significant infant morbidity and mortality. The etiology remains poorly understood but genetic, nutritional, environmental factors, or a combination of these, are known to play a role in the development of NTDs. The variable conditions associated with NTDs occur naturally in dogs, and have been previously reported in the Weimaraner breed. Taking advantage of the strong linkage-disequilibrium within dog breeds we performed genome-wide association analysis and mapped a genomic region for spinal dysraphism, a presumed NTD, using 4 affected and 96 unaffected Weimaraners. The associated region on canine chromosome 8 (pgenome  =3.0 × 10(-5, after 100,000 permutations, encodes 18 genes, including NKX2-8, a homeobox gene which is expressed in the developing neural tube. Sequencing NKX2-8 in affected Weimaraners revealed a G to AA frameshift mutation within exon 2 of the gene, resulting in a premature stop codon that is predicted to produce a truncated protein. The exons of NKX2-8 were sequenced in human patients with spina bifida and rare variants (rs61755040 and rs10135525 were found to be significantly over-represented (p=0.036. This is the first documentation of a potential role for NKX2-8 in the etiology of NTDs, made possible by investigating the molecular basis of naturally occurring mutations in dogs.

  12. Cloning human DNA repair genes

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Carr, A.M.; Lehmann, A.R.

    1994-01-01

    Many human genes involved in the repair of UV damage have been cloned using different procedures and they have been of great value in assisting the understanding of the mechanism of nucleotide excision-repair. Genes involved in repair of ionizing radiation damage have proved more difficult to isolate. Positional cloning has localized the XRCC5 gene to a small region of chromosome 2q33-35, and a series of yeast artificial chromosomes covering this region have been isolated. Very recent work has shown that the XRCC5 gene encodes the 80 kDa subunit of the Ku DNA-binding protein. The Ku80 gene also maps to this region. Studies with fission yeast have shown that radiation sensitivity can result not only from defective DNA repair but also from abnormal cell cycle control following DNA damage. Several genes involved in this 'check-point' control in fission yeast have been isolated and characterized in detail. It is likely that a similar checkpoint control mechanism exists in human cells. (author)

  13. Human Prostate Cancer Hallmarks Map

    Science.gov (United States)

    Datta, Dipamoy; Aftabuddin, Md.; Gupta, Dinesh Kumar; Raha, Sanghamitra; Sen, Prosenjit

    2016-01-01

    Human prostate cancer is a complex heterogeneous disease that mainly affects elder male population of the western world with a high rate of mortality. Acquisitions of diverse sets of hallmark capabilities along with an aberrant functioning of androgen receptor signaling are the central driving forces behind prostatic tumorigenesis and its transition into metastatic castration resistant disease. These hallmark capabilities arise due to an intense orchestration of several crucial factors, including deregulation of vital cell physiological processes, inactivation of tumor suppressive activity and disruption of prostate gland specific cellular homeostasis. The molecular complexity and redundancy of oncoproteins signaling in prostate cancer demands for concurrent inhibition of multiple hallmark associated pathways. By an extensive manual curation of the published biomedical literature, we have developed Human Prostate Cancer Hallmarks Map (HPCHM), an onco-functional atlas of human prostate cancer associated signaling and events. It explores molecular architecture of prostate cancer signaling at various levels, namely key protein components, molecular connectivity map, oncogenic signaling pathway map, pathway based functional connectivity map etc. Here, we briefly represent the systems level understanding of the molecular mechanisms associated with prostate tumorigenesis by considering each and individual molecular and cell biological events of this disease process. PMID:27476486

  14. Human Gene Therapy: Genes without Frontiers?

    Science.gov (United States)

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  15. A high-resolution whole genome radiation hybrid map of human chromosome 17q22-q25.3 across the genes for GH and TK

    Energy Technology Data Exchange (ETDEWEB)

    Foster, J.W.; Schafer, A.J.; Critcher, R. [Univ. of Cambridge (United Kingdom)] [and others

    1996-04-15

    We have constructed a whole genome radiation hybrid (WG-RH) map across a region of human chromosome 17q, from growth hormone (GH) to thymidine kinase (TK). A panel of 128 WG-RH hybrid cell lines generated by X-irradiation and fusion has been tested for the retention of 39 sequence-tagged site (STS) markers by the polymerase chain reaction. This genome mapping technique has allowed the integration of existing VNTR and microsatellite markers with additional new markers and existing STS markers previously mapped to this region by other means. The WG-RH map includes eight expressed sequence tag (EST) and three anonymous markers developed for this study, together with 23 anonymous microsatellites and five existing ESTs. Analysis of these data resulted in a high-density comprehensive map across this region of the genome. A subset of these markers has been used to produce a framework map consisting of 20 loci ordered with odds greater than 1000:1. The markers are of sufficient density to build a YAC contig across this region based on marker content. We have developed sequence tags for both ends of a 2.1-Mb YAC and mapped these using the WG-RH panel, allowing a direct comparison of cRay{sub 6000} to physical distance. 31 refs., 3 figs., 2 tabs.

  16. Mapping of gene mutations in drosophila melanogaster

    OpenAIRE

    Halvorsen, Charlotte Marie

    2004-01-01

    In this experiment, mutant genes of a given unknown mutant strain of Drosophila melanogaster were mapped to specific chromosomes. Drosophila melanogaster, commonly known as the fruit fly, was the appropriate choice for the organism to use in this specific experiment because of its relatively rapid life cycle of 10-14 days and because of the small amount of space and food neccessary for maintaining thousands of flies. The D. Melanogaster unknown strain specifically used in this experiment wa...

  17. cDNA cloning and characterization of the human THRAP2 gene which maps to chromosome 12q24, and its mouse ortholog Thrap2.

    Science.gov (United States)

    Musante, Luciana; Bartsch, Oliver; Ropers, Hans-Hilger; Kalscheuer, Vera M

    2004-05-12

    Characterization of a balanced t(2;12)(q37;q24) translocation in a patient with suspicion of Noonan syndrome revealed that the chromosome 12 breakpoint lies in the vicinity of a novel human gene, thyroid hormone receptor-associated protein 2 (THRAP2). We therefore characterized this gene and its mouse counterpart in more detail. Human and mouse THRAP2/Thrap2 span a genomic region of about 310 and >170 kilobases (kb), and both contain 31 exons. Corresponding transcripts are approximately 9.5 kb long. Their open reading frames code for proteins of 2210 and 2203 amino acids, which are 93% identical. By northern blot analysis, human and mouse THRAP2/Thrap2 genes showed ubiquitous expression. Transcripts were most abundant in human skeletal muscle and in mouse heart. THRAP2 protein is 56% identical to human TRAP240, which belongs to the thyroid hormone receptor associated protein (TRAP) complex and is evolutionary conserved up to yeast. This complex is involved in transcriptional regulation and is believed to serve as adapting interface between regulatory proteins bound to specific DNA sequences and RNA polymerase II.

  18. Human cDNA mapping using fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.

    1993-03-04

    Genetic mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach generated 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  19. Markers and mapping revisited: finding your gene.

    Science.gov (United States)

    Jones, Neil; Ougham, Helen; Thomas, Howard; Pasakinskiene, Izolda

    2009-01-01

    This paper is an update of our earlier review (Jones et al., 1997, Markers and mapping: we are all geneticists now. New Phytologist 137: 165-177), which dealt with the genetics of mapping, in terms of recombination as the basis of the procedure, and covered some of the first generation of markers, including restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNA (RAPDs), simple sequence repeats (SSRs) and quantitative trait loci (QTLs). In the intervening decade there have been numerous developments in marker science with many new systems becoming available, which are herein described: cleavage amplification polymorphism (CAP), sequence-specific amplification polymorphism (S-SAP), inter-simple sequence repeat (ISSR), sequence tagged site (STS), sequence characterized amplification region (SCAR), selective amplification of microsatellite polymorphic loci (SAMPL), single nucleotide polymorphism (SNP), expressed sequence tag (EST), sequence-related amplified polymorphism (SRAP), target region amplification polymorphism (TRAP), microarrays, diversity arrays technology (DArT), single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE) and methylation-sensitive PCR. In addition there has been an explosion of knowledge and databases in the area of genomics and bioinformatics. The number of flowering plant ESTs is c. 19 million and counting, with all the opportunity that this provides for gene-hunting, while the survey of bioinformatics and computer resources points to a rapid growth point for future activities in unravelling and applying the burst of new information on plant genomes. A case study is presented on tracking down a specific gene (stay-green (SGR), a post-transcriptional senescence regulator) using the full suite of mapping tools and comparative mapping resources. We end with a brief speculation on how genome analysis may progress into the future of

  20. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  1. Human p38δ MAP kinase mediates UV irradiation induced up-regulation of the gene expression of chemokine BRAK/CXCL14

    International Nuclear Information System (INIS)

    Ozawa, Shigeyuki; Ito, Shin; Kato, Yasumasa; Kubota, Eiro; Hata, Ryu-Ichiro

    2010-01-01

    The mitogen-activated protein kinase (MAPK) family comprises ERK, JNK, p38 and ERK5 (big-MAPK, BMK1). UV irradiation of squamous cell carcinoma cells induced up-regulation of gene expression of chemokine BRAK/CXCL14, stimulated p38 phosphorylation, and down-regulated the phosphorylation of ERK. Human p38 MAPKs exist in 4 isoforms: p38α, β, γ and δ. The UV stimulation of p38 phosphorylation was not inhibited by the presence of SB203580 or PD169316, inhibitors of p38α and β, suggesting p38 phosphorylation was not dependent on these 2 isoforms and that p38γ and/or δ was responsible for the phosphorylation. In fact, inhibition of each of these 4 p38 isoforms by the introduction of short hairpin (sh) RNAs for respective isoforms revealed that only shRNA for p38δ attenuated the UV-induced up-regulation of BRAK/CXCL14 gene expression. In addition, over-expression of p38 isoforms in the cells showed the association of p38δ with ERK1 and 2, concomitant with down-regulation of ERK phosphorylation. The usage of p38δ isoform by UV irradiation is not merely due to the abundance of this p38 isoform in the cells. Because serum deprivation of the cells also induced an increase in BRAK/CXCL14 gene expression, and in this case p38α and/or β isoform is responsible for up-regulation of BRAK/CXCL14 gene expression. Taken together, the data indicate that the respective stress-dependent action of p38 isoforms is responsible for the up-regulation of the gene expression of the chemokine BRAK/CXCL14.

  2. Cognitive maps, spatial abilities and human wayfinding.

    OpenAIRE

    Golledge, Reginald G.; Jacobson, R. Daniel; Kitchin, Rob; Blades, Mark

    2000-01-01

    In this paper we discuss the relations between cognitive maps, spatial abilities and human wayfinding, particularly in the context of traveling without the use of sight. Initially we discuss the nature of cognitive maps and the process of cognitive mapping as mechanisms for developing person to object (egocentric) and object to object (allocentric) internal representations. Imperfections in encoding either relations can introduce imperfections in representations of environments in memory. Thi...

  3. Human DNA repair and recombination genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs

  4. Power of non-parametric linkage analysis in mapping genes contributing to human longevity in long-lived sib-pairs

    DEFF Research Database (Denmark)

    Tan, Qihua; Zhao, J H; Iachine, I

    2004-01-01

    This report investigates the power issue in applying the non-parametric linkage analysis of affected sib-pairs (ASP) [Kruglyak and Lander, 1995: Am J Hum Genet 57:439-454] to localize genes that contribute to human longevity using long-lived sib-pairs. Data were simulated by introducing a recently...... developed statistical model for measuring marker-longevity associations [Yashin et al., 1999: Am J Hum Genet 65:1178-1193], enabling direct power comparison between linkage and association approaches. The non-parametric linkage (NPL) scores estimated in the region harboring the causal allele are evaluated...... in case of a dominant effect. Although the power issue may depend heavily on the true genetic nature in maintaining survival, our study suggests that results from small-scale sib-pair investigations should be referred with caution, given the complexity of human longevity....

  5. Genes, Environment, and Human Behavior.

    Science.gov (United States)

    Bloom, Mark V.; Cutter, Mary Ann; Davidson, Ronald; Dougherty, Michael J.; Drexler, Edward; Gelernter, Joel; McCullough, Laurence B.; McInerney, Joseph D.; Murray, Jeffrey C.; Vogler, George P.; Zola, John

    This curriculum module explores genes, environment, and human behavior. This book provides materials to teach about the nature and methods of studying human behavior, raise some of the ethical and public policy dilemmas emerging from the Human Genome Project, and provide professional development for teachers. An extensive Teacher Background…

  6. Mapping of the human cone transducin {alpha} subunit (GNAT2) gene to 1p13 and mutation analysis in patients with Stargardt`s disease

    Energy Technology Data Exchange (ETDEWEB)

    Magovcevic, I.; Weremowicz, S.; Morton, C.C. [Harvard Medical School, Boston, MA (United States)] [and others

    1994-09-01

    Transducin {alpha} subunits are members of a large family of G-proteins and play an important role in phototransduction in rod and cone photoreceptors. We report the localization of the human cone {alpha} transducin (GNAT2) gene using fluorescence in situ hybridization (FISH) on chromosome 1 in band p13. The recent assignment of a gene for Stargardt`s disease to the same chromosomal region by linkage analysis prompted us to investigate the possible role of GNAT2 in the pathogenesis of this disease. Stargardt`s disease is characterized by degeneration in late childhood or early adulthood of the macula of the retina, a region rich in cones. We screened patients with Stargardt`s disease, with or without peripheral cone involvement as monitored by the full-field ERG, for mutations in this gene. We investigated 66 unrelated patients including 22 with peripheral cone dysfunction for mutations in the coding region of the GNAT2 gene using polymerase chain reaction-single strand conformation polymorphism analysis (SSCP) and direct sequencing. One patient (034-16) was heterozygous for a silent change in exon VI, Asp238Asp (GAT to GAC). Two patients, one (035-005) with peripheral cone involvement and one (071-001) without peripheral cone involvement, were heterozygous for the missense change Val124Met (GTG to ATG) in exon IV. A subsequent screen of 96 unrelated, unaffected controls revealed one individual (N10) who was also heterozygous for the Val124Met alteration. We concluded that Asp238Asp and Val124Met are rare variants not causing Stargardt`s disease. Hence, no disease-specific mutations were found indicating that GNAT2 is probably not involved in the pathogenesis of most cases of Stargardt`s disease.

  7. Mutated Genes in Schizophrenia Map to Brain Networks

    Science.gov (United States)

    ... Matters NIH Research Matters August 12, 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks ... have a high number of spontaneous mutations in genes that form a network in the front region ...

  8. Radiation hybrid mapping of human chromosome 18

    International Nuclear Information System (INIS)

    Francke, U.; Moon, A.J.; Chang, E.; Foellmer, B.; Strauss, B.; Haschke, A.; Chihlin Hsieh; Geigl, E.M.; Welch, S.

    1990-01-01

    The authors have generated a Chinese hamster V79/380-6 HPRT minus x human leukocyte hybrid cell line (18/V79) with chromosome 18 as the only human chromosome that is retained at high frequency without specific selection. Hybrid cells were selected in HAT medium, and 164 individual colonies were isolated. Of 110 colonies screened for human DNA by PCR amplification using a primer specific for human Alu repeats 67 (61%) were positive. These were expanded in culture for large-scale DNA preparations. Retesting expanded clones by PCR with Alu and LINE primers has revealed unique patterns of amplification products. In situ hybridization of biotin labelled total human DNA to metaphase spreads from various hybrids revealed the presence of one or more human DNA fragments integrated in hamster chromosomes. The authors have generated a resource that should allow the construction of a radiation map, to be compared with the YAC contig map also under construction in their laboratory

  9. Human papillomavirus gene expression

    International Nuclear Information System (INIS)

    Chow, L.T.; Hirochika, H.; Nasseri, M.; Stoler, M.H.; Wolinsky, S.M.; Chin, M.T.; Hirochika, R.; Arvan, D.S.; Broker, T.R.

    1987-01-01

    To determine the role of tissue differentiation on expression of each of the papillomavirus mRNA species identified by electron microscopy, the authors prepared exon-specific RNA probes that could distinguish the alternatively spliced mRNA species. Radioactively labeled single-stranded RNA probes were generated from a dual promoter vector system and individually hybridized to adjacent serial sections of formalin-fixed, paraffin-embedded biopsies of condylomata. Autoradiography showed that each of the message species had a characteristic tissue distribution and relative abundance. The authors have characterized a portion of the regulatory network of the HPVs by showing that the E2 ORF encodes a trans-acting enhancer-stimulating protein, as it does in BPV-1 (Spalholz et al. 1985). The HPV-11 enhancer was mapped to a 150-bp tract near the 3' end of the URR. Portions of this region are duplicated in some aggressive strains of HPV-6 (Boshart and zur Hausen 1986; Rando et al. 1986). To test the possible biological relevance of these duplications, they cloned tandem arrays of the enhancer and demonstrated, using a chloramphenicol acetyltransferase (CAT) assay, that they led to dramatically increased transcription proportional to copy number. Using the CAT assays, the authors found that the E2 proteins of several papillomavirus types can cross-stimulate the enhancers of most other types. This suggests that prior infection of a tissue with one papillomavirus type may provide a helper effect for superinfection and might account fo the HPV-6/HPV-16 coinfections in condylomata that they have observed

  10. Analysis of multiplex gene expression maps obtained by voxelation.

    Science.gov (United States)

    An, Li; Xie, Hongbo; Chin, Mark H; Obradovic, Zoran; Smith, Desmond J; Megalooikonomou, Vasileios

    2009-04-29

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in cortex and corpus callosum. The experimental

  11. Analysis of multiplex gene expression maps obtained by voxelation

    Directory of Open Access Journals (Sweden)

    Smith Desmond J

    2009-04-01

    Full Text Available Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. Results To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in

  12. Maps of space in human frontoparietal cortex.

    Science.gov (United States)

    Jerde, Trenton A; Curtis, Clayton E

    2013-12-01

    Prefrontal cortex (PFC) and posterior parietal cortex (PPC) are neural substrates for spatial cognition. We here review studies in which we tested the hypothesis that human frontoparietal cortex may function as a priority map. According to priority map theory, objects or locations in the visual world are represented by neural activity that is proportional to their attentional priority. Using functional magnetic resonance imaging (fMRI), we first identified topographic maps in PFC and PPC as candidate priority maps of space. We then measured fMRI activity in candidate priority maps during the delay periods of a covert attention task, a spatial working memory task, and a motor planning task to test whether the activity depended on the particular spatial cognition. Our hypothesis was that some, but not all, candidate priority maps in PFC and PPC would be agnostic with regard to what was being prioritized, in that their activity would reflect the location in space across tasks rather than a particular kind of spatial cognition (e.g., covert attention). To test whether patterns of delay period activity were interchangeable during the spatial cognitive tasks, we used multivariate classifiers. We found that decoders trained to predict the locations on one task (e.g., working memory) cross-predicted the locations on the other tasks (e.g., covert attention and motor planning) in superior precentral sulcus (sPCS) and in a region of intraparietal sulcus (IPS2), suggesting that these patterns of maintenance activity may be interchangeable across the tasks. Such properties make sPCS in frontal cortex and IPS2 in parietal cortex viable priority map candidates, and suggest that these areas may be the human homologs of the monkey frontal eye field (FEF) and lateral intraparietal area (LIP). Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  14. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  15. Chromosomal localization of the human diazepam binding inhibitor gene

    International Nuclear Information System (INIS)

    DeBernardi, M.A.; Crowe, R.R.; Mocchetti, I.; Shows, T.B.; Eddy, R.L.; Costa, E.

    1988-01-01

    The authors have used in situ chromosome hybridization and human-mouse somatic cell hybrids to map the gene(s) for human diazepam binding inhibitor (DBI), an endogenous putative modulator of the γ-aminobutyric acid receptor acting at the allosteric regulatory center of this receptor that includes the benzodiazepine recognition site. In 784 chromosome spreads hybridized with human DBI cDNA, the distribution of 1,476 labeled sites revealed a significant clustering of autoradiographic grains (11.3% of total label) on the long arm of chromosome 2 (2q). Furthermore, 63.5% of the grains found on 2q were located on 2q12-21, suggesting regional mapping of DBI gene(s) to this segment. Secondary hybridization signals were frequently observed on other chromosomes and they were statistically significant mainly for chromosomes 5, 6, 11, and 14. In addition, DNA from 32 human-mouse cell hybrids was digested with BamHI and probed with human DBI cDNA. A 3.5-kilobase band, which probably represents the human DBI gene, was assigned to chromosome 2. Four higher molecular weight bands, also detected in BamHI digests, could not be unequivocally assigned. A chromosome 2 location was excluded for the 27-, 13-, and 10-kilobase bands. These results assign a human DBI gene to chromosome 2 (2q12-21) and indicate that three of the four homologous sequences detected by the human DBI probe are located on three other chromosomes

  16. Mapping frontier research in the humanities

    DEFF Research Database (Denmark)

    -academic fields and supplemented by new transdisciplinary methods focusing on solving grand societal challenges, such as globalisation, multiculturalism, equality, democracy, security and health. Given the nature of these challenges and the ways in which university leadership has been organised, the very notion...... of impact and styles of reasoning, both in classical and interdisciplinary fields of the humanities. From this perspective, a more composite picture of human culture, language and history can emerge from humanities research. It goes beyond the picture of rational agents, and situates human interaction...... in more complex landscapes of collective identities, networks, and constraints that open for new forms of intellectual leadership in the 21st century. Link: http://www.bloomsbury.com/uk/mapping-frontier-research-in-the-humanities-9781472597687/...

  17. Mapping Frontier Research in the Humanities

    DEFF Research Database (Denmark)

    -academic fields and supplemented by new transdisciplinary methods focusing on solving grand societal challenges, such as globalisation, multiculturalism, equality, democracy, security and health. Given the nature of these challenges and the ways in which university leadership has been organised, the very notion...... of impact and styles of reasoning, both in classical and interdisciplinary fields of the humanities. From this perspective, a more composite picture of human culture, language and history can emerge from humanities research. It goes beyond the picture of rational agents, and situates human interaction...... in more complex landscapes of collective identities, networks, and constraints that open for new forms of intellectual leadership in the 21st century. Link: http://www.bloomsbury.com/uk/mapping-frontier-research-in-the-humanities-9781472597687/...

  18. Mapping Frontier Research in the Humanities

    DEFF Research Database (Denmark)

    Knowledge production in academia today is burgeoning and increasingly interdisciplinary in nature. Research within the humanities is no exception: it is distributed across a variety of methodic styles of research and increasingly involves interactions with fields outside the narrow confines of th...... and for the organisation of the humanities and higher education?...... of the university. As a result, the notion of liberal arts and humanities within Western universities is undergoing profound transformations. In Mapping Frontier Research in the Humanities, the contributors explore this transformative process. What are the implications, both for the modes of research......Knowledge production in academia today is burgeoning and increasingly interdisciplinary in nature. Research within the humanities is no exception: it is distributed across a variety of methodic styles of research and increasingly involves interactions with fields outside the narrow confines...

  19. Molecular biologists backing effort to map entire human genome

    International Nuclear Information System (INIS)

    Zurer, P.S.

    1988-01-01

    This article discusses how the program to map and sequence the human genome will be managed. The National Research Council (NRC) recommends that a 15-year $200-million-a-year effort to map all human genes should begin immediately. However, some people have balked at the idea, saying it is a ploy to raise money. Part of the skeptic's uneasiness stems from the involvement of the Department of Energy (DOE), an agency not often linked with biological research. The DOE's interest arises from its commitment to understanding the biological effects of nuclear radiation. Critics say it is a budget-boosting tactic. This article explains some of the arguments for and against the project and explains exactly what it would involve

  20. Comparative genome analysis and resistance gene mapping in grain legumes

    International Nuclear Information System (INIS)

    Young, N.D.

    1998-01-01

    Using, DNA markers and genome organization, several important disease resistance genes have been analyzed in mungbean (Vigna radiata), cowpea (Vigna unguiculata), common bean (Phaseolus vulgaris), and soybean (Glycine max). In the process, medium-density linkage maps consisting of restriction fragment length polymorphism (RFLP) markers were constructed for both mungbean and cowpea. Comparisons between these maps, as well as the maps of soybean and common bean, indicate that there is significant conservation of DNA marker order, though the conserved blocks in soybean are much shorter than in the others. DNA mapping results also indicate that a gene for seed weight may be conserved between mungbean and cowpea. Using the linkage maps, genes that control bruchid (genus Callosobruchus) and powdery mildew (Erysiphe polygoni) resistance in mungbean, aphid resistance in cowpea (Aphis craccivora), and cyst nematode (Heterodera glycines) resistance in soybean have all been mapped and characterized. For some of these traits resistance was found to be oligogenic and DNA mapping uncovered multiple genes involved in the phenotype. (author)

  1. A physical map of the heterozygous grapevine 'Cabernet Sauvignon' allows mapping candidate genes for disease resistance

    Directory of Open Access Journals (Sweden)

    Scalabrin Simone

    2008-06-01

    Full Text Available Abstract Background Whole-genome physical maps facilitate genome sequencing, sequence assembly, mapping of candidate genes, and the design of targeted genetic markers. An automated protocol was used to construct a Vitis vinifera 'Cabernet Sauvignon' physical map. The quality of the result was addressed with regard to the effect of high heterozygosity on the accuracy of contig assembly. Its usefulness for the genome-wide mapping of genes for disease resistance, which is an important trait for grapevine, was then assessed. Results The physical map included 29,727 BAC clones assembled into 1,770 contigs, spanning 715,684 kbp, and corresponding to 1.5-fold the genome size. Map inflation was due to high heterozygosity, which caused either the separation of allelic BACs in two different contigs, or local mis-assembly in contigs containing BACs from the two haplotypes. Genetic markers anchored 395 contigs or 255,476 kbp to chromosomes. The fully automated assembly and anchorage procedures were validated by BAC-by-BAC blast of the end sequences against the grape genome sequence, unveiling 7.3% of chimerical contigs. The distribution across the physical map of candidate genes for non-host and host resistance, and for defence signalling pathways was then studied. NBS-LRR and RLK genes for host resistance were found in 424 contigs, 133 of them (32% were assigned to chromosomes, on which they are mostly organised in clusters. Non-host and defence signalling genes were found in 99 contigs dispersed without a discernable pattern across the genome. Conclusion Despite some limitations that interfere with the correct assembly of heterozygous clones into contigs, the 'Cabernet Sauvignon' physical map is a useful and reliable intermediary step between a genetic map and the genome sequence. This tool was successfully exploited for a quick mapping of complex families of genes, and it strengthened previous clues of co-localisation of major NBS-LRR clusters and

  2. Mapping of the Mouse Actin Capping Protein Beta Subunit Gene

    Directory of Open Access Journals (Sweden)

    Cooper John A

    2000-07-01

    Full Text Available Abstract Background Capping protein (CP, a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPβ produced by alternatively splicing from one gene; lower organisms have one gene and one isoform. Results We isolated genomic clones corresponding to the β subunit of mouse CP and identified its chromosomal location by interspecies backcross mapping. Conclusions The CPβ gene (Cappb1 mapped to Chromosome 4 between Cdc42 and D4Mit312. Three mouse mutations, snubnose, curly tail, and cribriform degeneration, map in the vicinity of the β gene.

  3. Automated discovery of functional generality of human gene expression programs.

    Directory of Open Access Journals (Sweden)

    Georg K Gerber

    2007-08-01

    Full Text Available An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-kappaB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal

  4. Expression cartography of human tissues using self organizing maps

    Directory of Open Access Journals (Sweden)

    Löffler Markus

    2011-07-01

    Full Text Available Abstract Background Parallel high-throughput microarray and sequencing experiments produce vast quantities of multidimensional data which must be arranged and analyzed in a concerted way. One approach to addressing this challenge is the machine learning technique known as self organizing maps (SOMs. SOMs enable a parallel sample- and gene-centered view of genomic data combined with strong visualization and second-level analysis capabilities. The paper aims at bridging the gap between the potency of SOM-machine learning to reduce dimension of high-dimensional data on one hand and practical applications with special emphasis on gene expression analysis on the other hand. Results The method was applied to generate a SOM characterizing the whole genome expression profiles of 67 healthy human tissues selected from ten tissue categories (adipose, endocrine, homeostasis, digestion, exocrine, epithelium, sexual reproduction, muscle, immune system and nervous tissues. SOM mapping reduces the dimension of expression data from ten of thousands of genes to a few thousand metagenes, each representing a minicluster of co-regulated single genes. Tissue-specific and common properties shared between groups of tissues emerge as a handful of localized spots in the tissue maps collecting groups of co-regulated and co-expressed metagenes. The functional context of the spots was discovered using overrepresentation analysis with respect to pre-defined gene sets of known functional impact. We found that tissue related spots typically contain enriched populations of genes related to specific molecular processes in the respective tissue. Analysis techniques normally used at the gene-level such as two-way hierarchical clustering are better represented and provide better signal-to-noise ratios if applied to the metagenes. Metagene-based clustering analyses aggregate the tissues broadly into three clusters containing nervous, immune system and the remaining tissues

  5. GenMapDB: a database of mapped human BAC clones

    OpenAIRE

    Morley, Michael; Arcaro, Melissa; Burdick, Joshua; Yonescu, Raluca; Reid, Thomas; Kirsch, Ilan R.; Cheung, Vivian G.

    2001-01-01

    GenMapDB (http://genomics.med.upenn.edu/genmapdb) is a repository of human bacterial artificial chromosome (BAC) clones mapped by our laboratory to sequence-tagged site markers. Currently, GenMapDB contains over 3000 mapped clones that span 19 chromosomes, chromosomes 2, 4, 5, 9–22, X and Y. This database provides positional information about human BAC clones from the RPCI-11 human male BAC library. It also contains restriction fragment analysis data and end sequen...

  6. Are mice pigmentary genes throwing light on humans?

    Directory of Open Access Journals (Sweden)

    Bose S

    1993-01-01

    Full Text Available In this article the rapid advances made in the molecular genetics of inherited disorders of hypo and hyperpigmentation during the past three years are reviewed. The main focus is on studies in mice as compared to homologues in humans. The main hypomelanotic diseases included are, piebaldism (white spotting due to mutations of c-KIT, PDGF and MGF genes; vitiligo (microphathalmia mice mutations of c-Kit and c-fms genes; Waardenburg syndrome (splotch locus mutations of mice PAX-3 or human Hup-2 genes; albinism (mutations of tyrosinase genes, Menkes disease (Mottled mouse, premature graying (mutations in light/brown locus/gp75/ TRP-1; Griscelli disease (mutations in TRP-1 and steel; Prader-willi and Angelman syndromes, tyrosinase-positive oculocutaneous albinism and hypomelanosis of lto (mutations of pink-eyed dilution gene/mapping to human chromosomes 15 q 11.2 - q12; and human platelet storage pool deficiency diseases due to defects in pallidin, an erythrocyte membrane protein (pallid mouse / mapping to 4.2 pallidin gene. The genetic characterization of hypermelanosis includes, neurofibromatosis 1 (Café-au-lait spots and McCune-Albright Syndrome. Rapid evolving knowledge about pigmentary genes will increase further the knowledge about these hypo and hyperpigmentary disorders.

  7. Gene mapping of the Usher syndromes.

    Science.gov (United States)

    Kimberling, W; Smith, R J

    1992-10-01

    USH is an autosomal recessive group of diseases characterized by auditory impairment and visual loss owing to RP. Two common types of USH are known, types I and II. USH type I is characterized by a congenital severe to profound hearing impairment, absent vestibular function, and a progressive pigmentary retinopathy. Persons with type I do not find hearing aids useful, have delayed motor development, and experience progressive night blindness and peripheral visual loss, which usually begins in their second decade. USH type II is characterized by a congenital moderate to severe hearing loss with a down-sloping audiogram, normal vestibular function, and a progressive pigmentary retinopathy. Persons with USH2 find hearing aids beneficial, have normal psychomotor development, and experience progressive night blindness and peripheral visual loss, which usually begins in their third decade. Vestibular dysfunction is the best distinguishing hallmark to differentiate USH type I from type II. One USH type II gene (called USH2) has been assigned to chromosome 1q. One USH type I gene has been tentatively assigned to chromosome 14q. There are other USH genes that have not yet been localized.

  8. Patenting human genes: Chinese academic articles' portrayal of gene patents.

    Science.gov (United States)

    Du, Li

    2018-04-24

    The patenting of human genes has been the subject of debate for decades. While China has gradually come to play an important role in the global genomics-based testing and treatment market, little is known about Chinese scholars' perspectives on patent protection for human genes. A content analysis of academic literature was conducted to identify Chinese scholars' concerns regarding gene patents, including benefits and risks of patenting human genes, attitudes that researchers hold towards gene patenting, and any legal and policy recommendations offered for the gene patent regime in China. 57.2% of articles were written by law professors, but scholars from health sciences, liberal arts, and ethics also participated in discussions on gene patent issues. While discussions of benefits and risks were relatively balanced in the articles, 63.5% of the articles favored gene patenting in general and, of the articles (n = 41) that explored gene patents in the Chinese context, 90.2% supported patent protections for human genes in China. The patentability of human genes was discussed in 33 articles, and 75.8% of these articles reached the conclusion that human genes are patentable. Chinese scholars view the patent regime as an important legal tool to protect the interests of inventors and inventions as well as the genetic resources of China. As such, many scholars support a gene patent system in China. These attitudes towards gene patents remain unchanged following the court ruling in the Myriad case in 2013, but arguments have been raised about the scope of gene patents, in particular that the increasing numbers of gene patents may negatively impact public health in China.

  9. Radiation hybrid mapping of genes in the lithium-sensitive wnt signaling pathway.

    Science.gov (United States)

    Rhoads, A R; Karkera, J D; Detera-Wadleigh, S D

    1999-09-01

    Lithium, an effective drug in the treatment of bipolar disorder, has been proposed to disrupt the Wnt signaling pathway. To facilitate analysis of the possible involvement of elements of the Wnt pathway in human bipolar disorder, a high resolution radiation hybrid mapping (RHM) of these genes was performed. A fine physical location has been obtained for Wnt 7A, frizzled 3, 4 and 5, dishevelled 1, 2 and 3, GSK3beta, axin, alpha-catenin, the Armadillo repeat-containing genes (delta-catenin and ARVCF), and a frizzled-like protein (frpHE) using the Stanford Human Genome Center (SHGC) G3 panel. Most of these genes were previously mapped by fluorescence in situ hybridization (FISH). Frizzled 4, axin and frpHE did not have a previous chromosomal assignment and were linked by RHM to chromosome markers, SHGC-35131 at 11q22.1, NIB1488 at 16p13.3 and D7S2919 at 7p15.2, respectively. Interestingly, some of these genes were found to map within potential regions underlying susceptibility to bipolar disorder and schizophrenia as well as disorders of neurodevelopmental origin. This alternative approach of establishing the precise location of selected genetic components of a candidate pathway and determining if they map within previously defined susceptibility loci should help to identify plausible candidate genes that warrant further analysis through association and mutational scanning.

  10. cudaMap: a GPU accelerated program for gene expression connectivity mapping.

    Science.gov (United States)

    McArt, Darragh G; Bankhead, Peter; Dunne, Philip D; Salto-Tellez, Manuel; Hamilton, Peter; Zhang, Shu-Dong

    2013-10-11

    Modern cancer research often involves large datasets and the use of sophisticated statistical techniques. Together these add a heavy computational load to the analysis, which is often coupled with issues surrounding data accessibility. Connectivity mapping is an advanced bioinformatic and computational technique dedicated to therapeutics discovery and drug re-purposing around differential gene expression analysis. On a normal desktop PC, it is common for the connectivity mapping task with a single gene signature to take > 2h to complete using sscMap, a popular Java application that runs on standard CPUs (Central Processing Units). Here, we describe new software, cudaMap, which has been implemented using CUDA C/C++ to harness the computational power of NVIDIA GPUs (Graphics Processing Units) to greatly reduce processing times for connectivity mapping. cudaMap can identify candidate therapeutics from the same signature in just over thirty seconds when using an NVIDIA Tesla C2050 GPU. Results from the analysis of multiple gene signatures, which would previously have taken several days, can now be obtained in as little as 10 minutes, greatly facilitating candidate therapeutics discovery with high throughput. We are able to demonstrate dramatic speed differentials between GPU assisted performance and CPU executions as the computational load increases for high accuracy evaluation of statistical significance. Emerging 'omics' technologies are constantly increasing the volume of data and information to be processed in all areas of biomedical research. Embracing the multicore functionality of GPUs represents a major avenue of local accelerated computing. cudaMap will make a strong contribution in the discovery of candidate therapeutics by enabling speedy execution of heavy duty connectivity mapping tasks, which are increasingly required in modern cancer research. cudaMap is open source and can be freely downloaded from http://purl.oclc.org/NET/cudaMap.

  11. [Multiplexing mapping of human cDNAs]. Final report, September 1, 1991--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    Using PCR with automated product analysis, 329 human brain cDNA sequences have been assigned to individual human chromosomes. Primers were designed from single-pass cDNA sequences expressed sequence tags (ESTs). Primers were used in PCR reactions with DNA from somatic cell hybrid mapping panels as templates, often with multiplexing. Many ESTs mapped match sequence database records. To evaluate of these matches, the position of the primers relative to the matching region (In), the BLAST scores and the Poisson probability values of the EST/sequence record match were determined. In cases where the gene product was stringently identified by the sequence match had already been mapped, the gene locus determined by EST was consistent with the previous position which strongly supports the validity of assigning unknown genes to human chromosomes based on the EST sequence matches. In the present cases mapping the ESTs to a chromosome can also be considered to have mapped the known gene product: rolipram-sensitive cAMP phosphodiesterase, chromosome 1; protein phosphatase 2A{beta}, chromosome 4; alpha-catenin, chromosome 5; the ELE1 oncogene, chromosome 10q11.2 or q2.1-q23; MXII protein, chromosome l0q24-qter; ribosomal protein L18a homologue, chromosome 14; ribosomal protein L3, chromosome 17; and moesin, Xp11-cen. There were also ESTs mapped that were closely related to non-human sequence records. These matches therefore can be considered to identify human counterparts of known gene products, or members of known gene families. Examples of these include membrane proteins, translation-associated proteins, structural proteins, and enzymes. These data then demonstrate that single pass sequence information is sufficient to design PCR primers useful for assigning cDNA sequences to human chromosomes. When the EST sequence matches previous sequence database records, the chromosome assignments of the EST can be used to make preliminary assignments of the human gene to a chromosome.

  12. Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments

    Energy Technology Data Exchange (ETDEWEB)

    Cotmore, S.F.; McKie, V.C.; Anderson, L.J.; Astell, C.R.; Tattersall, P.

    1986-11-01

    Plasma from a child with homozygous sickle-cell disease, sampled during the early phase of an aplastic crisis, contained human parvovirus B19 virions. Plasma taken 10 days later (during the convalescent phase) contained both immunoglobulin M and immunoglobulin G antibodies directed against two viral polypeptides with apparent molecular weights for 83,000 and 58,000 which were present exclusively in the particulate fraction of the plasma taken during the acute phase. These two protein species comigrated at 110S on neutral sucrose velocity gradients with the B19 viral DNA and thus appear to constitute the viral capsid polypeptides. The B19 genome was molecularly cloned into a bacterial plasmid vector. Two expression constructs containing B19 sequences from different halves of the viral genome were obtained, which directed the synthesis, in bacteria, of segments of virally encoded protein. These polypeptide fragments were then purified and used to immunize rabbits. Antibodies against a protein sequence specified between nucleotides 2897 and 3749 recognized both the 83- and 58-kilodalton capsid polypeptides in aplastic plasma taken during the acute phase and detected similar proteins in the similar proteins in the tissues of a stillborn fetus which had been infected transplacentally with B19. Antibodies against a protein sequence encoded in the other half of the B19 genome (nucleotides 1072 through 2044) did not react specifically with any protein in plasma taken during the acute phase but recognized three nonstructural polypeptides of 71, 63, and 52 kilodaltons present in the liver and, at lower levels, in some other tissues of the transplacentally infected fetus.

  13. Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments

    International Nuclear Information System (INIS)

    Cotmore, S.F.; McKie, V.C.; Anderson, L.J.; Astell, C.R.; Tattersall, P.

    1986-01-01

    Plasma from a child with homozygous sickle-cell disease, sampled during the early phase of an aplastic crisis, contained human parvovirus B19 virions. Plasma taken 10 days later (during the convalescent phase) contained both immunoglobulin M and immunoglobulin G antibodies directed against two viral polypeptides with apparent molecular weights for 83,000 and 58,000 which were present exclusively in the particulate fraction of the plasma taken during the acute phase. These two protein species comigrated at 110S on neutral sucrose velocity gradients with the B19 viral DNA and thus appear to constitute the viral capsid polypeptides. The B19 genome was molecularly cloned into a bacterial plasmid vector. Two expression constructs containing B19 sequences from different halves of the viral genome were obtained, which directed the synthesis, in bacteria, of segments of virally encoded protein. These polypeptide fragments were then purified and used to immunize rabbits. Antibodies against a protein sequence specified between nucleotides 2897 and 3749 recognized both the 83- and 58-kilodalton capsid polypeptides in aplastic plasma taken during the acute phase and detected similar proteins in the similar proteins in the tissues of a stillborn fetus which had been infected transplacentally with B19. Antibodies against a protein sequence encoded in the other half of the B19 genome (nucleotides 1072 through 2044) did not react specifically with any protein in plasma taken during the acute phase but recognized three nonstructural polypeptides of 71, 63, and 52 kilodaltons present in the liver and, at lower levels, in some other tissues of the transplacentally infected fetus

  14. Nucleotide sequence of a human tRNA gene heterocluster

    International Nuclear Information System (INIS)

    Chang, Y.N.; Pirtle, I.L.; Pirtle, R.M.

    1986-01-01

    Leucine tRNA from bovine liver was used as a hybridization probe to screen a human gene library harbored in Charon-4A of bacteriophage lambda. The human DNA inserts from plaque-pure clones were characterized by restriction endonuclease mapping and Southern hybridization techniques, using both [3'- 32 P]-labeled bovine liver leucine tRNA and total tRNA as hybridization probes. An 8-kb Hind III fragment of one of these γ-clones was subcloned into the Hind III site of pBR322. Subsequent fine restriction mapping and DNA sequence analysis of this plasmid DNA indicated the presence of four tRNA genes within the 8-kb DNA fragment. A leucine tRNA gene with an anticodon of AAG and a proline tRNA gene with an anticodon of AGG are in a 1.6-kb subfragment. A threonine tRNA gene with an anticodon of UGU and an as yet unidentified tRNA gene are located in a 1.1-kb subfragment. These two different subfragments are separated by 2.8 kb. The coding regions of the three sequenced genes contain characteristic internal split promoter sequences and do not have intervening sequences. The 3'-flanking region of these three genes have typical RNA polymerase III termination sites of at least four consecutive T residues

  15. Chromosomal localization of the human vesicular amine transporter genes

    Energy Technology Data Exchange (ETDEWEB)

    Peter, D.; Finn, P.; Liu, Y.; Roghani, A.; Edwards, R.H.; Klisak, I.; Kojis, T.; Heinzmann, C.; Sparkes, R.S. (UCLA School of Medicine, Los Angeles, CA (United States))

    1993-12-01

    The physiologic and behavioral effects of pharmacologic agents that interfere with the transport of monoamine neurotransmitters into vesicles suggest that vesicular amine transport may contribute to human neuropsychiatric disease. To determine whether an alteration in the genes that encode vesicular amine transport contributes to the inherited component of these disorders, the authors have isolated a human cDNA for the brain transporter and localized the human vesciular amine transporter genes. The human brain synaptic vesicle amine transporter (SVAT) shows unexpected conservation with rat SVAT in the regions that diverge extensively between rat SVAT and the rat adrenal chromaffin granule amine transporter (CGAT). Using the cloned sequences with a panel of mouse-human hybrids and in situ hybridization for regional localization, the adrenal CGAT gene (or VAT1) maps to human chromosome 8p21.3 and the brain SVAT gene (or VAT2) maps to chromosome 10q25. Both of these sites occur very close to if not within previously described deletions that produce severe but viable phenotypes. 26 refs., 3 figs., 1 tab.

  16. Connectome imaging for mapping human brain pathways.

    Science.gov (United States)

    Shi, Y; Toga, A W

    2017-09-01

    With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research.

  17. Gene annotation from scientific literature using mappings between keyword systems.

    Science.gov (United States)

    Pérez, Antonio J; Perez-Iratxeta, Carolina; Bork, Peer; Thode, Guillermo; Andrade, Miguel A

    2004-09-01

    The description of genes in databases by keywords helps the non-specialist to quickly grasp the properties of a gene and increases the efficiency of computational tools that are applied to gene data (e.g. searching a gene database for sequences related to a particular biological process). However, the association of keywords to genes or protein sequences is a difficult process that ultimately implies examination of the literature related to a gene. To support this task, we present a procedure to derive keywords from the set of scientific abstracts related to a gene. Our system is based on the automated extraction of mappings between related terms from different databases using a model of fuzzy associations that can be applied with all generality to any pair of linked databases. We tested the system by annotating genes of the SWISS-PROT database with keywords derived from the abstracts linked to their entries (stored in the MEDLINE database of scientific references). The performance of the annotation procedure was much better for SWISS-PROT keywords (recall of 47%, precision of 68%) than for Gene Ontology terms (recall of 8%, precision of 67%). The algorithm can be publicly accessed and used for the annotation of sequences through a web server at http://www.bork.embl.de/kat

  18. Genome-wide associations of gene expression variation in humans.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  19. Genome-Wide Associations of Gene Expression Variation in Humans.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  20. MAP kinase genes and colon and rectal cancer

    Science.gov (United States)

    Slattery, Martha L.

    2012-01-01

    Mitogen-activated protein kinase (MAPK) pathways regulate many cellular functions including cell proliferation, differentiation, migration and apoptosis. We evaluate genetic variation in the c-Jun-N-terminal kinases, p38, and extracellular regulated kinases 1/2 MAPK-signaling pathways and colon and rectal cancer risk using data from population-based case-control studies (colon: n = 1555 cases, 1956 controls; rectal: n = 754 cases, 959 controls). We assess 19 genes (DUSP1, DUSP2, DUSP4, DUSP6, DUSP7, MAP2K1, MAP3K1, MAP3K2, MAP3K3, MAP3K7, MAP3K9, MAP3K10, MAP3K11, MAPK1, MAPK3, MAPK8, MAPK12, MAPK14 and RAF1). MAP2K1 rs8039880 [odds ratio (OR) = 0.57, 95% confidence interval (CI) = 0.38, 0.83; GG versus AA genotype] and MAP3K9 rs11625206 (OR = 1.41, 95% CI = 1.14, 1.76; recessive model) were associated with colon cancer (P adj value rectal cancer (P adj cancer risk. Genetic variants had unique associations with KRAS, TP53 and CIMP+ tumors. DUSP2 rs1724120 [hazard rate ratio (HRR) = 0.72, 95%CI = 0.54, 0.96; AA versus GG/GA), MAP3K10 rs112956 (HRR = 1.40, 95% CI = 1.10, 1.76; CT/TT versus CC) and MAP3K11 (HRR = 1.76, 95% CI 1.18, 2.62 TT versus GG/GT) influenced survival after diagnosis with colon cancer; MAP2K1 rs8039880 (HRR = 2.53, 95% CI 1.34, 4.79 GG versus AG/GG) and Raf1 rs11923427 (HRR = 0.59 95% CI = 0.40, 0.86; AA versus TT/TA) were associated with rectal cancer survival. These data suggest that genetic variation in the MAPK-signaling pathway influences colorectal cancer risk and survival after diagnosis. Associations may be modified by lifestyle factors that influence inflammation and oxidative stress. PMID:23027623

  1. CRESST Human Performance Knowledge Mapping System

    National Research Council Canada - National Science Library

    Chung, Gregory K; Michiuye, Joanne K; Brill, David G; Sinha, Ravi; Saadat, Farzad; de Vries, Linda F; Delacruz, Girlie C; Bewley, William L; Baker, Eva L

    2002-01-01

    .... While several tools exist that are available to construct knowledge maps, CRESST's knowledge mapping tool is one of the only systems designed specifically for assessment purposes, the only system...

  2. CRESST Human Performance Knowledge Mapping System

    National Research Council Canada - National Science Library

    Chung, Gregory K; Michiuye, Joanne K; Brill, David G; Sinha, Ravi; Saadat, Farzad; de Vries, Linda F; Delacruz, Girlie C; Bewley, William L; Baker, Eva L

    2002-01-01

    .... This report presents a review of knowledge mapping scoring methods and current online mapping systems, and the overall design, functionality, scoring, usability testing, and authoring capabilities of the CRESST system...

  3. Human proton/oligopeptide transporter (POT) genes

    DEFF Research Database (Denmark)

    Botka, C. W.; Wittig, T. W.; Graul, R. C.

    2000-01-01

    The proton-dependent oligopeptide transporters (POT) gene family currently consists of approximately 70 cloned cDNAs derived from diverse organisms. In mammals, two genes encoding peptide transporters, PepT1 and PepT2 have been cloned in several species including humans, in addition to a rat...... histidine/peptide transporter (rPHT1). Because the Candida elegans genome contains five putative POT genes, we searched the available protein and nucleic acid databases for additional mammalian/human POT genes, using iterative BLAST runs and the human expressed sequence tags (EST) database. The apparent...... and introns of the likely human orthologue (termed hPHT2). Northern analyses with EST clones indicated that hPHT1 is primarily expressed in skeletal muscle and spleen, whereas hPHT2 is found in spleen, placenta, lung, leukocytes, and heart. These results suggest considerable complexity of the human POT gene...

  4. Isolating human DNA repair genes using rodent-cell mutants

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A.; Mitchell, D.L.

    1987-01-01

    The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab

  5. GeneRecon Users' Manual — A coalescent based tool for fine-scale association mapping

    DEFF Research Database (Denmark)

    Mailund, T

    2006-01-01

    GeneRecon is a software package for linkage disequilibrium mapping using coalescent theory. It is based on Bayesian Markov-chain Monte Carlo (MCMC) method for fine-scale linkage-disequilibrium gene mapping using high-density marker maps. GeneRecon explicitly models the genealogy of a sample of th...

  6. Cloning, expression, and chromosome mapping of human galectin-7

    DEFF Research Database (Denmark)

    Madsen, Peder; Rasmussen, H H; Flint, T

    1995-01-01

    The galectins are a family of beta-galactoside-binding proteins implicated in modulating cell-cell and cell-matrix interactions. Here we report the cloning and expression of a novel member of this family (galectin-7) that correspond to IEF (isoelectric focusing) 17 (12,700 Da; pI, 7.6) in the human...... keratinocyte protein data base, and that is strikingly down-regulated in SV40 transformed keratinocytes (K14). The cDNA was cloned from a lambda gt11 cDNA expression library using degenerated oligodeoxyribonucleotides back-translated from an IEF 17 peptide sequence. The protein encoded by the galectin-7 clone......14 keratinocytes imply a role in cell-cell and/or cell-matrix interactions necessary for normal growth control. The galectin-7 gene was mapped to chromosome 19. Udgivelsesdato: 1995-Mar-17...

  7. Human V4 and ventral occipital retinotopic maps

    Science.gov (United States)

    Winawer, Jonathan; Witthoft, Nathan

    2016-01-01

    The ventral surface of the human occipital lobe contains multiple retinotopic maps. The most posterior of these maps is considered a potential homolog of macaque V4, and referred to as human V4 (‘hV4’). The location of the hV4 map, its retinotopic organization, its role in visual encoding, and the cortical areas it borders have been the subject of considerable investigation and debate over the last 25 years. We review the history of this map and adjacent maps in ventral occipital cortex, and consider the different hypotheses for how these ventral occipital maps are organized. Advances in neuroimaging, computational modeling, and characterization of the nearby anatomical landmarks and functional brain areas have improved our understanding of where human V4 is and what kind of visual representations it contains. PMID:26241699

  8. Constellation Map: Downstream visualization and interpretation of gene set enrichment results [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Yan Tan

    2015-06-01

    Full Text Available Summary: Gene set enrichment analysis (GSEA approaches are widely used to identify coordinately regulated genes associated with phenotypes of interest. Here, we present Constellation Map, a tool to visualize and interpret the results when enrichment analyses yield a long list of significantly enriched gene sets. Constellation Map identifies commonalities that explain the enrichment of multiple top-scoring gene sets and maps the relationships between them. Constellation Map can help investigators take full advantage of GSEA and facilitates the biological interpretation of enrichment results. Availability: Constellation Map is freely available as a GenePattern module at http://www.genepattern.org.

  9. An integrated physical map of 210 markers assigned to the short arm of human chromosome 11

    NARCIS (Netherlands)

    Redeker, E.; Hoovers, J. M.; Alders, M.; van Moorsel, C. J.; Ivens, A. C.; Gregory, S.; Kalikin, L.; Bliek, J.; de Galan, L.; van den Bogaard, R.; Visser, J.; van der Voort, R.; Feinberg, A. P.; Little, P. F. R.; Westerveld, A.; Mannens, M.

    1994-01-01

    Using a panel of patient cell lines with chromosomal breakpoints, we constructed a physical map for the short arm of human chromosome 11. We focused on 11p15, a chromosome band harboring at least 25 known genes and associated with the Beckwith-Wiedemann syndrome, several childhood tumors, and

  10. Towards metabolic mapping of the human retina.

    Science.gov (United States)

    Schweitzer, D; Schenke, S; Hammer, M; Schweitzer, F; Jentsch, S; Birckner, E; Becker, W; Bergmann, A

    2007-05-01

    Functional alterations are first signs of a starting pathological process. A device that measures parameter for the characterization of the metabolism at the human eye-ground would be a helpful tool for early diagnostics in stages when alterations are yet reversible. Measurements of blood flow and of oxygen saturation are necessary but not sufficient. The new technique of auto-fluorescence lifetime measurement (FLIM) opens in combination with selected excitation and emission ranges the possibility for metabolic mapping. FLIM not only adds an additional discrimination parameter to distinguish different fluorophores but also resolves different quenching states of the same fluorophore. Because of its high sensitivity and high temporal resolution, its capability to resolve multi-exponential decay functions, and its easy combination with laser scanner ophthalmoscopy, multi-dimensional time-correlated single photon counting was used for fundus imaging. An optimized set up for in vivo lifetime measurements at the human eye-ground will be explained. In this, the fundus fluorescence is excited at 446 or 468 nm and the time-resolved autofluorescence is detected in two spectral ranges between 510 and 560 nm as well as between 560 and 700 nm simultaneously. Exciting the fundus at 446 nm, several fluorescence maxima of lifetime t1 were detected between 100 and 220 ps in lifetime histograms of 40 degrees fundus images. In contrast, excitation at 468 nm results in a single maximum of lifetime t1 = 190 +/- 16 ps. Several fundus layers contribute to the fluorescence intensity in the short-wave emission range 510-560 nm. In contrast, the fluorescence intensity in the long-wave emission range between 560 and 700 nm is dominated by the fluorescence of lipofuscin in the retinal pigment epithelium. Comparing the lateral distribution of parameters of a tri-exponential model function in lifetime images of the fundus with the layered anatomical fundus structure, the shortest component (t1

  11. The role of imprinted genes in humans

    OpenAIRE

    Ishida, Miho; Moore, Gudrun E.

    2013-01-01

    Detailed comprehensive molecular analysis using families and multiple matched tissues is essential to determine whether imprinted genes have a functional role in humans. See research article: http://genomebiology.com/2011/12/3/R25

  12. Cloning and chromosomal localization of the three human syntrophin genes

    Energy Technology Data Exchange (ETDEWEB)

    Feener, C.A.; Anderson, M.D.S.; Selig, S. [Children`s Hospital, Boston, MA (United States)] [and others

    1994-09-01

    Dystrophin, the protein product the Duchenne muscular dystrophy locus, is normally found to be associated with a complex of proteins. Among these dystrophin-associated proteins are the syntrophins, a group of 59 kDa membrane-associated proteins. When the syntrophins are purified based upon their association with dystrophin, they have been shown previously to form two distinct groups, the acidic ({alpha}) and basic ({beta}) forms. Based on peptide and rodent cDNA sequences, three separate syntrophin genes have been cloned and characterized from human tissues. The predicted amino acid sequences from these cDNA reveal that these proteins are related but are distinct with respect to charge, as predicted from their biochemistry. The family consists of one acidic ({alpha}-syntrophin, analogous to mouse syntrophin-1) and two basic ({beta}{sub 1}-syntrophin; and {beta}{sub 2}-syntrophin, analogous to mouse syntrophin-2) genes. Each of the three genes are widely expressed in a variety of human tissues, but the relative abundance of the three are unique with respect to each other. {alpha}-syntrophin is expressed primarily in skeletal muscle and heart as a single transcript. {beta}{sub 1}-syntrophin is expressed widely in up to five distinct transcript sizes, and is most abundant in brain. The human chromosomal locations of the three syntrophins are currently being mapped. {beta}{sub 1}-syntrophin maps to chromosome 8q23-24 and {beta}{sub 2}-syntrophin to chromosome 16. The {alpha}-syntrophin gene will be mapped accordingly. Although all three genes are candidates for neuromuscular diseases, the predominant expression of {alpha}-syntrophin in skeletal muscle and heart makes it a strong candidate to be involved in a neuromuscular disease.

  13. Zebrafish syntenic relationship to human/mouse genomes revealed by radiation hybrid mapping

    International Nuclear Information System (INIS)

    Samonte, Irene E.

    2007-01-01

    Zebrafish (Danio rerio) is an excellent model system for vertebrate developmental analysis and a new model for human disorders. In this study, however, zebrafish was used to determine its syntenic relationship to human/mouse genomes using the zebrafish-hamster radiation hybrid panel. The focus was on genes residing on chromosomes 6 and 17 of human and mouse, respectively, and some other genes of either immunologic or evolutionary importance. Gene sequences of interest and zebrafish expressed sequence tags deposited in the GenBank were used in identifying zebrafish homologs. Polymerase chain reaction (PCR) amplification, cloning and subcloning, sequencing, and phylogenetic analysis were done to confirm the homology of the candidate genes in zebrafish. The promising markers were then tested in the 94 zebrafish-hamster radiation hybrid panel cell lines and submitted for logarithm of the odds (LOD) score analysis to position genes on the zebrafish map. A total of 19 loci were successfully mapped to zebrafish linkage groups 1, 14, 15, 19, and 20. Four of these loci were positioned in linkage group 20, whereas, 3 more loci were added in linkage group 19, thus increasing to 34 loci the number of human genes syntenic to the group. With the sequencing of the zebrafish genome, about 20 more MHC genes were reported linked on the same group. (Author)

  14. BcII RFLP for the human vimentin gene

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, E M; Smith, B A; Telenius, H; Ponder, B A.J.; Mathew, C G.P. [Haddow Laboratories, Surrey (England); Landsvater, R M; Buys, C H.C.M. [State Univ. of Groningen (Netherlands); Ferrari, S [Temple University Medical School, Philadelphia, PA (USA)

    1988-09-26

    A 1.1 kb cDNA clone (hp4F1) encoding the human vimentin gene was identified in a human library by screening with 4F1, a hamster vimentin cDNA. BcII (TGATCA) recognizes a two allele polymorphism: bands A1 at 8.1 kb, and A2 at 3.6 kb. The allele frequency was determined in 47 unrelated Caucasian individuals. The RFLP was mapped to chromosome 10pter-10q23 using somatic cell hybrids and to 10p13 by in situ hybridization. Co-dominant segregation was observed in 2 informative families.

  15. Saturation of an intra-gene pool linkage map: towards a unified consensus linkage map for fine mapping and synteny analysis in common bean.

    Science.gov (United States)

    Galeano, Carlos H; Fernandez, Andrea C; Franco-Herrera, Natalia; Cichy, Karen A; McClean, Phillip E; Vanderleyden, Jos; Blair, Matthew W

    2011-01-01

    Map-based cloning and fine mapping to find genes of interest and marker assisted selection (MAS) requires good genetic maps with reproducible markers. In this study, we saturated the linkage map of the intra-gene pool population of common bean DOR364 × BAT477 (DB) by evaluating 2,706 molecular markers including SSR, SNP, and gene-based markers. On average the polymorphism rate was 7.7% due to the narrow genetic base between the parents. The DB linkage map consisted of 291 markers with a total map length of 1,788 cM. A consensus map was built using the core mapping populations derived from inter-gene pool crosses: DOR364 × G19833 (DG) and BAT93 × JALO EEP558 (BJ). The consensus map consisted of a total of 1,010 markers mapped, with a total map length of 2,041 cM across 11 linkage groups. On average, each linkage group on the consensus map contained 91 markers of which 83% were single copy markers. Finally, a synteny analysis was carried out using our highly saturated consensus maps compared with the soybean pseudo-chromosome assembly. A total of 772 marker sequences were compared with the soybean genome. A total of 44 syntenic blocks were identified. The linkage group Pv6 presented the most diverse pattern of synteny with seven syntenic blocks, and Pv9 showed the most consistent relations with soybean with just two syntenic blocks. Additionally, a co-linear analysis using common bean transcript map information against soybean coding sequences (CDS) revealed the relationship with 787 soybean genes. The common bean consensus map has allowed us to map a larger number of markers, to obtain a more complete coverage of the common bean genome. Our results, combined with synteny relationships provide tools to increase marker density in selected genomic regions to identify closely linked polymorphic markers for indirect selection, fine mapping or for positional cloning.

  16. Genome-wide survey and developmental expression mapping of zebrafish SET domain-containing genes.

    Directory of Open Access Journals (Sweden)

    Xiao-Jian Sun

    Full Text Available SET domain-containing proteins represent an evolutionarily conserved family of epigenetic regulators, which are responsible for most histone lysine methylation. Since some of these genes have been revealed to be essential for embryonic development, we propose that the zebrafish, a vertebrate model organism possessing many advantages for developmental studies, can be utilized to study the biological functions of these genes and the related epigenetic mechanisms during early development. To this end, we have performed a genome-wide survey of zebrafish SET domain genes. 58 genes total have been identified. Although gene duplication events give rise to several lineage-specific paralogs, clear reciprocal orthologous relationship reveals high conservation between zebrafish and human SET domain genes. These data were further subject to an evolutionary analysis ranging from yeast to human, leading to the identification of putative clusters of orthologous groups (COGs of this gene family. By means of whole-mount mRNA in situ hybridization strategy, we have also carried out a developmental expression mapping of these genes. A group of maternal SET domain genes, which are implicated in the programming of histone modification states in early development, have been identified and predicted to be responsible for all known sites of SET domain-mediated histone methylation. Furthermore, some genes show specific expression patterns in certain tissues at certain stages, suggesting the involvement of epigenetic mechanisms in the development of these systems. These results provide a global view of zebrafish SET domain histone methyltransferases in evolutionary and developmental dimensions and pave the way for using zebrafish to systematically study the roles of these genes during development.

  17. Alternative mapping of probes to genes for Affymetrix chips

    DEFF Research Database (Denmark)

    Gautier, Laurent; Møller, M.; Friis-Hansen, L.

    2004-01-01

    transcripts: the NCBI RefSeq database. We also built mappings and used them in place of the original probe to genes associations provided by the manufacturer of the arrays. Results: In a large number of cases, 36%, the probes matching a reference sequence were consistent with the grouping of probes...... by the manufacturer of the chips. For the remaining cases there were discrepancies and we show how that can affect the analysis of data. Conclusions: While the probes on Affymetrix arrays remain the same for several years, the biological knowledge concerning the genomic sequences evolves rapidly. Using up...

  18. Tissue-based map of the human proteome

    DEFF Research Database (Denmark)

    Uhlén, Mathias; Fagerberg, Linn; Hallström, Björn M.

    2015-01-01

    Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transc...

  19. Genetic Variants Contribute to Gene Expression Variability in Humans

    Science.gov (United States)

    Hulse, Amanda M.; Cai, James J.

    2013-01-01

    Expression quantitative trait loci (eQTL) studies have established convincing relationships between genetic variants and gene expression. Most of these studies focused on the mean of gene expression level, but not the variance of gene expression level (i.e., gene expression variability). In the present study, we systematically explore genome-wide association between genetic variants and gene expression variability in humans. We adapt the double generalized linear model (dglm) to simultaneously fit the means and the variances of gene expression among the three possible genotypes of a biallelic SNP. The genomic loci showing significant association between the variances of gene expression and the genotypes are termed expression variability QTL (evQTL). Using a data set of gene expression in lymphoblastoid cell lines (LCLs) derived from 210 HapMap individuals, we identify cis-acting evQTL involving 218 distinct genes, among which 8 genes, ADCY1, CTNNA2, DAAM2, FERMT2, IL6, PLOD2, SNX7, and TNFRSF11B, are cross-validated using an extra expression data set of the same LCLs. We also identify ∼300 trans-acting evQTL between >13,000 common SNPs and 500 randomly selected representative genes. We employ two distinct scenarios, emphasizing single-SNP and multiple-SNP effects on expression variability, to explain the formation of evQTL. We argue that detecting evQTL may represent a novel method for effectively screening for genetic interactions, especially when the multiple-SNP influence on expression variability is implied. The implication of our results for revealing genetic mechanisms of gene expression variability is discussed. PMID:23150607

  20. Duplicability of self-interacting human genes.

    LENUS (Irish Health Repository)

    Pérez-Bercoff, Asa

    2010-01-01

    BACKGROUND: There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome. RESULTS: We investigated the patterns of self-interaction and duplication among 34808 interactions encoded by 8881 human genes, and show that self-interacting proteins are encoded by genes with higher duplicability than genes whose proteins lack this type of interaction. We show that this result is robust against the system used to define duplicate genes. Finally we compared the presence of self-interactions amongst proteins whose genes have duplicated either through whole-genome duplication (WGD) or small-scale duplication (SSD), and show that the former tend to have more interactions in general. After controlling for age differences between the two sets of duplicates this result can be explained by the time since the gene duplication. CONCLUSIONS: Genes encoding self-interacting proteins tend to have higher duplicability than proteins lacking self-interactions. Moreover these duplicate genes have more often arisen through whole-genome rather than small-scale duplication. Finally, self-interacting WGD genes tend to have more interaction partners in general in the PIN, which can be explained by their overall greater age. This work adds to our growing knowledge of the importance of contextual factors in gene duplicability.

  1. Human gene therapy and imaging: cardiology

    International Nuclear Information System (INIS)

    Wu, Joseph C.; Yla-Herttuala, Seppo

    2005-01-01

    This review discusses the basics of cardiovascular gene therapy, the results of recent human clinical trials, and the rapid progress in imaging techniques in cardiology. Improved understanding of the molecular and genetic basis of coronary heart disease has made gene therapy a potential new alternative for the treatment of cardiovascular diseases. Experimental studies have established the proof-of-principle that gene transfer to the cardiovascular system can achieve therapeutic effects. First human clinical trials provided initial evidence of feasibility and safety of cardiovascular gene therapy. However, phase II/III clinical trials have so far been rather disappointing and one of the major problems in cardiovascular gene therapy has been the inability to verify gene expression in the target tissue. New imaging techniques could significantly contribute to the development of better gene therapeutic approaches. Although the exact choice of imaging modality will depend on the biological question asked, further improvement in image resolution and detection sensitivity will be needed for all modalities as we move from imaging of organs and tissues to imaging of cells and genes. (orig.)

  2. Gene prediction using the Self-Organizing Map: automatic generation of multiple gene models.

    Science.gov (United States)

    Mahony, Shaun; McInerney, James O; Smith, Terry J; Golden, Aaron

    2004-03-05

    Many current gene prediction methods use only one model to represent protein-coding regions in a genome, and so are less likely to predict the location of genes that have an atypical sequence composition. It is likely that future improvements in gene finding will involve the development of methods that can adequately deal with intra-genomic compositional variation. This work explores a new approach to gene-prediction, based on the Self-Organizing Map, which has the ability to automatically identify multiple gene models within a genome. The current implementation, named RescueNet, uses relative synonymous codon usage as the indicator of protein-coding potential. While its raw accuracy rate can be less than other methods, RescueNet consistently identifies some genes that other methods do not, and should therefore be of interest to gene-prediction software developers and genome annotation teams alike. RescueNet is recommended for use in conjunction with, or as a complement to, other gene prediction methods.

  3. Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance.

    Science.gov (United States)

    Bokulich, Nicholas A; Bergsveinson, Jordyn; Ziola, Barry; Mills, David A

    2015-03-10

    Distinct microbial ecosystems have evolved to meet the challenges of indoor environments, shaping the microbial communities that interact most with modern human activities. Microbial transmission in food-processing facilities has an enormous impact on the qualities and healthfulness of foods, beneficially or detrimentally interacting with food products. To explore modes of microbial transmission and spoilage-gene frequency in a commercial food-production scenario, we profiled hop-resistance gene frequencies and bacterial and fungal communities in a brewery. We employed a Bayesian approach for predicting routes of contamination, revealing critical control points for microbial management. Physically mapping microbial populations over time illustrates patterns of dispersal and identifies potential contaminant reservoirs within this environment. Habitual exposure to beer is associated with increased abundance of spoilage genes, predicting greater contamination risk. Elucidating the genetic landscapes of indoor environments poses important practical implications for food-production systems and these concepts are translatable to other built environments.

  4. Human cDNA mapping using fluorescence in situ hybridization. Final progress report, April 1, 1994--July 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.

    1997-12-31

    The ultimate goal of this research is to generate and apply novel technologies to speed completion and integration of the human genome map and sequence with biomedical problems. To do this, techniques were developed and genome-wide resources generated. This includes a genome-wide Mapped and Integrated BAC/PAC Resource that has been used for gene finding, map completion and anchoring, breakpoint definition and sequencing. In the last period of the grant, the Human Mapped BAC/PAC Resource was also applied to determine regions of human variation and to develop a novel paradigm of primate evolution through to humans. Further, in order to more rapidly evaluate animal models of human disease, a BAC Map of the mouse was generated in collaboration with the MTI Genome Center, Dr. Bruce Birren.

  5. The mouse-human anatomy ontology mapping project.

    Science.gov (United States)

    Hayamizu, Terry F; de Coronado, Sherri; Fragoso, Gilberto; Sioutos, Nicholas; Kadin, James A; Ringwald, Martin

    2012-01-01

    The overall objective of the Mouse-Human Anatomy Project (MHAP) was to facilitate the mapping and harmonization of anatomical terms used for mouse and human models by Mouse Genome Informatics (MGI) and the National Cancer Institute (NCI). The anatomy resources designated for this study were the Adult Mouse Anatomy (MA) ontology and the set of anatomy concepts contained in the NCI Thesaurus (NCIt). Several methods and software tools were identified and evaluated, then used to conduct an in-depth comparative analysis of the anatomy ontologies. Matches between mouse and human anatomy terms were determined and validated, resulting in a highly curated set of mappings between the two ontologies that has been used by other resources. These mappings will enable linking of data from mouse and human. As the anatomy ontologies have been expanded and refined, the mappings have been updated accordingly. Insights are presented into the overall process of comparing and mapping between ontologies, which may prove useful for further comparative analyses and ontology mapping efforts, especially those involving anatomy ontologies. Finally, issues concerning further development of the ontologies, updates to the mapping files, and possible additional applications and significance were considered. DATABASE URL: http://obofoundry.org/cgi-bin/detail.cgi?id=ma2ncit.

  6. Patenting Human Genes in Europe

    DEFF Research Database (Denmark)

    Minssen, Timo

    2017-01-01

    In accordance with the concept of the book and the assigned scope of the contribution, this chapter describes the European law with respect to the patent-eligibility of isolated DNA sequences. This chapter will further include a brief comparison with recent developments from the US and Australia....... It will, however, not focus on the important debates regarding the patent-eligibility of other biological material, diagnostic methods patents (as data aggregators) or abstract ideas which will be addressed by other contributions. Moreover, the analysis will merely concentrate on patent-eligibility. Other...... patentability requirement will only be briefly touched upon in the discussion part. The paper starts out in section 1.5.2 by discussing the patent-eligibility of isolated human DNA sequences on the European national level and under the Biotechnology Directive. Then the patent-eligibility of isolated human DNA...

  7. Human amyloid beta protein gene locus: HaeIII RFLP

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J E; Gonzalez-DeWhitt, P A; Fuller, F; Cordell, B; Frossard, P M [California Biotechnology Inc., Mountain View (USA); Tinklenberg, J R; Davies, H D; Eng, L F; Yesavage, J A [Stanford Univ. School of Medicine, Palo Alto, CA (USA)

    1988-07-25

    A 2.2 kb EcoRI-EcoRI fragment from the 5{prime} end of the human amyloid beta protein cDNA was isolated from a human fibroblast cDNA library and subcloned into pGEM3. HaeIII (GGCC) detects 6 invariant bands at 0.5 kb, 1.0 kb, 1.1 kb, 1.3 kb, 1.4 kb and 1.6 kb and a two-allele polymorphism with bands at either 1.9 kb or 2.1 kb. Its frequency was studied in 50 North Americans. Human amyloid beta protein gene mapped to the long arm of chromosome 21 (21q11.2-21q21) by Southern blot analysis of human-rodent somatic cell hybrids. Co-dominant segregation was observed in two families (15 individuals).

  8. Understanding the development of human bladder cancer by using a whole-organ genomic mapping strategy.

    Science.gov (United States)

    Majewski, Tadeusz; Lee, Sangkyou; Jeong, Joon; Yoon, Dong-Sup; Kram, Andrzej; Kim, Mi-Sook; Tuziak, Tomasz; Bondaruk, Jolanta; Lee, Sooyong; Park, Weon-Seo; Tang, Kuang S; Chung, Woonbok; Shen, Lanlan; Ahmed, Saira S; Johnston, Dennis A; Grossman, H Barton; Dinney, Colin P; Zhou, Jain-Hua; Harris, R Alan; Snyder, Carrie; Filipek, Slawomir; Narod, Steven A; Watson, Patrice; Lynch, Henry T; Gazdar, Adi; Bar-Eli, Menashe; Wu, Xifeng F; McConkey, David J; Baggerly, Keith; Issa, Jean-Pierre; Benedict, William F; Scherer, Steven E; Czerniak, Bogdan

    2008-07-01

    The search for the genomic sequences involved in human cancers can be greatly facilitated by maps of genomic imbalances identifying the involved chromosomal regions, particularly those that participate in the development of occult preneoplastic conditions that progress to clinically aggressive invasive cancer. The integration of such regions with human genome sequence variation may provide valuable clues about their overall structure and gene content. By extension, such knowledge may help us understand the underlying genetic components involved in the initiation and progression of these cancers. We describe the development of a genome-wide map of human bladder cancer that tracks its progression from in situ precursor conditions to invasive disease. Testing for allelic losses using a genome-wide panel of 787 microsatellite markers was performed on multiple DNA samples, extracted from the entire mucosal surface of the bladder and corresponding to normal urothelium, in situ preneoplastic lesions, and invasive carcinoma. Using this approach, we matched the clonal allelic losses in distinct chromosomal regions to specific phases of bladder neoplasia and produced a detailed genetic map of bladder cancer development. These analyses revealed three major waves of genetic changes associated with growth advantages of successive clones and reflecting a stepwise conversion of normal urothelial cells into cancer cells. The genetic changes map to six regions at 3q22-q24, 5q22-q31, 9q21-q22, 10q26, 13q14, and 17p13, which may represent critical hits driving the development of bladder cancer. Finally, we performed high-resolution mapping using single nucleotide polymorphism markers within one region on chromosome 13q14, containing the model tumor suppressor gene RB1, and defined a minimal deleted region associated with clonal expansion of in situ neoplasia. These analyses provided new insights on the involvement of several non-coding sequences mapping to the region and identified

  9. The human intrinsic factor-vitamin B12 receptor, cubilin: molecular characterization and chromosomal mapping of the gene to 10p within the autosomal recessive megaloblastic anemia (MGA1) region

    DEFF Research Database (Denmark)

    Kozyraki, R; Kristiansen, M; Silahtaroglu, A

    1998-01-01

    -5445 on the short arm of chromosome 10. This is within the autosomal recessive megaloblastic anemia (MGA1) 6-cM region harboring the unknown recessive-gene locus of juvenile megaloblastic anemia caused by intestinal malabsorption of cobalamin (Imerslund-Gräsbeck's disease). In conclusion, the present...... molecular and genetic information on human cubilin now provides circumstantial evidence that an impaired synthesis, processing, or ligand binding of cubilin is the molecular background of this hereditary form of megaloblastic anemia. Udgivelsesdato: 1998-May-15...

  10. Identification of Pneumocystis carinii chromosomes and mapping of five genes

    DEFF Research Database (Denmark)

    Lundgren, B; Cotton, R; Lundgren, J D

    1990-01-01

    Pulsed field gel electrophoresis was used to identify the chromosome-size DNA of Pneumocystis carinii, a major pathogen of immunocompromised patients. Thirteen chromosomes of rodent Pneumocystis carinii, ranging in size from 300 to 700 kilobases (kb), were identified. The minimum genome size for P....... carinii, estimated on the basis of the sizes of chromosomes, is 7,000 kb. Genetic heterogeneity among different P. carinii isolates was documented by demonstration of chromosomal size variability. By hybridization studies, the genes for topoisomerase I, dihydrofolate reductase, rRNA, actin......, and thymidylate synthase were mapped to single chromosomes of approximately 650, 590, 550, 460, and 350 kb, respectively. Hybridization studies further confirmed the genetic heterogeneity of P. carinii....

  11. Spectral map-analysis: a method to analyze gene expression data

    OpenAIRE

    Bijnens, Luc J.M.; Lewi, Paul J.; Göhlmann, Hinrich W.; Molenberghs, Geert; Wouters, Luc

    2004-01-01

    bioinformatics; biplot; correspondence factor analysis; data mining; data visualization; gene expression data; microarray data; multivariate exploratory data analysis; principal component analysis; Spectral map analysis

  12. Creating and validating cis-regulatory maps of tissue-specific gene expression regulation

    Science.gov (United States)

    O'Connor, Timothy R.; Bailey, Timothy L.

    2014-01-01

    Predicting which genomic regions control the transcription of a given gene is a challenge. We present a novel computational approach for creating and validating maps that associate genomic regions (cis-regulatory modules–CRMs) with genes. The method infers regulatory relationships that explain gene expression observed in a test tissue using widely available genomic data for ‘other’ tissues. To predict the regulatory targets of a CRM, we use cross-tissue correlation between histone modifications present at the CRM and expression at genes within 1 Mbp of it. To validate cis-regulatory maps, we show that they yield more accurate models of gene expression than carefully constructed control maps. These gene expression models predict observed gene expression from transcription factor binding in the CRMs linked to that gene. We show that our maps are able to identify long-range regulatory interactions and improve substantially over maps linking genes and CRMs based on either the control maps or a ‘nearest neighbor’ heuristic. Our results also show that it is essential to include CRMs predicted in multiple tissues during map-building, that H3K27ac is the most informative histone modification, and that CAGE is the most informative measure of gene expression for creating cis-regulatory maps. PMID:25200088

  13. Mapping Determinants of Gene Expression Plasticity by Genetical Genomics in C. elegans

    NARCIS (Netherlands)

    Li, Y.; Alda Alvarez, O.; Gutteling, E.W.; Tijsterman, M.; Fu, J.; Riksen, J.A.G.; Hazendonk, E.; Prins, J.C.P.; Plasterk, R.H.A.; Jansen, R.C.; Breitling, R.; Kammenga, J.E.

    2006-01-01

    Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic

  14. Mapping determinants of gene expression plasticity by genetical genomics in C. elegans.

    NARCIS (Netherlands)

    Li, Y.; Alvarez, O.A.; Gutteling, E.W.; Tijsterman, M.; Fu, J.; Riksen, J.A.; Hazendonk, M.G.A.; Prins, P.; Plasterk, R.H.A.; Jansen, R.C.; Breitling, R.; Kammenga, J.E.

    2006-01-01

    Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic

  15. Good genes, complementary genes and human mate preferences.

    Science.gov (United States)

    Roberts, S Craig; Little, Anthony C

    2008-09-01

    The past decade has witnessed a rapidly growing interest in the biological basis of human mate choice. Here we review recent studies that demonstrate preferences for traits which might reveal genetic quality to prospective mates, with potential but still largely unknown influence on offspring fitness. These include studies assessing visual, olfactory and auditory preferences for potential good-gene indicator traits, such as dominance or bilateral symmetry. Individual differences in these robust preferences mainly arise through within and between individual variation in condition and reproductive status. Another set of studies have revealed preferences for traits indicating complementary genes, focussing on discrimination of dissimilarity at genes in the major histocompatibility complex (MHC). As in animal studies, we are only just beginning to understand how preferences for specific traits vary and inter-relate, how consideration of good and compatible genes can lead to substantial variability in individual mate choice decisions and how preferences expressed in one sensory modality may reflect those in another. Humans may be an ideal model species in which to explore these interesting complexities.

  16. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P.

    Science.gov (United States)

    Li, Huanhuan; Jiang, Bo; Wang, Jingchang; Lu, Yuqing; Zhang, Jinpeng; Pan, Cuili; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui

    2017-01-01

    A physical map of Agropyron cristatum 2P chromosome was constructed for the first time and the novel powdery mildew resistance gene(s) from chromosome 2P was(were) also mapped. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, is highly resistant to powdery mildew. Previous studies showed that wheat-A. cristatum 2P disomic addition line II-9-3 displayed high resistance to powdery mildew, and the resistance was attributable to A. cristatum chromosome 2P. To utilize and physically map the powdery mildew resistance gene(s), 15 wheat-A. cristatum 2P translocation lines and three A. cristatum 2P deletion lines with different chromosomal segment sizes, obtained from II-9-3 using 60 Co-γ ray irradiation, were characterized using cytogenetic and molecular marker analysis. A. cristatum 2P chromosomal segments in the translocations were translocated to different wheat chromosomes, including 1A, 4A, 5A, 6A, 7A, 1B, 2B, 3B, 7B, 3D, 4D, and 6D. A physical map of the 2P chromosome was constructed with 82 STS markers, consisting of nine bins with 34 markers on 2PS and eight bins with 48 markers on 2PL. The BC 1 F 2 populations of seven wheat-A. cristatum 2P translocation lines (2PT-3, 2PT-4, 2PT-5, 2PT-6, 2PT-8, 2PT-9, and 2PT-10) were developed by self-pollination, tested with powdery mildew and genotyped with 2P-specific STS markers. From these results, the gene(s) conferring powdery mildew resistance was(were) located on 2PL bin FL 0.66-0.86 and 19 2P-specific markers were identified in this bin. Moreover, two new powdery mildew-resistant translocation lines (2PT-4 and 2PT-5) with small 2PL chromosome segments were obtained. The newly developed wheat lines with powdery mildew resistance and the closely linked molecular markers will be valuable for wheat disease breeding in the future.

  17. An intron capture strategy used to identify and map a lysyl oxidase-like gene on chromosome 9 in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Wydner, K.S.; Passmore, H.C. [Rutgers Univ., Piscataway, NJ (United States); Kim, Houngho; Csiszar, K.; Boyd, C.D. [UMDNJ, New Brunswick, NJ (United States)

    1997-03-01

    An intron capture strategy involving use of polymerase chain reaction was used to identify and map the mouse homologue of a human lysyl oxidase-like gene (LOXL). Oligonucleotides complementary to conserved domains within exons 4 and 5 of the human lysyl oxidase-like gene were used to amplify the corresponding segment from mouse genomic DNA. Sequencing of the resulting mouse DNA fragment of approximately 1 kb revealed that the exon sequences at the ends of the amplified fragment are highly homologous (90% nucleotide identity) to exons 4 and 5 of the human lysyl oxidase-like gene. An AluI restriction site polymorphism within intron 4 was used to map the mouse lysyl oxidase-like gene (Loxl) to mouse Chromosome 9 in a region that shares linkage conservation with human chromosome 15q24, to which the LOXL was recently mapped. 22 refs., 3 figs.

  18. High-resolution YAC-cosmid-STS map of human chromosome 13.

    Science.gov (United States)

    Cayanis, E; Russo, J J; Kalachikov, S; Ye, X; Park, S H; Sunjevaric, I; Bonaldo, M F; Lawton, L; Venkatraj, V S; Schon, E; Soares, M B; Rothstein, R; Warburton, D; Edelman, I S; Zhang, P; Efstratiadis, A; Fischer, S G

    1998-01-01

    We have assembled a high-resolution physical map of human chromosome 13 DNA (approximately 114 Mb) from hybridization, PCR, and FISH mapping data using a specifically designed set of computer programs. Although the mapping of 13p is limited, 13q (approximately 98 Mb) is covered by an almost continuous contig of 736 YACs aligned to 597 contigs of cosmids. Of a total of 10,789 cosmids initially selected from a chromosome 13-specific cosmid library (16,896 colonies) using inter-Alu PCR probes from the YACs and probes for markers mapped to chromosome 13, 511 were assembled in contigs that were established from cross-hybridization relationships between the cosmids. The 13q YAC-cosmid map was annotated with 655 sequence tagged sites (STSs) with an average spacing of 1 STS per 150 kb. This set of STSs, each identified by a D number and cytogenetic location, includes database markers (198), expressed sequence tags (93), and STSs generated by sequencing of the ends of cosmid inserts (364). Additional annotation has been provided by positioning 197 cosmids mapped by FISH on 13q. The final (comprehensive) map, a list of STS primers, and raw data used in map assembly are available at our Web site (genome1.ccc.columbia.edu/ approximately genome/) and can serve as a resource to facilitate accurate localization of additional markers, provide substrates for sequencing, and assist in the discovery of chromosome 13 genes associated with hereditary diseases.

  19. Getting Started with GeneRecon — An Introduction to the Association Mapping Tool GeneRecon

    DEFF Research Database (Denmark)

    Mailund, T; Schauser, Leif

    2006-01-01

    GeneRecon is a software package for linkage disequilibrium mapping using coalescent theory. It is based on Bayesian Markov-chain Monte Carlo (MCMC) method for fine-scale linkage-disequilibrium gene mapping using high-density marker maps. GeneRecon explicitly models the genealogy of a sample...... of the case chromosomes in the vicinity of a disease locus. Given case and control data in the form of genotype or haplotype information, it estimates a number of parameters, most importantly, the disease position....

  20. A Novel Phytophthora sojae Resistance Rps12 Gene Mapped to a Genomic Region That Contains Several Rps Genes.

    Science.gov (United States)

    Sahoo, Dipak K; Abeysekara, Nilwala S; Cianzio, Silvia R; Robertson, Alison E; Bhattacharyya, Madan K

    2017-01-01

    Phytophthora sojae Kaufmann and Gerdemann, which causes Phytophthora root rot, is a widespread pathogen that limits soybean production worldwide. Development of Phytophthora resistant cultivars carrying Phytophthora resistance Rps genes is a cost-effective approach in controlling this disease. For this mapping study of a novel Rps gene, 290 recombinant inbred lines (RILs) (F7 families) were developed by crossing the P. sojae resistant cultivar PI399036 with the P. sojae susceptible AR2 line, and were phenotyped for responses to a mixture of three P. sojae isolates that overcome most of the known Rps genes. Of these 290 RILs, 130 were homozygous resistant, 12 heterzygous and segregating for Phytophthora resistance, and 148 were recessive homozygous and susceptible. From this population, 59 RILs homozygous for Phytophthora sojae resistance and 61 susceptible to a mixture of P. sojae isolates R17 and Val12-11 or P7074 that overcome resistance encoded by known Rps genes mapped to Chromosome 18 were selected for mapping novel Rps gene. A single gene accounted for the 1:1 segregation of resistance and susceptibility among the RILs. The gene encoding the Phytophthora resistance mapped to a 5.8 cM interval between the SSR markers BARCSOYSSR_18_1840 and Sat_064 located in the lower arm of Chromosome 18. The gene is mapped 2.2 cM proximal to the NBSRps4/6-like sequence that was reported to co-segregate with the Phytophthora resistance genes Rps4 and Rps6. The gene is mapped to a highly recombinogenic, gene-rich genomic region carrying several nucleotide binding site-leucine rich repeat (NBS-LRR)-like genes. We named this novel gene as Rps12, which is expected to be an invaluable resource in breeding soybeans for Phytophthora resistance.

  1. A Novel Phytophthora sojae Resistance Rps12 Gene Mapped to a Genomic Region That Contains Several Rps Genes.

    Directory of Open Access Journals (Sweden)

    Dipak K Sahoo

    Full Text Available Phytophthora sojae Kaufmann and Gerdemann, which causes Phytophthora root rot, is a widespread pathogen that limits soybean production worldwide. Development of Phytophthora resistant cultivars carrying Phytophthora resistance Rps genes is a cost-effective approach in controlling this disease. For this mapping study of a novel Rps gene, 290 recombinant inbred lines (RILs (F7 families were developed by crossing the P. sojae resistant cultivar PI399036 with the P. sojae susceptible AR2 line, and were phenotyped for responses to a mixture of three P. sojae isolates that overcome most of the known Rps genes. Of these 290 RILs, 130 were homozygous resistant, 12 heterzygous and segregating for Phytophthora resistance, and 148 were recessive homozygous and susceptible. From this population, 59 RILs homozygous for Phytophthora sojae resistance and 61 susceptible to a mixture of P. sojae isolates R17 and Val12-11 or P7074 that overcome resistance encoded by known Rps genes mapped to Chromosome 18 were selected for mapping novel Rps gene. A single gene accounted for the 1:1 segregation of resistance and susceptibility among the RILs. The gene encoding the Phytophthora resistance mapped to a 5.8 cM interval between the SSR markers BARCSOYSSR_18_1840 and Sat_064 located in the lower arm of Chromosome 18. The gene is mapped 2.2 cM proximal to the NBSRps4/6-like sequence that was reported to co-segregate with the Phytophthora resistance genes Rps4 and Rps6. The gene is mapped to a highly recombinogenic, gene-rich genomic region carrying several nucleotide binding site-leucine rich repeat (NBS-LRR-like genes. We named this novel gene as Rps12, which is expected to be an invaluable resource in breeding soybeans for Phytophthora resistance.

  2. Ethical issues of perinatal human gene therapy.

    Science.gov (United States)

    Fletcher, J C; Richter, G

    1996-01-01

    This paper examines some key ethical issues raised by trials of human gene therapy in the perinatal period--i.e., in infants, young children, and the human fetus. It describes five resources in ethics for researchers' considerations prior to such trials: (1) the history of ethical debate about gene therapy, (2) a literature on the relevance of major ethical principles for clinical research, (3) a body of widely accepted norms and practices, (4) knowledge of paradigm cases, and (5) researchers' own professional integrity. The paper also examines ethical concerns that must be met prior to any trial: benefits to and safety of subjects, informed assent of children and informed parental permission, informed consent of pregnant women in fetal gene therapy, protection of privacy, and concerns about fairness in the selection of subjects. The paper criticizes the position that cases of fetal gene therapy should be restricted only to those where the pregnant woman has explicitly refused abortion. Additional topics include concerns about genetic enhancement and germ-line gene therapy.

  3. Mapping our genes: The genome projects: How big, how fast

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1988-04-01

    For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technology, and politics. Congress is responsible for /open quotes/writing the rules/close quotes/ of what various federal agencies do and for funding their work. This report surveys the points made so far in the debate, focusing on those that most directly influence the policy options facing the US Congress. Congressional interest focused on how to assess the rationales for conducting human genome projects, how to fund human genome projects (at what level and through which mechanisms), how to coordinate the scientific and technical programs of the several federal agencies and private interests already supporting various genome projects, and how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology. OTA prepared this report with the assistance of several hundred experts throughout the world. 342 refs., 26 figs., 11 tabs.

  4. Mapping Our Genes: The Genome Projects: How Big, How Fast

    Science.gov (United States)

    1988-04-01

    For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technology, and politics. Congress is responsible for ?writing the rules? of what various federal agencies do and for funding their work. This report surveys the points made so far in the debate, focusing on those that most directly influence the policy options facing the US Congress. Congressional interest focused on how to assess the rationales for conducting human genome projects, how to fund human genome projects (at what level and through which mechanisms), how to coordinate the scientific and technical programs of the several federal agencies and private interests already supporting various genome projects, and how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology. The Office of Technology Assessment (OTA) prepared this report with the assistance of several hundred experts throughout the world.

  5. Mapping cis-Regulatory Domains in the Human Genome UsingMulti-Species Conservation of Synteny

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Prabhakar, Shyam; Poulin, Francis; Rubin, EdwardM.; Couronne, Olivier

    2005-06-13

    Our inability to associate distant regulatory elements with the genes that they regulate has largely precluded their examination for sequence alterations contributing to human disease. One major obstacle is the large genomic space surrounding targeted genes in which such elements could potentially reside. In order to delineate gene regulatory boundaries we used whole-genome human-mouse-chicken (HMC) and human-mouse-frog (HMF) multiple alignments to compile conserved blocks of synteny (CBS), under the hypothesis that these blocks have been kept intact throughout evolution at least in part by the requirement of regulatory elements to stay linked to the genes that they regulate. A total of 2,116 and 1,942 CBS>200 kb were assembled for HMC and HMF respectively, encompassing 1.53 and 0.86 Gb of human sequence. To support the existence of complex long-range regulatory domains within these CBS we analyzed the prevalence and distribution of chromosomal aberrations leading to position effects (disruption of a genes regulatory environment), observing a clear bias not only for mapping onto CBS but also for longer CBS size. Our results provide a genome wide data set characterizing the regulatory domains of genes and the conserved regulatory elements within them.

  6. Cytoarchitecture, probability maps and functions of the human frontal pole.

    Science.gov (United States)

    Bludau, S; Eickhoff, S B; Mohlberg, H; Caspers, S; Laird, A R; Fox, P T; Schleicher, A; Zilles, K; Amunts, K

    2014-06-01

    The frontal pole has more expanded than any other part in the human brain as compared to our ancestors. It plays an important role for specifically human behavior and cognitive abilities, e.g. action selection (Kovach et al., 2012). Evidence about divergent functions of its medial and lateral part has been provided, both in the healthy brain and in psychiatric disorders. The anatomical correlates of such functional segregation, however, are still unknown due to a lack of stereotaxic, microstructural maps obtained in a representative sample of brains. Here we show that the human frontopolar cortex consists of two cytoarchitectonically and functionally distinct areas: lateral frontopolar area 1 (Fp1) and medial frontopolar area 2 (Fp2). Based on observer-independent mapping in serial, cell-body stained sections of 10 brains, three-dimensional, probabilistic maps of areas Fp1 and Fp2 were created. They show, for each position of the reference space, the probability with which each area was found in a particular voxel. Applying these maps as seed regions for a meta-analysis revealed that Fp1 and Fp2 differentially contribute to functional networks: Fp1 was involved in cognition, working memory and perception, whereas Fp2 was part of brain networks underlying affective processing and social cognition. The present study thus disclosed cortical correlates of a functional segregation of the human frontopolar cortex. The probabilistic maps provide a sound anatomical basis for interpreting neuroimaging data in the living human brain, and open new perspectives for analyzing structure-function relationships in the prefrontal cortex. The new data will also serve as a starting point for further comparative studies between human and non-human primate brains. This allows finding similarities and differences in the organizational principles of the frontal lobe during evolution as neurobiological basis for our behavior and cognitive abilities. Copyright © 2013 Elsevier Inc. All

  7. Mapping of the mouse actin capping protein {alpha} subunit genes and pseudogenes

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M.C.; Korshunova, Y.O.; Cooper, J.A. [Washington Univ. School of Medicine, St. Louis, MO (United States)

    1997-02-01

    Capping protein (CP), a heterodimer of {alpha} and {beta} subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three {alpha} isoforms ({alpha}1, {alpha}2, {alpha}3) produced from different genes, whereas lower organisms have only one gene and one isoform. We isolated genomic clones corresponding to the a subunits of mouse CP and found three {alpha}1 genes, two of which are pseudogenes, and a single gene for both {alpha}2 and {alpha}3. Their chromosomal locations were identified by interspecies backcross mapping. The {alpha}1 gene (Cappa1) mapped to Chromosome 3 between D3Mit11 and D3Mit13. The {alpha}1 pseudogenes (Cappa1-ps1 and Cappa1-ps2) mapped to Chromosomes 1 and 9, respectively. The {alpha}2 gene (Cappa2) mapped to Chromosome 6 near Ptn. The {alpha}3 gene (Cappa3) also mapped to Chromosome 6, approximately 68 cM distal from Cappa2 near Kras2. One mouse mutation, de, maps in the vicinity of the {alpha}1 gene. No known mouse mutations map to regions near the {alpha}2 or {alpha}3 genes. 29 refs., 3 figs., 1 tab.

  8. The Norrie disease gene maps to a 150 kb region on chromosome Xp11.3.

    Science.gov (United States)

    Sims, K B; Lebo, R V; Benson, G; Shalish, C; Schuback, D; Chen, Z Y; Bruns, G; Craig, I W; Golbus, M S; Breakefield, X O

    1992-05-01

    Norrie disease is a human X-linked recessive disorder of unknown etiology characterized by congenital blindness, sensory neural deafness and mental retardation. This disease gene was previously linked to the DXS7 (L1.28) locus and the MAO genes in band Xp11.3. We report here fine physical mapping of the obligate region containing the Norrie disease gene (NDP) defined by a recombination and by the smallest submicroscopic chromosomal deletion associated with Norrie disease identified to date. Analysis, using in addition two overlapping YAC clones from this region, allowed orientation of the MAOA and MAOB genes in a 5'-3'-3'-5' configuration. A recombination event between a (GT)n polymorphism in intron 2 of the MAOB gene and the NDP locus, in a family previously reported to have a recombination between DXS7 and NDP, delineates a flanking marker telomeric to this disease gene. An anonymous DNA probe, dc12, present in one of the YACs and in a patient with a submicroscopic deletion which includes MAOA and MAOB but not L1.28, serves as a flanking marker centromeric to the disease gene. An Alu-PCR fragment from the right arm of the MAO YAC (YMAO.AluR) is not deleted in this patient and also delineates the centromeric extent of the obligate disease region. The apparent order of these loci is telomere ... DXS7-MAOA-MAOB-NDP-dc12-YMAO.AluR ... centromere. Together these data define the obligate region containing the NDP gene to a chromosomal segment less than 150 kb.

  9. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology.

    Science.gov (United States)

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang; Wang, Yadong; Jin, Shuilin; Cheng, Liang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e - 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e - 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

  10. Cyto- and receptor architectonic mapping of the human brain.

    Science.gov (United States)

    Palomero-Gallagher, Nicola; Zilles, Karl

    2018-01-01

    Mapping of the human brain is more than the generation of an atlas-based parcellation of brain regions using histologic or histochemical criteria. It is the attempt to provide a topographically informed model of the structural and functional organization of the brain. To achieve this goal a multimodal atlas of the detailed microscopic and neurochemical structure of the brain must be registered to a stereotaxic reference space or brain, which also serves as reference for topographic assignment of functional data, e.g., functional magnet resonance imaging, electroencephalography, or magnetoencephalography, as well as metabolic imaging, e.g., positron emission tomography. Although classic maps remain pioneering steps, they do not match recent concepts of the functional organization in many regions, and suffer from methodic drawbacks. This chapter provides a summary of the recent status of human brain mapping, which is based on multimodal approaches integrating results of quantitative cyto- and receptor architectonic studies with focus on the cerebral cortex in a widely used reference brain. Descriptions of the methods for observer-independent and statistically testable cytoarchitectonic parcellations, quantitative multireceptor mapping, and registration to the reference brain, including the concept of probability maps and a toolbox for using the maps in functional neuroimaging studies, are provided. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Human papilloma viruses and cervical tumours: mapping of integration sites and analysis of adjacent cellular sequences

    International Nuclear Information System (INIS)

    Klimov, Eugene; Vinokourova, Svetlana; Moisjak, Elena; Rakhmanaliev, Elian; Kobseva, Vera; Laimins, Laimonis; Kisseljov, Fjodor; Sulimova, Galina

    2002-01-01

    In cervical tumours the integration of human papilloma viruses (HPV) transcripts often results in the generation of transcripts that consist of hybrids of viral and cellular sequences. Mapping data using a variety of techniques has demonstrated that HPV integration occurred without obvious specificity into human genome. However, these techniques could not demonstrate whether integration resulted in the generation of transcripts encoding viral or viral-cellular sequences. The aim of this work was to map the integration sites of HPV DNA and to analyse the adjacent cellular sequences. Amplification of the INTs was done by the APOT technique. The APOT products were sequenced according to standard protocols. The analysis of the sequences was performed using BLASTN program and public databases. To localise the INTs PCR-based screening of GeneBridge4-RH-panel was used. Twelve cellular sequences adjacent to integrated HPV16 (INT markers) expressed in squamous cell cervical carcinomas were isolated. For 11 INT markers homologous human genomic sequences were readily identified and 9 of these showed significant homologies to known genes/ESTs. Using the known locations of homologous cDNAs and the RH-mapping techniques, mapping studies showed that the INTs are distributed among different human chromosomes for each tumour sample and are located in regions with the high levels of expression. Integration of HPV genomes occurs into the different human chromosomes but into regions that contain highly transcribed genes. One interpretation of these studies is that integration of HPV occurs into decondensed regions, which are more accessible for integration of foreign DNA

  12. Serial analysis of gene expression (SAGE) in normal human trabecular meshwork.

    Science.gov (United States)

    Liu, Yutao; Munro, Drew; Layfield, David; Dellinger, Andrew; Walter, Jeffrey; Peterson, Katherine; Rickman, Catherine Bowes; Allingham, R Rand; Hauser, Michael A

    2011-04-08

    To identify the genes expressed in normal human trabecular meshwork tissue, a tissue critical to the pathogenesis of glaucoma. Total RNA was extracted from human trabecular meshwork (HTM) harvested from 3 different donors. Extracted RNA was used to synthesize individual SAGE (serial analysis of gene expression) libraries using the I-SAGE Long kit from Invitrogen. Libraries were analyzed using SAGE 2000 software to extract the 17 base pair sequence tags. The extracted sequence tags were mapped to the genome using SAGE Genie map. A total of 298,834 SAGE tags were identified from all HTM libraries (96,842, 88,126, and 113,866 tags, respectively). Collectively, there were 107,325 unique tags. There were 10,329 unique tags with a minimum of 2 counts from a single library. These tags were mapped to known unique Unigene clusters. Approximately 29% of the tags (orphan tags) did not map to a known Unigene cluster. Thirteen percent of the tags mapped to at least 2 Unigene clusters. Sequence tags from many glaucoma-related genes, including myocilin, optineurin, and WD repeat domain 36, were identified. This is the first time SAGE analysis has been used to characterize the gene expression profile in normal HTM. SAGE analysis provides an unbiased sampling of gene expression of the target tissue. These data will provide new and valuable information to improve understanding of the biology of human aqueous outflow.

  13. Linking human factors to corporate strategy with cognitive mapping techniques.

    Science.gov (United States)

    Village, Judy; Greig, Michael; Salustri, Filippo A; Neumann, W Patrick

    2012-01-01

    For human factors (HF) to avoid being considered of "side-car" status, it needs to be positioned within the organization in such a way that it affects business strategies and their implementation. Tools are needed to support this effort. This paper explores the feasibility of applying a technique from operational research called cognitive mapping to link HF to corporate strategy. Using a single case study, a cognitive map is drawn to reveal the complex relationships between human factors and achieving an organization's strategic goals. Analysis of the map for central concepts and reinforcing loops enhances understanding that can lead to discrete initiatives to facilitate integration of HF. It is recommended that this technique be used with senior managers to understand the organizations` strategic goals and enhance understanding of the potential for HF to contribute to the strategic goals.

  14. Assembly of the Genome of the Disease Vector Aedes aegypti onto a Genetic Linkage Map Allows Mapping of Genes Affecting Disease Transmission

    KAUST Repository

    Juneja, Punita

    2014-01-30

    The mosquito Aedes aegypti transmits some of the most important human arboviruses, including dengue, yellow fever and chikungunya viruses. It has a large genome containing many repetitive sequences, which has resulted in the genome being poorly assembled - there are 4,758 scaffolds, few of which have been assigned to a chromosome. To allow the mapping of genes affecting disease transmission, we have improved the genome assembly by scoring a large number of SNPs in recombinant progeny from a cross between two strains of Ae. aegypti, and used these to generate a genetic map. This revealed a high rate of misassemblies in the current genome, where, for example, sequences from different chromosomes were found on the same scaffold. Once these were corrected, we were able to assign 60% of the genome sequence to chromosomes and approximately order the scaffolds along the chromosome. We found that there are very large regions of suppressed recombination around the centromeres, which can extend to as much as 47% of the chromosome. To illustrate the utility of this new genome assembly, we mapped a gene that makes Ae. aegypti resistant to the human parasite Brugia malayi, and generated a list of candidate genes that could be affecting the trait. © 2014 Juneja et al.

  15. Maslow Revisited: Constructing a Road Map of Human Nature

    Science.gov (United States)

    O'Connor, Dennis; Yballe, Leodones

    2007-01-01

    Given the scope and intent of Maslow's work, the current textbook treatment is wanting. Therefore, an inductive exercise has been created and is offered here to build "the road map of human nature." This age-old, philosophic focus on our true nature has been a way to successfully engage and inspire both our students and our pedagogy. In the spirit…

  16. Four-dimensional maps of the human somatosensory system.

    Science.gov (United States)

    Avanzini, Pietro; Abdollahi, Rouhollah O; Sartori, Ivana; Caruana, Fausto; Pelliccia, Veronica; Casaceli, Giuseppe; Mai, Roberto; Lo Russo, Giorgio; Rizzolatti, Giacomo; Orban, Guy A

    2016-03-29

    A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans.

  17. Human serum amyloid genes--molecular characterization

    International Nuclear Information System (INIS)

    Sack, G.H.; Lease, J.J.

    1986-01-01

    Three clones containing human genes for serum amyloid A protein (SAA) have been isolated and characterized. Each of two clones, GSAA 1 and 2 (of 12.8 and 15.9 kilobases, respectively), contains two exons, accouting for amino acids 12-58 and 58-103 of mature SAA; the extreme 5' termini and 5' untranslated regions have not yet been defined but are anticipated to be close based on studies of murine SAA genes. Initial amino acid sequence comparisons show 78/89 identical residues. At 4 of the 11 discrepant residues, the amino acid specified by the codon is the same as the corresponding residue in murine SAA. Identification of regions containing coding regions has permitted use of selected subclones for blot hybridization studies of larger human SAA chromosomal gene organization. The third clone, GSAA 3 also contains SAA coding information by DNA sequence analysis but has a different organization which has not yet been fully described. We have reported the isolation of clones of human DNA hybridizing with pRS48 - a plasmid containing a complementary DNA (cDNA) clone for murine serum amyloid A (SAA; 1, 2). We now present more detailed data confirming the identity and defining some of the organizational features of these clones

  18. Human cDNA mapping using fluorescence in situ hybridization. Progress report, April 1, 1992--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.

    1993-03-04

    Genetic mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach generated 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  19. Using reporter gene assays to identify cis regulatory differences between humans and chimpanzees.

    Science.gov (United States)

    Chabot, Adrien; Shrit, Ralla A; Blekhman, Ran; Gilad, Yoav

    2007-08-01

    Most phenotypic differences between human and chimpanzee are likely to result from differences in gene regulation, rather than changes to protein-coding regions. To date, however, only a handful of human-chimpanzee nucleotide differences leading to changes in gene regulation have been identified. To hone in on differences in regulatory elements between human and chimpanzee, we focused on 10 genes that were previously found to be differentially expressed between the two species. We then designed reporter gene assays for the putative human and chimpanzee promoters of the 10 genes. Of seven promoters that we found to be active in human liver cell lines, human and chimpanzee promoters had significantly different activity in four cases, three of which recapitulated the gene expression difference seen in the microarray experiment. For these three genes, we were therefore able to demonstrate that a change in cis influences expression differences between humans and chimpanzees. Moreover, using site-directed mutagenesis on one construct, the promoter for the DDA3 gene, we were able to identify three nucleotides that together lead to a cis regulatory difference between the species. High-throughput application of this approach can provide a map of regulatory element differences between humans and our close evolutionary relatives.

  20. Immunohistochemical Mapping of TRK-Fused Gene Products in the Rat Brainstem

    International Nuclear Information System (INIS)

    Takeuchi, Shigeko; Masuda, Chiaki; Maebayashi, Hisae; Tooyama, Ikuo

    2012-01-01

    The TRK-fused gene (TFG in human, Tfg in rat) was originally identified in human papillary thyroid cancer as a chimeric form of the NTRK1 gene. It was since reported that the gene product (TFG) plays a role in regulating phosphotyrosine-specific phosphatase-1 activity. As shown in the accompanying paper, we produced an antibody to rat TFG and used it to localize TFG to selected neurons in specific regions. In the present study, we mapped the TFG-positive neurons in the brainstem, cerebellum, and spinal cord of rats. In the brainstem, neurons intensely positive for TFG were distributed in the raphe nuclei, the gigantocellular reticular nucleus, the reticulotegmental nucleus of the pons, and some cranial nerve nuclei such as the trigeminal nuclei, the vestibulocochlear nuclei, and the dorsal motor nucleus of the vagus. Purkinje cells in the cerebellum and motor neurons in the spinal anterior horn were also positive for TFG. These results provide fundamental data for studying the functions of TFG in the brain

  1. Cloning and sequence of the human adrenodoxin reductase gene

    International Nuclear Information System (INIS)

    Lin, Dong; Shi, Y.; Miller, W.L.

    1990-01-01

    Adrenodoxin reductase is a flavoprotein mediating electron transport to all mitochondrial forms of cytochrome P450. The authors cloned the human adrenodoxin reductase gene and characterized it by restriction endonuclease mapping and DNA sequencing. The entire gene is approximately 12 kilobases long and consists of 12 exons. The first exon encodes the first 26 of the 32 amino acids of the signal peptide, and the second exon encodes the remainder of signal peptide and the apparent FAD binding site. The remaining 10 exons are clustered in a region of only 4.3 kilobases, separated from the first two exons by a large intron of about 5.6 kilobases. Two forms of human adrenodoxin reductase mRNA, differing by the presence or absence of 18 bases in the middle of the sequence, arise from alternate splicing at the 5' end of exon 7. This alternately spliced region is directly adjacent to the NADPH binding site, which is entirely contained in exon 6. The immediate 5' flanking region lacks TATA and CAAT boxes; however, this region is rich in G+C and contains six copies of the sequence GGGCGGG, resembling promoter sequences of housekeeping genes. RNase protection experiments show that transcription is initiated from multiple sites in the 5' flanking region, located about 21-91 base pairs upstream from the AUG translational initiation codon

  2. Hepatocyte specific expression of human cloned genes

    Energy Technology Data Exchange (ETDEWEB)

    Cortese, R

    1986-01-01

    A large number of proteins are specifically synthesized in the hepatocyte. Only the adult liver expresses the complete repertoire of functions which are required at various stages during development. There is therefore a complex series of regulatory mechanisms responsible for the maintenance of the differentiated state and for the developmental and physiological variations in the pattern of gene expression. Human hepatoma cell lines HepG2 and Hep3B display a pattern of gene expression similar to adult and fetal liver, respectively; in contrast, cultured fibroblasts or HeLa cells do not express most of the liver specific genes. They have used these cell lines for transfection experiments with cloned human liver specific genes. DNA segments coding for alpha1-antitrypsin and retinol binding protein (two proteins synthesized both in fetal and adult liver) are expressed in the hepatoma cell lines HepG2 and Hep3B, but not in HeLa cells or fibroblasts. A DNA segment coding for haptoglobin (a protein synthesized only after birth) is only expressed in the hepatoma cell line HepG2 but not in Hep3B nor in non hepatic cell lines. The information for tissue specific expression is located in the 5' flanking region of all three genes. In vivo competition experiments show that these DNA segments bind to a common, apparently limiting, transacting factor. Conventional techniques (Bal deletions, site directed mutagenesis, etc.) have been used to precisely identify the DNA sequences responsible for these effects. The emerging picture is complex: they have identified multiple, separate transcriptional signals, essential for maximal promoter activation and tissue specific expression. Some of these signals show a negative effect on transcription in fibroblast cell lines.

  3. Fine Mapping and Candidate Gene Analysis of the Leaf-Color Gene ygl-1 in Maize.

    Directory of Open Access Journals (Sweden)

    Haiying Guan

    Full Text Available A novel yellow-green leaf mutant yellow-green leaf-1 (ygl-1 was isolated in self-pollinated progenies from the cross of maize inbred lines Ye478 and Yuanwu02. The mutant spontaneously showed yellow-green character throughout the lifespan. Meanwhile, the mutant reduced contents of chlorophyll and Car, arrested chloroplast development and lowered the capacity of photosynthesis compared with the wild-type Lx7226. Genetic analysis revealed that the mutant phenotype was controlled by a recessive nuclear gene. The ygl-1 locus was initially mapped to an interval of about 0.86 Mb in bin 1.01 on the short arm of chromosome 1 using 231 yellow-green leaf individuals of an F2 segregating population from ygl-1/Lx7226. Utilizing four new polymorphic SSR markers, the ygl-1 locus was narrowed down to a region of about 48 kb using 2930 and 2247 individuals of F2 and F3 mapping populations, respectively. Among the three predicted genes annotated within this 48 kb region, GRMZM2G007441, which was predicted to encode a cpSRP43 protein, had a 1-bp nucleotide deletion in the coding region of ygl-1 resulting in a frame shift mutation. Semi-quantitative RT-PCR analysis revealed that YGL-1 was constitutively expressed in all tested tissues and its expression level was not significantly affected in the ygl-1 mutant from early to mature stages, while light intensity regulated its expression both in the ygl-1 mutant and wild type seedlings. Furthermore, the mRNA levels of some genes involved in chloroplast development were affected in the six-week old ygl-1 plants. These findings suggested that YGL-1 plays an important role in chloroplast development of maize.

  4. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    Science.gov (United States)

    Santos, Jansen Rodrigo Pereira; Ndeve, Arsenio Daniel; Huynh, Bao-Lam; Matthews, William Charles; Roberts, Philip Alan

    2018-01-01

    Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN). Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL) population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL) were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  5. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    Directory of Open Access Journals (Sweden)

    Jansen Rodrigo Pereira Santos

    Full Text Available Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN. Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  6. Fine Mapping of Two Wheat Powdery Mildew Resistance Genes Located at the Pm1 Cluster

    Directory of Open Access Journals (Sweden)

    Junchao Liang

    2016-07-01

    Full Text Available Powdery mildew caused by (DC. f. sp. ( is a globally devastating foliar disease of wheat ( L.. More than a dozen genes against this disease, identified from wheat germplasms of different ploidy levels, have been mapped to the region surrounding the locus on the long arm of chromosome 7A, which forms a resistance (-gene cluster. and from einkorn wheat ( L. were two of the genes belonging to this cluster. This study was initiated to fine map these two genes toward map-based cloning. Comparative genomics study showed that macrocolinearity exists between L. chromosome 1 (Bd1 and the – region, which allowed us to develop markers based on the wheat sequences orthologous to genes contained in the Bd1 region. With these and other newly developed and published markers, high-resolution maps were constructed for both and using large F populations. Moreover, a physical map of was constructed through chromosome walking with bacterial artificial chromosome (BAC clones and comparative mapping. Eventually, and were restricted to a 0.12- and 0.86-cM interval, respectively. Based on the closely linked common markers, , , and (another powdery mildew resistance gene in the cluster were not allelic to one another. Severe recombination suppression and disruption of synteny were noted in the region encompassing . These results provided useful information for map-based cloning of the genes in the cluster and interpretation of their evolution.

  7. Isolation and characterization of the human CDX1 gene: A candidate gene for diastrophic dysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, C.; Loftus, S.; Wasmuth, J.J. [Univ. of California, Irvine, CA (United States)

    1994-09-01

    Diastrophic dysplasia is an autosomal recessive disorder characterized by short stature, dislocation of the joints, spinal deformities and malformation of the hands and feet. Multipoint linkage analysis places the diastrophic dysplasia (DTD) locus in 5q31-5q34. Linkage disequilibrium mapping places the DTD locus near CSFIR in the direction of PDGFRB (which is tandem to CSFIR). This same study tentatively placed PDGFRB and DTD proximal to CSFIR. Our results, as well as recently reported work from other laboratories, suggest that PDGFRB (and possibly DTD) is distal rather than proximal to CSFIR. We have constructed a cosmid contig covering approximately 200 kb of the region containing CSFIR. Several exons have been {open_quotes}trapped{close_quotes} from these cosmids using exon amplification. One of these exons was trapped from a cosmid isolated from a walk from PDGFRB, approximately 80 kb from CSFIR. This exon was sequenced and was determined to be 89% identical to the nucleotide sequence of exon two of the murine CDX1 gene (100% amino acid identity). The exon was used to isolate the human CDX gene. Sequence analysis of the human CDX1 gene indicates a very high degree of homology to the murine gene. CDX1 is a caudal type homeobox gene expressed during gastrulation. In the mouse, expression during gastrulation begins in the primitive streak and subsequently localizes to the ectodermal and mesodermal cells of the primitive streak, neural tube, somites, and limb buds. Later in gastrulation, CDX1 expression becomes most prominent in the mesoderm of the forelimbs, and, to a lesser extent, the hindlimbs. CDX1 is an intriguing candidate gene for diastrophic dysplasia. We are currently screening DNA from affected individuals and hope to shortly determine whether CDX1 is involved in this disorder.

  8. Construction of microsatellite-based linkage map and mapping of nectarilessness and hairiness genes in Gossypium tomentosum.

    Science.gov (United States)

    Hou, Meiying; Cai, Caiping; Zhang, Shuwen; Guo, Wangzhen; Zhang, Tianzhen; Zhou, Baoliang

    2013-12-01

    Gossypium tomentosum, a wild tetraploid cotton species with AD genomes, possesses genes conferring strong fibers and high heat tolerance. To effectively transfer these genes into Gossypium hirsutum, an entire microsatellite (simple sequence repeat, SSR)-based genetic map was constructed using the interspecific cross of G. hirsutum x G. tomentosum (HT). We detected 1800 loci from 1347 pairs of polymorphic primers. Of these, 1204 loci were grouped into 35 linkage groups at LOD ≥ 4. The map covers 3320.8 cM, with a mean density of 2.76 cM per locus. We detected 420 common loci (186 in the At subgenome and 234 in Dt) between the HT map and the map of TM-1 (G. hirsutum) and Hai 7124 (G. barbadense; HB map). The linkage groups were assigned chromosome numbers based on location of common loci and the HB map as reference. A comparison of common markers revealed that no significant chromosomal rearrangement exist between G. tomentosum and G. barbadense. Interestingly, however, we detected numerous (33.7%) segregation loci deviating from 3:1 ratio (P constructed in this study will be useful for further genetic studies on cotton breeding, including mapping loci controlling quantitative traits associated with fiber quality, stress tolerance and developing chromosome segment specific introgression lines from G. tomentosum into G. hirsutum using marker-assisted selection.

  9. An interaction map of circulating metabolites, immune gene networks, and their genetic regulation.

    Science.gov (United States)

    Nath, Artika P; Ritchie, Scott C; Byars, Sean G; Fearnley, Liam G; Havulinna, Aki S; Joensuu, Anni; Kangas, Antti J; Soininen, Pasi; Wennerström, Annika; Milani, Lili; Metspalu, Andres; Männistö, Satu; Würtz, Peter; Kettunen, Johannes; Raitoharju, Emma; Kähönen, Mika; Juonala, Markus; Palotie, Aarno; Ala-Korpela, Mika; Ripatti, Samuli; Lehtimäki, Terho; Abraham, Gad; Raitakari, Olli; Salomaa, Veikko; Perola, Markus; Inouye, Michael

    2017-08-01

    Immunometabolism plays a central role in many cardiometabolic diseases. However, a robust map of immune-related gene networks in circulating human cells, their interactions with metabolites, and their genetic control is still lacking. Here, we integrate blood transcriptomic, metabolomic, and genomic profiles from two population-based cohorts (total N = 2168), including a subset of individuals with matched multi-omic data at 7-year follow-up. We identify topologically replicable gene networks enriched for diverse immune functions including cytotoxicity, viral response, B cell, platelet, neutrophil, and mast cell/basophil activity. These immune gene modules show complex patterns of association with 158 circulating metabolites, including lipoprotein subclasses, lipids, fatty acids, amino acids, small molecules, and CRP. Genome-wide scans for module expression quantitative trait loci (mQTLs) reveal five modules with mQTLs that have both cis and trans effects. The strongest mQTL is in ARHGEF3 (rs1354034) and affects a module enriched for platelet function, independent of platelet counts. Modules of mast cell/basophil and neutrophil function show temporally stable metabolite associations over 7-year follow-up, providing evidence that these modules and their constituent gene products may play central roles in metabolic inflammation. Furthermore, the strongest mQTL in ARHGEF3 also displays clear temporal stability, supporting widespread trans effects at this locus. This study provides a detailed map of natural variation at the blood immunometabolic interface and its genetic basis, and may facilitate subsequent studies to explain inter-individual variation in cardiometabolic disease.

  10. An extended anchored linkage map and virtual mapping for the american mink genome based on homology to human and dog

    DEFF Research Database (Denmark)

    Anistoroaei, Razvan Marian; Ansari, S.; Farid, A.

    2009-01-01

    hybridization (FISH) and/or by means of human/dog/mink comparative homology. The average interval between markers is 8.5 cM and the linkage groups collectively span 1340 cM. In addition, 217 and 275 mink microsatellites have been placed on human and dog genomes, respectively. In conjunction with the existing...... comparative human/dog/mink data, these assignments represent useful virtual maps for the American mink genome. Comparison of the current human/dog assembled sequential map with the existing Zoo-FISH-based human/dog/mink maps helped to refine the human/dog/mink comparative map. Furthermore, comparison...... of the human and dog genome assemblies revealed a number of large synteny blocks, some of which are corroborated by data from the mink linkage map....

  11. Minor abnormalities of testis development in mice lacking the gene encoding the MAPK signalling component, MAP3K1.

    Directory of Open Access Journals (Sweden)

    Nick Warr

    2011-05-01

    Full Text Available In mammals, the Y chromosome is a dominant male determinant, causing the bipotential gonad to develop as a testis. Recently, cases of familial and spontaneous 46,XY disorders of sex development (DSD have been attributed to mutations in the human gene encoding mitogen-activated protein kinase kinase kinase 1, MAP3K1, a component of the mitogen-activated protein kinase (MAPK signal transduction pathway. In individuals harbouring heterozygous mutations in MAP3K1, dysregulation of MAPK signalling was observed in lymphoblastoid cell lines, suggesting a causal role for these mutations in disrupting XY sexual development. Mice lacking the cognate gene, Map3k1, are viable and exhibit the eyes open at birth (EOB phenotype on a mixed genetic background, but on the C57BL/6J genetic background most mice die at around 14.5 dpc due to a failure of erythropoiesis in the fetal liver. However, no systematic examination of sexual development in Map3k1-deficient mice has been described, an omission that is especially relevant in the case of C57BL/6J, a genetic background that is sensitized to disruptions to testis determination. Here, we report that on a mixed genetic background mice lacking Map3k1 are fertile and exhibit no overt abnormalities of testis development. On C57BL/6J, significant non-viability is observed with very few animals surviving to adulthood. However, an examination of development in Map3k1-deficient XY embryos on this genetic background revealed no significant defects in testis determination, although minor abnormalities were observed, including an increase in gonadal length. Based on these observations, we conclude that MAP3K1 is not required for mouse testis determination. We discuss the significance of these data for the functional interpretation of sex-reversing MAP3K1 mutations in humans.

  12. Use of a human chromosome 11 radiation hybrid panel to map markers at 11q13

    International Nuclear Information System (INIS)

    Withers, D.; Richard, C. III; Meeker, T.C.; Maurer, S.; Evans, G.; Myers, R.M.; Cox, D.R.

    1990-01-01

    A human/hamster hybrid cell line containing human chromosome 11 was X-irradiated and 102-independent derivative lines were recovered. These 'radiation hybrids' contain random fragments of human chromosome 11. This radiation hybrid panel was used to score the retention of markers at band 11q13. Statistical analysis of marker co-retention patterns in the radiation hybrid panel permits a preliminary ordering and mapping of the markers used. The best order for six scored markers is: proximal - CD5 - CD20 - PGA - HST - BCL1 - SEA - distal. Additional markers are currently being scored. The six 11q13 markers above are spread over approximately 10-12 mB of DNA. The mapping data has implications for the identification of the bcl-1 gene. bcl-1 is the site of chromosome breakage in translocations associated with B lymphocytic malignancy. bcl-1 markers map at least 4 Mb away from any of four genes previously hypothesized to be activated by such translocations, thereby making them unlikely candidates for activation

  13. Dietary methanol regulates human gene activity.

    Directory of Open Access Journals (Sweden)

    Anastasia V Shindyapina

    Full Text Available Methanol (MeOH is considered to be a poison in humans because of the alcohol dehydrogenase (ADH-mediated conversion of MeOH to formaldehyde (FA, which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD. There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.

  14. Integrating population dynamics into mapping human exposure to seismic hazard

    Directory of Open Access Journals (Sweden)

    S. Freire

    2012-11-01

    Full Text Available Disaster risk is not fully characterized without taking into account vulnerability and population exposure. Assessment of earthquake risk in urban areas would benefit from considering the variation of population distribution at more detailed spatial and temporal scales, and from a more explicit integration of this improved demographic data with existing seismic hazard maps. In the present work, "intelligent" dasymetric mapping is used to model population dynamics at high spatial resolution in order to benefit the analysis of spatio-temporal exposure to earthquake hazard in a metropolitan area. These night- and daytime-specific population densities are then classified and combined with seismic intensity levels to derive new spatially-explicit four-class-composite maps of human exposure. The presented approach enables a more thorough assessment of population exposure to earthquake hazard. Results show that there are significantly more people potentially at risk in the daytime period, demonstrating the shifting nature of population exposure in the daily cycle and the need to move beyond conventional residence-based demographic data sources to improve risk analyses. The proposed fine-scale maps of human exposure to seismic intensity are mainly aimed at benefiting visualization and communication of earthquake risk, but can be valuable in all phases of the disaster management process where knowledge of population densities is relevant for decision-making.

  15. Mapping of gene expression reveals CYP27A1 as a susceptibility gene for sporadic ALS.

    Directory of Open Access Journals (Sweden)

    Frank P Diekstra

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive, neurodegenerative disease characterized by loss of upper and lower motor neurons. ALS is considered to be a complex trait and genome-wide association studies (GWAS have implicated a few susceptibility loci. However, many more causal loci remain to be discovered. Since it has been shown that genetic variants associated with complex traits are more likely to be eQTLs than frequency-matched variants from GWAS platforms, we conducted a two-stage genome-wide screening for eQTLs associated with ALS. In addition, we applied an eQTL analysis to finemap association loci. Expression profiles using peripheral blood of 323 sporadic ALS patients and 413 controls were mapped to genome-wide genotyping data. Subsequently, data from a two-stage GWAS (3,568 patients and 10,163 controls were used to prioritize eQTLs identified in the first stage (162 ALS, 207 controls. These prioritized eQTLs were carried forward to the second sample with both gene-expression and genotyping data (161 ALS, 206 controls. Replicated eQTL SNPs were then tested for association in the second-stage GWAS data to find SNPs associated with disease, that survived correction for multiple testing. We thus identified twelve cis eQTLs with nominally significant associations in the second-stage GWAS data. Eight SNP-transcript pairs of highest significance (lowest p = 1.27 × 10(-51 withstood multiple-testing correction in the second stage and modulated CYP27A1 gene expression. Additionally, we show that C9orf72 appears to be the only gene in the 9p21.2 locus that is regulated in cis, showing the potential of this approach in identifying causative genes in association loci in ALS. This study has identified candidate genes for sporadic ALS, most notably CYP27A1. Mutations in CYP27A1 are causal to cerebrotendinous xanthomatosis which can present as a clinical mimic of ALS with progressive upper motor neuron loss, making it a plausible

  16. Targeting the human lysozyme gene on bovine αs1- casein gene ...

    African Journals Online (AJOL)

    Targeting an exogenous gene into a favorable gene locus and for expression under endogenous regulators is an ideal method in mammary gland bioreactor research. For this purpose, a gene targeting vector was constructed to targeting the human lysozyme gene on bovine αs1-casein gene locus. In this case, the ...

  17. Building the sequence map of the human pan-genome

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Li, Yingrui; Zheng, Hancheng

    2010-01-01

    analysis of predicted genes indicated that the novel sequences contain potentially functional coding regions. We estimate that a complete human pan-genome would contain approximately 19-40 Mb of novel sequence not present in the extant reference genome. The extensive amount of novel sequence contributing...

  18. Linkage and mapping analyses of the no glue egg gene Ng in the ...

    African Journals Online (AJOL)

    Jane

    2011-08-24

    Aug 24, 2011 ... The Ng gene was mapped at 28.0 of the silkworm classical genetic linkage group 12. (Xiang, 1995). In recent years, molecular biology has made consider- able progress ..... project (08080703017), China agriculture research.

  19. Mapping human whole-brain structural networks with diffusion MRI.

    Directory of Open Access Journals (Sweden)

    Patric Hagmann

    Full Text Available Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.

  20. Defining the Human Macula Transcriptome and Candidate Retinal Disease Genes UsingEyeSAGE

    Science.gov (United States)

    Rickman, Catherine Bowes; Ebright, Jessica N.; Zavodni, Zachary J.; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P.; Wistow, Graeme; Boon, Kathy; Hauser, Michael A.

    2009-01-01

    Purpose To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Methods Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Results Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. Conclusions The EyeSAGE database, combining three different gene-profiling platforms including the authors’ multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions. PMID:16723438

  1. Comprehensive Clinical Phenotyping and Genetic Mapping for the Discovery of Autism Susceptibility Genes

    Science.gov (United States)

    2013-03-14

    behavioral teaching strategies and best practice for teaching students with autism spectrum disorders 4.52 Learn strategies for incorporating IEP goals...AFRL-SA-WP-TR-2013-0013 Comprehensive Clinical Phenotyping and Genetic Mapping for the Discovery of Autism Susceptibility Genes...Genetic Mapping for the Discovery of Autism Susceptibility Genes 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6

  2. Injury, inflammation and the emergence of human specific genes

    Science.gov (United States)

    2016-07-12

    genes in circulating and resident human immune cells can be studied in mice after the transplantation and engraft- ment of human hemato- lymphoid immune...Martinek J, Strowig T, Gearty SV, Teichmann LL, et al. Development and function of human innate immune cells in a humanized mouse model. Nat Bio...normal wound repair and regeneration, we hypothesize that the preponderance of human-specific genes expressed in human inflammatory cells is commensurate

  3. QTL mapping in white spruce: gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments

    Science.gov (United States)

    2011-01-01

    Background The genomic architecture of bud phenology and height growth remains poorly known in most forest trees. In non model species, QTL studies have shown limited application because most often QTL data could not be validated from one experiment to another. The aim of our study was to overcome this limitation by basing QTL detection on the construction of genetic maps highly-enriched in gene markers, and by assessing QTLs across pedigrees, years, and environments. Results Four saturated individual linkage maps representing two unrelated mapping populations of 260 and 500 clonally replicated progeny were assembled from 471 to 570 markers, including from 283 to 451 gene SNPs obtained using a multiplexed genotyping assay. Thence, a composite linkage map was assembled with 836 gene markers. For individual linkage maps, a total of 33 distinct quantitative trait loci (QTLs) were observed for bud flush, 52 for bud set, and 52 for height growth. For the composite map, the corresponding numbers of QTL clusters were 11, 13, and 10. About 20% of QTLs were replicated between the two mapping populations and nearly 50% revealed spatial and/or temporal stability. Three to four occurrences of overlapping QTLs between characters were noted, indicating regions with potential pleiotropic effects. Moreover, some of the genes involved in the QTLs were also underlined by recent genome scans or expression profile studies. Overall, the proportion of phenotypic variance explained by each QTL ranged from 3.0 to 16.4% for bud flush, from 2.7 to 22.2% for bud set, and from 2.5 to 10.5% for height growth. Up to 70% of the total character variance could be accounted for by QTLs for bud flush or bud set, and up to 59% for height growth. Conclusions This study provides a basic understanding of the genomic architecture related to bud flush, bud set, and height growth in a conifer species, and a useful indicator to compare with Angiosperms. It will serve as a basic reference to functional and

  4. Structure and chromosomal localization of the human lymphotoxin gene

    International Nuclear Information System (INIS)

    Nedwin, G.E.; Jarrett-Nedwin, J.; Smith, D.H.; Naylor, S.L.; Sakaguchi, A.Y.; Goeddel, D.V.; Gray, P.W.

    1987-01-01

    The authors have isolated, sequenced, and determined the chromosomal localization of the gene encoding human lymphotoxin (LT). The single copy gene was isolated from a human genomic library using a /sup 32/P-labeled 116 bp synthetic DNA fragment whose sequence was based on the NH/sub 2/-terminal amino acid sequence of LT. The gene spans 3 kb of DNA and is interrupted by three intervening sequences. The LT gene is located on human chromosome 6, as determined by Southern blot analysis of human-murine hybrid DNA. Putative transcriptional control regions and areas of homology with the promoters of interferon and other genes are identified

  5. Analysis of multiplex gene expression maps obtained by voxelation

    OpenAIRE

    An, L; Xie, H; Chin, MH; Obradovic, Z; Smith, DJ; Megalooikonomou, V

    2009-01-01

    Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we presen...

  6. Methodology optimizing SAGE library tag-to-gene mapping: application to Leishmania

    Directory of Open Access Journals (Sweden)

    Smandi Sondos

    2012-01-01

    Full Text Available Abstract Background Leishmaniasis are widespread parasitic-diseases with an urgent need for more active and less toxic drugs and for effective vaccines. Understanding the biology of the parasite especially in the context of host parasite interaction is a crucial step towards such improvements in therapy and control. Several experimental approaches including SAGE (Serial analysis of gene expression have been developed in order to investigate the parasite transcriptome organisation and plasticity. Usual SAGE tag-to-gene mapping techniques are inadequate because almost all tags are normally located in the 3'-UTR outside the CDS, whereas most information available for Leishmania transcripts is restricted to the CDS predictions. The aim of this work is to optimize a SAGE libraries tag-to-gene mapping technique and to show how this development improves the understanding of Leishmania transcriptome. Findings The in silico method implemented herein was based on mapping the tags to Leishmania genome using BLAST then mapping the tags to their gene using a data-driven probability distribution. This optimized tag-to-gene mappings improved the knowledge of Leishmania genome structure and transcription. It allowed analyzing the expression of a maximal number of Leishmania genes, the delimitation of the 3' UTR of 478 genes and the identification of biological processes that are differentially modulated during the promastigote to amastigote differentiation. Conclusion The developed method optimizes the assignment of SAGE tags in trypanosomatidae genomes as well as in any genome having polycistronic transcription and small intergenic regions.

  7. The human thyroglobulin gene is over 300 kb long and contains introns of up to 64 kb

    NARCIS (Netherlands)

    Baas, F.; van Ommen, G. J.; Bikker, H.; Arnberg, A. C.; de Vijlder, J. J.

    1986-01-01

    Thyroglobulin (Tg), the precursor of thyroid hormones, is a 660.000 Da dimeric glycoprotein synthesized exclusively in the thyroid gland. We have cloned the human thyroglobulin gene from cosmid and phage libraries and constructed a complete restriction map. The gene encodes an 8.7 kb mRNA, covers at

  8. Comparative mapping of powdery mildew resistance gene Pm21 and functional characterization of resistance-related genes in wheat.

    Science.gov (United States)

    He, Huagang; Zhu, Shanying; Jiang, Zhengning; Ji, Yaoyong; Wang, Feng; Zhao, Renhui; Bie, Tongde

    2016-04-01

    The powdery mildew resistance gene Pm21 was physically and comparatively mapped by newly developed markers. Seven candidate genes were verified to be required for Pm21 -mediated resistance to wheat powdery mildew. Pm21, a gene derived from wheat wild relative Dasypyrum villosum, has been transferred into common wheat and widely utilized in wheat resistance breeding for powdery mildew. Previously, Pm21 has been located to the bin FL0.45-0.58 of 6VS by using deletion stocks. However, its fine mapping is still a hard work. In the present study, 30 gene-derived 6VS-specific markers were obtained based on the collinearity among genomes of Brachypodium distachyon, Oryza and Triticeae, and then physically and comparatively mapped in the bin FL0.45-0.58 and its nearby chromosome region. According to the maps, the bin FL0.45-0.58 carrying Pm21 was closely flanked by the markers 6VS-03 and 6VS-23, which further narrowed the orthologous regions to 1.06 Mb in Brachypodium and 1.38 Mb in rice, respectively. Among the conserved genes shared by Brachypodium and rice, four serine/threonine protein kinase genes (DvMPK1, DvMLPK, DvUPK and DvPSYR1), one protein phosphatase gene (DvPP2C) and two transcription factor genes (DvGATA and DvWHY) were confirmed to be required for Pm21-mediated resistance to wheat powdery mildew by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) and transcriptional pattern analyses. In summary, this study gives new insights into the genetic basis of the Pm21 locus and the disease resistance pathways mediated by Pm21.

  9. Mapping Common Ground: Ecocriticism, Environmental History, and the Environmental Humanities

    Directory of Open Access Journals (Sweden)

    Bergthaller, Hannes

    2014-11-01

    Full Text Available The emergence of the environmental humanities presents a unique opportunity for scholarship to tackle the human dimensions of the environmental crisis. It might finally allow such work to attain the critical mass it needs to break out of customary disciplinary confines and reach a wider public, at a time when natural scientists have begun to acknowledge that an understanding of the environmental crisis must include insights from the humanities and social sciences. In order to realize this potential, scholars in the environmental humanities need to map the common ground on which close interdisciplinary cooperation will be possible. This essay takes up this task with regard to two fields that have embraced the environmental humanities with particular fervour, namely ecocriticism and environmental history. After outlining an ideal of slow scholarship which cultivates thinking across different spatiotemporal scales and seeks to sustain meaningful public debate, the essay argues that both ecocriticism and environmental history are concerned with practices of environing: each studies the material and symbolic transformations by which “the environment” is configured as a space for human action. Three areas of research are singled out as offering promising models for cooperation between ecocriticism and environmental history: eco-historicism, environmental justice, and new materialism. Bringing the fruits of such efforts to a wider audience will require environmental humanities scholars to experiment with new ways of organizing and disseminating knowledge.

  10. Physical mapping of the Bloom syndrome region by the identification of YAC and P1 clones from human chromosome 15 band q26.1

    Energy Technology Data Exchange (ETDEWEB)

    Straughen, J.; Groden, J. [Univ. of Cincinnati College of Medicine, OH (United States); Ciocci, S. [New York Blood Center, NY (United States)] [and others

    1996-07-01

    The gene for Bloom syndrome (BLM) has been mapped to human chromosome 15 band q26.1 by homozygosity mapping. Further refinement of the location of BLM has relied upon linkage-disequilibrium mapping and somatic intragenic recombination. In combination with these mapping approaches and to identify novel DNA markers and probes for the BLM candidate region, a contiguous representation of the 2-Mb region that contains the BLM gene was generated and is presented here. YAC and P1 clones from the region have been identified and ordered by using previously available genetic markers in the region along with newly developed sequence-tagged sites from radiation-restriction map of the 2-Mb region that allowed estimation of the distance between polymorphic microsatellite loci is also reported. This map and the DNA markers derived from it were instrumental in the recent identification of the BLM gene. 25 refs., 3 figs., 3 tabs.

  11. Physical map and one-megabase sequencing of the human immunoglobulin lambda locus

    Directory of Open Access Journals (Sweden)

    Geraldo A.S. Passos Jr.

    1998-06-01

    Full Text Available The human immunoglobulin lambda (IGL locus is located on chromosome 22q11.1-q11.2 and contains the genes responsible for the immunoglobulin lambda light chains. This locus was recently mapped (physical map and its 1-Mb DNA totally sequenced. In this review we focus on the characterization of the v-lambda genes, its chromosomal location, genomics and sequencing of the IGL locus.O locus IGL humano está localizado no cromosomo 22q11.1-q11.2 e contém os genes responsáveis pelas cadeias leves de imunoglobulina tipo lambda. Este locus foi recentemente mapeado (mapa físico e seu 1 Mb DNA totalmente sequenciado. Nesta revisão focamos os principais resultados de caracterização dos genes v-lambda, sua localização cromossômica, a genômica e seqüenciamento do locus IGL.

  12. Mapping of genes for flower-related traits and QTLs for flowering ...

    Indian Academy of Sciences (India)

    Mapping of genes for flower-related traits and QTLs for flowering time ... which would greatly enhance the use of G. darwinii-specific desirable genes in ... used to determine all linkage groups, the order of groups on the same ... age groups.

  13. Linkage and mapping analyses of the no glue egg gene Ng in the ...

    African Journals Online (AJOL)

    In the silkworm, Bombyx mori, no glue egg is mainly controlled by Ng (No glue) gene, which is located on the 12th chromosome. Owning to a lack of crossing over in females, reciprocal backcrossed F1 (BC1) progenies were used for linkage analysis and mapping of the Ng gene based on the simple sequence repeats ...

  14. Mapping of polyketide biosynthesis pathways in Aspergillus nidulans using a genome wide PKS gene deletion library

    DEFF Research Database (Denmark)

    Larsen, Thomas Ostenfeld; Rank, Christian; Klejnstrup, Marie Louise

    In order to map new links between PKS genes and their products in Aspergillus nidulans we have systematically deleted all thirty-two individual genes predicted to encode polyketide synthases in this model organism. This number greatly exceeds the number of currently known PKs calling for new appr...

  15. GeneRecon—A coalescent based tool for fine-scale association mapping

    DEFF Research Database (Denmark)

    Mailund, Thomas; Schierup, Mikkel Heide; Pedersen, Christian Nørgaard Storm

    2006-01-01

    GeneRecon is a tool for fine-scale association mapping using a coalescence model. GeneRecon takes as input case-control data from phased or unphased SNP and micro-satellite genotypes. The posterior distribution of disease locus position is obtained by Metropolis Hastings sampling in the state space...

  16. Double-Bottom Chaotic Map Particle Swarm Optimization Based on Chi-Square Test to Determine Gene-Gene Interactions

    Science.gov (United States)

    Yang, Cheng-Hong; Chang, Hsueh-Wei

    2014-01-01

    Gene-gene interaction studies focus on the investigation of the association between the single nucleotide polymorphisms (SNPs) of genes for disease susceptibility. Statistical methods are widely used to search for a good model of gene-gene interaction for disease analysis, and the previously determined models have successfully explained the effects between SNPs and diseases. However, the huge numbers of potential combinations of SNP genotypes limit the use of statistical methods for analysing high-order interaction, and finding an available high-order model of gene-gene interaction remains a challenge. In this study, an improved particle swarm optimization with double-bottom chaotic maps (DBM-PSO) was applied to assist statistical methods in the analysis of associated variations to disease susceptibility. A big data set was simulated using the published genotype frequencies of 26 SNPs amongst eight genes for breast cancer. Results showed that the proposed DBM-PSO successfully determined two- to six-order models of gene-gene interaction for the risk association with breast cancer (odds ratio > 1.0; P value <0.05). Analysis results supported that the proposed DBM-PSO can identify good models and provide higher chi-square values than conventional PSO. This study indicates that DBM-PSO is a robust and precise algorithm for determination of gene-gene interaction models for breast cancer. PMID:24895547

  17. Meta genome-wide network from functional linkages of genes in human gut microbial ecosystems.

    Science.gov (United States)

    Ji, Yan; Shi, Yixiang; Wang, Chuan; Dai, Jianliang; Li, Yixue

    2013-03-01

    The human gut microbial ecosystem (HGME) exerts an important influence on the human health. In recent researches, meta-genomics provided deep insights into the HGME in terms of gene contents, metabolic processes and genome constitutions of meta-genome. Here we present a novel methodology to investigate the HGME on the basis of a set of functionally coupled genes regardless of their genome origins when considering the co-evolution properties of genes. By analyzing these coupled genes, we showed some basic properties of HGME significantly associated with each other, and further constructed a protein interaction map of human gut meta-genome to discover some functional modules that may relate with essential metabolic processes. Compared with other studies, our method provides a new idea to extract basic function elements from meta-genome systems and investigate complex microbial environment by associating its biological traits with co-evolutionary fingerprints encoded in it.

  18. Characterization of a gene from the EDM1-PSACH region of human chromosome 19p

    Energy Technology Data Exchange (ETDEWEB)

    Lennon, G.G.; Giorgi, D.; Martin, J.R. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-09-01

    Genetic linkage mapping has indicated that both multiple epiphyseal dysplasia (EDM1), a dominantly inherited chondrodysplasia, and pseudoachondroplasia (PSACH), a skeletal disorder associated with dwarfism, map to a 2-3 Mb region of human chromosome 19p. We have isolated a partial cDNA from this region using hybrid selection, and report on progress towards the characterization of the genomic structure and transcription of the corresponding gene. Sequence analysis of the cDNA to date indicates that this gene is likely to be expressed within extracellular matrix tissues. Defects in this gene or neighboring gene family members may therefore lead to EDM1, PSACH, or other connective tissue and skeletal disorders.

  19. A double-mutant collection targeting MAP kinase related genes in Arabidopsis for studying genetic interactions.

    Science.gov (United States)

    Su, Shih-Heng; Krysan, Patrick J

    2016-12-01

    Mitogen-activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single-mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double-mutants are created from a large library of single-mutant lines. Here we describe a new collection of 275 double-mutant lines derived from a library of single-mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high-throughput double-mutant generating pipeline using a system for growing Arabidopsis seedlings in 96-well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double-mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single-mutant line. Seeds for this double-mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double-mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  20. A First Generation Comparative Chromosome Map between Guinea Pig (Cavia porcellus) and Humans.

    Science.gov (United States)

    Romanenko, Svetlana A; Perelman, Polina L; Trifonov, Vladimir A; Serdyukova, Natalia A; Li, Tangliang; Fu, Beiyuan; O'Brien, Patricia C M; Ng, Bee L; Nie, Wenhui; Liehr, Thomas; Stanyon, Roscoe; Graphodatsky, Alexander S; Yang, Fengtang

    2015-01-01

    The domesticated guinea pig, Cavia porcellus (Hystricomorpha, Rodentia), is an important laboratory species and a model for a number of human diseases. Nevertheless, genomic tools for this species are lacking; even its karyotype is poorly characterized. The guinea pig belongs to Hystricomorpha, a widespread and important group of rodents; so far the chromosomes of guinea pigs have not been compared with that of other hystricomorph species or with any other mammals. We generated full sets of chromosome-specific painting probes for the guinea pig by flow sorting and microdissection, and for the first time, mapped the chromosomal homologies between guinea pig and human by reciprocal chromosome painting. Our data demonstrate that the guinea pig karyotype has undergone extensive rearrangements: 78 synteny-conserved human autosomal segments were delimited in the guinea pig genome. The high rate of genome evolution in the guinea pig may explain why the HSA7/16 and HSA16/19 associations presumed ancestral for eutherians and the three syntenic associations (HSA1/10, 3/19, and 9/11) considered ancestral for rodents were not found in C. porcellus. The comparative chromosome map presented here is a starting point for further development of physical and genetic maps of the guinea pig as well as an aid for genome assembly assignment to specific chromosomes. Furthermore, the comparative mapping will allow a transfer of gene map data from other species. The probes developed here provide a genomic toolkit, which will make the guinea pig a key species to unravel the evolutionary biology of the Hystricomorph rodents.

  1. Genetics and mapping of a new leaf rust resistance gene in Triticum ...

    Indian Academy of Sciences (India)

    Genetic analysis in F1, F2 and F2.3 families at the seedling stage revealed that leaf rust resistance in Selection G12 is conditioned by a single incompletely dominant gene. The leaf rust resistance gene was mapped to chromosome 3BL with SSR markers Xgwm114 and Xgwm547 flanking the gene at a distance of 28.3 cM ...

  2. Gene expression studies on human keratinocytes transduced with human growth hormone gene for a possible utilization in gene therapy

    International Nuclear Information System (INIS)

    Mathor, Monica Beatriz.

    1994-01-01

    Taking advantage of the recent progress in the DNA-recombinant techniques and of the potentiality of normal human keratinocytes primary culture to reconstitute the epidermis, it was decided to genetically transform these keratinocytes to produce human growth hormone under controllable conditions that would be used in gene therapy at this hormone deficient patients. The first step to achieve this goal was to standardize infection of keratinocytes with retrovirus producer cells containing a construct which included the gene of bacterial b-galactosidase. The best result was obtained cultivating the keratinocytes for 3 days in a 2:1 mixture of retrovirus producer cells and 3T3-J2 fibroblasts irradiated with 60 Gy, and splitting these infected keratinocytes on 3T3-J2 fibroblasts feeder layer. Another preliminary experiment was to infect normal human keratinocytes with interleukin-6 gene (hIL-6) that, in pathologic conditions, could be reproduced by keratinocytes and secreted to the blood stream. Thus, we verify that infected keratinocytes secrete an average amount of 500 ng/10 6 cell/day of cytokin during the in vitro life time, that certify the stable character of the injection. These keratinocytes, when grafted in mice, secrete hIL-6 to the blood stream reaching levels of 40 pg/ml of serum. After these preliminary experiments, we construct a retroviral vector with the human growth hormone gene (h GH) driven by human metallothionein promoter (h PMT), designated DChPMTGH. Normal human keratinocytes were infected with DChPMTGH producer cells, following previously standardized protocol, obtaining infected keratinocytes secreting to the culture media 340 ng h GH/10 6 cell/day without promoter activation. This is the highest level of h GH secreted in human keratinocytes primary culture described in literature. The h GH value increases approximately 10 times after activation with 100 μM Zn +2 for 8-12 hours. (author). 158 refs., 42 figs., 6 tabs

  3. Comparative mapping reveals similar linkage of functional genes to ...

    Indian Academy of Sciences (India)

    genes between O. sativa and B. napus may have consistent function and control similar traits, which may be ..... acea chromosomes reveals islands of conserved organization. ... 1998 Conserved structure and function of the Arabidopsis flow-.

  4. Mapping of stripe rust resistance gene in an Aegilops caudata ...

    Indian Academy of Sciences (India)

    PUNEET INDER TOOR

    A pair of stripe rust and leaf rust resistance genes was introgressed from Aegilops caudata, a nonprogenitor diploid species with the CC genome, to cultivated .... infector rows and experimental material with the mixture of uredinospores of Pst ...

  5. Porcine NAMPT gene: search for polymorphism, mapping and association studies

    Czech Academy of Sciences Publication Activity Database

    Čepica, Stanislav; Bartenschlager, H.; Óvilo, C.; Zrůstová, J.; Masopust, Martin; Fernández, A.; López, A.; Knoll, Aleš; Rohrer, G. A.; Snelling, W. M.; Geldermann, H.

    2010-01-01

    Roč. 41, č. 6 (2010), s. 646-651 ISSN 0268-9146 R&D Projects: GA ČR GA523/07/0353 Institutional research plan: CEZ:AV0Z50450515 Keywords : association study * carcass compositio * genetic mapping Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.203, year: 2010

  6. Widespread of horizontal gene transfer in the human genome.

    Science.gov (United States)

    Huang, Wenze; Tsai, Lillian; Li, Yulong; Hua, Nan; Sun, Chen; Wei, Chaochun

    2017-04-04

    A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. From the pair-wise alignments between human genome and 53 vertebrate genomes, 1,467 human genome regions (2.6 M bases) from all chromosomes were found to be more conserved with non-mammals than with most mammals. These human genome regions involve 642 known genes, which are enriched with ion binding. Compared to known horizontal gene transfer regions in the human genome, there were few overlapping regions, which indicated horizontal gene transfer is more common than we expected in the human genome. Horizontal gene transfer impacts hundreds of human genes and this study provided insight into potential mechanisms of HGT in the human genome.

  7. Exclusion of candidate genes from the chromosome 1q juvenile glaucoma region and mapping of the peripheral cannabis receptor gene (CNR2) to chromosome 1

    Energy Technology Data Exchange (ETDEWEB)

    Sunden, S.L.F.; Nichols, B.E.; Alward, W.L.M. [Univ. of Iowa, Iowa City, IA (United States)] [and others

    1994-09-01

    Juvenile onset primary open angle glaucoma has been mapped by linkage to 1q21-q31. Several candidate genes were evaluated in the same family used to identify the primary linkage. Atrionatriuretic peptide receptor A (NPR1) and laminin C1 (LAMC1) have been previously mapped to this region and could putatively play a role in the pathogenesis of glaucoma. A third gene, the peripheral cannabis receptor (CNR2) was not initially mapped in humans but was a candidate because of the relief that cannabis affords some patients with primary open angle glaucoma. Microsatellites associated with NPR1 and LAMC1 revealed multiple recombinations in affected members of this pedigree. CNR2 was shown to be on chromosome 1 by PCR amplification of a 150 bp fragment of the 3{prime} untranslated region in monochromosomal somatic cell hybrids (NIGMS panel No. 2). These primers also revealed a two allele single strand conformation polymorphism which showed multiple recombinants with juvenile onset primary open angle glaucoma in large pedigrees, segregating this disorder. The marker was then mapped to 1p34-p36 by linkage, with the most likely location between liver alkaline phosphatase (ALPL) and alpha-L-1 fucosidase (FUCA1).

  8. Joint mapping of genes and conditions via multidimensional unfolding analysis

    Directory of Open Access Journals (Sweden)

    Engelen Kristof

    2007-06-01

    Full Text Available Abstract Background Microarray compendia profile the expression of genes in a number of experimental conditions. Such data compendia are useful not only to group genes and conditions based on their similarity in overall expression over profiles but also to gain information on more subtle relations between genes and conditions. Getting a clear visual overview of all these patterns in a single easy-to-grasp representation is a useful preliminary analysis step: We propose to use for this purpose an advanced exploratory method, called multidimensional unfolding. Results We present a novel algorithm for multidimensional unfolding that overcomes both general problems and problems that are specific for the analysis of gene expression data sets. Applying the algorithm to two publicly available microarray compendia illustrates its power as a tool for exploratory data analysis: The unfolding analysis of a first data set resulted in a two-dimensional representation which clearly reveals temporal regulation patterns for the genes and a meaningful structure for the time points, while the analysis of a second data set showed the algorithm's ability to go beyond a mere identification of those genes that discriminate between different patient or tissue types. Conclusion Multidimensional unfolding offers a useful tool for preliminary explorations of microarray data: By relying on an easy-to-grasp low-dimensional geometric framework, relations among genes, among conditions and between genes and conditions are simultaneously represented in an accessible way which may reveal interesting patterns in the data. An additional advantage of the method is that it can be applied to the raw data without necessitating the choice of suitable genewise transformations of the data.

  9. Ex vivo quantitative multiparametric MRI mapping of human meniscus degeneration

    International Nuclear Information System (INIS)

    Nebelung, Sven; Kuhl, Christiane; Truhn, Daniel; Tingart, Markus; Jahr, Holger; Pufe, Thomas

    2016-01-01

    To evaluate the diagnostic performance of T1, T1ρ, T2, T2*, and UTE-T2* (ultrashort-echo time-enhanced T2*) mapping in the refined graduation of human meniscus degeneration with histology serving as standard-of-reference. This IRB-approved intra-individual comparative ex vivo study was performed on 24 lateral meniscus body samples obtained from 24 patients undergoing total knee replacement. Samples were assessed on a 3.0-T MRI scanner using inversion-recovery (T1), spin-lock multi-gradient-echo (T1ρ), multi-spin-echo (T2) and multi-gradient-echo (T2* and UTE-T2*) sequences to determine relaxation times of quantitative MRI (qMRI) parameters. Relaxation times were calculated on the respective maps, averaged to the entire meniscus and to its zones. Histologically, samples were analyzed on a four-point score according to Williams (0-III). QMRI results and Williams (sub)scores were correlated using Spearman's ρ, while Williams grade-dependent differences were assessed using Kruskal-Wallis and Dunn's tests. Sensitivities and specificities in the detection of intact (Williams grade [WG]-0) and severely degenerate meniscus (WG-II-III) were calculated. Except for T2*, significant increases in qMRI parameters with increasing Williams grades were observed. T1, T1ρ, T2, and UTE-T2* exhibited high sensitivity and variable specificity rates. Significant marked-to-strong correlations were observed for these parameters with each other, with histological WGs and the subscores tissue integrity and cellularity. QMRI mapping holds promise in the objective evaluation of human meniscus. Although sufficient discriminatory power of T1, T1ρ, T2, and UTE-T2* was only demonstrated for the histological extremes, these data may aid in the future MRI-based parameterization and quantification of human meniscus degeneration. (orig.)

  10. Ex vivo quantitative multiparametric MRI mapping of human meniscus degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Nebelung, Sven; Kuhl, Christiane; Truhn, Daniel [Aachen University Hospital, Department of Diagnostic and Interventional Radiology, Aachen (Germany); Tingart, Markus; Jahr, Holger [Aachen University Hospital, Department of Orthopaedics, Aachen (Germany); Pufe, Thomas [RWTH Aachen University, Institute of Anatomy and Cell Biology, Aachen (Germany)

    2016-12-15

    To evaluate the diagnostic performance of T1, T1ρ, T2, T2*, and UTE-T2* (ultrashort-echo time-enhanced T2*) mapping in the refined graduation of human meniscus degeneration with histology serving as standard-of-reference. This IRB-approved intra-individual comparative ex vivo study was performed on 24 lateral meniscus body samples obtained from 24 patients undergoing total knee replacement. Samples were assessed on a 3.0-T MRI scanner using inversion-recovery (T1), spin-lock multi-gradient-echo (T1ρ), multi-spin-echo (T2) and multi-gradient-echo (T2* and UTE-T2*) sequences to determine relaxation times of quantitative MRI (qMRI) parameters. Relaxation times were calculated on the respective maps, averaged to the entire meniscus and to its zones. Histologically, samples were analyzed on a four-point score according to Williams (0-III). QMRI results and Williams (sub)scores were correlated using Spearman's ρ, while Williams grade-dependent differences were assessed using Kruskal-Wallis and Dunn's tests. Sensitivities and specificities in the detection of intact (Williams grade [WG]-0) and severely degenerate meniscus (WG-II-III) were calculated. Except for T2*, significant increases in qMRI parameters with increasing Williams grades were observed. T1, T1ρ, T2, and UTE-T2* exhibited high sensitivity and variable specificity rates. Significant marked-to-strong correlations were observed for these parameters with each other, with histological WGs and the subscores tissue integrity and cellularity. QMRI mapping holds promise in the objective evaluation of human meniscus. Although sufficient discriminatory power of T1, T1ρ, T2, and UTE-T2* was only demonstrated for the histological extremes, these data may aid in the future MRI-based parameterization and quantification of human meniscus degeneration. (orig.)

  11. Ex vivo quantitative multiparametric MRI mapping of human meniscus degeneration.

    Science.gov (United States)

    Nebelung, Sven; Tingart, Markus; Pufe, Thomas; Kuhl, Christiane; Jahr, Holger; Truhn, Daniel

    2016-12-01

    To evaluate the diagnostic performance of T1, T1ρ, T2, T2*, and UTE-T2* (ultrashort-echo time-enhanced T2*) mapping in the refined graduation of human meniscus degeneration with histology serving as standard-of-reference. This IRB-approved intra-individual comparative ex vivo study was performed on 24 lateral meniscus body samples obtained from 24 patients undergoing total knee replacement. Samples were assessed on a 3.0-T MRI scanner using inversion-recovery (T1), spin-lock multi-gradient-echo (T1ρ), multi-spin-echo (T2) and multi-gradient-echo (T2* and UTE-T2*) sequences to determine relaxation times of quantitative MRI (qMRI) parameters. Relaxation times were calculated on the respective maps, averaged to the entire meniscus and to its zones. Histologically, samples were analyzed on a four-point score according to Williams (0-III). QMRI results and Williams (sub)scores were correlated using Spearman's ρ, while Williams grade-dependent differences were assessed using Kruskal-Wallis and Dunn's tests. Sensitivities and specificities in the detection of intact (Williams grade [WG]-0) and severely degenerate meniscus (WG-II-III) were calculated. Except for T2*, significant increases in qMRI parameters with increasing Williams grades were observed. T1, T1ρ, T2, and UTE-T2* exhibited high sensitivity and variable specificity rates. Significant marked-to-strong correlations were observed for these parameters with each other, with histological WGs and the subscores tissue integrity and cellularity. QMRI mapping holds promise in the objective evaluation of human meniscus. Although sufficient discriminatory power of T1, T1ρ, T2, and UTE-T2* was only demonstrated for the histological extremes, these data may aid in the future MRI-based parameterization and quantification of human meniscus degeneration.

  12. Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types.

    Science.gov (United States)

    Loh, Kyle M; Chen, Angela; Koh, Pang Wei; Deng, Tianda Z; Sinha, Rahul; Tsai, Jonathan M; Barkal, Amira A; Shen, Kimberle Y; Jain, Rajan; Morganti, Rachel M; Shyh-Chang, Ng; Fernhoff, Nathaniel B; George, Benson M; Wernig, Gerlinde; Salomon, Rachel E A; Chen, Zhenghao; Vogel, Hannes; Epstein, Jonathan A; Kundaje, Anshul; Talbot, William S; Beachy, Philip A; Ang, Lay Teng; Weissman, Irving L

    2016-07-14

    Stem-cell differentiation to desired lineages requires navigating alternating developmental paths that often lead to unwanted cell types. Hence, comprehensive developmental roadmaps are crucial to channel stem-cell differentiation toward desired fates. To this end, here, we map bifurcating lineage choices leading from pluripotency to 12 human mesodermal lineages, including bone, muscle, and heart. We defined the extrinsic signals controlling each binary lineage decision, enabling us to logically block differentiation toward unwanted fates and rapidly steer pluripotent stem cells toward 80%-99% pure human mesodermal lineages at most branchpoints. This strategy enabled the generation of human bone and heart progenitors that could engraft in respective in vivo models. Mapping stepwise chromatin and single-cell gene expression changes in mesoderm development uncovered somite segmentation, a previously unobservable human embryonic event transiently marked by HOPX expression. Collectively, this roadmap enables navigation of mesodermal development to produce transplantable human tissue progenitors and uncover developmental processes. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Widespread of horizontal gene transfer in the human genome

    OpenAIRE

    Huang, Wenze; Tsai, Lillian; Li, Yulong; Hua, Nan; Sun, Chen; Wei, Chaochun

    2017-01-01

    Background A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. Results From the pa...

  14. Reflectance diffuse optical tomography. Its application to human brain mapping

    International Nuclear Information System (INIS)

    Ueda, Yukio; Yamanaka, Takeshi; Yamashita, Daisuke; Suzuki, Toshihiko; Ohmae, Etsuko; Oda, Motoki; Yamashita, Yutaka

    2005-01-01

    We report the successful application of reflectance diffuse optical tomography (DOT) using near-infrared light with the new reconstruction algorithm that we developed to the observation of regional hemodynamic changes in the brain under specific mental tasks. Our results reveal the heterogeneous distribution of oxyhemoglobin and deoxyhemoglobin in the brain, showing complementary images of oxyhemoglobin and deoxyhemoglobin changes in certain regions. We conclude that our reflectance DOT has practical potential for human brain mapping, as well as in the diagnostic imaging of brain diseases. (author)

  15. Mapping the calcitonin receptor in human brain stem

    DEFF Research Database (Denmark)

    Bower, Rebekah L; Eftekhari, Sajedeh; Waldvogel, Henry J

    2016-01-01

    understanding of these hormone systems by mapping CTR expression in the human brain stem, specifically the medulla oblongata. Widespread CTR-like immunoreactivity was observed throughout the medulla. Dense CTR staining was noted in several discrete nuclei, including the nucleus of the solitary tract...... receptors (AMY) are a heterodimer formed by the coexpression of CTR with receptor activity-modifying proteins (RAMPs). CTR with RAMP1 responds potently to both amylin and CGRP. The brain stem is a major site of action for circulating amylin and is a rich site of CGRP binding. This study aimed to enhance our...

  16. The BridgeDb framework: standardized access to gene, protein and metabolite identifier mapping services

    Directory of Open Access Journals (Sweden)

    Hanspers Kristina

    2010-01-01

    Full Text Available Abstract Background Many complementary solutions are available for the identifier mapping problem. This creates an opportunity for bioinformatics tool developers. Tools can be made to flexibly support multiple mapping services or mapping services could be combined to get broader coverage. This approach requires an interface layer between tools and mapping services. Results Here we present BridgeDb, a software framework for gene, protein and metabolite identifier mapping. This framework provides a standardized interface layer through which bioinformatics tools can be connected to different identifier mapping services. This approach makes it easier for tool developers to support identifier mapping. Mapping services can be combined or merged to support multi-omics experiments or to integrate custom microarray annotations. BridgeDb provides its own ready-to-go mapping services, both in webservice and local database forms. However, the framework is intended for customization and adaptation to any identifier mapping service. BridgeDb has already been integrated into several bioinformatics applications. Conclusion By uncoupling bioinformatics tools from mapping services, BridgeDb improves capability and flexibility of those tools. All described software is open source and available at http://www.bridgedb.org.

  17. A Catalog of Genes Homozygously Deleted in Human Lung Cancer and the Candidacy of PTPRD as a Tumor Suppressor Gene

    Science.gov (United States)

    Kohno, Takashi; Otsuka, Ayaka; Girard, Luc; Sato, Masanori; Iwakawa, Reika; Ogiwara, Hideaki; Sanchez-Cespedes, Montse; Minna, John D.; Yokota, Jun

    2010-01-01

    A total of 176 genes homozygously deleted in human lung cancer were identified by DNA array-based whole genome scanning of 52 lung cancer cell lines and subsequent genomic PCR in 74 cell lines, including the 52 cell lines scanned. One or more exons of these genes were homozygously deleted in one (1%) to 20 (27%) cell lines. These genes included known tumor suppressor genes, e.g., CDKN2A/p16, RB1, and SMAD4, and candidate tumor suppressor genes whose hemizygous or homozygous deletions were reported in several types of human cancers, such as FHIT, KEAP1, and LRP1B/LRP-DIP. CDKN2A/p16 and p14ARF located in 9p21 were most frequently deleted (20/74, 27%). The PTPRD gene was most frequently deleted (8/74, 11%) among genes mapping to regions other than 9p21. Somatic mutations, including a nonsense mutation, of the PTPRD gene were detected in 8/74 (11%) of cell lines and 4/95 (4%) of surgical specimens of lung cancer. Reduced PTPRD expression was observed in the majority (>80%) of cell lines and surgical specimens of lung cancer. Therefore, PTPRD is a candidate tumor suppressor gene in lung cancer. Microarray-based expression profiling of 19 lung cancer cell lines also indicated that some of the 176 genes, such as KANK and ADAMTS1, are preferentially inactivated by epigenetic alterations. Genetic/epigenetic as well as functional studies of these 176 genes will increase our understanding of molecular mechanisms behind lung carcinogenesis. PMID:20073072

  18. The human hippocampus: cognitive maps or relational memory?

    Science.gov (United States)

    Kumaran, Dharshan; Maguire, Eleanor A

    2005-08-03

    The hippocampus is widely accepted to play a pivotal role in memory. Two influential theories offer competing accounts of its fundamental operating mechanism. The cognitive map theory posits a special role in mapping large-scale space, whereas the relational theory argues it supports amodal relational processing. Here, we pit the two theories against each other using a novel paradigm in which the relational processing involved in navigating in a city was matched with similar navigational and relational processing demands in a nonspatial (social) domain. During functional magnetic resonance imaging, participants determined the optimal route either between friends' homes or between the friends themselves using social connections. Separate brain networks were engaged preferentially during the two tasks, with hippocampal activation driven only by spatial relational processing. We conclude that the human hippocampus appears to have a bias toward the processing of spatial relationships, in accordance with the cognitive map theory. Our results both advance our understanding of the nature of the hippocampal contribution to memory and provide insights into how social networks are instantiated at the neural level.

  19. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes.

    Directory of Open Access Journals (Sweden)

    Andreas Bolzer

    2005-05-01

    Full Text Available Studies of higher-order chromatin arrangements are an essential part of ongoing attempts to explore changes in epigenome structure and their functional implications during development and cell differentiation. However, the extent and cell-type-specificity of three-dimensional (3D chromosome arrangements has remained controversial. In order to overcome technical limitations of previous studies, we have developed tools that allow the quantitative 3D positional mapping of all chromosomes simultaneously. We present unequivocal evidence for a probabilistic 3D order of prometaphase chromosomes, as well as of chromosome territories (CTs in nuclei of quiescent (G0 and cycling (early S-phase human diploid fibroblasts (46, XY. Radial distance measurements showed a probabilistic, highly nonrandom correlation with chromosome size: small chromosomes-independently of their gene density-were distributed significantly closer to the center of the nucleus or prometaphase rosette, while large chromosomes were located closer to the nuclear or rosette rim. This arrangement was independently confirmed in both human fibroblast and amniotic fluid cell nuclei. Notably, these cell types exhibit flat-ellipsoidal cell nuclei, in contrast to the spherical nuclei of lymphocytes and several other human cell types, for which we and others previously demonstrated gene-density-correlated radial 3D CT arrangements. Modeling of 3D CT arrangements suggests that cell-type-specific differences in radial CT arrangements are not solely due to geometrical constraints that result from nuclear shape differences. We also found gene-density-correlated arrangements of higher-order chromatin shared by all human cell types studied so far. Chromatin domains, which are gene-poor, form a layer beneath the nuclear envelope, while gene-dense chromatin is enriched in the nuclear interior. We discuss the possible functional implications of this finding.

  20. Development of a new comprehensive and reliable endometrial receptivity map (ER Map/ER Grade) based on RT-qPCR gene expression analysis.

    Science.gov (United States)

    Enciso, M; Carrascosa, J P; Sarasa, J; Martínez-Ortiz, P A; Munné, S; Horcajadas, J A; Aizpurua, J

    2018-02-01

    Is it possible to determine the receptivity status of an endometrium by combined quantitative reverse transcription PCR (RT-qPCR) expression analysis of genes involved in endometrial proliferation and immunity? The new ER Map®/ER Grade® test can predict endometrial receptivity status by RT-qPCR using a new panel of genes involved in endometrial proliferation and the maternal immune response associated to embryonic implantation. The human endometrium reaches a receptive status adequate for embryonic implantation around Days 19-21 of the menstrual cycle. During this period, known as the window of implantation (WOI), the endometrium shows a specific gene expression profile suitable for endometrial function evaluation. The number of molecular diagnostic tools currently available to characterize this process is very limited. In this study, a new system for human endometrial receptivity evaluation was optimized and presented for the first time. ER Map®/ER Grade® validation was achieved on 312 endometrial samples including fertile women and patients undergoing fertility treatment between July 2014 and March 2016. Expression analyses of 184 genes involved in endometrial receptivity and immune response were performed. Samples were additionally tested with an independent endometrial receptivity test. A total of 96 fertile women and 120 assisted reproduction treatment (ART) patients participated in the study. Endometrial biopsy samples were obtained at LH + 2 and LH + 7 days in fertile subjects in a natural cycle and at the window of implantation (WOI) in patients in a hormone-replacement therapy (HRT) cycle. Total RNA was purified, quality-checked and reverse-transcribed. Gene expression was quantified by high-throughput RT-qPCR and statistically analyzed. Informative genes were selected and used to classify samples into four different groups of endometrial receptivity status. Significantly different gene expression levels were found in 85 out of 184 selected genes when

  1. Probabilistic Mapping of Human Visual Attention from Head Pose Estimation

    Directory of Open Access Journals (Sweden)

    Andrea Veronese

    2017-10-01

    Full Text Available Effective interaction between a human and a robot requires the bidirectional perception and interpretation of actions and behavior. While actions can be identified as a directly observable activity, this might not be sufficient to deduce actions in a scene. For example, orienting our face toward a book might suggest the action toward “reading.” For a human observer, this deduction requires the direction of gaze, the object identified as a book and the intersection between gaze and book. With this in mind, we aim to estimate and map human visual attention as directed to a scene, and assess how this relates to the detection of objects and their related actions. In particular, we consider human head pose as measurement to infer the attention of a human engaged in a task and study which prior knowledge should be included in such a detection system. In a user study, we show the successful detection of attention to objects in a typical office task scenario (i.e., reading, working with a computer, studying an object. Our system requires a single external RGB camera for head pose measurements and a pre-recorded 3D point cloud of the environment.

  2. Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray.

    Directory of Open Access Journals (Sweden)

    Kouji Satoh

    Full Text Available Rice (Oryza sativa L. is a model organism for the functional genomics of monocotyledonous plants since the genome size is considerably smaller than those of other monocotyledonous plants. Although highly accurate genome sequences of indica and japonica rice are available, additional resources such as full-length complementary DNA (FL-cDNA sequences are also indispensable for comprehensive analyses of gene structure and function. We cross-referenced 28.5K individual loci in the rice genome defined by mapping of 578K FL-cDNA clones with the 56K loci predicted in the TIGR genome assembly. Based on the annotation status and the presence of corresponding cDNA clones, genes were classified into 23K annotated expressed (AE genes, 33K annotated non-expressed (ANE genes, and 5.5K non-annotated expressed (NAE genes. We developed a 60mer oligo-array for analysis of gene expression from each locus. Analysis of gene structures and expression levels revealed that the general features of gene structure and expression of NAE and ANE genes were considerably different from those of AE genes. The results also suggested that the cloning efficiency of rice FL-cDNA is associated with the transcription activity of the corresponding genetic locus, although other factors may also have an effect. Comparison of the coverage of FL-cDNA among gene families suggested that FL-cDNA from genes encoding rice- or eukaryote-specific domains, and those involved in regulatory functions were difficult to produce in bacterial cells. Collectively, these results indicate that rice genes can be divided into distinct groups based on transcription activity and gene structure, and that the coverage bias of FL-cDNA clones exists due to the incompatibility of certain eukaryotic genes in bacteria.

  3. Human cDNA mapping using fluorescence in situ hybridization. Progress report, April 1--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.

    1993-12-31

    The ultimate goal of this proposal is to create a cDNA map of the human genome. Mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach will generate 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  4. Mutation analysis of the MCHR1 gene in human obesity

    DEFF Research Database (Denmark)

    Wermter, Anne-Kathrin; Reichwald, Kathrin; Büch, Thomas

    2005-01-01

    The importance of the melanin-concentrating hormone (MCH) system for regulation of energy homeostasis and body weight has been demonstrated in rodents. We analysed the human MCH receptor 1 gene (MCHR1) with respect to human obesity....

  5. Lod scores for gene mapping in the presence of marker map uncertainty.

    Science.gov (United States)

    Stringham, H M; Boehnke, M

    2001-07-01

    Multipoint lod scores are typically calculated for a grid of locus positions, moving the putative disease locus across a fixed map of genetic markers. Changing the order of a set of markers and/or the distances between the markers can make a substantial difference in the resulting lod score curve and the location and height of its maximum. The typical approach of using the best maximum likelihood marker map is not easily justified if other marker orders are nearly as likely and give substantially different lod score curves. To deal with this problem, we propose three weighted multipoint lod score statistics that make use of information from all plausible marker orders. In each of these statistics, the information conditional on a particular marker order is included in a weighted sum, with weight equal to the posterior probability of that order. We evaluate the type 1 error rate and power of these three statistics on the basis of results from simulated data, and compare these results to those obtained using the best maximum likelihood map and the map with the true marker order. We find that the lod score based on a weighted sum of maximum likelihoods improves on using only the best maximum likelihood map, having a type 1 error rate and power closest to that of using the true marker order in the simulation scenarios we considered. Copyright 2001 Wiley-Liss, Inc.

  6. The UK Human Genome Mapping Project online computing service.

    Science.gov (United States)

    Rysavy, F R; Bishop, M J; Gibbs, G P; Williams, G W

    1992-04-01

    This paper presents an overview of computing and networking facilities developed by the Medical Research Council to provide online computing support to the Human Genome Mapping Project (HGMP) in the UK. The facility is connected to a number of other computing facilities in various centres of genetics and molecular biology research excellence, either directly via high-speed links or through national and international wide-area networks. The paper describes the design and implementation of the current system, a 'client/server' network of Sun, IBM, DEC and Apple servers, gateways and workstations. A short outline of online computing services currently delivered by this system to the UK human genetics research community is also provided. More information about the services and their availability could be obtained by a direct approach to the UK HGMP-RC.

  7. Mapping genetic influences on the corticospinal motor system in humans

    DEFF Research Database (Denmark)

    Cheeran, B J; Ritter, C; Rothwell, J C

    2009-01-01

    of the contribution of single nucleotide polymorphisms (SNP) and variable number tandem repeats. In humans, the corticospinal motor system is essential to the acquisition of fine manual motor skills which require a finely tuned coordination of activity in distal forelimb muscles. Here we review recent brain mapping......It is becoming increasingly clear that genetic variations account for a certain amount of variance in the acquisition and maintenance of different skills. Until now, several levels of genetic influences were examined, ranging from global heritability estimates down to the analysis...... studies that have begun to explore the influence of functional genetic variation as well as mutations on function and structure of the human corticospinal motor system, and also the clinical implications of these studies. Transcranial magnetic stimulation of the primary motor hand area revealed...

  8. Xp21 contiguous gene syndromes: Deletion quantitation with bivariate flow karyotyping allows mapping of patient breakpoints

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, E.R.B.; Towbin, J.A. (Baylor College of Medicine, Houston, TX (United States)); Engh, G. van den; Trask, B.J. (Lawrence Livermore National Lab., CA (United States))

    1992-12-01

    Bivariate flow karyotyping was used to estimate the deletion sizes for a series of patients with Xp21 contiguous gene syndromes. The deletion estimates were used to develop an approximate scale for the genomic map in Xp21. The bivariate flow karyotype results were compared with clinical and molecular genetic information on the extent of the patients' deletions, and these various types of data were consistent. The resulting map spans >15 Mb, from the telomeric interval between DXS41 (99-6) and DXS68 (1-4) to a position centromeric to the ornithine transcarbamylase locus. The deletion sizing was considered to be accurate to [plus minus]1 Mb. The map provides information on the relative localization of genes and markers within this region. For example, the map suggests that the adrenal hypoplasia congenita and glycerol kinase genes are physically close to each other, are within 1-2 Mb of the telomeric end of the Duchenne muscular dystrophy (DMD) gene, and are nearer to the DMD locus than to the more distal marker DXS28 (C7). Information of this type is useful in developing genomic strategies for positional cloning in Xp21. These investigations demonstrate that the DNA from patients with Xp21 contiguous gene syndromes can be valuable reagents, not only for ordering loci and markers but also for providing an approximate scale to the map of the Xp21 region surrounding DMD. 44 refs., 3 figs.

  9. Relaxin gene family in teleosts: phylogeny, syntenic mapping, selective constraint, andexpression analysis

    Directory of Open Access Journals (Sweden)

    Glen Peter

    2009-12-01

    Full Text Available Abstract Background In recent years, the relaxin family of signaling molecules has been shown to play diverse roles in mammalian physiology, but little is known about its diversity or physiology in teleosts, an infraclass of the bony fishes comprising ~ 50% of all extant vertebrates. In this paper, 32 relaxin family sequences were obtained by searching genomic and cDNA databases from eight teleost species; phylogenetic, molecular evolutionary, and syntenic data analyses were conducted to understand the relationship and differential patterns of evolution of relaxin family genes in teleosts compared with mammals. Additionally, real-time quantitative PCR was used to confirm and assess the tissues of expression of five relaxin family genes in Danio rerio and in situ hybridization used to assess the site-specific expression of the insulin 3-like gene in D. rerio testis. Results Up to six relaxin family genes were identified in each teleost species. Comparative syntenic mapping revealed that fish possess two paralogous copies of human RLN3, which we call rln3a and rln3b, an orthologue of human RLN2, rln, two paralogous copies of human INSL5, insl5a and insl5b, and an orthologue of human INSL3, insl3. Molecular evolutionary analyses indicated that: rln3a, rln3b and rln are under strong evolutionary constraint, that insl3 has been subject to moderate rates of sequence evolution with two amino acids in insl3/INSL3 showing evidence of positively selection, and that insl5b exhibits a higher rate of sequence evolution than its paralogue insl5a suggesting that it may have been neo-functionalized after the teleost whole genome duplication. Quantitative PCR analyses in D. rerio indicated that rln3a and rln3b are expressed in brain, insl3 is highly expressed in gonads, and that there was low expression of both insl5 genes in adult zebrafish. Finally, in situ hybridization of insl3 in D. rerio testes showed highly specific hybridization to interstitial Leydig

  10. Physical mapping of the Period gene on meiotic chromosomes of South American grasshoppers (Acridomorpha, Orthoptera).

    Science.gov (United States)

    Souza, T E; Oliveira, D L; Santos, J F; Rieger, T T

    2014-12-19

    The single-copy gene Period was located in five grasshopper species belonging to the Acridomorpha group through permanent in situ hybridization (PISH). The mapping revealed one copy of this gene in the L1 chromosome pair in Ommexecha virens, Xyleus discoideus angulatus, Tropidacris collaris, Schistocerca pallens, and Stiphra robusta. A possible second copy was mapped on the L2 chromosome pair in S. robusta, which should be confirmed by further studies. Except for the latter case, the chromosomal position of the Period gene was highly conserved among the four families studied. The S. robusta karyotype also differs from the others both in chromosome number and morphology. The position conservation of the single-copy gene Period contrasts with the location diversification of multigene families in these species. The localization of single-copy genes by PISH can provide new insights about the genomic content and chromosomal evolution of grasshoppers and others insects.

  11. Mapping of gene transcripts by nuclease protection assays and cDNA primer extension

    International Nuclear Information System (INIS)

    Calzone, F.J.; Britten, R.J.; Davidson, E.J.

    1987-01-01

    An important problem often faced in the molecular characterization of genes is the precise mapping of those genomic sequences transcribed into RNA. This requires identification of the genomic site initiating gene transcription, the location of genomic sequences removed from the primary gene transcript during RNA processing, and knowledge of sequences terminating the processed gene transcript. The objective of the protocols described here is the generation of transcription maps utilizing relatively uncharacterized gene fragments. The basic approach is hybridization of a single-stranded DNA probe with cellular RNA, followed by treatment with a single-strand-specific nuclease that does not attack DNA-RNA hybrids, in order to destroy any unreacted probe sequences. Thus the probe sequences included in the hybrid duplexes are protected from nuclease digestion. The sizes of the protected probe fragments determined by gel electrophoresis correspond to the lengths of the hybridized sequence elements

  12. Mapping human brain networks with cortico-cortical evoked potentials

    Science.gov (United States)

    Keller, Corey J.; Honey, Christopher J.; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D.

    2014-01-01

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex. PMID:25180306

  13. Bioinformatic prediction and functional characterization of human KIAA0100 gene

    Directory of Open Access Journals (Sweden)

    He Cui

    2017-02-01

    Full Text Available Our previous study demonstrated that human KIAA0100 gene was a novel acute monocytic leukemia-associated antigen (MLAA gene. But the functional characterization of human KIAA0100 gene has remained unknown to date. Here, firstly, bioinformatic prediction of human KIAA0100 gene was carried out using online softwares; Secondly, Human KIAA0100 gene expression was downregulated by the clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas 9 system in U937 cells. Cell proliferation and apoptosis were next evaluated in KIAA0100-knockdown U937 cells. The bioinformatic prediction showed that human KIAA0100 gene was located on 17q11.2, and human KIAA0100 protein was located in the secretory pathway. Besides, human KIAA0100 protein contained a signalpeptide, a transmembrane region, three types of secondary structures (alpha helix, extended strand, and random coil , and four domains from mitochondrial protein 27 (FMP27. The observation on functional characterization of human KIAA0100 gene revealed that its downregulation inhibited cell proliferation, and promoted cell apoptosis in U937 cells. To summarize, these results suggest human KIAA0100 gene possibly comes within mitochondrial genome; moreover, it is a novel anti-apoptotic factor related to carcinogenesis or progression in acute monocytic leukemia, and may be a potential target for immunotherapy against acute monocytic leukemia.

  14. Fine mapping of the EDA gene: A translocation breakpoint is associated with a CpG island that is transcribed

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, A.K.; Schlessinger, D. [Washington Univ. School of Medicine, St. Louis, MO (United States); Montonen, O. [Univ. of Helsinki (Finland)] [and others

    1996-01-01

    In order to identify the gene for human X-linked anhidrotic ectodermal dysplasia (EDA), a translocation breakpoint in a female with t(X;1)(q13.1;p36.3) and EDA (patient AK) was finely mapped. The EDA region contains five groups of rare-cutter restriction sites that define CpG islands. The two more centromeric of these islands are associated with transcripts of 3.5 kb and 1.8 kb. The third CpG island maps within <1 kb of the translocation breakpoint in patient AK, as indicated by a genomic rearrangement, and {approximately}100 kb centromeric from another previously mapped translocation breakpoint (patient AnLy). Northern analysis with a probe from this CpG island detected an {approximately}6-kb mRNA in several fetal tissues tested. An extended YAC contig of 1,200 kb with an average of fivefold coverage was constructed. The two most telomeric CpG islands map 350 kb telomeric of the two translocations. Taken together, the results suggest that the CpG island just proximal of the AK translocation breakpoint lies at the 5{prime} end of a candidate gene for EDA. 26 refs., 4 figs., 1 tab.

  15. Fine mapping and identification of a candidate gene for the barley Un8 true loose smut resistance gene.

    Science.gov (United States)

    Zang, Wen; Eckstein, Peter E; Colin, Mark; Voth, Doug; Himmelbach, Axel; Beier, Sebastian; Stein, Nils; Scoles, Graham J; Beattie, Aaron D

    2015-07-01

    The candidate gene for the barley Un8 true loose smut resistance gene encodes a deduced protein containing two tandem protein kinase domains. In North America, durable resistance against all known isolates of barley true loose smut, caused by the basidiomycete pathogen Ustilago nuda (Jens.) Rostr. (U. nuda), is under the control of the Un8 resistance gene. Previous genetic studies mapped Un8 to the long arm of chromosome 5 (1HL). Here, a population of 4625 lines segregating for Un8 was used to delimit the Un8 gene to a 0.108 cM interval on chromosome arm 1HL, and assign it to fingerprinted contig 546 of the barley physical map. The minimal tilling path was identified for the Un8 locus using two flanking markers and consisted of two overlapping bacterial artificial chromosomes. One gene located close to a marker co-segregating with Un8 showed high sequence identity to a disease resistance gene containing two kinase domains. Sequence of the candidate gene from the parents of the segregating population, and in an additional 19 barley lines representing a broader spectrum of diversity, showed there was no intron in alleles present in either resistant or susceptible lines, and fifteen amino acid variations unique to the deduced protein sequence in resistant lines differentiated it from the deduced protein sequences in susceptible lines. Some of these variations were present within putative functional domains which may cause a loss of function in the deduced protein sequences within susceptible lines.

  16. Identification and characterization of human GUKH2 gene in silico.

    Science.gov (United States)

    Katoh, Masuko; Katoh, Masaru

    2004-04-01

    Drosophila Guanylate-kinase holder (Gukh) is an adaptor molecule bridging Discs large (Dlg) and Scribble (Scrib), which are implicated in the establishment and maintenance of epithelial polarity. Here, we searched for human homologs of Drosophila gukh by using bioinformatics, and identified GUKH1 and GUKH2 genes. GUKH1 was identical to Nance-Horan syndrome (NHS) gene, while GUKH2 was a novel gene. FLJ35425 (AK092744.1), DKFZp686P1949 (BX647246.1) and KIAA1357 (AB037778.1) cDNAs were derived from human GUKH2 gene. Nucleotide sequence of GUKH2 cDNA was determined by assembling 5'-part of FLJ35425 cDNA and entire region of DKFZp686P1949 cDNA. Human GUKH2 gene consists of 8 exons. Exon 5 (132 bp) of GUKH2 gene was spliced out in GUKH2 cDNA due to alternative splicing. GUKH2-REPS1 locus at human chromosome 6q24.1 and GUKH1-REPS2 locus at human chromosome Xp22.22-p22.13 are paralogous regions within the human genome. Mouse Gukh2 and zebrafish gukh2 genes were also identified. N-terminal part of human GUKH2, mouse Gukh2 and zebrafish gukh2 proteins were completely divergent from human GUKH1 protein. Human GUKH2 and GUKH1, consisting of eight GUKH homology (GKH1-GKH8) domains and Proline-rich domain, showed 28.5% total-amino-acid identity. GKH1, GKH4, GKH5, GKH7 and GKH8 domains were conserved among human GUKH1, human GUKH2 and Drosophila Gukh. Because human homologs of Drosophila dlg (DLG1-DLG7) as well as human homologs of Drosophila scrib (SCRIB, ERBB2IP and Densin-180) are cancer-associated genes, human homologs of Drosophila gukh (GUKH1 and GUKH2) are predicted cancer-associated genes.

  17. Chromosome mapping of dragline silk genes in the genomes of widow spiders (Araneae, Theridiidae.

    Directory of Open Access Journals (Sweden)

    Yonghui Zhao

    Full Text Available With its incredible strength and toughness, spider dragline silk is widely lauded for its impressive material properties. Dragline silk is composed of two structural proteins, MaSp1 and MaSp2, which are encoded by members of the spidroin gene family. While previous studies have characterized the genes that encode the constituent proteins of spider silks, nothing is known about the physical location of these genes. We determined karyotypes and sex chromosome organization for the widow spiders, Latrodectus hesperus and L. geometricus (Araneae, Theridiidae. We then used fluorescence in situ hybridization to map the genomic locations of the genes for the silk proteins that compose the remarkable spider dragline. These genes included three loci for the MaSp1 protein and the single locus for the MaSp2 protein. In addition, we mapped a MaSp1 pseudogene. All the MaSp1 gene copies and pseudogene localized to a single chromosomal region while MaSp2 was located on a different chromosome of L. hesperus. Using probes derived from L. hesperus, we comparatively mapped all three MaSp1 loci to a single region of a L. geometricus chromosome. As with L. hesperus, MaSp2 was found on a separate L. geometricus chromosome, thus again unlinked to the MaSp1 loci. These results indicate orthology of the corresponding chromosomal regions in the two widow genomes. Moreover, the occurrence of multiple MaSp1 loci in a conserved gene cluster across species suggests that MaSp1 proliferated by tandem duplication in a common ancestor of L. geometricus and L. hesperus. Unequal crossover events during recombination could have given rise to the gene copies and could also maintain sequence similarity among gene copies over time. Further comparative mapping with taxa of increasing divergence from Latrodectus will pinpoint when the MaSp1 duplication events occurred and the phylogenetic distribution of silk gene linkage patterns.

  18. Evaluation of phenoxybenzamine in the CFA model of pain following gene expression studies and connectivity mapping.

    Science.gov (United States)

    Chang, Meiping; Smith, Sarah; Thorpe, Andrew; Barratt, Michael J; Karim, Farzana

    2010-09-16

    We have previously used the rat 4 day Complete Freund's Adjuvant (CFA) model to screen compounds with potential to reduce osteoarthritic pain. The aim of this study was to identify genes altered in this model of osteoarthritic pain and use this information to infer analgesic potential of compounds based on their own gene expression profiles using the Connectivity Map approach. Using microarrays, we identified differentially expressed genes in L4 and L5 dorsal root ganglia (DRG) from rats that had received intraplantar CFA for 4 days compared to matched, untreated control animals. Analysis of these data indicated that the two groups were distinguishable by differences in genes important in immune responses, nerve growth and regeneration. This list of differentially expressed genes defined a "CFA signature". We used the Connectivity Map approach to identify pharmacologic agents in the Broad Institute Build02 database that had gene expression signatures that were inversely related ('negatively connected') with our CFA signature. To test the predictive nature of the Connectivity Map methodology, we tested phenoxybenzamine (an alpha adrenergic receptor antagonist) - one of the most negatively connected compounds identified in this database - for analgesic activity in the CFA model. Our results indicate that at 10 mg/kg, phenoxybenzamine demonstrated analgesia comparable to that of Naproxen in this model. Evaluation of phenoxybenzamine-induced analgesia in the current study lends support to the utility of the Connectivity Map approach for identifying compounds with analgesic properties in the CFA model.

  19. Using immediate-early genes to map hippocampal subregional functions

    Czech Academy of Sciences Publication Activity Database

    Kubík, Štěpán; Miyashita, T.; Guzowski, J. F.

    2007-01-01

    Roč. 14, č. 11 (2007), s. 758-770 ISSN 1072-0502 Grant - others:NIH(US) MH060123 Institutional research plan: CEZ:AV0Z50110509 Keywords : immediate-early genes * hippocampus * CA3 Subject RIV: FH - Neurology Impact factor: 4.037, year: 2007

  20. Utilization of gene mapping and candidate gene mutation screening for diagnosing clinically equivocal conditions: a Norrie disease case study.

    Science.gov (United States)

    Chini, Vasiliki; Stambouli, Danai; Nedelea, Florina Mihaela; Filipescu, George Alexandru; Mina, Diana; Kambouris, Marios; El-Shantil, Hatem

    2014-06-01

    Prenatal diagnosis was requested for an undiagnosed eye disease showing X-linked inheritance in a family. No medical records existed for the affected family members. Mapping of the X chromosome and candidate gene mutation screening identified a c.C267A[p.F89L] mutation in NPD previously described as possibly causing Norrie disease. The detection of the c.C267A[p.F89L] variant in another unrelated family confirms the pathogenic nature of the mutation for the Norrie disease phenotype. Gene mapping, haplotype analysis, and candidate gene screening have been previously utilized in research applications but were applied here in a diagnostic setting due to the scarcity of available clinical information. The clinical diagnosis and mutation identification were critical for providing proper genetic counseling and prenatal diagnosis for this family.

  1. Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from GWAS.

    Science.gov (United States)

    Pan, David Z; Garske, Kristina M; Alvarez, Marcus; Bhagat, Yash V; Boocock, James; Nikkola, Elina; Miao, Zong; Raulerson, Chelsea K; Cantor, Rita M; Civelek, Mete; Glastonbury, Craig A; Small, Kerrin S; Boehnke, Michael; Lusis, Aldons J; Sinsheimer, Janet S; Mohlke, Karen L; Laakso, Markku; Pajukanta, Päivi; Ko, Arthur

    2018-04-17

    Increased adiposity is a hallmark of obesity and overweight, which affect 2.2 billion people world-wide. Understanding the genetic and molecular mechanisms that underlie obesity-related phenotypes can help to improve treatment options and drug development. Here we perform promoter Capture Hi-C in human adipocytes to investigate interactions between gene promoters and distal elements as a transcription-regulating mechanism contributing to these phenotypes. We find that promoter-interacting elements in human adipocytes are enriched for adipose-related transcription factor motifs, such as PPARG and CEBPB, and contribute to heritability of cis-regulated gene expression. We further intersect these data with published genome-wide association studies for BMI and BMI-related metabolic traits to identify the genes that are under genetic cis regulation in human adipocytes via chromosomal interactions. This integrative genomics approach identifies four cis-eQTL-eGene relationships associated with BMI or obesity-related traits, including rs4776984 and MAP2K5, which we further confirm by EMSA, and highlights 38 additional candidate genes.

  2. High-resolution gene maps of horse chromosomes 14 and 21: additional insights into evolution and rearrangements of HSA5 homologs in mammals.

    Science.gov (United States)

    Goh, Glenda; Raudsepp, Terje; Durkin, Keith; Wagner, Michelle L; Schäffer, Alejandro A; Agarwala, Richa; Tozaki, Teruaki; Mickelson, James R; Chowdhary, Bhanu P

    2007-01-01

    High-resolution physically ordered gene maps for equine homologs of human chromosome 5 (HSA5), viz., horse chromosomes 14 and 21 (ECA14 and ECA21), were generated by adding 179 new loci (131 gene-specific and 48 microsatellites) to the existing maps of the two chromosomes. The loci were mapped primarily by genotyping on a 5000-rad horse x hamster radiation hybrid panel, of which 28 were mapped by fluorescence in situ hybridization. The approximately fivefold increase in the number of mapped markers on the two chromosomes improves the average resolution of the map to 1 marker/0.9 Mb. The improved resolution is vital for rapid chromosomal localization of traits of interest on these chromosomes and for facilitating candidate gene searches. The comparative gene mapping data on ECA14 and ECA21 finely align the chromosomes to sequence/gene maps of a range of evolutionarily distantly related species. It also demonstrates that compared to ECA14, the ECA21 segment corresponding to HSA5 is a more conserved region because of preserved gene order in a larger number of and more diverse species. Further, comparison of ECA14 and the distal three-quarters region of ECA21 with corresponding chromosomal segments in 50 species belonging to 11 mammalian orders provides a broad overview of the evolution of these segments in individual orders from the putative ancestral chromosomal configuration. Of particular interest is the identification and precise demarcation of equid/Perissodactyl-specific features that for the first time clearly distinguish the origins of ECA14 and ECA21 from similar-looking status in the Cetartiodactyls.

  3. Establishment of a molecular genetic map of distal mouse chromosome 1: further definition of a conserved linkage group syntenic with human chromosome 1q.

    Science.gov (United States)

    Seldin, M F; Morse, H C; LeBoeuf, R C; Steinberg, A D

    1988-01-01

    A linkage map of distal mouse chromosome 1 was constructed by restriction fragment length polymorphism analysis of DNAs from seven sets of recombinant inbred (RI) strains. The data obtained with seven probes on Southern hybridization combined with data from previous studies suggest the gene order Cfh, Pep-3/Ren-1,2, Ly-5, Lamb-2, At-3, Apoa-2/Ly-17,Spna-1. These results confirm and extend analyses of a large linkage group which includes genes present on a 20-30 cM span of mouse chromosome 1 and those localized to human chromosome 1q21-32. Moreover, the data indicate similar relative positions of human and mouse complement receptor-related genes REN, CD45, LAMB2, AT3, APOA2, and SPTA. These results suggest that mouse gene analyses may help in detailed mapping of human genes within such a syntenic group.

  4. In-silico human genomics with GeneCards

    Directory of Open Access Journals (Sweden)

    Stelzer Gil

    2011-10-01

    Full Text Available Abstract Since 1998, the bioinformatics, systems biology, genomics and medical communities have enjoyed a synergistic relationship with the GeneCards database of human genes (http://www.genecards.org. This human gene compendium was created to help to introduce order into the increasing chaos of information flow. As a consequence of viewing details and deep links related to specific genes, users have often requested enhanced capabilities, such that, over time, GeneCards has blossomed into a suite of tools (including GeneDecks, GeneALaCart, GeneLoc, GeneNote and GeneAnnot for a variety of analyses of both single human genes and sets thereof. In this paper, we focus on inhouse and external research activities which have been enabled, enhanced, complemented and, in some cases, motivated by GeneCards. In turn, such interactions have often inspired and propelled improvements in GeneCards. We describe here the evolution and architecture of this project, including examples of synergistic applications in diverse areas such as synthetic lethality in cancer, the annotation of genetic variations in disease, omics integration in a systems biology approach to kidney disease, and bioinformatics tools.

  5. Human reporter genes: potential use in clinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Serganova, Inna [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Ponomarev, Vladimir [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Blasberg, Ronald [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States)], E-mail: blasberg@neuro1.mskcc.org

    2007-10-15

    The clinical application of positron-emission-tomography-based reporter gene imaging will expand over the next several years. The translation of reporter gene imaging technology into clinical applications is the focus of this review, with emphasis on the development and use of human reporter genes. Human reporter genes will play an increasingly more important role in this development, and it is likely that one or more reporter systems (human gene and complimentary radiopharmaceutical) will take leading roles. Three classes of human reporter genes are discussed and compared: receptors, transporters and enzymes. Examples of highly expressed cell membrane receptors include specific membrane somatostatin receptors (hSSTrs). The transporter group includes the sodium iodide symporter (hNIS) and the norepinephrine transporter (hNET). The endogenous enzyme classification includes human mitochondrial thymidine kinase 2 (hTK2). In addition, we also discuss the nonhuman dopamine 2 receptor and two viral reporter genes, the wild-type herpes simplex virus 1 thymidine kinase (HSV1-tk) gene and the HSV1-tk mutant (HSV1-sr39tk). Initial applications of reporter gene imaging in patients will be developed within two different clinical disciplines: (a) gene therapy and (b) adoptive cell-based therapies. These studies will benefit from the availability of efficient human reporter systems that can provide critical monitoring information for adenoviral-based, retroviral-based and lenteviral-based gene therapies, oncolytic bacterial and viral therapies, and adoptive cell-based therapies. Translational applications of noninvasive in vivo reporter gene imaging are likely to include: (a) quantitative monitoring of gene therapy vectors for targeting and transduction efficacy in clinical protocols by imaging the location, extent and duration of transgene expression; (b) monitoring of cell trafficking, targeting, replication and activation in adoptive T-cell and stem/progenitor cell therapies

  6. Human reporter genes: potential use in clinical studies

    International Nuclear Information System (INIS)

    Serganova, Inna; Ponomarev, Vladimir; Blasberg, Ronald

    2007-01-01

    The clinical application of positron-emission-tomography-based reporter gene imaging will expand over the next several years. The translation of reporter gene imaging technology into clinical applications is the focus of this review, with emphasis on the development and use of human reporter genes. Human reporter genes will play an increasingly more important role in this development, and it is likely that one or more reporter systems (human gene and complimentary radiopharmaceutical) will take leading roles. Three classes of human reporter genes are discussed and compared: receptors, transporters and enzymes. Examples of highly expressed cell membrane receptors include specific membrane somatostatin receptors (hSSTrs). The transporter group includes the sodium iodide symporter (hNIS) and the norepinephrine transporter (hNET). The endogenous enzyme classification includes human mitochondrial thymidine kinase 2 (hTK2). In addition, we also discuss the nonhuman dopamine 2 receptor and two viral reporter genes, the wild-type herpes simplex virus 1 thymidine kinase (HSV1-tk) gene and the HSV1-tk mutant (HSV1-sr39tk). Initial applications of reporter gene imaging in patients will be developed within two different clinical disciplines: (a) gene therapy and (b) adoptive cell-based therapies. These studies will benefit from the availability of efficient human reporter systems that can provide critical monitoring information for adenoviral-based, retroviral-based and lenteviral-based gene therapies, oncolytic bacterial and viral therapies, and adoptive cell-based therapies. Translational applications of noninvasive in vivo reporter gene imaging are likely to include: (a) quantitative monitoring of gene therapy vectors for targeting and transduction efficacy in clinical protocols by imaging the location, extent and duration of transgene expression; (b) monitoring of cell trafficking, targeting, replication and activation in adoptive T-cell and stem/progenitor cell therapies

  7. Determinants of human adipose tissue gene expression

    DEFF Research Database (Denmark)

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José

    2012-01-01

    weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong...... interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index...... on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently...

  8. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

    Directory of Open Access Journals (Sweden)

    David G Ashbrook

    2015-07-01

    Full Text Available Bipolar disorder (BD is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium’s bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis.We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1 and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG and TNR influence intercellular signaling in the striatum.

  9. Localization of the human fibromodulin gene (FMOD) to chromosome 1q32 and completion of the cDNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    Sztrolovics, R.; Grover, J.; Roughley, P.J. [McGill Univ., Montreal (Canada)] [and others

    1994-10-01

    This report describes the cloning of the 3{prime}-untranslated region of the human fibromodulin cDNA and its use to map the gene. For somatic cell hybrids, the generation of the PCR product was concordant with the presence of chromosome 1 and discordant with the presence of all other chromosomes, confirming that the fibromodulin gene is located within region q32 of chromosome 1. The physical mapping of genes is a critical step in the process of identifying which genes may be responsible for various inherited disorders. Specifically, the mapping of the fibromodulin gene now provides the information necessary to evaluate its potential role in genetic disorders of connective tissues. The analysis of previously reported diseases mapped to chromosome 1 reveals two genes located in the proximity of the fibromodulin locus. These are Usher syndrome type II, a recessive disorder characterized by hearing loss and retinitis pigmentosa, and Van der Woude syndrome, a dominant condition associated with abnormalities such as cleft lip and palate and hyperdontia. The genes for both of these disorders have been projected to be localized to 1q32 of a physical map that integrates available genetic linkage and physical data. However, it seems improbable that either of these disorders, exhibiting restricted tissue involvement, could be linked to the fibromodulin gene, given the wide tissue distribution of the encoded proteoglycan, although it remains possible that the relative importance of the quantity and function of the proteoglycan may avry between tissues. 11 refs., 1 fig.

  10. A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification

    Directory of Open Access Journals (Sweden)

    Daniel Fulop

    2016-10-01

    Full Text Available Quantitative Trait Loci (QTL mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum and its more distant interfertile relatives typically follow a near isogenic line (NIL design, such as the S. pennellii Introgression Line (IL population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii. This so-called Backcrossed Inbred Line (BIL population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping.

  11. A map of recent positive selection in the human genome.

    Directory of Open Access Journals (Sweden)

    Benjamin F Voight

    2006-03-01

    Full Text Available The identification of signals of very recent positive selection provides information about the adaptation of modern humans to local conditions. We report here on a genome-wide scan for signals of very recent positive selection in favor of variants that have not yet reached fixation. We describe a new analytical method for scanning single nucleotide polymorphism (SNP data for signals of recent selection, and apply this to data from the International HapMap Project. In all three continental groups we find widespread signals of recent positive selection. Most signals are region-specific, though a significant excess are shared across groups. Contrary to some earlier low resolution studies that suggested a paucity of recent selection in sub-Saharan Africans, we find that by some measures our strongest signals of selection are from the Yoruba population. Finally, since these signals indicate the existence of genetic variants that have substantially different fitnesses, they must indicate loci that are the source of significant phenotypic variation. Though the relevant phenotypes are generally not known, such loci should be of particular interest in mapping studies of complex traits. For this purpose we have developed a set of SNPs that can be used to tag the strongest approximately 250 signals of recent selection in each population.

  12. Chromosomal locations of three human nuclear genes (RPSM12, TUFM, and AFG3L1) specifying putative components of the mitochondrial gene expression apparatus.

    Science.gov (United States)

    Shah, Z H; Migliosi, V; Miller, S C; Wang, A; Friedman, T B; Jacobs, H T

    1998-03-15

    We have mapped the chromosomal locations of three human nuclear genes for putative components of the apparatus of mitochondrial gene expression, using a combination of in situ hybridization and interspecies hybrid mapping. The genes RPMS12 (mitoribosomal protein S12, a conserved protein component of the mitoribosomal accuracy center), TUFM (mitochondrial elongation factor EF-Tu), and AFG3L1 (similar to the yeast genes Afg3 and Rca1 involved in the turnover of mistranslated or misfolded mtDNA-encoded polypeptides) were initially characterized by a combination of database sequence analysis, PCR, cloning, and DNA sequencing. RPMS12 maps to chromosome 19q13.1, close to the previously mapped gene for autosomal dominant hearing loss DFNA4. The TUFM gene is located on chromosome 16p11.2, with a putative pseudogene or variant (TUFML) located very close to the centromere of chromosome 17. AFG3L1 is located on chromosome 16q24, very close to the telomere. By virtue of their inferred functions in mitochondria, these genes should be regarded as candidates of disorders sharing features with mitochondrial disease syndromes, such as sensorineural deafness, diabetes, and retinopathy.

  13. Targeting the human lysozyme gene on bovine αs1- casein gene ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... Targeting an exogenous gene into a favorable gene locus and for expression under endogenous regulators is ... case, the expression of human lysozyme could be regulated by the endogenous cis-element of αs1- casein gene in .... Mouse mammary epithelial C127 cells (Cell Bank, Chinese. Academy of ...

  14. Human gene therapy: novel approaches to improve the current gene delivery systems.

    Science.gov (United States)

    Cucchiarini, Magali

    2016-06-01

    Even though gene therapy made its way through the clinics to treat a number of human pathologies since the early years of experimental research and despite the recent approval of the first gene-based product (Glybera) in Europe, the safe and effective use of gene transfer vectors remains a challenge in human gene therapy due to the existence of barriers in the host organism. While work is under active investigation to improve the gene transfer systems themselves, the use of controlled release approaches may offer alternative, convenient tools of vector delivery to achieve a performant gene transfer in vivo while overcoming the various physiological barriers that preclude its wide use in patients. This article provides an overview of the most significant contributions showing how the principles of controlled release strategies may be adapted for human gene therapy.

  15. A high-resolution map of the three-dimensional chromatin interactome in human cells.

    Science.gov (United States)

    Jin, Fulai; Li, Yan; Dixon, Jesse R; Selvaraj, Siddarth; Ye, Zhen; Lee, Ah Young; Yen, Chia-An; Schmitt, Anthony D; Espinoza, Celso A; Ren, Bing

    2013-11-14

    A large number of cis-regulatory sequences have been annotated in the human genome, but defining their target genes remains a challenge. One strategy is to identify the long-range looping interactions at these elements with the use of chromosome conformation capture (3C)-based techniques. However, previous studies lack either the resolution or coverage to permit a whole-genome, unbiased view of chromatin interactions. Here we report a comprehensive chromatin interaction map generated in human fibroblasts using a genome-wide 3C analysis method (Hi-C). We determined over one million long-range chromatin interactions at 5-10-kb resolution, and uncovered general principles of chromatin organization at different types of genomic features. We also characterized the dynamics of promoter-enhancer contacts after TNF-α signalling in these cells. Unexpectedly, we found that TNF-α-responsive enhancers are already in contact with their target promoters before signalling. Such pre-existing chromatin looping, which also exists in other cell types with different extracellular signalling, is a strong predictor of gene induction. Our observations suggest that the three-dimensional chromatin landscape, once established in a particular cell type, is relatively stable and could influence the selection or activation of target genes by a ubiquitous transcription activator in a cell-specific manner.

  16. Mapping determinants of gene expression plasticity by genetical genomics in C. elegans.

    Directory of Open Access Journals (Sweden)

    Yang Li

    2006-12-01

    Full Text Available Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic response of gene expression also shows heritable difference has not yet been studied. Here we show that differential expression induced by temperatures of 16 degrees C and 24 degrees C has a strong genetic component in Caenorhabditis elegans recombinant inbred strains derived from a cross between strains CB4856 (Hawaii and N2 (Bristol. No less than 59% of 308 trans-acting genes showed a significant eQTL-by-environment interaction, here termed plasticity quantitative trait loci. In contrast, only 8% of an estimated 188 cis-acting genes showed such interaction. This indicates that heritable differences in plastic responses of gene expression are largely regulated in trans. This regulation is spread over many different regulators. However, for one group of trans-genes we found prominent evidence for a common master regulator: a transband of 66 coregulated genes appeared at 24 degrees C. Our results suggest widespread genetic variation of differential expression responses to environmental impacts and demonstrate the potential of genetical genomics for mapping the molecular determinants of phenotypic plasticity.

  17. Mapping of single-copy genes by TSA-FISH in the codling moth, Cydia pomonella.

    Science.gov (United States)

    Carabajal Paladino, Leonela Z; Nguyen, Petr; Síchová, Jindra; Marec, František

    2014-01-01

    We work on the development of transgenic sexing strains in the codling moth, Cydia pomonella (Tortricidae), which would enable to produce male-only progeny for the population control of this pest using sterile insect technique (SIT). To facilitate this research, we have developed a number of cytogenetic and molecular tools, including a physical map of the codling moth Z chromosome using BAC-FISH (fluorescence in situ hybridization with bacterial artificial chromosome probes). However, chromosomal localization of unique, single-copy sequences such as a transgene cassette by conventional FISH remains challenging. In this study, we adapted a FISH protocol with tyramide signal amplification (TSA-FISH) for detection of single-copy genes in Lepidoptera. We tested the protocol with probes prepared from partial sequences of Z-linked genes in the codling moth. Using a modified TSA-FISH protocol we successfully mapped a partial sequence of the Acetylcholinesterase 1 (Ace-1) gene to the Z chromosome and confirmed thus its Z-linkage. A subsequent combination of BAC-FISH with BAC probes containing anticipated neighbouring Z-linked genes and TSA-FISH with the Ace-1 probe allowed the integration of Ace-1 in the physical map of the codling moth Z chromosome. We also developed a two-colour TSA-FISH protocol which enabled us simultaneous localization of two Z-linked genes, Ace-1 and Notch, to the expected regions of the Z chromosome. We showed that TSA-FISH represents a reliable technique for physical mapping of genes on chromosomes of moths and butterflies. Our results suggest that this technique can be combined with BAC-FISH and in the future used for physical localization of transgene cassettes on chromosomes of transgenic lines in the codling moth or other lepidopteran species. Furthermore, the developed protocol for two-colour TSA-FISH might become a powerful tool for synteny mapping in non-model organisms.

  18. Different level of population differentiation among human genes

    Directory of Open Access Journals (Sweden)

    Zhang Ya-Ping

    2011-01-01

    Full Text Available Abstract Background During the colonization of the world, after dispersal out of African, modern humans encountered changeable environments and substantial phenotypic variations that involve diverse behaviors, lifestyles and cultures, were generated among the different modern human populations. Results Here, we study the level of population differentiation among different populations of human genes. Intriguingly, genes involved in osteoblast development were identified as being enriched with higher FST SNPs, a result consistent with the proposed role of the skeletal system in accounting for variation among human populations. Genes involved in the development of hair follicles, where hair is produced, were also found to have higher levels of population differentiation, consistent with hair morphology being a distinctive trait among human populations. Other genes that showed higher levels of population differentiation include those involved in pigmentation, spermatid, nervous system and organ development, and some metabolic pathways, but few involved with the immune system. Disease-related genes demonstrate excessive SNPs with lower levels of population differentiation, probably due to purifying selection. Surprisingly, we find that Mendelian-disease genes appear to have a significant excessive of SNPs with high levels of population differentiation, possibly because the incidence and susceptibility of these diseases show differences among populations. As expected, microRNA regulated genes show lower levels of population differentiation due to purifying selection. Conclusion Our analysis demonstrates different level of population differentiation among human populations for different gene groups.

  19. Different level of population differentiation among human genes.

    Science.gov (United States)

    Wu, Dong-Dong; Zhang, Ya-Ping

    2011-01-14

    During the colonization of the world, after dispersal out of African, modern humans encountered changeable environments and substantial phenotypic variations that involve diverse behaviors, lifestyles and cultures, were generated among the different modern human populations. Here, we study the level of population differentiation among different populations of human genes. Intriguingly, genes involved in osteoblast development were identified as being enriched with higher FST SNPs, a result consistent with the proposed role of the skeletal system in accounting for variation among human populations. Genes involved in the development of hair follicles, where hair is produced, were also found to have higher levels of population differentiation, consistent with hair morphology being a distinctive trait among human populations. Other genes that showed higher levels of population differentiation include those involved in pigmentation, spermatid, nervous system and organ development, and some metabolic pathways, but few involved with the immune system. Disease-related genes demonstrate excessive SNPs with lower levels of population differentiation, probably due to purifying selection. Surprisingly, we find that Mendelian-disease genes appear to have a significant excessive of SNPs with high levels of population differentiation, possibly because the incidence and susceptibility of these diseases show differences among populations. As expected, microRNA regulated genes show lower levels of population differentiation due to purifying selection. Our analysis demonstrates different level of population differentiation among human populations for different gene groups.

  20. Molecular mapping and candidate gene analysis for resistance to powdery mildew in Cucumis sativus stem.

    Science.gov (United States)

    Liu, P N; Miao, H; Lu, H W; Cui, J Y; Tian, G L; Wehner, T C; Gu, X F; Zhang, S P

    2017-08-31

    Powdery mildew (PM) of cucumber (Cucumis sativus), caused by Podosphaera xanthii, is a major foliar disease worldwide and resistance is one of the main objectives in cucumber breeding programs. The resistance to PM in cucumber stem is important to the resistance for the whole plant. In this study, genetic analysis and gene mapping were implemented with cucumber inbred lines NCG-122 (with resistance to PM in the stem) and NCG-121 (with susceptibility in the stem). Genetic analysis showed that resistance to PM in the stem of NCG-122 was qualitative and controlled by a single-recessive nuclear gene (pm-s). Susceptibility was dominant to resistance. In the initial genetic mapping of the pm-s gene, 10 SSR markers were discovered to be linked to pm-s, which was mapped to chromosome 5 (Chr.5) of cucumber. The pm-s gene's closest flanking markers were SSR20486 and SSR06184/SSR13237 with genetic distances of 0.9 and 1.8 cM, respectively. One hundred and fifty-seven pairs of new SSR primers were exploited by the sequence information in the initial mapping region of pm-s. The analysis on the F 2 mapping population using the new molecular markers showed that 17 SSR markers were confirmed to be linked to the pm-s gene. The two closest flanking markers, pmSSR27and pmSSR17, were 0.1 and 0.7 cM from pm-s, respectively, confirming the location of this gene on Chr.5. The physical length of the genomic region containing pm-s was 135.7 kb harboring 21 predicted genes. Among these genes, the gene Csa5G623470 annotated as encoding Mlo-related protein was defined as the most probable candidate gene for the pm-s. The results of this study will provide a basis for marker-assisted selection, and make the benefit for the cloning of the resistance gene.

  1. Fine mapping of the genic male-sterile ms 1 gene in Capsicum annuum L.

    Science.gov (United States)

    Jeong, Kyumi; Choi, Doil; Lee, Jundae

    2018-01-01

    The genomic region cosegregating with the genic male-sterile ms 1 gene of Capsicum annuum L. was delimited to a region of 869.9 kb on chromosome 5 through fine mapping analysis. A strong candidate gene, CA05g06780, a homolog of the Arabidopsis MALE STERILITY 1 gene that controls pollen development, was identified in this region. Genic male sterility caused by the ms 1 gene has been used for the economically efficient production of massive hybrid seeds in paprika (Capsicum annuum L.), a colored bell-type sweet pepper. Previously, a CAPS marker, PmsM1-CAPS, located about 2-3 cM from the ms 1 locus, was reported. In this study, we constructed a fine map near the ms 1 locus using high-resolution melting (HRM) markers in an F 2 population consisting of 1118 individual plants, which segregated into 867 male-fertile and 251 male-sterile plants. A total of 12 HRM markers linked to the ms 1 locus were developed from 53 primer sets targeting intraspecific SNPs derived by comparing genome-wide sequences obtained by next-generation resequencing analysis. Using this approach, we narrowed down the region cosegregating with the ms 1 gene to 869.9 kb of sequence. Gene prediction analysis revealed 11 open reading frames in this region. A strong candidate gene, CA05g06780, was identified; this gene is a homolog of the Arabidopsis MALE STERILITY 1 (MS1) gene, which encodes a PHD-type transcription factor that regulates pollen and tapetum development. Sequence comparison analysis suggested that the CA05g06780 gene is the strongest candidate for the ms 1 gene of paprika. To summarize, we developed a cosegregated marker, 32187928-HRM, for marker-assisted selection and identified a strong candidate for the ms 1 gene.

  2. Cloning and sequencing of the gene for human β-casein

    International Nuclear Information System (INIS)

    Loennerdal, B.; Bergstroem, S.; Andersson, Y.; Hialmarsson, K.; Sundgyist, A.; Hernell, O.

    1990-01-01

    Human β-casein is a major protein in human milk. This protein is part of the casein micelle and has been suggested to have several physiological functions in the newborn. Since there is limited information on βcasein and the factors that affect its concentration in human milk, the authors have isolated and sequenced the gene for this protein. A human mammary gland cDNA library (Clontech) in gt 11 was screened by plaque hy-hybridization using a 42-mer synthetic 32 p-labelled oligo-nucleotide. Positive clones were identified and isolated, DNA was prepared and the gene isolated by cleavage with EcoR1. Following subcloning (PUC18), restriction mapping and Southern blotting, DNA for sequencing was prepared. The gene was sequenced by the dideoxy method. Human β-casein has 212 amino acids and the amino acid sequence deducted from the nucleotide sequence is to 91% identical to the published sequence for human β-casein show a high degree of conservation at the leader peptide and the highly phosphorylated sequences, but also deletions and divergence at several positions. These results provide insight into the structure of the human β-casein gene and will facilitate studies on factors affecting its expression

  3. Functional study and regional mapping of 44 hormono-regulated genes isolated from a porcine granulosa cell library

    Directory of Open Access Journals (Sweden)

    Hatey François

    2001-01-01

    Full Text Available Abstract cDNA clones from a pig granulosa cell cDNA library were isolated by differential hybridisation for follicle stimulating hormone (FSH regulation in granulosa cells in a previous study. The clones that did not match any known sequence were studied for their expression in granulosa cells (treated or not by FSH and in fresh isolated ovarian follicles mainly by comparative RT-PCR analysis. These results give functional data on genes that may be implicated in follicular growing. These ESTs have been localised on the porcine genome, using a somatic cell hybrid panel, providing new type I markers on the porcine map and information on the comparative map between humans and pigs.

  4. De novo origin of human protein-coding genes.

    Directory of Open Access Journals (Sweden)

    Dong-Dong Wu

    2011-11-01

    Full Text Available The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA-seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes.

  5. Structure and chromosomal localization of the human renal kallikrein gene

    International Nuclear Information System (INIS)

    Evans, B.A.; Yun, Z.X.; Close, J.A.

    1988-01-01

    Glandular kallikreins are a family of proteases encoded by a variable number of genes in different mammalian species. In all species examined, however, one particular kallikrein is functionally conserved in its capacity to release the vasoactive peptide, Lys-bradykinin, from low molecular weight kininogen. This kallikrein is found in the kidney, pancreas, and salivary gland, showing a unique pattern of tissue-specific expression relative to other members of the family. The authors have isolated a genomic clone carrying the human renal kallikrein gene and compared the nucleotide sequence of its promoter region with those of the mouse renal kallikrein gene and another mouse kallikrein gene expressed in a distinct cell type. They find four sequence elements conserved between renal kallikrein genes from the two species. They have also shown that the human gene is localized to 19q13, a position analogous to that of the kallikrein gene family on mouse chromosome 7

  6. De Novo Origin of Human Protein-Coding Genes

    Science.gov (United States)

    Wu, Dong-Dong; Irwin, David M.; Zhang, Ya-Ping

    2011-01-01

    The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA–seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes. PMID:22102831

  7. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    DEFF Research Database (Denmark)

    Huebner, K; Kastury, K; Druck, T

    1994-01-01

    "adapter" proteins, which are involved in transducing signals from receptor tyrosine kinases to downstream signal recipients such as ras, because adaptor protein genes could also, logically, serve as targets of mutation, rearrangement, or other aberration in disease. Therefore, DNAs from panels of rodent-human......Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding...... hybrids carrying defined complements of human chromosomes were assayed for the presence of the cognate genes for NCK, SHC, and GRB2, three SH2 or SH2/SH3 (Src homology 2 and 3) domain-containing adapter proteins. Additionally, NCK and SHC genes were more narrowly localized by chromosomal in situ...

  8. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  9. Candidate gene database and transcript map for peach, a model species for fruit trees.

    Science.gov (United States)

    Horn, Renate; Lecouls, Anne-Claire; Callahan, Ann; Dandekar, Abhaya; Garay, Lilibeth; McCord, Per; Howad, Werner; Chan, Helen; Verde, Ignazio; Main, Doreen; Jung, Sook; Georgi, Laura; Forrest, Sam; Mook, Jennifer; Zhebentyayeva, Tatyana; Yu, Yeisoo; Kim, Hye Ran; Jesudurai, Christopher; Sosinski, Bryon; Arús, Pere; Baird, Vance; Parfitt, Dan; Reighard, Gregory; Scorza, Ralph; Tomkins, Jeffrey; Wing, Rod; Abbott, Albert Glenn

    2005-05-01

    Peach (Prunus persica) is a model species for the Rosaceae, which includes a number of economically important fruit tree species. To develop an extensive Prunus expressed sequence tag (EST) database for identifying and cloning the genes important to fruit and tree development, we generated 9,984 high-quality ESTs from a peach cDNA library of developing fruit mesocarp. After assembly and annotation, a putative peach unigene set consisting of 3,842 ESTs was defined. Gene ontology (GO) classification was assigned based on the annotation of the single "best hit" match against the Swiss-Prot database. No significant homology could be found in the GenBank nr databases for 24.3% of the sequences. Using core markers from the general Prunus genetic map, we anchored bacterial artificial chromosome (BAC) clones on the genetic map, thereby providing a framework for the construction of a physical and transcript map. A transcript map was developed by hybridizing 1,236 ESTs from the putative peach unigene set and an additional 68 peach cDNA clones against the peach BAC library. Hybridizing ESTs to genetically anchored BACs immediately localized 11.2% of the ESTs on the genetic map. ESTs showed a clustering of expressed genes in defined regions of the linkage groups. [The data were built into a regularly updated Genome Database for Rosaceae (GDR), available at (http://www.genome.clemson.edu/gdr/).].

  10. Physical Mapping Technologies for the Identification and Characterization of Mutated Genes to Crop Quality

    International Nuclear Information System (INIS)

    2011-09-01

    The improvement of quality traits in food and industrial crops is an important breeding objective for both developed and developing countries in order to add value to the crop and thereby increasing farmers' income. It has been well established that the application of mutagens can be a very important approach for manipulating many crop characteristics including quality. While mutation induction using nuclear techniques such as gamma irradiation is a power tool in generating new genotypes with favourable alleles for improving crop quality in plant breeding, a more thorough understanding of gene expression, gene interactions, and physical location will improve ability to manipulate and control genes, and directly lead to crop improvement. Physical mapping technologies, molecular markers and molecular cytogenetic techniques are tools available with the potential to enhance the ability to tag genes and gene complexes to facilitate the selection of desirable genotypes in breeding programmes, including those based on mutation breeding. This Coordinated Research Project (CRP) on 'Physical Mapping Technologies for the Identification and Characterization of Mutated Genes Contributing to Crop Quality' was conducted under the overall IAEA project objective of 'Identification, Characterization and Transfer of Mutated Genes'. The specific objectives of the CRP were to assist Member States in accelerating crop breeding programmes through the application of physical mapping and complementary genomic approaches, and the characterization and utilization of induced mutants for improvement of crop quality. The IAEA-TECDOC describes the success obtained in the application of molecular cytology, molecular markers, physical mapping and mutation technologies since the inception of the CRP in 2003. The CRP also resulted in two book chapters, 35 peer reviewed papers, 25 conference proceedings, one PhD thesis, and 22 published abstracts. In addition, thirteen sequences were submitted to the

  11. Mapping of genes for flower-related traits and QTLs for flowering ...

    Indian Academy of Sciences (India)

    Mapping of genes for flower-related traits and QTLs for flowering time in an interspecific population of Gossypium hirsutum × G. darwinii. Shuwen Zhang, Qianqian Lan, Xiang Gao, Biao Yang, Caiping Cai, Tianzhen Zhang and Baoliang Zhou. J. Genet. 95, 197–201. Table 1. Loci composition and recombination distances of ...

  12. Molecular mapping of MS-cd 1 gene in Chinese kale | Zhang ...

    African Journals Online (AJOL)

    A dominant male sterility (DGMS) line 79-399-3 was developed from spontaneous mutation in Brassica oleracea var. capitata and has been widely used in the production of hybrid cultivar in China. In this line, male sterility is controlled by a dominant gene Ms-cd1. In the present study, primary mapping of Ms-cd1 was ...

  13. AFLP/SSR mapping of resistance genes to Alectra vogelii in cowpea ...

    African Journals Online (AJOL)

    To find and map the resistance gene to A. vogelii in cowpea, a F2 population from a cross involving a resistant parent IT81D-994 and a susceptible TVX3236 was screened. Amplified fragment length polymorphism (AFLP) in combination with Single Sequence Repeat (SSR) analysis was used to identify markers that may be ...

  14. Exploring the molecular mechanisms of Traditional Chinese Medicine components using gene expression signatures and connectivity map.

    Science.gov (United States)

    Yoo, Minjae; Shin, Jimin; Kim, Hyunmin; Kim, Jihye; Kang, Jaewoo; Tan, Aik Choon

    2018-04-04

    Traditional Chinese Medicine (TCM) has been practiced over thousands of years in China and other Asian countries for treating various symptoms and diseases. However, the underlying molecular mechanisms of TCM are poorly understood, partly due to the "multi-component, multi-target" nature of TCM. To uncover the molecular mechanisms of TCM, we perform comprehensive gene expression analysis using connectivity map. We interrogated gene expression signatures obtained 102 TCM components using the next generation Connectivity Map (CMap) resource. We performed systematic data mining and analysis on the mechanism of action (MoA) of these TCM components based on the CMap results. We clustered the 102 TCM components into four groups based on their MoAs using next generation CMap resource. We performed gene set enrichment analysis on these components to provide additional supports for explaining these molecular mechanisms. We also provided literature evidence to validate the MoAs identified through this bioinformatics analysis. Finally, we developed the Traditional Chinese Medicine Drug Repurposing Hub (TCM Hub) - a connectivity map resource to facilitate the elucidation of TCM MoA for drug repurposing research. TCMHub is freely available in http://tanlab.ucdenver.edu/TCMHub. Molecular mechanisms of TCM could be uncovered by using gene expression signatures and connectivity map. Through this analysis, we identified many of the TCM components possess diverse MoAs, this may explain the applications of TCM in treating various symptoms and diseases. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Mapping Interactive Cancer Susceptibility Genes in Prostate Cancer

    Science.gov (United States)

    2007-04-01

    interval within intron 5 of FHIT. Since non- exonic causative mutations are difficult to identify, we employed an approach looking for signatures of...natural selection in this region within human populations to better understand the potential nature of any disease mutation(s). Since non- exonic ...0.523 0.126 CYP3A4 7 98.999-99.026 D7S647 199496 0.79 98.913 195 0.510 0.300 EZH2 7 147.961-147.982 D7S688 199984 0.84 147.981 49 0.478 0.687 PTEN 10

  16. Mapping genes governing flower architecture and pollen development in a double mutant population of carrot

    Directory of Open Access Journals (Sweden)

    Holger eBudahn

    2014-10-01

    Full Text Available A linkage map of carrot (Daucus carota L. was developed in order to study reproductive traits. The F2 mapping population derived from an initial cross between a yellow leaf (yel chlorophyll mutant and a compressed lamina (cola mutant with unique flower defects of the sporophytic parts of male and female organs. The genetic map has a total length of 781 cM and included 285 loci. The length of the nine linkage groups ranged between 65 cM and 145 cM. All linkage groups have been anchored to the reference map. The objective of this study was the generation of a well-saturated linkage map of D. carota. Mapping of the cola-locus associated with flower development and fertility was successfully demonstrated. Two MADS-box genes (DcMADS3, DcMADS5 with prominent roles in flowering and reproduction as well as three additional genes (DcAOX2a, DcAOX2b, DcCHS2 with further importance for male reproduction were assigned to different loci that did not co-segregate with the cola-locus.

  17. Analysis of Human Fibroadenomas Using Three-Dimensional Impedance Maps

    Science.gov (United States)

    Dapore, Alexander J.; King, Michael R.; Harter, Josephine; Sarwate, Sandhya; Oelze, Michael L.; Zagzebski, James A.; Do, Minh N.; Hall, Timothy J.

    2012-01-01

    Three-dimensional impedance maps (3DZMs) are virtual volumes of acoustic impedance values constructed from histology to represent tissue microstructure acoustically. From the 3DZM, the ultrasonic backscattered power spectrum can be predicted and model based scatterer properties, such as effective scatterer diameter (ESD), can be estimated. Additionally, the 3DZM can be exploited to visualize and identify possible scattering sites, which may aid in the development of more effective scattering models to better represent the ultrasonic interaction with underlying tissue microstructure. In this study, 3DZMs were created from a set of human fibroadenoma samples. ESD estimates were made assuming a fluid-filled sphere form factor model from 3DZMs of volume 300 × 300 × 300 µm. For a collection of 33 independent human fibroadenoma tissue samples, the ESD was estimated to be 111 ± 40.7 µm. The 3DZMs were then investigated visually to identify possible scattering sources which conformed to the estimated model scatterer dimensions. This estimation technique allowed a better understanding of the spatial distribution and variability of the estimates throughout the volume. PMID:21278015

  18. A second generation human haplotype map of over 3.1 million SNPs.

    Science.gov (United States)

    Frazer, Kelly A; Ballinger, Dennis G; Cox, David R; Hinds, David A; Stuve, Laura L; Gibbs, Richard A; Belmont, John W; Boudreau, Andrew; Hardenbol, Paul; Leal, Suzanne M; Pasternak, Shiran; Wheeler, David A; Willis, Thomas D; Yu, Fuli; Yang, Huanming; Zeng, Changqing; Gao, Yang; Hu, Haoran; Hu, Weitao; Li, Chaohua; Lin, Wei; Liu, Siqi; Pan, Hao; Tang, Xiaoli; Wang, Jian; Wang, Wei; Yu, Jun; Zhang, Bo; Zhang, Qingrun; Zhao, Hongbin; Zhao, Hui; Zhou, Jun; Gabriel, Stacey B; Barry, Rachel; Blumenstiel, Brendan; Camargo, Amy; Defelice, Matthew; Faggart, Maura; Goyette, Mary; Gupta, Supriya; Moore, Jamie; Nguyen, Huy; Onofrio, Robert C; Parkin, Melissa; Roy, Jessica; Stahl, Erich; Winchester, Ellen; Ziaugra, Liuda; Altshuler, David; Shen, Yan; Yao, Zhijian; Huang, Wei; Chu, Xun; He, Yungang; Jin, Li; Liu, Yangfan; Shen, Yayun; Sun, Weiwei; Wang, Haifeng; Wang, Yi; Wang, Ying; Xiong, Xiaoyan; Xu, Liang; Waye, Mary M Y; Tsui, Stephen K W; Xue, Hong; Wong, J Tze-Fei; Galver, Luana M; Fan, Jian-Bing; Gunderson, Kevin; Murray, Sarah S; Oliphant, Arnold R; Chee, Mark S; Montpetit, Alexandre; Chagnon, Fanny; Ferretti, Vincent; Leboeuf, Martin; Olivier, Jean-François; Phillips, Michael S; Roumy, Stéphanie; Sallée, Clémentine; Verner, Andrei; Hudson, Thomas J; Kwok, Pui-Yan; Cai, Dongmei; Koboldt, Daniel C; Miller, Raymond D; Pawlikowska, Ludmila; Taillon-Miller, Patricia; Xiao, Ming; Tsui, Lap-Chee; Mak, William; Song, You Qiang; Tam, Paul K H; Nakamura, Yusuke; Kawaguchi, Takahisa; Kitamoto, Takuya; Morizono, Takashi; Nagashima, Atsushi; Ohnishi, Yozo; Sekine, Akihiro; Tanaka, Toshihiro; Tsunoda, Tatsuhiko; Deloukas, Panos; Bird, Christine P; Delgado, Marcos; Dermitzakis, Emmanouil T; Gwilliam, Rhian; Hunt, Sarah; Morrison, Jonathan; Powell, Don; Stranger, Barbara E; Whittaker, Pamela; Bentley, David R; Daly, Mark J; de Bakker, Paul I W; Barrett, Jeff; Chretien, Yves R; Maller, Julian; McCarroll, Steve; Patterson, Nick; Pe'er, Itsik; Price, Alkes; Purcell, Shaun; Richter, Daniel J; Sabeti, Pardis; Saxena, Richa; Schaffner, Stephen F; Sham, Pak C; Varilly, Patrick; Altshuler, David; Stein, Lincoln D; Krishnan, Lalitha; Smith, Albert Vernon; Tello-Ruiz, Marcela K; Thorisson, Gudmundur A; Chakravarti, Aravinda; Chen, Peter E; Cutler, David J; Kashuk, Carl S; Lin, Shin; Abecasis, Gonçalo R; Guan, Weihua; Li, Yun; Munro, Heather M; Qin, Zhaohui Steve; Thomas, Daryl J; McVean, Gilean; Auton, Adam; Bottolo, Leonardo; Cardin, Niall; Eyheramendy, Susana; Freeman, Colin; Marchini, Jonathan; Myers, Simon; Spencer, Chris; Stephens, Matthew; Donnelly, Peter; Cardon, Lon R; Clarke, Geraldine; Evans, David M; Morris, Andrew P; Weir, Bruce S; Tsunoda, Tatsuhiko; Mullikin, James C; Sherry, Stephen T; Feolo, Michael; Skol, Andrew; Zhang, Houcan; Zeng, Changqing; Zhao, Hui; Matsuda, Ichiro; Fukushima, Yoshimitsu; Macer, Darryl R; Suda, Eiko; Rotimi, Charles N; Adebamowo, Clement A; Ajayi, Ike; Aniagwu, Toyin; Marshall, Patricia A; Nkwodimmah, Chibuzor; Royal, Charmaine D M; Leppert, Mark F; Dixon, Missy; Peiffer, Andy; Qiu, Renzong; Kent, Alastair; Kato, Kazuto; Niikawa, Norio; Adewole, Isaac F; Knoppers, Bartha M; Foster, Morris W; Clayton, Ellen Wright; Watkin, Jessica; Gibbs, Richard A; Belmont, John W; Muzny, Donna; Nazareth, Lynne; Sodergren, Erica; Weinstock, George M; Wheeler, David A; Yakub, Imtaz; Gabriel, Stacey B; Onofrio, Robert C; Richter, Daniel J; Ziaugra, Liuda; Birren, Bruce W; Daly, Mark J; Altshuler, David; Wilson, Richard K; Fulton, Lucinda L; Rogers, Jane; Burton, John; Carter, Nigel P; Clee, Christopher M; Griffiths, Mark; Jones, Matthew C; McLay, Kirsten; Plumb, Robert W; Ross, Mark T; Sims, Sarah K; Willey, David L; Chen, Zhu; Han, Hua; Kang, Le; Godbout, Martin; Wallenburg, John C; L'Archevêque, Paul; Bellemare, Guy; Saeki, Koji; Wang, Hongguang; An, Daochang; Fu, Hongbo; Li, Qing; Wang, Zhen; Wang, Renwu; Holden, Arthur L; Brooks, Lisa D; McEwen, Jean E; Guyer, Mark S; Wang, Vivian Ota; Peterson, Jane L; Shi, Michael; Spiegel, Jack; Sung, Lawrence M; Zacharia, Lynn F; Collins, Francis S; Kennedy, Karen; Jamieson, Ruth; Stewart, John

    2007-10-18

    We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r2 of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r2 of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.

  19. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  20. The mechanism of gene targeting in human somatic cells.

    Directory of Open Access Journals (Sweden)

    Yinan Kan

    2014-04-01

    Full Text Available Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB repair known as homologous recombination (HR. The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.

  1. Radioactive probes for human gene localisation by in situ hybridisation

    International Nuclear Information System (INIS)

    Fennell, S.J.

    1980-07-01

    Radioactive probes of high specific activity have been used for human gene localisation on metaphase chromosome preparations. Human 5S ribosomal RNA was used as a model system, as a probe for the localisation of human 5S ribosomal genes. 125 I-labelled mouse 5S ribosomal RNA was used to study the 5S ribosomal gene content and arrangement in families with translocations on the long arm of chromosome 1 close to or containing the 5S ribosomal RNA locus, by in situ hybridisation to human metaphase chromosomes from peripheral blood cultures. This confirmed the chromosomal assignment of 5S ribosomal genes to 1q 42-43. In situ hybridisation probes were also prepared from recombinant plasmids containing Xenopus laevis oocyte 5S or 28S/18S gene sequences to give [ 3 H]-labelled cRNA and [ 3 H]-labelled nick-translated plasmid DNA. Studies on the kinetics of hybridisation of plasmid probes with and without ribosomal gene sequences questioned the role of plasmid DNA for amplification of signal during gene localisation. Gene localisation was obtained with nick-translated plasmid DNA containing the 28S/18S ribosomal DNA insert after short exposure times, but poor results were obtained using a [ 3 H]-labelled cRNA probe transcribed from the plasmid with the 5S gene insert. (author)

  2. Genetic Analysis and Molecular Mapping of a Novel Chlorophyll-Deficit Mutant Gene in Rice

    Directory of Open Access Journals (Sweden)

    Xiao-qun HUANG

    2008-03-01

    Full Text Available A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B. It showed whole green-yellow plant from the seedling stage, reduced number of tillers and longer growth duration. The contents of chlorophyll, chlorophyll a, chlorophyll b and net photosynthetic rate in leaves of the mutant obviously decreased, as well as the number of spikelets per panicle, seed setting rate and 1000-grain weight compared with its wild-type parent. Genetic analyses on F1 and F2 generations of 824ys crossed with three normal green varieties showed that the chlorophyll-deficit mutant character was controlled by a pair of recessive nuclear gene. Genetic mapping of the mutant gene was conducted by using microsatellite markers and F2 mapping population of 495R/824ys, and the mutant gene of 824ys was mapped on the short arm of rice chromosome 3. The genetic distances from the target gene to the markers RM218, RM282 and RM6959 were 25.6 cM, 5.2 cM and 21.8 cM, respectively. It was considered to be a new chlorophyll-deficit mutant gene and tentatively named as chl11(t.

  3. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    Directory of Open Access Journals (Sweden)

    Arnoldo J Müller-Molina

    Full Text Available To know the map between transcription factors (TFs and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  4. Exertional Heat Illness and Human Gene Expression

    National Research Council Canada - National Science Library

    Sonna, L.A; Sawka, M. N; Lilly, C. M

    2007-01-01

    Microarray analysis of gene expression at the level of RNA has generated new insights into the relationship between cellular responses to acute heat shock in vitro, exercise, and exertional heat illness...

  5. More than 9,000,000 unique genes in human gut bacterial community: estimating gene numbers inside a human body.

    Science.gov (United States)

    Yang, Xing; Xie, Lu; Li, Yixue; Wei, Chaochun

    2009-06-29

    Estimating the number of genes in human genome has been long an important problem in computational biology. With the new conception of considering human as a super-organism, it is also interesting to estimate the number of genes in this human super-organism. We presented our estimation of gene numbers in the human gut bacterial community, the largest microbial community inside the human super-organism. We got 552,700 unique genes from 202 complete human gut bacteria genomes. Then, a novel gene counting model was built to check the total number of genes by combining culture-independent sequence data and those complete genomes. 16S rRNAs were used to construct a three-level tree and different counting methods were introduced for the three levels: strain-to-species, species-to-genus, and genus-and-up. The model estimates that the total number of genes is about 9,000,000 after those with identity percentage of 97% or up were merged. By combining completed genomes currently available and culture-independent sequencing data, we built a model to estimate the number of genes in human gut bacterial community. The total number of genes is estimated to be about 9 million. Although this number is huge, we believe it is underestimated. This is an initial step to tackle this gene counting problem for the human super-organism. It will still be an open problem in the near future. The list of genomes used in this paper can be found in the supplementary table.

  6. Concept Mapping in the Humanities to Facilitate Reflection: Externalizing the Relationship between Public and Personal Learning

    Science.gov (United States)

    Kandiko, Camille; Hay, David; Weller, Saranne

    2013-01-01

    This article discusses how mapping techniques were used in university teaching in a humanities subject. The use of concept mapping was expanded as a pedagogical tool, with a focus on reflective learning processes. Data were collected through a longitudinal study of concept mapping in a university-level Classics course. This was used to explore how…

  7. Mapping a candidate gene (MdMYB10 for red flesh and foliage colour in apple

    Directory of Open Access Journals (Sweden)

    Allan Andrew C

    2007-07-01

    Full Text Available Abstract Background Integrating plant genomics and classical breeding is a challenge for both plant breeders and molecular biologists. Marker-assisted selection (MAS is a tool that can be used to accelerate the development of novel apple varieties such as cultivars that have fruit with anthocyanin through to the core. In addition, determining the inheritance of novel alleles, such as the one responsible for red flesh, adds to our understanding of allelic variation. Our goal was to map candidate anthocyanin biosynthetic and regulatory genes in a population segregating for the red flesh phenotypes. Results We have identified the Rni locus, a major genetic determinant of the red foliage and red colour in the core of apple fruit. In a population segregating for the red flesh and foliage phenotype we have determined the inheritance of the Rni locus and DNA polymorphisms of candidate anthocyanin biosynthetic and regulatory genes. Simple Sequence Repeats (SSRs and Single Nucleotide Polymorphisms (SNPs in the candidate genes were also located on an apple genetic map. We have shown that the MdMYB10 gene co-segregates with the Rni locus and is on Linkage Group (LG 09 of the apple genome. Conclusion We have performed candidate gene mapping in a fruit tree crop and have provided genetic evidence that red colouration in the fruit core as well as red foliage are both controlled by a single locus named Rni. We have shown that the transcription factor MdMYB10 may be the gene underlying Rni as there were no recombinants between the marker for this gene and the red phenotype in a population of 516 individuals. Associating markers derived from candidate genes with a desirable phenotypic trait has demonstrated the application of genomic tools in a breeding programme of a horticultural crop species.

  8. Single-molecule optical genome mapping of a human HapMap and a colorectal cancer cell line.

    Science.gov (United States)

    Teo, Audrey S M; Verzotto, Davide; Yao, Fei; Nagarajan, Niranjan; Hillmer, Axel M

    2015-01-01

    Next-generation sequencing (NGS) technologies have changed our understanding of the variability of the human genome. However, the identification of genome structural variations based on NGS approaches with read lengths of 35-300 bases remains a challenge. Single-molecule optical mapping technologies allow the analysis of DNA molecules of up to 2 Mb and as such are suitable for the identification of large-scale genome structural variations, and for de novo genome assemblies when combined with short-read NGS data. Here we present optical mapping data for two human genomes: the HapMap cell line GM12878 and the colorectal cancer cell line HCT116. High molecular weight DNA was obtained by embedding GM12878 and HCT116 cells, respectively, in agarose plugs, followed by DNA extraction under mild conditions. Genomic DNA was digested with KpnI and 310,000 and 296,000 DNA molecules (≥ 150 kb and 10 restriction fragments), respectively, were analyzed per cell line using the Argus optical mapping system. Maps were aligned to the human reference by OPTIMA, a new glocal alignment method. Genome coverage of 6.8× and 5.7× was obtained, respectively; 2.9× and 1.7× more than the coverage obtained with previously available software. Optical mapping allows the resolution of large-scale structural variations of the genome, and the scaffold extension of NGS-based de novo assemblies. OPTIMA is an efficient new alignment method; our optical mapping data provide a resource for genome structure analyses of the human HapMap reference cell line GM12878, and the colorectal cancer cell line HCT116.

  9. Sequence-Based Introgression Mapping Identifies Candidate White Mold Tolerance Genes in Common Bean

    Directory of Open Access Journals (Sweden)

    Sujan Mamidi

    2016-07-01

    Full Text Available White mold, caused by the necrotrophic fungus (Lib. de Bary, is a major disease of common bean ( L.. WM7.1 and WM8.3 are two quantitative trait loci (QTL with major effects on tolerance to the pathogen. Advanced backcross populations segregating individually for either of the two QTL, and a recombinant inbred (RI population segregating for both QTL were used to fine map and confirm the genetic location of the QTL. The QTL intervals were physically mapped using the reference common bean genome sequence, and the physical intervals for each QTL were further confirmed by sequence-based introgression mapping. Using whole-genome sequence data from susceptible and tolerant DNA pools, introgressed regions were identified as those with significantly higher numbers of single-nucleotide polymorphisms (SNPs relative to the whole genome. By combining the QTL and SNP data, WM7.1 was located to a 660-kb region that contained 41 gene models on the proximal end of chromosome Pv07, while the WM8.3 introgression was narrowed to a 1.36-Mb region containing 70 gene models. The most polymorphic candidate gene in the WM7.1 region encodes a BEACH-domain protein associated with apoptosis. Within the WM8.3 interval, a receptor-like protein with the potential to recognize pathogen effectors was the most polymorphic gene. The use of gene and sequence-based mapping identified two candidate genes whose putative functions are consistent with the current model of pathogenicity.

  10. Mapping of a rice thermosensitive genic male sterility gene from a TGMS mutant line

    Energy Technology Data Exchange (ETDEWEB)

    Vu Duc Quang; Nguyen Van Dong; Pham Ngoc Luong; Tran Duy Quy [Argicultural Genetics Institute, Hanoi (Viet Nam); Nguyen, Henry T. [Texas Tech Univ., Department of Plant and Soil Science, Lubbock TX (United States)

    2001-03-01

    At the Agricultural Genetics Institute (AGI), Hanoi, Vietnam, a number of thermo-sensitive genic male sterility (TGMS) homozygous rice lines have been developed by means of experimental mutagenesis followed by anther culture techniques. One of them (TGMS-1 indica mutant line) was used in this research. The critical temperature (at the period from pollen mother cell formation to the beginning of meiotic division) for TGMS-1 sterility was 24-25degC, below which the plants were fertile and above which the plants became sterile. Segregation analysis showed that the TGMS trait of the TGMS-1 mutant line was controlled by a single recessive gene. An F{sub 2} mapping population from a cross between TGMS-1 mutant line and CH1 (a fertile indica line) was developed for tagging and mapping the TGMS gene. From survey of 200 AFLP primer combinations in a bulked segregant analysis, 4 AFLP markers (E2/M5-200, E3/M16-400, E5/M12-600 and E5/M12-200) linked to TGMS-1 gene were identified and cloned. All except E2/M5-200 were found to be low-copy number sequences. The marker E5/M12-600 showed polymorphism in RFLP analysis and was closely linked to the TGMS gene at a distance of 3.3cM. This marker was subsequently mapped on chromosome 2 using doubled-haploid mapping populations derived from the crosses IR64xAzucena and CT9993xIR62666. Linkage of microsatellite marker RM27 with the TGMS gene further confirmed its location on chromosome 2. The closest marker, E5/M12-600, was sequenced so that a PCR marker can be developed for the use in marker-assisted breeding. The application of TGMS genes to the commercial two-line hybrid rice breeding system was discussed. (author)

  11. Mapping of a rice thermosensitive genic male sterility gene from a TGMS mutant line

    International Nuclear Information System (INIS)

    Vu Duc Quang; Nguyen Van Dong; Pham Ngoc Luong; Tran Duy Quy; Nguyen, Henry T.

    2001-01-01

    At the Agricultural Genetics Institute (AGI), Hanoi, Vietnam, a number of thermo-sensitive genic male sterility (TGMS) homozygous rice lines have been developed by means of experimental mutagenesis followed by anther culture techniques. One of them (TGMS-1 indica mutant line) was used in this research. The critical temperature (at the period from pollen mother cell formation to the beginning of meiotic division) for TGMS-1 sterility was 24-25degC, below which the plants were fertile and above which the plants became sterile. Segregation analysis showed that the TGMS trait of the TGMS-1 mutant line was controlled by a single recessive gene. An F 2 mapping population from a cross between TGMS-1 mutant line and CH1 (a fertile indica line) was developed for tagging and mapping the TGMS gene. From survey of 200 AFLP primer combinations in a bulked segregant analysis, 4 AFLP markers (E2/M5-200, E3/M16-400, E5/M12-600 and E5/M12-200) linked to TGMS-1 gene were identified and cloned. All except E2/M5-200 were found to be low-copy number sequences. The marker E5/M12-600 showed polymorphism in RFLP analysis and was closely linked to the TGMS gene at a distance of 3.3cM. This marker was subsequently mapped on chromosome 2 using doubled-haploid mapping populations derived from the crosses IR64xAzucena and CT9993xIR62666. Linkage of microsatellite marker RM27 with the TGMS gene further confirmed its location on chromosome 2. The closest marker, E5/M12-600, was sequenced so that a PCR marker can be developed for the use in marker-assisted breeding. The application of TGMS genes to the commercial two-line hybrid rice breeding system was discussed. (author)

  12. Production of Recombinant Adenovirus Containing Human Interlukin-4 Gene

    OpenAIRE

    Mojarrad, Majid; Abdolazimi, Yassan; Hajati, Jamshid; Modarressi, Mohammad Hossein

    2011-01-01

    Objective(s) Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a recombinant adenovirus containing human IL-4 coding sequence was made. IL-4 has several characteristics ...

  13. Contig Maps and Genomic Sequencing Identify Candidate Genes in the Usher 1C Locus

    Science.gov (United States)

    Higgins, Michael J.; Day, Colleen D.; Smilinich, Nancy J.; Ni, L.; Cooper, Paul R.; Nowak, Norma J.; Davies, Chris; de Jong, Pieter J.; Hejtmancik, Fielding; Evans, Glen A.; Smith, Richard J.H.; Shows, Thomas B.

    1998-01-01

    Usher syndrome 1C (USH1C) is a congenital condition manifesting profound hearing loss, the absence of vestibular function, and eventual retinal degeneration. The USH1C locus has been mapped genetically to a 2- to 3-cM interval in 11p14–15.1 between D11S899 and D11S861. In an effort to identify the USH1C disease gene we have isolated the region between these markers in yeast artificial chromosomes (YACs) using a combination of STS content mapping and Alu–PCR hybridization. The YAC contig is ∼3.5 Mb and has located several other loci within this interval, resulting in the order CEN-LDHA-SAA1-TPH-D11S1310-(D11S1888/KCNC1)-MYOD1-D11S902D11S921-D11S1890-TEL. Subsequent haplotyping and homozygosity analysis refined the location of the disease gene to a 400-kb interval between D11S902 and D11S1890 with all affected individuals being homozygous for the internal marker D11S921. To facilitate gene identification, the critical region has been converted into P1 artificial chromosome (PAC) clones using sequence-tagged sites (STSs) mapped to the YAC contig, Alu–PCR products generated from the YACs, and PAC end probes. A contig of >50 PAC clones has been assembled between D11S1310 and D11S1890, confirming the order of markers used in haplotyping. Three PAC clones representing nearly two-thirds of the USH1C critical region have been sequenced. PowerBLAST analysis identified six clusters of expressed sequence tags (ESTs), two known genes (BIR,SUR1) mapped previously to this region, and a previously characterized but unmapped gene NEFA (DNA binding/EF hand/acidic amino-acid-rich). GRAIL analysis identified 11 CpG islands and 73 exons of excellent quality. These data allowed the construction of a transcription map for the USH1C critical region, consisting of three known genes and six or more novel transcripts. Based on their map location, these loci represent candidate disease loci for USH1C. The NEFA gene was assessed as the USH1C locus by the sequencing of an amplified NEFA

  14. Converging evidence that sequence variations in the novel candidate gene MAP2K7 (MKK7) are functionally associated with schizophrenia.

    Science.gov (United States)

    Winchester, Catherine L; Ohzeki, Hiromitsu; Vouyiouklis, Demetrius A; Thompson, Rhiannon; Penninger, Josef M; Yamagami, Keiji; Norrie, John D; Hunter, Robert; Pratt, Judith A; Morris, Brian J

    2012-11-15

    Schizophrenia is a debilitating psychiatric disease with a strong genetic contribution, potentially linked to altered glutamatergic function in brain regions such as the prefrontal cortex (PFC). Here, we report converging evidence to support a functional candidate gene for schizophrenia. In post-mortem PFC from patients with schizophrenia, we detected decreased expression of MKK7/MAP2K7-a kinase activated by glutamatergic activity. While mice lacking one copy of the Map2k7 gene were overtly normal in a variety of behavioural tests, these mice showed a schizophrenia-like cognitive phenotype of impaired working memory. Additional support for MAP2K7 as a candidate gene came from a genetic association study. A substantial effect size (odds ratios: ~1.9) was observed for a common variant in a cohort of case and control samples collected in the Glasgow area and also in a replication cohort of samples of Northern European descent (most significant P-value: 3 × 10(-4)). While some caution is warranted until these association data are further replicated, these results are the first to implicate the candidate gene MAP2K7 in genetic risk for schizophrenia. Complete sequencing of all MAP2K7 exons did not reveal any non-synonymous mutations. However, the MAP2K7 haplotype appeared to have functional effects, in that it influenced the level of expression of MAP2K7 mRNA in human PFC. Taken together, the results imply that reduced function of the MAP2K7-c-Jun N-terminal kinase (JNK) signalling cascade may underlie some of the neurochemical changes and core symptoms in schizophrenia.

  15. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    Science.gov (United States)

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional

  16. Genetic Analysis and Mapping of TWH Gene in Rice Twisted Hull Mutant

    Directory of Open Access Journals (Sweden)

    Jin-bo LI

    2009-03-01

    Full Text Available A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.. The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that the phenotype of mutant was controlled by a single recessive gene (temporarily designated as TWH. To map the TWH gene, an F2 population was generated by crossing the twh mutant to R725, an indica rice variety with normal hulls. For bulked segregant analysis, the bulk of mutant plants was prepared by mixing equal amount of plant tissue from 10 twisted-hull plants and the bulk of normal plants was obtained by pooling equal amount tissue of 10 normal-hull plants. Two hundred and seven pairs of simple sequence repeat (SSR primers, which are distributed on 12 rice chromosomes, were used for polymorphism analysis of the parents and the two bulks. The TWH locus was initially mapped close to the SSR marker RM526 on chromosome 2. Therefore, further mapping was performed using 50 pairs of SSR primers around the marker RM526. The TWH was delimited between the SSR markers RM14128 and RM208 on the long arm of chromosome 2 at the genetic distances of 1.4 cM and 2.7 cM, respectively. These results provide the foundation for further fine mapping, cloning and functional analysis of the TWH gene.

  17. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families.

    Science.gov (United States)

    Voloshanenko, Oksana; Gmach, Philipp; Winter, Jan; Kranz, Dominique; Boutros, Michael

    2017-11-01

    Signaling pathway modules are often encoded by several closely related paralogous genes that can have redundant roles and are therefore difficult to analyze by loss-of-function analysis. A typical example is the Wnt signaling pathway, which in mammals is mediated by 19 Wnt ligands that can bind to 10 Frizzled (FZD) receptors. Although significant progress in understanding Wnt-FZD receptor interactions has been made in recent years, tools to generate systematic interaction maps have been largely lacking. Here we generated cell lines with multiplex mutant alleles of FZD1 , FZD2 , and FZD7 and demonstrate that these cells are unresponsive to canonical Wnt ligands. Subsequently, we performed genetic rescue experiments with combinations of FZDs and canonical Wnts to create a functional ligand-receptor interaction map. These experiments showed that whereas several Wnt ligands, such as Wnt3a, induce signaling through a broad spectrum of FZD receptors, others, such as Wnt8a, act through a restricted set of FZD genes. Together, our results map functional interactions of FZDs and 10 Wnt ligands and demonstrate how multiplex targeting by clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 can be used to systematically elucidate the functions of multigene families.-Voloshanenko, O., Gmach, P., Winter, J., Kranz, D., Boutros, M. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families. © The Author(s).

  18. Fine Mapping and Cloning of Leafy Head Mutant Gene pla1-5 in Rice

    Directory of Open Access Journals (Sweden)

    Gong-neng FENG

    2013-09-01

    Full Text Available We identified a leafy head mutant pla1-5 (plastochron 1-5 from the progeny of japonica rice cultivar Taipei 309 treated with 60Co-γ ray irradiation. The pla1-5 mutant has a dwarf phenotype and small leaves. Compared with its wild type, pla1-5 has more leaves and fewer tillers, and it fails to produce normal panicles at the maturity stage. Genetic analysis showed that the pla1-5 phenotype is controlled by a single recessive nuclear gene. Using the map-based cloning strategy, we narrowed down the location of the target gene to a 58-kb region between simple sequence repeat markers CHR1027 and CHR1030 on the long arm of chromosome 10. The target gene cosegregated with molecular markers CHR1028 and CHR1029. There were five predicted genes in the mapped region. The results from sequencing analysis revealed that there was one base deletion in the first exon of LOC_Os10g26340 encoding cytochrome P450 CYP78A11 in the pla1-5 mutant, which might result in a downstream frame shift and premature termination. These results suggest that the P450 CYP78A11 gene is the candidate gene of PLA1-5.

  19. Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L.

    Science.gov (United States)

    Chhuneja, Parveen; Kumar, Krishan; Stirnweis, Daniel; Hurni, Severine; Keller, Beat; Dhaliwal, Harcharan S; Singh, Kuldeep

    2012-04-01

    Powdery mildew (PM) caused by Blumeria graminis f. sp. tritici (Bgt), is one of the important foliar diseases of wheat that can cause serious yield losses. Breeding for cultivars with diverse resources of resistance is the most promising approach for combating this disease. The diploid A genome progenitor species of wheat are an important resource for new variability for disease resistance genes. An accession of Triticum boeoticum (A(b)A(b)) showed resistance against a number of Bgt isolates, when tested using detached leaf segments. Inheritance studies in a recombinant inbred line population (RIL), developed from crosses of PM resistant T. boeoticum acc. pau5088 with a PM susceptible T. monococcum acc. pau14087, indicated the presence of two powdery mildew resistance genes in T. boeoticum acc. pau5088. Analysis of powdery mildew infection and molecular marker data of the RIL population revealed that both powdery mildew resistance genes are located on the long arm of chromosome 7A. Mapping was conducted using an integrated linkage map of 7A consisting of SSR, RFLP, STS, and DArT markers. These powdery mildew resistance genes are tentatively designated as PmTb7A.1 and PmTb7A.2. The PmTb7A.2 is closely linked to STS markers MAG2185 and MAG1759 derived from RFLP probes which are linked to powdery mildew resistance gene Pm1. This indicated that PmTb7A.2 might be allelic to Pm1. The PmTb7A.1, flanked by a DArT marker wPt4553 and an SSR marker Xcfa2019 in a 4.3 cM interval, maps proximal to PmT7A.2. PmTb7A.1 is putatively a new powdery mildew resistance gene. The powdery mildew resistance genes from T. boeoticum are currently being transferred to cultivated wheat background through marker-assisted backcrossing, using T. durum as bridging species.

  20. Diversifying Sunflower Germplasm by Integration and Mapping of a Novel Male Fertility Restoration Gene

    Science.gov (United States)

    Liu, Zhao; Wang, Dexing; Feng, Jiuhuan; Seiler, Gerald J.; Cai, Xiwen; Jan, Chao-Chien

    2013-01-01

    The combination of a single cytoplasmic male-sterile (CMS) PET-1 and the corresponding fertility restoration (Rf) gene Rf1 is used for commercial hybrid sunflower (Helianthus annuus L., 2n = 34) seed production worldwide. A new CMS line 514A was recently developed with H. tuberosus cytoplasm. However, 33 maintainers and restorers for CMS PET-1 and 20 additional tester lines failed to restore the fertility of CMS 514A. Here, we report the discovery, characterization, and molecular mapping of a novel Rf gene for CMS 514A derived from an amphiploid (Amp H. angustifolius/P 21, 2n = 68). Progeny analysis of the male-fertile (MF) plants (2n = 35) suggested that this gene, designated Rf6, was located on a single alien chromosome. Genomic in situ hybridization (GISH) indicated that Rf6 was on a chromosome with a small segment translocation on the long arm in the MF progenies (2n = 34). Rf6 was mapped to linkage group (LG) 3 of the sunflower SSR map. Eight markers were identified to be linked to this gene, covering a distance of 10.8 cM. Two markers, ORS13 and ORS1114, were only 1.6 cM away from the gene. Severe segregation distortions were observed for both the fertility trait and the linked marker loci, suggesting the possibility of a low frequency of recombination or gamete selection in this region. This study discovered a new CMS/Rf gene system derived from wild species and provided significant insight into the genetic basis of this system. This will diversify the germplasm for sunflower breeding and facilitate understanding of the interaction between the cytoplasm and nuclear genes. PMID:23307903

  1. OAHG: an integrated resource for annotating human genes with multi-level ontologies.

    Science.gov (United States)

    Cheng, Liang; Sun, Jie; Xu, Wanying; Dong, Lixiang; Hu, Yang; Zhou, Meng

    2016-10-05

    OAHG, an integrated resource, aims to establish a comprehensive functional annotation resource for human protein-coding genes (PCGs), miRNAs, and lncRNAs by multi-level ontologies involving Gene Ontology (GO), Disease Ontology (DO), and Human Phenotype Ontology (HPO). Many previous studies have focused on inferring putative properties and biological functions of PCGs and non-coding RNA genes from different perspectives. During the past several decades, a few of databases have been designed to annotate the functions of PCGs, miRNAs, and lncRNAs, respectively. A part of functional descriptions in these databases were mapped to standardize terminologies, such as GO, which could be helpful to do further analysis. Despite these developments, there is no comprehensive resource recording the function of these three important types of genes. The current version of OAHG, release 1.0 (Jun 2016), integrates three ontologies involving GO, DO, and HPO, six gene functional databases and two interaction databases. Currently, OAHG contains 1,434,694 entries involving 16,929 PCGs, 637 miRNAs, 193 lncRNAs, and 24,894 terms of ontologies. During the performance evaluation, OAHG shows the consistencies with existing gene interactions and the structure of ontology. For example, terms with more similar structure could be associated with more associated genes (Pearson correlation γ 2  = 0.2428, p < 2.2e-16).

  2. Human major histocompatibility complex contains a minimum of 19 genes between the complement cluster and HLA-B

    International Nuclear Information System (INIS)

    Spies, T.; Bresnahan, M.; Strominger, J.L.

    1989-01-01

    A 600-kilobase (kb) DNA segment from the human major histocompatibility complex (MHC) class III region was isolated by extension of a previous 435-kb chromosome walk. The contiguous series of cloned overlapping cosmids contains the entire 555-kb interval between C2 in the complement gene cluster and HLA-B. This region is known to encode the tumor necrosis factors (TNFs) α and β, B144, and the major heat shock protein HSP70. Moreover, a cluster of genes, BAT1-BAT5 (HLA-B-associated transcripts) have been localized in the vicinity of the genes for TNFα and TNFβ. An additional four genes were identified by isolation of corresponding cDNA clones with cosmid DNA probes. These genes for BAT6-BAT9 were mapped near the gene for C2 within a 120-kb region that includes a HSP70 gene pair. These results, together with complementary data from a similar recent study, indicated the presence of a minimum of 19 genes within the C2-HLA-B interval of the MHC class III region. Although the functional properties of most of these genes are yet unknown, they may be involved in some aspects of immunity. This idea is supported by the genetic mapping of the hematopoietic histocompatibility locus-1 (Hh-1) in recombinant mice between TNFα and H-2S, which is homologous to the complement gene cluster in humans

  3. Report of the Fourth international workshop on human chromosome 18 mapping 1996

    International Nuclear Information System (INIS)

    Silverman, G.A.; Overhauser, J.; Gerken, S.; Aburomia, R.; O'Connell, P.; Krauter, K.S.; Detera-Wadleigh, S.D.; Yoshikawa, T.; Collins, A.R.; Geurts van Kessel, A.

    1996-01-01

    The fourth international workshop on human chromosome 18 mapping was held in Boston, Massachusetts, USA on October 7-9, 1996. The workshop was attended by 34 participants from 7 countries. The goals of the workshop were to (1) generate integrated genetic and physical maps, (2) update the transcriptional map, (3) assess the syntenic relationships between human chromosome 18 and the mouse genome, and (4) establish a chromosome 18 web site

  4. Taq I RFLP in the human cellular retinol-binding protein (CRBP) gene

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrino, A [Istituto di Ricovero e Cura a Carattere Scientifico SANATRIX, Vena (Italy); Garofalo, S; Cocozza, S; Monticelli, A; Varrone, S [CNR Universita degli Studi di Napoli (Italy); Faraonio, R; Colantuoni, V [Universita degli Studi di Napoli (Italy)

    1988-08-11

    The probe was a Pst I - Bam HI fragment of cDNA, about 600 bp long, encoding for the human CRBP gene. The clone was isolated by screening a human liver cDNA library in the expression vector pEX with antibodies against rat CRBP. Taq I digestion of genomic DNA and hybridization with the CRBP probe detects a two allele polymorphism with allelic fragments of 3.0 kb and 2.7 kb. There are two invariant bands at 2.4 and 2.2 kb. Human CRBP gene has been mapped on the long arm of chromosome 3 using somatic cell hybrids. Co-dominant segregation was observed in two caucasian families (10 individuals).

  5. HindIII identifies a two allele DNA polymorphism of the human cannabinoid receptor gene (CNR)

    Energy Technology Data Exchange (ETDEWEB)

    Caenazzo, L.; Hoehe, M.R.; Hsieh, W.T.; Berrettini, W.H.; Bonner, T.I.; Gershon, E.S. (National Inst. of Health, Bethesda, MD (United States))

    1991-09-11

    HCNR p5, a 0.9 kb BamHI/EcoRI fragment from the human cannabinoid receptor gene inserted into pUC19, was used as probe. The fragment is located in an intron approximately 14 kb 5{prime} of the initiation codon. This fragment is a clean single copy sequence by genomic blotting. Hybridization of human genomic DNA digested with HindIII identified a two allele RFLP with bands at 5.5 (A1) and 3.3 kb (A2). The human cannabinoid receptor gene has been genetically mapped in CEPH reference pedigrees to the centromeric/q region of chromosome 6. In situ hybridization localizes it to 6q14-q15. Codominant segregation has been observed in 26 informative two- and three-generation CEPH pedigrees and in 14 medium-sized disease families.

  6. Integrative annotation of 21,037 human genes validated by full-length cDNA clones.

    Directory of Open Access Journals (Sweden)

    Tadashi Imanishi

    2004-06-01

    Full Text Available The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/. It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs, identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA

  7. IDENTIFICATION AND MAPPING OF A GENE FOR RICE SLENDER KERNEL USING Oryza glumaepatula INTROGRESSION LINES

    Directory of Open Access Journals (Sweden)

    Sobrizal Sobrizal

    2016-10-01

    Full Text Available World demand for superior rice grain quality tends to increase. One of the  criteria of appearance quality of rice grain is grain shape. Rice consumers  exhibit wide preferences for grain shape, but most Indonesian rice consumers prefer long and slender grain. The objectives of this study were to identify and map a gene for rice slender kernel trait using Oryza  glumaepatula introgression lines with O. sativa cv. Taichung 65 genetic background. A segregation analysis of BC4F2 population derived from backcrosses of a donor parent O. glumaepatula into a recurrent parent Taichung 65 showed that the slender kernel was controlled by a single recessive gene. This new identified gene was designated as sk1 (slender kernel 1. Moreover, based on the RFLP analyses using 14 RFLP markers located on chromosomes 2, 8, 9, and 10 in which the O. glumaepatula chromosomal segments were retained in BC4F2 population, the sk1 was located between RFLP markers C679 and C560 on the long arm of chromosome 2, with map distances of 2.8 and 1.5 cM, respectively. The wild rice O. glumaepatula carried a recessive allele for slender kernel. This allele may be useful in breeding of rice with slender kernel types. In addition, the development of plant materials and RFLP map associated with slender kernel in this study is the preliminary works in the effort to isolate this important grain shape gene.

  8. Genetic analysis and gene fine mapping of aroma in rice (Oryza sativa L. Cyperales, Poaceae

    Directory of Open Access Journals (Sweden)

    Shu Xia Sun

    2008-01-01

    Full Text Available We investigated inheritance and carried out gene fine mapping of aroma in crosses between the aromatic elite hybrid rice Oryza sativa indica variety Chuanxiang-29B (Ch-29B and the non-aromatic rice O. sativa indica variety R2 and O. sativa japonica Lemont (Le. The F1 grains and leaves were non-aromatic while the F2 non-aroma to aroma segregation pattern was 3:1. The F3 segregation ratio was consistent with the expected 1:2:1 for a single recessive aroma gene in Ch-29B. Linkage analysis between simple sequence repeat (SSR markers and the aroma locus for the aromatic F2 plants mapped the Ch-29B aroma gene to a chromosome 8 region flanked by SSR markers RM23120 at 0.52 cM and RM3459 at 1.23 cM, a replicate F2 population confirming these results. Three bacterial artificial chromosome (BAC clones cover chromosome 8 markers RM23120 and RM3459. Our molecular mapping data from the two populations indicated that the aroma locus occurs in a 142.85 kb interval on BAC clones AP005301 or AP005537, implying that it might be the same gene reported by Bradbury et al (2005a; Plant Biotec J. 3:363-370. The flanking markers Aro7, RM23120 and RM3459 identified by us could greatly accelerate the efficiency and precision of aromatic rice breeding programs.

  9. Hyperactivity and Learning Deficits in Transgenic Mice Bearing a Human Mutant Thyroid Hormone β1 Receptor Gene

    OpenAIRE

    McDonald, Michael P.; Wong, Rosemary; Goldstein, Gregory; Weintraub, Bruce; Cheng, Sheue-yann; Crawley, Jacqueline N.

    1998-01-01

    Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor β (TRβ) gene on chromosome 3, representing a mutation of the ligandbinding domain of the TRβ gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity...

  10. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce.

    Science.gov (United States)

    Shen, K A; Meyers, B C; Islam-Faridi, M N; Chin, D B; Stelly, D M; Michelmore, R W

    1998-08-01

    The recent cloning of genes for resistance against diverse pathogens from a variety of plants has revealed that many share conserved sequence motifs. This provides the possibility of isolating numerous additional resistance genes by polymerase chain reaction (PCR) with degenerate oligonucleotide primers. We amplified resistance gene candidates (RGCs) from lettuce with multiple combinations of primers with low degeneracy designed from motifs in the nucleotide binding sites (NBSs) of RPS2 of Arabidopsis thaliana and N of tobacco. Genomic DNA, cDNA, and bacterial artificial chromosome (BAC) clones were successfully used as templates. Four families of sequences were identified that had the same similarity to each other as to resistance genes from other species. The relationship of the amplified products to resistance genes was evaluated by several sequence and genetic criteria. The amplified products contained open reading frames with additional sequences characteristic of NBSs. Hybridization of RGCs to genomic DNA and to BAC clones revealed large numbers of related sequences. Genetic analysis demonstrated the existence of clustered multigene families for each of the four RGC sequences. This parallels classical genetic data on clustering of disease resistance genes. Two of the four families mapped to known clusters of resistance genes; these two families were therefore studied in greater detail. Additional evidence that these RGCs could be resistance genes was gained by the identification of leucine-rich repeat (LRR) regions in sequences adjoining the NBS similar to those in RPM1 and RPS2 of A. thaliana. Fluorescent in situ hybridization confirmed the clustered genomic distribution of these sequences. The use of PCR with degenerate oligonucleotide primers is therefore an efficient method to identify numerous RGCs in plants.

  11. Expression map of a complete set of gustatory receptor genes in chemosensory organs of Bombyx mori.

    Science.gov (United States)

    Guo, Huizhen; Cheng, Tingcai; Chen, Zhiwei; Jiang, Liang; Guo, Youbing; Liu, Jianqiu; Li, Shenglong; Taniai, Kiyoko; Asaoka, Kiyoshi; Kadono-Okuda, Keiko; Arunkumar, Kallare P; Wu, Jiaqi; Kishino, Hirohisa; Zhang, Huijie; Seth, Rakesh K; Gopinathan, Karumathil P; Montagné, Nicolas; Jacquin-Joly, Emmanuelle; Goldsmith, Marian R; Xia, Qingyou; Mita, Kazuei

    2017-03-01

    Most lepidopteran species are herbivores, and interaction with host plants affects their gene expression and behavior as well as their genome evolution. Gustatory receptors (Grs) are expected to mediate host plant selection, feeding, oviposition and courtship behavior. However, due to their high diversity, sequence divergence and extremely low level of expression it has been difficult to identify precisely a complete set of Grs in Lepidoptera. By manual annotation and BAC sequencing, we improved annotation of 43 gene sequences compared with previously reported Grs in the most studied lepidopteran model, the silkworm, Bombyx mori, and identified 7 new tandem copies of BmGr30 on chromosome 7, bringing the total number of BmGrs to 76. Among these, we mapped 68 genes to chromosomes in a newly constructed chromosome distribution map and 8 genes to scaffolds; we also found new evidence for large clusters of BmGrs, especially from the bitter receptor family. RNA-seq analysis of diverse BmGr expression patterns in chemosensory organs of larvae and adults enabled us to draw a precise organ specific map of BmGr expression. Interestingly, most of the clustered genes were expressed in the same tissues and more than half of the genes were expressed in larval maxillae, larval thoracic legs and adult legs. For example, BmGr63 showed high expression levels in all organs in both larval and adult stages. By contrast, some genes showed expression limited to specific developmental stages or organs and tissues. BmGr19 was highly expressed in larval chemosensory organs (especially antennae and thoracic legs), the single exon genes BmGr53 and BmGr67 were expressed exclusively in larval tissues, the BmGr27-BmGr31 gene cluster on chr7 displayed a high expression level limited to adult legs and the candidate CO 2 receptor BmGr2 was highly expressed in adult antennae, where few other Grs were expressed. Transcriptional analysis of the Grs in B. mori provides a valuable new reference for

  12. Physical linkage of a human immunoglobulin heavy chain variable region gene segment to diversity and joining region elements

    International Nuclear Information System (INIS)

    Schroeder, H.W. Jr.; Walter, M.A.; Hofker, M.H.; Ebens, A.; Van Dijk, K.W.; Liao, L.C.; Cox, D.W.; Milner, E.C.B.; Perlmutter, R.M.

    1988-01-01

    Antibody genes are assembled from a series of germ-line gene segments that are juxtaposed during the maturation of B lymphocytes. Although diversification of the adult antibody repertoire results in large part from the combinatorial joining of these gene segments, a restricted set of antibody heavy chain variable (V H ), diversity (D H ), and joining (J H ) region gene segments appears preferentially in the human fetal repertoire. The authors report here that one of these early-expressed V H elements (termed V H 6) is the most 3' V H gene segment, positioned 77 kilobases on the 5' side of the J H locus and immediately adjacent to a set of previously described D H sequences. In addition to providing a physical map linking human V H , D H , and J H elements, these results support the view that the programmed development of the antibody V H repertoire is determined in part by the chromosomal position of these gene segments

  13. Genetic mapping of the rice resistance-breaking gene of the brown planthopper Nilaparvata lugens.

    Science.gov (United States)

    Kobayashi, Tetsuya; Yamamoto, Kimiko; Suetsugu, Yoshitaka; Kuwazaki, Seigo; Hattori, Makoto; Jairin, Jirapong; Sanada-Morimura, Sachiyo; Matsumura, Masaya

    2014-07-22

    Host plant resistance has been widely used for controlling the major rice pest brown planthopper (BPH, Nilaparvata lugens). However, adaptation of the wild BPH population to resistance limits the effective use of resistant rice varieties. Quantitative trait locus (QTL) analysis was conducted to identify resistance-breaking genes against the anti-feeding mechanism mediated by the rice resistance gene Bph1. QTL analysis in iso-female BPH lines with single-nucleotide polymorphism (SNP) markers detected a single region on the 10th linkage group responsible for the virulence. The QTL explained from 57 to 84% of the total phenotypic variation. Bulked segregant analysis with next-generation sequencing in F2 progenies identified five SNPs genetically linked to the virulence. These analyses showed that virulence to Bph1 was controlled by a single recessive gene. In contrast to previous studies, the gene-for-gene relationship between the major resistance gene Bph1 and virulence gene of BPH was confirmed. Identified markers are available for map-based cloning of the major gene controlling BPH virulence to rice resistance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Translational selection in human: More pronounced in housekeeping genes

    KAUST Repository

    Ma, Lina

    2014-07-10

    Background: Translational selection is a ubiquitous and significant mechanism to regulate protein expression in prokaryotes and unicellular eukaryotes. Recent evidence has shown that translational selection is weakly operative in highly expressed genes in human and other vertebrates. However, it remains unclear whether translational selection acts differentially on human genes depending on their expression patterns.Results: Here we report that human housekeeping (HK) genes that are strictly defined as genes that are expressed ubiquitously and consistently in most or all tissues, are under stronger translational selection.Conclusions: These observations clearly show that translational selection is also closely associated with expression pattern. Our results suggest that human HK genes are more efficiently and/or accurately translated into proteins, which will inevitably open up a new understanding of HK genes and the regulation of gene expression.Reviewers: This article was reviewed by Yuan Yuan, Baylor College of Medicine; Han Liang, University of Texas MD Anderson Cancer Center (nominated by Dr Laura Landweber) Eugene Koonin, NCBI, NLM, NIH, United States of America Sandor Pongor, International Centre for Genetic Engineering and biotechnology (ICGEB), Italy. © 2014 Ma et al.; licensee BioMed Central Ltd.

  15. Cloning and characterization of human DNA repair genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Brookman, K.W.; Weber, C.A.; Salazar, E.P.; Stewart, S.A.; Carrano, A.V.

    1987-01-01

    The isolation of two addition human genes that give efficient restoration of the repair defects in other CHO mutant lines is reported. The gene designated ERCC2 (Excision Repair Complementing Chinese hamster) corrects mutant UV5 from complementation group 1. They recently cloned this gene by first constructing a secondary transformant in which the human gene was shown to have become physically linked to the bacterial gpt dominant-marker gene by cotransfer in calcium phosphate precipitates in the primary transfection. Transformants expressing both genes were recovered by selecting for resistance to both UV radiation and mycophenolic acid. Using similar methods, the human gene that corrects CHO mutant EM9 was isolated in cosmids and named XRCC1 (X-ray Repair Complementing Chinese hamster). In this case, transformants were recovered by selecting for resistance to CldUrd, which kills EM9 very efficiently. In both genomic and cosmid transformants, the XRCC1 gene restored resistance to the normal range. DNA repair was studied using the kinetics of strand-break rejoining, which was measured after exposure to 137 Cs γ-rays

  16. Phosphoribosylpyrophosphate synthetase of Bacillus subtilis. Cloning, characterization and chromosomal mapping of the prs gene

    DEFF Research Database (Denmark)

    Nilsson, Dan; Hove-Jensen, Bjarne

    1987-01-01

    The gene (prs) encoding phosphoribosylpyrophosphate (PRPP) synthetase has been cloned from a library of Bacillus subtilis DNA by complementation of an Escherichia coli prs mutation. Flanking DNA sequences were pruned away by restriction endonuclease and exonuclease BAL 31 digestions, resulting...... in a DNA fragment of approx. 1.8 kb complementing the E. coli prs mutation. Minicell experiments revealed that this DNA fragment coded for a polypeptide, shown to be the PRPP synthetase subunit, with an Mr of approx. 40,000. B. subtilis strains harbouring the prs gene in a multicopy plasmid contained up...... to nine-fold increased PRPP synthetase activity. The prs gene was cloned in an integration vector and the resulting hybrid plasmid inserted into the B. subtilis chromosome by homologous recombination. The integration site was mapped by transduction and the gene order established as purA-guaA-prs-cysA....

  17. Identification of DNA repair genes in the human genome

    International Nuclear Information System (INIS)

    Hoeijmakers, J.H.J.; van Duin, M.; Westerveld, A.; Yasui, A.; Bootsma, D.

    1986-01-01

    To identify human DNA repair genes we have transfected human genomic DNA ligated to a dominant marker to excision repair deficient xeroderma pigmentosum (XP) and CHO cells. This resulted in the cloning of a human gene, ERCC-1, that complements the defect of a UV- and mitomycin-C sensitive CHO mutant 43-3B. The ERCC-1 gene has a size of 15 kb, consists of 10 exons and is located in the region 19q13.2-q13.3. Its primary transcript is processed into two mRNAs by alternative splicing of an internal coding exon. One of these transcripts encodes a polypeptide of 297 aminoacids. A putative DNA binding protein domain and nuclear location signal could be identified. Significant AA-homology is found between ERCC-1 and the yeast excision repair gene RAD10. 58 references, 6 figures, 1 table

  18. Mapping Our Genes--The Genome Projects: How Big, How Fast?

    Science.gov (United States)

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    Scientific and technical journals in biology and medicine in recent years have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part…

  19. Genetic effects on gene expression across human tissues

    NARCIS (Netherlands)

    Battle, Alexis; Brown, Christopher D.; Engelhardt, Barbara E.; Montgomery, Stephen B.; Aguet, François; Ardlie, Kristin G.; Cummings, Beryl B.; Gelfand, Ellen T.; Getz, Gad; Hadley, Kane; Handsaker, Robert E.; Huang, Katherine H.; Kashin, Seva; Karczewski, Konrad J.; Lek, Monkol; Li, Xiao; MacArthur, Daniel G.; Nedzel, Jared L.; Nguyen, Duyen T.; Noble, Michael S.; Segrè, Ayellet V.; Trowbridge, Casandra A.; Tukiainen, Taru; Abell, Nathan S.; Balliu, Brunilda; Barshir, Ruth; Basha, Omer; Bogu, Gireesh K.; Brown, Andrew; Castel, Stephane E.; Chen, Lin S.; Chiang, Colby; Conrad, Donald F.; Cox, Nancy J.; Damani, Farhan N.; Davis, Joe R.; Delaneau, Olivier; Dermitzakis, Emmanouil T.; Eskin, Eleazar; Ferreira, Pedro G.; Frésard, Laure; Gamazon, Eric R.; Garrido-Martín, Diego; Gewirtz, Ariel D. H.; Gliner, Genna; Gloudemans, Michael J.; Guigo, Roderic; Hall, Ira M.; Han, Buhm; He, Yuan

    2017-01-01

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression

  20. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.

    2013-02-19

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites and to quantify the differences in gene expression across the 5 brain regions. We also analyzed the extent to which methylation influenced the observed expression profiles. We sequenced more than 71 million cap analysis of gene expression tags corresponding to 70,202 promoter regions and 16,888 genes. More than 7000 transcripts were differentially expressed, mainly because of differential alternative promoter usage. Unexpectedly, 7% of differentially expressed genes were neurodevelopmental transcription factors. Functional pathway analysis on the differentially expressed genes revealed an overrepresentation of several signaling pathways (e.g., fibroblast growth factor and wnt signaling) in hippocampus and striatum. We also found that although 73% of methylation signals mapped within genes, the influence of methylation on the expression profile was small. Our study underscores alternative promoter usage as an important mechanism for determining the regional differences in gene expression at old age.

  1. The map-1 gene family in root-knot nematodes, Meloidogyne spp.: a set of taxonomically restricted genes specific to clonal species.

    Directory of Open Access Journals (Sweden)

    Iva Tomalova

    Full Text Available Taxonomically restricted genes (TRGs, i.e., genes that are restricted to a limited subset of phylogenetically related organisms, may be important in adaptation. In parasitic organisms, TRG-encoded proteins are possible determinants of the specificity of host-parasite interactions. In the root-knot nematode (RKN Meloidogyne incognita, the map-1 gene family encodes expansin-like proteins that are secreted into plant tissues during parasitism, thought to act as effectors to promote successful root infection. MAP-1 proteins exhibit a modular architecture, with variable number and arrangement of 58 and 13-aa domains in their central part. Here, we address the evolutionary origins of this gene family using a combination of bioinformatics and molecular biology approaches. Map-1 genes were solely identified in one single member of the phylum Nematoda, i.e., the genus Meloidogyne, and not detected in any other nematode, thus indicating that the map-1 gene family is indeed a TRG family. A phylogenetic analysis of the distribution of map-1 genes in RKNs further showed that these genes are specifically present in species that reproduce by mitotic parthenogenesis, with the exception of M. floridensis, and could not be detected in RKNs reproducing by either meiotic parthenogenesis or amphimixis. These results highlight the divergence between mitotic and meiotic RKN species as a critical transition in the evolutionary history of these parasites. Analysis of the sequence conservation and organization of repeated domains in map-1 genes suggests that gene duplication(s together with domain loss/duplication have contributed to the evolution of the map-1 family, and that some strong selection mechanism may be acting upon these genes to maintain their functional role(s in the specificity of the plant-RKN interactions.

  2. Human γ-globin genes silenced independently of other genes in the β-globin locus.

    NARCIS (Netherlands)

    N.O. Dillon (Niall); F.G. Grosveld (Frank)

    1991-01-01

    textabstractErythropoiesis during human development is characterized by switches in expression of beta-like globin genes during the transition from the embryonic through fetal to adult stages. Activation and high-level expression of the genes is directed by the locus control region (LCR), located 5'

  3. Gene × Smoking Interactions on Human Brain Gene Expression: Finding Common Mechanisms in Adolescents and Adults

    Science.gov (United States)

    Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.

    2013-01-01

    Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…

  4. An Approach for Predicting Essential Genes Using Multiple Homology Mapping and Machine Learning Algorithms.

    Science.gov (United States)

    Hua, Hong-Li; Zhang, Fa-Zhan; Labena, Abraham Alemayehu; Dong, Chuan; Jin, Yan-Ting; Guo, Feng-Biao

    Investigation of essential genes is significant to comprehend the minimal gene sets of cell and discover potential drug targets. In this study, a novel approach based on multiple homology mapping and machine learning method was introduced to predict essential genes. We focused on 25 bacteria which have characterized essential genes. The predictions yielded the highest area under receiver operating characteristic (ROC) curve (AUC) of 0.9716 through tenfold cross-validation test. Proper features were utilized to construct models to make predictions in distantly related bacteria. The accuracy of predictions was evaluated via the consistency of predictions and known essential genes of target species. The highest AUC of 0.9552 and average AUC of 0.8314 were achieved when making predictions across organisms. An independent dataset from Synechococcus elongatus , which was released recently, was obtained for further assessment of the performance of our model. The AUC score of predictions is 0.7855, which is higher than other methods. This research presents that features obtained by homology mapping uniquely can achieve quite great or even better results than those integrated features. Meanwhile, the work indicates that machine learning-based method can assign more efficient weight coefficients than using empirical formula based on biological knowledge.

  5. A Quantitative Comparison of the Similarity between Genes and Geography in Worldwide Human Populations

    Science.gov (United States)

    Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A.

    2012-01-01

    Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure. PMID:22927824

  6. A quantitative comparison of the similarity between genes and geography in worldwide human populations.

    Science.gov (United States)

    Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A

    2012-08-01

    Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure.

  7. LINE FUSION GENES: a database of LINE expression in human genes

    Directory of Open Access Journals (Sweden)

    Park Hong-Seog

    2006-06-01

    Full Text Available Abstract Background Long Interspersed Nuclear Elements (LINEs are the most abundant retrotransposons in humans. About 79% of human genes are estimated to contain at least one segment of LINE per transcription unit. Recent studies have shown that LINE elements can affect protein sequences, splicing patterns and expression of human genes. Description We have developed a database, LINE FUSION GENES, for elucidating LINE expression throughout the human gene database. We searched the 28,171 genes listed in the NCBI database for LINE elements and analyzed their structures and expression patterns. The results show that the mRNA sequences of 1,329 genes were affected by LINE expression. The LINE expression types were classified on the basis of LINEs in the 5' UTR, exon or 3' UTR sequences of the mRNAs. Our database provides further information, such as the tissue distribution and chromosomal location of the genes, and the domain structure that is changed by LINE integration. We have linked all the accession numbers to the NCBI data bank to provide mRNA sequences for subsequent users. Conclusion We believe that our work will interest genome scientists and might help them to gain insight into the implications of LINE expression for human evolution and disease. Availability http://www.primate.or.kr/line

  8. Progress towards construction of a total restriction fragment map of a human chromosome.

    NARCIS (Netherlands)

    H. Vissing; F.G. Grosveld (Frank); E. Solomon; G. Moore; N. Lench; N. Shennan; R. Williamson

    1987-01-01

    textabstractWe present an approach to the construction of an overlapping restriction fragment map of a single human chromosome. A genomic cosmid library genome was constructed from a mouse-human hybrid cell line containing chromosome 17 as its only human genetic component. Cosmids containing human

  9. Eco RI RFLP in the human IGF II gene

    Energy Technology Data Exchange (ETDEWEB)

    Cocozza, S; Garofalo, S; Robledo, R; Monticelli, A; Conti, A; Chiarotti, L; Frunzio, R; Bruni, C B; Varrone, S

    1988-03-25

    The probe was a 500 bp cDNA containing exons 2-3 and 4 of the human IGF II gene. The clone was isolated by screening a human liver cDNA library with synthetic oligonucleotides. Eco RI digestion of genomic DNA and hybridization with the IGF II probe detects a two allele polymorphism with allelic fragments of 13.5 kb and 10.5 kb. The frequency was studied 38 unrelated Caucasians: Human IGF II gene was localized on the short arm of chromosome 11 (p15) by in situ hybridization. Codominant segregation was observed in 2 Caucasian families (10 individuals).

  10. Formal genetic maps | Salem | Egyptian Journal of Medical Human ...

    African Journals Online (AJOL)

    Formal genetic maps are databases, represented as text or graphic figures, that can be collected/organized/formulated and constructed for nearly any, and every, structural or functional region of the genetic material. Though these maps are basically descriptive, their analysis can provide relevant crucial data that can be ...

  11. Mapping of brain activity by automated volume analysis of immediate early genes

    Science.gov (United States)

    Renier, Nicolas; Adams, Eliza L.; Kirst, Christoph; Wu, Zhuhao; Azevedo, Ricardo; Kohl, Johannes; Autry, Anita E.; Kadiri, Lolahon; Venkataraju, Kannan Umadevi; Zhou, Yu; Wang, Victoria X.; Tang, Cheuk Y.; Olsen, Olav; Dulac, Catherine; Osten, Pavel; Tessier-Lavigne, Marc

    2016-01-01

    Summary Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization and quantification of the activity of all neurons across the entire brain, which has not to date been achieved in the mammalian brain. We introduce a pipeline for high speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to Haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Lastly, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available. PMID:27238021

  12. Mapping genes by meiotic and UV-induced mitotic recombination in Coprinus cinereus

    International Nuclear Information System (INIS)

    Amirkhanian, J.D.; Cowan, J.W.

    1985-01-01

    Three morphological mutants in Coprinus cinereus—one spontaneous (den-2) and two chemically induced (zigand sta)—were assigned to linkage groups and utilized in meiotic and mitotic mapping. Mutants den-2 and zig belong to linkage group III, den-2 being close to the centromere and about 20 map units (mu) from zig. The mutant sta in linkage group ‘G’ is at a distance of about 37 mu from ade-3. Mitotic mapping confirmed the gene order in linkage group III and provided evidence that trp-2 in linkage group ‘G’ was between the centromere and ade-3. These morphological mutants are compact in colony growth and therefore suited to high-density plating. The rarity of spontaneously occurring mitotic segregants suggests that diploids of Coprinus cinereus, heterozygous for morphoiogical markers in repuision, could serve as useful test systems for rapid screening of chemical mutagen/carcinogens via mitotic recombination studies

  13. Gene-based single nucleotide polymorphism markers for genetic and association mapping in common bean.

    Science.gov (United States)

    Galeano, Carlos H; Cortés, Andrés J; Fernández, Andrea C; Soler, Álvaro; Franco-Herrera, Natalia; Makunde, Godwill; Vanderleyden, Jos; Blair, Matthew W

    2012-06-26

    In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. In short, this study illustrates the power of intron-based markers for linkage and association mapping in

  14. Mapping of Mcs30, a new mammary carcinoma susceptibility quantitative trait locus (QTL30 on rat chromosome 12: identification of fry as a candidate Mcs gene.

    Directory of Open Access Journals (Sweden)

    Xuefeng Ren

    Full Text Available Rat strains differ dramatically in their susceptibility to mammary carcinogenesis. On the assumption that susceptibility genes are conserved across mammalian species and hence inform human carcinogenesis, numerous investigators have used genetic linkage studies in rats to identify genes responsible for differential susceptibility to carcinogenesis. Using a genetic backcross between the resistant Copenhagen (Cop and susceptible Fischer 344 (F344 strains, we mapped a novel mammary carcinoma susceptibility (Mcs30 locus to the centromeric region on chromosome 12 (LOD score of ∼8.6 at the D12Rat59 marker. The Mcs30 locus comprises approximately 12 Mbp on the long arm of rat RNO12 whose synteny is conserved on human chromosome 13q12 to 13q13. After analyzing numerous genes comprising this locus, we identified Fry, the rat ortholog of the furry gene of Drosophila melanogaster, as a candidate Mcs gene. We cloned and determined the complete nucleotide sequence of the 13 kbp Fry mRNA. Sequence analysis indicated that the Fry gene was highly conserved across evolution, with 90% similarity of the predicted amino acid sequence among eutherian mammals. Comparison of the Fry sequence in the Cop and F344 strains identified two non-synonymous single nucleotide polymorphisms (SNPs, one of which creates a putative, de novo phosphorylation site. Further analysis showed that the expression of the Fry gene is reduced in a majority of rat mammary tumors. Our results also suggested that FRY activity was reduced in human breast carcinoma cell lines as a result of reduced levels or mutation. This study is the first to identify the Fry gene as a candidate Mcs gene. Our data suggest that the SNPs within the Fry gene contribute to the genetic susceptibility of the F344 rat strain to mammary carcinogenesis. These results provide the foundation for analyzing the role of the human FRY gene in cancer susceptibility and progression.

  15. Mapping of the gene encoding the. beta. -amyloid precursor protein and its relationship to the Down syndrome region of chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, D.; Gardiner, K.; Kao, F.T.; Tanzi, R.; Watkins, P.; Gusella, J.F. (Eleanor Roosevelt Institute for Cancer Research, Denver, CO (USA))

    1988-11-01

    The gene encoding the {beta}-amyloid precursor protein has been assigned to human chromosome 21, as has a gene responsible for at least some cases of familial Alzheimer disease. Linkage studies strongly suggest that the {beta}-amyloid precursor protein and the product corresponding to familial Alzheimer disease are from two genes, or at least that several million base pairs of DNA separate the markers. The precise location of the {beta}-amyloid precursor protein gene on chromosome 21 has not yet been determined. Here the authors show, by using a somatic-cell/hybrid-cell mapping panel, in situ hybridization, and transverse-alternating-field electrophoresis, that the {beta}-amyloid precursor protein gene is located on chromosome 21 very near the 21q21/21q/22 border and probably within the region of chromosome 21 that, when trisomic, results in Down syndrome.

  16. The landscape of human genes involved in the immune response to parasitic worms

    Directory of Open Access Journals (Sweden)

    Fumagalli Matteo

    2010-08-01

    Full Text Available Abstract Background More than 2 billion individuals worldwide suffer from helminth infections. The highest parasite burdens occur in children and helminth infection during pregnancy is a risk factor for preterm delivery and reduced birth weight. Therefore, helminth infections can be regarded as a strong selective pressure. Results Here we propose that candidate susceptibility genes for parasitic worm infections can be identified by searching for SNPs that display a strong correlation with the diversity of helminth species/genera transmitted in different geographic areas. By a genome-wide search we identified 3478 variants that correlate with helminth diversity. These SNPs map to 810 distinct human genes including loci involved in regulatory T cell function and in macrophage activation, as well as leukocyte integrins and co-inhibitory molecules. Analysis of functional relationships among these genes identified complex interaction networks centred around Th2 cytokines. Finally, several genes carrying candidate targets for helminth-driven selective pressure also harbour susceptibility alleles for asthma/allergy or are involved in airway hyper-responsiveness, therefore expanding the known parallelism between these conditions and parasitic infections. Conclusions Our data provide a landscape of human genes that modulate susceptibility to helminths and indicate parasitic worms as one of the major selective forces in humans.

  17. Quantitative Chemical-Genetic Interaction Map Connects Gene Alterations to Drug Responses | Office of Cancer Genomics

    Science.gov (United States)

    In a recent Cancer Discovery report, CTD2 researchers at the University of California in San Francisco developed a new quantitative chemical-genetic interaction mapping approach to evaluate drug sensitivity or resistance in isogenic cell lines. Performing a high-throughput screen with isogenic cell lines allowed the researchers to explore the impact of a panel of emerging and established drugs on cells overexpressing a single cancer-associated gene in isolation.

  18. Comprehensive Clinical Phenotyping & Genetic Mapping for the Discovery of Autism Susceptibility Genes

    Science.gov (United States)

    2012-12-05

    teaching students with autism spectrum disorders 4.52 Learn strategies for incorporating IEP goals and district standard into daily teaching...W403 Columbus, OH 43205 Final Report Comprehensive Clinical Phenotyping & Genetic Mapping for the Discovery of Autism Susceptibility Genes...QFOXGHDUHDFRGH 1.0 Summary In 2006, the Central Ohio Registry for Autism (CORA) was initiated as a collaboration between Wright-Patterson Air

  19. PCR-RFLPs, linkage and RH mapping of the porcine TGFB1 and TGFBR1 genes

    Czech Academy of Sciences Publication Activity Database

    Kopečný, Michal; Stratil, Antonín; Van Poucke, M.; Bartenschlager, H.; Geldermann, H.; Peelman, L. J.

    2004-01-01

    Roč. 35, - (2004), s. 253-255 ISSN 0268-9146 R&D Projects: GA ČR GP523/01/P124; GA ČR GA523/03/0858; GA AV ČR KSK5052113 Institutional research plan: CEZ:AV0Z5045916 Keywords : gene mapping Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.108, year: 2004

  20. The progress of radiosensitive genes of human brain glioma

    International Nuclear Information System (INIS)

    Wang Xi; Liu Qiang

    2008-01-01

    Human gliomas are one of the most aggressive tumors in brain which grow infiltrativly. Surgery is the mainstay of treatment. But as the tumor could not be entirely cut off, it is easy to relapse. Radiotherapy plays an important role for patients with gliomas after surgery. The efficacy of radiotherapy is associated with radio sensitivity of human gliomas. This paper makes a summary of current situation and progress for radiosensitive genes of human brain gliomas. (authors)

  1. Proteolytic fragmentation and peptide mapping of human carboxyamidomethylated tracheobronchial mucin

    International Nuclear Information System (INIS)

    Rose, M.C.; Kaufman, B.; Martin, B.M.

    1989-01-01

    Human tracheobronchial mucin was isolated from lung mucosal gel by chromatography on Sepharose 4B in the presence of dissociating and reducing agents, and its thiol residues were carboxyamidomethylated with iodo[1(-14)C]acetamide. The 14C-carboxyamido-methylated mucin was purified by chromatography on Sepharose 2B. No low molecular weight components were detected by molecular sieve chromatography or polyacrylamide gel electrophoresis in the presence of dissociating and reducing agents or by analytical density centrifugation in CsCl/guanidinium chloride. After digestion of the purified 14C-mucin with trypsin-L-1-tosylamido-2-phenylethyl chloromethyl ketone, three fractions (TR-1, TR-2, and TR-3) were observed by chromatography on Sepharose 4B. TR-1, a 260-kDa mucin glycopeptide fragment, contained all of the neutral hexose and blood group activity and 20% of the radioactivity in the undigested mucin. TR-1 was refractory to a second incubation with trypsin but could be digested by papain or Pronase to a smaller mucin glycopeptide fraction, as judged by the slight decrease in apparent molecular weight on Sepharose CL-4B. These mucin glycopeptides contained approximately 50% of the radioactivity in the TR-1 fraction, indicating that the glycosylated domains of carboxyamidomethylated tracheobronchial mucin contained thiol residues. The remainder of the radioactivity from papain or Pronase digests of TR-1 eluted, like the TR-3 fractions, in the salt fraction on Sepharose CL-4B. Peptide mapping of the nonglycosylated TR-3 fraction by TLC and high voltage electrophoresis yielded six principal and several less intensely stained ninhydrin reactive components, with the radiolabel concentrated in one of the latter peptides

  2. Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling

    Directory of Open Access Journals (Sweden)

    Wobus Ulrich

    2009-01-01

    Full Text Available Abstract Background Barley (Hordeum vulgare L. seed development is a highly regulated process with fine-tuned interaction of various tissues controlling distinct physiological events during prestorage, storage and dessication phase. As potential regulators involved within this process we studied 172 transcription factors and 204 kinases for their expression behaviour and anchored a subset of them to the barley linkage map to promote marker-assisted studies on barley grains. Results By a hierachical clustering of the expression profiles of 376 potential regulatory genes expressed in 37 different tissues, we found 50 regulators preferentially expressed in one of the three grain tissue fractions pericarp, endosperm and embryo during seed development. In addition, 27 regulators found to be expressed during both seed development and germination and 32 additional regulators are characteristically expressed in multiple tissues undergoing cell differentiation events during barley plant ontogeny. Another 96 regulators were, beside in the developing seed, ubiquitously expressed among all tissues of germinating seedlings as well as in reproductive tissues. SNP-marker development for those regulators resulted in anchoring 61 markers on the genetic linkage map of barley and the chromosomal assignment of another 12 loci by using wheat-barley addition lines. The SNP frequency ranged from 0.5 to 1.0 SNP/kb in the parents of the various mapping populations and was 2.3 SNP/kb over all eight lines tested. Exploration of macrosynteny to rice revealed that the chromosomal orders of the mapped putative regulatory factors were predominantly conserved during evolution. Conclusion We identified expression patterns of major transcription factors and signaling related genes expressed during barley ontogeny and further assigned possible functions based on likely orthologs functionally well characterized in model plant species. The combined linkage map and reference

  3. Isolation and characterization of the human uracil DNA glycosylase gene

    International Nuclear Information System (INIS)

    Vollberg, T.M.; Siegler, K.M.; Cool, B.L.; Sirover, M.A.

    1989-01-01

    A series of anti-human placental uracil DNA glycosylase monoclonal antibodies was used to screen a human placental cDNA library in phage λgt11. Twenty-seven immunopositive plaques were detected and purified. One clone containing a 1.2-kilobase (kb) human cDNA insert was chosen for further study by insertion into pUC8. The resultant recombinant plasmid selected by hybridization a human placental mRNA that encoded a 37-kDa polypeptide. This protein was immunoprecipitated specifically by an anti-human placenta uracil DNA glycosylase monoclonal antibody. RNA blot-hybridization (Northern) analysis using placental poly(A) + RNA or total RNA from four different human fibroblast cell strains revealed a single 1.6-kb transcript. Genomic blots using DNA from each cell strain digested with either EcoRI or PstI revealed a complex pattern of cDNA-hydridizing restriction fragments. The genomic analysis for each enzyme was highly similar in all four human cell strains. In contrast, a single band was observed when genomic analysis was performed with the identical DNA digests with an actin gene probe. During cell proliferation there was an increase in the level of glycosylase mRNA that paralleled the increase in uracil DNA glycosylase enzyme activity. The isolation of the human uracil DNA glycosylase gene permits an examination of the structure, organization, and expression of a human DNA repair gene

  4. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  5. Fine Mapping and Transcriptome Analysis Reveal Candidate Genes Associated with Hybrid Lethality in Cabbage (Brassica Oleracea).

    Science.gov (United States)

    Xiao, Zhiliang; Hu, Yang; Zhang, Xiaoli; Xue, Yuqian; Fang, Zhiyuan; Yang, Limei; Zhang, Yangyong; Liu, Yumei; Li, Zhansheng; Liu, Xing; Liu, Zezhou; Lv, Honghao; Zhuang, Mu

    2017-06-05

    Hybrid lethality is a deleterious phenotype that is vital to species evolution. We previously reported hybrid lethality in cabbage ( Brassica oleracea ) and performed preliminary mapping of related genes. In the present study, the fine mapping of hybrid lethal genes revealed that BoHL1 was located on chromosome C1 between BoHLTO124 and BoHLTO130, with an interval of 101 kb. BoHL2 was confirmed to be between insertion-deletion (InDels) markers HL234 and HL235 on C4, with a marker interval of 70 kb. Twenty-eight and nine annotated genes were found within the two intervals of BoHL1 and BoHL2 , respectively. We also applied RNA-Seq to analyze hybrid lethality in cabbage. In the region of BoHL1 , seven differentially expressed genes (DEGs) and five resistance (R)-related genes (two in common, i.e., Bo1g153320 and Bo1g153380 ) were found, whereas in the region of BoHL2 , two DEGs and four R-related genes (two in common, i.e., Bo4g173780 and Bo4g173810 ) were found. Along with studies in which R genes were frequently involved in hybrid lethality in other plants, these interesting R-DEGs may be good candidates associated with hybrid lethality. We also used SNP/InDel analyses and quantitative real-time PCR to confirm the results. This work provides new insight into the mechanisms of hybrid lethality in cabbage.

  6. Gene therapy, human nature and the churches.

    Science.gov (United States)

    Dunstan, G R

    1991-12-01

    Moral analysis must begin with respect for the empirical features, the "facts of the case". Major advances in genetic knowledge and technology -- as in other sciences -- inevitably change mental attitudes. But they could not change human nature, a product of the distinctively human cerebral cortex. Human capacities like compassion and justice are our own and for us to guard. To ask (as some do) about a "right" to inherit a non-manipulated genome is to ask an unanswerable question: the language of rights is inappropriate in this context. Parents have a duty to safeguard and to serve the interests of their potential child. The medical duty is to help in that task in ways which they have limited freedom to choose. The role of churches is to be faithful to their deposit of faith and their theological principles, including that of freedom of conscience. Churches are too easily led in practice to over-rule conscience on grounds of authority, ecclesiastical or biblical, not sustained by convincing reason. This is most evident in some declarations concerning human reproduction. Better were it for them to help their faithful in moral reasoning, the ethics of choice; to keep consciences tender.

  7. Hidden Markov Models for Human Genes

    DEFF Research Database (Denmark)

    Baldi, Pierre; Brunak, Søren; Chauvin, Yves

    1997-01-01

    We analyse the sequential structure of human genomic DNA by hidden Markov models. We apply models of widely different design: conventional left-right constructs and models with a built-in periodic architecture. The models are trained on segments of DNA sequences extracted such that they cover com...

  8. Gene Expression in the Human Endolymphatic Sac

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Kirkeby, Svend; Vikeså, Jonas

    2015-01-01

    a1 sodium-bicarbonate transporter, SLC9a2 sodium-hydrogen transporter, SLC12a3 thiazide-sensitive Na-Cl transporter, and SLC34a2 sodium-phosphate transporter. CONCLUSIONS: Several important ion transporters of the SLC family are expressed in the human endolymphatic sac, including Pendrin...

  9. Systematic identification of human housekeeping genes possibly useful as references in gene expression studies.

    Science.gov (United States)

    Caracausi, Maria; Piovesan, Allison; Antonaros, Francesca; Strippoli, Pierluigi; Vitale, Lorenza; Pelleri, Maria Chiara

    2017-09-01

    The ideal reference, or control, gene for the study of gene expression in a given organism should be expressed at a medium‑high level for easy detection, should be expressed at a constant/stable level throughout different cell types and within the same cell type undergoing different treatments, and should maintain these features through as many different tissues of the organism. From a biological point of view, these theoretical requirements of an ideal reference gene appear to be best suited to housekeeping (HK) genes. Recent advancements in the quality and completeness of human expression microarray data and in their statistical analysis may provide new clues toward the quantitative standardization of human gene expression studies in biology and medicine, both cross‑ and within‑tissue. The systematic approach used by the present study is based on the Transcriptome Mapper tool and exploits the automated reassignment of probes to corresponding genes, intra‑ and inter‑sample normalization, elaboration and representation of gene expression values in linear form within an indexed and searchable database with a graphical interface recording quantitative levels of expression, expression variability and cross‑tissue width of expression for more than 31,000 transcripts. The present study conducted a meta‑analysis of a pool of 646 expression profile data sets from 54 different human tissues and identified actin γ 1 as the HK gene that best fits the combination of all the traditional criteria to be used as a reference gene for general use; two ribosomal protein genes, RPS18 and RPS27, and one aquaporin gene, POM121 transmembrane nucleporin C, were also identified. The present study provided a list of tissue‑ and organ‑specific genes that may be most suited for the following individual tissues/organs: Adipose tissue, bone marrow, brain, heart, kidney, liver, lung, ovary, skeletal muscle and testis; and also provides in these cases a representative

  10. Nucleotide sequence, transcript mapping, and regulation of the RAD2 gene of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Madura, K.; Prakash, S.

    1986-01-01

    The authors determined the nucleotide sequence, mapped the 5' and 3' nRNA termini, and examined the regulation of the RAD2 gene of Saccharomyces cerevisiae. A long open reading frame within the RAD2 transcribed region encodes a protein of 1031 amino acids with a calculated molecular weight of 117,847. A disruption of the RAD2 gene that deletes the 78 carboxyl terminal codons results in loss of RAD2 function. The 5' ends of RAD2 mRNA show considerable heterogeneity, mapping 5 to 62 nucleotides upstream of the first ATG codon of the long RAD2 open reading frame. The longest RAD2 transcripts also contain a short open reading frame of 37 codons that precedes and overlaps the 5' end of the long RAD2 open reading frame. The RAD2 3' nRNA end maps 171 nucleotides downstream of the TAA termination codon and 20 nucleotides downstream from a 12-base-pair inverted repeat that might function in transcript termination. Northern blot analysis showed a ninefold increase in steady-state levels of RAD2 mRNA after treatment of yeast cells with UV light. The 5' flanking region of the RAD2 gene contains several direct and inverted repeats and a 44-nuclotide-long purine-rich tract. The sequence T G G A G G C A T T A A found at position - 167 to -156 in the RAD2 gene is similar to at sequence present in the 5' flanking regions of the RAD7 and RAD10 genes

  11. Development and mapping of SSR markers linked to resistance-gene homologue clusters in common bean

    Institute of Scientific and Technical Information of China (English)

    Luz; Nayibe; Garzon; Matthew; Wohlgemuth; Blair

    2014-01-01

    Common bean is an important but often a disease-susceptible legume crop of temperate,subtropical and tropical regions worldwide. The crop is affected by bacterial, fungal and viral pathogens. The strategy of resistance-gene homologue(RGH) cloning has proven to be an efficient tool for identifying markers and R(resistance) genes associated with resistances to diseases. Microsatellite or SSR markers can be identified by physical association with RGH clones on large-insert DNA clones such as bacterial artificial chromosomes(BACs). Our objectives in this work were to identify RGH-SSR in a BAC library from the Andean genotype G19833 and to test and map any polymorphic markers to identify associations with known positions of disease resistance genes. We developed a set of specific probes designed for clades of common bean RGH genes and then identified positive BAC clones and developed microsatellites from BACs having SSR loci in their end sequences. A total of 629 new RGH-SSRs were identified and named BMr(bean microsatellite RGH-associated markers). A subset of these markers was screened for detecting polymorphism in the genetic mapping population DOR364 × G19833. A genetic map was constructed with a total of 264 markers,among which were 80 RGH loci anchored to single-copy RFLP and SSR markers. Clusters of RGH-SSRs were observed on most of the linkage groups of common bean and in positions associated with R-genes and QTL. The use of these new markers to select for disease resistance is discussed.

  12. Characterization of human cardiac myosin heavy chain genes

    International Nuclear Information System (INIS)

    Yamauchi-Takihara, K.; Sole, M.J.; Liew, J.; Ing, D.; Liew, C.C.

    1989-01-01

    The authors have isolated and analyzed the structure of the genes coding for the α and β forms of the human cardiac myosin heavy chain (MYHC). Detailed analysis of four overlapping MYHC genomic clones shows that the α-MYHC and β-MYHC genes constitute a total length of 51 kilobases and are tandemly linked. The β-MYHC-encoding gene, predominantly expressed in the normal human ventricle and also in slow-twitch skeletal muscle, is located 4.5 kilobases upstream of the α-MYHC-encoding gene, which is predominantly expressed in normal human atrium. The authors have determined the nucleotide sequences of the β form of the MYHC gene, which is 100% homologous to the cardiac MYHC cDNA clone (pHMC3). It is unlikely that the divergence of a few nucleotide sequences from the cardiac β-MYHC cDNA clone (pHMC3) reported in a MYHC cDNA clone (PSMHCZ) from skeletal muscle is due to a splicing mechanism. This finding suggests that the same β form of the cardiac MYHC gene is expressed in both ventricular and slow-twitch skeletal muscle. The promoter regions of both α- and β-MYHC genes, as well as the first four coding regions in the respective genes, have also been sequenced. The sequences in the 5'-flanking region of the α- and β-MYHC-encoding genes diverge extensively from one another, suggesting that expression of the α- and β-MYHC genes is independently regulated

  13. The human protein disulfide isomerase gene family

    Directory of Open Access Journals (Sweden)

    Galligan James J

    2012-07-01

    Full Text Available Abstract Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs. These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX. As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR. Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.

  14. Human sex hormone-binding globulin gene expression- multiple promoters and complex alternative splicing

    Directory of Open Access Journals (Sweden)

    Rosner William

    2009-05-01

    Full Text Available Abstract Background Human sex hormone-binding globulin (SHBG regulates free sex steroid concentrations in plasma and modulates rapid, membrane based steroid signaling. SHBG is encoded by an eight exon-long transcript whose expression is regulated by a downstream promoter (PL. The SHBG gene was previously shown to express a second major transcript of unknown function, derived from an upstream promoter (PT, and two minor transcripts. Results We report that transcriptional expression of the human SHBG gene is far more complex than previously described. PL and PT direct the expression of at least six independent transcripts each, resulting from alternative splicing of exons 4, 5, 6, and/or 7. We mapped two transcriptional start sites downstream of PL and PT, and present evidence for a third SHBG gene promoter (PN within the neighboring FXR2 gene; PN regulates the expression of at least seven independent SHBG gene transcripts, each possessing a novel, 164-nt first exon (1N. Transcriptional expression patterns were generated for human prostate, breast, testis, liver, and brain, and the LNCaP, MCF-7, and HepG2 cell lines. Each expresses the SHBG transcript, albeit in varying abundance. Alternative splicing was more pronounced in the cancer cell lines. PL- PT- and PN-derived transcripts were most abundant in liver, testis, and prostate, respectively. Initial findings reveal the existence of a smaller immunoreactive SHBG species in LNCaP, MCF-7, and HepG2 cells. Conclusion These results extend our understanding of human SHBG gene transcription, and raise new and important questions regarding the role of novel alternatively spliced transcripts, their function in hormonally responsive tissues including the breast and prostate, and the role that aberrant SHBG gene expression may play in cancer.

  15. Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila

    Science.gov (United States)

    Oortveld, Merel A. W.; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G.; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A.; Schenck, Annette

    2013-01-01

    Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules. PMID:24204314

  16. Origins of De Novo Genes in Human and Chimpanzee.

    Science.gov (United States)

    Ruiz-Orera, Jorge; Hernandez-Rodriguez, Jessica; Chiva, Cristina; Sabidó, Eduard; Kondova, Ivanela; Bontrop, Ronald; Marqués-Bonet, Tomàs; Albà, M Mar

    2015-12-01

    The birth of new genes is an important motor of evolutionary innovation. Whereas many new genes arise by gene duplication, others originate at genomic regions that did not contain any genes or gene copies. Some of these newly expressed genes may acquire coding or non-coding functions and be preserved by natural selection. However, it is yet unclear which is the prevalence and underlying mechanisms of de novo gene emergence. In order to obtain a comprehensive view of this process, we have performed in-depth sequencing of the transcriptomes of four mammalian species--human, chimpanzee, macaque, and mouse--and subsequently compared the assembled transcripts and the corresponding syntenic genomic regions. This has resulted in the identification of over five thousand new multiexonic transcriptional events in human and/or chimpanzee that are not observed in the rest of species. Using comparative genomics, we show that the expression of these transcripts is associated with the gain of regulatory motifs upstream of the transcription start site (TSS) and of U1 snRNP sites downstream of the TSS. In general, these transcripts show little evidence of purifying selection, suggesting that many of them are not functional. However, we find signatures of selection in a subset of de novo genes which have evidence of protein translation. Taken together, the data support a model in which frequently-occurring new transcriptional events in the genome provide the raw material for the evolution of new proteins.

  17. Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Vipin Narang

    Full Text Available Human gene regulatory networks (GRN can be difficult to interpret due to a tangle of edges interconnecting thousands of genes. We constructed a general human GRN from extensive transcription factor and microRNA target data obtained from public databases. In a subnetwork of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells, we benchmarked automated algorithms for identifying core regulatory genes (transcription factors and microRNAs. Among these algorithms, we identified K-core decomposition, pagerank and betweenness centrality algorithms as the most effective for discovering core regulatory genes in the network evaluated based on previously known roles of these genes in MCF-7 biology as well as in their ability to explain the up or down expression status of up to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organizing the GRN in an easier to interpret layered hierarchy where more influential regulatory genes percolate towards the inner layers. The integrated human gene and miRNA network and software used in this study are provided as supplementary materials (S1 Data accompanying this manuscript.

  18. Characterization of the human gene (TBXAS1) encoding thromboxane synthase.

    Science.gov (United States)

    Miyata, A; Yokoyama, C; Ihara, H; Bandoh, S; Takeda, O; Takahashi, E; Tanabe, T

    1994-09-01

    The gene encoding human thromboxane synthase (TBXAS1) was isolated from a human EMBL3 genomic library using human platelet thromboxane synthase cDNA as a probe. Nucleotide sequencing revealed that the human thromboxane synthase gene spans more than 75 kb and consists of 13 exons and 12 introns, of which the splice donor and acceptor sites conform to the GT/AG rule. The exon-intron boundaries of the thromboxane synthase gene were similar to those of the human cytochrome P450 nifedipine oxidase gene (CYP3A4) except for introns 9 and 10, although the primary sequences of these enzymes exhibited 35.8% identity each other. The 1.2-kb of the 5'-flanking region sequence contained potential binding sites for several transcription factors (AP-1, AP-2, GATA-1, CCAAT box, xenobiotic-response element, PEA-3, LF-A1, myb, basic transcription element and cAMP-response element). Primer-extension analysis indicated the multiple transcription-start sites, and the major start site was identified as an adenine residue located 142 bases upstream of the translation-initiation site. However, neither a typical TATA box nor a typical CAAT box is found within the 100-b upstream of the translation-initiation site. Southern-blot analysis revealed the presence of one copy of the thromboxane synthase gene per haploid genome. Furthermore, a fluorescence in situ hybridization study revealed that the human gene for thromboxane synthase is localized to band q33-q34 of the long arm of chromosome 7. A tissue-distribution study demonstrated that thromboxane synthase mRNA is widely expressed in human tissues and is particularly abundant in peripheral blood leukocyte, spleen, lung and liver. The low but significant levels of mRNA were observed in kidney, placenta and thymus.

  19. A human repair gene ERCC5 is involved in group G xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Shiomi, Tadahiro

    1994-01-01

    In E. coli, ultraviolet-induced DNA damage is removed by the coordinated action of UVR A, B, C, and D proteins (1). In Saccharomyces cerevisiae, more than ten genes have been reported to be involved in excision repair (2). The nucleotide excision repair pathway has been extensively studied in these organisms. To facilitate studying nucleotide excision repair in mammalian cells. Ultraviolet-sensitive rodent cell mutants have been isolated and classified into 11 complementation groups (9,10). The human nucleotide excision repair genes which complement the defects of the mutants have been designated as the ERCC (excision repair cross-complementing) genes; a number is added to refer to the particular rodent complementation group that is corrected by the gene. Recently, several human DNA repair genes have been cloned using rodent cell lines sensitive to ultraviolet. These include ERCC2 (3), ERCC3 (4), and ERCC6 (5), which correspond to the defective genes in the ultraviolet-sensitive human disorders xeroderma pigmentosum (XP) group D (6) and group B (4), and Cockayne's syndrome (CS) group B (7), respectively. The human excision repair gene ERCC5 was cloned after DNA-mediated gene transfer of human HeLa cell genomic DNA into the ultraviolet-sensitive mouse mutant XL216, a member of rodent complementation group 5 (11,12) and the gene was mapped on human chromosome 13q32.3-q33.1 by the replication R-banding fluorescence in situ hybridization method (13). The ERCC5 cDNA encodes a predicted 133 kDa nuclear protein that shares some homology with product of the yeast DNA repair gene RAD 2. Transfection with mouse ERCC5 cDNA restored normal levels of ultraviolet-resistance to XL216 cells. Microinjection of ERCC5 cDNA specifically restored the defect of XP group G cells (XP-G) as measured by unscheduled DNA synthesis (UDS), and XP-G cells stably transformed with ERCC5 cDNA showed nearly normal ultraviolet resistance. (J.P.N.)

  20. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    Science.gov (United States)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  1. Gene mapping in an anophthalmic pedigree of a consanguineous Pakistani family opened new horizons for research

    Directory of Open Access Journals (Sweden)

    Saleha S

    2016-06-01

    Full Text Available Clinical anophthalmia is a rare inherited disease of the eye and phenotype refers to the absence of ocular tissue in the orbit of eye. Patients may have unilateral or bilateral anophthalmia, and generally have short palpebral fissures and small orbits. Anophthalmia may be isolated or associated with a broader syndrome and may have genetic or environmental causes. However, genetic cause has been defined in only a small proportion of cases, therefore, a consanguineous Pakistani family of the Pashtoon ethnic group, with isolated clinical anophthalmia was investigated using linkage mapping. A family pedigree was created to trace the possible mode of inheritance of the disease. Blood samples were collected from affected as well as normal members of this family, and screened for disease-associated mutations. This family was analyzed for linkage to all the known loci of clinical anophthalmia, using microsatellite short tandem repeat (STR markers. Direct sequencing was performed to find out disease-associated mutations in the candidate gene. This family with isolated clinical anophthalmia, was mapped to the SOX2 gene that is located at chromosome 3q26.3-q27. However, on exonic and regulatory regions mutation screening of the SOX2 gene, the disease-associated mutation was not identified. It showed that another gene responsible for development of the eye might be present at chromosome 3q26.3-q27 and needs to be identified and screened for the disease-associated mutation in this family.

  2. Gene mapping in an anophthalmic pedigree of a consanguineous Pakistani family opened new horizons for research

    Science.gov (United States)

    Ajmal, M; Zafar, S; Hameed, A

    2016-01-01

    ABSTRACT Clinical anophthalmia is a rare inherited disease of the eye and phenotype refers to the absence of ocular tissue in the orbit of eye. Patients may have unilateral or bilateral anophthalmia, and generally have short palpebral fissures and small orbits. Anophthalmia may be isolated or associated with a broader syndrome and may have genetic or environmental causes. However, genetic cause has been defined in only a small proportion of cases, therefore, a consanguineous Pakistani family of the Pashtoon ethnic group, with isolated clinical anophthalmia was investigated using linkage mapping. A family pedigree was created to trace the possible mode of inheritance of the disease. Blood samples were collected from affected as well as normal members of this family, and screened for disease-associated mutations. This family was analyzed for linkage to all the known loci of clinical anophthalmia, using microsatellite short tandem repeat (STR) markers. Direct sequencing was performed to find out disease-associated mutations in the candidate gene. This family with isolated clinical anophthalmia, was mapped to the SOX2 gene that is located at chromosome 3q26.3-q27. However, on exonic and regulatory regions mutation screening of the SOX2 gene, the disease-associated mutation was not identified. It showed that another gene responsible for development of the eye might be present at chromosome 3q26.3-q27 and needs to be identified and screened for the disease-associated mutation in this family. PMID:27785411

  3. Sex-Dependent Gene Expression in Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Daniel Ronen

    2014-08-01

    Full Text Available Males and females have a variety of sexually dimorphic traits, most of which result from hormonal differences. However, differences between male and female embryos initiate very early in development, before hormonal influence begins, suggesting the presence of genetically driven sexual dimorphisms. By comparing the gene expression profiles of male and X-inactivated female human pluripotent stem cells, we detected Y-chromosome-driven effects. We discovered that the sex-determining gene SRY is expressed in human male pluripotent stem cells and is induced by reprogramming. In addition, we detected more than 200 differentially expressed autosomal genes in male and female embryonic stem cells. Some of these genes are involved in steroid metabolism pathways and lead to sex-dependent differentiation in response to the estrogen precursor estrone. Thus, we propose that the presence of the Y chromosome and specifically SRY may drive sex-specific differences in the growth and differentiation of pluripotent stem cells.

  4. Characterization of human septic sera induced gene expression modulation in human myocytes

    Science.gov (United States)

    Hussein, Shaimaa; Michael, Paul; Brabant, Danielle; Omri, Abdelwahab; Narain, Ravin; Passi, Kalpdrum; Ramana, Chilakamarti V.; Parrillo, Joseph E.; Kumar, Anand; Parissenti, Amadeo; Kumar, Aseem

    2009-01-01

    To gain a better understanding of the gene expression changes that occurs during sepsis, we have performed a cDNA microarray study utilizing a tissue culture model that mimics human sepsis. This study utilized an in vitro model of cultured human fetal cardiac myocytes treated with 10% sera from septic patients or 10% sera from healthy volunteers. A 1700 cDNA expression microarray was used to compare the transcription profile from human cardiac myocytes treated with septic sera vs normal sera. Septic sera treatment of myocytes resulted in the down-regulation of 178 genes and the up-regulation of 4 genes. Our data indicate that septic sera induced cell cycle, metabolic, transcription factor and apoptotic gene expression changes in human myocytes. Identification and characterization of gene expression changes that occur during sepsis may lead to the development of novel therapeutics and diagnostics. PMID:19684886

  5. The human cumulus--oocyte complex gene-expression profile

    Science.gov (United States)

    Assou, Said; Anahory, Tal; Pantesco, Véronique; Le Carrour, Tanguy; Pellestor, Franck; Klein, Bernard; Reyftmann, Lionel; Dechaud, Hervé; De Vos, John; Hamamah, Samir

    2006-01-01

    BACKGROUND The understanding of the mechanisms regulating human oocyte maturation is still rudimentary. We have identified transcripts differentially expressed between immature and mature oocytes, and cumulus cells. METHODS Using oligonucleotides microarrays, genome wide gene expression was studied in pooled immature and mature oocytes or cumulus cells from patients who underwent IVF. RESULTS In addition to known genes such as DAZL, BMP15 or GDF9, oocytes upregulated 1514 genes. We show that PTTG3 and AURKC are respectively the securin and the Aurora kinase preferentially expressed during oocyte meiosis. Strikingly, oocytes overexpressed previously unreported growth factors such as TNFSF13/APRIL, FGF9, FGF14, and IL4, and transcription factors including OTX2, SOX15 and SOX30. Conversely, cumulus cells, in addition to known genes such as LHCGR or BMPR2, overexpressed cell-tocell signaling genes including TNFSF11/RANKL, numerous complement components, semaphorins (SEMA3A, SEMA6A, SEMA6D) and CD genes such as CD200. We also identified 52 genes progressively increasing during oocyte maturation, comprising CDC25A and SOCS7. CONCLUSION The identification of genes up and down regulated during oocyte maturation greatly improves our understanding of oocyte biology and will provide new markers that signal viable and competent oocytes. Furthermore, genes found expressed in cumulus cells are potential markers of granulosa cell tumors. PMID:16571642

  6. Nomenclature for alleles of the human carboxylesterase 1 gene

    DEFF Research Database (Denmark)

    Rasmussen, Henrik B.; Madsen, Majbritt B.; Bjerre, Ditte

    2017-01-01

    The carboxylesterase 1 gene (CES1) in humans encodes a hydrolase, which is implicated in the metabolism of several commonly used drugs 1. This gene is located on chromosome 16 with a highly homologous pseudogene, CES1P1, in its proximity. A duplicated segment of CES1 replaces most of CES1P1 in some...... appears to be low 8,13. The formation of hybrids consisting of a gene and a related pseudogene has been reported for other genes than CES1. This includes the hybrids of the gene encoding cytochrome P450 2D6 (CYP2D6) and pseudogene CYP2D7, that is, the so-called CYP2D7/D6 hybrids 14......,15. These are categorized as CYP2D6 variants and not as variants of pseudogene CYP2D716....

  7. Gene expression in the aging human brain: an overview.

    Science.gov (United States)

    Mohan, Adith; Mather, Karen A; Thalamuthu, Anbupalam; Baune, Bernhard T; Sachdev, Perminder S

    2016-03-01

    The review aims to provide a summary of recent developments in the study of gene expression in the aging human brain. Profiling differentially expressed genes or 'transcripts' in the human brain over the course of normal aging has provided valuable insights into the biological pathways that appear activated or suppressed in late life. Genes mediating neuroinflammation and immune system activation in particular, show significant age-related upregulation creating a state of vulnerability to neurodegenerative and neuropsychiatric disease in the aging brain. Cellular ionic dyshomeostasis and age-related decline in a host of molecular influences on synaptic efficacy may underlie neurocognitive decline in later life. Critically, these investigations have also shed light on the mobilization of protective genetic responses within the aging human brain that help determine health and disease trajectories in older age. There is growing interest in the study of pre and posttranscriptional regulators of gene expression, and the role of noncoding RNAs in particular, as mediators of the phenotypic diversity that characterizes human brain aging. Gene expression studies in healthy brain aging offer an opportunity to unravel the intricately regulated cellular underpinnings of neurocognitive aging as well as disease risk and resiliency in late life. In doing so, new avenues for early intervention in age-related neurodegenerative disease could be investigated with potentially significant implications for the development of disease-modifying therapies.

  8. Mechanosensitive promoter region in the human HB-GAM gene

    DEFF Research Database (Denmark)

    Liedert, Astrid; Kassem, Moustapha; Claes, Lutz

    2009-01-01

    Mechanical loading is essential for maintaining bone mass in the adult skeleton. However, the underlying process of the transfer of the physical stimulus into a biochemical response, which is termed mechanotransduction is poorly understood. Mechanotransduction results in the modulation of gene...... cells. Analysis of the human HB-GAM gene upstream regulatory region with luciferase reporter gene assays revealed that the upregulation of HB-GAM expression occurred at the transcriptional level and was mainly dependent on the HB-GAM promoter region most upstream containing three potential AP-1 binding...

  9. Relation between HLA genes, human skin volatiles and attractiveness of humans to malaria mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Beijleveld, H.; Qiu, Y.T.; Maliepaard, C.A.; Verduyn, W.; Haasnoot, G.W.; Claas, F.H.J.; Mumm, R.; Bouwmeester, H.J.; Takken, W.; Loon, van J.J.A.; Smallegange, R.C.

    2013-01-01

    Chemical cues are considered to be the most important cues for mosquitoes to find their hosts and humans can be ranked for attractiveness to mosquitoes based on the chemical cues they emit. Human leukocyte antigen (HLA) genes are considered to be involved in the regulation of human body odor and may

  10. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  11. DRUMS: a human disease related unique gene mutation search engine.

    Science.gov (United States)

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. © 2011 Wiley-Liss, Inc.

  12. Nucleotide sequence of the human N-myc gene

    International Nuclear Information System (INIS)

    Stanton, L.W.; Schwab, M.; Bishop, J.M.

    1986-01-01

    Human neuroblastomas frequently display amplification and augmented expression of a gene known as N-myc because of its similarity to the protooncogene c-myc. It has therefore been proposed that N-myc is itself a protooncogene, and subsequent tests have shown that N-myc and c-myc have similar biological activities in cell culture. The authors have now detailed the kinship between N-myc and c-myc by determining the nucleotide sequence of human N-myc and deducing the amino acid sequence of the protein encoded by the gene. The topography of N-myc is strikingly similar to that of c-myc: both genes contain three exons of similar lengths; the coding elements of both genes are located in the second and third exons; and both genes have unusually long 5' untranslated regions in their mRNAs, with features that raise the possibility that expression of the genes may be subject to similar controls of translation. The resemblance between the proteins encoded by N-myc and c-myc sustains previous suspicions that the genes encode related functions

  13. Report of the first international workshop on human chromosome 14 mapping 1993

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.W.

    1995-06-01

    The first International Workshop on Human Chromosome 14 mapping was held at Novotel in Toronto, Canada on June 9-12, 1993. There were 23 participants from nine countries. The goals of the workshop were to compile physical maps and a consensus linkage map, to consolidate available data on disease loci, to catalogue and facilitate distribution of resources and to encourage new collaborations and data sharing.

  14. A scale invariant clustering of genes on human chromosome 7

    Directory of Open Access Journals (Sweden)

    Kendal Wayne S

    2004-01-01

    Full Text Available Abstract Background Vertebrate genes often appear to cluster within the background of nontranscribed genomic DNA. Here an analysis of the physical distribution of gene structures on human chromosome 7 was performed to confirm the presence of clustering, and to elucidate possible underlying statistical and biological mechanisms. Results Clustering of genes was confirmed by virtue of a variance of the number of genes per unit physical length that exceeded the respective mean. Further evidence for clustering came from a power function relationship between the variance and mean that possessed an exponent of 1.51. This power function implied that the spatial distribution of genes on chromosome 7 was scale invariant, and that the underlying statistical distribution had a Poisson-gamma (PG form. A PG distribution for the spatial scattering of genes was validated by stringent comparisons of both the predicted variance to mean power function and its cumulative distribution function to data derived from chromosome 7. Conclusion The PG distribution was consistent with at least two different biological models: In the microrearrangement model, the number of genes per unit length of chromosome represented the contribution of a random number of smaller chromosomal segments that had originated by random breakage and reconstruction of more primitive chromosomes. Each of these smaller segments would have necessarily contained (on average a gamma distributed number of genes. In the gene cluster model, genes would be scattered randomly to begin with. Over evolutionary timescales, tandem duplication, mutation, insertion, deletion and rearrangement could act at these gene sites through a stochastic birth death and immigration process to yield a PG distribution. On the basis of the gene position data alone it was not possible to identify the biological model which best explained the observed clustering. However, the underlying PG statistical model implicated neutral

  15. QUADrATiC: scalable gene expression connectivity mapping for repurposing FDA-approved therapeutics.

    Science.gov (United States)

    O'Reilly, Paul G; Wen, Qing; Bankhead, Peter; Dunne, Philip D; McArt, Darragh G; McPherson, Suzanne; Hamilton, Peter W; Mills, Ken I; Zhang, Shu-Dong

    2016-05-04

    Gene expression connectivity mapping has proven to be a powerful and flexible tool for research. Its application has been shown in a broad range of research topics, most commonly as a means of identifying potential small molecule compounds, which may be further investigated as candidates for repurposing to treat diseases. The public release of voluminous data from the Library of Integrated Cellular Signatures (LINCS) programme further enhanced the utilities and potentials of gene expression connectivity mapping in biomedicine. We describe QUADrATiC ( http://go.qub.ac.uk/QUADrATiC ), a user-friendly tool for the exploration of gene expression connectivity on the subset of the LINCS data set corresponding to FDA-approved small molecule compounds. It enables the identification of compounds for repurposing therapeutic potentials. The software is designed to cope with the increased volume of data over existing tools, by taking advantage of multicore computing architectures to provide a scalable solution, which may be installed and operated on a range of computers, from laptops to servers. This scalability is provided by the use of the modern concurrent programming paradigm provided by the Akka framework. The QUADrATiC Graphical User Interface (GUI) has been developed using advanced Javascript frameworks, providing novel visualization capabilities for further analysis of connections. There is also a web services interface, allowing integration with other programs or scripts. QUADrATiC has been shown to provide an improvement over existing connectivity map software, in terms of scope (based on the LINCS data set), applicability (using FDA-approved compounds), usability and speed. It offers potential to biological researchers to analyze transcriptional data and generate potential therapeutics for focussed study in the lab. QUADrATiC represents a step change in the process of investigating gene expression connectivity and provides more biologically-relevant results than

  16. Report of the fifth international workshop on human X chromosome mapping

    Energy Technology Data Exchange (ETDEWEB)

    Willard, H.F.; Cremers, F.; Mandel, J.L.; Monaco, A.P.; Nelson, D.L.; Schlessinger, D.

    1994-12-31

    A high-quality integrated genetic and physical map of the X chromosome from telomere to telomere, based primarily on YACs formatted with probes and STSs, is increasingly close to reality. At the Fifth International X Chromosome Workshop, organized by A.M. Poustka and D. Schlessinger in Heidelberg, Germany, April 24--27, 1994, substantial progress was recorded on extension and refinement of the physical map, on the integration of genetic and cytogenetic data, on attempts to use the map to direct gene searches, and on nascent large-scale sequencing efforts. This report summarizes physical and genetic mapping information presented at the workshop and/or published since the reports of the fourth International X Chromosome Workshop. The principle aim of the workshop was to derive a consensus map of the chromosome, in terms of physical contigs emphasizing the location of genes and microsatellite markers. The resulting map is presented and updates previous versions. This report also updates the list of highly informative microsatellites. The text highlights the working state of the map, the genes known to reside on the X, and the progress toward integration of various types of data.

  17. Evolutionary Conservation in Genes Underlying Human Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Lisa Michelle Ogawa

    2014-05-01

    Full Text Available Many psychiatric diseases observed in humans have tenuous or absent analogs in other species. Most notable among these are schizophrenia and autism. One hypothesis has posited that these diseases have arisen as a consequence of human brain evolution, for example, that the same processes that led to advances in cognition, language, and executive function also resulted in novel diseases in humans when dysfunctional. Here, the molecular evolution of genes associated with these and other psychiatric disorders are compared among species. Genes associated with psychiatric disorders are drawn from the literature and orthologous sequences are collected from eleven primate species (human, chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, baboon, marmoset, squirrel monkey, and galago and thirty one non-primate mammalian species. Evolutionary parameters, including dN/dS, are calculated for each gene and compared between disease classes and among species, focusing on humans and primates compared to other mammals and on large-brained taxa (cetaceans, rhinoceros, walrus, bear, and elephant compared to their small-brained sister species. Evidence of differential selection in primates supports the hypothesis that schizophrenia and autism are a cost of higher brain function. Through this work a better understanding of the molecular evolution of the human brain, the pathophysiology of disease, and the genetic basis of human psychiatric disease is gained.

  18. Mutation and Expression of the DCC Gene in Human Lung Cancer

    Directory of Open Access Journals (Sweden)

    Takashi Kohno

    2000-07-01

    Full Text Available Chromosome 18q is frequently deleted in lung cancers, a common region of 18q deletions was mapped to chromosome 18g21. Since the DCC candidate tumor suppressor gene has been mapped in this region, mutation and expression of the DCC gene were examined in 46 lung cancer cell lines, consisting of 14 small cell lung carcinomas (SCLCs and 32 non-small cell lung carcinomas (NSCLCs, to elucidate the pathogenetic significance of DCC alterations in human lung carcinogenesis. A heterozygous missense mutation was detected in a NSCLC cell line, Ma26, while homozygous deletion was not detected in any of the cell lines. The DCC gene was expressed in 11 (24% of the 46 cell lines, the incidence of DCC expression was significantly higher in SCLCs (7/14, 50% than in NSCLCs (4/32, 13% (P = .01, Fisher's exact test. Therefore, genetic alterations of DCC are infrequent; however, the levels of DCC expression vary among lung cancer cells, in particular, between SCLCs and NSCLCs. The present result does not implicate DCC as a specific mutational target of 18q deletions in human lung cancer; however, it suggests that DCC is a potential target of inactivation by genetic defects including intron or promoter mutations and/or epigenetic alterations. The present result also suggests that DCC expression is associated with some properties of SCLCs, such as a neuroendocrine (NE feature.

  19. Molecular mapping of a sunflower rust resistance gene from HAR6.

    Science.gov (United States)

    Bulos, Mariano; Ramos, María L; Altieri, Emiliano; Sala, Carlos A

    2013-03-01

    Sunflower rust, caused by Puccinia helianthi Schw., can result in significant yield losses in cultivated sunflower (Helianthus annuus L. var. macrocarpus Ckll.). HAR6 is a germplasm population resistant to most predominant rust races. The objectives of this study were to map the resistance factor present in HAR6 (R HAR6 ), and to provide and validate molecular tools for the identification of this gene for marker assisted selection purposes. Virulence reaction of seedlings for the F2 population and F2:3 families suggested that a single dominant gene confers rust resistance in HAR6-1, a selected rust resistance line from the original population. Genetic mapping with eight markers covered 97.4 cM of genetic distance on linkage group 13 of the sunflower consensus map. A co-dominant marker ZVG61 is the closest marker distal to R HAR6 at a genetic distance of 0.7 cM, while ORS581, a dominant marker linked in the coupling phase, is proximal to R HAR6 at a genetic distance of 1.5 cM. Validation of these markers was assessed by converting a susceptible line into a rust resistant isoline by means of marker assisted backcrossing. The application of these results to assist the breeding process and to design new strategies for rust control in sunflower is discussed.

  20. Construction of an integrated map and location of a bruchid resistance gene in mung bean

    Directory of Open Access Journals (Sweden)

    Lixia Wang

    2016-10-01

    Full Text Available Bruchid beetle (Callosobruchus chinensis poses a serious threat to the production and storage of mung bean (Vigna radiata. Mapping bruchid resistance (Br will provide an important basis for cloning the responsible gene(s and elucidating its functional mechanism, and will also facilitate marker-assisted selection in mung bean breeding. Here, we report the construction of the genetic linkage groups of mung bean and mapping of the Br1 locus using an RIL population derived from a cross between Berken, a bruchid-susceptible line, and ACC41, a bruchid-resistant line. A total of 560 markers were mapped onto 11 linkage groups, with 38.0% of the markers showing distorted segregation. The lengths of the linkage groups ranged from 45.2 to 117.0 cM with a total coverage of 732.9 cM and an average interval of 1.3 cM between loci. Br1 was located on LG9 between BM202 (0.7 cM and Vr2-627 (1.7 cM. Based on 270 shared SSR markers, most of the linkage groups were assigned to specific chromosomes. These results should further accelerate the genetic study of this crop.

  1. Short-Term Plasticity of the Visuomotor Map during Grasping Movements in Humans

    Science.gov (United States)

    Safstrom, Daniel; Edin, Benoni B.

    2005-01-01

    During visually guided grasping movements, visual information is transformed into motor commands. This transformation is known as the "visuomotor map." To investigate limitations in the short-term plasticity of the visuomotor map in normal humans, we studied the maximum grip aperture (MGA) during the reaching phase while subjects grasped objects…

  2. Complex nature of SNP genotype effects on gene expression in primary human leucocytes

    Directory of Open Access Journals (Sweden)

    Dinesen Lotte C

    2009-01-01

    Full Text Available Abstract Background Genome wide association studies have been hugely successful in identifying disease risk variants, yet most variants do not lead to coding changes and how variants influence biological function is usually unknown. Methods We correlated gene expression and genetic variation in untouched primary leucocytes (n = 110 from individuals with celiac disease – a common condition with multiple risk variants identified. We compared our observations with an EBV-transformed HapMap B cell line dataset (n = 90, and performed a meta-analysis to increase power to detect non-tissue specific effects. Results In celiac peripheral blood, 2,315 SNP variants influenced gene expression at 765 different transcripts (cis expression quantitative trait loci, eQTLs. 135 of the detected SNP-probe effects (reflecting 51 unique probes were also detected in a HapMap B cell line published dataset, all with effects in the same allelic direction. Overall gene expression differences within the two datasets predominantly explain the limited overlap in observed cis-eQTLs. Celiac associated risk variants from two regions, containing genes IL18RAP and CCR3, showed significant cis genotype-expression correlations in the peripheral blood but not in the B cell line datasets. We identified 14 genes where a SNP affected the expression of different probes within the same gene, but in opposite allelic directions. By incorporating genetic variation in co-expression analyses, functional relationships between genes can be more significantly detected. Conclusion In conclusion, the complex nature of genotypic effects in human populations makes the use of a relevant tissue, large datasets, and analysis of different exons essential to enable the identification of the function for many genetic risk variants in common diseases.

  3. Architectonic Mapping of the Human Brain beyond Brodmann.

    Science.gov (United States)

    Amunts, Katrin; Zilles, Karl

    2015-12-16

    Brodmann has pioneered structural brain mapping. He considered functional and pathological criteria for defining cortical areas in addition to cytoarchitecture. Starting from this idea of structural-functional relationships at the level of cortical areas, we will argue that the cortical architecture is more heterogeneous than Brodmann's map suggests. A triple-scale concept is proposed that includes repetitive modular-like structures and micro- and meso-maps. Criteria for defining a cortical area will be discussed, considering novel preparations, imaging and optical methods, 2D and 3D quantitative architectonics, as well as high-performance computing including analyses of big data. These new approaches contribute to an understanding of the brain on multiple levels and challenge the traditional, mosaic-like segregation of the cerebral cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Mapping visual cortex in monkeys and humans using surface-based atlases

    Science.gov (United States)

    Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.

    2001-01-01

    We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.

  5. The human oxytocin gene promoter is regulated by estrogens.

    Science.gov (United States)

    Richard, S; Zingg, H H

    1990-04-15

    Gonadal steroids affect brain function primarily by altering the expression of specific genes, yet the specific mechanisms by which neuronal target genes undergo such regulation are unknown. Recent evidence suggests that the expression of the neuropeptide gene for oxytocin (OT) is modulated by estrogens. We therefore examined the possibility that this regulation occurred via a direct interaction of the estrogen-receptor complex with cis-acting elements flanking the OT gene. DNA-mediated gene transfer experiments were performed using Neuro-2a neuroblastoma cells and chimeric plasmids containing portions of the human OT gene 5'-glanking region linked to the chloramphenicol acetyltransferase gene. We identified a 19-base pair region located at -164 to -146 upstream of the transcription start site which is capable of conferring estrogen responsiveness to the homologous as well as to a heterologous promoter. The hormonal response is strictly dependent on the presence of intracellular estrogen receptors, since estrogen induced stimulation occurred only in Neuro-2a cells co-transfected with an expression vector for the human estrogen receptor. The identified region contains a novel imperfect palindrome (GGTGACCTTGACC) with sequence similarity to other estrogen response elements (EREs). To define cis-acting elements that function in synergism with the ERE, sequences 3' to the ERE were deleted, including the CCAAT box, two additional motifs corresponding to the right half of the ERE palindrome (TGACC), as well as a CTGCTAA heptamer similar to the "elegans box" found in Caenorhabditis elegans. Interestingly, optimal function of the identified ERE was fully independent of these elements and only required a short promoter region (-49 to +36). Our studies define a molecular mechanism by which estrogens can directly modulate OT gene expression. However, only a subset of OT neurons are capable of binding estrogens, therefore, direct action of estrogens on the OT gene may be

  6. Heterogeneous stock rat: a unique animal model for mapping genes influencing bone fragility.

    Science.gov (United States)

    Alam, Imranul; Koller, Daniel L; Sun, Qiwei; Roeder, Ryan K; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla; Diez, Margarita; Johannesson, Martina; Flint, Jonathan; Econs, Michael J; Turner, Charles H; Foroud, Tatiana

    2011-05-01

    Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in four inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which is time consuming and often not successful. A potential alternative approach is to use a highly genetically informative animal model resource capable of delivering very high resolution gene mapping such as Heterogeneous stock (HS) rat. HS rat was derived from eight inbred progenitors: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N. The genetic recombination pattern generated across 50 generations in these rats has been shown to deliver ultra-high even gene-level resolution for complex genetic studies. The purpose of this study is to investigate the usefulness of the HS rat model for fine mapping and identification of genes underlying bone fragility phenotypes. We compared bone geometry, density and strength phenotypes at multiple skeletal sites in HS rats with those obtained from five of the eight progenitor inbred strains. In addition, we estimated the heritability for different bone phenotypes in these rats and employed principal component analysis to explore relationships among bone phenotypes in the HS rats. Our study demonstrates that significant variability exists for different skeletal phenotypes in HS rats compared with their inbred progenitors. In addition, we estimated high heritability for several bone phenotypes and biologically interpretable factors explaining significant overall variability, suggesting that the HS rat model could be a unique genetic resource for rapid and efficient discovery of the genetic determinants of bone fragility. Copyright

  7. Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage.

    Directory of Open Access Journals (Sweden)

    Khalid A Osman

    Full Text Available Soil waterlogging is one of the major abiotic stresses adversely affecting maize growth and yield. To identify dynamic expression of genes or quantitative trait loci (QTL, QTL associated with plant height, root length, root dry weight, shoot dry weight and total dry weight were identified via conditional analysis in a mixed linear model and inclusive composite interval mapping method at three respective periods under waterlogging and control conditions. A total of 13, 19 and 23 QTL were detected at stages 3D|0D (the period during 0-3 d of waterlogging, 6D|3D and 9D|6D, respectively. The effects of each QTL were moderate and distributed over nine chromosomes, singly explaining 4.14-18.88% of the phenotypic variation. Six QTL (ph6-1, rl1-2, sdw4-1, sdw7-1, tdw4-1 and tdw7-1 were identified at two consistent stages of seedling development, which could reflect a continuous expression of genes; the remaining QTL were detected at only one stage. Thus, expression of most QTL was influenced by the developmental status. In order to provide additional evidence regarding the role of corresponding genes in waterlogging tolerance, mapping of Expressed Sequence Tags markers and microRNAs were conducted. Seven candidate genes were observed to co-localize with the identified QTL on chromosomes 1, 4, 6, 7 and 9, and may be important candidate genes for waterlogging tolerance. These results are a good starting point for understanding the genetic basis for selectively expressing of QTL in different stress periods and the common genetic control mechanism of the co-localized traits.

  8. Genome-wide mapping of furfural tolerance genes in Escherichia coli.

    Science.gov (United States)

    Glebes, Tirzah Y; Sandoval, Nicholas R; Reeder, Philippa J; Schilling, Katherine D; Zhang, Min; Gill, Ryan T

    2014-01-01

    Advances in genomics have improved the ability to map complex genotype-to-phenotype relationships, like those required for engineering chemical tolerance. Here, we have applied the multiSCale Analysis of Library Enrichments (SCALEs; Lynch et al. (2007) Nat. Method.) approach to map, in parallel, the effect of increased dosage for >10(5) different fragments of the Escherichia coli genome onto furfural tolerance (furfural is a key toxin of lignocellulosic hydrolysate). Only 268 of >4,000 E. coli genes (∼ 6%) were enriched after growth selections in the presence of furfural. Several of the enriched genes were cloned and tested individually for their effect on furfural tolerance. Overexpression of thyA, lpcA, or groESL individually increased growth in the presence of furfural. Overexpression of lpcA, but not groESL or thyA, resulted in increased furfural reduction rate, a previously identified mechanism underlying furfural tolerance. We additionally show that plasmid-based expression of functional LpcA or GroESL is required to confer furfural tolerance. This study identifies new furfural tolerant genes, which can be applied in future strain design efforts focused on the production of fuels and chemicals from lignocellulosic hydrolysate.

  9. Genome-wide mapping of furfural tolerance genes in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Tirzah Y Glebes

    Full Text Available Advances in genomics have improved the ability to map complex genotype-to-phenotype relationships, like those required for engineering chemical tolerance. Here, we have applied the multiSCale Analysis of Library Enrichments (SCALEs; Lynch et al. (2007 Nat. Method. approach to map, in parallel, the effect of increased dosage for >10(5 different fragments of the Escherichia coli genome onto furfural tolerance (furfural is a key toxin of lignocellulosic hydrolysate. Only 268 of >4,000 E. coli genes (∼ 6% were enriched after growth selections in the presence of furfural. Several of the enriched genes were cloned and tested individually for their effect on furfural tolerance. Overexpression of thyA, lpcA, or groESL individually increased growth in the presence of furfural. Overexpression of lpcA, but not groESL or thyA, resulted in increased furfural reduction rate, a previously identified mechanism underlying furfural tolerance. We additionally show that plasmid-based expression of functional LpcA or GroESL is required to confer furfural tolerance. This study identifies new furfural tolerant genes, which can be applied in future strain design efforts focused on the production of fuels and chemicals from lignocellulosic hydrolysate.

  10. Fine mapping and candidate gene analysis of the virescent gene v 1 in Upland cotton (Gossypium hirsutum).

    Science.gov (United States)

    Mao, Guangzhi; Ma, Qiang; Wei, Hengling; Su, Junji; Wang, Hantao; Ma, Qifeng; Fan, Shuli; Song, Meizhen; Zhang, Xianlong; Yu, Shuxun

    2018-02-01

    The young leaves of virescent mutants are yellowish and gradually turn green as the plants reach maturity. Understanding the genetic basis of virescent mutants can aid research of the regulatory mechanisms underlying chloroplast development and chlorophyll biosynthesis, as well as contribute to the application of virescent traits in crop breeding. In this study, fine mapping was employed, and a recessive gene (v 1 ) from a virescent mutant of Upland cotton was narrowed to an 84.1-Kb region containing ten candidate genes. The GhChlI gene encodes the cotton Mg-chelatase I subunit (CHLI) and was identified as the candidate gene for the virescent mutation using gene annotation. BLAST analysis showed that the GhChlI gene has two copies, Gh_A10G0282 and Gh_D10G0283. Sequence analysis indicated that the coding region (CDS) of GhChlI is 1269 bp in length, with three predicted exons and one non-synonymous nucleotide mutation (G1082A) in the third exon of Gh_D10G0283, with an amino acid (AA) substitution of arginine (R) to lysine (K). GhChlI-silenced TM-1 plants exhibited a lower GhChlI expression level, a lower chlorophyll content, and the virescent phenotype. Analysis of upstream regulatory elements and expression levels of GhChlI showed that the expression quantity of GhChlI may be normal, and with the development of the true leaf, the increase in the Gh_A10G0282 dosage may partially make up for the deficiency of Gh_D10G0283 in the v 1 mutant. Phylogenetic analysis and sequence alignment revealed that the protein sequence encoded by the third exon of GhChlI is highly conserved across diverse plant species, in which AA substitutions among the completely conserved residues frequently result in changes in leaf color in various species. These results suggest that the mutation (G1082A) within the GhChlI gene may cause a functional defect of the GhCHLI subunit and thus the virescent phenotype in the v 1 mutant. The GhChlI mutation not only provides a tool for understanding the

  11. Construction of a restriction map and gene map of the lettuce chloroplast small single-copy region using Southern cross-hybridization.

    Science.gov (United States)

    Mitchelson, K R

    1996-01-01

    The small single-copy region (SSCR) of the chloroplast genome of many higher plants typically contain ndh genes encoding proteins that share homology with subunits of the respiratory-chain reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase complex of mitochondria. A map of the lettuce chloroplast SSCR has been determined by Southern cross-hybridization, taking advantage of the high degree of homology between a tobacco small single-copy fragment and a corresponding lettuce chloroplast fragment. The gene order of the SSCR of lettuce and tobacco chloroplasts is similar. The cross-hybridization method can rapidly create a primary gene map of unknown chloroplast fragments, thus providing detailed information of the localization and arrangement of genes and conserved open reading frame regions.

  12. Genetic mapping of a major dominant gene for resistance to Ralstonia solanacearum in eggplant.

    Science.gov (United States)

    Lebeau, A; Gouy, M; Daunay, M C; Wicker, E; Chiroleu, F; Prior, P; Frary, A; Dintinger, J

    2013-01-01

    Resistance of eggplant against Ralstonia solanacearum phylotype I strains was assessed in a F(6) population of recombinant inbred lines (RILs) derived from a intra-specific cross between S. melongena MM738 (susceptible) and AG91-25 (resistant). Resistance traits were determined as disease score, percentage of wilted plants, and stem-based bacterial colonization index, as assessed in greenhouse experiments conducted in Réunion Island, France. The AG91-25 resistance was highly efficient toward strains CMR134, PSS366 and GMI1000, but only partial toward the highly virulent strain PSS4. The partial resistance found against PSS4 was overcome under high inoculation pressure, with heritability estimates from 0.28 to 0.53, depending on the traits and season. A genetic map was built with 119 AFLP, SSR and SRAP markers positioned on 18 linkage groups (LG), for a total length of 884 cM, and used for quantitative trait loci (QTL) analysis. A major dominant gene, named ERs1, controlled the resistance to strains CMR134, PSS366, and GMI1000. Against strain PSS4, this gene was not detected, but a significant QTL involved in delay of disease progress was detected on another LG. The possible use of the major resistance gene ERs1 in marker-assisted selection and the prospects offered for academic studies of a possible gene for gene system controlling resistance to bacterial wilt in solanaceous plants are discussed.

  13. Cognitive genomics: Linking genes to behavior in the human brain

    Directory of Open Access Journals (Sweden)

    Genevieve Konopka

    2017-02-01

    Full Text Available Correlations of genetic variation in DNA with functional brain activity have already provided a starting point for delving into human cognitive mechanisms. However, these analyses do not provide the specific genes driving the associations, which are complicated by intergenic localization as well as tissue-specific epigenetics and expression. The use of brain-derived expression datasets could build upon the foundation of these initial genetic insights and yield genes and molecular pathways for testing new hypotheses regarding the molecular bases of human brain development, cognition, and disease. Thus, coupling these human brain gene expression data with measurements of brain activity may provide genes with critical roles in brain function. However, these brain gene expression datasets have their own set of caveats, most notably a reliance on postmortem tissue. In this perspective, I summarize and examine the progress that has been made in this realm to date, and discuss the various frontiers remaining, such as the inclusion of cell-type-specific information, additional physiological measurements, and genomic data from patient cohorts.

  14. Law-medicine interfacing: patenting of human genes and mutations.

    Science.gov (United States)

    Fialho, Arsenio M; Chakrabarty, Ananda M

    2011-08-01

    Mutations, Single Nucleotide Polymorphisms (SNPs), deletions and genetic rearrangements in specific genes in the human genome account for not only our physical characteristics and behavior, but can lead to many in-born and acquired diseases. Such changes in the genome can also predispose people to cancers, as well as significantly affect the metabolism and efficacy of many drugs, resulting in some cases in acute toxicity to the drug. The testing of the presence of such genetic mutations and rearrangements is of great practical and commercial value, leading many of these genes and their mutations/deletions and genetic rearrangements to be patented. A recent decision by a judge in the Federal District Court in the Southern District of New York, has created major uncertainties, based on the revocation of BRCA1 and BRCA2 gene patents, in the eligibility of all human and presumably other gene patents. This article argues that while patents on BRCA1 and BRCA2 genes could be challenged based on a lack of utility, the patenting of the mutations and genetic rearrangements is of great importance to further development and commercialization of genetic tests that can save human lives and prevent suffering, and should be allowed.

  15. A gene-based high-resolution comparative radiation hybrid map as a framework for genome sequence assembly of a bovine chromosome 6 region associated with QTL for growth, body composition, and milk performance traits

    Directory of Open Access Journals (Sweden)

    Laurent Pascal

    2006-03-01

    Full Text Available Abstract Background A number of different quantitative trait loci (QTL for various phenotypic traits, including milk production, functional, and conformation traits in dairy cattle as well as growth and body composition traits in meat cattle, have been mapped consistently in the middle region of bovine chromosome 6 (BTA6. Dense genetic and physical maps and, ultimately, a fully annotated genome sequence as well as their mutual connections are required to efficiently identify genes and gene variants responsible for genetic variation of phenotypic traits. A comprehensive high-resolution gene-rich map linking densely spaced bovine markers and genes to the annotated human genome sequence is required as a framework to facilitate this approach for the region on BTA6 carrying the QTL. Results Therefore, we constructed a high-resolution radiation hybrid (RH map for the QTL containing chromosomal region of BTA6. This new RH map with a total of 234 loci including 115 genes and ESTs displays a substantial increase in loci density compared to existing physical BTA6 maps. Screening the available bovine genome sequence resources, a total of 73 loci could be assigned to sequence contigs, which were already identified as specific for BTA6. For 43 loci, corresponding sequence contigs, which were not yet placed on the bovine genome assembly, were identified. In addition, the improved potential of this high-resolution RH map for BTA6 with respect to comparative mapping was demonstrated. Mapping a large number of genes on BTA6 and cross-referencing them with map locations in corresponding syntenic multi-species chromosome segments (human, mouse, rat, dog, chicken achieved a refined accurate alignment of conserved segments and evolutionary breakpoints across the species included. Conclusion The gene-anchored high-resolution RH map (1 locus/300 kb for the targeted region of BTA6 presented here will provide a valuable platform to guide high-quality assembling and

  16. Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes

    Directory of Open Access Journals (Sweden)

    Dov Tiosano

    2016-05-01

    Full Text Available The well-documented latitudinal clines of genes affecting human skin color presumably arise from the need for protection from intense ultraviolet radiation (UVR vs. the need to use UVR for vitamin D synthesis. Sampling 751 subjects from a broad range of latitudes and skin colors, we investigated possible multilocus correlated adaptation of skin color genes with the vitamin D receptor gene (VDR, using a vector correlation metric and network method called BlocBuster. We discovered two multilocus networks involving VDR promoter and skin color genes that display strong latitudinal clines as multilocus networks, even though many of their single gene components do not. Considered one by one, the VDR components of these networks show diverse patterns: no cline, a weak declining latitudinal cline outside of Africa, and a strong in- vs. out-of-Africa frequency pattern. We confirmed these results with independent data from HapMap. Standard linkage disequilibrium analyses did not detect these networks. We applied BlocBuster across the entire genome, showing that our networks are significant outliers for interchromosomal disequilibrium that overlap with environmental variation relevant to the genes’ functions. These results suggest that these multilocus correlations most likely arose from a combination of parallel selective responses to a common environmental variable and coadaptation, given the known Mendelian epistasis among VDR and the skin color genes.

  17. The structure of the human interferon alpha/beta receptor gene.

    Science.gov (United States)

    Lutfalla, G; Gardiner, K; Proudhon, D; Vielh, E; Uzé, G

    1992-02-05

    Using the cDNA coding for the human interferon alpha/beta receptor (IFNAR), the IFNAR gene has been physically mapped relative to the other loci of the chromosome 21q22.1 region. 32,906 base pairs covering the IFNAR gene have been cloned and sequenced. Primer extension and solution hybridization-ribonuclease protection have been used to determine that the transcription of the gene is initiated in a broad region of 20 base pairs. Some aspects of the polymorphism of the gene, including noncoding sequences, have been analyzed; some are allelic differences in the coding sequence that induce amino acid variations in the resulting protein. The exon structure of the IFNAR gene and of that of the available genes for the receptors of the cytokine/growth hormone/prolactin/interferon receptor family have been compared with the predictions for the secondary structure of those receptors. From this analysis, we postulate a common origin and propose an hypothesis for the divergence from the immunoglobulin superfamily.

  18. Toll like receptors gene expression of human keratinocytes cultured of severe burn injury.

    Science.gov (United States)

    Cornick, Sarita Mac; Noronha, Silvana Aparecida Alves Corrêa de; Noronha, Samuel Marcos Ribeiro de; Cezillo, Marcus V B; Ferreira, Lydia Masako; Gragnani, Alfredo

    2014-01-01

    To evaluate the expression profile of genes related to Toll Like Receptors (TLR) pathways of human Primary Epidermal keratinocytes of patients with severe burns. After obtaining viable fragments of skin with and without burning, culture hKEP was initiated by the enzymatic method using Dispase (Sigma-Aldrich). These cells were treated with Trizol(r) (Life Technologies) for extraction of total RNA. This was quantified and analyzed for purity for obtaining cDNA for the analysis of gene expression using specific TLR pathways PCR Arrays plates (SA Biosciences). After the analysis of gene expression we found that 21% of these genes were differentially expressed, of which 100% were repressed or hyporegulated. Among these, the following genes (fold decrease): HSPA1A (-58), HRAS (-36), MAP2K3 (-23), TOLLIP (-23), RELA (-18), FOS (-16), and TLR1 (-6.0). This study contributes to the understanding of the molecular mechanisms related to TLR pathways and underlying wound infection caused by the burn. Furthermore, it may provide new strategies to restore normal expression of these genes and thereby change the healing process and improve clinical outcome.

  19. Gene expression and adaptive noncoding changes during human evolution.

    Science.gov (United States)

    Babbitt, Courtney C; Haygood, Ralph; Nielsen, William J; Wray, Gregory A

    2017-06-05

    Despite evidence for adaptive changes in both gene expression and non-protein-coding, putatively regulatory regions of the genome during human evolution, the relationship between gene expression and adaptive changes in cis-regulatory regions remains unclear. Here we present new measurements of gene expression in five tissues of humans and chimpanzees, and use them to assess this relationship. We then compare our results with previous studies of adaptive noncoding changes, analyzing correlations at the level of gene ontology groups, in order to gain statistical power to detect correlations. Consistent with previous studies, we find little correlation between gene expression and adaptive noncoding changes at the level of individual genes; however, we do find significant correlations at the level of biological function ontology groups. The types of function include processes regulated by specific transcription factors, responses to genetic or chemical perturbations, and differentiation of cell types within the immune system. Among functional categories co-enriched with both differential expression and noncoding adaptation, prominent themes include cancer, particularly epithelial cancers, and neural development and function.

  20. Death and resurrection of the human IRGM gene.

    Directory of Open Access Journals (Sweden)

    Cemalettin Bekpen

    2009-03-01

    Full Text Available Immunity-related GTPases (IRG play an important role in defense against intracellular pathogens. One member of this gene family in humans, IRGM, has been recently implicated as a risk factor for Crohn's disease. We analyzed the detailed structure of this gene family among primates and showed that most of the IRG gene cluster was deleted early in primate evolution, after the divergence of the anthropoids from prosimians ( about 50 million years ago. Comparative sequence analysis of New World and Old World monkey species shows that the single-copy IRGM gene became pseudogenized as a result of an Alu retrotransposition event in the anthropoid common ancestor that disrupted the open reading frame (ORF. We find that the ORF was reestablished as a part of a polymorphic stop codon in the common ancestor of humans and great apes. Expression analysis suggests that this change occurred in conjunction with the insertion of an endogenous retrovirus, which altered the transcription initiation, splicing, and expression profile of IRGM. These data argue that the gene became pseudogenized and was then resurrected through a series of complex structural events and suggest remarkable functional plasticity where alleles experience diverse evolutionary pressures over time. Such dynamism in structure and evolution may be critical for a gene family locked in an arms race with an ever-changing repertoire of intracellular parasites.

  1. Optimal design method to minimize users' thinking mapping load in human-machine interactions.

    Science.gov (United States)

    Huang, Yanqun; Li, Xu; Zhang, Jie

    2015-01-01

    The discrepancy between human cognition and machine requirements/behaviors usually results in serious mental thinking mapping loads or even disasters in product operating. It is important to help people avoid human-machine interaction confusions and difficulties in today's mental work mastered society. Improving the usability of a product and minimizing user's thinking mapping and interpreting load in human-machine interactions. An optimal human-machine interface design method is introduced, which is based on the purpose of minimizing the mental load in thinking mapping process between users' intentions and affordance of product interface states. By analyzing the users' thinking mapping problem, an operating action model is constructed. According to human natural instincts and acquired knowledge, an expected ideal design with minimized thinking loads is uniquely determined at first. Then, creative alternatives, in terms of the way human obtains operational information, are provided as digital interface states datasets. In the last, using the cluster analysis method, an optimum solution is picked out from alternatives, by calculating the distances between two datasets. Considering multiple factors to minimize users' thinking mapping loads, a solution nearest to the ideal value is found in the human-car interaction design case. The clustering results show its effectiveness in finding an optimum solution to the mental load minimizing problems in human-machine interaction design.

  2. Structure of gene and pseudogenes of human apoferritin H

    Energy Technology Data Exchange (ETDEWEB)

    Costanzo, F; Colombo, M; Staempfli, S; Santoro, C; Marone, M; Frank, K; Delius, H; Cortese, R

    1986-01-24

    Ferritin is composed of two subunits, H and L. cDNA's coding for these proteins from human liver, lymphocytes and from the monocyte-like cell line U937 have been cloned and sequenced. Southern blot analysis on total human DNA reveals that there are many DNA segments hybridizing to the apoferritin H and L cDNA probes. In view of the tissue heterogeneity of ferritin molecules, it appeared possible that apoferritin molecules could be coded by a family of genes differentially expressed in various tissues. In this paper, the authors describe the cloning and sequencing of the gene coding for human apoferritin H. This gene has three introns; the exon sequence is identical to that of cDNAs isolated from human liver, lymphocytes, HeLa cells and endothelial cells. In addition they show that at least 15 intronless pseudogenes exist, with features suggesting that there were originated by reverse transcription and insertion. On the basis of these results they conclude that only one gene is responsible for the synthesis of the majority of apoferritin H mRNA in various tissues examined, and that probably all the other DNA segments hybridizing with apoferritin cDNA are pseudogenes.

  3. Gene expression profiles in adenosine-treated human mast cells ...

    African Journals Online (AJOL)

    Gene expression profiles in adenosine-treated human mast cells. ... SW Kang, JE Jeong, CH Kim, SH Choi, SH Chae, SA Jun, HJ Cha, JH Kim, YM Lee, YS ... beta 4, ring finger protein, high-mobility group, calmodulin 2, RAN binding protein, ...

  4. Ethical perception of human gene in transgenic banana | Amin ...

    African Journals Online (AJOL)

    Transgenic banana has been developed to prevent hepatitis B through vaccination. Its production seems to be an ideal alternative for cheaper vaccines. The objective of this paper is to assess the ethical perception of transgenic banana which involved the transfer of human albumin gene, and to compare their ethical ...

  5. Global patterns of diversity and selection in human tyrosinase gene.

    Science.gov (United States)

    Hudjashov, Georgi; Villems, Richard; Kivisild, Toomas

    2013-01-01

    Global variation in skin pigmentation is one of the most striking examples of environmental adaptation in humans. More than two hundred loci have been identified as candidate genes in model organisms and a few tens of these have been found to be significantly associated with human skin pigmentation in genome-wide association studies. However, the evolutionary history of different pigmentation genes is rather complex: some loci have been subjected to strong positive selection, while others evolved under the relaxation of functional constraints in low UV environment. Here we report the results of a global study of the human tyrosinase gene, which is one of the key enzymes in melanin production, to assess the role of its variation in the evolution of skin pigmentation differences among human populations. We observe a higher rate of non-synonymous polymorphisms in the European sample consistent with the relaxation of selective constraints. A similar pattern was previously observed in the MC1R gene and concurs with UV radiation-driven model of skin color evolution by which mutations leading to lower melanin levels and decreased photoprotection are subject to purifying selection at low latitudes while being tolerated or even favored at higher latitudes because they facilitate UV-dependent vitamin D production. Our coalescent date estimates suggest that the non-synonymous variants, which are frequent in Europe and North Africa, are recent and have emerged after the separation of East and West Eurasian populations.

  6. Designer Babies? Teacher Views on Gene Technology and Human Medicine.

    Science.gov (United States)

    Schibeci, Renato

    1999-01-01

    Summarizes the views of a sample of primary and high school teachers on the application of gene technology to human medicine. In general, high school teachers are more positive about these developments than primary teachers, and both groups of teachers are more positive than interested lay publics. Highlights ways in which this topic can be…

  7. A human gut microbial gene catalogue established by metagenomic sequencing

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha; Sicheritz-Pontén, Thomas; Nielsen, Henrik Bjørn

    2010-01-01

    To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence...

  8. Gene therapy in nonhuman primate models of human autoimmune disease

    NARCIS (Netherlands)

    t'Hart, B. A.; Vervoordeldonk, M.; Heeney, J. L.; Tak, P. P.

    2003-01-01

    Before autoimmune diseases in humans can be treated with gene therapy, the safety and efficacy of the used vectors must be tested in valid experimental models. Monkeys, such as the rhesus macaque or the common marmoset, provide such models. This publication reviews the state of the art in monkey

  9. Mutational landscape of the human Y chromosome-linked genes ...

    Indian Academy of Sciences (India)

    Mutational landscape of the human Y chromosome-linked genes and loci in patients with hypogonadism. Deepali Pathak, Sandeep Kumar Yadav, Leena Rawal and Sher Ali. J. Genet. 94, 677–687. Table 1. Details showing age, sex, karyotype, clinical features and diagnosis results of the patients with H. Hormone profile.

  10. Contemporary Animal Models For Human Gene Therapy Applications.

    Science.gov (United States)

    Gopinath, Chitra; Nathar, Trupti Job; Ghosh, Arkasubhra; Hickstein, Dennis Durand; Nelson, Everette Jacob Remington

    2015-01-01

    Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial.

  11. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  12. Recent advances in human gene-longevity association studies

    DEFF Research Database (Denmark)

    De Benedictis, G; Tan, Q; Jeune, B

    2001-01-01

    This paper reviews the recent literature on genes and longevity. The influence of genes on human life span has been confirmed in studies of life span correlation between related individuals based on family and twin data. Results from major twin studies indicate that approximately 25......% of the variation in life span is genetically determined. Taking advantage of recent developments in molecular biology, researchers are now searching for candidate genes that might have an influence on life span. The data on unrelated individuals emerging from an ever-increasing number of centenarian studies makes...... this possible. This paper summarizes the rich literature dealing with the various aspects of the influence of genes on individual survival. Common phenomena affecting the development of disease and longevity are discussed. The major methodological difficulty one is confronted with when studying the epidemiology...

  13. Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation

    DEFF Research Database (Denmark)

    Kieffer-Kwon, Kyong-Rim; Tang, Zhonghui; Mathe, Ewy

    2013-01-01

    IA-PET technologies to map the promoter-enhancer interactomes of pluripotent ES cells and differentiated B lymphocytes. We confirm that enhancer usage varies widely across tissues. Unexpectedly, we find that this feature extends to broadly transcribed genes, including Myc and Pim1 cell-cycle regulators, which...... associate with an entirely different set of enhancers in ES and B cells. By means of high-resolution CpG methylomes, genome editing, and digital footprinting, we show that these enhancers recruit lineage-determining factors. Furthermore, we demonstrate that the turning on and off of enhancers during...

  14. Transmission electron microscopic method for gene mapping on polytene chromosomes by in situ hybridization

    OpenAIRE

    Wu, Madeline; Davidson, Norman

    1981-01-01

    A transmission electron microscope method for gene mapping by in situ hybridization to Drosophila polytene chromosomes has been developed. As electron-opaque labels, we use colloidal gold spheres having a diameter of 25 nm. The spheres are coated with a layer of protein to which Escherichia coli single-stranded DNA is photochemically crosslinked. Poly(dT) tails are added to the 3' OH ends of these DNA strands, and poly(dA) tails are added to the 3' OH ends of a fragmented cloned Drosophila DN...

  15. Human gene therapy and imaging in neurological diseases

    International Nuclear Information System (INIS)

    Jacobs, Andreas H.; Winkler, Alexandra; Castro, Maria G.; Lowenstein, Pedro

    2005-01-01

    Molecular imaging aims to assess non-invasively disease-specific biological and molecular processes in animal models and humans in vivo. Apart from precise anatomical localisation and quantification, the most intriguing advantage of such imaging is the opportunity it provides to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Further, molecular imaging can be used to address basic scientific questions, e.g. transcriptional regulation, signal transduction or protein/protein interaction, and will be essential in developing treatment strategies based on gene therapy. Most importantly, molecular imaging is a key technology in translational research, helping to develop experimental protocols which may later be applied to human patients. Over the past 20 years, imaging based on positron emission tomography (PET) and magnetic resonance imaging (MRI) has been employed for the assessment and ''phenotyping'' of various neurological diseases, including cerebral ischaemia, neurodegeneration and brain gliomas. While in the past neuro-anatomical studies had to be performed post mortem, molecular imaging has ushered in the era of in vivo functional neuro-anatomy by allowing neuroscience to image structure, function, metabolism and molecular processes of the central nervous system in vivo in both health and disease. Recently, PET and MRI have been successfully utilised together in the non-invasive assessment of gene transfer and gene therapy in humans. To assess the efficiency of gene transfer, the same markers are being used in animals and humans, and have been applied for phenotyping human disease. Here, we review the imaging hallmarks of focal and disseminated neurological diseases, such as cerebral ischaemia, neurodegeneration and glioblastoma multiforme, as well as the attempts to translate gene therapy's experimental knowledge into clinical applications and the way in which this process is being promoted through the use of

  16. Quantitative susceptibility mapping of human brain at 3T: a multisite reproducibility study.

    Science.gov (United States)

    Lin, P-Y; Chao, T-C; Wu, M-L

    2015-03-01

    Quantitative susceptibility mapping of the human brain has demonstrated strong potential in examining iron deposition, which may help in investigating possible brain pathology. This study assesses the reproducibility of quantitative susceptibility mapping across different imaging sites. In this study, the susceptibility values of 5 regions of interest in the human brain were measured on 9 healthy subjects following calibration by using phantom experiments. Each of the subjects was imaged 5 times on 1 scanner with the same procedure repeated on 3 different 3T systems so that both within-site and cross-site quantitative susceptibility mapping precision levels could be assessed. Two quantitative susceptibility mapping algorithms, similar in principle, one by using iterative regularization (iterative quantitative susceptibility mapping) and the other with analytic optimal solutions (deterministic quantitative susceptibility mapping), were implemented, and their performances were compared. Results show that while deterministic quantitative susceptibility mapping had nearly 700 times faster computation speed, residual streaking artifacts seem to be more prominent compared with iterative quantitative susceptibility mapping. With quantitative susceptibility mapping, the putamen, globus pallidus, and caudate nucleus showed smaller imprecision on the order of 0.005 ppm, whereas the red nucleus and substantia nigra, closer to the skull base, had a somewhat larger imprecision of approximately 0.01 ppm. Cross-site errors were not significantly larger than within-site errors. Possible sources of estimation errors are discussed. The reproducibility of quantitative susceptibility mapping in the human brain in vivo is regionally dependent, and the precision levels achieved with quantitative susceptibility mapping should allow longitudinal and multisite studies such as aging-related changes in brain tissue magnetic susceptibility. © 2015 by American Journal of Neuroradiology.

  17. Polycythemia in transgenic mice expressing the human erythropoietin gene

    International Nuclear Information System (INIS)

    Semenza, G.L.; Traystman, M.D.; Gearhart, J.D.; Antonarakis, S.E.

    1989-01-01

    Erythropoietin is a glycoprotein hormone that regulates mammalian erythropoiesis. To study the expression of the human erythropoietin gene, EPO, 4 kilobases of DNA encompassing the gene with 0.4 kilobase of 5' flanking sequence and 0.7 kilobase of 3' flanking sequence was microinjected into fertilized mouse eggs. Transgenic mice were generated that are polycythemic, with increased erythrocytic indices in peripheral blood, increased numbers of erythroid precursors in hematopoietic tissue, and increased serum erythropoietin levels. Transgenic homozygotes show a greater degree of polycythemia than do heterozygotes as well as striking extramedullary erythropoiesis. Human erythropoietin RNA was found not only in fetal liver, adult liver, and kidney but also in all other transgenic tissues analyzed. Anemia induced increased human erythropoietin RNA levels in liver but not kidney. These transgenic mice represent a unique model of polycythemia due to increased erythropoietin levels

  18. Homology of yeast photoreactivating gene fragment with human genomic digests

    International Nuclear Information System (INIS)

    Meechan, P.J.; Milam, K.M.; Cleaver, J.E.

    1984-01-01

    Enzymatic photoreactivation of UV-induced DNA lesions has been demonstrated for a variety of prokaryotic and eukaryotic organisms. Its presence in placental mammals, however, has not been clearly established. The authors attempted to resolve this question by assaying for the presence (or absence) of sequences in human DNA complimentary to a fragment of the photoreactivating gene from S. cerevisiae that has recently been cloned. In another study, DNA from human, chick E. coli and yeast cells was digested with either HindIII of BglII, electrophoresed on a 0.5% agarose gel, transferred (Southern blot) to a nylon membrane and probed for homology against a Sau3A restriction fragment from S. cerevisiae that compliments phr/sup -/ cells. Hybridization to human DNA digests was observed only under relatively non-stringent conditions indicating the gene is not conserved in placental mammals. These results are correlated with current literature data concerning photoreactivating enzymes

  19. AthaMap web tools for the analysis of transcriptional and posttranscriptional regulation of gene expression in Arabidopsis thaliana.

    Science.gov (United States)

    Hehl, Reinhard; Bülow, Lorenz

    2014-01-01

    The AthaMap database provides a map of verified and predicted transcription factor (TF) and small RNA-binding sites for the A. thaliana genome. The database can be used for bioinformatic predictions of putative regulatory sites. Several online web tools are available that address specific questions. Starting with the identification of transcription factor-binding sites (TFBS) in any gene of interest, colocalizing TFBS can be identified as well as common TFBS in a set of user-provided genes. Furthermore, genes can be identified that are potentially targeted by specific transcription factors or small inhibitory RNAs. This chapter provides detailed information on how each AthaMap web tool can be used online. Examples on how this database is used to address questions in circadian and diurnal regulation are given. Furthermore, complementary databases and databases that go beyond questions addressed with AthaMap are discussed.

  20. A Gene Implicated in Activation of Retinoic Acid Receptor Targets Is a Novel Renal Agenesis Gene in Humans

    DEFF Research Database (Denmark)

    Brophy, Patrick D.; Rasmussen, Maria; Parida, Mrutyunjaya

    2017-01-01

    investigations have identified several gene variants that cause RA, including EYA1, LHX1, and WT1 However, whereas compound null mutations of genes encoding α and γ retinoic acid receptors (RARs) cause RA in mice, to date there have been no reports of variants in RAR genes causing RA in humans. In this study, we...... in humans....

  1. A human motion model based on maps for navigation systems

    Directory of Open Access Journals (Sweden)

    Kaiser Susanna

    2011-01-01

    Full Text Available Abstract Foot-mounted indoor positioning systems work remarkably well when using additionally the knowledge of floor-plans in the localization algorithm. Walls and other structures naturally restrict the motion of pedestrians. No pedestrian can walk through walls or jump from one floor to another when considering a building with different floor-levels. By incorporating known floor-plans in sequential Bayesian estimation processes such as particle filters (PFs, long-term error stability can be achieved as long as the map is sufficiently accurate and the environment sufficiently constraints pedestrians' motion. In this article, a new motion model based on maps and floor-plans is introduced that is capable of weighting the possible headings of the pedestrian as a function of the local environment. The motion model is derived from a diffusion algorithm that makes use of the principle of a source effusing gas and is used in the weighting step of a PF implementation. The diffusion algorithm is capable of including floor-plans as well as maps with areas of different degrees of accessibility. The motion model more effectively represents the probability density function of possible headings that are restricted by maps and floor-plans than a simple binary weighting of particles (i.e., eliminating those that crossed walls and keeping the rest. We will show that the motion model will help for obtaining better performance in critical navigation scenarios where two or more modes may be competing for some of the time (multi-modal scenarios.

  2. Fluorescence in situ hybridization mapping of six loci containing genes involved in the dioxin metabolism of domestic bovids.

    Science.gov (United States)

    Genualdo, Viviana; Spalenza, Veronica; Perucatti, Angela; Iannuzzi, Alessandra; Di Meo, Giulia Pia; Caputi-Jambrenghi, Annamaria; Vonghia, Gino; Rasero, Roberto; Nebbia, Carlo; Sacchi, Paola; Iannuzzi, Leopoldo

    2011-05-01

    Six loci containing genes involved in the dioxin metabolism (ARNT, AHR, CYP1A1, CYP1A2, CYP1B1 and AHRR) were assigned, for the first time, to cattle (Bos taurus, 2n = 60, BTA), river buffalo (Bubalus bubalis, 2n = 50, BBU), sheep (Ovis aries, 2n = 54, OAR) and goat (Capra hircus, 2n = 60, CHI) chromosomes by comparative FISH-mapping and R-banding using bovine BAC-clones. The following chromosome locations were found: ARNT to BTA3q21, BBU6q21, OAR1p21 and CHI3q21, AHR to BTA4q15, BBU8q15, OAR4q15 and CHI4q15; CYP1A1 and CYP1A2 to BTA21q17, BBU20q17, OAR18q17 and CHI21q17; CYP1B1 to BTA11q16, BBU12q22, OAR3p16 and CHI11q16, AHRR to BTA20q24, BBU19q24, OAR16q24 and CHI20q24. All loci were mapped at the same homoeologous chromosomes and chromosome bands of the four bovid species. Comparisons with corresponding human locations were also reported.

  3. A novel human gene encoding a G-protein-coupled receptor (GPR15) is located on chromosome 3

    Energy Technology Data Exchange (ETDEWEB)

    Heiber, M.; Marchese, A.; O`Dowd, B.F. [Univ. of Toronto, Ontario (Canada)] [and others

    1996-03-05

    We used sequence similarities among G-protein-coupled receptor genes to discover a novel receptor gene. Using primers based on conserved regions of the opioid-related receptors, we isolated a PCR product that was used to locate the full-length coding region of a novel human receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor encoded by GPR15 with other receptors revealed that it shared sequence identity with the angiotensin II AT1 and AT2 receptors, the interleukin 8b receptor, and the orphan receptors GPR1 and AGTL1. GPR15 was mapped to human chromosome 3q11.2-q13.1. 12 refs., 2 figs.

  4. Primary structure and mapping of the hupA gene of Salmonella typhimurium.

    Science.gov (United States)

    Higgins, N P; Hillyard, D

    1988-01-01

    In bacteria, the complex nucleoid structure is folded and maintained by negative superhelical tension and a set of type II DNA-binding proteins, also called histonelike proteins. The most abundant type II DNA-binding protein is HU. Southern blot analysis showed that Salmonella typhimurium contained two HU genes that corresponded to Escherichia coli genes hupA (encoding HU-2 protein) and hupB (encoding HU-1). Salmonella hupA was cloned, and the nucleotide sequence of the gene was determined. Comparison of hupA of E. coli and S. typhimurium revealed that the HU-2 proteins were identical and that there was high conservation of nucleotide sequences outside the coding frames of the genes. A 300-member genomic library of S. typhimurium was constructed by using random transposition of MudP, a specialized chimeric P22-Mu phage that packages chromosomal DNA unidirectionally from its insertion point. Oligonucleotide hybridization against the library identified one MudP insertion that lies within 28 kilobases of hupA; the MudP was 12% linked to purH at 90.5 min on the standard map. Plasmids expressing HU-2 had a surprising phenotype; they caused growth arrest when they were introduced into E. coli strains bearing a himA or hip mutation. These results suggest that IHF and HU have interactive roles in bacteria. Images PMID:3056912

  5. Association Mapping and Nucleotide Sequence Variation in Five Drought Tolerance Candidate Genes in Spring Wheat

    Directory of Open Access Journals (Sweden)

    Erena A. Edae

    2013-07-01

    Full Text Available Functional markers are needed for key genes involved in drought tolerance to improve selection for crop yield under moisture stress conditions. The objectives of this study were to (i characterize five drought tolerance candidate genes, namely dehydration responsive element binding 1A (, enhanced response to abscisic acid ( and , and fructan 1-exohydrolase ( and , in wheat ( L. for nucleotide and haplotype diversity, Tajima’s D value, and linkage disequilibrium (LD and (ii associate within-gene single nucleotide polymorphisms (SNPs with phenotypic traits in a spring wheat association mapping panel ( = 126. Field trials were grown under contrasting moisture regimes in Greeley, CO, and Melkassa, Ethiopia, in 2010 and 2011. Genome-specific amplification and DNA sequence analysis of the genes identified SNPs and revealed differences in nucleotide and haplotype diversity, Tajima’s D, and patterns of LD. showed associations (false discovery rate adjusted probability value = 0.1 with normalized difference vegetation index, heading date, biomass, and spikelet number. Both and were associated with harvest index, flag leaf width, and leaf senescence. was associated with grain yield, and was associated with thousand kernel weight and test weight. If validated in relevant genetic backgrounds, the identified marker–trait associations may be applied to functional marker-assisted selection.

  6. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections

    Science.gov (United States)

    Lipner, Ettie M.; Garcia, Benjamin J.; Strong, Michael

    2016-01-01

    Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects. PMID:26751573

  7. Serial Analysis of Gene Expression: Applications in Human Studies

    Directory of Open Access Journals (Sweden)

    Tuteja Renu

    2004-01-01

    Full Text Available Serial analysis of gene expression (SAGE is a powerful tool, which provides quantitative and comprehensive expression profile of genes in a given cell population. It works by isolating short fragments of genetic information from the expressed genes that are present in the cell being studied. These short sequences, called SAGE tags, are linked together for efficient sequencing. The frequency of each SAGE tag in the cloned multimers directly reflects the transcript abundance. Therefore, SAGE results in an accurate picture of gene expression at both the qualitative and the quantitative levels. It does not require a hybridization probe for each transcript and allows new genes to be discovered. This technique has been applied widely in human studies and various SAGE tags/SAGE libraries have been generated from different cells/tissues such as dendritic cells, lung fibroblast cells, oocytes, thyroid tissue, B-cell lymphoma, cultured keratinocytes, muscles, brain tissues, sciatic nerve, cultured Schwann cells, cord blood-derived mast cells, retina, macula, retinal pigment epithelial cells, skin cells, and so forth. In this review we present the updated information on the applications of SAGE technology mainly to human studies.

  8. Mind Mapping on Development of Human Resource of Education

    Science.gov (United States)

    Fauzi, Anis

    2016-01-01

    Human resources in the field of education consists of students, teachers, administrative staff, university students, lecturers, structural employees, educational bureaucrats, stakeholders, parents, the society around the school, and the society around the campus. The existence of human resources need to be cultivated and developed towards the…

  9. Mapping the institutional consolidation of EU human health expertise

    NARCIS (Netherlands)

    de Ruijter, A.

    The EU’s role in the field of human health is solidifying in terms of law and policy, but also with respect to the institutional organisation of human health expertise. In light of the emerging health-care union and questions regarding the nature and scope of a European health law, the institutional

  10. Mapping the institutional consolidation of EU human health expertise

    NARCIS (Netherlands)

    de Ruijter, Anniek

    2016-01-01

    The EU’s role in the field of human health is solidifying in terms of law and policy, but also with respect to the institutional organisation of human health expertise. In light of the emerging health-care union and questions regarding the nature and scope of a European health law, the institutional

  11. Inheritance and Gene Mapping of Resistance to Soybean Mosaic Virus Strain SC14 in Soybean

    Institute of Scientific and Technical Information of China (English)

    Hai-Chao Li; Hai-Jian Zhi; Jun-Yi Gai; Dong-Quan Guo; Yan-Wei Wang; Kai Li; Li Bai; Hua Yang

    2006-01-01

    Soybean mosaic virus (SMV) is one of the most broadly distributed diseases worldwide. It causes severe yield loss and seed quality deficiency in soybean (Glycine max (L.) Merr.). SMV Strain SC14 isolated from Shanxi Province, China, was a newly identified virulent strain and can infect Kefeng No. 1, a source with wide spectrum resistance. In the present study, soybean accessions, PI96983, Qihuang No. 1 and Qihuang No. 22 were identified to be resistant (R) and Nannong 1138-2, Pixianchadou susceptible (S) to SC14. Segregation analysis of PI96983 × Nannong 1138-2 indicated that a single dominant gene (designated as Rsc14) controlled the resistance to SC14 at both V2 and R1 developmental stages. The same results were obtained for the crosses of Qihuang No. 1 × Nannong 1138-2 and Qihuang No. 22 × Nannong 1138-2 as in PI96983 × Nannong 1138-2 at V2 stage, but at R1 stage,the F1 performed as necrosis (a susceptible symptom other than mosaic), F2 segregated in a ratio of 1R:2N:1S,and the progenies of necrotic (N) F2 individuals segregated also in R, N and S. It indicated that a single gene (designated as Rsc14o, to be different from that of PI96983) controlled the resistance to SC14, its dominance was the same as in PI96983 × Nannong 1138-2 (without symptoms) at V2 stage and not the same at R1 stage. The tightly linked co-dominant simple sequence repeat (SSR) marker Satt334 indicated that all the heterozygous bands were completely corresponding to the necrotic F2 individuals, or all the necrotic F2 individuals were heterozygotes.It was inferred that necrosis might be due to the interaction among SMV strains, resistance genes, genetic background of the resistance genes, and plant development stage. Furthermore, the bulked segregant analysis (BSA) of SSR markers was conducted to map the resistance genes. In F2 of PI96983 × Nannong 1138-2, five SSR markers, Sat_297, Sat_234, Sat_154, Sct_033 and Sat_120, were found closely linked to Rsc14, with genetic distances of 14

  12. Site, Sector, Scope: Mapping the Epistemological Landscape of Health Humanities.

    Science.gov (United States)

    Charise, Andrea

    2017-12-01

    This essay presents a critical appraisal of the current state of baccalaureate Health Humanities, with a special focus on the contextual differences currently influencing the implementation of this field in Canada and, to a lesser extent, the United States and United Kingdom. I argue that the epistemological bedrock of Health Humanities goes beyond that generated by its written texts to include three external factors that are especially pertinent to undergraduate education: site (the setting of Health Humanities education), sector (the disciplinary eligibility for funding) and scope (the critical engagement with a program's local context alongside an emergent "core" of Health Humanities knowledge, learning, and practice). Drawing largely from the Canadian context, I discuss how these differences can inform or obstruct this field's development, and offer preliminary recommendations for encouraging the growth of baccalaureate Health Humanities-in Canada and elsewhere-in light of these factors.

  13. Mapping Progress : Human Rights and International Students in Australia

    Directory of Open Access Journals (Sweden)

    Andrew Jakubowicz

    2015-12-01

    Full Text Available The rapid growth in international student numbers in Australia in the first decade of the  2000s was accompanied by a series of public crises. The most important of these was the outbreak in Melbourne Victoria and elsewhere of physical attacks on the students. Investigations at the time also pointed to cases of gross exploitation, an array of threats that severely compromised their human rights. This paper reviews and pursues the outcomes of a report prepared by the authors in 2010 for Universities Australia and the Human Rights Commission. The report reviewed social science research and proposed a series of priorities for human rights interventions that were part of the Human Rights Commission’s considerations.  New activity, following the innovation of having international students specifically considered by the Human Rights Commission, points to initiatives that have not fully addressed the wide range of questions at state.

  14. Exploring the potential relevance of human-specific genes to complex disease

    Directory of Open Access Journals (Sweden)

    Cooper David N

    2011-01-01

    Full Text Available Abstract Although human disease genes generally tend to be evolutionarily more ancient than non-disease genes, complex disease genes appear to be represented more frequently than Mendelian disease genes among genes of more recent evolutionary origin. It is therefore proposed that the analysis of human-specific genes might provide new insights into the genetics of complex disease. Cross-comparison with the Human Gene Mutation Database (http://www.hgmd.org revealed a number of examples of disease-causing and disease-associated mutations in putatively human-specific genes. A sizeable proportion of these were missense polymorphisms associated with complex disease. Since both human-specific genes and genes associated with complex disease have often experienced particularly rapid rates of evolutionary change, either due to weaker purifying selection or positive selection, it is proposed that a significant number of human-specific genes may play a role in complex disease.

  15. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.

    Science.gov (United States)

    Hamosh, Ada; Scott, Alan F; Amberger, Joanna S; Bocchini, Carol A; McKusick, Victor A

    2005-01-01

    Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support human genetics research and education and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (http://www.ncbi.nlm.nih.gov/omim/) is now distributed electronically by the National Center for Biotechnology Information, where it is integrated with the Entrez suite of databases. Derived from the biomedical literature, OMIM is written and edited at Johns Hopkins University with input from scientists and physicians around the world. Each OMIM entry has a full-text summary of a genetically determined phenotype and/or gene and has numerous links to other genetic databases such as DNA and protein sequence, PubMed references, general and locus-specific mutation databases, HUGO nomenclature, MapViewer, GeneTests, patient support groups and many others. OMIM is an easy and straightforward portal to the burgeoning information in human genetics.

  16. Clone and expression of human transferrin receptor gene: a marker gene for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Li Li; Liu Lizhi; Lv Yanchun; Liu Xuewen; Cui Chunyan; Wu Peihong; Liu Qicai; Ou Shanxing

    2007-01-01

    Objective: To clone human transferrin receptor (hTfR) gene and construct expression vector producing recombination protein. Methods: Human transferrin receptor gene cDNA was amplified by RT-PCR from human embryonic liver and lung tissue. Recombinant pcDNA3-hTfR and pEGFP-Cl-hTfR plasmids were constructed and confirmed by DNA sequencing. These plasmids were stably transfected into the HEK293 cells. The protein expression in vitro was confirmed by Western Blot. The efficiency of expression and the location of hTfR were also investigated by fluorescence microscopy and confocal fluorescence microscopy. Results: The full length cDNA of hTfR gene (2332 bp) was cloned and sequenced. The hTfR (190 000) was overexpressed in transfected HEK293 cells by Western blot analysis. Fluorescence micrographs displayed that the hTfR was expressed at high level and located predominantly in the cell surface. Conclusions: Human transferrin receptor (hTfR) gene has been successfully cloned and obtained high-level expression in HEK293 cells, and the recombination protein of hTfR distributed predominantly in the cell membrane. (authors)

  17. Integrated physical map of bread wheat chromosome arm 7DS to facilitate gene cloning and comparative studies.

    Science.gov (United States)

    Tulpová, Zuzana; Luo, Ming-Cheng; Toegelová, Helena; Visendi, Paul; Hayashi, Satomi; Vojta, Petr; Paux, Etienne; Kilian, Andrzej; Abrouk, Michaël; Bartoš, Jan; Hajdúch, Marián; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana

    2018-03-08

    Bread wheat (Triticum aestivum L.) is a staple food for a significant part of the world's population. The growing demand on its production can be satisfied by improving yield and resistance to biotic and abiotic stress. Knowledge of the genome sequence would aid in discovering genes and QTLs underlying these traits and provide a basis for genomics-assisted breeding. Physical maps and BAC clones associated with them have been valuable resources from which to generate a reference genome of bread wheat and to assist map-based gene cloning. As a part of a joint effort coordinated by the International Wheat Genome Sequencing Consortium, we have constructed a BAC-based physical map of bread wheat chromosome arm 7DS consisting of 895 contigs and covering 94% of its estimated length. By anchoring BAC contigs to one radiation hybrid map and three high resolution genetic maps, we assigned 73% of the assembly to a distinct genomic position. This map integration, interconnecting a total of 1713 markers with ordered and sequenced BAC clones from a minimal tiling path, provides a tool to speed up gene cloning in wheat. The process of physical map assembly included the integration of the 7DS physical map with a whole-genome physical map of Aegilops tauschii and a 7DS Bionano genome map, which together enabled efficient scaffolding of physical-map contigs, even in the non-recombining region of the genetic centromere. Moreover, this approach facilitated a comparison of bread wheat and its ancestor at BAC-contig level and revealed a reconstructed region in the 7DS pericentromere. Copyright © 2018. Published by Elsevier B.V.

  18. Cytogenetic analysis and mapping of leaf rust resistance in Aegilops speltoides Tausch derived bread wheat line Selection2427 carrying putative gametocidal gene(s).

    Science.gov (United States)

    Niranjana, M; Vinod; Sharma, J B; Mallick, Niharika; Tomar, S M S; Jha, S K

    2017-12-01

    Leaf rust (Puccinia triticina) is a major biotic stress affecting wheat yields worldwide. Host-plant resistance is the best method for controlling leaf rust. Aegilops speltoides is a good source of resistance against wheat rusts. To date, five Lr genes, Lr28, Lr35, Lr36, Lr47, and Lr51, have been transferred from Ae. speltoides to bread wheat. In Selection2427, a bread wheat introgresed line with Ae. speltoides as the donor parent, a dominant gene for leaf rust resistance was mapped to the long arm of chromosome 3B (LrS2427). None of the Lr genes introgressed from Ae. speltoides have been mapped to chromosome 3B. Since none of the designated seedling leaf rust resistance genes have been located on chromosome 3B, LrS2427 seems to be a novel gene. Selection2427 showed a unique property typical of gametocidal genes, that when crossed to other bread wheat cultivars, the F 1 showed partial pollen sterility and poor seed setting, whilst Selection2427 showed reasonable male and female fertility. Accidental co-transfer of gametocidal genes with LrS2427 may have occurred in Selection2427. Though LrS2427 did not show any segregation distortion and assorted independently of putative gametocidal gene(s), its utilization will be difficult due to the selfish behavior of gametocidal genes.

  19. Extensive cochleotopic mapping of human auditory cortical fields obtained with phase-encoding FMRI.

    Directory of Open Access Journals (Sweden)

    Ella Striem-Amit

    Full Text Available The primary sensory cortices are characterized by a topographical mapping of basic sensory features which is considered to deteriorate in higher-order areas in favor of complex sensory features. Recently, however, retinotopic maps were also discovered in the higher-order visual, parietal and prefrontal cortices. The discovery of these maps enabled the distinction between visual regions, clarified their function and hierarchical processing. Could such extension of topographical mapping to high-order processing regions apply to the auditory modality as well? This question has been studied previously in animal models but only sporadically in humans, whose anatomical and functional organization may differ from that of animals (e.g. unique verbal functions and Heschl's gyrus curvature. Here we applied fMRI spectral analysis to investigate the cochleotopic organization of the human cerebral cortex. We found multiple mirror-symmetric novel cochleotopic maps covering most of the core and high-order human auditory cortex, including regions considered non-cochleotopic, stretching all the way to the superior temporal sulcus. These maps suggest that topographical mapping persists well beyond the auditory core and belt, and that the mirror-symmetry of topographical preferences may be a fundamental principle across sensory modalities.

  20. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes.

    Science.gov (United States)

    Rauscher, Gilda; Simko, Ivan

    2013-01-22

    Lettuce (Lactuca sativa L.) is the major crop from the group of leafy vegetables. Several types of molecular markers were developed that are effectively used in lettuce breeding and genetic studies. However only a very limited number of microsattelite-based markers are publicly available. We have employed the method of enriched microsatellite libraries to develop 97 genomic SSR markers. Testing of newly developed markers on a set of 36 Lactuca accession (33 L. sativa, and one of each L. serriola L., L. saligna L., and L. virosa L.) revealed that both the genetic heterozygosity (UHe = 0.56) and the number of loci per SSR (Na = 5.50) are significantly higher for genomic SSR markers than for previously developed EST-based SSR markers (UHe = 0.32, Na = 3.56). Fifty-four genomic SSR markers were placed on the molecular linkage map of lettuce. Distribution of markers in the genome appeared to be random, with the exception of possible cluster on linkage group 6. Any combination of 32 genomic SSRs was able to distinguish genotypes of all 36 accessions. Fourteen of newly developed SSR markers originate from fragments with high sequence similarity to resistance gene candidates (RGCs) and RGC pseudogenes. Analysis of molecular variance (AMOVA) of L. sativa accessions showed that approximately 3% of genetic diversity was within accessions, 79% among accessions, and 18% among horticultural types. The newly developed genomic SSR markers were added to the pool of previously developed EST-SSRs markers. These two types of SSR-based markers provide useful tools for lettuce cultivar fingerprinting, development of integrated molecular linkage maps, and mapping of genes.

  1. Comparison of gene-based rare variant association mapping methods for quantitative traits in a bovine population with complex familial relationships.

    Science.gov (United States)

    Zhang, Qianqian; Guldbrandtsen, Bernt; Calus, Mario P L; Lund, Mogens Sandø; Sahana, Goutam

    2016-08-17

    There is growing interest in the role of rare variants in the variation of complex traits due to increasing evidence that rare variants are associated with quantitative traits. However, association methods that are commonly used for mapping common variants are not effective to map rare variants. Besides, livestock populations have large half-sib families and the occurrence of rare variants may be confounded with family structure, which makes it difficult to disentangle their effects from family mean effects. We compared the power of methods that are commonly applied in human genetics to map rare variants in cattle using whole-genome sequence data and simulated phenotypes. We also studied the power of mapping rare variants using linear mixed models (LMM), which are the method of choice to account for both family relationships and population structure in cattle. We observed that the power of the LMM approach was low for mapping a rare variant (defined as those that have frequencies lower than 0.01) with a moderate effect (5 to 8 % of phenotypic variance explained by multiple rare variants that vary from 5 to 21 in number) contributing to a QTL with a sample size of 1000. In contrast, across the scenarios studied, statistical methods that are specialized for mapping rare variants increased power regardless of whether multiple rare variants or a single rare variant underlie a QTL. Different methods for combining rare variants in the test single nucleotide polymorphism set resulted in similar power irrespective of the proportion of total genetic variance explained by the QTL. However, when the QTL variance is very small (only 0.1 % of the total genetic variance), these specialized methods for mapping rare variants and LMM generally had no power to map the variants within a gene with sample sizes of 1000 or 5000. We observed that the methods that combine multiple rare variants within a gene into a meta-variant generally had greater power to map rare variants compared

  2. Mapping the nanostructures in human adult and baby tooth enamel

    International Nuclear Information System (INIS)

    Low, I.M.; Mahmood, U.; Duraman, N.

    2005-01-01

    This paper investigates and compares the variations in crystal structure, composition, and nanostructures within the human adult and deciduous teeth. The similarities and differences in the nanostructure of both types of teeth are highlighted and discussed. (author)

  3. Characterization of human septic sera induced gene expression modulation in human myocytes

    OpenAIRE

    Hussein, Shaimaa; Michael, Paul; Brabant, Danielle; Omri, Abdelwahab; Narain, Ravin; Passi, Kalpdrum; Ramana, Chilakamarti V.; Parrillo, Joseph E.; Kumar, Anand; Parissenti, Amadeo; Kumar, Aseem

    2009-01-01

    To gain a better understanding of the gene expression changes that occurs during sepsis, we have performed a cDNA microarray study utilizing a tissue culture model that mimics human sepsis. This study utilized an in vitro model of cultured human fetal cardiac myocytes treated with 10% sera from septic patients or 10% sera from healthy volunteers. A 1700 cDNA expression microarray was used to compare the transcription profile from human cardiac myocytes treated with septic sera vs normal sera....

  4. Developmental gene expression profiles of the human pathogen Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    McManus Donald P

    2009-03-01

    Full Text Available Abstract Background The schistosome blood flukes are complex trematodes and cause a chronic parasitic disease of significant public health importance worldwide, schistosomiasis. Their life cycle is characterised by distinct parasitic and free-living phases involving mammalian and snail hosts and freshwater. Microarray analysis was used to profile developmental gene expression in the Asian species, Schistosoma japonicum. Total RNAs were isolated from the three distinct environmental phases of the lifecycle – aquatic/snail (eggs, miracidia, sporocysts, cercariae, juvenile (lung schistosomula and paired but pre-egg laying adults and adult (paired, mature males and egg-producing females, both examined separately. Advanced analyses including ANOVA, principal component analysis, and hierarchal clustering provided a global synopsis of gene expression relationships among the different developmental stages of the schistosome parasite. Results Gene expression profiles were linked to the major environmental settings through which the developmental stages of the fluke have to adapt during the course of its life cycle. Gene ontologies of the differentially expressed genes revealed a wide range of functions and processes. In addition, stage-specific, differentially expressed genes were identified that were involved in numerous biological pathways and functions including calcium signalling, sphingolipid metabolism and parasite defence. Conclusion The findings provide a comprehensive database of gene expression in an important human pathogen, including transcriptional changes in genes involved in evasion of the host immune response, nutrient acquisition, energy production, calcium signalling, sphingolipid metabolism, egg production and tegumental function during development. This resource should help facilitate the identification and prioritization of new anti-schistosome drug and vaccine targets for the control of schistosomiasis.

  5. Mapping Cumulative Impacts of Human Activities on Marine Ecosystems

    OpenAIRE

    , Seaplan

    2018-01-01

    Given the diversity of human uses and natural resources that converge in coastal waters, the potential independent and cumulative impacts of those uses on marine ecosystems are important to consider during ocean planning. This study was designed to support the development and implementation of the 2009 Massachusetts Ocean Management Plan. Its goal was to estimate and visualize the cumulative impacts of human activities on coastal and marine ecosystems in the state and federal waters off of Ma...

  6. Fine Physical Bin Mapping of the Powdery Mildew Resistance Gene Pm21 Based on Chromosomal Structural Variations in Wheat

    Directory of Open Access Journals (Sweden)

    Shanying Zhu

    2018-02-01

    Full Text Available Pm21, derived from wheat wild relative Dasypyrum villosum, is one of the most effective powdery mildew resistance genes and has been widely applied in wheat breeding in China. Mapping and cloning Pm21 are of importance for understanding its resistance mechanism. In the present study, physical mapping was performed using different genetic stocks involving in structural variations of chromosome 6VS carrying Pm21. The data showed that 6VS could be divided into eight distinguishable chromosomal bins, and Pm21 was mapped to the bin FLb4–b5/b6 closely flanked by the markers 6VS-08.6 and 6VS-10.2. Comparative genomic mapping indicated that the orthologous regions of FLb4–b5/b6 carrying Pm21 were narrowed to a 117.7 kb genomic region harboring 19 genes in Brachypodium and a 37.7 kb region harboring 5 genes in rice, respectively. The result was consistent with that given by recent genetic mapping in diploid D. villosum. In conclusion, this study demonstrated that physical mapping based on chromosomal structural variations is an efficient method for locating alien genes in wheat background.

  7. Fine mapping of the rice bacterial blight resistance gene Xa-4 and its co-segregation marker

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An F2 population developed from the Xa-4 near isogenic lines,IR24 and IRBB4,was used for fine mapping of the rice bacterial blight resistance gene,Xa-4.Some restriction fragment length polymorphism (RFLP) markers on the high-density map constructed by Harushima et al.and the amplified DNA fragments homologous to the conserved domains of plant disease resistance (R) genes were used to construct the genetic linkage map around the gene Xa-4 by scoring susceptible individuals in the population.Xa-4 was mapped between the RFLP marker G181 and the polymerase chain reaction (PCR) marker M55.The R gene homologous fragment marker RS13 was found co-segregating with Xa-4 by analyzing all the plants in the population.This result opened an approach to map-based cloning of this gene,and marker RS13 can be applied to molecular marker-assisted selection of Xa-4 in rice breeding programs.

  8. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes

    Directory of Open Access Journals (Sweden)

    Amanda M. Ackermann

    2016-03-01

    Conclusions: We have determined the genetic landscape of human α- and β-cells based on chromatin accessibility and transcript levels, which allowed for detection of novel α- and β-cell signature genes not previously known to be expressed in islets. Using fine-mapping of open chromatin, we have identified thousands of potential cis-regulatory elements that operate in an endocrine cell type-specific fashion.

  9. RNA-Guided Activation of Pluripotency Genes in Human Fibroblasts

    DEFF Research Database (Denmark)

    Xiong, Kai; Zhou, Yan; Blichfeld, Kristian Aabo

    2017-01-01

    -associated protein 9 (dCas9)-VP64 (CRISPRa) alone, or a combination of dCas9-VP64 and MS2-P65-HSF1 [synergistic activation mediator (SAM) system] mediated activation of five pluripotency genes: KLF4 (K), LIN28 (L), MYC (M), OCT4 (O), and SOX2 (S) in human cells (HEK293T, HeLa, HepG2, and primary fibroblasts...... could be obtained from these SAM fibroblasts. In conclusion, our study showed that CRISPR/Cas9-based ATFs are potent to activate and maintain transcription of endogenous human pluripotent genes. However, future improvements of the system are still required to improve activation efficiency and cellular...

  10. A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci.

    Science.gov (United States)

    Yang, Luming; Li, Dawei; Li, Yuhong; Gu, Xingfang; Huang, Sanwen; Garcia-Mas, Jordi; Weng, Yiqun

    2013-03-25

    Cucumber is an important vegetable crop that is susceptible to many pathogens, but no disease resistance (R) genes have been cloned. The availability of whole genome sequences provides an excellent opportunity for systematic identification and characterization of the nucleotide binding and leucine-rich repeat (NB-LRR) type R gene homolog (RGH) sequences in the genome. Cucumber has a very narrow genetic base making it difficult to construct high-density genetic maps. Development of a consensus map by synthesizing information from multiple segregating populations is a method of choice to increase marker density. As such, the objectives of the present study were to identify and characterize NB-LRR type RGHs, and to develop a high-density, integrated cucumber genetic-physical map anchored with RGH loci. From the Gy14 draft genome, 70 NB-containing RGHs were identified and characterized. Most RGHs were in clusters with uneven distribution across seven chromosomes. In silico analysis indicated that all 70 RGHs had EST support for gene expression. Phylogenetic analysis classified 58 RGHs into two clades: CNL and TNL. Comparative analysis revealed high-degree sequence homology and synteny in chromosomal locations of these RGH members between the cucumber and melon genomes. Fifty-four molecular markers were developed to delimit 67 of the 70 RGHs, which were integrated into a genetic map through linkage analysis. A 1,681-locus cucumber consensus map including 10 gene loci and spanning 730.0 cM in seven linkage groups was developed by integrating three component maps with a bin-mapping strategy. Physically, 308 scaffolds with 193.2 Mbp total DNA sequences were anchored onto this consensus map that covered 52.6% of the 367 Mbp cucumber genome. Cucumber contains relatively few NB-LRR RGHs that are clustered and unevenly distributed in the genome. All RGHs seem to be transcribed and shared significant sequence homology and synteny with the melon genome suggesting conservation of

  11. Gene probes: principles and protocols

    National Research Council Canada - National Science Library

    Aquino de Muro, Marilena; Rapley, Ralph

    2002-01-01

    ... of labeled DNA has allowed genes to be mapped to single chromosomes and in many cases to a single chromosome band, promoting significant advance in human genome mapping. Gene Probes: Principles and Protocols presents the principles for gene probe design, labeling, detection, target format, and hybridization conditions together with detailed protocols, accom...

  12. Potential Effects of Horizontal Gene Exchange in the Human Gut.

    Science.gov (United States)

    Lerner, Aaron; Matthias, Torsten; Aminov, Rustam

    2017-01-01

    Many essential functions of the human body are dependent on the symbiotic microbiota, which is present at especially high numbers and diversity in the gut. This intricate host-microbe relationship is a result of the long-term coevolution between the two. While the inheritance of mutational changes in the host evolution is almost exclusively vertical, the main mechanism of bacterial evolution is horizontal gene exchange. The gut conditions, with stable temperature, continuous food supply, constant physicochemical conditions, extremely high concentration of microbial cells and phages, and plenty of opportunities for conjugation on the surfaces of food particles and host tissues, represent one of the most favorable ecological niches for horizontal gene exchange. Thus, the gut microbial system genetically is very dynamic and capable of rapid response, at the genetic level, to selection, for example, by antibiotics. There are many other factors to which the microbiota may dynamically respond including lifestyle, therapy, diet, refined food, food additives, consumption of pre- and probiotics, and many others. The impact of the changing selective pressures on gut microbiota, however, is poorly understood. Presumably, the gut microbiome responds to these changes by genetic restructuring of gut populations, driven mainly via horizontal gene exchange. Thus, our main goal is to reveal the role played by horizontal gene exchange in the changing landscape of the gastrointestinal microbiome and potential effect of these changes on human health in general and autoimmune diseases in particular.

  13. Potential Effects of Horizontal Gene Exchange in the Human Gut

    Directory of Open Access Journals (Sweden)

    Aaron Lerner

    2017-11-01

    Full Text Available Many essential functions of the human body are dependent on the symbiotic microbiota, which is present at especially high numbers and diversity in the gut. This intricate host–microbe relationship is a result of the long-term coevolution between the two. While the inheritance of mutational changes in the host evolution is almost exclusively vertical, the main mechanism of bacterial evolution is horizontal gene exchange. The gut conditions, with stable temperature, continuous food supply, constant physicochemical conditions, extremely high concentration of microbial cells and phages, and plenty of opportunities for conjugation on the surfaces of food particles and host tissues, represent one of the most favorable ecological niches for horizontal gene exchange. Thus, the gut microbial system genetically is very dynamic and capable of rapid response, at the genetic level, to selection, for example, by antibiotics. There are many other factors to which the microbiota may dynamically respond including lifestyle, therapy, diet, refined food, food additives, consumption of pre- and probiotics, and many others. The impact of the changing selective pressures on gut microbiota, however, is poorly understood. Presumably, the gut microbiome responds to these changes by genetic restructuring of gut populations, driven mainly via horizontal gene exchange. Thus, our main goal is to reveal the role played by horizontal gene exchange in the changing landscape of the gastrointestinal microbiome and potential effect of these changes on human health in general and autoimmune diseases in particular.

  14. Gene expression of manganese superoxide dismutase in human glioma cells

    Directory of Open Access Journals (Sweden)

    Novi S. Hardiany

    2010-02-01

    Full Text Available Aim This study analyze the MnSOD gene expression as endogenous antioxidant in human glioma cells compared with leucocyte cells as control.Methods MnSOD gene expression of 20 glioma patients was analyzed by measuring the relative expression of mRNA and enzyme activity of MnSOD in brain and leucocyte cells. The relative expression of mRNA MnSOD was determined by using quantitative Real Time RT-PCR and the enzyme activity of MnSOD using biochemical kit assay (xantine oxidase inhibition. Statistic analysis for mRNA and enzyme activity of MnSOD was performed using Kruskal Wallis test.Results mRNA of MnSOD in glioma cells of 70% sample was 0.015–0.627 lower, 10% was 1.002-1.059 and 20% was 1.409-6.915 higher than in leucocyte cells. Also the specific activity of MnSOD enzyme in glioma cells of 80% sample showed 0,064-0,506 lower and 20% sample was 1.249-2.718 higher than in leucocyte cells.Conclusion MnSOD gene expression in human glioma cells are significantly lower than its expression in leucocytes cells. (Med J Indones 2010; 19:21-5Keywords : MnSOD, glioma, gene expression

  15. The Schizosaccharomyces pombe map1 gene encodes an SRF/MCM1-related protein required for P-cell specific gene expression

    DEFF Research Database (Denmark)

    Nielsen, O; Friis, T; Kjaerulff, S

    1996-01-01

    Cells of Schizosaccharomyces pombe undergo mating and meiosis when starved for a nitrogen source. In this process a P and and M cell first mate to generate a diploid zygote, which subsequently enters meiosis and sporulates. The P mating type is controlled by the mat1-Pc gene at the mating type lo...... cerevisiae MCM1. The Mat1-Pc protein contains a motif characteristic for proteins that interact with MADS-box factors, suggesting that Mat-Pc and Map1 may form a heterodimer that activates the P-specific map3 gene....

  16. Inference of the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes from comparative gene mapping.

    Directory of Open Access Journals (Sweden)

    Yoshinobu Uno

    Full Text Available Comparative genome analysis of non-avian reptiles and amphibians provides important clues about the process of genome evolution in tetrapods. However, there is still only limited information available on the genome structures of these organisms. Consequently, the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes in tetrapods remain poorly understood. We constructed chromosome maps of functional genes for the Chinese soft-shelled turtle (Pelodiscus sinensis, the Siamese crocodile (Crocodylus siamensis, and the Western clawed frog (Xenopus tropicalis and compared them with genome and/or chromosome maps of other tetrapod species (salamander, lizard, snake, chicken, and human. This is the first report on the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes inferred from comparative genomic analysis of vertebrates, which cover all major non-avian reptilian taxa (Squamata, Crocodilia, Testudines. The eight largest macrochromosomes of the turtle and chicken were equivalent, and 11 linkage groups had also remained intact in the crocodile. Linkage groups of the chicken macrochromosomes were also highly conserved in X. tropicalis, two squamates, and the salamander, but not in human. Chicken microchromosomal linkages were conserved in the squamates, which have fewer microchromosomes than chicken, and also in Xenopus and the salamander, which both lack microchromosomes; in the latter, the chicken microchromosomal segments have been integrated into macrochromosomes. Our present findings open up the possibility that the ancestral amniotes and tetrapods had at least 10 large genetic linkage groups and many microchromosomes, which corresponded to the chicken macro- and microchromosomes, respectively. The turtle and chicken might retain the microchromosomes of the amniote protokaryotype almost intact. The decrease in number and/or disappearance of microchromosomes by repeated

  17. Muscle gene expression patterns in human rotator cuff pathology.

    Science.gov (United States)

    Choo, Alexander; McCarthy, Meagan; Pichika, Rajeswari; Sato, Eugene J; Lieber, Richard L; Schenk, Simon; Lane, John G; Ward, Samuel R

    2014-09-17

    Rotator cuff pathology is a common source of shoulder pain with variable etiology and pathoanatomical characteristics. Pathological processes of fatty infiltration, muscle atrophy, and fibrosis have all been invoked as causes for poor outcomes after rotator cuff tear repair. The aims of this study were to measure the expression of key genes associated with adipogenesis, myogenesis, and fibrosis in human rotator cuff muscle after injury and to compare the expression among groups of patients with varied severities of rotator cuff pathology. Biopsies of the supraspinatus muscle were obtained arthroscopically from twenty-seven patients in the following operative groups: bursitis (n = 10), tendinopathy (n = 7), full-thickness rotator cuff tear (n = 8), and massive rotator cuff tear (n = 2). Quantitative polymerase chain reaction (qPCR) was performed to characterize gene expression pathways involved in myogenesis, adipogenesis, and fibrosis. Patients with a massive tear demonstrated downregulation of the fibrogenic, adipogenic, and myogenic genes, indicating that the muscle was not in a state of active change and may have difficulty responding to stimuli. Patients with a full-thickness tear showed upregulation of fibrotic and adipogenic genes; at the tissue level, these correspond to the pathologies most detrimental to outcomes of surgical repair. Patients with bursitis or tendinopathy still expressed myogenic genes, indicating that the muscle may be attempting to accommodate the mechanical deficiencies induced by the tendon tear. Gene expression in human rotator cuff muscles varied according to tendon injury severity. Patients with bursitis and tendinopathy appeared to be expressing pro-myogenic genes, whereas patients with a full-thickness tear were expressing genes associated with fatty atrophy and fibrosis. In contrast, patients with a massive tear appeared to have downregulation of all gene programs except inhibition of myogenesis. These data highlight the

  18. Robust, synergistic regulation of human gene expression using TALE activators.

    Science.gov (United States)

    Maeder, Morgan L; Linder, Samantha J; Reyon, Deepak; Angstman, James F; Fu, Yanfang; Sander, Jeffry D; Joung, J Keith

    2013-03-01

    Artificial activators designed using transcription activator-like effector (TALE) technology have broad utility, but previous studies suggest that these monomeric proteins often exhibit low activities. Here we demonstrate that TALE activators can robustly function individually or in synergistic combinations to increase expression of endogenous human genes over wide dynamic ranges. These findings will encourage applications of TALE activators for research and therapy, and guide design of monomeric TALE-based fusion proteins.

  19. Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers.

    Science.gov (United States)

    de Miguel, Marina; de Maria, Nuria; Guevara, M Angeles; Diaz, Luis; Sáez-Laguna, Enrique; Sánchez-Gómez, David; Chancerel, Emilie; Aranda, Ismael; Collada, Carmen; Plomion, Christophe; Cabezas, José-Antonio; Cervera, María-Teresa

    2012-10-04

    Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS) through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15) belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest.

  20. Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers

    Directory of Open Access Journals (Sweden)

    de Miguel Marina

    2012-10-01

    Full Text Available Abstract Background Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15 belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. Results We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. Conclusions This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest.

  1. Gene expression, nucleotide composition and codon usage bias of genes associated with human Y chromosome.

    Science.gov (United States)

    Choudhury, Monisha Nath; Uddin, Arif; Chakraborty, Supriyo

    2017-06-01

    Analysis of codon usage pattern is important to understand the genetic and evolutionary characteristics of genomes. We have used bioinformatic approaches to analyze the codon usage bias (CUB) of the genes located in human Y chromosome. Codon bias index (CBI) indicated that the overall extent of codon usage bias was low. The relative synonymous codon usage (RSCU) analysis suggested that approximately half of the codons out of 59 synonymous codons were most frequently used, and possessed a T or G at the third codon position. The codon usage pattern was different in different genes as revealed from correspondence analysis (COA). A significant correlation between effective number of codons (ENC) and various GC contents suggests that both mutation pressure and natural selection affect the codon usage pattern of genes located in human Y chromosome. In addition, Y-linked genes have significant difference in GC contents at the second and third codon positions, expression level, and codon usage pattern of some codons like the SPANX genes in X chromosome.

  2. Map-Based Cloning of the Gene Associated With the Soybean Maturity Locus E3

    Science.gov (United States)

    Watanabe, Satoshi; Hideshima, Rumiko; Xia, Zhengjun; Tsubokura, Yasutaka; Sato, Shusei; Nakamoto, Yumi; Yamanaka, Naoki; Takahashi, Ryoji; Ishimoto, Masao; Anai, Toyoaki; Tabata, Satoshi; Harada, Kyuya

    2009-01-01

    Photosensitivity plays an essential role in the response of plants to their changing environments throughout their life cycle. In soybean [Glycine max (L.) Merrill], several associations between photosensitivity and maturity loci are known, but only limited information at the molecular level is available. The FT3 locus is one of the quantitative trait loci (QTL) for flowering time that corresponds to the maturity locus E3. To identify the gene responsible for this QTL, a map-based cloning strategy was undertaken. One phytochrome A gene (GmPhyA3) was considered a strong candidate for the FT3 locus. Allelism tests and gene sequence comparisons showed that alleles of Misuzudaizu (FT3/FT3; JP28856) and Harosoy (E3/E3; PI548573) were identical. The GmPhyA3 alleles of Moshidou Gong 503 (ft3/ft3; JP27603) and L62-667 (e3/e3; PI547716) showed weak or complete loss of function, respectively. High red/far-red (R/FR) long-day conditions enhanced the effects of the E3/FT3 alleles in various genetic backgrounds. Moreover, a mutant line harboring the nonfunctional GmPhyA3 flowered earlier than the original Bay (E3/E3; PI553043) under similar conditions. These results suggest that the variation in phytochrome A may contribute to the complex systems of soybean flowering response and geographic adaptation. PMID:19474204

  3. Spina Bifida: Pathogenesis, Mechanisms, and Genes in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Siti W. Mohd-Zin

    2017-01-01

    Full Text Available Spina bifida is among the phenotypes of the larger condition known as neural tube defects (NTDs. It is the most common central nervous system malformation compatible with life and the second leading cause of birth defects after congenital heart defects. In this review paper, we define spina bifida and discuss the phenotypes seen in humans as described by both surgeons and embryologists in order to compare and ultimately contrast it to the leading animal model, the mouse. Our understanding of spina bifida is currently limited to the observations we make in mouse models, which reflect complete or targeted knockouts of genes, which perturb the whole gene(s without taking into account the issue of haploinsufficiency, which is most prominent in the human spina bifida condition. We thus conclude that the need to study spina bifida in all its forms, both aperta and occulta, is more indicative of the spina bifida in surviving humans and that the measure of deterioration arising from caudal neural tube defects, more commonly known as spina bifida, must be determined by the level of the lesion both in mouse and in man.

  4. Promoter Methylation Analysis of IDH Genes in Human Gliomas

    International Nuclear Information System (INIS)

    Flanagan, Simon; Lee, Maggie; Li, Cheryl C. Y.; Suter, Catherine M.; Buckland, Michael E.

    2012-01-01

    Mutations in isocitrate dehydrogenase (IDH)-1 or -2 are found in the majority of WHO grade II and III astrocytomas and oligodendrogliomas, and secondary glioblastomas. Almost all described mutations are heterozygous missense mutations affecting a conserved arginine residue in the substrate binding site of IDH1 (R132) or IDH2 (R172). But the exact mechanism of IDH mutations in neoplasia is not understood. It has been proposed that IDH mutations impart a “toxic gain-of-function” to the mutant protein, however a dominant-negative effect of mutant IDH has also been described, implying that IDH may function as a tumor suppressor gene. As most, if not all, tumor suppressor genes are inactivated by epigenetic silencing, in a wide variety of tumors, we asked if IDH1 or IDH2 carry the epigenetic signature of a tumor suppressor by assessing cytosine methylation at their promoters. Methylation was quantified in 68 human brain tumors, including both IDH-mutant and IDH wildtype, by bisulfite pyrosequencing. In all tumors examined, CpG methylation levels were less than 8%. Our data demonstrate that inactivation of IDH function through promoter hypermethylation is not common in human gliomas and other brain tumors. These findings do not support a tumor suppressor role for IDH genes in human gliomas.

  5. AFM friction and adhesion mapping of the substructures of human hair cuticles

    International Nuclear Information System (INIS)

    Smith, James R.; Tsibouklis, John; Nevell, Thomas G.; Breakspear, Steven

    2013-01-01

    Using atomic force microscopy, values of the microscale friction coefficient, the tip (silicon nitride) - surface adhesion force and the corresponding adhesion energy, for the substructures that constitute the surface of human hair (European brown hair) have been determined from Amonton plots. The values, mapped for comparison with surface topography, corresponded qualitatively with the substructures’ plane surface characteristics. Localised maps and values of the frictional coefficient, extracted avoiding scale edge effects, are likely to inform the formulation of hair-care products and treatments.

  6. Mapping Local Cytosolic Enzymatic Activity in Human Esophageal Mucosa with Porous Silicon Nanoneedles.

    Science.gov (United States)

    Chiappini, Ciro; Campagnolo, Paola; Almeida, Carina S; Abbassi-Ghadi, Nima; Chow, Lesley W; Hanna, George B; Stevens, Molly M

    2015-09-16

    Porous silicon nanoneedles can map Cathepsin B activity across normal and tumor human esophageal mucosa. Assembling a peptide-based Cathepsin B cleavable sensor over a large array of nano-needles allows the discrimination of cancer cells from healthy ones in mixed culture. The same sensor applied to tissue can map Cathepsin B activity with high resolution across the tumor margin area of esophageal adenocarcinoma. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. STAT3 Target Genes Relevant to Human Cancers

    International Nuclear Information System (INIS)

    Carpenter, Richard L.; Lo, Hui-Wen

    2014-01-01

    Since its discovery, the STAT3 transcription factor has been extensively studied for its function as a transcriptional regulator and its role as a mediator of development, normal physiology, and pathology of many diseases, including cancers. These efforts have uncovered an array of genes that can be positively and negatively regulated by STAT3, alone and in cooperation with other transcription factors. Through regulating gene expression, STAT3 has been demonstrated to play a pivotal role in many cellular processes including oncogenesis, tumor growth and progression, and stemness. Interestingly, recent studies suggest that STAT3 may behave as a tumor suppressor by activating expression of genes known to inhibit tumorigenesis. Additional evidence suggested that STAT3 may elicit opposing effects depending on cellular context and tumor types. These mixed results signify the need for a deeper understanding of STAT3, including its upstream regulators, parallel transcription co-regulators, and downstream target genes. To help facilitate fulfilling this unmet need, this review will be primarily focused on STAT3 downstream target genes that have been validated to associate with tumorigenesis and/or malignant biology of human cancers

  8. Update of the human and mouse Fanconi anemia genes.

    Science.gov (United States)

    Dong, Hongbin; Nebert, Daniel W; Bruford, Elspeth A; Thompson, David C; Joenje, Hans; Vasiliou, Vasilis

    2015-11-24

    Fanconi anemia (FA) is a recessively inherited disease manifesting developmental abnormalities, bone marrow failure, and increased risk of malignancies. Whereas FA has been studied for nearly 90 years, only in the last 20 years have increasing numbers of genes been implicated in the pathogenesis associated with this genetic disease. To date, 19 genes have been identified that encode Fanconi anemia complementation group proteins, all of which are named or aliased, using the root symbol "FANC." Fanconi anemia subtype (FANC) proteins function in a common DNA repair pathway called "the FA pathway," which is essential for maintaining genomic integrity. The various FANC mutant proteins contribute to distinct steps associated with FA pathogenesis. Herein, we provide a review update of the 19 human FANC and their mouse orthologs, an evolutionary perspective on the FANC genes, and the functional significance of the FA DNA repair pathway in association with clinical disorders. This is an example of a set of genes--known to exist in vertebrates, invertebrates, plants, and yeast--that are grouped together on the basis of shared biochemical and physiological functions, rather than evolutionary phylogeny, and have been named on this basis by the HUGO Gene Nomenclature Committee (HGNC).

  9. Bringing transcranial mapping into shape: Sulcus-aligned mapping captures motor somatotopy in human primary motor hand area

    DEFF Research Database (Denmark)

    Raffin, Estelle; Pellegrino, Giovanni; Di Lazzaro, Vincenzo

    2015-01-01

    Motor representations express some degree of somatotopy in human primary motor hand area (M1HAND), but within-M1HAND corticomotor somatotopy has been difficult to study with transcranial magnetic stimulation (TMS). Here we introduce a “linear” TMS mapping approach based on the individual shape...... of the central sulcus to obtain mediolateral corticomotor excitability profiles of the abductor digiti minimi (ADM) and first dorsal interosseus (FDI) muscles. In thirteen young volunteers, we used stereotactic neuronavigation to stimulate the right M1HAND with a small eight-shaped coil at 120% of FDI resting...

  10. Sarcoptes scabiei mites modulate gene expression in human skin equivalents.

    Directory of Open Access Journals (Sweden)

    Marjorie S Morgan

    Full Text Available The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin's protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host's protective response allowing these mites to survive in the skin.

  11. Sarcoptes scabiei Mites Modulate Gene Expression in Human Skin Equivalents

    Science.gov (United States)

    Morgan, Marjorie S.; Arlian, Larry G.; Markey, Michael P.

    2013-01-01

    The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs) that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α) precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF) precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin’s protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host’s protective response allowing these mites to survive in the skin. PMID:23940705

  12. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome

    Science.gov (United States)

    Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A.; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki

    2016-01-01

    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map.

  13. Mapping genetic variants for cranial vault shape in humans

    DEFF Research Database (Denmark)

    Roosenboom, Jasmien; Lee, Myoung Keun; Hecht, Jacqueline T

    2018-01-01

    The shape of the cranial vault, a region comprising interlocking flat bones surrounding the cerebral cortex, varies considerably in humans. Strongly influenced by brain size and shape, cranial vault morphology has both clinical and evolutionary relevance. However, little is known about the geneti...

  14. Trajectory learning from human demonstrations via manifold mapping

    CSIR Research Space (South Africa)

    Hiratsuka, M

    2016-10-01

    Full Text Available constantly, and to this end we present an approach for users to be able to easily teach a skill to a robot with any body configuration. Our proposed method requires a motion trajectory obtained from human demonstrations via a Kinect sensor, which...

  15. Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci

    Directory of Open Access Journals (Sweden)

    Sehgal Deepmala

    2012-01-01

    Full Text Available Abstract Background Identification of genes underlying drought tolerance (DT quantitative trait loci (QTLs will facilitate understanding of molecular mechanisms of drought tolerance, and also will accelerate genetic improvement of pearl millet through marker-assisted selection. We report a map based on genes with assigned functional roles in plant adaptation to drought and other abiotic stresses and demonstrate its use in identifying candidate genes underlying a major DT-QTL. Results Seventy five single nucleotide polymorphism (SNP and conserved intron spanning primer (CISP markers were developed from available expressed sequence tags (ESTs using four genotypes, H 77/833-2, PRLT 2/89-33, ICMR 01029 and ICMR 01004, representing parents of two mapping populations. A total of 228 SNPs were obtained from 30.5 kb sequenced region resulting in a SNP frequency of 1/134 bp. The positions of major pearl millet linkage group (LG 2 DT-QTLs (reported from crosses H 77/833-2 × PRLT 2/89-33 and 841B × 863B were added to the present consensus function map which identified 18 genes, coding for PSI reaction center subunit III, PHYC, actin, alanine glyoxylate aminotransferase, uridylate kinase, acyl-CoA oxidase, dipeptidyl peptidase IV, MADS-box, serine/threonine protein kinase, ubiquitin conjugating enzyme, zinc finger C- × 8-C × 5-C × 3-H type, Hd3, acetyl CoA carboxylase, chlorophyll a/b binding protein, photolyase, protein phosphatase1 regulatory subunit SDS22 and two hypothetical proteins, co-mapping in this DT-QTL interval. Many of these candidate genes were found to have significant association with QTLs of grain yield, flowering time and leaf rolling under drought stress conditions. Conclusions We have exploited available pearl millet EST sequences to generate a mapped resource of seventy five new gene-based markers for pearl millet and demonstrated its use in identifying candidate genes underlying a major DT-QTL in this species. The reported gene

  16. Optimising parallel R correlation matrix calculations on gene expression data using MapReduce.

    Science.gov (United States)

    Wang, Shicai; Pandis, Ioannis; Johnson, David; Emam, Ibrahim; Guitton, Florian; Oehmichen, Axel; Guo, Yike

    2014-11-05

    High-throughput molecular profiling data has been used to improve clinical decision making by stratifying subjects based on their molecular profiles. Unsupervised clustering algorithms can be used for stratification purposes. However, the current speed of the clustering algorithms cannot meet the requirement of large-scale molecular data due to poor performance of the correlation matrix calculation. With high-throughput sequencing technologies promising to produce even larger datasets per subject, we expect the performance of the state-of-the-art statistical algorithms to be further impacted unless efforts towards optimisation are carried out. MapReduce is a widely used high performance parallel framework that can solve the problem. In this paper, we evaluate the current parallel modes for correlation calculation methods and introduce an efficient data distribution and parallel calculation algorithm based on MapReduce to optimise the correlation calculation. We studied the performance of our algorithm using two gene expression benchmarks. In the micro-benchmark, our implementation using MapReduce, based on the R package RHIPE, demonstrates a 3.26-5.83 fold increase compared to the default Snowfall and 1.56-1.64 fold increase compared to the basic RHIPE in the Euclidean, Pearson and Spearman correlations. Though vanilla R and the optimised Snowfall outperforms our optimised RHIPE in the micro-benchmark, they do not scale well with the macro-benchmark. In the macro-benchmark the optimised RHIPE performs 2.03-16.56 times faster than vanilla R. Benefiting from the 3.30-5.13 times faster data preparation, the optimised RHIPE performs 1.22-1.71 times faster than the optimised Snowfall. Both the optimised RHIPE and the optimised Snowfall successfully performs the Kendall correlation with TCGA dataset within 7 hours. Both of them conduct more than 30 times faster than the estimated vanilla R. The performance evaluation found that the new MapReduce algorithm and its

  17. Histone methylation mediates plasticity of human FOXP3(+) regulatory T cells by modulating signature gene expressions.

    Science.gov (United States)

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-03-01

    CD4(+) FOXP3(+) regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4(+) CD25(high) CD127(low/-) Treg cells convert to two subpopulations with distinctive FOXP3(+) and FOXP3(-) phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. © 2013 John Wiley & Sons Ltd.

  18. Histone methylation mediates plasticity of human FOXP3+ regulatory T cells by modulating signature gene expressions

    Science.gov (United States)

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-01-01

    CD4+ FOXP3+ regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4+ CD25high CD127low/− Treg cells convert to two subpopulations with distinctive FOXP3+ and FOXP3− phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. PMID:24152290

  19. EzMap: a simple pipeline for reproducible analysis of the human virome.

    Science.gov (United States)

    Czeczko, Patrick; Greenway, Steven C; de Koning, A P Jason

    2017-08-15

    In solid-organ transplant recipients, a delicate balance between immunosuppression and immunocompetence must be achieved, which can be difficult to monitor in real-time. Shotgun sequencing of cell-free DNA (cfDNA) has been recently proposed as a new way to indirectly assess immune function in transplant recipients through analysis of the status of the human virome. To facilitate exploration of the utility of the human virome as an indicator of immune status, and to enable rapid, straightforward analyses by clinicians, we developed a fully automated computational pipeline, EzMap, for performing metagenomic analysis of the human virome. EzMap combines a number of tools to clean, filter, and subtract WGS reads by mapping to a reference human assembly. The relative abundance of each virus present is estimated using a maximum likelihood approach that accounts for genome size, and results are presented with interactive visualizations and taxonomy-based summaries that enable rapid insights. The pipeline is automated to run on both workstations and computing clusters for all steps. EzMap automates an otherwise tedious and time-consuming protocol and aims to facilitate rapid and reproducible insights from cfDNA. EzMap is freely available at https://github.com/dekoning-lab/ezmap. jason.dekoning@ucalgary.ca. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  20. Molecular genetic approach to human meningioma: loss of genes on chromosome 22

    International Nuclear Information System (INIS)

    Seizinger, B.R.; De La Monte, S.; Atkins, L.; Gusella, J.F.; Martuza, R.L.

    1987-01-01

    A molecular genetic approach employing polymorphic DNA markers has been used to investigate the role of chromosomal aberrations in meningioma, one of the most common tumors of the human nervous system. Comparison of the alleles detected by DNA markers in tumor DNA versus DNA from normal tissue revealed chromosomal alterations present in primary surgical specimens. In agreement with cytogenetic studies of cultured meningiomas, the most frequent alteration detected was loss of heterozygosity on chromosome 22. Forty of 51 patients were constitutionally heterozygous for at least one chromosome 22 DNA marker. Seventeen of the 40 constitutionally heterozygotic patients (43%) displayed hemizygosity for the corresponding marker in their meningioma tumor tissues. Loss of heterozygosity was also detected at a significantly lower frequency for markers on several other autosomes. In view of the striking association between acoustic neuroma and meningioma in bilateral acoustic neurofibromatosis and the discovery that acoustic neuromas display specific loss of genes on chromosome 22, the authors propose that a common mechanism involving chromosome 22 is operative in the development of both tumor types. Fine-structure mapping to reveal partial deletions in meningiomas may provide the means to clone and characterize a gene (or genes) of importance for tumorigenesis in this and possibly other clinically associated tumors of the human nervous system

  1. Structure of the gene for human butyrylcholinesterase. Evidence for a single copy

    International Nuclear Information System (INIS)

    Arpagaus, M.; Kott, M.; Vatsis, K.P.; Bartels, C.F.; La Du, B.N.; Lockridge, O.

    1990-01-01

    The authors have isolated five genomic clones for human butyrylcholinesterase (BChE), using cDNA probes encoding the catalytic subunit of the hydrophilic tetramer. The BChE gene is at least 73 kb long and contains for exons. Exon 1 contains untranslated sequences and two potential translation initiation sites at codons -69 and -47. Exon 2 (1525 bp) contains 83% of the coding sequence for the mature protein, including the N-terminal and the active-site serine, and a third possible translation initiation site (likely functional), at codon -28. Exon 3 is 167 nucleotides long. Exon 4 (604 bp) codes for the C-terminus of the protein and the 3' untranslated region where two polyadenylation signals were identified. Intron 1 is 6.5 km long, and the minimal sizes of introns 2 and 3 are estimated to be 32 km each. Southern blot analysis of total human genomic DNA is in complete agreement with the gene structure established by restriction endonuclease mapping of the genomic clones: this strongly suggests that the BChE gene is present in a single copy

  2. Gene expression profiling in the inductive human hematopoietic microenvironment

    International Nuclear Information System (INIS)

    Zhao Yongjun; Chen, Edwin; Li Liheng; Gong Baiwei; Xie Wei; Nanji, Shaherose; Dube, Ian D.; Hough, Margaret R.

    2004-01-01

    Human hematopoietic stem cells (HSCs) and their progenitors can be maintained in vitro in long-term bone marrow cultures (LTBMCs) in which constituent HSCs can persist within the adherent layers for up to 2 months. Media replenishment of LTBMCs has been shown to induce transition of HSCs from a quiescent state to an active cycling state. We hypothesize that the media replenishment of the LTBMCs leads to the activation of important regulatory genes uniquely involved in HSC proliferation and differentiation. To profile the gene expression changes associated with HSC activation, we performed suppression subtractive hybridization (SSH) on day 14 human LTBMCs following 1-h media replenishment and on unmanipulated controls. The generated SSH library contained 191 differentially up-regulated expressed sequence tags (ESTs), the majority corresponding to known genes related to various intracellular processes, including signal transduction pathways, protein synthesis, and cell cycle regulation. Nineteen ESTs represented previously undescribed sequences encoding proteins of unknown function. Differential up-regulation of representative genes, including IL-8, IL-1, putative cytokine 21/HC21, MAD3, and a novel EST was confirmed by semi-quantitative RT-PCR. Levels of fibronectin, G-CSF, and stem cell factor also increased in the conditioned media of LTBMCs as assessed by ELISA, indicating increased synthesis and secretion of these factors. Analysis of our library provides insights into some of the immediate early gene changes underlying the mechanisms by which the stromal elements within the LTBMCs contribute to the induction of HSC activation and provides the opportunity to identify as yet unrecognized factors regulating HSC activation in the LTBMC milieu

  3. Mapping the structure, composition and mechanical properties of human teeth

    International Nuclear Information System (INIS)

    Low, I.M.; Duraman, N.; Mahmood, U.

    2008-01-01

    The structure-property relationship in human adult and baby teeth was characterised by grazing-incidence synchrotron radiation diffraction, optical and atomic-force microscopy, in addition to Vickers indentation. Similarities and differences between both types of teeth have been highlighted and discussed. Depth-profiling results indicated the existence of contrasting but distinct gradual changes in crystal disorder, phase abundance, crystallite size and hardness within the baby and adult enamel, thus confirming the graded nature of human teeth. When compared to the adult tooth, the baby enamel is softer, more prone to fracture, but has larger hydroxyapatite grains. Vickers hardness of the enamel was load-dependent but load-independent in the dentine. The use of a 'bonded-interface' technique revealed the nature and evolution of deformation-microfracture damage around and beneath Vickers contacts

  4. Mapping the structure, composition and mechanical properties of human teeth

    Energy Technology Data Exchange (ETDEWEB)

    Low, I.M. [Materials Research Group, Department of Applied Physics, Curtin University of Technology, Perth, WA 6845 (Australia)], E-mail: j.low@curtin.edu.au; Duraman, N.; Mahmood, U. [Materials Research Group, Department of Applied Physics, Curtin University of Technology, Perth, WA 6845 (Australia)

    2008-03-10

    The structure-property relationship in human adult and baby teeth was characterised by grazing-incidence synchrotron radiation diffraction, optical and atomic-force microscopy, in addition to Vickers indentation. Similarities and differences between both types of teeth have been highlighted and discussed. Depth-profiling results indicated the existence of contrasting but distinct gradual changes in crystal disorder, phase abundance, crystallite size and hardness within the baby and adult enamel, thus confirming the graded nature of human teeth. When compared to the adult tooth, the baby enamel is softer, more prone to fracture, but has larger hydroxyapatite grains. Vickers hardness of the enamel was load-dependent but load-independent in the dentine. The use of a 'bonded-interface' technique revealed the nature and evolution of deformation-microfracture damage around and beneath Vickers contacts.

  5. Comparative genomics and association mapping approaches for blast resistant genes in finger millet using SSRs.

    Directory of Open Access Journals (Sweden)

    B Kalyana Babu

    Full Text Available The major limiting factor for production and productivity of finger millet crop is blast disease caused by Magnaporthe grisea. Since, the genome sequence information available in finger millet crop is scarce, comparative genomics plays a very important role in identification of genes/QTLs linked to the blast resistance genes using SSR markers. In the present study, a total of 58 genic SSRs were developed for use in genetic analysis of a global collection of 190 finger millet genotypes. The 58 SSRs yielded ninety five scorable alleles and the polymorphism information content varied from 0.186 to 0.677 at an average of 0.385. The gene diversity was in the range of 0.208 to 0.726 with an average of 0.487. Association mapping for blast resistance was done using 104 SSR markers which identified four QTLs for finger blast and one QTL for neck blast resistance. The genomic marker RM262 and genic marker FMBLEST32 were linked to finger blast disease at a P value of 0.007 and explained phenotypic variance (R² of 10% and 8% respectively. The genomic marker UGEP81 was associated to finger blast at a P value of 0.009 and explained 7.5% of R². The QTLs for neck blast was associated with the genomic SSR marker UGEP18 at a P value of 0.01, which explained 11% of R². Three QTLs for blast resistance were found common by using both GLM and MLM approaches. The resistant alleles were found to be present mostly in the exotic genotypes. Among the genotypes of NW Himalayan region of India, VHC3997, VHC3996 and VHC3930 were found highly resistant, which may be effectively used as parents for developing blast resistant cultivars in the NW Himalayan region of India. The markers linked to the QTLs for blast resistance in the present study can be further used for cloning of the full length gene, fine mapping and their further use in the marker assisted breeding programmes for introgression of blast resistant alleles into locally adapted cultivars.

  6. Comparative genomics and association mapping approaches for blast resistant genes in finger millet using SSRs.

    Science.gov (United States)

    Babu, B Kalyana; Dinesh, Pandey; Agrawal, Pawan K; Sood, S; Chandrashekara, C; Bhatt, Jagadish C; Kumar, Anil

    2014-01-01

    The major limiting factor for production and productivity of finger millet crop is blast disease caused by Magnaporthe grisea. Since, the genome sequence information available in finger millet crop is scarce, comparative genomics plays a very important role in identification of genes/QTLs linked to the blast resistance genes using SSR markers. In the present study, a total of 58 genic SSRs were developed for use in genetic analysis of a global collection of 190 finger millet genotypes. The 58 SSRs yielded ninety five scorable alleles and the polymorphism information content varied from 0.186 to 0.677 at an average of 0.385. The gene diversity was in the range of 0.208 to 0.726 with an average of 0.487. Association mapping for blast resistance was done using 104 SSR markers which identified four QTLs for finger blast and one QTL for neck blast resistance. The genomic marker RM262 and genic marker FMBLEST32 were linked to finger blast disease at a P value of 0.007 and explained phenotypic variance (R²) of 10% and 8% respectively. The genomic marker UGEP81 was associated to finger blast at a P value of 0.009 and explained 7.5% of R². The QTLs for neck blast was associated with the genomic SSR marker UGEP18 at a P value of 0.01, which explained 11% of R². Three QTLs for blast resistance were found common by using both GLM and MLM approaches. The resistant alleles were found to be present mostly in the exotic genotypes. Among the genotypes of NW Himalayan region of India, VHC3997, VHC3996 and VHC3930 were found highly resistant, which may be effectively used as parents for developing blast resistant cultivars in the NW Himalayan region of India. The markers linked to the QTLs for blast resistance in the present study can be further used for cloning of the full length gene, fine mapping and their further use in the marker assisted breeding programmes for introgression of blast resistant alleles into locally adapted cultivars.

  7. Epitope mapping of the domains of human angiotensin converting enzyme.

    Science.gov (United States)

    Kugaevskaya, Elena V; Kolesanova, Ekaterina F; Kozin, Sergey A; Veselovsky, Alexander V; Dedinsky, Ilya R; Elisseeva, Yulia E

    2006-06-01

    Somatic angiotensin converting enzyme (sACE), contains in its single chain two homologous domains (called N- and C-domains), each bearing a functional zinc-dependent active site. The present study aims to define the differences between two sACE domains and to localize experimentally revealed antigenic determinants (B-epitopes) in the recently determined three-dimensional structure of testicular tACE. The predicted linear antigenic determinants of human sACE were determined by peptide scanning ("PEPSCAN") approach. Essential difference was demonstrated between locations of the epitopes in the N- and C-domains. Comparison of arrangement of epitopes in the human domains with the corresponding sequences of some mammalian sACEs enabled to classify the revealed antigenic determinants as variable or conserved areas. The location of antigenic determinants with respect to various structural elements and to functionally important sites of the human sACE C-domain was estimated. The majority of antigenic sites of the C-domain were located at the irregular elements and at the boundaries of secondary structure elements. The data show structural differences between the sACE domains. The experimentally revealed antigenic determinants were in agreement with the recently determined crystal tACE structure. New potential applications are open to successfully produce mono-specific and group-specific antipeptide antibodies.

  8. Arabidopsis MAP Kinase 4 regulates gene expression via transcription factor release in the nucleus

    DEFF Research Database (Denmark)

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus

    2008-01-01

    kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from...... MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further...... supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation....

  9. Genetic mapping of the regulator gene determining enterotoxin synthesis in Vibrio cholerae

    International Nuclear Information System (INIS)

    Smirnova, N.I.; Livanova, L.F.; Shaginyan, I.A.; Motin, V.L.

    1986-01-01

    Data on the genetic mapping of mutation tox-7 (the mutation affecting the synthesis of the cholera toxin) were obtained by conjugation crosses between the atoxigenic donor strain Vibrio cholerae Eltor and the toxigenic recipient strain V. cholera classica. The molecular and genetic analysis of the Tox - recombinants indicated that, when the synthesis of the cholera toxin is disrupted in these strains, the tox-7 mutation (which impairs the regulator gene tox) is gained. Close linkage between the tox-7 and pur-63 mutations was established (during the selection procedure there was 81.1% combined transfer with respect to marker pur-63 situated in the donor strain chromosome more proximal than mutation tox-7). The markers were localized in the following order in the region under investigation: asp-cys-nal-pur-61-trp-his-pur-63-tox-7-ile

  10. Human estrogen receptor (ESR) gene locus: PssI dimorphism