WorldWideScience

Sample records for human gait development

  1. Balzac and human gait analysis.

    Science.gov (United States)

    Collado-Vázquez, S; Carrillo, J M

    2015-05-01

    People have been interested in movement analysis in general, and gait analysis in particular, since ancient times. Aristotle, Hippocrates, Galen, Leonardo da Vinci and Honoré de Balzac all used observation to analyse the gait of human beings. The purpose of this study is to compare Honoré de Balzac's writings with a scientific analysis of human gait. Honoré de Balzac's Theory of walking and other works by that author referring to gait. Honoré de Balzac had an interest in gait analysis, as demonstrated by his descriptions of characters which often include references to their way of walking. He also wrote a treatise entitled Theory of walking (Théorie de la demarche) in which he employed his keen observation skills to define gait using a literary style. He stated that the walking process is divided into phases and listed the factors that influence gait, such as personality, mood, height, weight, profession and social class, and also provided a description of the correct way of walking. Balzac considered gait analysis to be very important and this is reflected in both his character descriptions and Theory of walking, his analytical observation of gait. In our own technology-dominated times, this serves as a reminder of the importance of observation. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  2. Human gait recognition via deterministic learning.

    Science.gov (United States)

    Zeng, Wei; Wang, Cong

    2012-11-01

    Recognition of temporal/dynamical patterns is among the most difficult pattern recognition tasks. Human gait recognition is a typical difficulty in the area of dynamical pattern recognition. It classifies and identifies individuals by their time-varying gait signature data. Recently, a new dynamical pattern recognition method based on deterministic learning theory was presented, in which a time-varying dynamical pattern can be effectively represented in a time-invariant manner and can be rapidly recognized. In this paper, we present a new model-based approach for human gait recognition via the aforementioned method, specifically for recognizing people by gait. The approach consists of two phases: a training (learning) phase and a test (recognition) phase. In the training phase, side silhouette lower limb joint angles and angular velocities are selected as gait features. A five-link biped model for human gait locomotion is employed to demonstrate that functions containing joint angle and angular velocity state vectors characterize the gait system dynamics. Due to the quasi-periodic and symmetrical characteristics of human gait, the gait system dynamics can be simplified to be described by functions of joint angles and angular velocities of one side of the human body, thus the feature dimension is effectively reduced. Locally-accurate identification of the gait system dynamics is achieved by using radial basis function (RBF) neural networks (NNs) through deterministic learning. The obtained knowledge of the approximated gait system dynamics is stored in constant RBF networks. A gait signature is then derived from the extracted gait system dynamics along the phase portrait of joint angles versus angular velocities. A bank of estimators is constructed using constant RBF networks to represent the training gait patterns. In the test phase, by comparing the set of estimators with the test gait pattern, a set of recognition errors are generated, and the average L(1) norms

  3. Average Gait Differential Image Based Human Recognition

    Directory of Open Access Journals (Sweden)

    Jinyan Chen

    2014-01-01

    Full Text Available The difference between adjacent frames of human walking contains useful information for human gait identification. Based on the previous idea a silhouettes difference based human gait recognition method named as average gait differential image (AGDI is proposed in this paper. The AGDI is generated by the accumulation of the silhouettes difference between adjacent frames. The advantage of this method lies in that as a feature image it can preserve both the kinetic and static information of walking. Comparing to gait energy image (GEI, AGDI is more fit to representation the variation of silhouettes during walking. Two-dimensional principal component analysis (2DPCA is used to extract features from the AGDI. Experiments on CASIA dataset show that AGDI has better identification and verification performance than GEI. Comparing to PCA, 2DPCA is a more efficient and less memory storage consumption feature extraction method in gait based recognition.

  4. A portable measurement system for the evaluation of human gait

    Directory of Open Access Journals (Sweden)

    Stefanović Filip

    2009-01-01

    Full Text Available A tool has been developed which can be used to evaluate human gait in a more detailed manner. Its purpose is to record data from an individual during gait then categorize and analyze the intrinsic phases with neuro-fuzzy techniques. The system is simple to use, adaptive, highly mobile, and does not require calibration. The hardware consists of four accelerometers and four force sensitive resistors to record data during walking which is then prepared and collected by a digital device and PDA computer. The gait data is passed into an intelligent fuzzy inference system managed by custom defined fuzzy rules to be classified into four stance phases (heel strike, flat foot, heel lift, toe push-off, and three swing phases (initial flexion, terminal flexion, and terminal extension. After the fuzzy system was trained using data from five healthy subjects, the system's representative gait classification root mean squared error dropped from 0.2975 to 0.1200, showing a much improved ability to categorize human gait, despite its varied nature. The system represents a robust tool, which can be used in a clinical environment for the analysis of human gait in rehabilitative applications such as rule based control generation for functional electrical stimulation, and gait quality analysis.

  5. A stochastic model of human gait dynamics

    Science.gov (United States)

    Ashkenazy, Yosef; M. Hausdorff, Jeffrey; Ch. Ivanov, Plamen; Eugene Stanley, H.

    2002-12-01

    We present a stochastic model of gait rhythm dynamics, based on transitions between different “neural centers”, that reproduces distinctive statistical properties of normal human walking. By tuning one model parameter, the transition (hopping) range, the model can describe alterations in gait dynamics from childhood to adulthood-including a decrease in the correlation and volatility exponents with maturation. The model also generates time series with multifractal spectra whose broadness depends only on this parameter. Moreover, we find that the volatility exponent increases monotonically as a function of the width of the multifractal spectrum, suggesting the possibility of a change in multifractality with maturation.

  6. Childhood development of common drive to a human leg muscle during ankle dorsiflexion and gait

    DEFF Research Database (Denmark)

    Hvass Petersen, Tue; Kliim-Due, Mette; Farmer, Simon F.

    2010-01-01

    discharges during walking with pronounced coherence in the 15-50 Hz frequency band. This coherence has been shown to depend on cortical drive. Here, we investigated how this coherence changes with development. 44 healthy children aged 4 - 15 yrs participated in the study. Electromyographic activity (EMG...

  7. Emotion recognition using Kinect motion capture data of human gaits

    Science.gov (United States)

    Li, Shun; Cui, Liqing; Zhu, Changye; Li, Baobin

    2016-01-01

    Automatic emotion recognition is of great value in many applications, however, to fully display the application value of emotion recognition, more portable, non-intrusive, inexpensive technologies need to be developed. Human gaits could reflect the walker’s emotional state, and could be an information source for emotion recognition. This paper proposed a novel method to recognize emotional state through human gaits by using Microsoft Kinect, a low-cost, portable, camera-based sensor. Fifty-nine participants’ gaits under neutral state, induced anger and induced happiness were recorded by two Kinect cameras, and the original data were processed through joint selection, coordinate system transformation, sliding window gauss filtering, differential operation, and data segmentation. Features of gait patterns were extracted from 3-dimentional coordinates of 14 main body joints by Fourier transformation and Principal Component Analysis (PCA). The classifiers NaiveBayes, RandomForests, LibSVM and SMO (Sequential Minimal Optimization) were trained and evaluated, and the accuracy of recognizing anger and happiness from neutral state achieved 80.5% and 75.4%. Although the results of distinguishing angry and happiness states were not ideal in current study, it showed the feasibility of automatically recognizing emotional states from gaits, with the characteristics meeting the application requirements. PMID:27672492

  8. Emotion recognition using Kinect motion capture data of human gaits.

    Science.gov (United States)

    Li, Shun; Cui, Liqing; Zhu, Changye; Li, Baobin; Zhao, Nan; Zhu, Tingshao

    2016-01-01

    Automatic emotion recognition is of great value in many applications, however, to fully display the application value of emotion recognition, more portable, non-intrusive, inexpensive technologies need to be developed. Human gaits could reflect the walker's emotional state, and could be an information source for emotion recognition. This paper proposed a novel method to recognize emotional state through human gaits by using Microsoft Kinect, a low-cost, portable, camera-based sensor. Fifty-nine participants' gaits under neutral state, induced anger and induced happiness were recorded by two Kinect cameras, and the original data were processed through joint selection, coordinate system transformation, sliding window gauss filtering, differential operation, and data segmentation. Features of gait patterns were extracted from 3-dimentional coordinates of 14 main body joints by Fourier transformation and Principal Component Analysis (PCA). The classifiers NaiveBayes, RandomForests, LibSVM and SMO (Sequential Minimal Optimization) were trained and evaluated, and the accuracy of recognizing anger and happiness from neutral state achieved 80.5% and 75.4%. Although the results of distinguishing angry and happiness states were not ideal in current study, it showed the feasibility of automatically recognizing emotional states from gaits, with the characteristics meeting the application requirements.

  9. Gait Correlation Analysis Based Human Identification

    Directory of Open Access Journals (Sweden)

    Jinyan Chen

    2014-01-01

    Full Text Available Human gait identification aims to identify people by a sequence of walking images. Comparing with fingerprint or iris based identification, the most important advantage of gait identification is that it can be done at a distance. In this paper, silhouette correlation analysis based human identification approach is proposed. By background subtracting algorithm, the moving silhouette figure can be extracted from the walking images sequence. Every pixel in the silhouette has three dimensions: horizontal axis (x, vertical axis (y, and temporal axis (t. By moving every pixel in the silhouette image along these three dimensions, we can get a new silhouette. The correlation result between the original silhouette and the new one can be used as the raw feature of human gait. Discrete Fourier transform is used to extract features from this correlation result. Then, these features are normalized to minimize the affection of noise. Primary component analysis method is used to reduce the features’ dimensions. Experiment based on CASIA database shows that this method has an encouraging recognition performance.

  10. Extraction of human gait signatures: an inverse kinematic approach using Groebner basis theory applied to gait cycle analysis

    Science.gov (United States)

    Barki, Anum; Kendricks, Kimberly; Tuttle, Ronald F.; Bunker, David J.; Borel, Christoph C.

    2013-05-01

    This research highlights the results obtained from applying the method of inverse kinematics, using Groebner basis theory, to the human gait cycle to extract and identify lower extremity gait signatures. The increased threat from suicide bombers and the force protection issues of today have motivated a team at Air Force Institute of Technology (AFIT) to research pattern recognition in the human gait cycle. The purpose of this research is to identify gait signatures of human subjects and distinguish between subjects carrying a load to those subjects without a load. These signatures were investigated via a model of the lower extremities based on motion capture observations, in particular, foot placement and the joint angles for subjects affected by carrying extra load on the body. The human gait cycle was captured and analyzed using a developed toolkit consisting of an inverse kinematic motion model of the lower extremity and a graphical user interface. Hip, knee, and ankle angles were analyzed to identify gait angle variance and range of motion. Female subjects exhibited the most knee angle variance and produced a proportional correlation between knee flexion and load carriage.

  11. Allometric control of human gait

    Science.gov (United States)

    Griffin, Lori Ann

    results suggest the need to change the interpretation of ``noise'' in such time series data. Suggesting the concept of how the gait data will be analyzed, with regards to treating strides as being random, may need to be rethought.

  12. Human Gait Recognition Based on Kernel PCA Using Projections

    Institute of Scientific and Technical Information of China (English)

    Murat Ekinci; Murat Aykut

    2007-01-01

    This paper presents a novel approach for human identification at a distance using gait recognition. Recog- nition of a person from their gait is a biometric of increasing interest. The proposed work introduces a nonlinear machine learning method, kernel Principal Component Analysis (PCA), to extract gait features from silhouettes for individual recognition. Binarized silhouette of a motion object is first represented by four 1-D signals which are the basic image features called the distance vectors. Fourier transform is performed to achieve translation invariant for the gait patterns accumulated from silhouette sequences which are extracted from different circumstances. Kernel PCA is then used to extract higher order relations among the gait patterns for future recognition. A fusion strategy is finally executed to produce a final decision. The experiments are carried out on the CMU and the USF gait databases and presented based on the different training gait cycles.

  13. Human Gait Gender Classification in Spatial and Temporal Reasoning

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2012-09-01

    Full Text Available Biometrics technology already becomes one of many application needs for identification. Every organ in the human body might be used as an identification unit because they tend to be unique characteristics. Many researchers had their focus on human organ biometrics physical characteristics such as fingerprint, human face, palm print, eye iris, DNA, and even behavioral characteristics such as a way of talk, voice and gait walking. Human Gait as the recognition object is the famous biometrics system recently. One of the important advantage in this recognition compare to other is it does not require observed subject’s attention and assistance. This paper proposed Gender classification using Human Gait video data. There are many human gait datasets created within the last 10 years. Some databases that widely used are University of South Florida (USF Gait Dataset, Chinese Academy of Sciences (CASIA Gait Dataset, and Southampton University (SOTON Gait Dataset. This paper classifies human gender in Spatial Temporal reasoning using CASIA Gait Database. Using Support Vector Machine as a Classifier, the classification result is 97.63% accuracy.

  14. Detection of abnormalities in a human gait using smart shoes

    Science.gov (United States)

    Kong, Kyoungchul; Bae, Joonbum; Tomizuka, Masayoshi

    2008-03-01

    Health monitoring systems require a means for detecting and quantifying abnormalities from measured signals. In this paper, a new method for detecting abnormalities in a human gait is proposed for an improved gait monitoring system for patients with walking problems. In the previous work, we introduced a fuzzy logic algorithm for detecting phases in a human gait based on four foot pressure sensors for each of the right and left foot. The fuzzy logic algorithm detects the gait phases smoothly and continuously, and retains all information obtained from sensors. In this paper, a higher level algorithm for detecting abnormalities in the gait phases obtained from the fuzzy logic is discussed. In the proposed algorithm, two major abnormalities are detected 1) when the sensors measure improper foot pressure patterns, and 2) when the human does not follow a natural sequence of gait phases. For mathematical realization of the algorithm, the gait phases are dealt with by a vector analysis method. The proposed detection algorithm is verified by experiments on abnormal gaits as well as normal gaits. The experiment makes use of the Smart Shoes that embeds four bladders filled with air, the pressure changes in which are detected by pressure transducers.

  15. Reflex control of robotic gait using human walking data.

    Directory of Open Access Journals (Sweden)

    Catherine A Macleod

    Full Text Available Control of human walking is not thoroughly understood, which has implications in developing suitable strategies for the retraining of a functional gait following neurological injuries such as spinal cord injury (SCI. Bipedal robots allow us to investigate simple elements of the complex nervous system to quantify their contribution to motor control. RunBot is a bipedal robot which operates through reflexes without using central pattern generators or trajectory planning algorithms. Ground contact information from the feet is used to activate motors in the legs, generating a gait cycle visually similar to that of humans. Rather than developing a more complicated biologically realistic neural system to control the robot's stepping, we have instead further simplified our model by measuring the correlation between heel contact and leg muscle activity (EMG in human subjects during walking and from this data created filter functions transferring the sensory data into motor actions. Adaptive filtering was used to identify the unknown transfer functions which translate the contact information into muscle activation signals. Our results show a causal relationship between ground contact information from the heel and EMG, which allows us to create a minimal, linear, analogue control system for controlling walking. The derived transfer functions were applied to RunBot II as a proof of concept. The gait cycle produced was stable and controlled, which is a positive indication that the transfer functions have potential for use in the control of assistive devices for the retraining of an efficient and effective gait with potential applications in SCI rehabilitation.

  16. Optimality principles for model-based prediction of human gait.

    Science.gov (United States)

    Ackermann, Marko; van den Bogert, Antonie J

    2010-04-19

    Although humans have a large repertoire of potential movements, gait patterns tend to be stereotypical and appear to be selected according to optimality principles such as minimal energy. When applied to dynamic musculoskeletal models such optimality principles might be used to predict how a patient's gait adapts to mechanical interventions such as prosthetic devices or surgery. In this paper we study the effects of different performance criteria on predicted gait patterns using a 2D musculoskeletal model. The associated optimal control problem for a family of different cost functions was solved utilizing the direct collocation method. It was found that fatigue-like cost functions produced realistic gait, with stance phase knee flexion, as opposed to energy-related cost functions which avoided knee flexion during the stance phase. We conclude that fatigue minimization may be one of the primary optimality principles governing human gait.

  17. Quantifying dynamic characteristics of human walking for comprehensive gait cycle.

    Science.gov (United States)

    Mummolo, Carlotta; Mangialardi, Luigi; Kim, Joo H

    2013-09-01

    Normal human walking typically consists of phases during which the body is statically unbalanced while maintaining dynamic stability. Quantifying the dynamic characteristics of human walking can provide better understanding of gait principles. We introduce a novel quantitative index, the dynamic gait measure (DGM), for comprehensive gait cycle. The DGM quantifies the effects of inertia and the static balance instability in terms of zero-moment point and ground projection of center of mass and incorporates the time-varying foot support region (FSR) and the threshold between static and dynamic walking. Also, a framework of determining the DGM from experimental data is introduced, in which the gait cycle segmentation is further refined. A multisegmental foot model is integrated into a biped system to reconstruct the walking motion from experiments, which demonstrates the time-varying FSR for different subphases. The proof-of-concept results of the DGM from a gait experiment are demonstrated. The DGM results are analyzed along with other established features and indices of normal human walking. The DGM provides a measure of static balance instability of biped walking during each (sub)phase as well as the entire gait cycle. The DGM of normal human walking has the potential to provide some scientific insights in understanding biped walking principles, which can also be useful for their engineering and clinical applications.

  18. The integrative role of the pedunculopontine nucleus in human gait.

    Science.gov (United States)

    Lau, Brian; Welter, Marie-Laure; Belaid, Hayat; Fernandez Vidal, Sara; Bardinet, Eric; Grabli, David; Karachi, Carine

    2015-05-01

    The brainstem pedunculopontine nucleus has a likely, although unclear, role in gait control, and is a potential deep brain stimulation target for treating resistant gait disorders. These disorders are a major therapeutic challenge for the ageing population, especially in Parkinson's disease where gait and balance disorders can become resistant to both dopaminergic medication and subthalamic nucleus stimulation. Here, we present electrophysiological evidence that the pedunculopontine and subthalamic nuclei are involved in distinct aspects of gait using a locomotor imagery task in 14 patients with Parkinson's disease undergoing surgery for the implantation of pedunculopontine or subthalamic nuclei deep brain stimulation electrodes. We performed electrophysiological recordings in two phases, once during surgery, and again several days after surgery in a subset of patients. The majority of pedunculopontine nucleus neurons (57%) recorded intrasurgically exhibited changes in activity related to different task components, with 29% modulated during visual stimulation, 41% modulated during voluntary hand movement, and 49% modulated during imaginary gait. Pedunculopontine nucleus local field potentials recorded post-surgically were modulated in the beta and gamma bands during visual and motor events, and we observed alpha and beta band synchronization that was sustained for the duration of imaginary gait and spatially localized within the pedunculopontine nucleus. In contrast, significantly fewer subthalamic nucleus neurons (27%) recorded intrasurgically were modulated during the locomotor imagery, with most increasing or decreasing activity phasically during the hand movement that initiated or terminated imaginary gait. Our data support the hypothesis that the pedunculopontine nucleus influences gait control in manners extending beyond simply driving pattern generation. In contrast, the subthalamic nucleus seems to control movement execution that is not likely to be gait

  19. Analysis of Gait Pattern to Recognize the Human Activities

    Directory of Open Access Journals (Sweden)

    Jay Prakash Gupta

    2014-09-01

    Full Text Available Human activity recognition based on the computer vision is the process of labelling image sequences with action labels. Accurate systems for this problem are applied in areas such as visual surveillance, human computer interaction and video retrieval. The challenges are due to variations in motion, recording settings and gait differences. Here we propose an approach to recognize the human activities through gait. Activity recognition through Gait is the process of identifying an activity by the manner in which they walk. The identification of human activities in a video, such as a person is walking, running, jumping, jogging etc are important activities in video surveillance. We contribute the use of Model based approach for activity recognition with the help of movement of legs only. Experimental results suggest that our method are able to recognize the human activities with a good accuracy rate and robust to shadows present in the videos.

  20. Dependence of gait parameters on height in typically developing children.

    Science.gov (United States)

    Agostini, Valentina; Nascimbeni, Alberto; Di Nardo, Francesco; Fioretti, Sandro; Burattini, Laura; Knaflitz, Marco

    2015-01-01

    In clinical gait analysis is fundamental to have access to normative data, to be used as a reference in the interpretation of pathological walking. In a paediatric population this may be complicated by the dependence of gait parameters on child growth. The aim of this work is to provide the correlations of spatial-temporal gait parameters with children's height. We obtained the regression lines of cadence, double support, and gait phases, with respect to height, from a sample of 85 normally typically developing children aged 6 to 11. Our analysis of gait phases was not limited to the traditional analysis of stance and swing, but rather focused on the sub-phases of stance - heel contact, flat foot contact, push off - which proved to be an innovative approach to gait analysis. Heel contact decreased, flat foot contact increased and push off remained essentially unchanged with respect to children's height. These results may be useful in the interpretation of gait data in developing children, and the regression lines obtained may be used to normalize their gait parameters.

  1. Silhouette extraction from human gait images sequence using cosegmentation

    Science.gov (United States)

    Chen, Jinyan; Zhang, Yi

    2012-11-01

    Gait based human identification is very useful for automatic person recognize through visual surveillance and has attracted more and more researchers. A key step in gait based human identification is to extract human silhouette from images sequence. Current silhouette extraction methods are mainly based on simple color subtraction. These methods have a very poor performance when the color of some body parts is similar to the background. In this paper a cosegmentation based human silhouette extraction method is proposed. Cosegmentation is typically defined as the task of jointly segmenting "something similar" in a given set of images. We can divide the human gait images sequence into several step cycles and every step cycle consist of 10-15 frames. The frames in human gait images sequence have following similarity: every frame is similar to the next or previous frame; every frame is similar to the corresponding frame in the next or previous step cycle; every pixel can find similar pixel in other frames. The progress of cosegmentation based human silhouette extraction can be described as follows: Initially only points which have high contrast to background are used as foreground kernel points, the points in the background are used as background kernel points, then points similar to foreground points will be added to foreground points set and the points similar to background points will be added to background points set. The definition of the similarity consider the context of the point. Experimental result shows that our method has a better performance comparing to traditional human silhouette extraction methods. Keywords: Human gait

  2. Regional neuromuscular regulation within human rectus femoris muscle during gait.

    Science.gov (United States)

    Watanabe, Kohei; Kouzaki, Motoki; Moritani, Toshio

    2014-11-01

    The spatial distribution pattern of neuromuscular activation within the human rectus femoris (RF) muscle was investigated during gait by multi-channel surface electromyography (surface EMG). Eleven healthy men walked on a treadmill with three gait speeds (4, 5, and 6 km/h) and gradients (0°, 12.5°, and 25°). The spatial distribution of surface EMG was tested by central locus activation (CLA), which is calculated from 2-D multi-channel surface EMG with 46 surface electrodes. For all conditions, CLA was around the middle regions during the swing-to-stance transition and moved in a proximal direction during the stance phase and stance-to-swing transition (pphase significantly moved to proximal site with increasing gait speed (pphases, with increasing grade, CLA significantly moved distally (pgait cycle and is non-uniformly regulated longitudinally.

  3. Least Action Principle in Gait

    CERN Document Server

    Fan, Yifang; Fan, Yubo; Xu, Zongxiang; Li, Zhiyu; Luo, Donglin

    2009-01-01

    We apply the laws of human gait vertical ground reaction force and discover the existence of the phenomenon of least action principle in gait. Using a capacitive mat transducer system, we obtain the variations of human gait vertical ground reaction force and establish a structure equation for the resultant of such a force. Defining the deviation of vertical force as an action function, we observe from our gait optimization analysis the least action principle at half of the stride time. We develop an evaluation index of mechanical energy consumption based upon the least action principle in gait. We conclude that these observations can be employed to enhance the accountability of gait evaluation.

  4. Gait Patterns in Twins with Cerebral Palsy: Similarities and Development over Time after Multilevel Surgery

    Science.gov (United States)

    van Drongelen, Stefan; Dreher, Thomas; Heitzmann, Daniel W. W.; Wolf, Sebastian I.

    2013-01-01

    To examine gait patterns and gait quality, 7 twins with cerebral palsy were measured preoperatively and after surgical intervention. The aim was to study differences and/or similarities in gait between twins, the influence of personal characteristics and birth conditions, and to describe the development of gait over time after single event…

  5. Gait Patterns in Twins with Cerebral Palsy: Similarities and Development over Time after Multilevel Surgery

    Science.gov (United States)

    van Drongelen, Stefan; Dreher, Thomas; Heitzmann, Daniel W. W.; Wolf, Sebastian I.

    2013-01-01

    To examine gait patterns and gait quality, 7 twins with cerebral palsy were measured preoperatively and after surgical intervention. The aim was to study differences and/or similarities in gait between twins, the influence of personal characteristics and birth conditions, and to describe the development of gait over time after single event…

  6. Action and gait recognition from recovered 3-D human joints.

    Science.gov (United States)

    Gu, Junxia; Ding, Xiaoqing; Wang, Shengjin; Wu, Youshou

    2010-08-01

    A common viewpoint-free framework that fuses pose recovery and classification for action and gait recognition is presented in this paper. First, a markerless pose recovery method is adopted to automatically capture the 3-D human joint and pose parameter sequences from volume data. Second, multiple configuration features (combination of joints) and movement features (position, orientation, and height of the body) are extracted from the recovered 3-D human joint and pose parameter sequences. A hidden Markov model (HMM) and an exemplar-based HMM are then used to model the movement features and configuration features, respectively. Finally, actions are classified by a hierarchical classifier that fuses the movement features and the configuration features, and persons are recognized from their gait sequences with the configuration features. The effectiveness of the proposed approach is demonstrated with experiments on the Institut National de Recherche en Informatique et Automatique Xmas Motion Acquisition Sequences data set.

  7. A multisegment computer simulation of normal human gait.

    Science.gov (United States)

    Gilchrist, L A; Winter, D A

    1997-12-01

    The goal of this project was to develop a computer simulation of normal human walking that would use as driving moments resultant joint moments from a gait analysis. The system description, initial conditions and driving moments were taken from an inverse dynamics analysis of a normal walking trial. A nine-segment three-dimensional (3-D) model, including a two-part foot, was used. Torsional, linear springs and dampers were used at the hip joints to keep the trunk vertical and at the knee and ankle joints to prevent nonphysiological motion. Dampers at other joints were required to ensure a smooth and realistic motion. The simulated human successfully completed one step (550 ms), including both single and double support phases. The model proved to be sensitive to changes in the spring stiffness values of the trunk controllers. Similar sensitivity was found with the springs used to prevent hyperextension of the knee at heel contact and of the metatarsal-phalangeal joint at push-off. In general, there was much less sensitivity to the damping coefficients. This simulation improves on previous efforts because it incorporates some features necessary in simulations designed to answer clinical science questions. Other control algorithms are required, however, to ensure that the model can be realistically adapted to different subjects.

  8. Acoustic micro-Doppler radar for human gait imaging.

    Science.gov (United States)

    Zhang, Zhaonian; Pouliquen, Philippe O; Waxman, Allen; Andreou, Andreas G

    2007-03-01

    A portable acoustic micro-Doppler radar system for the acquisition of human gait signatures in indoor and outdoor environments is reported. Signals from an accelerometer attached to the leg support the identification of the components in the measured micro-Doppler signature. The acoustic micro-Doppler system described in this paper is simpler and offers advantages over the widely used electromagnetic wave micro-Doppler radars.

  9. A computational model for dynamic analysis of the human gait.

    Science.gov (United States)

    Vimieiro, Claysson; Andrada, Emanuel; Witte, Hartmut; Pinotti, Marcos

    2015-01-01

    Biomechanical models are important tools in the study of human motion. This work proposes a computational model to analyse the dynamics of lower limb motion using a kinematic chain to represent the body segments and rotational joints linked by viscoelastic elements. The model uses anthropometric parameters, ground reaction forces and joint Cardan angles from subjects to analyse lower limb motion during the gait. The model allows evaluating these data in each body plane. Six healthy subjects walked on a treadmill to record the kinematic and kinetic data. In addition, anthropometric parameters were recorded to construct the model. The viscoelastic parameter values were fitted for the model joints (hip, knee and ankle). The proposed model demonstrated that manipulating the viscoelastic parameters between the body segments could fit the amplitudes and frequencies of motion. The data collected in this work have viscoelastic parameter values that follow a normal distribution, indicating that these values are directly related to the gait pattern. To validate the model, we used the values of the joint angles to perform a comparison between the model results and previously published data. The model results show a same pattern and range of values found in the literature for the human gait motion.

  10. Video Analysis of Human Gait and Posture to Determine Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Ivan Lee

    2008-08-01

    Full Text Available This paper investigates the application of digital image processing techniques to the detection of neurological disorder. Visual information extracted from the postures and movements of a human gait cycle can be used by an experienced neurologist to determine the mental health of the person. However, the current visual assessment of diagnosing neurological disorder is based very much on subjective observation, and hence the accuracy of diagnosis heavily relies on experience. Other diagnostic techniques employed involve the use of imaging systems which can only be operated under highly constructed environment. A prototype has been developed in this work that is able to capture the subject's gait on video in a relatively simple setup, and from which to process the selected frames of the gait in a computer. Based on the static visual features such as swing distances and joint angles of human limbs, the system identifies patients with Parkinsonism from the test subjects. To our knowledge, it is the first time swing distances are utilized and identified as an effective means for characterizing human gait. The experimental results have shown a promising potential in medical application to assist the clinicians in diagnosing Parkinsonism.

  11. Predicting human walking gaits with a simple planar model.

    Science.gov (United States)

    Martin, Anne E; Schmiedeler, James P

    2014-04-11

    Models of human walking with moderate complexity have the potential to accurately capture both joint kinematics and whole body energetics, thereby offering more simultaneous information than very simple models and less computational cost than very complex models. This work examines four- and six-link planar biped models with knees and rigid circular feet. The two differ in that the six-link model includes ankle joints. Stable periodic walking gaits are generated for both models using a hybrid zero dynamics-based control approach. To establish a baseline of how well the models can approximate normal human walking, gaits were optimized to match experimental human walking data, ranging in speed from very slow to very fast. The six-link model well matched the experimental step length, speed, and mean absolute power, while the four-link model did not, indicating that ankle work is a critical element in human walking models of this type. Beyond simply matching human data, the six-link model can be used in an optimization framework to predict normal human walking using a torque-squared objective function. The model well predicted experimental step length, joint motions, and mean absolute power over the full range of speeds.

  12. The development of a tool for assessing the quality of closed circuit camera footage for use in forensic gait analysis.

    Science.gov (United States)

    Birch, Ivan; Vernon, Wesley; Walker, Jeremy; Saxelby, Jai

    2013-10-01

    Gait analysis from closed circuit camera footage is now commonly used as evidence in criminal trials. The biomechanical analysis of human gait is a well established science in both clinical and laboratory settings. However, closed circuit camera footage is rarely of the quality of that taken in the more controlled clinical and laboratory environments. The less than ideal quality of much of this footage for use in gait analysis is associated with a range of issues, the combination of which can often render the footage unsuitable for use in gait analysis. The aim of this piece of work was to develop a tool for assessing the suitability of closed circuit camera footage for the purpose of forensic gait analysis. A Delphi technique was employed with a small sample of expert forensic gait analysis practitioners, to identify key quality elements of CCTV footage used in legal proceedings. Five elements of the footage were identified and then subdivided into 15 contributing sub-elements, each of which was scored using a 5-point Likert scale. A Microsoft Excel worksheet was developed to calculate automatically an overall score from the fifteen sub-element scores. Five expert witnesses experienced in using CCTV footage for gait analysis then trialled the prototype tool on current case footage. A repeatability study was also undertaken using standardized CCTV footage. The results showed the tool to be a simple and repeatable means of assessing the suitability of closed circuit camera footage for use in forensic gait analysis. The inappropriate use of poor quality footage could lead to challenges to the practice of forensic gait analysis. All parties involved in criminal proceedings must therefore understand the fitness for purpose of any footage used. The development of this tool could offer a method of achieving this goal, and help to assure the continued role of forensic gait analysis as an aid to the identification process.

  13. Gait development on Minitaur, a direct drive quadrupedal robot

    Science.gov (United States)

    Blackman, Daniel J.; Nicholson, John V.; Ordonez, Camilo; Miller, Bruce D.; Clark, Jonathan E.

    2016-05-01

    This paper describes the development of a dynamic, quadrupedal robot designed for rapid traversal and interaction in human environments. We explore improvements to both physical and control methods to a legged robot (Minitaur) in order to improve the speed and stability of its gaits and increase the range of obstacles that it can overcome, with an eye toward negotiating man-made terrains such as stairs. These modifications include an analysis of physical compliance, an investigation of foot and leg design, and the implementation of ground and obstacle contact sensing for inclusion in the control schemes. Structural and mechanical improvements were made to reduce undesired compliance for more consistent agreement with dynamic models, which necessitated refinement of foot design for greater durability. Contact sensing was implemented into the control scheme for identifying obstacles and deviations in surface level for negotiation of varying terrain. Overall the incorporation of these features greatly enhances the mobility of the dynamic quadrupedal robot and helps to establish a basis for overcoming obstacles.

  14. Involvement of the corticospinal tract in the control of human gait

    DEFF Research Database (Denmark)

    Barthélemy, Dorothy; Grey, Michael James; Nielsen, Jens Bo;

    2011-01-01

    Given the inherent mechanical complexity of human bipedal locomotion, and that complete spinal cord lesions in human leads to paralysis with no recovery of gait, it is often suggested that the corticospinal tract (CST) has a more predominant role in the control of walking in humans than in other...... animals. However, what do we actually know about the contribution of the CST to the control of gait? This chapter will provide an overview of this topic based on the premise that a better understanding of the role of the CST in gait will be essential for the design of evidence-based approaches...

  15. Loadcell supports for a dynamic force plate. [using piezoelectric tranducers and electromyography to study human gait

    Science.gov (United States)

    Keller, C. W.; Musil, L. M.; Hagy, J. L.

    1975-01-01

    An apparatus was developed to accurately measure components of force along three mutually perpendicular axes, torque, and the center of pressure imposed by the foot of a subject walking over its surface. The data obtained were used to supplement high-speed motion picture and electromyographic (EMG) data for in-depth studies of normal or abnormal human gait. Significant features of the design (in particular, the mechanisms used to support the loadcell transducers) are described. Results of the development program and typical data obtained with the device are presented and discussed.

  16. Recognition using gait.

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Mark William

    2007-09-01

    Gait or an individual's manner of walking, is one approach for recognizing people at a distance. Studies in psychophysics and medicine indicate that humans can recognize people by their gait and have found twenty-four different components to gait that taken together make it a unique signature. Besides not requiring close sensor contact, gait also does not necessarily require a cooperative subject. Using video data of people walking in different scenarios and environmental conditions we develop and test an algorithm that uses shape and motion to identify people from their gait. The algorithm uses dynamic time warping to match stored templates against an unknown sequence of silhouettes extracted from a person walking. While results under similar constraints and conditions are very good, the algorithm quickly degrades with varying conditions such as surface and clothing.

  17. Modulation of the startle response during human gait

    NARCIS (Netherlands)

    Nieuwenhuijzen, P.H.J.A.; Schillings, A.M.; Galen, G.P. van; Duysens, J.E.J.

    2000-01-01

    While many studies have shown that there is a phase-dependent modulation of proprioceptive and exteroceptive reflexes during gait, little is known about such modulation for auditory reflexes. To examine how startle reactions are incorporated in an ongoing gait pattern, unexpected auditory stimuli we

  18. When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations

    Science.gov (United States)

    Hausdorff, Jeffrey M.; Ashkenazy, Yosef; Peng, Chang-K.; Ivanov, Plamen Ch.; Stanley, H. Eugene; Goldberger, Ary L.

    2001-12-01

    We present a random walk, fractal analysis of the stride-to-stride fluctuations in the human gait rhythm. The gait of healthy young adults is scale-free with long-range correlations extending over hundreds of strides. This fractal scaling changes characteristically with maturation in children and older adults and becomes almost completely uncorrelated with certain neurologic diseases. Stochastic modeling of the gait rhythm dynamics, based on transitions between different “neural centers”, reproduces distinctive statistical properties of the gait pattern. By tuning one model parameter, the hopping (transition) range, the model can describe alterations in gait dynamics from childhood to adulthood - including a decrease in the correlation and volatility exponents with maturation.

  19. Human Gait Feature Extraction Including a Kinematic Analysis Toward Robotic Power Assistance

    Directory of Open Access Journals (Sweden)

    Mario I. Chacon-Murguia

    2012-09-01

    Full Text Available The present work proposes a method for human gait and kinematic analysis. Gait analysis consists of the determination of hip, knee and ankle positions through video analysis. Gait kinematic for the thigh and knee is then generated from this data. Evaluations of the gait analysis method indicate an acceptable performance of 86.66% for hip and knee position estimation, and comparable findings with other reported works for gait kinematic. A coordinate systems assignment is performed according to the DH algorithm and a direct kinematic model of the legs is obtained. The legs’ angles obtained from the video analysis are applied to the kinematic model in order to revise the application of this model to robotic legs in a power assisted system.

  20. A patient-specific EMG-driven neuromuscular model for the potential use of human-inspired gait rehabilitation robots.

    Science.gov (United States)

    Ma, Ye; Xie, Shengquan; Zhang, Yanxin

    2016-03-01

    A patient-specific electromyography (EMG)-driven neuromuscular model (PENm) is developed for the potential use of human-inspired gait rehabilitation robots. The PENm is modified based on the current EMG-driven models by decreasing the calculation time and ensuring good prediction accuracy. To ensure the calculation efficiency, the PENm is simplified into two EMG channels around one joint with minimal physiological parameters. In addition, a dynamic computation model is developed to achieve real-time calculation. To ensure the calculation accuracy, patient-specific muscle kinematics information, such as the musculotendon lengths and the muscle moment arms during the entire gait cycle, are employed based on the patient-specific musculoskeletal model. Moreover, an improved force-length-velocity relationship is implemented to generate accurate muscle forces. Gait analysis data including kinematics, ground reaction forces, and raw EMG signals from six adolescents at three different speeds were used to evaluate the PENm. The simulation results show that the PENm has the potential to predict accurate joint moment in real-time. The design of advanced human-robot interaction control strategies and human-inspired gait rehabilitation robots can benefit from the application of the human internal state provided by the PENm.

  1. Identification of muscle synergies associated with gait transition in humans

    Directory of Open Access Journals (Sweden)

    Shota eHagio

    2015-02-01

    Full Text Available There is no theoretical or empirical evidence to suggest how the central nervous system (CNS controls a variety of muscles associated with gait transition between walking and running. Here, we examined the motor control during a gait transition based on muscle synergies, which modularly organize functionally similar muscles. To this end, the subjects walked or ran on a treadmill and performed a gait transition spontaneously as the treadmill speed increased or decreased (a changing speed condition or voluntarily following an experimenter’s instruction at constant treadmill speed (a constant speed condition. Surface electromyograms (EMGs were recorded from 11 lower limb muscles bilaterally. We then extracted the muscle weightings of synergies and their activation coefficients from the EMG data using non-negative matrix factorization. As a result, the gait transition was controlled by approximately 9 muscle synergies, which were common during a walking and running, and their activation profiles were changed before and after a gait transition. Near a gait transition, the peak activation phases of the synergies, which were composed of plantar flexor muscles, were shifted to an earlier phase at the walk-to-run transition, and vice versa. The shifts were gradual in the changing speed condition, but an abrupt change was observed in the constant speed condition. These results suggest that the CNS low-dimensionally regulate the activation profiles of the specific synergies based on afferent information (spontaneous gait transition or by changing only the descending neural input to the muscle synergies (voluntary gait transition to achieve a gait transition.

  2. Interpolation function for approximating knee joint behavior in human gait

    Science.gov (United States)

    Toth-Taşcǎu, Mirela; Pater, Flavius; Stoia, Dan Ioan

    2013-10-01

    Starting from the importance of analyzing the kinematic data of the lower limb in gait movement, especially the angular variation of the knee joint, the paper propose an approximation function that can be used for processing the correlation among a multitude of knee cycles. The approximation of the raw knee data was done by Lagrange polynomial interpolation on a signal acquired using Zebris Gait Analysis System. The signal used in approximation belongs to a typical subject extracted from a lot of ten investigated subjects, but the function domain of definition belongs to the entire group. The study of the knee joint kinematics plays an important role in understanding the kinematics of the gait, this articulation having the largest range of motion in whole joints, in gait. The study does not propose to find an approximation function for the adduction-abduction movement of the knee, this being considered a residual movement comparing to the flexion-extension.

  3. Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton.

    Science.gov (United States)

    Long, Yi; Du, Zhijiang; Cong, Lin; Wang, Weidong; Zhang, Zhiming; Dong, Wei

    2017-03-01

    This paper presents an active disturbance rejection control (ADRC) based strategy, which is applied to track the human gait trajectory for a lower limb rehabilitation exoskeleton. The desired human gait trajectory is derived from the Clinical Gait Analysis (CGA). In ADRC, the total external disturbance can be estimated by the extended state observer (ESO) and canceled by the designed control law. The observer bandwidth and the controller bandwidth are determined by the practical principles. We simulated the proposed methodology in MATLAB. The numerical simulation shows the tracking error comparison and the estimated errors of the extended state observer. Two experimental tests were carried out to prove the performance of the algorithm presented in this paper. The experiment results show that the proposed ADRC behaves a better performance than the regular proportional integral derivative (PID) controller. With the proposed ADRC, the rehabilitation system is capable of tracking the target gait more accurately.

  4. Decrease in Hurst exponent of human gait with aging and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Zhuang Jian-Jun; Ning Xin-Bao; Yang Xiao-Dong; Hou Feng-Zhen; Huo Cheng-Yu

    2008-01-01

    In this paper the decrease in the Hurst exponent of human gait with aging and neurodegenerative diseases was observed by using an improved rescaled range (R/S) analysis method. It indicates that the long-range correlations of gait rhythm from young healthy people are stronger than those from the healthy elderly and the diseased.The result further implies that fractal dynamics in human gait will be altered due to weakening or impairment of neural control on locomotion resulting from aging and neurodegenerative diseases. Due to analysing short-term data sequences rather than long datasets required by most nonlinear methods, the algorithm has the characteristics of simplicity and sensitivity, most importantly, fast calculation as well as powerful anti-noise capacities. These findings have implications for modelling locomotor control and also for quantifying gait dynamics in varying physiologic and pathologic states.

  5. Decrease in Hurst exponent of human gait with aging and neurodegenerative diseases

    Science.gov (United States)

    Zhuang, Jian-Jun; Ning, Xin-Bao; Yang, Xiao-Dong; Hou, Feng-Zhen; Huo, Cheng-Yu

    2008-03-01

    In this paper the decrease in the Hurst exponent of human gait with aging and neurodegenerative diseases was observed by using an improved rescaled range (R/S) analysis method. It indicates that the long-range correlations of gait rhythm from young healthy people are stronger than those from the healthy elderly and the diseased. The result further implies that fractal dynamics in human gait will be altered due to weakening or impairment of neural control on locomotion resulting from aging and neurodegenerative diseases. Due to analysing short-term data sequences rather than long datasets required by most nonlinear methods, the algorithm has the characteristics of simplicity and sensitivity, most importantly, fast calculation as well as powerful anti-noise capacities. These findings have implications for modelling locomotor control and also for quantifying gait dynamics in varying physiologic and pathologic states.

  6. Assessment of Human Bio-Behavior During Gait Process Using LifeMOD Software

    Directory of Open Access Journals (Sweden)

    Liliana Rogozea

    2011-01-01

    Full Text Available In this paper we present a set of observations concerning the
    analysis and assessment of human bio-behavior during gait process. In the first part of the paper the fundamental and theoretical considerations of the gait process are approached and aspects connected to malfunctions are expressed. In the second part of the paper we present the modeling methodology using
    the LifeMOD software, while in the third part the results and conclusions are presented.

  7. Withdrawal reflexes examined during human gait by ground reaction forces: site and gait phase dependency.

    Science.gov (United States)

    Emborg, Jonas; Spaich, Erika G; Andersen, Ole K

    2009-01-01

    The objective of this study was to investigate the modulation of the nociceptive withdrawal reflex during gait measured using Force Sensitive Resistors (FSR). Electrical stimulation was delivered to four locations on the sole of the foot at three different time points between heel-off and toe-off. Peak force changes were measured by FSRs attached to the big toe, distal to the first and fourth metatarsophalangeal joints, and the medial process of the calcaneus on both feet. Force changes were assessed in five gait sub-phases. The painful stimulation led to increased ipsilateral unloading (10 +/- 1 N) and contralateral loading (12 +/- 1 N), which were dependent on stimulation site and phase. In contrast, the hallux of the ipsilateral foot plantar flexed, thus facilitating the push-off. The highest degree of plantar flexion (23 +/- 10 N; range, 8-44 N) was seen in the second double support phase following the stimulation. Site and phase modulation of the reflex were detected in the force signals from all selected anatomical landmarks. In the kinematic responses, both site and phase modulation were observed. For stimulations near toe-off, withdrawal was primarily accomplished by ankle dorsiflexion, while the strategy for stimulations at heel-off was flexion of the knee and hip joints.

  8. Development of gait segmentation methods for wearable foot pressure sensors.

    Science.gov (United States)

    Crea, S; De Rossi, S M M; Donati, M; Reberšek, P; Novak, D; Vitiello, N; Lenzi, T; Podobnik, J; Munih, M; Carrozza, M C

    2012-01-01

    We present an automated segmentation method based on the analysis of plantar pressure signals recorded from two synchronized wireless foot insoles. Given the strict limits on computational power and power consumption typical of wearable electronic components, our aim is to investigate the capability of a Hidden Markov Model machine-learning method, to detect gait phases with different levels of complexity in the processing of the wearable pressure sensors signals. Therefore three different datasets are developed: raw voltage values, calibrated sensor signals and a calibrated estimation of total ground reaction force and position of the plantar center of pressure. The method is tested on a pool of 5 healthy subjects, through a leave-one-out cross validation. The results show high classification performances achieved using estimated biomechanical variables, being on average the 96%. Calibrated signals and raw voltage values show higher delays and dispersions in phase transition detection, suggesting a lower reliability for online applications.

  9. Optics in gait analysis and anthropometry

    Science.gov (United States)

    Silva Moreno, Alejandra Alicia

    2013-11-01

    Since antiquity, human gait has been studied to understand human movement, the kind of gait, in some cases, can cause musculoskeletal disorders or other health problems; in addition, also from antiquity, anthropometry has been important for the design of human items such as workspaces, tools, garments, among others. Nowadays, thanks to the development of optics and electronics, more accurate studies of gait and anthropometry can be developed. This work will describe the most important parameters for gait analysis, anthropometry and the optical systems used.

  10. Vector diagrams in the evaluation of human gait

    NARCIS (Netherlands)

    Rozendal, R H; Heerkens, Y F; van Ingen Schenau, G J; van Ravensberg, C D; van der Woude, L H

    1985-01-01

    From recordings of reaction forces on the feet in the vertical (z) and horizontal for-aft (x) direction during walking, x-z vector-diagrams (VDG) are constructed for the purpose of clinical use in the evaluation of gait. Such use presupposes the existence of reference values. The parameters of VDG,

  11. The effects of listening to music or viewing television on human gait

    Science.gov (United States)

    Sejdić, Ervin; Findlay, Briar; Merey, Celeste; Chau, Tom

    2016-01-01

    This paper presents a two-part study with walking conditions involving music and television (TV) to investigate their effects on human gait. In the first part, we observed seventeen able-bodied adults as they participated in three 15-minute walking trials: 1. without music, 2. with music and 3. without music again. In the second part, we observed fifteen able-bodied adults as they walked on a treadmill for fifteen minutes while watching 1. TV with sound 2. TV without sound and 3. TV with subtitles but no sound. Gait timing was recorded via bilateral heel sensors and center-of-mass accelerations were measured by tri-axial accelerometers. Measures of statistical persistence, dynamic stability and gait variability were calculated. Our results showed that none of the considered gait measures were statistically different when comparing music with no-music trials. Therefore, walking to music did not appear to affect intrinsic walking dynamics in the able-bodied adult population. However, stride interval variability and stride interval dynamics were significantly greater in the TV with sound walking condition when compared to the TV with subtitles condition. Treadmill walking while watching TV with subtitles alters intinsic gait dynamics but potentially offers greater gait stability. PMID:24034741

  12. The effects of listening to music or viewing television on human gait.

    Science.gov (United States)

    Sejdić, Ervin; Findlay, Briar; Merey, Celeste; Chau, Tom

    2013-10-01

    This paper presents a two-part study with walking conditions involving music and television (TV) to investigate their effects on human gait. In the first part, we observed seventeen able-bodied adults as they participated in three 15-minute walking trials: (1) without music, (2) with music and (3) without music again. In the second part, we observed fifteen able-bodied adults as they walked on a treadmill for 15 min while watching (1) TV with sound (2) TV without sound and (3) TV with subtitles but no sound. Gait timing was recorded via bilateral heel sensors and center-of-mass accelerations were measured by tri-axial accelerometers. Measures of statistical persistence, dynamic stability and gait variability were calculated. Our results showed that none of the considered gait measures were statistically different when comparing music with no-music trials. Therefore, walking to music did not appear to affect intrinsic walking dynamics in the able-bodied adult population. However, stride interval variability and stride interval dynamics were significantly greater in the TV with sound walking condition when compared to the TV with subtitles condition. Treadmill walking while watching TV with subtitles alters intrinsic gait dynamics but potentially offers greater gait stability.

  13. Acoustic Gaits: Gait Analysis With Footstep Sounds.

    Science.gov (United States)

    Altaf, M Umair Bin; Butko, Taras; Juang, Biing-Hwang Fred

    2015-08-01

    We describe the acoustic gaits-the natural human gait quantitative characteristics derived from the sound of footsteps as the person walks normally. We introduce the acoustic gait profile, which is obtained from temporal signal analysis of sound of footsteps collected by microphones and illustrate some of the spatio-temporal gait parameters that can be extracted from the acoustic gait profile by using three temporal signal analysis methods-the squared energy estimate, Hilbert transform and Teager-Kaiser energy operator. Based on the statistical analysis of the parameter estimates, we show that the spatio-temporal parameters and gait characteristics obtained using the acoustic gait profile can consistently and reliably estimate a subset of clinical and biometric gait parameters currently in use for standardized gait assessments. We conclude that the Teager-Kaiser energy operator provides the most consistent gait parameter estimates showing the least variation across different sessions and zones. Acoustic gaits use an inexpensive set of microphones with a computing device as an accurate and unintrusive gait analysis system. This is in contrast to the expensive and intrusive systems currently used in laboratory gait analysis such as the force plates, pressure mats and wearable sensors, some of which may change the gait parameters that are being measured.

  14. The effects of rhythmic sensory cues on the temporal dynamics of human gait.

    Science.gov (United States)

    Sejdić, Ervin; Fu, Yingying; Pak, Alison; Fairley, Jillian A; Chau, Tom

    2012-01-01

    Walking is a complex, rhythmic task performed by the locomotor system. However, natural gait rhythms can be influenced by metronomic auditory stimuli, a phenomenon of particular interest in neurological rehabilitation. In this paper, we examined the effects of aural, visual and tactile rhythmic cues on the temporal dynamics associated with human gait. Data were collected from fifteen healthy adults in two sessions. Each session consisted of five 15-minute trials. In the first trial of each session, participants walked at their preferred walking speed. In subsequent trials, participants were asked to walk to a metronomic beat, provided through visually, aurally, tactile or all three cues (simultaneously and in sync), the pace of which was set to the preferred walking speed of the first trial. Using the collected data, we extracted several parameters including: gait speed, mean stride interval, stride interval variability, scaling exponent and maximum Lyapunov exponent. The extracted parameters showed that rhythmic sensory cues affect the temporal dynamics of human gait. The auditory rhythmic cue had the greatest influence on the gait parameters, while the visual cue had no statistically significant effect on the scaling exponent. These results demonstrate that visual rhythmic cues could be considered as an alternative cueing modality in rehabilitation without concern of adversely altering the statistical persistence of walking.

  15. The effects of rhythmic sensory cues on the temporal dynamics of human gait.

    Directory of Open Access Journals (Sweden)

    Ervin Sejdić

    Full Text Available Walking is a complex, rhythmic task performed by the locomotor system. However, natural gait rhythms can be influenced by metronomic auditory stimuli, a phenomenon of particular interest in neurological rehabilitation. In this paper, we examined the effects of aural, visual and tactile rhythmic cues on the temporal dynamics associated with human gait. Data were collected from fifteen healthy adults in two sessions. Each session consisted of five 15-minute trials. In the first trial of each session, participants walked at their preferred walking speed. In subsequent trials, participants were asked to walk to a metronomic beat, provided through visually, aurally, tactile or all three cues (simultaneously and in sync, the pace of which was set to the preferred walking speed of the first trial. Using the collected data, we extracted several parameters including: gait speed, mean stride interval, stride interval variability, scaling exponent and maximum Lyapunov exponent. The extracted parameters showed that rhythmic sensory cues affect the temporal dynamics of human gait. The auditory rhythmic cue had the greatest influence on the gait parameters, while the visual cue had no statistically significant effect on the scaling exponent. These results demonstrate that visual rhythmic cues could be considered as an alternative cueing modality in rehabilitation without concern of adversely altering the statistical persistence of walking.

  16. Gait curves for human recognition, backpack detection, and silhouette correction in a nighttime environment

    Science.gov (United States)

    DeCann, Brian; Ross, Arun

    2010-04-01

    The need for an automated surveillance system is pronounced at night when the capability of the human eye to detect anomalies is reduced. While there have been significant efforts in the classification of individuals using human metrology and gait, the majority of research assumes a day-time environment. The aim of this study is to move beyond traditional image acquisition modalities and explore the issues of object detection and human identification at night. To address these issues, a spatiotemporal gait curve that captures the shape dynamics of a moving human silhouette is employed. Initially proposed by Wang et al., this representation of the gait is expanded to incorporate modules for individual classification, backpack detection, and silhouette restoration. Evaluation of these algorithms is conducted on the CASIA Night Gait Database, which includes 10 video sequences for each of 153 unique subjects. The video sequences were captured using a low resolution thermal camera. Matching performance of the proposed algorithms is evaluated using a nearest neighbor classifier. The outcome of this work is an efficient algorithm for backpack detection and human identification, and a basis for further study in silhouette enhancement.

  17. An intermittent control model of flexible human gait using a stable manifold of saddle-type unstable limit cycle dynamics.

    Science.gov (United States)

    Fu, Chunjiang; Suzuki, Yasuyuki; Kiyono, Ken; Morasso, Pietro; Nomura, Taishin

    2014-12-06

    Stability of human gait is the ability to maintain upright posture during walking against external perturbations. It is a complex process determined by a number of cross-related factors, including gait trajectory, joint impedance and neural control strategies. Here, we consider a control strategy that can achieve stable steady-state periodic gait while maintaining joint flexibility with the lowest possible joint impedance. To this end, we carried out a simulation study of a heel-toe footed biped model with hip, knee and ankle joints and a heavy head-arms-trunk element, working in the sagittal plane. For simplicity, the model assumes a periodic desired joint angle trajectory and joint torques generated by a set of feed-forward and proportional-derivative feedback controllers, whereby the joint impedance is parametrized by the feedback gains. We could show that a desired steady-state gait accompanied by the desired joint angle trajectory can be established as a stable limit cycle (LC) for the feedback controller with an appropriate set of large feedback gains. Moreover, as the feedback gains are decreased for lowering the joint stiffness, stability of the LC is lost only in a few dimensions, while leaving the remaining large number of dimensions quite stable: this means that the LC becomes saddle-type, with a low-dimensional unstable manifold and a high-dimensional stable manifold. Remarkably, the unstable manifold remains of low dimensionality even when the feedback gains are decreased far below the instability point. We then developed an intermittent neural feedback controller that is activated only for short periods of time at an optimal phase of each gait stride. We characterized the robustness of this design by showing that it can better stabilize the unstable LC with small feedback gains, leading to a flexible gait, and in particular we demonstrated that such an intermittent controller performs better if it drives the state point to the stable manifold, rather

  18. Subspace identification and classification of healthy human gait.

    Directory of Open Access Journals (Sweden)

    Vinzenz von Tscharner

    Full Text Available PURPOSE: The classification between different gait patterns is a frequent task in gait assessment. The base vectors were usually found using principal component analysis (PCA is replaced by an iterative application of the support vector machine (SVM. The aim was to use classifyability instead of variability to build a subspace (SVM space that contains the information about classifiable aspects of a movement. The first discriminant of the SVM space will be compared to a discriminant found by an independent component analysis (ICA in the SVM space. METHODS: Eleven runners ran using shoes with different midsoles. Kinematic data, representing the movements during stance phase when wearing the two shoes, was used as input to a PCA and SVM. The data space was decomposed by an iterative application of the SVM into orthogonal discriminants that were able to classify the two movements. The orthogonal discriminants spanned a subspace, the SVM space. It represents the part of the movement that allowed classifying the two conditions. The data in the SVM space was reconstructed for a visual assessment of the movement difference. An ICA was applied to the data in the SVM space to obtain a single discriminant. Cohen's d effect size was used to rank the PCA vectors that could be used to classify the data, the first SVM discriminant or the ICA discriminant. RESULTS: The SVM base contains all the information that discriminates the movement of the two shod conditions. It was shown that the SVM base contains some redundancy and a single ICA discriminant was found by applying an ICA in the SVM space. CONCLUSIONS: A combination of PCA, SVM and ICA is best suited to extract all parts of the gait pattern that discriminates between the two movements and to find a discriminant for the classification of dichotomous kinematic data.

  19. On the energetics of the walking gait of a human operator using a passive exoskeleton apparatus

    Science.gov (United States)

    Lavrovskii, E. K.

    2015-01-01

    We study the energy expenditures and the peak values of control torques which a human operator must apply in the process of exoskeleton displacement for various types of regular, plane, and single-support gaits. The obtained results allow us to estimate the performance of the passive exoskeleton apparatus.

  20. Research the Gait Characteristics of Human Walking Based on a Robot Model and Experiment

    Science.gov (United States)

    He, H. J.; Zhang, D. N.; Yin, Z. W.; Shi, J. H.

    2017-02-01

    In order to research the gait characteristics of human walking in different walking ways, a robot model with a single degree of freedom is put up in this paper. The system control models of the robot are established through Matlab/Simulink toolbox. The gait characteristics of straight, uphill, turning, up the stairs, down the stairs up and down areanalyzed by the system control models. To verify the correctness of the theoretical analysis, an experiment was carried out. The comparison between theoretical results and experimental results shows that theoretical results are better agreement with the experimental ones. Analyze the reasons leading to amplitude error and phase error and give the improved methods. The robot model and experimental ways can provide foundation to further research the various gait characteristics of the exoskeleton robot.

  1. Gait Development during Lifespan in Subjects with Down Syndrome

    Science.gov (United States)

    Rigoldi, Chiara; Galli, Manuela; Albertini, Giorgio

    2011-01-01

    In this work we studied and evaluated the effects of aging in a group of individuals with Down syndrome, using gait analysis as tool of investigation. 32 individuals suffering from Down syndrome (DS) were enrolled in this study as group of pathological participants. The control group (CG) was composed by 36 healthy subjects (10 children, 15…

  2. Development of Vision Based Multiview Gait Recognition System with MMUGait Database

    Directory of Open Access Journals (Sweden)

    Hu Ng

    2014-01-01

    Full Text Available This paper describes the acquisition setup and development of a new gait database, MMUGait. This database consists of 82 subjects walking under normal condition and 19 subjects walking with 11 covariate factors, which were captured under two views. This paper also proposes a multiview model-based gait recognition system with joint detection approach that performs well under different walking trajectories and covariate factors, which include self-occluded or external occluded silhouettes. In the proposed system, the process begins by enhancing the human silhouette to remove the artifacts. Next, the width and height of the body are obtained. Subsequently, the joint angular trajectories are determined once the body joints are automatically detected. Lastly, crotch height and step-size of the walking subject are determined. The extracted features are smoothened by Gaussian filter to eliminate the effect of outliers. The extracted features are normalized with linear scaling, which is followed by feature selection prior to the classification process. The classification experiments carried out on MMUGait database were benchmarked against the SOTON Small DB from University of Southampton. Results showed correct classification rate above 90% for all the databases. The proposed approach is found to outperform other approaches on SOTON Small DB in most cases.

  3. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation

    Science.gov (United States)

    Lyu, Mingxing; Chen, Weihai; Ding, Xilun; Wang, Jianhua; Bai, Shaoping; Ren, Huichao

    2016-10-01

    This paper proposes a novel bionic model of the human leg according to the theory of physiology. Based on this model, we present a biologically inspired 3-degree of freedom (DOF) lower limb exoskeleton for human gait rehabilitation, showing that the lower limb exoskeleton is fully compatible with the human knee joint. The exoskeleton has a hybrid serial-parallel kinematic structure consisting of a 1-DOF hip joint module and a 2-DOF knee joint module in the sagittal plane. A planar 2-DOF parallel mechanism is introduced in the design to fully accommodate the motion of the human knee joint, which features not only rotation but also relative sliding. Therefore, the design is consistent with the requirements of bionics. The forward and inverse kinematic analysis is studied and the workspace of the exoskeleton is analyzed. The structural parameters are optimized to obtain a larger workspace. The results using MATLAB-ADAMS co-simulation are shown in this paper to demonstrate the feasibility of our design. A prototype of the exoskeleton is also developed and an experiment performed to verify the kinematic analysis. Compared with existing lower limb exoskeletons, the designed mechanism has a large workspace, while allowing knee joint rotation and small amount of sliding.

  4. A Comparative Evaluation of Gait between Children with Autism and Typically Developing Matched Controls

    Directory of Open Access Journals (Sweden)

    Janet S. Dufek

    2017-01-01

    Full Text Available Anecdotal reports suggest children with autism spectrum disorder (ASD ambulate differently than peers with typical development (TD. Little empirical evidence supports these reports. Children with ASD exhibit delayed motor skills, and it is important to determine whether or not motor movement deficits exist during walking. The purpose of the study was to perform a comprehensive lower-extremity gait analysis between children (aged 5–12 years with ASD and age- and gender-matched-samples with TD. Gait parameters were normalized to 101 data points and the gait cycle was divided into seven sub-phases. The Model Statistic procedure was used to test for statistical significance between matched-pairs throughout the entire gait cycle for each parameter. When collapsed across all participants, children with ASD exhibited large numbers of significant differences (p < 0.05 throughout the gait cycle in hip, knee, and ankle joint positions as well as vertical and anterior/posterior ground reaction forces. Children with ASD exhibited unique differences throughout the gait cycle, which supports current literature on the heterogeneity of the disorder. The present work supports recent findings that motor movement differences may be a core symptom of ASD. Thus, individuals may benefit from therapeutic movement interventions that follow precision medicine guidelines by accounting for individual characteristics, given the unique movement differences observed.

  5. Lower Limb Wearable Capacitive Sensing and Its Applications to Recognizing Human Gaits

    Directory of Open Access Journals (Sweden)

    Qining Wang

    2013-10-01

    Full Text Available In this paper, we present an approach to sense human body capacitance and apply it to recognize lower limb locomotion modes. The proposed wearable sensing system includes sensing bands, a signal processing circuit and a gait event detection module. Experiments on long-term working stability, adaptability to disturbance and locomotion mode recognition are carried out to validate the effectiveness of the proposed approach. Twelve able-bodied subjects are recruited, and eleven normal gait modes are investigated. With an event-dependent linear discriminant analysis classifier and feature selection procedure, four time-domain features are used for pattern recognition and satisfactory recognition accuracies (97:3% ± 0:5%, 97:0% ± 0:4%, 95:6% ± 0:9% and 97:0% ± 0:4% for four phases of one gait cycle respectively are obtained. The accuracies are comparable with that from electromyography-based systems and inertial-based systems. The results validate the effectiveness of the proposed lower limb capacitive sensing approach in recognizing human normal gaits.

  6. Human Skeleton Model Based Dynamic Features for Walking Speed Invariant Gait Recognition

    Directory of Open Access Journals (Sweden)

    Jure Kovač

    2014-01-01

    Full Text Available Humans are able to recognize small number of people they know well by the way they walk. This ability represents basic motivation for using human gait as the means for biometric identification. Such biometrics can be captured at public places from a distance without subject's collaboration, awareness, and even consent. Although current approaches give encouraging results, we are still far from effective use in real-life applications. In general, methods set various constraints to circumvent the influence of covariate factors like changes of walking speed, view, clothing, footwear, and object carrying, that have negative impact on recognition performance. In this paper we propose a skeleton model based gait recognition system focusing on modelling gait dynamics and eliminating the influence of subjects appearance on recognition. Furthermore, we tackle the problem of walking speed variation and propose space transformation and feature fusion that mitigates its influence on recognition performance. With the evaluation on OU-ISIR gait dataset, we demonstrate state of the art performance of proposed methods.

  7. Gait analysis by high school students

    NARCIS (Netherlands)

    Heck, A.; van Dongen, C.

    2008-01-01

    Human walking is a complicated motion. Movement scientists have developed various research methods to study gait. This article describes how a high school student collected and analysed high quality gait data in much the same way that movement scientists do, via the recording and measurement of

  8. Gait Analysis by High School Students

    Science.gov (United States)

    Heck, Andre; van Dongen, Caroline

    2008-01-01

    Human walking is a complicated motion. Movement scientists have developed various research methods to study gait. This article describes how a high school student collected and analysed high quality gait data in much the same way that movement scientists do, via the recording and measurement of motions with a video analysis tool and via…

  9. Design of a wearable perturbator for human knee impedance estimation during gait.

    Science.gov (United States)

    Tucker, Michael R; Moser, Adrian; Lambercy, Olivier; Sulzer, James; Gassert, Roger

    2013-06-01

    Mechanical impedance modulation is the key to natural, stable and efficient human locomotion. An improved understanding of this mechanism is necessary for the development of the next generation of intelligent prosthetic and orthotic devices. This paper documents the design methodologies that were employed to realize a knee perturbator that can experimentally estimate human knee impedance during gait through the application of angular velocity perturbations. The proposed experiment requires a light, transparent, wearable, and remotely actuated device that closely follows the movement of the biological joint. A genetic algorithm was used to design a polycentric hinge whose instantaneous center of rotation is optimized to be kinematically compatible with the human knee. A wafer disc clutch was designed to switch between a high transparency passive mode and a high impedance actuated mode. A remote actuation and transmission scheme was designed to enable high power output perturbations while minimizing the device's mass. Position and torque sensors were designed for device control and to provide data for post-processing and joint impedance estimation. Pending the fabrication and mechanical testing of the device, we expect this knee perturbator to be a valuable tool for experimental investigation of locomotive joint impedance modulation.

  10. Diffusion entropy analysis on the stride interval fluctuation of human gait

    CERN Document Server

    Cai, S M; Yang, H J; Zhao, F C; Zhou, P L; Zhou, T; Cai, Shi-Min; Wang, Bing-Hong; Yang, Hui-Jie; Zhao, Fang-Cui; Zhou, Pei-Ling; Zhou, Tao

    2006-01-01

    In this paper, the diffusion entropy technique is applied to investigate the scaling behavior of stride interval fluctuations of human gait. The scaling behavior of the stride interval of human walking at normal, slow and fast rate are similar; with the scale-invariance exponents in the interval $[0.663,0.955]$, of which the mean value is $0.821\\pm0.011$. Dynamical analysis of these stride interval fluctuations reveals a self-similar pattern: Fluctuation at one time scale are statistically similar to those at multiple other time scales, at least over hundreds of steps, while the healthy subjects walk at their normal rate. The long-range correlations are observed during the spontaneous walking after the removal of the trend in the time series with Fourier filter. These findings uncover that the fractal dynamics of stride interval of human gait are normally intrinsic to the locomotor systems.

  11. Very low cost stand-off suicide bomber detection system using human gait analysis to screen potential bomb carrying individuals

    Science.gov (United States)

    Greneker, Gene, III

    2005-05-01

    Individuals who carry bombs on their bodies and detonate those bombs in public places are a security problem. There is belief that suicide bombings currently used in the mid-east may spread to the United States if the organized terrorist groups operating in the United States are not identified and the cell members arrested. While bombs in vehicles are the primary method currently used to spread terror in Iraq, U. S. warfighters are starting to face suicide bombers. This may become more of the situation if a stand-off detection capability is developed for the vehicle bomb case. This paper presents a concept, that if developed and commercialized, could provide an inexpensive suicide bomber screening system that could be used to screen individuals approaching a checkpoint while the individual is still 500 to 1,000 feet from the checkpoint. The proposed system measures both the radar cross-section of the individual and the radar derived gait characteristics that are associated with individuals carrying a bomb on their body. GTRI researchers propose to use human gait characteristics, as detected by radar, to determine if a human subject who is carrying no visible load on the body is actually carrying a concealed load under their clothes. The use of radar gait as a metric for the detection (as opposed to a video system) of a suicide bomber is being proposed because detection of gait characteristics are thought to be less sensitive to where the bomb is located on the body, lighting conditions, and the fact that the legs may be shrouded in a robe. The detection of a bomb using radar gait analysis may also prove to be less sensitive to changing tactics regarding where the bomb is placed on the body. An inert suicide bomb vest was constructed using water pipes to simulate the explosive devices. Wiring was added to simulated detonators. The vest weighs approximately 35 pounds. Radar data was taken on the volunteer subject wearing the vest that simulated the suicide bomb. This

  12. Appraising the Recital of Joints in Human Running Gait through 3D Optical Motion

    Directory of Open Access Journals (Sweden)

    Sajid Ali

    2013-04-01

    Full Text Available Recital costing of Joints in human running is biometrics evaluation technology. It has skillful series of realizations in scientific research in the last decade. In this work, we present a human running joints (hip, knee and ankle valuation recital based on the statistical computation techniques. We use the One-way ANOVA, least significant difference (LSD test and Bartlett's test for equality of variances to determine which joint has more variation with others joints during human running gait. These three joints rotation angle data were computed from the Biovision Hierarchical data (BVH motion file, because these joints provide the richest information of the human lower body joints (hip, knee and ankle. The use of BVH file to estimate the participation and performance of the joints during running gait is a novel feature of our study. The experimental results indicated that, the knee joint has the decisive influence (variation as compared to the other two joints, hip and ankle, during running gait.

  13. Compass gait mechanics account for top walking speeds in ducks and humans.

    Science.gov (United States)

    Usherwood, James R; Szymanek, Katie L; Daley, Monica A

    2008-12-01

    The constraints to maximum walking speed and the underlying cause of the walk-run transition remains controversial. However, the motions of the body and legs can be reduced to a few mechanical principles, which, if valid, impose simple physics-based limits to walking speed. Bipedal walking may be viewed as a vaulting gait, with the centre of mass (CoM) passing over a stiff stance leg (an 'inverted pendulum'), while the swing leg swings forward (as a pendulum). At its simplest, this forms a 'compass gait' walker, which has a maximum walking speed constrained by simple mechanics: walk too fast, or with too high a step length, and gravity fails to keep the stance foot attached to the floor. But how useful is such an extremely reductionist model? In the present study, we report measurements on a range of duck breeds as example unspecialized, non-planar, crouch-limbed walkers and contrast these findings with previous measurements on humans, using the theoretical framework of compass gait walking. Ducks walked as inverted pendulums with near-passive swing legs up to relative velocities around 0.5, remarkably consistent with the theoretical model. By contrast, top walking speeds in humans cannot be achieved with passive swing legs: humans, while still constrained by compass gait mechanics, extend their envelope of walking speeds by using relatively high step frequencies. Therefore, the capacity to drive the swing leg forward by walking humans may be a specialization for walking, allowing near-passive vaulting of the CoM at walking speeds 4/3 that possible with a passive (duck-like) swing leg.

  14. Gait Transitions in Human Infants: Coping with Extremes of Treadmill Speed.

    Directory of Open Access Journals (Sweden)

    Erin V Vasudevan

    Full Text Available Spinal pattern generators in quadrupedal animals can coordinate different forms of locomotion, like trotting or galloping, by altering coordination between the limbs (interlimb coordination. In the human system, infants have been used to study the subcortical control of gait, since the cerebral cortex and corticospinal tract are immature early in life. Like other animals, human infants can modify interlimb coordination to jump or step. Do human infants possess functional neuronal circuitry necessary to modify coordination within a limb (intralimb coordination in order to generate distinct forms of alternating bipedal gait, such as walking and running? We monitored twenty-eight infants (7-12 months stepping on a treadmill at speeds ranging between 0.06-2.36 m/s, and seventeen adults (22-47 years walking or running at speeds spanning the walk-to-run transition. Six of the adults were tested with body weight support to mimic the conditions of infant stepping. We found that infants could accommodate a wide range of speeds by altering stride length and frequency, similar to adults. Moreover, as the treadmill speed increased, we observed periods of flight during which neither foot was in ground contact in infants and in adults. However, while adults modified other aspects of intralimb coordination and the mechanics of progression to transition to a running gait, infants did not make comparable changes. The lack of evidence for distinct walking and running patterns in infants suggests that the expression of different functional, alternating gait patterns in humans may require neuromuscular maturation and a period of learning post-independent walking.

  15. Kinematic and Gait Similarities between Crawling Human Infants and Other Quadruped Mammals.

    Science.gov (United States)

    Righetti, Ludovic; Nylén, Anna; Rosander, Kerstin; Ijspeert, Auke Jan

    2015-01-01

    Crawling on hands and knees is an early pattern of human infant locomotion, which offers an interesting way of studying quadrupedalism in one of its simplest form. We investigate how crawling human infants compare to other quadruped mammals, especially primates. We present quantitative data on both the gait and kinematics of seven 10-month-old crawling infants. Body movements were measured with an optoelectronic system giving precise data on 3-dimensional limb movements. Crawling on hands and knees is very similar to the locomotion of non-human primates in terms of the quite protracted arm at touch-down, the coordination between the spine movements in the lateral plane and the limbs, the relatively extended limbs during locomotion and the strong correlation between stance duration and speed of locomotion. However, there are important differences compared to primates, such as the choice of a lateral-sequence walking gait, which is similar to most non-primate mammals and the relatively stiff elbows during stance as opposed to the quite compliant gaits of primates. These finding raise the question of the role of both the mechanical structure of the body and neural control on the determination of these characteristics.

  16. A short investigation of the effect of an energy harvesting backpack on the human gait

    Science.gov (United States)

    Papatheou, Evangelos; Green, Peter; Racic, Vitomir; Brownjohn, James M. W.; Sims, Neil D.

    2012-04-01

    Exploiting human motion for the purpose of energy harvesting has been a popular idea for some time. Many of the approaches proposed can be uncomfortable or they impose a significant burden on the person's gait. In the current paper a hardware in-the-loop simulator of an energy harvesting backpack is employed in order to investigate the effect of a suspended-load backpack on the human gait. The idea is based on the energy produced by a suspended-load which moves vertically on a backpack while a person walks. The energy created from such a linear system can be maximised when it resonates with the walking frequency of the person. However, such a configuration can also cause great forces to be applied on the back of the user. The system which is presented here consists of a mass attached on a rucksack, which is controlled by a motor in order to simulate the suspended-load backpack. The advantage of this setup is the ability to test different settings, regarding the spring stiffness or the damping coefficient, of the backpack harvester, and study their effect on the energy harvesting potential, as well as on the human gait. The present contribution describes the preliminary results and analysis of the testing of the system with the help of nine male volunteers who carried it on a treadmill.

  17. The mental representation of the human gait in patients with severe knee osteoarthrosis: a clinical study to aid understanding of impairment and disability.

    Science.gov (United States)

    Jacksteit, Robert; Mau-Moeller, Anett; Behrens, Martin; Bader, Rainer; Mittelmeier, Wolfram; Skripitz, Ralf; Stöckel, Tino

    2017-07-01

    Objectives were (1) to explore differences in gait-specific long-term memory structures and gait performance between knee osteoarthrosis patients and healthy subjects and (2) to identify the extent to which the gait-specific mental representation is associated with gait performance. Cross-sectional study. In total, 18 knee osteoarthrosis patients and 18 control subjects. Spatio-temporal (gait speed, step length) and temporophasic (stance time, swing time, single support time, total double support time) gait parameters and gait variability were measured with an electronic walkway (OptoGait). The mental representation was assessed using the structural dimensional analysis of mental representations (SDA-M). (1) Patients showed significantly longer stance times ( P representation as compared with the healthy controls. (2) Correlation analyses revealed the mental representation of the human gait to be associated with actual gait performance in osteoarthrosis patients. Double support times were positively associated with the structural quality of the mental representation and step length variability was positively associated with the number of sequencing errors in the representation. The gait-specific mental representation and actual gait performance differ between patients with severe knee osteoarthrosis and healthy controls, and both are linked to one another. This finding suggests that musculoskeletal disorders can lead to changes in the mental representation of the gait, and as such the SDA-M could provide useful information to improve the rehabilitation following osteoarthrosis.

  18. Attempt toward a development of aquatic exercise device for gait disorders.

    Science.gov (United States)

    Miyoshi, Tasuku; Komatsu, Fumie; Takagi, Motoki; Kawashima, Noritaka

    2014-05-23

    Abstract Purpose: To develop an aquatic exercise device to facilitate locomotive motor output and achieve repetitive physiological gait patterns to improve movement dysfunctions. Methods: A custom designed leg movement apparatus (LMA) consisted of closed 4-linkage mechanisms and one-length changeable link using a spring. Three-dimensional motions and electromyographic (EMG) activities were recorded in eight healthy subjects to evaluate the reproducibility of the physiological gait patterns using the LMA with or without a spring apparatus in water. Results: Using the LMA with a spring apparatus compared to walking in water, the foot trajectories and the time course of the elevation angles in each lower limb joint kinematics were preserved. The time-series of the EMG showed reciprocal modulation between agonist and antagonist muscle groups in the hip and ankle joints. However, the amplitudes of the tibialis anterior muscle in the first half and rectus femoris in the last half of the movement cycle were reduced using the LMA with a spring apparatus. Conclusion: We developed a novel aquatic exercise device to reproduce physiological gait patterns. The LMA with a spring apparatus would be particularly valuable in therapy for movement dysfunctions to facilitate locomotive motor outputs. Implications for Rehabilitation The leg movement apparatus with spring for underwater use (LMA) would be effective gait training to induce the locomotor-like EMG activities. Hydrotherapy with the LMA has advantages over the partial body weight support treadmill training on land with a robotic device; (1) the LMA is electrically and mechanically safe, and (2) the LMA would require self-effort to generate the gait pattern for movement disorders, or also enable passive gait training by the physiotherapists.

  19. Development of a three-dimensional dynamic biped walking via the oscillation of telescopic knee joint and its gait analysis

    Directory of Open Access Journals (Sweden)

    T. Kinugasa

    2015-12-01

    Full Text Available The purpose of this study is to extend the three-dimensional (3-D passive dynamic biped walker to a 3-D dynamic biped walker, i.e., a walker that can walk on a horizontal surface based on a passive dynamic walking. A new prototype of 3-D biped walker called RW04, which has telescopic knee joints, was developed and its ability for walking was validated through some experiments. A sinusoidal oscillation, which is regarded as a central pattern generator with no sensory feedback, was provided to the knee joints to achieve the biped walking. The results showed that the biped gait of RW04 was possible only via a sinusoidal oscillation of the knee joint. Moreover, the 3-D dynamic walking gait via frequency response and zero moment point (ZMP trajectory was also analyzed. The biped locomotion had a resonance, i.e., the frequency matched the natural frequency of the locomotion in the gain property. An “8” shaped ZMP trajectory was observed, which was found to be similar to that of the human gait. However, the simple sinusoidal oscillation had limitations such as stride reduction or discontinuation by phase difference. Therefore, in future work, more adaptable control strategy such as a sensory feedback using ZMP should be provided.

  20. Effect of treadmill walking on the stride interval dynamics of human gait.

    Science.gov (United States)

    Chang, Matthew D; Shaikh, Sameer; Chau, Tom

    2009-11-01

    Metronomic walking has been found to diminish the statistical persistence intrinsic to the stride interval time series of human gait. Since treadmill walking (TW) possesses a similar form of external pacing, we proposed to study the disruptions in the natural neuromuscular rhythms of gait during TW. Treadmill walking is a widespread rehabilitative tool, however, its effect on an individual's stride dynamics is not well understood. To better elucidate potential effects, we tested the hypothesis that TW without handrails would diminish the statistical persistence in an individual's stride interval time series. The scaling exponent (alpha) was employed in this study as a measure of the statistical persistence of the stride interval time series. Sixteen able-bodied young adults (mean age: 23.3+/-3.3 years) were instructed to walk at a self-selected comfortable pace for 15 min in three different conditions in a randomized order: (1) overground walking, (2) TW without holding a handrail (NoRail) and (3) TW while holding a front handrail (Rail). The alpha did not differ significantly between the overground and NoRail conditions (P>0.5). However, the alpha of the Rail condition (alpha=0.92+/-0.10) differed significantly from both the overground (alpha=0.83+/-0.06; Pwalking conditions (P>0.5). These findings indicate that comfortable-paced TW does not diminish the intrinsic stride dynamics of human gait.

  1. Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle.

    Science.gov (United States)

    Ashkani, O; Maleki, A; Jamshidi, N

    2016-11-28

    Exoskeleton is a walking assistance device that improves human gait cycle through providing auxiliary force and transferring physical load to the stronger muscles. This device takes the natural state of organ and follows its natural movement. Exoskeleton functions as an auxiliary device to help those with disabilities in hip and knee such as devotees, elderly farmers and agricultural machinery operators who suffer from knee complications. In this research, an exoskeleton designed with two screw jacks at knee and hip joints. To simulate extension and flexion movements of the leg joints, bearings were used at the end of hip and knee joints. The generated torque and motion angles of these joints obtained as well as the displacement curves of screw jacks in the gait cycle. Then, the human gait cycle was simulated in stance and swing phases and the obtained torque curves were compared. The results indicated that they followed the natural circle of the generated torque in joints with a little difference from each other. The maximum displacement obtained 4 and 6 cm in hip and knee joints jack respectively. The maximum torques in hip and knee joints were generated in foot contact phase. Also the minimum torques in hip and knee joints were generated in toe off and heel off phases respectively.

  2. The influence of rifle carriage on the kinetics of human gait.

    Science.gov (United States)

    Birrell, S A; Haslam, R A

    2008-06-01

    The influence that rifle carriage has on human gait has received little attention in the published literature. Rifle carriage has two main effects, to add load to the anterior of the body and to restrict natural arm swing patterns. Kinetic data were collected from 15 male participants, with 10 trials in each of four experimental conditions. The conditions were: walking without a load (used as a control condition); carrying a lightweight rifle simulator, which restricted arm movements but applied no additional load; wearing a 4.4 kg diving belt, which allowed arms to move freely; carrying a weighted (4.4 kg) replica SA80 rifle. Walking speed was fixed at 1.5 m/s (+/-5%) and data were sampled at 400 Hz. Results showed that rifle carriage significantly alters the ground reaction forces produced during walking, the most important effects being an increase in the impact peak and mediolateral forces. This study suggests that these effects are due to the increased range of motion of the body's centre of mass caused by the impeding of natural arm swing patterns. The subsequent effect on the potential development of injuries in rifle carriers is unknown.

  3. Development of gait motor control: what happens after a sudden increase in height during adolescence?

    Science.gov (United States)

    Bisi, Maria Cristina; Stagni, Rita

    2016-05-20

    Basic understanding of motor control and its processes is a topic of well-known high relevance. During adolescence walking is theoretically a well-achieved fundamental skill, having reached a mature manifestation; on the other hand, adolescence is marked by a period of accelerated increases in both height and weight, referred as growth spurt. Thus, this period was chosen as a controlled and natural environment for partially isolating one of the factors influencing motor development (segment growth). The aim of the study was to compare gait performance of growing and not growing male adolescents during walking in single task (ST) and dual task (DT), in order to study which are the modifications that motor control handles when encountering a sudden change in segment length. 19 adolescents were selected as growing adolescents (they showed a height increase greater than 3 cm in 3 months). A group of BMI-matched peers were selected as not growing adolescents (they showed a height increase lower than 1 cm in 3 months). Measures of acceleration of the trunk (L5 level) were collected using one tri-axial wireless inertial sensor. The participants were asked to walk at self-selected speed back and forth four times in a 10 m long corridor in ST and DT conditions. The following characteristics of gait performance were evaluated using different indices: variability, smoothness, regularity, complexity and local dynamic stability. An unpaired t-test was performed on the two groups for each method. Different indices followed the hypothesized trend in the two groups, even if differences were not always statistically significant: not growing adolescents showed a lower variability and complexity of gait and a higher smoothness/rhythm. Stability results showed a similarly stable gait pattern (or even higher in DT) in the growing adolescents when compared to their not growing peers. The findings of the present work suggest that growth spurt affects gait variability, smoothness and

  4. An IMU-to-Body Alignment Method Applied to Human Gait Analysis

    Directory of Open Access Journals (Sweden)

    Laura Susana Vargas-Valencia

    2016-12-01

    Full Text Available This paper presents a novel calibration procedure as a simple, yet powerful, method to place and align inertial sensors with body segments. The calibration can be easily replicated without the need of any additional tools. The proposed method is validated in three different applications: a computer mathematical simulation; a simplified joint composed of two semi-spheres interconnected by a universal goniometer; and a real gait test with five able-bodied subjects. Simulation results demonstrate that, after the calibration method is applied, the joint angles are correctly measured independently of previous sensor placement on the joint, thus validating the proposed procedure. In the cases of a simplified joint and a real gait test with human volunteers, the method also performs correctly, although secondary plane errors appear when compared with the simulation results. We believe that such errors are caused by limitations of the current inertial measurement unit (IMU technology and fusion algorithms. In conclusion, the presented calibration procedure is an interesting option to solve the alignment problem when using IMUs for gait analysis.

  5. Ground reaction forces and lower-limb joint kinetics of turning gait in typically developing children.

    Science.gov (United States)

    Dixon, Philippe C; Stebbins, Julie; Theologis, Tim; Zavatsky, Amy B

    2014-11-28

    Turning is a common locomotor task essential to daily activity; however, very little is known about the forces and moments responsible for the kinematic adaptations occurring relative to straight-line gait in typically developing children. Thus, the aims of this study were to analyse ground reaction forces (GRFs), ground reaction free vertical torque (TZ), and the lower-limb joint kinetics of 90° outside (step) and inside (spin) limb turns. Step, spin, and straight walking trials from fifty-four typically developing children were analysed. All children were fit with the Plug-in Gait and Oxford Foot Model marker sets while walking over force plates embedded in the walkway. Net internal joint moments and power were computed via a standard inverse dynamics approach. All dependent variables were statistically analysed over the entire curves using the mean difference 95% bootstrap confidence band approach. GRFs were directed medially for step turns and laterally for spin turns during the turning phase. Directions were reversed and magnitudes decreased during the approach phase. Step turns showed reduced ankle power generation, while spin turns showed large TZ. Both strategies required large knee and hip coronal and transverse plane moments during swing. These kinetic differences highlight adaptations required to maintain stability and reorient the body towards the new walking direction during turning. From a clinical perspective, turning gait may better reveal weaknesses and motor control deficits than straight walking in pathological populations, such as children with cerebral palsy, and could potentially be implemented in standard gait analysis sessions.

  6. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait.

    Science.gov (United States)

    Bogey, R A; Perry, J; Gitter, A J

    2005-09-01

    Muscle forces move our limbs. These forces must be estimated with indirect techniques, as direct measurements are neither generally possible nor practical. An electromyography (EMG)-to-force processing technique was developed. Ankle joint moments and, by extension, ankle muscle forces were calculated. The ankle moment obtained by inverse dynamics was calculated for ten normal adults during free speed gait. There was close correlation between inverse dynamics ankle moments and moments determined by the EMG-to-force processing approach. Muscle forces were determined. The gait peak Achilles tendon force occurred in late single limb support. Peak force observed (2.9 kN) closely matched values obtained where force transducers were used to obtain in vivo muscle forces (2.6 kN). The EMG-to-force processing model presented here appears to be a practical means to determine in vivo muscle forces.

  7. Effect of Human Movement on Galvanic Intra-Body Communication during Single Gait Cycle

    Science.gov (United States)

    Ibrahim, I. W.; Razak, A. H. A.; Ahmad, A.; Salleh, M. K. M.

    2015-11-01

    Intra-body communication (IBC) is a communication system that uses human body as a signal transmission medium. From previous research, two coupling methods of IBC were concluded which are capacitive coupling and galvanic coupling. This paper investigates the effect of human movement on IBC using the galvanic coupling method. Because the human movement is control by the limb joint, the knee flexion angle during gait cycle was used to examine the influence of human movement on galvanic coupling IBC. The gait cycle is a cycle of people walking that start from one foot touch the ground till that foot touch the ground again. Frequency range from 300 kHz to 200MHz was swept in order to investigate the signal transmission loss and the result was focused on operating frequency 70MHz to 90MHz. Results show that the transmission loss varies when the knee flexion angle increased. The highest loss of signal at frequency range between 70MHz to 90 MHz was 69dB when the knee flexion angle is 50° and the minimum loss was 51dB during the flexion angle is 5°.

  8. A comparison of the balance and gait function between children with Down syndrome and typically developing children

    Science.gov (United States)

    Jung, Hee-Kyoung; Chung, EunJung; Lee, Byoung-Hee

    2017-01-01

    [Purpose] The purpose of this study was to compare the balance and gait functions of children with Down syndrome and typically developing children according to age. [Subjects and Methods] The subjects were 16 children with Down syndrome and 20 children with typical development. The one leg standing test, Romberg’s test (open eyes/closed eyes), sharpened Romberg’s (open eyes/closed eyes), functional reaching test and GAITRite were used for this study in order to measure the children’s balance and gait function. [Results] The results of this study showed that static-dynamic balance ability, spatio-temporal gait parameters and quality of life were statistically and significantly different in Down syndrome children compared to typically developing children. [Conclusion] These results suggest that the balance and gait ability of typically developing children improves during growth, whereas those of children with Down syndrome remain low despite independent gait. Therefore, constant therapeutic intervention for balance and gait function is necessary after independent gait development in Down syndrome children. PMID:28210057

  9. A comparison of the balance and gait function between children with Down syndrome and typically developing children.

    Science.gov (United States)

    Jung, Hee-Kyoung; Chung, EunJung; Lee, Byoung-Hee

    2017-01-01

    [Purpose] The purpose of this study was to compare the balance and gait functions of children with Down syndrome and typically developing children according to age. [Subjects and Methods] The subjects were 16 children with Down syndrome and 20 children with typical development. The one leg standing test, Romberg's test (open eyes/closed eyes), sharpened Romberg's (open eyes/closed eyes), functional reaching test and GAITRite were used for this study in order to measure the children's balance and gait function. [Results] The results of this study showed that static-dynamic balance ability, spatio-temporal gait parameters and quality of life were statistically and significantly different in Down syndrome children compared to typically developing children. [Conclusion] These results suggest that the balance and gait ability of typically developing children improves during growth, whereas those of children with Down syndrome remain low despite independent gait. Therefore, constant therapeutic intervention for balance and gait function is necessary after independent gait development in Down syndrome children.

  10. Development of quadruped walking locomotion gait generator using a hybrid method

    Science.gov (United States)

    Jasni, F.; Shafie, A. A.

    2013-12-01

    The earth, in many areas is hardly reachable by the wheeled or tracked locomotion system. Thus, walking locomotion system is becoming a favourite option for mobile robot these days. This is because of the ability of walking locomotion to move on the rugged and unlevel terrains. However, to develop a walking locomotion gait for a robot is not a simple task. Central Pattern Generator (CPGs) method is a biological inspired method that is introduced as a method to develop the gait for the walking robot recently to tackle the issue faced by the conventional method of pre-designed trajectory based method. However, research shows that even the CPG method do have some limitations. Thus, in this paper, a hybrid method that combines CPG and the pre-designed trajectory based method is introduced to develop a walking gait for quadruped walking robot. The 3-D foot trajectories and the joint angle trajectories developed using the proposed method are compared with the data obtained via the conventional method of pre-designed trajectory to confirm the performance.

  11. Effect of arm swing strategy on local dynamic stability of human gait

    NARCIS (Netherlands)

    Punt, Michiel; Bruijn, Sjoerd; Wittink, Harriët; Dieen, Jaap van

    2015-01-01

    Introduction: Falling causes long term disability and can even lead to death. Most falls occur during gait. Therefore improving gait stability might be beneficial for people at risk of falling. Recently arm swing has been shown to influence gait stability. However at present it remains unknown which

  12. Human-Robot Interfaces in Exoskeletons for Gait Training after Stroke: State of the Art and Challenges

    Directory of Open Access Journals (Sweden)

    Claude Lagoda

    2012-01-01

    Full Text Available Robotic rehabilitation of CVA (stroke survivors is an emerging field. However, the development of effective gait rehabilitation robots used to treat stroke survivors is and remains a challenging task. This article discusses existing approaches and gives an overview of limitations with existing wearable robots. Challenges and potential solutions are being discussed in this article. Most difficulties lie in the implementation of physical and cognitive human robot interfaces. Many issues like actuation principles, control strategies, portability and wearing comfort, such as correct determination of user intention and effective guidance have to be tackled in future designs. Different solutions are being proposed. Clever anthropometric design and smart brain computer interfaces are key factors in effective exoskeleton design.

  13. Experimental studies on the human gait using a tethered pelvic assist device (T-PAD).

    Science.gov (United States)

    Vashista, Vineet; Mustafa, S K; Agrawal, Sunil K

    2011-01-01

    This paper presents the prototype of a novel tethered pelvic assist device (T-PAD). This is a purely passive device, consisting of a set of elastic tethers with one end attached to a hip brace worn by a subject walking on a treadmill, and the other end attached to a fixed frame surrounding the subject. T-PAD offers the flexibility of varying the assistance required on the pelvis by changing the configuration of the tether attachment locations, number of tethers and tether elasticity. Experimental studies were conducted using a full and a partial pelvic constraint configuration of T-PAD, with varying tether elasticity. The studies were aimed at observing the effect of T-PAD on the human gait. Results show that T-PAD reduced the range-of-motion for the pelvic angles with increase of tether elasticity. However, it had mixed effects on the range-of-motion of the hip angles, but negligible effect on the knee and ankle joint angles. Overall, T-PAD shows potential as a low-cost pelvic support device with pelvic motion control capabilities, and can work in tandem with existing gait trainers.

  14. Gait Phase Recognition for Lower-Limb Exoskeleton with Only Joint Angular Sensors

    Directory of Open Access Journals (Sweden)

    Du-Xin Liu

    2016-09-01

    Full Text Available Gait phase is widely used for gait trajectory generation, gait control and gait evaluation on lower-limb exoskeletons. So far, a variety of methods have been developed to identify the gait phase for lower-limb exoskeletons. Angular sensors on lower-limb exoskeletons are essential for joint closed-loop controlling; however, other types of sensors, such as plantar pressure, attitude or inertial measurement unit, are not indispensable.Therefore, to make full use of existing sensors, we propose a novel gait phase recognition method for lower-limb exoskeletons using only joint angular sensors. The method consists of two procedures. Firstly, the gait deviation distances during walking are calculated and classified by Fisher’s linear discriminant method, and one gait cycle is divided into eight gait phases. The validity of the classification results is also verified based on large gait samples. Secondly, we build a gait phase recognition model based on multilayer perceptron and train it with the phase-labeled gait data. The experimental result of cross-validation shows that the model has a 94.45% average correct rate of set (CRS and an 87.22% average correct rate of phase (CRP on the testing set, and it can predict the gait phase accurately. The novel method avoids installing additional sensors on the exoskeleton or human body and simplifies the sensory system of the lower-limb exoskeleton.

  15. Gait Phase Recognition for Lower-Limb Exoskeleton with Only Joint Angular Sensors.

    Science.gov (United States)

    Liu, Du-Xin; Wu, Xinyu; Du, Wenbin; Wang, Can; Xu, Tiantian

    2016-09-27

    Gait phase is widely used for gait trajectory generation, gait control and gait evaluation on lower-limb exoskeletons. So far, a variety of methods have been developed to identify the gait phase for lower-limb exoskeletons. Angular sensors on lower-limb exoskeletons are essential for joint closed-loop controlling; however, other types of sensors, such as plantar pressure, attitude or inertial measurement unit, are not indispensable.Therefore, to make full use of existing sensors, we propose a novel gait phase recognition method for lower-limb exoskeletons using only joint angular sensors. The method consists of two procedures. Firstly, the gait deviation distances during walking are calculated and classified by Fisher's linear discriminant method, and one gait cycle is divided into eight gait phases. The validity of the classification results is also verified based on large gait samples. Secondly, we build a gait phase recognition model based on multilayer perceptron and train it with the phase-labeled gait data. The experimental result of cross-validation shows that the model has a 94.45% average correct rate of set (CRS) and an 87.22% average correct rate of phase (CRP) on the testing set, and it can predict the gait phase accurately. The novel method avoids installing additional sensors on the exoskeleton or human body and simplifies the sensory system of the lower-limb exoskeleton.

  16. Gait Phase Recognition for Lower-Limb Exoskeleton with Only Joint Angular Sensors

    Science.gov (United States)

    Liu, Du-Xin; Wu, Xinyu; Du, Wenbin; Wang, Can; Xu, Tiantian

    2016-01-01

    Gait phase is widely used for gait trajectory generation, gait control and gait evaluation on lower-limb exoskeletons. So far, a variety of methods have been developed to identify the gait phase for lower-limb exoskeletons. Angular sensors on lower-limb exoskeletons are essential for joint closed-loop controlling; however, other types of sensors, such as plantar pressure, attitude or inertial measurement unit, are not indispensable.Therefore, to make full use of existing sensors, we propose a novel gait phase recognition method for lower-limb exoskeletons using only joint angular sensors. The method consists of two procedures. Firstly, the gait deviation distances during walking are calculated and classified by Fisher’s linear discriminant method, and one gait cycle is divided into eight gait phases. The validity of the classification results is also verified based on large gait samples. Secondly, we build a gait phase recognition model based on multilayer perceptron and train it with the phase-labeled gait data. The experimental result of cross-validation shows that the model has a 94.45% average correct rate of set (CRS) and an 87.22% average correct rate of phase (CRP) on the testing set, and it can predict the gait phase accurately. The novel method avoids installing additional sensors on the exoskeleton or human body and simplifies the sensory system of the lower-limb exoskeleton. PMID:27690023

  17. MEMS-based sensing and algorithm development for fall detection and gait analysis

    Science.gov (United States)

    Gupta, Piyush; Ramirez, Gabriel; Lie, Donald Y. C.; Dallas, Tim; Banister, Ron E.; Dentino, Andrew

    2010-02-01

    Falls by the elderly are highly detrimental to health, frequently resulting in injury, high medical costs, and even death. Using a MEMS-based sensing system, algorithms are being developed for detecting falls and monitoring the gait of elderly and disabled persons. In this study, wireless sensors utilize Zigbee protocols were incorporated into planar shoe insoles and a waist mounted device. The insole contains four sensors to measure pressure applied by the foot. A MEMS based tri-axial accelerometer is embedded in the insert and a second one is utilized by the waist mounted device. The primary fall detection algorithm is derived from the waist accelerometer. The differential acceleration is calculated from samples received in 1.5s time intervals. This differential acceleration provides the quantification via an energy index. From this index one may ascertain different gait and identify fall events. Once a pre-determined index threshold is exceeded, the algorithm will classify an event as a fall or a stumble. The secondary algorithm is derived from frequency analysis techniques. The analysis consists of wavelet transforms conducted on the waist accelerometer data. The insole pressure data is then used to underline discrepancies in the transforms, providing more accurate data for classifying gait and/or detecting falls. The range of the transform amplitude in the fourth iteration of a Daubechies-6 transform was found sufficient to detect and classify fall events.

  18. How crouch gait can dynamically induce stiff-knee gait.

    Science.gov (United States)

    van der Krogt, Marjolein M; Bregman, Daan J J; Wisse, Martijn; Doorenbosch, Caroline A M; Harlaar, Jaap; Collins, Steven H

    2010-04-01

    Children with cerebral palsy frequently experience foot dragging and tripping during walking due to a lack of adequate knee flexion in swing (stiff-knee gait). Stiff-knee gait is often accompanied by an overly flexed knee during stance (crouch gait). Studies on stiff-knee gait have mostly focused on excessive knee muscle activity during (pre)swing, but the passive dynamics of the limbs may also have an important effect. To examine the effects of a crouched posture on swing knee flexion, we developed a forward-dynamic model of human walking with a passive swing knee, capable of stable cyclic walking for a range of stance knee crouch angles. As crouch angle during stance was increased, the knee naturally flexed much less during swing, resulting in a 'stiff-knee' gait pattern and reduced foot clearance. Reduced swing knee flexion was primarily due to altered gravitational moments around the joints during initial swing. We also considered the effects of increased push-off strength and swing hip flexion torque, which both increased swing knee flexion, but the effect of crouch angle was dominant. These findings demonstrate that decreased knee flexion during swing can occur purely as the dynamical result of crouch, rather than from altered muscle function or pathoneurological control alone.

  19. Gait analysis using wearable sensors.

    Science.gov (United States)

    Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian

    2012-01-01

    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications.

  20. Gait Analysis Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Hutian Feng

    2012-02-01

    Full Text Available Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications.

  1. Imagined gait modulates neuronal network dynamics in the human pedunculopontine nucleus.

    Science.gov (United States)

    Tattersall, Timothy L; Stratton, Peter G; Coyne, Terry J; Cook, Raymond; Silberstein, Paul; Silburn, Peter A; Windels, François; Sah, Pankaj

    2014-03-01

    The pedunculopontine nucleus (PPN) is a part of the mesencephalic locomotor region and is thought to be important for the initiation and maintenance of gait. Lesions of the PPN induce gait deficits, and the PPN has therefore emerged as a target for deep brain stimulation for the control of gait and postural disability. However, the role of the PPN in gait control is not understood. Using extracellular single-unit recordings in awake patients, we found that neurons in the PPN discharged as synchronous functional networks whose activity was phase locked to alpha oscillations. Neurons in the PPN responded to limb movement and imagined gait by dynamically changing network activity and decreasing alpha phase locking. Our results indicate that different synchronous networks are activated during initial motor planning and actual motion, and suggest that changes in gait initiation in Parkinson's disease may result from disrupted network activity in the PPN.

  2. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking

    NARCIS (Netherlands)

    Zijlstra, W; Hof, AL

    2003-01-01

    This paper studies the feasibility of an analysis of spatio-temporal gait parameters based upon accelerometry. To this purpose, acceleration patterns of the trunk and their relationships with spatio-temporal gait parameters were analysed in healthy subjects. Based on model predictions of the body's

  3. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking

    NARCIS (Netherlands)

    Zijlstra, W; Hof, AL

    2003-01-01

    This paper studies the feasibility of an analysis of spatio-temporal gait parameters based upon accelerometry. To this purpose, acceleration patterns of the trunk and their relationships with spatio-temporal gait parameters were analysed in healthy subjects. Based on model predictions of the body's

  4. Assessment of gait in toddlers with normal motor development and in hemiplegic children with mild motor impairment: a validity study

    Directory of Open Access Journals (Sweden)

    Priscilla R. P. Figueiredo

    2013-08-01

    Full Text Available BACKGROUND: The optimization of gait performance is an important goal in the rehabilitation of children with cerebral palsy (CP who present a prognosis associated with locomotion. Gait analysis using videos captured by digital cameras requires validation. OBJECTIVE: To evaluate the validity of a method that involves the analysis of videos captured using a digital camera for quantifying the temporal parameters of gait in toddlers with normal motor development and children with CP. METHOD: Eleven toddlers with normal motor development and eight children with spastic hemiplegia who were able to walk without assistive devices were asked to walk through a space contained in the visual field of two instruments: a digital camera and a three-dimensional motion analysis system, Qualisys Pro-Reflex. The duration of the stance and swing phases of gait and of the entire gait cycle were calculated by analyzing videos captured by a digital camera and compared to those obtained by Qualisys Pro-Reflex, which is considered a highly accurate system. RESULTS: The Intraclass Correlation Coefficient (ICC demonstrated excellent agreement (ICC>0.90 between the two procedures for all measurements, except for the swing phase of the normal toddlers (ICC=0.35. The standard error of measurement was less than 0.02 seconds for all measures. CONCLUSIONS: The results reveal similarities between the two instruments, suggesting that digital cameras can be valid instruments for quantifying two temporal parameters of gait. This congruence is of clinical and scientific relevance and validates the use of digital cameras as a resource for helping the assessment and documentation of the therapeutic effects of interventions targeted at the gait of children with CP.

  5. Longitudinal gait development and variability of growing pigs reared on three different floor types.

    Science.gov (United States)

    Stavrakakis, S; Guy, J H; Warlow, O M E; Johnson, G R; Edwards, S A

    2014-02-01

    Biomechanical investigation into locomotor pathology in commercial pigs is lacking despite this being a major concern for the industry. Different floor types are used in modern, intensive pig production systems at different stages of the pigs' production cycle. The general perception holds that slatted and/or hard solid concrete surfaces are inferior to soft straw-covered floors regarding healthy musculoskeletal development. Previous studies have compared pigs housed on different floor types using clinical, subjective assessment of leg weakness and lameness. However, reliability studies generally report a low repeatability of clinical lameness scoring. The objective of this study was to quantitatively assess the long-term effect of pen floors, reflected in the biomechanical gait characteristics and associated welfare of the pigs. A cohort of 24 pigs housed on one of three different floor types was followed from 37 to 90 kg average liveweight, with gait analysis (motion capture) starting at 63 kg. The three floor types were fully slatted concrete, partly slatted concrete and deep straw-bedded surfaces, all located within the same building. Pigs underwent five repeated camera-based motion captures, 7 to 10 days apart, during which 3D coordinate data of reflective skin markers attached to leg anatomical landmarks were collected. Pigs walked on the same solid concrete walkway during captures. One-way ANOVA and repeated measures ANOVA were used to analyse the gait data. Results revealed changes over time in the spatiotemporal gait pattern which were similar in magnitude and direction for the pigs from different floor types. Significant increases in elbow joint flexion with age were observed in all pigs (P⩽0.050; +6°). There were few differences between floor groups, except for the step-to-stride ratio in the hind legs being more irregular in pigs housed on partly slatted floors (P=0.012; 3.6 times higher s.d.) compared with those on 5 to 10 cm straw-bedding in all

  6. Assessment of Foot Trajectory for Human Gait Phase Detection Using Wireless Ultrasonic Sensor Network.

    Science.gov (United States)

    Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon; Thomas, Rijil

    2016-01-01

    This paper presents a new highly accurate gait phase detection system using wearable wireless ultrasonic sensors, which can be used in gait analysis or rehabilitation applications. The gait phase detection system uses the foot displacement information during walking to extract the following gait phases: heel-strike, heel-off, toe-off, and mid-swing. The displacement of foot-mounted ultrasonic sensor is obtained from several passive anchors placed at known locations by employing local spherical positioning technique, which is further enhanced by the combination of recursive Newton-Gauss method and Kalman Filter. The algorithm performance is examined by comparing with a commercial optical motion tracking system with ten healthy subjects and two foot injured subjects. Accurate estimates of gait cycle (with an error of -0.02 ±0.01 s), stance phase(with an error of 0.04±0.03 s), and swing phase (with an error of -0.05±0.03 s) compared to the reference system are obtained. We have also investigated the influence of walking velocities on the performance of the proposed gait phase detection algorithm. Statistical analysis shows that there is no significant difference between both systems during different walking speeds. Moreover, we have tested and discussed the possibility of the proposed system for clinical applications by analyzing the experimental results for both healthy and injured subjects. The experiments show that the estimated gait phases have the potential to become indicators for sports and rehabilitation engineering.

  7. Development of a lower limb rehabilitation exoskeleton based on real-time gait detection and gait tracking

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-01-01

    Full Text Available Hemiplegia, apoplexia, or traffic accidents often lead to unilateral lower limb movement disorders. Traditional lower limb rehabilitation equipments usually execute walk training based on fixed gait trajectory; however, this type is unsuitable for unilateral lower limb disorders because they still have athletic ability and initiative walking intention on the healthy side. This article describes a wearable lower limb rehabilitation exoskeleton with a walk-assisting platform for safety and anti-gravity support. The exoskeleton detects and tracks the motion of the healthy leg, which is then used as the control input of the dyskinetic leg with half a gate-cycle delay. The patient can undergo walk training on his own intention, including individual walking habit, stride length, and stride frequency, which likely contribute to the training initiative. The series elastic actuator is chosen for the exoskeleton because the torque output can be accurately detected and used to calculate the assisted torque on the dyskinetic leg. This parameter corresponds to the recovery level of a patient’s muscle force. Finally, the walk-assisting experiments reveal that the rehabilitation exoskeleton in this article can provide the necessary assisting torques on the dyskinetic leg, which can be accurately monitored in real time to evaluate a patient’s rehabilitation status.

  8. Coordinated control strategy for robotic-assisted gait training with partial body weight support

    Institute of Scientific and Technical Information of China (English)

    秦涛; 张立勋

    2015-01-01

    Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot (GTR) was designed followed the end-effector principle, and an active partial body weight support (PBWS) system was introduced to facilitate successful gait training. For successful establishment of a walking gait on the GTR with PBWS, the motion laws of the GTR were planned to enable the phase distribution relationships of the cycle step, and the center of gravity (COG) trajectory of the human body during gait training on the GTR was measured. A coordinated control strategy was proposed based on the impedance control principle. A robotic prototype was developed as a platform for evaluating the design concepts and control strategies. Preliminary gait training with a healthy subject was implemented by the robotic-assisted gait training system and the experimental results are encouraging.

  9. Development and validation of an accelerometer-based method for quantifying gait events.

    Science.gov (United States)

    Boutaayamou, Mohamed; Schwartz, Cédric; Stamatakis, Julien; Denoël, Vincent; Maquet, Didier; Forthomme, Bénédicte; Croisier, Jean-Louis; Macq, Benoît; Verly, Jacques G; Garraux, Gaëtan; Brüls, Olivier

    2015-02-01

    An original signal processing algorithm is presented to automatically extract, on a stride-by-stride basis, four consecutive fundamental events of walking, heel strike (HS), toe strike (TS), heel-off (HO), and toe-off (TO), from wireless accelerometers applied to the right and left foot. First, the signals recorded from heel and toe three-axis accelerometers are segmented providing heel and toe flat phases. Then, the four gait events are defined from these flat phases. The accelerometer-based event identification was validated in seven healthy volunteers and a total of 247 trials against reference data provided by a force plate, a kinematic 3D analysis system, and video camera. HS, TS, HO, and TO were detected with a temporal accuracy ± precision of 1.3 ms ± 7.2 ms, -4.2 ms ± 10.9 ms, -3.7 ms ± 14.5 ms, and -1.8 ms ± 11.8 ms, respectively, with the associated 95% confidence intervals ranging from -6.3 ms to 2.2 ms. It is concluded that the developed accelerometer-based method can accurately and precisely detect HS, TS, HO, and TO, and could thus be used for the ambulatory monitoring of gait features computed from these events when measured concurrently in both feet.

  10. GaitKeeper: A System for Measuring Canine Gait

    Directory of Open Access Journals (Sweden)

    Cassim Ladha

    2017-02-01

    Full Text Available It is understood gait has the potential to be used as a window into neurodegenerative disorders, identify markers of subclinical pathology, inform diagnostic algorithms of disease progression and measure the efficacy of interventions. Dogs’ gaits are frequently assessed in a veterinary setting to detect signs of lameness. Despite this, a reliable, affordable and objective method to assess lameness in dogs is lacking. Most described canine lameness assessments are subjective, unvalidated and at high risk of bias. This means reliable, early detection of canine gait abnormalities is challenging, which may have detrimental implications for dogs’ welfare. In this paper, we draw from approaches and technologies used in human movement science and describe a system for objectively measuring temporal gait characteristics in dogs (step-time, swing-time, stance-time. Asymmetries and variabilities in these characteristics are of known clinical significance when assessing lameness but presently may only be assessed on coarse scales or under highly instrumented environments. The system consists an inertial measurement unit, containing a 3-axis accelerometer and gyroscope coupled with a standardized walking course. The measurement unit is attached to each leg of the dog under assessment before it is walked around the course. The data by the measurement unit is then processed to identify steps and subsequently, micro-gait characteristics. This method has been tested on a cohort of 19 healthy dogs of various breeds ranging in height from 34.2 cm to 84.9 cm. We report the system as capable of making precise step delineations with detections of initial and final contact times of foot-to-floor to a mean precision of 0.011 s and 0.048 s, respectively. Results are based on analysis of 12,678 foot falls and we report a sensitivity, positive predictive value and F-score of 0.81, 0.83 and 0.82 respectively. To investigate the effect of gait on system performance

  11. Muscle contributions to centre of mass acceleration during turning gait in typically developing children: A simulation study.

    Science.gov (United States)

    Dixon, Philippe C; Jansen, Karen; Jonkers, Ilse; Stebbins, Julie; Theologis, Tim; Zavatsky, Amy B

    2015-12-16

    Turning while walking requires substantial joint kinematic and kinetic adaptations compared to straight walking in order to redirect the body centre of mass (COM) towards the new walking direction. The role of muscles and external forces in controlling and redirecting the COM during turning remains unclear. The aim of this study was to compare the contributors to COM medio-lateral acceleration during 90° pre-planned turns about the inside limb (spin) and straight walking in typically developing children. Simulations of straight walking and turning gait based on experimental motion data were implemented in OpenSim. The contributors to COM global medio-lateral acceleration during the approach (outside limb) and turn (inside limb) stance phase were quantified via an induced acceleration analysis. Changes in medio-lateral COM acceleration occurred during both turning phases, compared to straight walking (pgait and may be used clinically to guide the management of gait disorders in populations with restricted gait ability.

  12. Analysis and Classification of Stride Patterns Associated with Children Development Using Gait Signal Dynamics Parameters and Ensemble Learning Algorithms.

    Science.gov (United States)

    Wu, Meihong; Liao, Lifang; Luo, Xin; Ye, Xiaoquan; Yao, Yuchen; Chen, Pinnan; Shi, Lei; Huang, Hui; Wu, Yunfeng

    2016-01-01

    Measuring stride variability and dynamics in children is useful for the quantitative study of gait maturation and neuromotor development in childhood and adolescence. In this paper, we computed the sample entropy (SampEn) and average stride interval (ASI) parameters to quantify the stride series of 50 gender-matched children participants in three age groups. We also normalized the SampEn and ASI values by leg length and body mass for each participant, respectively. Results show that the original and normalized SampEn values consistently decrease over the significance level of the Mann-Whitney U test (p algorithms were used to effectively distinguish the children's gait patterns. These ensemble learning algorithms both provided excellent gait classification results in terms of overall accuracy (≥90%), recall (≥0.8), and precision (≥0.8077).

  13. Influence of Spinal Cord Integrity on Gait Control in Human Spinal Cord Injury.

    Science.gov (United States)

    Awai, Lea; Bolliger, Marc; Ferguson, Adam R; Courtine, Grégoire; Curt, Armin

    2016-07-01

    Background Clinical trials in spinal cord injury (SCI) primarily rely on simplified outcome metrics (ie, speed, distance) to obtain a global surrogate for the complex alterations of gait control. However, these assessments lack sufficient sensitivity to identify specific patterns of underlying impairment and to target more specific treatment interventions. Objective To disentangle the differential control of gait patterns following SCI beyond measures of time and distance. Methods The gait of 22 individuals with motor-incomplete SCI and 21 healthy controls was assessed using a high-resolution 3-dimensional motion tracking system and complemented by clinical and electrophysiological evaluations applying unbiased multivariate analysis. Results Motor-incomplete SCI patients showed varying degrees of spinal cord integrity (spinal conductivity) with severe limitations in walking speed and altered gait patterns. Principal component (PC) analysis applied on all the collected data uncovered robust coherence between parameters related to walking speed, distortion of intralimb coordination, and spinal cord integrity, explaining 45% of outcome variance (PC 1). Distinct from the first PC, the modulation of gait-cycle variables (step length, gait-cycle phases, cadence; PC 2) remained normal with respect to regained walking speed, whereas hip and knee ranges of motion were distinctly altered with respect to walking speed (PC 3). Conclusions In motor-incomplete SCI, distinct clusters of discretely controlled gait parameters can be discerned that refine the evaluation of gait impairment beyond outcomes of walking speed and distance. These findings are specifically different from that in other neurological disorders (stroke, Parkinson) and are more discrete at targeting and disentangling the complex effects of interventions to improve walking outcome following motor-incomplete SCI.

  14. Symmetrical gait descriptions

    Science.gov (United States)

    Dunajewski, Adam; Dusza, Jacek J.; Rosado Muñoz, Alfredo

    2014-11-01

    The article presents a proposal for the description of human gait as a periodic and symmetric process. Firstly, the data for researches was obtained in the Laboratory of Group SATI in the School of Engineering of University of Valencia. Then, the periodical model - Mean Double Step (MDS) was made. Finally, on the basis of MDS, the symmetrical models - Left Mean Double Step and Right Mean Double Step (LMDS and RMDS) could be created. The method of various functional extensions was used. Symmetrical gait models can be used to calculate the coefficients of asymmetry at any time or phase of the gait. In this way it is possible to create asymmetry, function which better describes human gait dysfunction. The paper also describes an algorithm for calculating symmetric models, and shows exemplary results based on the experimental data.

  15. Computational stability of human knee joint at early stance in Gait: Effects of muscle coactivity and anterior cruciate ligament deficiency.

    Science.gov (United States)

    Sharifi, M; Shirazi-Adl, A; Marouane, H

    2017-08-20

    As one of the most complex and vulnerable structures of body, the human knee joint should maintain dynamic equilibrium and stability in occupational and recreational activities. The evaluation of its stability and factors affecting it is vital in performance evaluation/enhancement, injury prevention and treatment managements. Knee stability often manifests itself by pain, hypermobility and giving-way sensations and is usually assessed by the passive joint laxity tests. Mechanical stability of both the human knee joint and the lower extremity at early stance periods of gait (0% and 5%) were quantified here for the first time using a hybrid musculoskeletal model of the lower extremity. The roles of muscle coactivity, simulated by setting minimum muscle activation at 0-10% levels and ACL deficiency, simulated by reducing ACL resistance by up to 85%, on the stability margin as well as joint biomechanics (contact/muscle/ligament forces) were investigated. Dynamic stability was analyzed using both linear buckling and perturbation approaches at the final deformed configurations in gait. The knee joint was much more stable at 0% stance than at 5% due to smaller ground reaction and contact forces. Muscle coactivity, when at lower intensities (knee joint at the heel strike. It also markedly diminishes forces in lateral hamstrings (by up to 39%) and contact forces on the lateral plateau (by up to 17%). Current work emphasizes the need for quantification of the lower extremity stability margin in gait. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. DRAG: a database for recognition and analasys of gait

    Science.gov (United States)

    Kuchi, Prem; Hiremagalur, Raghu Ram V.; Huang, Helen; Carhart, Michael; He, Jiping; Panchanathan, Sethuraman

    2003-11-01

    A novel approach is proposed for creating a standardized and comprehensive database for gait analysis. The field of gait analysis is gaining increasing attention for applications such as visual surveillance, human-computer interfaces, and gait recognition and rehabilitation. Numerous algorithms have been developed for analyzing and processing gait data; however, a standard database for their systematic evaluation does not exist. Instead, existing gait databases consist of subsets of kinematic, kinetic, and electromyographic activity recordings by different investigators, at separate laboratories, and under varying conditions. Thus, the existing databases are neither homogenous nor sufficiently populated to statistically validate the algorithms. In this paper, a methodology for creating a database is presented, which can be used as a common ground to test the performance of algorithms that rely upon external marker data, ground reaction loading data, and/or video images. The database consists of: (1) synchronized motion-capture data (3D marker data) obtained using external markers, (2) computed joint angles, and (3) ground reaction loading acquired with plantar pressure insoles. This database could be easily expanded to include synchronized video, which will facilitate further development of video-based algorithms for motion tracking. This eventually could lead to the realization of markerless gait tracking. Such a system would have extensive applications in gait recognition, as well as gait rehabilitation. The entire database (marker, angle, and force data) will be placed in the public domain, and made available for downloads over the World Wide Web.

  17. Performance of an inverted pendulum model directly applied to normal human gait.

    Science.gov (United States)

    Buczek, Frank L; Cooney, Kevin M; Walker, Matthew R; Rainbow, Michael J; Concha, M Cecilia; Sanders, James O

    2006-03-01

    In clinical gait analysis, we strive to understand contributions to body support and propulsion as this forms a basis for treatment selection, yet the relative importance of gravitational forces and joint powers can be controversial even for normal gait. We hypothesized that an inverted pendulum model, propelled only by gravity, would be inadequate to predict velocities and ground reaction forces during gait. Unlike previous ballistic and passive dynamic walking studies, we directly compared model predictions to gait data for 24 normal children. We defined an inverted pendulum from the average center-of-pressure to the instantaneous center-of-mass, and derived equations of motion during single support that allowed a telescoping action. Forward and inverse dynamics predicted pendulum velocities and ground reaction forces, and these were statistically and graphically compared to actual gait data for identical strides. Results of forward dynamics replicated those in the literature, with reasonable predictions for velocities and anterior ground reaction forces, but poor predictions for vertical ground reaction forces. Deviations from actual values were explained by joint powers calculated for these subjects. With a telescoping action during inverse dynamics, predicted vertical forces improved dramatically and gained a dual-peak pattern previously missing in the literature, yet expected for normal gait. These improvements vanished when telescoping terms were set to zero. Because this telescoping action is difficult to explain without muscle activity, we believe these results support the need for both gravitational forces and joint powers in normal gait. Our approach also begins to quantify the relative contributions of each.

  18. Spinal motor outputs during step-to-step transitions of diverse human gaits

    Directory of Open Access Journals (Sweden)

    Valentina eLa Scaleia

    2014-05-01

    Full Text Available Aspects of human motor control can be inferred from the coordination of muscles during movement. For instance, by combining multimuscle electromyographic (EMG recordings with human neuroanatomy, it is possible to estimate alpha-motoneuron (MN pool activations along the spinal cord. It has previously been shown that the spinal motor output fluctuates with the body’s center-of-mass motion, with bursts of activity around foot-strike and foot lift-off during walking. However, it is not known whether these MN bursts are generalizable to other ambulation tasks, nor is it clear if the spatial locus of the activity (along the rostrocaudal axis of the spinal cord is fixed or variable. Here we sought to address these questions by investigating the spatiotemporal characteristics of the spinal motor output during various tasks: walking forward, backward, tiptoe and uphill. We reconstructed spinal maps from 26 leg muscle EMGs, including some intrinsic foot muscles. We discovered that the various walking tasks shared qualitative similarities in their temporal spinal activation profiles, exhibiting peaks around foot-strike and foot-lift. However, we also observed differences in the segmental level and intensity of spinal activations, particularly following foot-strike. For example, forward level-ground walking exhibited a mean motor output roughly 2 times lower than the other gaits. Finally, we found that the reconstruction of the spinal motor output from multimuscle EMG recordings was relatively insensitive to the subset of muscles analyzed. In summary, our results suggested temporal similarities, but spatial differences in the segmental spinal motor outputs during the step-to-step transitions of disparate walking behaviors.

  19. Human Gait Gender Classification using 3D Discrete Wavelet Transform Feature Extraction

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2014-02-01

    Full Text Available Feature extraction for gait recognition has been created widely. The ancestor for this task is divided into two parts, model based and free-model based. Model-based approaches obtain a set of static or dynamic skeleton parameters via modeling or tracking body components such as limbs, legs, arms and thighs. Model-free approaches focus on shapes of silhouettes or the entire movement of physical bodies. Model-free approaches are insensitive to the quality of silhouettes. Its advantage is a low computational costs comparing to model-based approaches. However, they are usually not robust to viewpoints and scale. Imaging technology also developed quickly this decades. Motion capture (mocap device integrated with motion sensor has an expensive price and can only be owned by big animation studio. Fortunately now already existed Kinect camera equipped with depth sensor image in the market with very low price compare to any mocap device. Of course the accuracy not as good as the expensive one, but using some preprocessing method we can remove the jittery and noisy in the 3D skeleton points. Our proposed method is to analyze the effectiveness of 3D skeleton feature extraction using 3D Discrete Wavelet Transforms (3D DWT. We use Kinect Camera to get the depth data. We use Ipisoft mocap software to extract 3d skeleton model from Kinect video. From the experimental results shows 83.75% correctly classified instances using SVM.

  20. Development and content validity of a screening instrument for gaming addiction in adolescents: the Gaming Addiction Identification Test (GAIT).

    Science.gov (United States)

    Vadlin, Sofia; Åslund, Cecilia; Nilsson, Kent W

    2015-08-01

    This study describes the development of a screening tool for gaming addiction in adolescents - the Gaming Addiction Identification Test (GAIT). Its development was based on the research literature on gaming and addiction. An expert panel comprising professional raters (n = 7), experiential adolescent raters (n = 10), and parent raters (n = 10) estimated the content validity of each item (I-CVI) as well as of the whole scale (S-CVI/Ave), and participated in a cognitive interview about the GAIT scale. The mean scores for both I-CVI and S-CVI/Ave ranged between 0.97 and 0.99 compared with the lowest recommended I-CVI value of 0.78 and the S-CVI/Ave value of 0.90. There were no sex differences and no differences between expert groups regarding ratings in content validity. No differences in the overall evaluation of the scale emerged in the cognitive interviews. Our conclusions were that GAIT showed good content validity in capturing gaming addiction. The GAIT needs further investigation into its psychometric properties of construct validity (convergent and divergent validity) and criterion-related validity, as well as its reliability in both clinical settings and in community settings with adolescents.

  1. Analysis and Classification of Stride Patterns Associated with Children Development Using Gait Signal Dynamics Parameters and Ensemble Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Meihong Wu

    2016-01-01

    Full Text Available Measuring stride variability and dynamics in children is useful for the quantitative study of gait maturation and neuromotor development in childhood and adolescence. In this paper, we computed the sample entropy (SampEn and average stride interval (ASI parameters to quantify the stride series of 50 gender-matched children participants in three age groups. We also normalized the SampEn and ASI values by leg length and body mass for each participant, respectively. Results show that the original and normalized SampEn values consistently decrease over the significance level of the Mann-Whitney U test (p<0.01 in children of 3–14 years old, which indicates the stride irregularity has been significantly ameliorated with the body growth. The original and normalized ASI values are also significantly changing when comparing between any two groups of young (aged 3–5 years, middle (aged 6–8 years, and elder (aged 10–14 years children. Such results suggest that healthy children may better modulate their gait cadence rhythm with the development of their musculoskeletal and neurological systems. In addition, the AdaBoost.M2 and Bagging algorithms were used to effectively distinguish the children’s gait patterns. These ensemble learning algorithms both provided excellent gait classification results in terms of overall accuracy (≥90%, recall (≥0.8, and precision (≥0.8077.

  2. Human Development, Human Evolution.

    Science.gov (United States)

    Smillie, David

    One of the truly remarkable events in human evolution is the unprecedented increase in the size of the brain of "Homo" over a brief span of 2 million years. It would appear that some significant selective pressure or opportunity presented itself to this branch of the hominid line and caused a rapid increase in the brain, introducing a…

  3. A method for extracting human gait series from accelerometer signals based on the ensemble empirical mode decomposition

    Science.gov (United States)

    Fu, Mao-Jing; Zhuang, Jian-Jun; Hou, Feng-Zhen; Zhan, Qing-Bo; Shao, Yi; Ning, Xin-Bao

    2010-05-01

    In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyse accelerometer signals collected during normal human walking. First, the self-adaptive feature of EEMD is utilised to decompose the accelerometer signals, thus sifting out several intrinsic mode functions (IMFs) at disparate scales. Then, gait series can be extracted through peak detection from the eigen IMF that best represents gait rhythmicity. Compared with the method based on the empirical mode decomposition (EMD), the EEMD-based method has the following advantages: it remarkably improves the detection rate of peak values hidden in the original accelerometer signal, even when the signal is severely contaminated by the intermittent noises; this method effectively prevents the phenomenon of mode mixing found in the process of EMD. And a reasonable selection of parameters for the stop-filtering criteria can improve the calculation speed of the EEMD-based method. Meanwhile, the endpoint effect can be suppressed by using the auto regressive and moving average model to extend a short-time series in dual directions. The results suggest that EEMD is a powerful tool for extraction of gait rhythmicity and it also provides valuable clues for extracting eigen rhythm of other physiological signals.

  4. Comparison of trunk activity during gait initiation and walking in humans.

    Directory of Open Access Journals (Sweden)

    Jean-Charles Ceccato

    Full Text Available To understand the role of trunk muscles in maintenance of dynamic postural equilibrium we investigate trunk movements during gait initiation and walking, performing trunk kinematics analysis, Erector spinae muscle (ES recordings and dynamic analysis. ES muscle expressed a metachronal descending pattern of activity during walking and gait initiation. In the frontal and horizontal planes, lateroflexion and rotation occur before in the upper trunk and after in the lower trunk. Comparison of ES muscle EMGs and trunk kinematics showed that trunk muscle activity precedes corresponding kinematics activity, indicating that the ES drive trunk movement during locomotion and thereby allowing a better pelvis mobilization. EMG data showed that ES activity anticipates propulsive phases in walking with a repetitive pattern, suggesting a programmed control by a central pattern generator. Our findings also suggest that the programs for gait initiation and walking overlap with the latter beginning before the first has ended.

  5. Comparison of Trunk Activity during Gait Initiation and Walking in Humans

    Science.gov (United States)

    Azevedo, Christine; Cazalets, Jean-René

    2009-01-01

    To understand the role of trunk muscles in maintenance of dynamic postural equilibrium we investigate trunk movements during gait initiation and walking, performing trunk kinematics analysis, Erector spinae muscle (ES) recordings and dynamic analysis. ES muscle expressed a metachronal descending pattern of activity during walking and gait initiation. In the frontal and horizontal planes, lateroflexion and rotation occur before in the upper trunk and after in the lower trunk. Comparison of ES muscle EMGs and trunk kinematics showed that trunk muscle activity precedes corresponding kinematics activity, indicating that the ES drive trunk movement during locomotion and thereby allowing a better pelvis mobilization. EMG data showed that ES activity anticipates propulsive phases in walking with a repetitive pattern, suggesting a programmed control by a central pattern generator. Our findings also suggest that the programs for gait initiation and walking overlap with the latter beginning before the first has ended. PMID:19997606

  6. Human Development Report 1991: Financing Human Development

    OpenAIRE

    United Nations Development Programme, UNDP

    1991-01-01

    Lack of political commitment rather than financial resources is often the real barrier to human development. This is the main conclusion of Human Development Report 1991 - the second in a series of annual reports on the subject.

  7. Gait and Lower Limb Observation of Paediatrics (GALLOP): development of a consensus based paediatric podiatry and physiotherapy standardised recording proforma.

    Science.gov (United States)

    Cranage, Simone; Banwell, Helen; Williams, Cylie M

    2016-01-01

    Paediatric gait and lower limb assessments are frequently undertaken in podiatry and physiotherapy clinical practice and this is a growing area of expertise within Australia. No concise paediatric standardised recording proforma exists to assist clinicians in clinical practice. The aim of this study was to develop a gait and lower limb standardised recording proforma guided by the literature and consensus, for assessment of the paediatric foot and lower limb in children aged 0-18 years. Expert Australian podiatrists and physiotherapists were invited to participate in a three round Delphi survey panel using the online Qualtrics(©) survey platform. The first round of the survey consisted of open-ended questions on paediatric gait and lower limb assessment developed from existing templates and a literature search of standardised lower limb assessment methods. Rounds two and three consisted of statements developed from the first round responses. Questions and statements were included in the final proforma if 70 % or more of the participants indicated consensus or agreement with the assessment method and if there was support within the literature for paediatric age-specific normative data with acceptable reliability of outcome measures. There were 17 of the 21 (81 %) participants who completed three rounds of the survey. Consensus was achieved for 41 statements in Round one, 54 statements achieved agreement in two subsequent rounds. Participants agreed on 95 statements relating to birth history, developmental history, hip measurement, rotation of the lower limb, ankle range of motion, foot posture, balance and gait. Assessments with acceptable validity and reliability were included within the final Gait and Lower Limb Observation of Paediatrics (GALLOP) proforma. The GALLOP proforma is a consensus based, systematic and standardised way to collect information and outcome measures in paediatric lower limb assessment. This standardised recording proforma will assist

  8. Evidence-based design and development of a VR-based treadmill system for gait research and rehabilitation of patients with Parkinson's disease.

    Science.gov (United States)

    Pérez-Sanpablo, Alberto Isaac; González-Mendoza, Arturo; Quiñones-Uriostegui, Ivett; Rodríguez-Reyes, Gerardo; Núñez-Carrera, Lidia; Hernández-Arenas, Claudia; Boll-Woehrlen, Marie Catherine; Alessi Montero, Aldo

    2014-07-01

    Virtual reality (VR) in neurorehabilitation allows to reduce patient's risk and allows him to learn on a faster way. Up to now VR has been used in patients with Parkinson disease (PD) as a research tool and none of the developed systems are used in clinical practice. The goal of this project is to develop a VR-based system for gait therapy, and gait research of patients with PD designed based on published evidence. The developed system uses a digital camera to measure spatiotemporal gait parameters. The software was developed in C#, using Open-Source libraries that facilitates VR programming. The system has potential uses in clinical and research settings.

  9. Stratification of the phase clouds and statistical effects of the non-Markovity in chaotic time series of human gait for healthy people and Parkinson patients

    Science.gov (United States)

    Yulmetyev, Renat; Demin, Sergey; Emelyanova, Natalya; Gafarov, Fail; Hänggi, Peter

    2003-03-01

    In this work we develop a new method of diagnosing the nervous system diseases and a new approach in studying human gait dynamics with the help of the theory of discrete non-Markov random processes (Phys. Rev. E 62 (5) (2000) 6178, Phys. Rev. E 64 (2001) 066132, Phys. Rev. E 65 (2002) 046107, Physica A 303 (2002) 427). The stratification of the phase clouds and the statistical non-Markov effects in the time series of the dynamics of human gait are considered. We carried out the comparative analysis of the data of four age groups of healthy people: children (from 3 to 10 year olds), teenagers (from 11 to 14 year olds), young people (from 21 up to 29 year olds), elderly persons (from 71 to 77 year olds) and Parkinson patients. The full data set are analyzed with the help of the phase portraits of the four dynamic variables, the power spectra of the initial time correlation function and the memory functions of junior orders, the three first points in the spectra of the statistical non-Markov parameter. The received results allow to define the predisposition of the probationers to deflections in the central nervous system caused by Parkinson's disease. We have found out distinct differences between the five submitted groups. On this basis we offer a new method of diagnostics and forecasting Parkinson's disease.

  10. Stratification of the phase clouds and statistical effects of the non-Markovity in chaotic time series of human gait for healthy people and Parkinson patients

    CERN Document Server

    Yulmetyev, R M; Emelyanova, N; Gafarov, F; Hänggi, P; Yulmetyev, Renat; Demin, Sergey; Emelyanova, Natalya; Gafarov, Fail; Hanggi, Peter

    2003-01-01

    In this work we develop a new method of diagnosing the nervous system diseases and a new approach in studying human gait dynamics with the help of the theory of discrete non-Markov random processes. The stratification of the phase clouds and the statistical non-Markov effects in the time series of the dynamics of human gait are considered. We carried out the comparative analysis of the data of four age groups of healthy people: children (from 3 to 10 year olds), teenagers (from 11 to 14 year oulds), young people (from 21 up to 29 year oulds), elderly persons (from 71 to 77 year olds) and Parkinson patients. The full data set are analyzed with the help of the phase portraits of the four dynamic variables, the power spectra of the initial time correlation function and the memory functions of junior orders, the three first points in the spectra of the statistical non-Markov parameter. The received results allow to define the predisposition of the probationers to deflections in the central nervous system caused b...

  11. Explosive Resistance Training Increases Rate of Force Development in Ankle Dorsiflexors and Gait Function in Adults With Cerebral Palsy.

    Science.gov (United States)

    Kirk, Henrik; Geertsen, Svend S; Lorentzen, Jakob; Krarup, Kasper B; Bandholm, Thomas; Nielsen, Jens B

    2016-10-01

    Kirk, H, Geertsen, SS, Lorentzen, J, Krarup, KB, Bandholm, T, and Nielsen, JB. Explosive resistance training increases rate of force development in ankle dorsiflexors and gait function in adults with cerebral palsy. J Strength Cond Res 30(10): 2749-2760, 2016-Alterations in passive elastic properties of muscles and reduced ability to quickly generate muscle force contribute to impaired gait function in adults with cerebral palsy (CP). In this study, we investigated whether 12 weeks of explosive and progressive heavy-resistance training (PRT) increases rate of force development of ankle dorsiflexors (RFDdf), improves gait function, and affects passive ankle joint stiffness in adults with CP. Thirty-five adults (age: 36.5; range: 18-59 years) with CP were nonrandomly assigned to a PRT or nontraining control (CON) group in this explorative trial. The PRT group trained ankle dorsiflexion, plantarflexion, leg press, hamstring curls, abdominal curls, and back extension 3 days per week for 12 weeks, with 3 sets per exercise and progressing during the training period from 12 to 6 repetition maximums. RFDdf, 3-dimensional gait analysis, functional performance, and ankle joint passive and reflex-mediated muscle stiffness were evaluated before and after. RFDdf increased significantly after PRT compared to CON. PRT also caused a significant increase in toe lift late in swing and a significantly more dorsiflexed ankle joint at ground contact and during stance. The increased toe-lift amplitude was correlated to the increased RFDdf (r = 0.73). No other between-group differences were observed. These findings suggest that explosive PRT may increase RFDdf and facilitate larger range of movement in the ankle joint during gait. Explosive PRT should be tested in clinical practice as part of a long-term training program for adults with CP.

  12. Skeleton-Based Abnormal Gait Detection

    Directory of Open Access Journals (Sweden)

    Trong-Nguyen Nguyen

    2016-10-01

    Full Text Available Human gait analysis plays an important role in musculoskeletal disorder diagnosis. Detecting anomalies in human walking, such as shuffling gait, stiff leg or unsteady gait, can be difficult if the prior knowledge of such a gait pattern is not available. We propose an approach for detecting abnormal human gait based on a normal gait model. Instead of employing the color image, silhouette, or spatio-temporal volume, our model is created based on human joint positions (skeleton in time series. We decompose each sequence of normal gait images into gait cycles. Each human instant posture is represented by a feature vector which describes relationships between pairs of bone joints located in the lower body. Such vectors are then converted into codewords using a clustering technique. The normal human gait model is created based on multiple sequences of codewords corresponding to different gait cycles. In the detection stage, a gait cycle with normality likelihood below a threshold, which is determined automatically in the training step, is assumed as an anomaly. The experimental results on both marker-based mocap data and Kinect skeleton show that our method is very promising in distinguishing normal and abnormal gaits with an overall accuracy of 90.12%.

  13. A non linear analysis of human gait time series based on multifractal analysis and cross correlations

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Diosdado, A [Department of Mathematics, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Av. Acueducto s/n, 07340, Mexico City (Mexico)

    2005-01-01

    We analyzed databases with gait time series of adults and persons with Parkinson, Huntington and amyotrophic lateral sclerosis (ALS) diseases. We obtained the staircase graphs of accumulated events that can be bounded by a straight line whose slope can be used to distinguish between gait time series from healthy and ill persons. The global Hurst exponent of these series do not show tendencies, we intend that this is because some gait time series have monofractal behavior and others have multifractal behavior so they cannot be characterized with a single Hurst exponent. We calculated the multifractal spectra, obtained the spectra width and found that the spectra of the healthy young persons are almost monofractal. The spectra of ill persons are wider than the spectra of healthy persons. In opposition to the interbeat time series where the pathology implies loss of multifractality, in the gait time series the multifractal behavior emerges with the pathology. Data were collected from healthy and ill subjects as they walked in a roughly circular path and they have sensors in both feet, so we have one time series for the left foot and other for the right foot. First, we analyzed these time series separately, and then we compared both results, with direct comparison and with a cross correlation analysis. We tried to find differences in both time series that can be used as indicators of equilibrium problems.

  14. Estimation of Human Hip and Knee Multi-Joint Dynamics Using the LOPES Gait Trainer

    NARCIS (Netherlands)

    Koopman, Hubertus F.J.M.; van Asseldonk, Edwin H.F.; van der Kooij, Herman

    2016-01-01

    In this study, we present and evaluate a novel method to estimate multi-joint leg impedance, using a robotic gait training device. The method is based on multi-input–multi-output system identification techniques and is designed for continuous torque perturbations at the hip and knee joint

  15. Invariant Classification of Gait Types

    DEFF Research Database (Denmark)

    Fihl, Preben; Moeslund, Thomas B.

    2008-01-01

    This paper presents a method of classifying human gait in an invariant manner based on silhouette comparison. A database of artificially generated silhouettes is created representing the three main types of gait, i.e. walking, jogging, and running. Silhouettes generated from different camera angles...

  16. 基于视频图像边缘检测的人体下肢运动步态*☆%Normal human gaits based on image edge detection

    Institute of Scientific and Technical Information of China (English)

    孟青云; 谈士力; 喻洪流; 沈力行

    2013-01-01

      结果与结论:基于视频图像边缘检测人体下肢的运动步态,成本相对低廉,数据误差较小,精度与进口设备较接近。应用该测量结果初步构建了人体步态行走数据库,为建立步态评定标准、异常步态判别以及进一步的康复治疗提供了依据。%BACKGROUND: The parameters of kinematics and dynamics are usual y used to describe the law of gaits. Up to now, in the fields of sports medicine, rehabilitation engineering and bionics, gait analysis can provide important basis for ascertaining the scenario of diagnosis disease, the scenario of treatment and recovery. OBJECTIVE: To acquire the lower extremity motion gaits video on the treadmil by the image measuring device system based on the human motion in order to analyze the regular pattern of human gaits. METHODS: The identification points were set on the right and left hip joints, knee joints and foot plate by the image-gathering system in order to acquire the lower extremity motion gait while the subject walked on a treadmil . After processing and analyzing the data based on the theory of image edge detection, angle between the right and left thighs and vertical direction, angle between leg and vertical direction, angle between foot plate and vertical direction and the changes of the angles of identification points of knee joints and ankle joints were obtained. RESULTS AND CONCLUSION: The human lower extremity motion gait obtained according to the theory of image edge detection has relatively low cost and smal error, and the accuracy was similar to the imported equipment. Final y, a database of human gait was built based on the measurement results, and it provided a basis for the further establishment of assessing standard for human gait, better analysis of abnormal gait and rehabilitation treatments.

  17. Development of body weight support gait training system using pneumatic Mckibben actuators -control of lower extremity orthosis.

    Science.gov (United States)

    Mat Dzahir, M A; Nobutomo, T; Yamamoto, S I

    2013-01-01

    Recently, robot assisted therapy devices are increasingly used for spinal cord injury (SCI) rehabilitation in assisting handicapped patients to regain their impaired movements. Assistive robotic systems may not be able to cure or fully compensate impairments, but it should be able to assist certain impaired functions and ease movements. In this study, the control system of lower extremity orthosis for the body weight support gait training system which implements pneumatic artificial muscle (PAM) is proposed. The hip and knee joint angles of the gait orthosis system are controlled based on the PAM coordinates information from the simulation. This information provides the contraction data for the mono- and bi-articular PAMs that are arranged as posterior and anterior actuators to simulate the human walking motion. The proposed control system estimates the actuators' contraction as a function of hip and knee joint angles. Based on the contraction model obtained, input pressures for each actuators are measured. The control system are performed at different gait cycles and two PMA settings for the mono- and bi-articular actuators are evaluated in this research. The results showed that the system was able to achieve the maximum muscle moment at the joints, and able to perform the heel contact movement. This explained that the antagonistic mono- and bi-articular actuators worked effectively.

  18. Gait Stability in Children with Cerebral Palsy

    Science.gov (United States)

    Bruijn, Sjoerd M.; Millard, Matthew; van Gestel, Leen; Meyns, Pieter; Jonkers, Ilse; Desloovere, Kaat

    2013-01-01

    Children with unilateral Cerebral Palsy (CP) have several gait impairments, amongst which impaired gait stability may be one. We tested whether a newly developed stability measure (the foot placement estimator, FPE) which does not require long data series, can be used to asses gait stability in typically developing (TD) children as well as…

  19. Gait Stability in Children with Cerebral Palsy

    Science.gov (United States)

    Bruijn, Sjoerd M.; Millard, Matthew; van Gestel, Leen; Meyns, Pieter; Jonkers, Ilse; Desloovere, Kaat

    2013-01-01

    Children with unilateral Cerebral Palsy (CP) have several gait impairments, amongst which impaired gait stability may be one. We tested whether a newly developed stability measure (the foot placement estimator, FPE) which does not require long data series, can be used to asses gait stability in typically developing (TD) children as well as…

  20. Human olfactory mesenchymal stromal cell transplants promote remyelination and earlier improvement in gait co‐ordination after spinal cord injury

    Science.gov (United States)

    Lindsay, Susan L.; Toft, Andrew; Griffin, Jacob; M. M. Emraja, Ahmed

    2017-01-01

    Autologous cell transplantation is a promising strategy for repair of the injured spinal cord. Here we have studied the repair potential of mesenchymal stromal cells isolated from the human olfactory mucosa after transplantation into a rodent model of incomplete spinal cord injury. Investigation of peripheral type remyelination at the injury site using immunocytochemistry for P0, showed a more extensive distribution in transplanted compared with control animals. In addition to the typical distribution in the dorsal columns (common to all animals), in transplanted animals only, P0 immunolabelling was consistently detected in white matter lateral and ventral to the injury site. Transplanted animals also showed reduced cavitation. Several functional outcome measures including end‐point electrophysiological testing of dorsal column conduction and weekly behavioural testing of BBB, weight bearing and pain, showed no difference between transplanted and control animals. However, gait analysis revealed an earlier recovery of co‐ordination between forelimb and hindlimb stepping in transplanted animals. This improvement in gait may be associated with the enhanced myelination in ventral and lateral white matter, where fibre tracts important for locomotion reside. Autologous transplantation of mesenchymal stromal cells from the olfactory mucosa may therefore be therapeutically beneficial in the treatment of spinal cord injury. GLIA 2017 GLIA 2017;65:639–656 PMID:28144983

  1. Estimation of temporal gait parameters using Bayesian models on acceleration signals.

    Science.gov (United States)

    López-Nava, I H; Muñoz-Meléndez, A; Pérez Sanpablo, A I; Alessi Montero, A; Quiñones Urióstegui, I; Núñez Carrera, L

    2016-01-01

    The purpose of this study is to develop a system capable of performing calculation of temporal gait parameters using two low-cost wireless accelerometers and artificial intelligence-based techniques as part of a larger research project for conducting human gait analysis. Ten healthy subjects of different ages participated in this study and performed controlled walking tests. Two wireless accelerometers were placed on their ankles. Raw acceleration signals were processed in order to obtain gait patterns from characteristic peaks related to steps. A Bayesian model was implemented to classify the characteristic peaks into steps or nonsteps. The acceleration signals were segmented based on gait events, such as heel strike and toe-off, of actual steps. Temporal gait parameters, such as cadence, ambulation time, step time, gait cycle time, stance and swing phase time, simple and double support time, were estimated from segmented acceleration signals. Gait data-sets were divided into two groups of ages to test Bayesian models in order to classify the characteristic peaks. The mean error obtained from calculating the temporal gait parameters was 4.6%. Bayesian models are useful techniques that can be applied to classification of gait data of subjects at different ages with promising results.

  2. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.

    Science.gov (United States)

    De Groote, F; De Laet, T; Jonkers, I; De Schutter, J

    2008-12-05

    We developed a Kalman smoothing algorithm to improve estimates of joint kinematics from measured marker trajectories during motion analysis. Kalman smoothing estimates are based on complete marker trajectories. This is an improvement over other techniques, such as the global optimisation method (GOM), Kalman filtering, and local marker estimation (LME), where the estimate at each time instant is only based on part of the marker trajectories. We applied GOM, Kalman filtering, LME, and Kalman smoothing to marker trajectories from both simulated and experimental gait motion, to estimate the joint kinematics of a ten segment biomechanical model, with 21 degrees of freedom. Three simulated marker trajectories were studied: without errors, with instrumental errors, and with soft tissue artefacts (STA). Two modelling errors were studied: increased thigh length and hip centre dislocation. We calculated estimation errors from the known joint kinematics in the simulation study. Compared with other techniques, Kalman smoothing reduced the estimation errors for the joint positions, by more than 50% for the simulated marker trajectories without errors and with instrumental errors. Compared with GOM, Kalman smoothing reduced the estimation errors for the joint moments by more than 35%. Compared with Kalman filtering and LME, Kalman smoothing reduced the estimation errors for the joint accelerations by at least 50%. Our simulation results show that the use of Kalman smoothing substantially improves the estimates of joint kinematics and kinetics compared with previously proposed techniques (GOM, Kalman filtering, and LME) for both simulated, with and without modelling errors, and experimentally measured gait motion.

  3. Simulated impacts of ankle foot orthoses on muscle demand and recruitment in typically-developing children and children with cerebral palsy and crouch gait.

    Science.gov (United States)

    Rosenberg, Michael; Steele, Katherine M

    2017-01-01

    Passive ankle foot orthoses (AFOs) are often prescribed for children with cerebral palsy (CP) to assist locomotion, but predicting how specific device designs will impact energetic demand during gait remains challenging. Powered AFOs have been shown to reduce energy costs of walking in unimpaired adults more than passive AFOs, but have not been tested in children with CP. The goal of this study was to investigate the potential impact of powered and passive AFOs on muscle demand and recruitment in children with CP and crouch gait. We simulated gait for nine children with crouch gait and three typically-developing children with powered and passive AFOs. For each AFO design, we computed reductions in muscle demand compared to unassisted gait. Powered AFOs reduced muscle demand 15-44% compared to unassisted walking, 1-14% more than passive AFOs. A slower walking speed was associated with smaller reductions in absolute muscle demand for all AFOs (r2 = 0.60-0.70). However, reductions in muscle demand were only moderately correlated with crouch severity (r2 = 0.40-0.43). The ankle plantarflexor muscles were most heavily impacted by the AFOs, with gastrocnemius recruitment decreasing 13-73% and correlating with increasing knee flexor moments (r2 = 0.29-0.91). These findings support the potential use of powered AFOs for children with crouch gait, and highlight how subject-specific kinematics and kinetics may influence muscle demand and recruitment to inform AFO design.

  4. Jordan Adjusted Human Development

    OpenAIRE

    Ababsa, Myriam

    2014-01-01

    Jordan Human Development Index (HDI) and Adjusted Human Development Index (IHDI) In 1990, the United Nations Development Programme designed a Human Development Index composed of life expectancy at birth, level of education and gross domestic product (GDP) per capita. In 2011, the UNDP ranked Jordan 95th out of 187 countries with a human development index of 0.698, up from 0.591 in 1990, making it the leading medium-range country for human development (fig. VIII.1). In 2010, the inequality adj...

  5. Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention.

    Science.gov (United States)

    Shull, Pete B; Jirattigalachote, Wisit; Hunt, Michael A; Cutkosky, Mark R; Delp, Scott L

    2014-01-01

    The proliferation of miniaturized electronics has fueled a shift toward wearable sensors and feedback devices for the mass population. Quantified self and other similar movements involving wearable systems have gained recent interest. However, it is unclear what the clinical impact of these enabling technologies is on human gait. The purpose of this review is to assess clinical applications of wearable sensing and feedback for human gait and to identify areas of future research. Four electronic databases were searched to find articles employing wearable sensing or feedback for movements of the foot, ankle, shank, thigh, hip, pelvis, and trunk during gait. We retrieved 76 articles that met the inclusion criteria and identified four common clinical applications: (1) identifying movement disorders, (2) assessing surgical outcomes, (3) improving walking stability, and (4) reducing joint loading. Characteristics of knee and trunk motion were the most frequent gait parameters for both wearable sensing and wearable feedback. Most articles performed testing on healthy subjects, and the most prevalent patient populations were osteoarthritis, vestibular loss, Parkinson's disease, and post-stroke hemiplegia. The most widely used wearable sensors were inertial measurement units (accelerometer and gyroscope packaged together) and goniometers. Haptic (touch) and auditory were the most common feedback sensations. This review highlights the current state of the literature and demonstrates substantial potential clinical benefits of wearable sensing and feedback. Future research should focus on wearable sensing and feedback in patient populations, in natural human environments outside the laboratory such as at home or work, and on continuous, long-term monitoring and intervention.

  6. Exploiting the passive dynamics of a compliant leg to develop gait transitions

    Science.gov (United States)

    Martinez Salazar, Harold Roberto; Carbajal, Juan Pablo

    2011-06-01

    In the area of bipedal locomotion, the spring-loaded inverted pendulum model has been proposed as a unified framework to explain the dynamics of a wide variety of gaits. In this paper, we present an analysis of the mathematical model and its dynamical properties. We use the perspective of hybrid dynamical systems to study the dynamics and define concepts such as partial stability and viability. With this approach, on the one hand, we identify stable and unstable regions of locomotion. On the other hand, we find ways to exploit the unstable regions of locomotion to induce gait transitions at a constant energy regime. Additionally, we show that simple nonconstant angle of attack control policies can render the system almost always stable.

  7. Exploiting the Passive Dynamics of a Compliant Leg to Develop Gait Transitions

    CERN Document Server

    Salazar, Harold Roberto Martinez; 10.1103/PhysRevE.83.066707

    2011-01-01

    In the area of bipedal locomotion, the spring loaded inverted pendulum (SLIP) model has been proposed as a unified framework to explain the dynamics of a wide variety of gaits. In this paper, we present a novel analysis of the mathematical model and its dynamical properties. We use the perspective of hybrid dynamical systems to study the dynamics and define concepts such as partial stability and viability. With this approach, on the one hand, we identified stable and unstable regions of locomotion. On the other hand, we found ways to exploit the unstable regions of locomotion to induce gait transitions at a constant energy regime. Additionally, we show that simple non-constant angle of attack control policies can render the system almost always stable.

  8. Implementation An image processing technique for video motion analysis during the gait cycle canine

    Science.gov (United States)

    López, G.; Hernández, J. O.

    2017-01-01

    Nowadays the analyses of human movement, more specifically of the gait have ceased to be a priority for our species. Technological advances and implementations engineering have joined to obtain data and information regarding the gait cycle in another animal species. The aim of this paper is to analyze the canine gait in order to get results that describe the behavior of the limbs during the gait cycle. The research was performed by: 1. Dog training, where it is developed the step of adaptation and trust; 2. Filming gait cycle; 3. Data acquisition, in order to obtain values that describe the motion cycle canine and 4. Results, obtaining the kinematics variables involved in the march. Which are essential to determine the behavior of the limbs, as well as for the development of prosthetic or orthotic. This project was carried out with conventional equipment and using computational tools easily accessible.

  9. Muscle reflexes during gait elicited by electrical stimulation of the posterior cruciate ligament in humans

    DEFF Research Database (Denmark)

    Fischer-Rasmussen, T; Krogsgaard, M R; Jensen, D B

    2002-01-01

    muscle activity in both the quadriceps and the hamstrings. The latency of the inhibition ranged between 78 and 148 ms in the quadriceps, between 88 and 110 ms in the hamstrings and between 189 and 258 ms in m. gastrocnemius. Stimulation of the fat pad of the knee did not influence the thigh and calf......We investigated the influence of electrical stimulation of the posterior cruciate ligament (PCL) on the motoneuron pool of the thigh and calf muscle during gait. The study group comprised eight young men without any history of injury to the knee joints. Multistranded teflon-insulated stainless...... over the vastus medialis, rectus femoris, vastus lateralis, biceps femoris caput longum, and semitendinosus muscles. The stimuli consisted of four pulses delivered at 200 Hz; the stimulus amplitude was two to three times the sensory threshold. The electrical stimulation of the PCL inhibited the ongoing...

  10. An Efficient Gait Recognition with Backpack Removal

    Science.gov (United States)

    Lee, Heesung; Hong, Sungjun; Kim, Euntai

    2009-12-01

    Gait-based human identification is a paradigm to recognize individuals using visual cues that characterize their walking motion. An important requirement for successful gait recognition is robustness to variations including different lighting conditions, poses, and walking speed. Deformation of the gait silhouette caused by objects carried by subjects also has a significant effect on the performance of gait recognition systems; a backpack is the most common of these objects. This paper proposes methods for eliminating the effect of a carried backpack for efficient gait recognition. We apply simple, recursive principal component analysis (PCA) reconstructions and error compensation to remove the backpack from the gait representation and then conduct gait recognition. Experiments performed with the CASIA database illustrate the performance of the proposed algorithm.

  11. 75 FR 26761 - Eunice Kennedy Shriver National Institute of Child Health and Human Development; Notice of Closed...

    Science.gov (United States)

    2010-05-12

    ... Shriver National Institute of Child Health and Human Development; Notice of Closed Meeting Pursuant to... Institute of Child Health and Human Development Special Emphasis Panel; Asymmetric Robotic Gait Training and... Review Administrator, Division of Scientific Review, National Institute of Child Health and Human...

  12. UWB micro-doppler radar for human gait analysis using joint range-time-frequency representation

    Science.gov (United States)

    Wang, Yazhou; Fathy, Aly E.

    2013-05-01

    In this paper, we present a novel, standalone ultra wideband (UWB) micro-Doppler radar sensor that goes beyond simple range or micro-Doppler detection to combined range-time-Doppler frequency analysis. Moreover, it can monitor more than one human object in both line-of-sight (LOS) and through wall scenarios, thus have full human objects tracking capabilities. The unique radar design is based on narrow pulse transceiver, high speed data acquisition module, and wideband antenna array. For advanced radar post-data processing, joint range-time-frequency representation has been performed. Characteristics of human walking activity have been analyzed using the radar sensor by precisely tracking the radar object and acquiring range-time-Doppler information simultaneously. The UWB micro-Doppler radar prototype is capable of detecting Doppler frequency range from -180 Hz to +180 Hz, which allows a maximum target velocity of 9 m/s. The developed radar sensor can also be extended for many other applications, such as respiration and heartbeat detection of trapped survivors under building debris.

  13. 基于图像处理的人体步态信息采集与处理%Human Gait Acquisition and Handling Based on Image Processing

    Institute of Scientific and Technical Information of China (English)

    刘艳阳; 刘永久; 聂余满; 张磊杰; 宋全军

    2013-01-01

    为了获取健康人体的正常步态信息,提出了一种快捷有效的获取方法.通过在下肢关节点处粘贴标记点,利用摄像机获取正常人行走的图像,对图像进行二值化处理,提取出标记点坐标.经过最小二乘拟合分析可得到人体脚心在一个步态周期内的运动轨迹及运动速度.最后对下肢康复机器人进行步态规划,得到下肢康复机器人的步态轨迹及其速度,并对不同年龄人群的步态速度曲线进行了分析.实验结果表明,该系统可行性好,工作稳定,为下肢康复机器人的运动学分析与控制提供有力的理论依据和验证方法.%In order to obtain gait features of human foot in normal walking process.This paper presents a fast and effective system for gait features acquisition.Feature points were attached to the specific parts of human lower limbs and a video camera was used to acquire images of a walking process.In addition,axis values of feature points can be acquired by image binarization processing.At the same time,foot trajectory of fixed center of mass and gait speed were abstracted based on the least square method (LSM).Finally,the gait of lower limb rehabilitation robot was planned according to the gait features,abstracting the gait trajectory of rehabilitation robot,Moreover,gait speed of different ages were analyzed.Experiments results show that the system is feasible and stable,which provides a powerful data basis and authentication methods for the analysis of movement and control of lower limb rehabilitation robot.

  14. Determination of patellofemoral pain sub-groups and development of a method for predicting treatment outcome using running gait kinematics.

    Science.gov (United States)

    Watari, Ricky; Kobsar, Dylan; Phinyomark, Angkoon; Osis, Sean; Ferber, Reed

    2016-10-01

    Not all patients with patellofemoral pain exhibit successful outcomes following exercise therapy. Thus, the ability to identify patellofemoral pain subgroups related to treatment response is important for the development of optimal therapeutic strategies to improve rehabilitation outcomes. The purpose of this study was to use baseline running gait kinematic and clinical outcome variables to classify patellofemoral pain patients on treatment response retrospectively. Forty-one individuals with patellofemoral pain that underwent a 6-week exercise intervention program were sub-grouped as treatment Responders (n=28) and Non-responders (n=13) based on self-reported measures of pain and function. Baseline three-dimensional running kinematics, and self-reported measures underwent a linear discriminant analysis of the principal components of the variables to retrospectively classify participants based on treatment response. The significance of the discriminant function was verified with a Wilk's lambda test (α=0.05). The model selected 2 gait principal components and had a 78.1% classification accuracy. Overall, Non-responders exhibited greater ankle dorsiflexion, knee abduction and hip flexion during the swing phase and greater ankle inversion during the stance phase, compared to Responders. This is the first study to investigate an objective method to use baseline kinematic and self-report outcome variables to classify on patellofemoral pain treatment outcome. This study represents a significant first step towards a method to help clinicians make evidence-informed decisions regarding optimal treatment strategies for patients with patellofemoral pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. DESARROLLO DE UN LABORATORIO DE MARCHA CON INTEGRACIÓN SINCRÓNICA MEDIANTE UNA ARQUITECTURA EN MÓDULOS Development of a Gait Laboratory with Synchronic Integration Through a Modular Architecture

    Directory of Open Access Journals (Sweden)

    FABIO MARTÍNEZ CARRILLO

    Full Text Available El Laboratorio de Marcha es un conjunto de herramientas que permiten tomar medidas y realizar un análisis cuantitativo de los patrones de movimiento. Este sistema facilita el diagnóstico, tratamiento, seguimiento e implementación de métodos de rehabilitación en patologías asociadas con el movimiento. En este trabajo se presenta el diseño y desarrollo de un Laboratorio de Marcha que captura y registra diferentes variables dinámicas del movimiento humano. La arquitectura modular del Laboratorio de Marcha permite integrar de forma sincronizada información dinámica y cinemática.Gait Lab is a set of tools to take measurements and to develop quantitative analysis of movement patterns. This system facilitates the diagnosis, treatment, monitoring and implementation of rehabilitation methods in diseases associated with movement. In this work, we present the design and development of a Gait Laboratory that capture different variables and register human movement dynamics. The modular architecture of the proposed Gait Laboratory allows synchronized integration of kinetics and kinematics information.

  16. Open source platform for collaborative construction of wearable sensor datasets for human motion analysis and an application for gait analysis.

    Science.gov (United States)

    Llamas, César; González, Manuel A; Hernández, Carmen; Vegas, Jesús

    2016-10-01

    Nearly every practical improvement in modeling human motion is well founded in a properly designed collection of data or datasets. These datasets must be made publicly available for the community could validate and accept them. It is reasonable to concede that a collective, guided enterprise could serve to devise solid and substantial datasets, as a result of a collaborative effort, in the same sense as the open software community does. In this way datasets could be complemented, extended and expanded in size with, for example, more individuals, samples and human actions. For this to be possible some commitments must be made by the collaborators, being one of them sharing the same data acquisition platform. In this paper, we offer an affordable open source hardware and software platform based on inertial wearable sensors in a way that several groups could cooperate in the construction of datasets through common software suitable for collaboration. Some experimental results about the throughput of the overall system are reported showing the feasibility of acquiring data from up to 6 sensors with a sampling frequency no less than 118Hz. Also, a proof-of-concept dataset is provided comprising sampled data from 12 subjects suitable for gait analysis.

  17. Development and application of virtual reality technology to improve hand use and gait of individuals post-stroke.

    Science.gov (United States)

    Deutsch, Judith E; Merians, Alma S; Adamovich, Serge; Poizner, Howard; Burdea, Grigore C

    2004-01-01

    Development and application of virtual reality (VR) systems for rehabilitation is an iterative process produced by collaboration of an inter-disciplinary team of engineers, neuroscientists and clinician-scientists. In this paper the use of virtual reality technology for the rehabilitation of individuals post-stroke is described. The development of the hardware is based on principles of motor control. Development of the software uses findings from the enrichment and motor plasticity and training literatures as well as principles of motor learning. Virtual environments are created to afford individuals post-stroke opportunities to practice tasks for which they require rehabilitation. These tasks, related to hand function and gait, are trained both at the impairment and functional level. The training engages users to allow for the repetitive intensive practice required for behavioral motor plasticity. Results from a series of upper and lower extremity studies indicate that use of VR technology to augment rehabilitation of individuals post-stroke merits further study.

  18. MOTOR MODULES OF HUMAN LOCOMOTION: INFLUENCE OF EMG AVERAGING, CONCATENATION AND NUMBER OF GAIT CYCLES

    Directory of Open Access Journals (Sweden)

    Anderson Souza Oliveira

    2014-05-01

    Full Text Available Locomotion can be investigated by factorization of electromyographic (EMG signals, e.g. with non-negative matrix factorization (NMF. This approach is a convenient concise representation of muscle activities as distributed in motor modules, activated in specific gait phases. For applying NMF, the EMG signals are analysed either as single trials, or as averaged EMG, or as concatenated EMG (data structure. The aim of this study is to investigate the influence of the data structure on the extracted motor modules. Twelve healthy men walked at their preferred speed on a treadmill while surface EMG signals were recorded for 60 s from 10 lower limb muscles. Motor modules representing relative weightings of synergistic muscle activations were extracted by NMF from 40 step cycles separately (EMGSNG, from averaging 2, 3, 5, 10, 20 and 40 consecutive cycles (EMGAVR, and from the concatenation of the same sets of consecutive cycles (EMGCNC. Five motor modules were sufficient to reconstruct the original EMG datasets (reconstruction quality > 90%, regardless of the type of data structure used. However, EMGCNC was associated with a slightly reduced reconstruction quality with respect to EMGAVR. Most motor modules were similar when extracted from different data structures (similarity > 0.85. However, the quality of the reconstructed 40-step EMGCNC datasets when using the muscle weightings from EMGAVR was low (reconstruction quality ~ 40%. On the other hand, the use of weightings from EMGCNC for reconstructing this long period of locomotion provided higher quality, especially using 20 concatenated steps (reconstruction quality ~ 80%. Although EMGSNG and EMGAVR showed a higher reconstruction quality for short signal intervals, these data structures did not account for step-to-step variability. The results of this study provide practical guidelines on the methodological aspects of synergistic muscle activation extraction from EMG during locomotion.

  19. Influence of pressure-relief insoles developed for loaded gait (backpackers and obese people) on plantar pressure distribution and ground reaction forces.

    Science.gov (United States)

    Peduzzi de Castro, Marcelo; Abreu, Sofia; Pinto, Viviana; Santos, Rubim; Machado, Leandro; Vaz, Mario; Vilas-Boas, João Paulo

    2014-07-01

    The aims of this study were to test the effects of two pressure relief insoles developed for backpackers and obese people on the ground reaction forces (GRF) and plantar pressure peaks during gait; and to compare the GRF and plantar pressures among normal-weight, backpackers, and obese participants. Based on GRF, plantar pressures, and finite element analysis two insoles were manufactured: flat cork-based insole with (i) corkgel in the rearfoot and forefoot (SLS1) and with (ii) poron foam in the great toe and lateral forefoot (SLS2). Gait data were recorded from 21 normal-weight/backpackers and 10 obese participants. The SLS1 did not influence the GRF, but it relieved the pressure peaks for both backpackers and obese participants. In SLS2 the load acceptance GRF peak was lower; however, it did not reduce the plantar pressure peaks. The GRF and plantar pressure gait pattern were different among the normal-weight, backpackers and obese participants.

  20. Modeling and simulation of normal and hemiparetic gait

    Science.gov (United States)

    Luengas, Lely A.; Camargo, Esperanza; Sanchez, Giovanni

    2015-09-01

    Gait is the collective term for the two types of bipedal locomotion, walking and running. This paper is focused on walking. The analysis of human gait is of interest to many different disciplines, including biomechanics, human-movement science, rehabilitation and medicine in general. Here we present a new model that is capable of reproducing the properties of walking, normal and pathological. The aim of this paper is to establish the biomechanical principles that underlie human walking by using Lagrange method. The constraint forces of Rayleigh dissipation function, through which to consider the effect on the tissues in the gait, are included. Depending on the value of the factor present in the Rayleigh dissipation function, both normal and pathological gait can be simulated. First of all, we apply it in the normal gait and then in the permanent hemiparetic gait. Anthropometric data of adult person are used by simulation, and it is possible to use anthropometric data for children but is necessary to consider existing table of anthropometric data. Validation of these models includes simulations of passive dynamic gait that walk on level ground. The dynamic walking approach provides a new perspective of gait analysis, focusing on the kinematics and kinetics of gait. There have been studies and simulations to show normal human gait, but few of them have focused on abnormal, especially hemiparetic gait. Quantitative comparisons of the model predictions with gait measurements show that the model can reproduce the significant characteristics of normal gait.

  1. Time course of changes in the development of gait disorders in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    A. M. Petrov

    2015-01-01

    Full Text Available Objective: to estimate the time course of changes in foot biomechanical function as multiple sclerosis (MS progresses in patients with different degrees of disability compared to a control group. Patients and methods. To estimate the time course of changes in gait disorders in MS, changes in foot biomechanical function were explored in 30 patients with relapsing-remitting MS. Their neurological status was evaluated using the expanded disability status scale (EDSS; pedographic examination was made applying a plantar pressure distribution system; all the patients were examined twice. During the first examination, the patients were divided into two groups: 1 minimal neurological disorders (EDSS scores of < 3.0 and 2 moderate ones (EDSS scores of ≥3.0. Results and discussion. The patients with a mild neurological deficit showed increases in foot load and its lateralization by elevating pressure on the heads of the fourth and fifth metatarsal bones, as evidenced by a significant rise in mean pressure, maximum force, and force-time integral. These changes occurred in the absence of the patients’ complaints of changes in movements. Pedographic examination revealed the changes indicating an enlarged anterior transverse arch and the lower role of the hallux in body weight transfer in the patients with a moderate neurological deficit despite the fact that there were no further visible negative changes in a motor process or progression in neurological deficit. The pedographic examination makes it possible to estimate the degree of gait disorders caused by pyramidal and/or cerebellar lesions and to identify a leading role of this or that functional system in their genesis. Pyramidal dysfunction has impact on the pressurization of the heads of the second and third metatarsal bones. Computed pedography can identify clinically subtle movement changes and estimate the time course of changes in movement disorders in MS patients, including those to evaluate

  2. Human pancreas development.

    Science.gov (United States)

    Jennings, Rachel E; Berry, Andrew A; Strutt, James P; Gerrard, David T; Hanley, Neil A

    2015-09-15

    A wealth of data and comprehensive reviews exist on pancreas development in mammals, primarily mice, and other vertebrates. By contrast, human pancreatic development has been less comprehensively reviewed. Here, we draw together those studies conducted directly in human embryonic and fetal tissue to provide an overview of what is known about human pancreatic development. We discuss the relevance of this work to manufacturing insulin-secreting β-cells from pluripotent stem cells and to different aspects of diabetes, especially permanent neonatal diabetes, and its underlying causes.

  3. Kinematic simulation of human gait with a multi-rigid-body foot model

    Institute of Scientific and Technical Information of China (English)

    YANG Yan; HU Xiaochun; LI Xiaopeng

    2012-01-01

    The paper builds a multi-rigid-body model of human with a 4-rigid-body foot in the 3D CAD software Solidworks, based on human anatomy. By controlling the rotation of the ankle and major joints of human body while walking, the Kinematic simulation was performed in the dynamics simulation software ADAMS. The paper analyzes the simulate results and points out deficiencies in the current work and the direction of research efforts in future.

  4. Patterns of Selection of Human Movements III: Energy Efficiency, Mechanical Advantage, and Walking Gait

    OpenAIRE

    Hagler, Stuart

    2016-01-01

    Human movements are physical processes combining the classical mechanics of the human body moving in space and the biomechanics of the muscles generating the forces acting on the body under sophisticated sensory-motor control. One way to characterize movement performance is through measures of energy efficiency that relate the mechanical energy of the body and metabolic energy expended by the muscles. We expect the practical utility of such measures to be greater when human subjects execute m...

  5. Marketing Human Resource Development.

    Science.gov (United States)

    Frank, Eric, Ed.

    1994-01-01

    Describes three human resource development activities: training, education, and development. Explains marketing from the practitioners's viewpoint in terms of customer orientation; external and internal marketing; and market analysis, research, strategy, and mix. Shows how to design, develop, and implement strategic marketing plans and identify…

  6. Marketing Human Resource Development.

    Science.gov (United States)

    Frank, Eric, Ed.

    1994-01-01

    Describes three human resource development activities: training, education, and development. Explains marketing from the practitioners's viewpoint in terms of customer orientation; external and internal marketing; and market analysis, research, strategy, and mix. Shows how to design, develop, and implement strategic marketing plans and identify…

  7. Research prospect of biomechanics of human loading gait%人体负重行走的生物力学研究及前景

    Institute of Scientific and Technical Information of China (English)

    宋丽华; 陈民盛

    2011-01-01

    BACKGROUND: If human back takes too heavy objects for long time, a series of injury problems would occur. At present, there have been few studies describing the biomechanics of human loading gait. OBJECTIVE: To review the gait parameter changes, reaction force changes, pressure sensors and EMG applications in human loading gait. METHODS: A computer-based retrieval was performed by the first author using the key words "gait, load carriage, backpack" to search the manuscripts published between 2005-2010 describing "weight loading, walking and packpack" in Chinese and English. RESULTS AND CONCLUSION: The current studies regarding loading walking are concluded as follows: all indicators are relatively simple and comprehensive studies are not enough. There are more studies regarding young people and children and there are few studies regarding soldiers who bear loads in marching. There are more studies regarding weight-bearing waling gait, backpack commercial test, and there are few studies describing the biomechanical mechanism of loading-caused injury as well foot pressure change and biomechanical test of shoes. Some studies have conflicting conclusions, resulting in unclear mechanism underlying effects of loading gait on human gait.%背景:人体背部负重行走时若背负重物过重或长时间地承担质量,容易导致一系列的损伤问题,目前有关人体负重行走状态下的生物力学研究较少.目的:综述人体负重行走的步态参数变化、足-地反作用力变化、压力传感器及肌电的应用.方法:由第一作者检索2005/2010 PubMed 数据库及中国知网数据库有关负重、行走、背包方面的文章.英文检索词为"gait,load carriage,backpack",中文检索词为"负重行走、背包、步态".结果与结论:目前对于负重行走的研究:①在研究指标上,各种指标比较单一,综合研究还不够.②在研究对象上,针对青年人群和儿童的相关研究比较多,有关士兵负重行军的

  8. Relationship between balance and gait in children with a risk of developmental coordination disorders and their typically developing peers

    Directory of Open Access Journals (Sweden)

    Adrián Agricola

    2016-12-01

    Full Text Available Background: Developmental coordination disorder (DCD, also known as developmental dyspraxia, is a chronic neurological disorder beginning in childhood, that can affect planning of movements and coordination. Balance dysfunction is one of the most common sensorimotor impairments observed among children with DCD, which may have influence on daily living activities, such as walking. Objective: The aim of this study was to compare spatio-temporal parameters of gait between typically development (TD children and children at risk of DCD, who had also problems with balance and assess the impact of these problems on selected parameters and phases in a gait cycle. Methods: Children (n = 28, Mage = 8.6 ± 1.0 years were part of this study. The results of MABC-2 were used to classify motor competence level in children and also for a determinantion of the balance level. Optojump-Next was used to collect spatio-temporal parameters related to the gait patterns. The IBM SPSS-21 software was used for statistical analysis. Results: The results showed that children at risk of DCD were different from TD children in the step length (p < .001, in the stride length (p < .001, in the stance phase (p = .007, resp. p = .017, in the double support phase (p = .011, resp. p = .032, in the single support phase (p < .001, in the contact phase (p = .021, in the loading phase (p = .047, in the pre-swing phase (p = .002, in the swing phase (p = .015, resp. p = .004 and in the step speed (p < .001. Conclusion: The majority of previous works, which are focused on walking in children at risk of DCD, are based only on results of the evaluation of the complex motor level of children and they ignore the results of the balance level. This can largely distort conclusions, because not all the children with DCD have balance problems. It is necessary to work with the result of single tests, which are closely connected with the task and not only with the total test

  9. Human Rights, Human Needs, Human Development, Human Security

    OpenAIRE

    Gasper, Des

    2009-01-01

    Human rights, human development and human security form increasingly important, partly interconnected, partly competitive and misunderstood ethical and policy discourses. Each tries to humanize a pre-existing and unavoidable major discourse of everyday life, policy and politics; each has emerged within the United Nations world; each relies implicitly on a conceptualisation of human need; each has specific strengths. Yet mutual communication, understanding and co-operation are deficient, espec...

  10. Interactive rhythmic cue facilitates gait relearning in patients with Parkinson's disease.

    Science.gov (United States)

    Uchitomi, Hirotaka; Ota, Leo; Ogawa, Ken-ichiro; Orimo, Satoshi; Miyake, Yoshihiro

    2013-01-01

    To develop a method for cooperative human gait training, we investigated whether interactive rhythmic cues could improve the gait performance of Parkinson's disease patients. The interactive rhythmic cues ware generated based on the mutual entrainment between the patient's gait rhythms and the cue rhythms input to the patient while the patient walked. Previously, we found that the dynamic characteristics of stride interval fluctuation in Parkinson's disease patients were improved to a healthy 1/f fluctuation level using interactive rhythmic cues and that this effect was maintained in the short term. However, two problems remained in our previous study. First, it was not clear whether the key factor underpinning the effect was the mutual entrainment between the gait rhythms and the cue rhythms or the rhythmic cue fluctuation itself. Second, it was not clear whether or not the gait restoration was maintained longitudinally and was relearned after repeating the cue-based gait training. Thus, the present study clarified these issues using 32 patients who participated in a four-day experimental program. The patients were assigned randomly to one of four experimental groups with the following rhythmic cues: (a) interactive rhythmic cue, (b) fixed tempo cue, (c) 1/f fluctuating tempo cue, and (d) no cue. It has been reported that the 1/f fluctuation of stride interval in healthy gait is absent in Parkinson's disease patients. Therefore, we used this dynamic characteristic as an evaluation index to analyze gait relearning in the four different conditions. We observed a significant effect in condition (a) that the gait fluctuation of the patients gradually returned to a healthy 1/f fluctuation level, whereas this did not occur in the other conditions. This result suggests that the mutual entrainment can facilitate gait relearning effectively. It is expected that interactive rhythmic cues will be widely applicable in the fields of rehabilitation and assistive technology.

  11. Improved Gait Classification with Different Smoothing Techniques

    Directory of Open Access Journals (Sweden)

    Hu Ng

    2011-01-01

    Full Text Available Gait as a biometric has received great attention nowadays as it can offer human identification at a distance without any contact with the feature capturing device. This is motivated by the increasing number of synchronised closed-circuit television (CCTV cameras which have been installed in many major towns, in order to monitor and prevent crime by identifying the criminal or suspect. This paper present a method to improve gait classification results by applying smoothing techniques on the extracted gait features. The proposed approach is consisted of three parts: extraction of human gait features from enhanced human silhouette, smoothing process on extracted gait features and classification by fuzzy k-nearest neighbours (KNN. The extracted gait features are height, width, crotch height, step-size of the human silhouette and joint trajectories. To improve the recognition rate, two of these extracted gait features are smoothened before the classification process in order to alleviate the effect of outliers. The proposed approach has been applied on a dataset of nine subjects walking bidirectionally on an indoor pathway with twelve different covariate factors. From the experimental results, it can be concluded that the proposed approach is effective in gait classification.

  12. Dynamic stability and phase resetting during biped gait

    Science.gov (United States)

    Nomura, Taishin; Kawa, Kazuyoshi; Suzuki, Yasuyuki; Nakanishi, Masao; Yamasaki, Taiga

    2009-06-01

    Dynamic stability during periodic biped gait in humans and in a humanoid robot is considered. Here gait systems of human neuromusculoskeletal system and a humanoid are simply modeled while keeping their mechanical properties plausible. We prescribe periodic gait trajectories in terms of joint angles of the models as a function of time. The equations of motion of the models are then constrained by one of the prescribed gait trajectories to obtain types of periodically forced nonlinear dynamical systems. Simulated gait of the models may or may not fall down during gait, since the constraints are made only for joint angles of limbs but not for the motion of the body trunk. The equations of motion can exhibit a limit cycle solution (or an oscillatory solution that can be considered as a limit cycle practically) for each selected gait trajectory, if an initial condition is set appropriately. We analyze the stability of the limit cycle in terms of Poincaré maps and the basin of attraction of the limit cycle in order to examine how the stability depends on the prescribed trajectory. Moreover, the phase resetting of gait rhythm in response to external force perturbation is modeled. Since we always prescribe a gait trajectory in this study, reacting gait trajectories during the phase resetting are also prescribed. We show that an optimally prescribed reacting gait trajectory with an appropriate amount of the phase resetting can increase the gait stability. Neural mechanisms for generation and modulation of the gait trajectories are discussed.

  13. Preferred gait and walk-run transition speeds in ostriches measured using GPS-IMU sensors.

    Science.gov (United States)

    Daley, Monica A; Channon, Anthony J; Nolan, Grant S; Hall, Jade

    2016-10-15

    The ostrich (Struthio camelus) is widely appreciated as a fast and agile bipedal athlete, and is a useful comparative bipedal model for human locomotion. Here, we used GPS-IMU sensors to measure naturally selected gait dynamics of ostriches roaming freely over a wide range of speeds in an open field and developed a quantitative method for distinguishing walking and running using accelerometry. We compared freely selected gait-speed distributions with previous laboratory measures of gait dynamics and energetics. We also measured the walk-run and run-walk transition speeds and compared them with those reported for humans. We found that ostriches prefer to walk remarkably slowly, with a narrow walking speed distribution consistent with minimizing cost of transport (CoT) according to a rigid-legged walking model. The dimensionless speeds of the walk-run and run-walk transitions are slower than those observed in humans. Unlike humans, ostriches transition to a run well below the mechanical limit necessitating an aerial phase, as predicted by a compass-gait walking model. When running, ostriches use a broad speed distribution, consistent with previous observations that ostriches are relatively economical runners and have a flat curve for CoT against speed. In contrast, horses exhibit U-shaped curves for CoT against speed, with a narrow speed range within each gait for minimizing CoT. Overall, the gait dynamics of ostriches moving freely over natural terrain are consistent with previous lab-based measures of locomotion. Nonetheless, ostriches, like humans, exhibit a gait-transition hysteresis that is not explained by steady-state locomotor dynamics and energetics. Further study is required to understand the dynamics of gait transitions.

  14. Trabecular evidence for a human-like gait in Australopithecus africanus.

    Directory of Open Access Journals (Sweden)

    Meir M Barak

    Full Text Available Although the earliest known hominins were apparently upright bipeds, there has been mixed evidence whether particular species of hominins including those in the genus Australopithecus walked with relatively extended hips, knees and ankles like modern humans, or with more flexed lower limb joints like apes when bipedal. Here we demonstrate in chimpanzees and humans a highly predictable and sensitive relationship between the orientation of the ankle joint during loading and the principal orientation of trabecular bone struts in the distal tibia that function to withstand compressive forces within the joint. Analyses of the orientation of these struts using microCT scans in a sample of fossil tibiae from the site of Sterkfontein, of which two are assigned to Australopithecus africanus, indicate that these hominins primarily loaded their ankles in a relatively extended posture like modern humans and unlike chimpanzees. In other respects, however, trabecular properties in Au africanus are distinctive, with values that mostly fall between those of chimpanzees and humans. These results indicate that Au. africanus, like Homo, walked with an efficient, extended lower limb.

  15. Secure and Privacy Enhanced Gait Authentication on Smart Phone

    Directory of Open Access Journals (Sweden)

    Thang Hoang

    2014-01-01

    Full Text Available Smart environments established by the development of mobile technology have brought vast benefits to human being. However, authentication mechanisms on portable smart devices, particularly conventional biometric based approaches, still remain security and privacy concerns. These traditional systems are mostly based on pattern recognition and machine learning algorithms, wherein original biometric templates or extracted features are stored under unconcealed form for performing matching with a new biometric sample in the authentication phase. In this paper, we propose a novel gait based authentication using biometric cryptosystem to enhance the system security and user privacy on the smart phone. Extracted gait features are merely used to biometrically encrypt a cryptographic key which is acted as the authentication factor. Gait signals are acquired by using an inertial sensor named accelerometer in the mobile device and error correcting codes are adopted to deal with the natural variation of gait measurements. We evaluate our proposed system on a dataset consisting of gait samples of 34 volunteers. We achieved the lowest false acceptance rate (FAR and false rejection rate (FRR of 3.92% and 11.76%, respectively, in terms of key length of 50 bits.

  16. Secure and privacy enhanced gait authentication on smart phone.

    Science.gov (United States)

    Hoang, Thang; Choi, Deokjai

    2014-01-01

    Smart environments established by the development of mobile technology have brought vast benefits to human being. However, authentication mechanisms on portable smart devices, particularly conventional biometric based approaches, still remain security and privacy concerns. These traditional systems are mostly based on pattern recognition and machine learning algorithms, wherein original biometric templates or extracted features are stored under unconcealed form for performing matching with a new biometric sample in the authentication phase. In this paper, we propose a novel gait based authentication using biometric cryptosystem to enhance the system security and user privacy on the smart phone. Extracted gait features are merely used to biometrically encrypt a cryptographic key which is acted as the authentication factor. Gait signals are acquired by using an inertial sensor named accelerometer in the mobile device and error correcting codes are adopted to deal with the natural variation of gait measurements. We evaluate our proposed system on a dataset consisting of gait samples of 34 volunteers. We achieved the lowest false acceptance rate (FAR) and false rejection rate (FRR) of 3.92% and 11.76%, respectively, in terms of key length of 50 bits.

  17. The human foot and heel–sole–toe walking strategy: a mechanism enabling an inverted pendular gait with low isometric muscle force?

    Science.gov (United States)

    Usherwood, J. R.; Channon, A. J.; Myatt, J. P.; Rankin, J. W.; Hubel, T. Y.

    2012-01-01

    Mechanically, the most economical gait for slow bipedal locomotion requires walking as an ‘inverted pendulum’, with: I, an impulsive, energy-dissipating leg compression at the beginning of stance; II, a stiff-limbed vault; and III, an impulsive, powering push-off at the end of stance. The characteristic ‘M’-shaped vertical ground reaction forces of walking in humans reflect this impulse–vault–impulse strategy. Humans achieve this gait by dissipating energy during the heel-to-sole transition in early stance, approximately stiff-limbed, flat-footed vaulting over midstance and ankle plantarflexion (powering the toes down) in late stance. Here, we show that the ‘M’-shaped walking ground reaction force profile does not require the plantigrade human foot or heel–sole–toe stance; it is maintained in tip–toe and high-heel walking as well as in ostriches. However, the unusual, stiff, human foot structure—with ground-contacting heel behind ankle and toes in front—enables both mechanically economical inverted pendular walking and physiologically economical muscle loading, by producing extreme changes in mechanical advantage between muscles and ground reaction forces. With a human foot, and heel–sole–toe strategy during stance, the shin muscles that dissipate energy, or calf muscles that power the push-off, need not be loaded at all—largely avoiding the ‘cost of muscle force’—during the passive vaulting phase. PMID:22572024

  18. The human foot and heel-sole-toe walking strategy: a mechanism enabling an inverted pendular gait with low isometric muscle force?

    Science.gov (United States)

    Usherwood, J R; Channon, A J; Myatt, J P; Rankin, J W; Hubel, T Y

    2012-10-07

    Mechanically, the most economical gait for slow bipedal locomotion requires walking as an 'inverted pendulum', with: I, an impulsive, energy-dissipating leg compression at the beginning of stance; II, a stiff-limbed vault; and III, an impulsive, powering push-off at the end of stance. The characteristic 'M'-shaped vertical ground reaction forces of walking in humans reflect this impulse-vault-impulse strategy. Humans achieve this gait by dissipating energy during the heel-to-sole transition in early stance, approximately stiff-limbed, flat-footed vaulting over midstance and ankle plantarflexion (powering the toes down) in late stance. Here, we show that the 'M'-shaped walking ground reaction force profile does not require the plantigrade human foot or heel-sole-toe stance; it is maintained in tip-toe and high-heel walking as well as in ostriches. However, the unusual, stiff, human foot structure--with ground-contacting heel behind ankle and toes in front--enables both mechanically economical inverted pendular walking and physiologically economical muscle loading, by producing extreme changes in mechanical advantage between muscles and ground reaction forces. With a human foot, and heel-sole-toe strategy during stance, the shin muscles that dissipate energy, or calf muscles that power the push-off, need not be loaded at all--largely avoiding the 'cost of muscle force'--during the passive vaulting phase.

  19. Neuroplasticity in post-stroke gait recovery and noninvasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Yi Xu

    2015-01-01

    Full Text Available Gait disorders drastically affect the quality of life of stroke survivors, making post-stroke rehabilitation an important research focus. Noninvasive brain stimulation has potential in facilitating neuroplasticity and improving post-stroke gait impairment. However, a large inter-individual variability in the response to noninvasive brain stimulation interventions has been increasingly recognized. We first review the neurophysiology of human gait and post-stroke neuroplasticity for gait recovery, and then discuss how noninvasive brain stimulation techniques could be utilized to enhance gait recovery. While post-stroke neuroplasticity for gait recovery is characterized by use-dependent plasticity, it evolves over time, is idiosyncratic, and may develop maladaptive elements. Furthermore, noninvasive brain stimulation has limited reach capability and is facilitative-only in nature. Therefore, we recommend that noninvasive brain stimulation be used adjunctively with rehabilitation training and other concurrent neuroplasticity facilitation techniques. Additionally, when noninvasive brain stimulation is applied for the rehabilitation of gait impairment in stroke survivors, stimulation montages should be customized according to the specific types of neuroplasticity found in each individual. This could be done using multiple mapping techniques.

  20. "Healthy" Human Development Indices

    Science.gov (United States)

    Engineer, Merwan; Roy, Nilanjana; Fink, Sari

    2010-01-01

    In the Human Development Index (HDI), life expectancy is the only indicator used in modeling the dimension "a long and healthy life". Whereas life expectancy is a direct measure of quantity of life, it is only an indirect measure of healthy years lived. In this paper we attempt to remedy this omission by introducing into the HDI the morbidity…

  1. "Healthy" Human Development Indices

    Science.gov (United States)

    Engineer, Merwan; Roy, Nilanjana; Fink, Sari

    2010-01-01

    In the Human Development Index (HDI), life expectancy is the only indicator used in modeling the dimension "a long and healthy life". Whereas life expectancy is a direct measure of quantity of life, it is only an indirect measure of healthy years lived. In this paper we attempt to remedy this omission by introducing into the HDI the morbidity…

  2. Isolating gait-related movement artifacts in electroencephalography during human walking

    Science.gov (United States)

    Kline, Julia E.; Huang, Helen J.; Snyder, Kristine L.; Ferris, Daniel P.

    2015-08-01

    Objective. High-density electroencephelography (EEG) can provide an insight into human brain function during real-world activities with walking. Some recent studies have used EEG to characterize brain activity during walking, but the relative contributions of movement artifact and electrocortical activity have been difficult to quantify. We aimed to characterize movement artifact recorded by EEG electrodes at a range of walking speeds and to test the efficacy of artifact removal methods. We also quantified the similarity between movement artifact recorded by EEG electrodes and a head-mounted accelerometer. Approach. We used a novel experimental method to isolate and record movement artifact with EEG electrodes during walking. We blocked electrophysiological signals using a nonconductive layer (silicone swim cap) and simulated an electrically conductive scalp on top of the swim cap using a wig coated with conductive gel. We recorded motion artifact EEG data from nine young human subjects walking on a treadmill at speeds from 0.4 to 1.6 m s-1. We then tested artifact removal methods including moving average and wavelet-based techniques. Main results. Movement artifact recorded with EEG electrodes varied considerably, across speed, subject, and electrode location. The movement artifact measured with EEG electrodes did not correlate well with head acceleration. All of the tested artifact removal methods attenuated low-frequency noise but did not completely remove movement artifact. The spectral power fluctuations in the movement artifact data resembled data from some previously published studies of EEG during walking. Significance. Our results suggest that EEG data recorded during walking likely contains substantial movement artifact that: cannot be explained by head accelerations; varies across speed, subject, and channel; and cannot be removed using traditional signal processing methods. Future studies should focus on more sophisticated methods for removal of EEG

  3. DeepGait: A Learning Deep Convolutional Representation for View-Invariant Gait Recognition Using Joint Bayesian

    Directory of Open Access Journals (Sweden)

    Chao Li

    2017-02-01

    Full Text Available Human gait, as a soft biometric, helps to recognize people through their walking. To further improve the recognition performance, we propose a novel video sensor-based gait representation, DeepGait, using deep convolutional features and introduce Joint Bayesian to model view variance. DeepGait is generated by using a pre-trained “very deep” network “D-Net” (VGG-D without any fine-tuning. For non-view setting, DeepGait outperforms hand-crafted representations (e.g., Gait Energy Image, Frequency-Domain Feature and Gait Flow Image, etc.. Furthermore, for cross-view setting, 256-dimensional DeepGait after PCA significantly outperforms the state-of-the-art methods on the OU-ISR large population (OULP dataset. The OULP dataset, which includes 4007 subjects, makes our result reliable in a statistically reliable way.

  4. Computational intelligence in gait research: a perspective on current applications and future challenges.

    Science.gov (United States)

    Lai, Daniel T H; Begg, Rezaul K; Palaniswami, Marimuthu

    2009-09-01

    Our mobility is an important daily requirement so much so that any disruption to it severely degrades our perceived quality of life. Studies in gait and human movement sciences, therefore, play a significant role in maintaining the well-being of our mobility. Current gait analysis involves numerous interdependent gait parameters that are difficult to adequately interpret due to the large volume of recorded data and lengthy assessment times in gait laboratories. A proposed solution to these problems is computational intelligence (CI), which is an emerging paradigm in biomedical engineering most notably in pathology detection and prosthesis design. The integration of CI technology in gait systems facilitates studies in disorders caused by lower limb defects, cerebral disorders, and aging effects by learning data relationships through a combination of signal processing and machine learning techniques. Learning paradigms, such as supervised learning, unsupervised learning, and fuzzy and evolutionary algorithms, provide advanced modeling capabilities for biomechanical systems that in the past have relied heavily on statistical analysis. CI offers the ability to investigate nonlinear data relationships, enhance data interpretation, design more efficient diagnostic methods, and extrapolate model functionality. These are envisioned to result in more cost-effective, efficient, and easy-to-use systems, which would address global shortages in medical personnel and rising medical costs. This paper surveys current signal processing and CI methodologies followed by gait applications ranging from normal gait studies and disorder detection to artificial gait simulation. We review recent systems focusing on the existing challenges and issues involved in making them successful. We also examine new research in sensor technologies for gait that could be combined with these intelligent systems to develop more effective healthcare solutions.

  5. Influence of ankle plantar flexor muscle architecture and strength on gait in boys with haemophilia in comparison to typically developing children.

    Science.gov (United States)

    Stephensen, D; Drechsler, W I; Scott, O M

    2014-05-01

    Altered gait patterns, muscle weakness and atrophy have been reported in young boys with severe haemophilia when compared to unaffected peers. The aim of this study was to determine whether lateral gastrocnemius muscle size and architecture influenced biomechanical walking patterns of boys with haemophilia and if these relationships differed from age-matched typically developing boys. Biomechanical function of the knee and ankle during level walking, lateral gastrocnemius anatomical cross-sectional area, thickness, width, fascicle length and pennation angle and ankle plantar flexor muscle strength were recorded in 19 typically developing boys aged 7-12 years and 19 age-matched haemophilic boys with a history of ankle joint bleeding. Associations between gait, strength and architecture were compared using correlations of peak gait values. Haemophilic boys walked with significantly larger (P muscles of haemophilic boys were significantly weaker and smaller when compared to typically developing peers. In the typically developing boys there was no apparent association between muscle architecture, strength and walking patterns. In haemophilic boys maximum muscle strength and ACSA normalized torque of the ankle plantar flexors together with the muscle width, thickness, fascicle length and angulation (P Muscle strength deficits of the ankle plantar flexors and changes in muscle size and architecture may underpin the key biomechanical alterations in walking patterns of haemophilic boys with a history of ankle joint bleeding.

  6. Lateral balance control for robotic gait training

    NARCIS (Netherlands)

    Koopman, B.; Meuleman, J.H.; Asseldonk, van E.H.F.; Kooij, van der H.

    2013-01-01

    For the rehabilitation of neurological patients robot-aided gait training is increasingly being used. Lack of balance training in these robotic gait trainers might contribute to the fact that they do not live up to the expectations. Therefore, in this study we developed and evaluated an algorithm to

  7. Basic gait analysis based on continuous wave radar.

    Science.gov (United States)

    Zhang, Jun

    2012-09-01

    A gait analysis method based on continuous wave (CW) radar is proposed in this paper. Time-frequency analysis is used to analyze the radar micro-Doppler echo from walking humans, and the relationships between the time-frequency spectrogram and human biological gait are discussed. The methods for extracting the gait parameters from the spectrogram are studied in depth and experiments on more than twenty subjects have been performed to acquire the radar gait data. The gait parameters are calculated and compared. The gait difference between men and women are presented based on the experimental data and extracted features. Gait analysis based on CW radar will provide a new method for clinical diagnosis and therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. [Three-Dimensional Ultrasonic Gait Analysis in Schizophrenic Patients

    Science.gov (United States)

    Putzhammer, Albert; Heindl, Bernhard; Müller, Jürgen; Broll, Karin; Pfeiff, Liane; Perfahl, Maria; Hess, Linda; Koch, Horst

    2003-05-01

    Schizophrenic disorders as well as neuroleptic treatment can affect locomotion. The study assessed the influence of neuroleptic treatment on human gait via ultrasonic topometric gait analysis. In a control sample the test system proved high test-retest-reliability. Spatial and temporal gait parameters were assessed in schizophrenic patients without neuroleptic treatment (n = 12) and under treatment with conventional neuroleptics (n = 14) and re-assessed after treatment change to the atypical neuroleptic olanzapine in a repeated measures design. After switch from conventional neuroleptics to olanzapine patients showed an increase of gait velocity (p step length (p gait analysis.

  9. Control strategies for effective robot assisted gait rehabilitation: the state of art and future prospects.

    Science.gov (United States)

    Cao, Jinghui; Xie, Sheng Quan; Das, Raj; Zhu, Guo L

    2014-12-01

    A large number of gait rehabilitation robots, together with a variety of control strategies, have been developed and evaluated during the last decade. Initially, control strategies applied to rehabilitation robots were adapted from those applied to traditional industrial robots. However, these strategies cannot optimise effectiveness of gait rehabilitation. As a result, researchers have been investigating control strategies tailored for the needs of rehabilitation. Among these control strategies, assisted-as-needed (AAN) control is one of the most popular research topics in this field. AAN training strategies have gained the theoretical and practical evidence based backup from motor learning principles and clinical studies. Various approaches to AAN training have been proposed and investigated by research groups all around the world. This article presents a review on control algorithms of gait rehabilitation robots to summarise related knowledge and investigate potential trends of development. There are existing review papers on control strategies of rehabilitation robots. The review by Marchal-Crespo and Reinkensmeyer (2009) had a broad cover of control strategies of all kinds of rehabilitation robots. Hussain et al. (2011) had specifically focused on treadmill gait training robots and covered a limited number of control implementations on them. This review article encompasses more detailed information on control strategies for robot assisted gait rehabilitation, but is not limited to treadmill based training. It also investigates the potential to further develop assist-as-needed gait training based on assessments of patients' ability. In this paper, control strategies are generally divided into the trajectory tracking control and AAN control. The review covers these two basic categories, as well as other control algorithm and technologies derived from them, such as biofeedback control. Assessments on human gait ability are also included to investigate how to

  10. A Global Gait Asymmetry Index.

    Science.gov (United States)

    Cabral, Silvia; Resende, Renan A; Clansey, Adam C; Deluzio, Kevin J; Selbie, W Scott; Veloso, António P

    2016-04-01

    High levels of gait asymmetry are associated with many pathologies. Our long-term goal is to improve gait symmetry through real-time biofeedback of a symmetry index. Symmetry is often reported as a single metric or a collective signature of multiple discrete measures. While this is useful for assessment, incorporating multiple feedback metrics presents too much information for most subjects to use as visual feedback for gait retraining. The aim of this article was to develop a global gait asymmetry (GGA) score that could be used as a biofeedback metric for gait retraining and to test the effectiveness of the GGA for classifying artificially-induced asymmetry. Eighteen participants (11 males; age 26.9 y [SD = 7.7]; height 1.8 m [SD = 0.1]; body mass 72.7 kg [SD = 8.9]) walked on a treadmill in 3 symmetry conditions, induced by wearing custom-made sandals: a symmetric condition (identical sandals) and 2 asymmetric conditions (different sandals). The GGA score was calculated, based on several joint angles, and compared between conditions. Significant differences were found among all conditions (P asymmetry, and may be useful for rehabilitation and assessment.

  11. Explosive resistance training increases rate of force development in ankle dorsiflexors and gait function in adults with cerebral palsy

    DEFF Research Database (Denmark)

    Kirk, Henrik; Geertsen, Svend Sparre; Lorentzen, Jakob

    2016-01-01

    Alterations in passive elastic properties of muscles and reduced ability to quickly generate muscle force contribute to impaired gait function in adults with cerebral palsy (CP). Here, we investigated if 12 weeks of progressive and explosive resistance training (PRT) increases rate of force...... dorsiflexion, plantarflexion, leg press, hamstring curls, abdominal curls and back extension 3 days/week for 12 weeks, with 3 sets per exercise and progressing during the training period from 12-6 RM. RFDdf, 3-D gait analysis, functional performance and ankle joint passive- and reflex-mediated muscle stiffness...

  12. A passive dynamic walking robot that has a deterministic nonlinear gait.

    Science.gov (United States)

    Kurz, Max J; Judkins, Timothy N; Arellano, Chris; Scott-Pandorf, Melissa

    2008-01-01

    There is a growing body of evidence that the step-to-step variations present in human walking are related to the biomechanics of the locomotive system. However, we still have limited understanding of what biomechanical variables influence the observed nonlinear gait variations. It is necessary to develop reliable models that closely resemble the nonlinear gait dynamics in order to advance our knowledge in this scientific field. Previously, Goswami et al. [1998. A study of the passive gait of a compass-like biped robot: symmetry and chaos. International Journal of Robotic Research 17(12)] and Garcia et al. [1998. The simplest walking model: stability, complexity, and scaling. Journal of Biomechanical Engineering 120(2), 281-288] have demonstrated that passive dynamic walking computer models can exhibit a cascade of bifurcations in their gait pattern that lead to a deterministic nonlinear gait pattern. These computer models suggest that the intrinsic mechanical dynamics may be at least partially responsible for the deterministic nonlinear gait pattern; however, this has not been shown for a physical walking robot. Here we use the largest Laypunov exponent and a surrogation analysis method to confirm and extend Garcia et al.'s and Goswami et al.'s original results to a physical passive dynamic walking robot. Experimental outcomes from our walking robot further support the notion that the deterministic nonlinear step-to-step variations present in gait may be partly governed by the intrinsic mechanical dynamics of the locomotive system. Furthermore the nonlinear analysis techniques used in this investigation offer novel methods for quantifying the nature of the step-to-step variations found in human and robotic gait.

  13. Gait disorder rehabilitation using vision and non-vision based sensors: a systematic review.

    Science.gov (United States)

    Ali, Asraf; Sundaraj, Kenneth; Ahmad, Badlishah; Ahamed, Nizam; Islam, Anamul

    2012-08-01

    Even though the amount of rehabilitation guidelines has never been greater, uncertainty continues to arise regarding the efficiency and effectiveness of the rehabilitation of gait disorders. This question has been hindered by the lack of information on accurate measurements of gait disorders. Thus, this article reviews the rehabilitation systems for gait disorder using vision and non-vision sensor technologies, as well as the combination of these. All papers published in the English language between 1990 and June, 2012 that had the phrases "gait disorder", "rehabilitation", "vision sensor", or "non vision sensor" in the title, abstract, or keywords were identified from the SpringerLink, ELSEVIER, PubMed, and IEEE databases. Some synonyms of these phrases and the logical words "and", "or", and "not" were also used in the article searching procedure. Out of the 91 published articles found, this review identified 84 articles that described the rehabilitation of gait disorders using different types of sensor technologies. This literature set presented strong evidence for the development of rehabilitation systems using a markerless vision-based sensor technology. We therefore believe that the information contained in this review paper will assist the progress of the development of rehabilitation systems for human gait disorders.

  14. Compliant bipedal model with the center of pressure excursion associated with oscillatory behavior of the center of mass reproduces the human gait dynamics.

    Science.gov (United States)

    Jung, Chang Keun; Park, Sukyung

    2014-01-03

    Although the compliant bipedal model could reproduce qualitative ground reaction force (GRF) of human walking, the model with a fixed pivot showed overestimations in stance leg rotation and the ratio of horizontal to vertical GRF. The human walking data showed a continuous forward progression of the center of pressure (CoP) during the stance phase and the suspension of the CoP near the forefoot before the onset of step transition. To better describe human gait dynamics with a minimal expense of model complexity, we proposed a compliant bipedal model with the accelerated pivot which associated the CoP excursion with the oscillatory behavior of the center of mass (CoM) with the existing simulation parameter and leg stiffness. Owing to the pivot acceleration defined to emulate human CoP profile, the arrival of the CoP at the limit of the stance foot over the single stance duration initiated the step-to-step transition. The proposed model showed an improved match of walking data. As the forward motion of CoM during single stance was partly accounted by forward pivot translation, the previously overestimated rotation of the stance leg was reduced and the corresponding horizontal GRF became closer to human data. The walking solutions of the model ranged over higher speed ranges (~1.7 m/s) than those of the fixed pivoted compliant bipedal model (~1.5m/s) and exhibited other gait parameters, such as touchdown angle, step length and step frequency, comparable to the experimental observations. The good matches between the model and experimental GRF data imply that the continuous pivot acceleration associated with CoM oscillatory behavior could serve as a useful framework of bipedal model.

  15. Failure of normal development of central drive to ankle dorsiflexors relates to gait deficits in children with cerebral palsy

    DEFF Research Database (Denmark)

    Petersen, Tue Hvass; Farmer, Simon F; Kliim-Due, Mette;

    2013-01-01

    Neurophysiological markers of the central control of gait in children with cerebral palsy (CP) are used to assess developmental response to therapy. Here we measure the central common drive to a leg muscle in children with CP. We recorded EMGs from the Tibialis Anterior (TA) muscle of 40 children...

  16. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    Directory of Open Access Journals (Sweden)

    Kristel Knaepen

    Full Text Available In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support. Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  17. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    Science.gov (United States)

    Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain

    2015-01-01

    In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  18. Technological advances in interventions to enhance poststroke gait.

    Science.gov (United States)

    Sheffler, Lynne R; Chae, John

    2013-05-01

    Neurologic rehabilitation interventions may be either therapeutic or compensatory. Included in this article are lower extremity functional electrical stimulation, body weight-supported treadmill training, and lower extremity robotic-assisted gait training. These poststroke gait training therapies are predicated on activity-dependent neuroplasticity. All three interventions have been trialed extensively in research and clinical settings to show a positive effect on various gait parameters and measures of walking performance. This article provides an overview of evidence-based research that supports the efficacy of these three interventions to improve gait, as well as providing perspective on future developments to enhance poststroke gait in neurologic rehabilitation.

  19. How useful is satellite positioning system (GPS to track gait parameters? A review

    Directory of Open Access Journals (Sweden)

    Schutz Yves

    2005-09-01

    Full Text Available Abstract Over the last century, numerous techniques have been developed to analyze the movement of humans while walking and running. The combined use of kinematics and kinetics methods, mainly based on high speed video analysis and forceplate, have permitted a comprehensive description of locomotion process in terms of energetics and biomechanics. While the different phases of a single gait cycle are well understood, there is an increasing interest to know how the neuro-motor system controls gait form stride to stride. Indeed, it was observed that neurodegenerative diseases and aging could impact gait stability and gait parameters steadiness. From both clinical and fundamental research perspectives, there is therefore a need to develop techniques to accurately track gait parameters stride-by-stride over a long period with minimal constraints to patients. In this context, high accuracy satellite positioning can provide an alternative tool to monitor outdoor walking. Indeed, the high-end GPS receivers provide centimeter accuracy positioning with 5–20 Hz sampling rate: this allows the stride-by-stride assessment of a number of basic gait parameters – such as walking speed, step length and step frequency – that can be tracked over several thousand consecutive strides in free-living conditions. Furthermore, long-range correlations and fractal-like pattern was observed in those time series. As compared to other classical methods, GPS seems a promising technology in the field of gait variability analysis. However, relative high complexity and expensiveness – combined with a usability which requires further improvement – remain obstacles to the full development of the GPS technology in human applications.

  20. How useful is satellite positioning system (GPS) to track gait parameters? A review.

    Science.gov (United States)

    Terrier, Philippe; Schutz, Yves

    2005-09-02

    Over the last century, numerous techniques have been developed to analyze the movement of humans while walking and running. The combined use of kinematics and kinetics methods, mainly based on high speed video analysis and forceplate, have permitted a comprehensive description of locomotion process in terms of energetics and biomechanics. While the different phases of a single gait cycle are well understood, there is an increasing interest to know how the neuro-motor system controls gait form stride to stride. Indeed, it was observed that neurodegenerative diseases and aging could impact gait stability and gait parameters steadiness. From both clinical and fundamental research perspectives, there is therefore a need to develop techniques to accurately track gait parameters stride-by-stride over a long period with minimal constraints to patients. In this context, high accuracy satellite positioning can provide an alternative tool to monitor outdoor walking. Indeed, the high-end GPS receivers provide centimeter accuracy positioning with 5-20 Hz sampling rate: this allows the stride-by-stride assessment of a number of basic gait parameters--such as walking speed, step length and step frequency--that can be tracked over several thousand consecutive strides in free-living conditions. Furthermore, long-range correlations and fractal-like pattern was observed in those time series. As compared to other classical methods, GPS seems a promising technology in the field of gait variability analysis. However, relative high complexity and expensiveness--combined with a usability which requires further improvement--remain obstacles to the full development of the GPS technology in human applications.

  1. The use of artificial intelligence in the analysis of sports performance: a review of applications in human gait analysis and future directions for sports biomechanics.

    Science.gov (United States)

    Lapham, A C; Bartlett, R M

    1995-06-01

    Computers have played an important supporting role in the development of experimental and theoretical sports biomechanics. The role of the computer now extends from data capture and data processing through to mathematical and statistical modelling and simulation and optimization. This paper seeks to demonstrate that elevation of the role of the computer to involvement in the decision-making process, through the use of artificial intelligence techniques, would be a potentially rewarding future direction for the discipline. In the absence of significant previous work in this area, this paper reviews experiences in a parallel field of medical informatics, namely gait analysis. Research into the application of expert systems and neural networks to gait analysis is reviewed, observations made and comparisons drawn with the biomechanical analysis of sports performance. Brief explanations of the artificial intelligence techniques discussed in the paper are provided. The paper concludes that the creation of an expert system for a specific well-defined sports technique would represent a significant advance in the development of sports biomechanics.

  2. Spatio-temporal parameters and lower-limb kinematics of turning gait in typically developing children.

    Science.gov (United States)

    Dixon, Philippe C; Stebbins, Julie; Theologis, Tim; Zavatsky, Amy B

    2013-09-01

    Turning is a requirement for most locomotor tasks; however, knowledge of the biomechanical requirements of successful turning is limited. Therefore, the aims of this study were to investigate the spatio-temporal and lower-limb kinematics of 90° turning. Seventeen typically developing children, fitted with full body and multi-segment foot marker sets, having performed both step (outside leg) and spin (inside leg) turning strategies at self-selected velocity, were included in the study. Three turning phases were identified: approach, turn, and depart. Stride velocity and stride length were reduced for both turning strategies for all turning phases (pphases (pgait. Many spatio-temporal differences between turn conditions and phases were also found (pgait disorders in pathological populations, such as children with cerebral palsy.

  3. Is walking a random walk? Evidence for long-range correlations in stride interval of human gait

    Science.gov (United States)

    Hausdorff, Jeffrey M.; Peng, C.-K.; Ladin, Zvi; Wei, Jeanne Y.; Goldberger, Ary L.

    1995-01-01

    Complex fluctuation of unknown origin appear in the normal gait pattern. These fluctuations might be described as being (1) uncorrelated white noise, (2) short-range correlations, or (3) long-range correlations with power-law scaling. To test these possibilities, the stride interval of 10 healthy young men was measured as they walked for 9 min at their usual rate. From these time series we calculated scaling indexes by using a modified random walk analysis and power spectral analysis. Both indexes indicated the presence of long-range self-similar correlations extending over hundreds of steps; the stride interval at any time depended on the stride interval at remote previous times, and this dependence decayed in a scale-free (fractallike) power-law fashion. These scaling indexes were significantly different from those obtained after random shuffling of the original time series, indicating the importance of the sequential ordering of the stride interval. We demonstrate that conventional models of gait generation fail to reproduce the observed scaling behavior and introduce a new type of central pattern generator model that sucessfully accounts for the experimentally observed long-range correlations.

  4. Human Rights, Human Needs, Human Development, Human Security - Relationships between four international human discourses.

    NARCIS (Netherlands)

    D.R. Gasper (Des)

    2007-01-01

    markdownabstractAbstract: Human rights, human development and human security form increasingly important, partly interconnected, partly competitive and misunderstood ethical and policy discourses. Each tries to humanize a pre-existing and unavoidable major discourse of everyday life, policy and

  5. Gait analysis: clinical facts.

    Science.gov (United States)

    Baker, Richard; Esquenazi, Alberto; Benedetti, Maria G; Desloovere, Kaat

    2016-08-01

    Gait analysis is a well-established tool for the quantitative assessment of gait disturbances providing functional diagnosis, assessment for treatment planning, and monitoring of disease progress. There is a large volume of literature on the research use of gait analysis, but evidence on its clinical routine use supports a favorable cost-benefit ratio in a limited number of conditions. Initially gait analysis was introduced to clinical practice to improve the management of children with cerebral palsy. However, there is good evidence to extend its use to patients with various upper motor neuron diseases, and to lower limb amputation. Thereby, the methodology for properly conducting and interpreting the exam is of paramount relevance. Appropriateness of gait analysis prescription and reliability of data obtained are required in the clinical environment. This paper provides an overview on guidelines for managing a clinical gait analysis service and on the principal clinical domains of its application: cerebral palsy, stroke, traumatic brain injury and lower limb amputation.

  6. Gait variability: methods, modeling and meaning

    Directory of Open Access Journals (Sweden)

    Hausdorff Jeffrey M

    2005-07-01

    Full Text Available Abstract The study of gait variability, the stride-to-stride fluctuations in walking, offers a complementary way of quantifying locomotion and its changes with aging and disease as well as a means of monitoring the effects of therapeutic interventions and rehabilitation. Previous work has suggested that measures of gait variability may be more closely related to falls, a serious consequence of many gait disorders, than are measures based on the mean values of other walking parameters. The Current JNER series presents nine reports on the results of recent investigations into gait variability. One novel method for collecting unconstrained, ambulatory data is reviewed, and a primer on analysis methods is presented along with a heuristic approach to summarizing variability measures. In addition, the first studies of gait variability in animal models of neurodegenerative disease are described, as is a mathematical model of human walking that characterizes certain complex (multifractal features of the motor control's pattern generator. Another investigation demonstrates that, whereas both healthy older controls and patients with a higher-level gait disorder walk more slowly in reduced lighting, only the latter's stride variability increases. Studies of the effects of dual tasks suggest that the regulation of the stride-to-stride fluctuations in stride width and stride time may be influenced by attention loading and may require cognitive input. Finally, a report of gait variability in over 500 subjects, probably the largest study of this kind, suggests how step width variability may relate to fall risk. Together, these studies provide new insights into the factors that regulate the stride-to-stride fluctuations in walking and pave the way for expanded research into the control of gait and the practical application of measures of gait variability in the clinical setting.

  7. Developing human technology curriculum

    Directory of Open Access Journals (Sweden)

    Teija Vainio

    2012-10-01

    Full Text Available During the past ten years expertise in human-computer interaction has shifted from humans interacting with desktop computers to individual human beings or groups of human beings interacting with embedded or mobile technology. Thus, humans are not only interacting with computers but with technology. Obviously, this shift should be reflected in how we educate human-technology interaction (HTI experts today and in the future. We tackle this educational challenge first by analysing current Master’s-level education in collaboration with two universities and second, discussing postgraduate education in the international context. As a result, we identified core studies that should be included in the HTI curriculum. Furthermore, we discuss some practical challenges and new directions for international HTI education.

  8. Advanced Prosthetic Gait Training Tool

    Science.gov (United States)

    2015-12-01

    distance up spine near T7 spinous process Spine_Rigid Intersection of spine and the point between the shoulder joints LowNeck Base of the neck near C7...spinous process UpperNeck Top of the neck near C1 spinous process LCLAV, RCLAV Approximately one-fourth distance between manubrium and acromion...capture data between the human subjects and the Santos biomechanical model that may affect the way clinicians score the gait data when using Santos

  9. Zernike moments features for shape-based gait recognition

    Science.gov (United States)

    Qin, Huanfeng; Qin, Lan; Liu, Jun; Chao, Jiang

    2011-12-01

    The paper proposes a new spatio-temporal gait representation, called cycles gait Zernike moments (CGZM), to characterize human walking properties for individual recognition. Firstly, Zernike moments as shape descriptors are used to characterize gait silhouette shape. Secondly, we generate CGZM from Zernike moments of silhouette sequences. Finally, the phase and magnitude coefficientsof CGZM are utilized to perform classification by the modified Hausdorff distance (MHD) classifier. Experimental results show that the proposed approach have an encouraging recognition performance.

  10. Detecting Gait Phases from RGB-D Images Based on Hidden Markov Model

    OpenAIRE

    Heravi, Hamed; Ebrahimi, Afshin; Olyaee, Ehsan

    2016-01-01

    Gait contains important information about the status of the human body and physiological signs. In many medical applications, it is important to monitor and accurately analyze the gait of the patient. Since walking shows the reproducibility signs in several phases, separating these phases can be used for the gait analysis. In this study, a method based on image processing for extracting phases of human gait from RGB-Depth images is presented. The sequence of depth images from the front view h...

  11. A Human Recognition Scheme Based on Mean Gait Energy Image%一种基于平均步态能量图的身份识别算法

    Institute of Scientific and Technical Information of China (English)

    张前进; 陈祥涛; 卜文绍

    2011-01-01

    提出一种基于步态能量图(GEI)的嵌入式隐马尔可夫模型(e-HMM)身份识别方法.首先通过预处理提取出运动人体的侧面轮廓,根据步态下肢的摆动距离统计出步态周期,得到平均步态能量图.对能量图的各区域进行分析,利用二维离散余弦变换(2D-DCT)将能量图观测块转化为观测向量,实现嵌入式隐马尔可夫模型的训练和身份识别.最后在USF和CASIA步态数据库上对所提出的算法进行实验.实验表明该方法具有较好的识别性能,是一种有效的步态识别方法.%An embedded hidden Markov model(e-HMM) human recognition scheme based on gait energy image(GEI) is proposed. First a preproeess technique is used to segment the moving silhouette from the walking figure. The algorithm obtains the gait quasi-periodicity through analyzing the width information of the lower limbs' gait contour edge, and the mean GEI is calculated from gait periodic. It makes use of an optimized set of observation vectors obtained from the two dimensional discrete cosine transform(2D-DCT) coefficients of the mean GEI regions. The e-HMM is trained and used for the gait recognition. The proposed algorithm is evaluated on USF and CASIA Gait Database. The experimental result shows that the proposed approach is valid and has encouraging recognition performance.

  12. Gait analysis in a mouse model resembling Leigh disease.

    Science.gov (United States)

    de Haas, Ria; Russel, Frans G; Smeitink, Jan A

    2016-01-01

    Leigh disease (LD) is one of the clinical phenotypes of mitochondrial OXPHOS disorders and also known as sub-acute necrotizing encephalomyelopathy. The disease has an incidence of 1 in 77,000 live births. Symptoms typically begin early in life and prognosis for LD patients is poor. Currently, no clinically effective treatments are available. Suitable animal and cellular models are necessary for the understanding of the neuropathology and the development of successful new therapeutic strategies. In this study we used the Ndufs4 knockout (Ndufs4(-/-)) mouse, a model of mitochondrial complex I deficiency. Ndusf4(-/-) mice exhibit progressive neurodegeneration, which closely resemble the human LD phenotype. When dissecting behavioral abnormalities in animal models it is of great importance to apply translational tools that are clinically relevant. To distinguish gait abnormalities in patients, simple walking tests can be assessed, but in animals this is not easy. This study is the first to demonstrate automated CatWalk gait analysis in the Ndufs4(-/-) mouse model. Marked differences were noted between Ndufs4(-/-) and control mice in dynamic, static, coordination and support parameters. Variation of walking speed was significantly increased in Ndufs4(-/-) mice, suggesting hampered and uncoordinated gait. Furthermore, decreased regularity index, increased base of support and changes in support were noted in the Ndufs4(-/-) mice. Here, we report the ability of the CatWalk system to sensitively assess gait abnormalities in Ndufs4(-/-) mice. This objective gait analysis can be of great value for intervention and drug efficacy studies in animal models for mitochondrial disease.

  13. Developing Human Resources through Actualizing Human Potential

    Science.gov (United States)

    Clarken, Rodney H.

    2012-01-01

    The key to human resource development is in actualizing individual and collective thinking, feeling and choosing potentials related to our minds, hearts and wills respectively. These capacities and faculties must be balanced and regulated according to the standards of truth, love and justice for individual, community and institutional development,…

  14. Characterization of gait pattern by 3D angular accelerations in hemiparetic and healthy gait.

    Science.gov (United States)

    Rueterbories, Jan; Spaich, Erika G; Andersen, Ole K

    2013-02-01

    Characterization of gait pattern is of interest for clinical gait assessment. Past developments of ambulatory measurement systems have still limitations for daily usage in the clinical environment. This study investigated the potential of 3D angular accelerations of foot, shank, and thigh to characterize gait events and phases of ten healthy and ten hemiparetic subjects. The key feature of the system was the use of angular accelerations obtained by differential measurement. Further, the effect of sensor position and walking cadence on the signal was investigated. We found that gait phases are characterized as modulated amplitudes of angular accelerations of foot, shank, and thigh. Increasing the gait cadence from 70 steps/min to 100 steps/min caused an amplitude increase of the magnitude of the vector, summing all 3D angular accelerations on the sensor position (pgait showed a lower mean of the magnitude of the vector during the loading response in the hemiparetic gait (pgait were observed. A comparison of the tangential acceleration component in the frontal plane showed no statistically significant difference between healthy and hemiparetic gait. Further, no statistically significant difference between the tangential components was found for both groups. This method demonstrated promising results for a possible use for gait assessment.

  15. Changes in Post-Stroke Gait Biomechanics Induced by One Session of Gait Training.

    Science.gov (United States)

    Kesar, T M; Reisman, D S; Higginson, J S; Awad, L N; Binder-Macleod, S A

    2015-01-01

    The objective of this study was to determine whether one session of targeted locomotor training can induce measurable improvements in the post-stroke gait impairments. Thirteen individuals with chronic post-stroke hemiparesis participated in one locomotor training session combining fast treadmill training and functional electrical stimulation (FES) of ankle dorsi- and plantar-flexor muscles. Three dimensional gait analysis was performed to assess within-session changes (after versus before training) in gait biomechanics at the subject's self-selected speed without FES. Our results showed that one session of locomotor training resulted in significant improvements in peak anterior ground reaction force (AGRF) and AGRF integral for the paretic leg. Additionally, individual subject data showed that a majority of study participants demonstrated improvements in the primary outcome variables following the training session. This study demonstrates, for the first time, that a single session of intense, targeted post-stroke locomotor retraining can induce significant improvements in post-stroke gait biomechanics. We posit that the within-session changes induced by a single exposure to gait training can be used to predict whether an individual is responsive to a particular gait intervention, and aid with the development of individualized gait retraining strategies. Future studies are needed to determine whether these single-session improvements in biomechanics are accompanied by short-term changes in corticospinal excitability, and whether single-session responses can serve as predictors for the longer-term effects of the intervention with other targeted gait interventions.

  16. Impact of leg length and body mass on the stride length and gait speed of infants with normal motor development: A longitudinal study

    Directory of Open Access Journals (Sweden)

    Emmanuelle B. Rodriguez

    2013-04-01

    Full Text Available BACKGROUND: Gait acquisition is supported by changes in the neuromusculoskeletal system of the child. Changes in the dimensions of the body structures resulting from the growth of the child partly explain gait improvement in the first year of life. OBJECTIVES: To evaluate whether changes in body mass and leg length modulate the effect of independent gait practice (experience on gait speed and stride length. METHOD: Thirty-two infants with normal development were monitored monthly from the acquisition of independent gait until six months post-acquisition. Longitudinal evaluations included measurements of the body mass and leg length of each child. Temporospatial variables of gait (speed and stride length were documented using the Qualisys Pro-reflex(r system. The data were analyzed using multilevel regression models, with a significance level of α=0.05. RESULTS: An effect of the practice time on speed (p CONTEXTUALIZAÇÃO: A aquisição da marcha é suportada por mudanças no sistema neuromusculoesquelético da criança. a literatura aponta que modificações nas dimensões das estruturas corporais resultantes do crescimento da criança explicam, em parte, o aprimoramento da marcha no primeiro ano de vida. OBJETIVOS: Avaliar se mudanças na massa corporal e comprimento da perna modulam o efeito da prática da marcha independente nos seguintes parâmetros da marcha: velocidade e comprimento da passada. MÉTODO: Trinta e dois lactentes com desenvolvimento normal foram acompanhados mensalmente a partir da aquisição da marcha independente até seis meses pós-aquisição. Avaliações longitudinais incluíram mensurações da massa corporal e do comprimento da perna de cada criança. As variáveis temporoespaciais da marcha (velocidade e comprimento da passada foram documentadas utilizando-se o sistema Qualisys Pro-Reflex (r . Os dados foram analisados por modelos de regressão multinível, com nível de significância α=0,05. RESULTADOS

  17. Animal Gaits and Symmetry

    Science.gov (United States)

    Golubitsky, Martin

    2012-04-01

    Many gaits of four-legged animals are described by symmetry. For example, when a horse paces it moves both left legs in unison and then both right legs and so on. The motion is described by two symmetries: Interchange front and back legs, and swap left and right legs with a half-period phase shift. Biologists postulate the existence of a central pattern generator (CPG) in the neuronal system that sends periodic signals to the legs. CPGs can be thought of as electrical circuits that produce periodic signals and can be modeled by systems with symmetry. In this lecture we discuss animal gaits; use gait symmetries to construct a simplest CPG architecture that naturally produces quadrupedal gait rhythms; and make several testable predictions about gaits.

  18. How Crouch Gait Can Dynamically Induce Stiff-Knee Gait

    NARCIS (Netherlands)

    Van der Krogt, M.M.; Bregman, D.J.J.; Wisse, M.; Doorenbosch, C.A.M.; Harlaar, J.; Collins, S.H.

    Children with cerebral palsy frequently experience foot dragging and tripping during walking due to a lack of adequate knee flexion in swing (stiff-knee gait). Stiff-knee gait is often accompanied by an overly flexed knee during stance (crouch gait). Studies on stiff-knee gait have mostly focused on

  19. How Crouch Gait Can Dynamically Induce Stiff-Knee Gait

    NARCIS (Netherlands)

    Van der Krogt, M.M.; Bregman, D.J.J.; Wisse, M.; Doorenbosch, C.A.M.; Harlaar, J.; Collins, S.H.

    Children with cerebral palsy frequently experience foot dragging and tripping during walking due to a lack of adequate knee flexion in swing (stiff-knee gait). Stiff-knee gait is often accompanied by an overly flexed knee during stance (crouch gait). Studies on stiff-knee gait have mostly focused on

  20. Stability in skipping gaits

    Science.gov (United States)

    Andrada, Emanuel; Müller, Roy; Blickhan, Reinhard

    2016-11-01

    As an alternative to walking and running, humans are able to skip. However, adult humans avoid it. This fact seems to be related to the higher energetic costs associated with skipping. Still, children, some birds, lemurs and lizards use skipping gaits during daily locomotion. We combined experimental data on humans with numerical simulations to test whether stability and robustness motivate this choice. Parameters for modelling were obtained from 10 male subjects. They locomoted using unilateral skipping along a 12 m runway. We used a bipedal spring loaded inverted pendulum to model and to describe the dynamics of skipping. The subjects displayed higher peak ground reaction forces and leg stiffness in the first landing leg (trailing leg) compared to the second landing leg (leading leg). In numerical simulations, we found that skipping is stable across an amazing speed range from skipping on the spot to fast running speeds. Higher leg stiffness in the trailing leg permits longer strides at same system energy. However, this strategy is at the same time less robust to sudden drop perturbations than skipping with a stiffer leading leg. A slightly higher stiffness in the leading leg is most robust, but might be costlier.

  1. Toward understanding the limits of gait recognition

    Science.gov (United States)

    Liu, Zongyi; Malave, Laura; Osuntogun, Adebola; Sudhakar, Preksha; Sarkar, Sudeep

    2004-08-01

    Most state of the art video-based gait recognition algorithms start from binary silhouettes. These silhouettes, defined as foreground regions, are usually detected by background subtraction methods, which results in holes or missed parts due to similarity of foreground and background color, and boundary errors due to video compression artifacts. Errors in low-level representation make it hard to understand the effect of certain conditions, such as surface and time, on gait recognition. In this paper, we present a part-level, manual silhouette database consisting of 71 subjects, over one gait cycle, with differences in surface, shoe-type, carrying condition, and time. We have a total of about 11,000 manual silhouette frames. The purpose of this manual silhouette database is twofold. First, this is a resource that we make available at http://www.GaitChallenge.org for use by the gait community to test and design better silhouette detection algorithms. These silhouettes can also be used to learn gait dynamics. Second, using the baseline gait recognition algorithm, which was specified along with the HumanID Gait Challenge problem, we show that performance from manual silhouettes is similar and only sometimes better than that from automated silhouettes detected by statistical background subtraction. Low performances when comparing sequences with differences in walking surfaces and time-variation are not fully explained by silhouette quality. We also study the recognition power in each body part and show that recognition based on just the legs is equal to that from the whole silhouette. There is also significant recognition power in the head and torso shape.

  2. Gait analysis in a pre- and post-ischemic stroke biomedical pig model.

    Science.gov (United States)

    Duberstein, Kylee Jo; Platt, Simon R; Holmes, Shannon P; Dove, C Robert; Howerth, Elizabeth W; Kent, Marc; Stice, Steven L; Hill, William D; Hess, David C; West, Franklin D

    2014-02-10

    Severity of neural injury including stroke in human patients, as well as recovery from injury, can be assessed through changes in gait patterns of affected individuals. Similar quantification of motor function deficits has been measured in rodent animal models of such injuries. However, due to differences in fundamental structure of human and rodent brains, there is a need to develop a large animal model to facilitate treatment development for neurological conditions. Porcine brain structure is similar to that of humans, and therefore the pig may make a more clinically relevant animal model. The current study was undertaken to determine key gait characteristics in normal biomedical miniature pigs and dynamic changes that occur post-neural injury in a porcine middle cerebral artery (MCA) occlusion ischemic stroke model. Yucatan miniature pigs were trained to walk through a semi-circular track and were recorded with high speed cameras to detect changes in key gait parameters. Analysis of normal pigs showed overall symmetry in hindlimb swing and stance times, forelimb stance time, along with step length, step velocity, and maximum hoof height on both fore and hindlimbs. A subset of pigs were again recorded at 7, 5 and 3 days prior to MCA occlusion and then at 1, 3, 5, 7, 14 and 30 days following surgery. MRI analysis showed that MCA occlusion resulted in significant infarction. Gait analysis indicated that stroke resulted in notable asymmetries in both temporal and spatial variables. Pigs exhibited lower maximum front hoof height on the paretic side, as well as shorter swing time and longer stance time on the paretic hindlimb. These results support that gait analysis of stroke injury is a highly sensitive detection method for changes in gait parameters in pig.

  3. Effect of cadence regulation on muscle activation patterns during robot assisted gait: a dynamic simulation study.

    Science.gov (United States)

    Hussain, Shahid; Xie, Sheng Q; Jamwal, Prashant K

    2013-03-01

    Cadence or stride frequency is an important parameter being controlled in gait training of neurologically impaired subjects. The aim of this study was to examine the effects of cadence variation on muscle activation patterns during robot assisted unimpaired gait using dynamic simulations. A twodimensional (2-D) musculoskeletal model of human gait was developed considering eight major muscle groups along with existing ground contact force (GCF) model. A 2-D model of a robotic orthosis was also developed which provides actuation to the hip, knee and ankle joints in the sagittal plane to guide subjects limbs on reference trajectories. A custom inverse dynamics algorithm was used along with a quadratic minimization algorithm to obtain a feasible set of muscle activation patterns. Predicted patterns of muscle activations during slow, natural and fast cadence were compared and the mean muscle activations were found to be increasing with an increase in cadence. The proposed dynamic simulation provide important insight into the muscle activation variations with change in cadence during robot assisted gait and provide the basis for investigating the influence of cadence regulation on neuromuscular parameters of interest during robot assisted gait.

  4. Gait analysis methods in rehabilitation

    Directory of Open Access Journals (Sweden)

    Baker Richard

    2006-03-01

    Full Text Available Abstract Introduction Brand's four reasons for clinical tests and his analysis of the characteristics of valid biomechanical tests for use in orthopaedics are taken as a basis for determining what methodologies are required for gait analysis in a clinical rehabilitation context. Measurement methods in clinical gait analysis The state of the art of optical systems capable of measuring the positions of retro-reflective markers placed on the skin is sufficiently advanced that they are probably no longer a significant source of error in clinical gait analysis. Determining the anthropometry of the subject and compensating for soft tissue movement in relation to the under-lying bones are now the principal problems. Techniques for using functional tests to determine joint centres and axes of rotation are starting to be used successfully. Probably the last great challenge for optical systems is in using computational techniques to compensate for soft tissue measurements. In the long term future it is possible that direct imaging of bones and joints in three dimensions (using MRI or fluoroscopy may replace marker based systems. Methods for interpreting gait analysis data There is still not an accepted general theory of why we walk the way we do. In the absence of this, many explanations of walking address the mechanisms by which specific movements are achieved by particular muscles. A whole new methodology is developing to determine the functions of individual muscles. This needs further development and validation. A particular requirement is for subject specific models incorporating 3-dimensional imaging data of the musculo-skeletal anatomy with kinematic and kinetic data. Methods for understanding the effects of intervention Clinical gait analysis is extremely limited if it does not allow clinicians to choose between alternative possible interventions or to predict outcomes. This can be achieved either by rigorously planned clinical trials or using

  5. Classification of Gait Types Based on the Duty-factor

    DEFF Research Database (Denmark)

    Fihl, Preben; Moeslund, Thomas B.

    2007-01-01

    This paper deals with classification of human gait types based on the notion that different gait types are in fact different types of locomotion, i.e., running is not simply walking done faster. We present the duty-factor, which is a descriptor based on this notion. The duty-factor is independent...

  6. Multidirectional transparent support for overground gait training.

    Science.gov (United States)

    Vallery, H; Lutz, P; von Zitzewitz, J; Rauter, G; Fritschi, M; Everarts, C; Ronsse, R; Curt, A; Bolliger, M

    2013-06-01

    Gait and balance training is an essential ingredient for locomotor rehabilitation of patients with neurological impairments. Robotic overhead support systems may help these patients train, for example by relieving them of part of their body weight. However, there are only very few systems that provide support during overground gait, and these suffer from limited degrees of freedom and/or undesired interaction forces due to uncompensated robot dynamics, namely inertia. Here, we suggest a novel mechanical concept that is based on cable robot technology and that allows three-dimensional gait training while reducing apparent robot dynamics to a minimum. The solution does not suffer from the conventional drawback of cable robots, which is a limited workspace. Instead, displaceable deflection units follow the human subject above a large walking area. These deflection units are not actuated, instead they are implicitly displaced by means of the forces in the cables they deflect. This leads to an underactuated design, because the deflection units cannot be moved arbitrarily. However, the design still allows accurate control of a three-dimensional force vector acting on a human subject during gait. We describe the mechanical concept, the control concept, and we show first experimental results obtained with the device, including the force control performance during robot-supported overground gait of five human subjects without motor impairments.

  7. Show me how you walk and I tell you how you feel - a functional near-infrared spectroscopy study on emotion perception based on human gait.

    Science.gov (United States)

    Schneider, Sabrina; Christensen, Andrea; Häußinger, Florian B; Fallgatter, Andreas J; Giese, Martin A; Ehlis, Ann-Christine

    2014-01-15

    The ability to recognize and adequately interpret emotional states in others plays a fundamental role in regulating social interaction. Body language presents an essential element of nonverbal communication which is often perceived prior to mimic expression. However, the neural networks that underlie the processing of emotionally expressive body movement and body posture are poorly understood. 33 healthy subjects have been investigated using the optically based imaging method functional near-infrared spectroscopy (fNIRS) during the performance of a newly developed emotion discrimination paradigm consisting of faceless avatars expressing fearful, angry, sad, happy or neutral gait patterns. Participants were instructed to judge (a) the presented emotional state (emotion task) and (b) the observed walking speed of the respective avatar (speed task). We measured increases in cortical oxygenated haemoglobin (O2HB) in response to visual stimulation during emotion discrimination. These O2HB concentration changes were enhanced for negative emotions in contrast to neutral gait sequences in right occipito-temporal and left temporal and temporo-parietal brain regions. Moreover, fearful and angry bodies elicited higher activation increases during the emotion task compared to the speed task. Haemodynamic responses were correlated with a number of behavioural measures, whereby a positive relationship between emotion regulation strategy preference and O2HB concentration increases after sad walks was mediated by the ability to accurately categorize sad walks. Our results support the idea of a distributed brain network involved in the recognition of bodily emotion expression that comprises visual association areas as well as body/movement perception specific cortical regions that are also sensitive to emotion. This network is activated less when the emotion is not intentionally processed (i.e. during the speed task). Furthermore, activity of this perceptive network is, mediated by

  8. Analysis of gait using a treadmill and a Time-of-flight camera

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Paulsen, Rasmus Reinhold; Larsen, Rasmus

    2009-01-01

    We present a system that analyzes human gait using a treadmill and a Time-of-flight camera. The camera provides spatial data with local intensity measures of the scene, and data are collected over several gait cycles. These data are then used to model and analyze the gait. For each frame...

  9. Computational intelligent gait-phase detection system to identify pathological gait.

    Science.gov (United States)

    Senanayake, Chathuri M; Senanayake, S M N Arosha

    2010-09-01

    An intelligent gait-phase detection algorithm based on kinematic and kinetic parameters is presented in this paper. The gait parameters do not vary distinctly for each gait phase; therefore, it is complex to differentiate gait phases with respect to a threshold value. To overcome this intricacy, the concept of fuzzy logic was applied to detect gait phases with respect to fuzzy membership values. A real-time data-acquisition system was developed consisting of four force-sensitive resistors and two inertial sensors to obtain foot-pressure patterns and knee flexion/extension angle, respectively. The detected gait phases could be further analyzed to identify abnormality occurrences, and hence, is applicable to determine accurate timing for feedback. The large amount of data required for quality gait analysis necessitates the utilization of information technology to store, manage, and extract required information. Therefore, a software application was developed for real-time acquisition of sensor data, data processing, database management, and a user-friendly graphical-user interface as a tool to simplify the task of clinicians. The experiments carried out to validate the proposed system are presented along with the results analysis for normal and pathological walking patterns.

  10. 气动肌肉驱动步态康复训练外骨骼装置的研究%Development of an actuated exoskeleton with pneumatic muscles for gait rehabilitation training

    Institute of Scientific and Technical Information of China (English)

    隋立明; 张立勋

    2011-01-01

    在为提高卒中病人的行走能力训练当中,广泛采用平板训练.在平板训练中,病人的下肢需要治疗师辅助进行运动.这种徒手训练对治疗师来说很消耗体力.因此,研制了一个用于步态训练的动力式下肢外骨骼装置.该外骨骼装置在平板训练中为髋关节和膝关节提供助力.外骨骼装置的结构基于人的关节驱动原理,每个关节由一对气动肌肉驱动.以气动肌肉的模型为基础,对外骨骼装置的驱动模型进行了分析.实验证明了外骨骼装置对于步态康复训练的有效性和安全性.%Treadmill training is widely used to improve the walking ability of stroke patients. During treadmill training, the movements of the patient s lower limbs must be assisted by therapists. The manual training provided by therapists is demanding and labor intensive. Therefore, a powered lower limb exoskeleton was developed for gait training. The exoskeleton can provide power for the hip and knee joints during treadmill training. The actuation of the exoskeleton was based on the principles of human joint actuation, and each joint of the exoskeleton was actuated by a pair of pneumatic muscles. The actuation model of the exoskeleton was analyzed on the basis of the pneumatic muscle model. Preliminary experimentation proved that the exoskeleton is effective and safe for gait rehabilitation training.

  11. Human Potential Development.

    Science.gov (United States)

    Tyree, Edna J.

    This paper describes the organization and implementation of 16 seminars on the subject of developing the potentials inherent in the individuals involved. The stated goals of this group project for teacher corps interns are: (1) identify and use personal strengths and potential in many areas; (2) understand achievement patterns and the way in which…

  12. Biofeedback for robotic gait rehabilitation

    Directory of Open Access Journals (Sweden)

    Colombo Gery

    2007-01-01

    Full Text Available Abstract Background Development and increasing acceptance of rehabilitation robots as well as advances in technology allow new forms of therapy for patients with neurological disorders. Robot-assisted gait therapy can increase the training duration and the intensity for the patients while reducing the physical strain for the therapist. Optimal training effects during gait therapy generally depend on appropriate feedback about performance. Compared to manual treadmill therapy, there is a loss of physical interaction between therapist and patient with robotic gait retraining. Thus, it is difficult for the therapist to assess the necessary feedback and instructions. The aim of this study was to define a biofeedback system for a gait training robot and test its usability in subjects without neurological disorders. Methods To provide an overview of biofeedback and motivation methods applied in gait rehabilitation, previous publications and results from our own research are reviewed. A biofeedback method is presented showing how a rehabilitation robot can assess the patients' performance and deliver augmented feedback. For validation, three subjects without neurological disorders walked in a rehabilitation robot for treadmill training. Several training parameters, such as body weight support and treadmill speed, were varied to assess the robustness of the biofeedback calculation to confounding factors. Results The biofeedback values correlated well with the different activity levels of the subjects. Changes in body weight support and treadmill velocity had a minor effect on the biofeedback values. The synchronization of the robot and the treadmill affected the biofeedback values describing the stance phase. Conclusion Robot-aided assessment and feedback can extend and improve robot-aided training devices. The presented method estimates the patients' gait performance with the use of the robot's existing sensors, and displays the resulting biofeedback

  13. Developing human resources

    Energy Technology Data Exchange (ETDEWEB)

    Murray, M.B.W.

    1990-02-01

    Over the last eight years, the growth of the market for independent energy facilities in the United States has been spectacular. A combined capacity of about 29,300 MW, from over 2,500 independent energy facilities, has come on line since 1980 and the industry has experienced an annual growth of more than 15 percent per year. This trend is not limited to the United States, however, Governments around the world are recognizing the benefits of privately-owned independent energy plants. The interest is growing as the need for new capacity increases and as more projects are built and operated successfully using private capital. There are several reasons for the trends toward private power around the world. First, in developed countries, a growing need for new power capacity emerged after the 1983-1987 freeze when most utilities in developed countries reaped the benefits of increased energy conservation and halted any further construction. Now the demand is catching up and most large utilities are experiencing the same hesitations as their U.S. counterparts. Second, in less developed countries (LDCs), the increasing demand for new generating capacity stems from high annual growth rates in power demand -generally between four percent and seven percent per year. At the same time, these countries are expanding their power grid, which increases the opportunities for new plants in regions with limited service where delegation of power generation authority to third-parties can be more easily justified. Third, an increasing number of countries worldwide are eying industrial cogeneration and private power facilities favorably. Finally, lending institutions and donor agencies are becoming more interested in promoting cogeneration and private power, often as part of larger privatization schemes.

  14. Importance of Gait Training

    Science.gov (United States)

    ... amputation exercises done under the supervision of a physical therapist, the initial training is provided by the prosthetist ... this stage, it is best to involve a physical therapist for regular gait training sessions. Once it is ...

  15. Effect of Interpersonal Interaction on Festinating Gait Rehabilitation in Patients with Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Hirotaka Uchitomi

    Full Text Available Although human walking gait rhythms are generated by native individual gait dynamics, these gait dynamics change during interactions between humans. A typical phenomenon is synchronization of gait rhythms during cooperative walking. Our previous research revealed that fluctuation characteristics in stride interval of subjects with Parkinson's disease changed from random to 1/f fluctuation as fractal characteristics during cooperative walking with the gait assist system Walk-Mate, which emulates a human interaction using interactive rhythmic cues. Moreover, gait dynamics were relearned through Walk-Mate gait training. However, the system's clinical efficacy was unclear because the previous studies did not focus on specific gait rhythm disorder symptoms. Therefore, this study aimed to evaluate the effect of Walk-Mate on festinating gait among subjects with Parkinson's disease. Three within-subject experimental conditions were used: (1 preinteraction condition, (2 interaction condition, and (3 postinteraction condition. The only difference between conditions was the interactive rhythmic cues generated by Walk-Mate. Because subjects with festinating gait gradually and involuntarily decreased their stride interval, the regression slope of stride interval as an index of severity of preinteraction festinating gait was elevated. The regression slope in the interaction condition was more gradual than during the preinteraction condition, indicating that the interactive rhythmic cues contributed to relieving festinating gait and stabilizing gait dynamics. Moreover, the gradual regression slope was carried over to the postinteraction condition, indicating that subjects with festinating gait have the potential to relearn stable gait dynamics. These results suggest that disordered gait dynamics are clinically restored through interactive rhythmic cues and that Walk-Mate may have the potential to assist therapists in more effective rehabilitation.UMIN Clinical

  16. Human Rights, Human Needs, Human Development, Human Security : Relationships between four international 'human' discourses

    NARCIS (Netherlands)

    D.R. Gasper (Des)

    2007-01-01

    textabstractHuman rights, human development and human security form increasingly important, partly interconnected, partly competitive and misunderstood ethical and policy discourses. Each tries to humanize a pre-existing and unavoidable major discourse of everyday life, policy and politics; each

  17. Gait characteristic analysis and identification based on the iPhone's accelerometer and gyrometer.

    Science.gov (United States)

    Sun, Bing; Wang, Yang; Banda, Jacob

    2014-09-12

    Gait identification is a valuable approach to identify humans at a distance. In this paper, gait characteristics are analyzed based on an iPhone's accelerometer and gyrometer,and a new approach is proposed for gait identification. Specifically, gait datasets are collected by the triaxial accelerometer and gyrometer embedded in an iPhone. Then, the datasets are processed to extract gait characteristic parameters which include gait frequency, symmetry coefficient, dynamic range and similarity coefficient of characteristic curves. Finally, a weighted voting scheme dependent upon the gait characteristic parameters is proposed forgait identification. Four experiments are implemented to validate the proposed scheme. The attitude and acceleration solutions are verified by simulation. Then the gait characteristics are analyzed by comparing two sets of actual data, and the performance of the weighted voting identification scheme is verified by 40 datasets of 10 subjects.

  18. Gait Characteristic Analysis and Identification Based on the iPhone’s Accelerometer and Gyrometer

    Directory of Open Access Journals (Sweden)

    Bing Sun

    2014-09-01

    Full Text Available Gait identification is a valuable approach to identify humans at a distance. In thispaper, gait characteristics are analyzed based on an iPhone’s accelerometer and gyrometer,and a new approach is proposed for gait identification. Specifically, gait datasets are collectedby the triaxial accelerometer and gyrometer embedded in an iPhone. Then, the datasets areprocessed to extract gait characteristic parameters which include gait frequency, symmetrycoefficient, dynamic range and similarity coefficient of characteristic curves. Finally, aweighted voting scheme dependent upon the gait characteristic parameters is proposed forgait identification. Four experiments are implemented to validate the proposed scheme. Theattitude and acceleration solutions are verified by simulation. Then the gait characteristicsare analyzed by comparing two sets of actual data, and the performance of the weightedvoting identification scheme is verified by 40 datasets of 10 subjects.

  19. 行走中股骨生物力学特性的有限元分析%Finite element analysis of biomechanics of human femur during gait

    Institute of Scientific and Technical Information of China (English)

    杨挺; 郑建河; 姚子龙; 马立敏; 张余

    2016-01-01

    Objective To simulate the optimal boundary conditions with the utilization of finite element, and to explore biomechanics of human femur during gait.Methods Volunteer′s femoral CT data was extracted before three-di-mensional reconstruction and meshing.A computer simulation software, Anybody, was used to simulate the normal move-ments during gait and export the muscle force exerted on femur during the activity.Geomagic studio and Hypermesh were used to match the coordinates between the target model and the model provided by AnyBody and load the muscle force to femur.After that, finite element analysis in Abaqus was performed to analyze the magnitude and concentration region of von Mises stress and strain on femur in gait process.Results The magnitude of von Mises reached the maximum of 27.70 MPa during the midstance phase of the gait cycle, which was located inferoposteriorly to the lesser trochanter.The stress magnitude reached the minimum of 0.62 MPa during the contralateral loading phase.The stress on femur during the swing phase concentrated on the medial mid-diaphysis, with a magnitude of 3.52 MPa.It was also during the mid-stance phase when the maximum of strain of 0.39 mm was observed at the femoral head.The maximum strain of 0.12 mm during the swing phase concentrated on femoral mid-diaphysis.The minimum strain of femur occurred in the contralateral load-ing phase.Conclusion During the mid-stance phase of gait cycle, the magnitude of stress reaches the maximum, which is located inferoposteriorly to the lesser trochanter of femur.The maximum strain of femur is located on the femoral head.%目的:利用有限元的方法,模拟人体最佳边界条件,探寻行走过程中股骨的生物力学情况。方法根据股骨CT数据进行三维重建,并且网格化。利用计算机仿真软件AnyBody模拟正常人平地行走时的动作,导出股骨在整个运动过程中受到的肌肉力。利用Geomagic studio和Hypermesh软件完成目标模

  20. New Humanism and Sustainable Development

    Directory of Open Access Journals (Sweden)

    Han d'Orville

    2015-10-01

    Full Text Available The call for a new humanism in the 21st century roots in the conviction that the moral, intellectual and political foundations of globalization and international cooperation have to be rethought. Whilst the historic humanism was set out to resolve tensions between tradition and modernity and to reconcile individual rights with newly emerging duties of citizenship, the new humanism approach goes beyond the level of the nation state in seeking to unite the process of globalization with its complex and sometimes contradictory manifestations. The new humanism therefore advocates the social inclusion of every human being at all levels of society and underlines the transformative power of education, sciences, culture and communications. Therefore, humanism today needs to be perceived as a collective effort that holds governments, civil society, the private sector and human individuals equally responsible to realize its values and to design creatively and implement a humanist approach to a sustainable society, based on economic, social and environmental development. New humanism describes the only way forward for a world that accounts for the diversity of identities and the heterogeneity of interests and which is based on inclusive, democratic, and, indeed, humanist values. Humanism did evolve into the grand movement of human spiritual and creative liberation, which enabled an unparalleled acceleration of prosperity and transformation of civilizations. In line with humanist ethics, the material growth was understood as a collective good, which was to serve all participants of a community and meant to enable the socio-economic progress of society. The exact definition of humanism has historically fluctuated in accordance with successive and diverse strands of intellectual thought. The underlying concept rests on the universal ideas of human emancipation, independence and social justice. Humanism can hence be understood as a moral inspiration for

  1. Neuroeconomics and Human Resource Development

    DEFF Research Database (Denmark)

    Larsen, Torben

    2009-01-01

      Neuroeconomics and Human Resource Development Objective Neuroeconomic game trials have detected a present-bias in human decision making which represents a serious shortcoming facing the long termed nature of complex problems in a globalized economy i.e. regional residual poverty, ecological...... threats and personal stress. So far, the evidence-based findings on human resource development (HRD) seem not to match these huge challenges. The aim of this study is to identify cost-effective means of mental training to recover sufficiently from the present bias to enable more sustainable decisions...... of Western decision makers to a level of sustainable development. In order to support the dissemination of non-dogmatic medical meditation an international scientific monitoring program for various competing medical meditation settings might be useful. Western psychology rooted in the Western humanities...

  2. Human development, heredity and evolution.

    Science.gov (United States)

    Nishinakamura, Ryuichi; Takasato, Minoru

    2017-06-15

    From March 27-29 2017, the RIKEN Center for Developmental Biology held a symposium entitled 'Towards Understanding Human Development, Heredity, and Evolution' in Kobe, Japan. Recent advances in technologies including stem cell culture, live imaging, single-cell approaches, next-generation sequencing and genome editing have led to an expansion in our knowledge of human development. Organized by Yoshiya Kawaguchi, Mitinori Saitou, Mototsugu Eiraku, Tomoya Kitajima, Fumio Matsuzaki, Takashi Tsuji and Edith Heard, the symposium covered a broad range of topics including human germline development, epigenetics, organogenesis and evolution. This Meeting Review provides a summary of this timely and exciting symposium, which has convinced us that we are moving into the era of science targeted on humans. © 2017. Published by The Company of Biologists Ltd.

  3. Perception of Gait Patterns that Deviate from Normal and Symmetric Biped Locomotion

    Directory of Open Access Journals (Sweden)

    Ismet eHandzic

    2015-02-01

    Full Text Available This study examines the range of gait patterns that are perceived as healthy and human-like with the goal of understanding how much asymmetry is allowable in a gait pattern before other people start to notice a gait impairment. Specifically, this study explores if certain abnormal walking patterns can be dismissed as unimpaired or not uncanny. Altering gait biomechanics is generally done in the fields of prosthetics and rehabilitation, however the perception of gait is often neglected. Although a certain gait can be functional, it may not be considered as normal by observers. On the other hand, an abnormally perceived gait may be more practical or necessary in some situations, such as limping after an injury or stroke and when wearing a prosthesis. This research will help to find the balance between the form and function of gait. Gait patterns are synthetically created using a passive dynamic walker (PDW model that allows gait patterns to be systematically changed without the confounding influence from human sensorimotor feedback during walking. This standardized method allows the perception of specific changes in gait to be studied. The PDW model was used to produce walking patterns that showed a degree of abnormality in gait cadence, knee height, step length, and swing time created by changing the foot roll-over-shape, knee damping, knee location, and leg masses. The gait patterns were shown to participants who rated them according to separate scales of impairment and uncanniness. The results indicate that some pathological and asymmetric gait patterns are perceived as unimpaired and normal. Step time and step length asymmetries less than 5%, small knee location differences, and gait cadence changes of 25% do not result in a change in perception. The results also show that the parameters of a pathologically or uncanny perceived gait can be beneficially altered by increasing other independent parameters, in some sense masking the initial

  4. An arm for a leg: Adapting a robotic arm for gait rehabilitation.

    Science.gov (United States)

    Franchi, Giulia; Viereck, Ulrich; Platt, Robert; Yen, Sheng-Che; Hasson, Christopher J

    2015-01-01

    The purpose of this study was to adapt a multipurpose robotic arm for gait rehabilitation. An advantage of this approach is versatility: a robotic arm can be attached to almost any point on the body to assist with lower- and upper-extremity rehabilitation. This may be more cost-effective than purchasing and training rehabilitation staff to use several specialized rehabilitation robots. Robotic arms also have a more human-like morphology, which may make them less intimidating or alien to patients. In this study a mechanical interface was developed that allows a fast, secure, and safe attachment between a robotic arm and a human limb. The effectiveness of this interface was assessed by having two healthy subjects walk on a treadmill with and without a robotic arm attached to their legs. The robot's ability to follow the subjects' swinging legs was evaluated at slow and fast walking speeds. Two different control schemes were evaluated: one using the standard manufacturer-provided control algorithm, and another using a custom algorithm that actively compensated for robot-human interaction forces. The results showed that both robot control schemes performed well for slow walking. There were negligible differences between subjects' gait kinematics with and without the robot. During fast walking with the robot, similar results were obtained for one subject; however, the second subject demonstrated noticeable gait modifications. Together, these results show the feasibility of adapting a multipurpose robotic arm for gait rehabilitation.

  5. Enhanced data consistency of a portable gait measurement system

    Science.gov (United States)

    Lin, Hsien-I.; Chiang, Y. P.

    2013-11-01

    A gait measurement system is a useful tool for rehabilitation applications. Such a system is used to conduct gait experiments in large workplaces such as laboratories where gait measurement equipment can be permanently installed. However, a gait measurement system should be portable if it is to be used in clinics or community centers for aged people. In a portable gait measurement system, the workspace is limited and landmarks on a subject may not be visible to the cameras during experiments. Thus, we propose a virtual-marker function to obtain positions of unseen landmarks for maintaining data consistency. This work develops a portable clinical gait measurement system consisting of lightweight motion capture devices, force plates, and a walkway assembled from plywood boards. We evaluated the portable clinic gait system with 11 normal subjects in three consecutive days in a limited experimental space. Results of gait analysis based on the verification of within-day and between-day coefficients of multiple correlations show that the proposed portable gait system is reliable.

  6. Climbing favours the tripod gait over alternative faster insect gaits

    Science.gov (United States)

    Ramdya, Pavan; Thandiackal, Robin; Cherney, Raphael; Asselborn, Thibault; Benton, Richard; Ijspeert, Auke Jan; Floreano, Dario

    2017-02-01

    To escape danger or catch prey, running vertebrates rely on dynamic gaits with minimal ground contact. By contrast, most insects use a tripod gait that maintains at least three legs on the ground at any given time. One prevailing hypothesis for this difference in fast locomotor strategies is that tripod locomotion allows insects to rapidly navigate three-dimensional terrain. To test this, we computationally discovered fast locomotor gaits for a model based on Drosophila melanogaster. Indeed, the tripod gait emerges to the exclusion of many other possible gaits when optimizing fast upward climbing with leg adhesion. By contrast, novel two-legged bipod gaits are fastest on flat terrain without adhesion in the model and in a hexapod robot. Intriguingly, when adhesive leg structures in real Drosophila are covered, animals exhibit atypical bipod-like leg coordination. We propose that the requirement to climb vertical terrain may drive the prevalence of the tripod gait over faster alternative gaits with minimal ground contact.

  7. Interlimb coordination in human crawling reveals similarities in development and neural control with quadrupeds.

    Science.gov (United States)

    Patrick, Susan K; Noah, J Adam; Yang, Jaynie F

    2009-02-01

    The study of quadrupeds has furnished most of our understanding of mammalian locomotion. To allow a more direct comparison of coordination between the four limbs in humans and quadrupeds, we studied crawling in the human, a behavior that is part of normal human development and mechanically more similar to quadrupedal locomotion than is bipedal walking. Interlimb coordination during hands-and-knees crawling is compared between humans and quadrupeds and between human infants and adults. Mechanical factors were manipulated during crawling to understand the relative contributions of mechanics and neural control. Twenty-six infants and seven adults were studied. Video, force plate, and electrogoniometer data were collected. Belt speed of the treadmill, width of base, and limb length were manipulated in adults. Influences of unweighting and limb length were explored in infants. Infants tended to move diagonal limbs together (trot-like). Adults additionally moved ipsilateral limbs together (pace-like). At lower speeds, movements of the four limbs were more equally spaced in time, with no clear pairing of limbs. At higher speeds, running symmetrical gaits were never observed, although one adult galloped. Widening stance prevented adults from using the pace-like gait, whereas lengthening the hind limbs (hands-and-feet crawling) largely prevented the trot-like gait. Limb length and unweighting had no effect on coordination in infants. We conclude that human crawling shares features both with other primates and with nonprimate quadrupeds, suggesting similar underlying mechanisms. The greater restriction in coordination patterns used by infants suggests their nervous system has less flexibility.

  8. Periodic gaits for the CMU ambler

    Science.gov (United States)

    Mahalingam, Swaminathan; Dwivedi, Suren N.

    1989-01-01

    The configuration of the Carnegie Mellon University Ambler, a six legged autonomous walking vehicle for exploring Mars, enables the recovery of a trailing leg past the leading leg to reduce the energy expenditure in terrain interactions. Gaits developed for this unprecedented configuration are described. A stability criterion was developed which ensures stability of the vehicle in the event of failure of any one of the supporting legs. Periodic gaits developed for the Ambler utilize the Ambler's unique abilities, and continuously satisfy the stability criterion.

  9. Gait initiation in children with Rett syndrome.

    Directory of Open Access Journals (Sweden)

    Ioannis Ugo Isaias

    Full Text Available Rett syndrome is an X-linked neurodevelopmental condition mainly characterized by loss of spoken language and a regression of purposeful hand use, with the development of distinctive hand stereotypies, and gait abnormalities. Gait initiation is the transition from quiet stance to steady-state condition of walking. The associated motor program seems to be centrally mediated and includes preparatory adjustments prior to any apparent voluntary movement of the lower limbs. Anticipatory postural adjustments contribute to postural stability and to create the propulsive forces necessary to reach steady-state gait at a predefined velocity and may be indicative of the effectiveness of the feedforward control of gait. In this study, we examined anticipatory postural adjustments associated with gait initiation in eleven girls with Rett syndrome and ten healthy subjects. Muscle activity (tibialis anterior and soleus muscles, ground reaction forces and body kinematic were recorded. Children with Rett syndrome showed a distinctive impairment in temporal organization of all phases of the anticipatory postural adjustments. The lack of appropriate temporal scaling resulted in a diminished impulse to move forward, documented by an impairment in several parameters describing the efficiency of gait start: length and velocity of the first step, magnitude and orientation of centre of pressure-centre of mass vector at the instant of (swing-toe off. These findings were related to an abnormal muscular activation pattern mainly characterized by a disruption of the synergistic activity of antagonistic pairs of postural muscles. This study showed that girls with Rett syndrome lack accurate tuning of feedforward control of gait.

  10. Gait initiation in children with Rett syndrome.

    Science.gov (United States)

    Isaias, Ioannis Ugo; Dipaola, Mariangela; Michi, Marlies; Marzegan, Alberto; Volkmann, Jens; Rodocanachi Roidi, Marina L; Frigo, Carlo Albino; Cavallari, Paolo

    2014-01-01

    Rett syndrome is an X-linked neurodevelopmental condition mainly characterized by loss of spoken language and a regression of purposeful hand use, with the development of distinctive hand stereotypies, and gait abnormalities. Gait initiation is the transition from quiet stance to steady-state condition of walking. The associated motor program seems to be centrally mediated and includes preparatory adjustments prior to any apparent voluntary movement of the lower limbs. Anticipatory postural adjustments contribute to postural stability and to create the propulsive forces necessary to reach steady-state gait at a predefined velocity and may be indicative of the effectiveness of the feedforward control of gait. In this study, we examined anticipatory postural adjustments associated with gait initiation in eleven girls with Rett syndrome and ten healthy subjects. Muscle activity (tibialis anterior and soleus muscles), ground reaction forces and body kinematic were recorded. Children with Rett syndrome showed a distinctive impairment in temporal organization of all phases of the anticipatory postural adjustments. The lack of appropriate temporal scaling resulted in a diminished impulse to move forward, documented by an impairment in several parameters describing the efficiency of gait start: length and velocity of the first step, magnitude and orientation of centre of pressure-centre of mass vector at the instant of (swing-)toe off. These findings were related to an abnormal muscular activation pattern mainly characterized by a disruption of the synergistic activity of antagonistic pairs of postural muscles. This study showed that girls with Rett syndrome lack accurate tuning of feedforward control of gait.

  11. Gait Variability and Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Michael J. Socie

    2013-01-01

    Full Text Available Gait variability, that is, fluctuations in movement during walking, is an indicator of walking function and has been associated with various adverse outcomes such as falls. In this paper, current research concerning gait variability in persons with multiple sclerosis (MS is discussed. It is well established that persons with MS have greater gait variability compared to age and gender matched controls without MS. The reasons for the increase in gait variability are not completely understood. Evidence indicates that disability level, assistive device use, attentional requirement, and fatigue are related to gait variability in persons with MS. Future research should address the time-evolving structure (i.e., temporal characteristics of gait variability, the clinical importance of gait variability, and underlying mechanisms that drive gait variability in individuals with MS.

  12. The golden triangle of human dignity: human security, human development and human rights

    NARCIS (Netherlands)

    Gaay Fortman, B. de

    2004-01-01

    The success or failure of processes of democratization cannot be detached from processes of development related to the aspirations of people at the grassroots. Human rights, in a more theoretical terminology, require human development in order to enhance human security.

  13. [3-D ultrasound-assisted gait analysis of schizophrenic patients. Comparison between conventional neuroleptics and olanzapine].

    Science.gov (United States)

    Putzhammer, Albert; Heindl, Bernhard; Müller, Jürgen; Broll, Karin; Pfeiff, Liane; Perfahl, Maria; Hess, Linda; Koch, Horst

    2003-05-01

    Schizophrenic disorders as well as neuroleptic treatment can affect locomotion. The study assessed the influence of neuroleptic treatment on human gait via ultrasonic topometric gait analysis. In a control sample the test system proved high test-retest-reliability. Spatial and temporal gait parameters were assessed in schizophrenic patients without neuroleptic treatment (n = 12) and under treatment with conventional neuroleptics (n = 14) and re-assessed after treatment change to the atypical neuroleptic olanzapine in a repeated measures design. After switch from conventional neuroleptics to olanzapine patients showed an increase of gait velocity (p step length (p gait analysis.

  14. Human development recruiting and selection

    Directory of Open Access Journals (Sweden)

    Maksimović Marijana

    2002-01-01

    Full Text Available Along with the development of trends towards internationalization and globalization, human resource management and, especially, international human resource management, attracted overall theoretical and practical interest. International environment is complex, made of numerous elements like social organization, laws, education, values and attitudes, religion language, politics, material and technological culture. In multicultural environment, strategic activities could be multiplied through economical political, cultural, social and technological spheres of action, making the recruitment, selection and successful resource allocation in the international human resource management a real challenge for top management. In international human resource management practice, several approaches to the recruitment have differentiated, playing the key roles in hiring talented individuals and retaining efficient workforce KW resources, labor force, recruiting, managers, education

  15. What is a waddling gait?

    NARCIS (Netherlands)

    Iersel, M.B. van; Mulley, G.P.

    2004-01-01

    PURPOSE: A patient's gait can provide important diagnostic and functional information. Though 'waddling gait' is a long-established concept, we question whether this description is precise or clinically useful. METHODS: We searched 'waddling gait' in all main medical specialties core textbooks, in a

  16. Strategic Human Resource Development. Symposium.

    Science.gov (United States)

    2002

    This document contains three papers on strategic human resource (HR) development. "Strategic HR Orientation and Firm Performance in India" (Kuldeep Singh) reports findings from a study of Indian business executives that suggests there is a positive link between HR policies and practices and workforce motivation and loyalty and…

  17. Growth charts of human development

    NARCIS (Netherlands)

    Van Buuren, Stef

    2014-01-01

    This article reviews and compares two types of growth charts for tracking human development over age. Both charts assume the existence of a continuous latent variable, but relate to the observed data in different ways. The D-score diagram summarizes developmental indicators into a single aggregate s

  18. Gait as evidence

    DEFF Research Database (Denmark)

    Lynnerup, Niels; Larsen, Peter Kastmand

    2014-01-01

    This study examines what in Denmark may constitute evidence based on forensic anthropological gait analyses, in the sense of pointing to a match (or not) between a perpetrator and a suspect, based on video and photographic imagery. Gait and anthropometric measures can be used when direct facial...... comparison is not possible because of perpetrators masking their faces. The nature of judicial and natural scientific forms of evidence is discussed, and rulings dealing with the admissibility of video footage and forensic evidence in general are given. Technical issues of video materials are discussed...

  19. Population and human resources development.

    Science.gov (United States)

    Jones, G W

    1992-06-01

    The concern of this discourse on social development planning was that individuals be part of human resources development. Population growth is an obstacle to social development, but so is national expenditures on the military rather than diverting funds for social improvements. There are important benefits for society in social development: a valued consumption good, increased productivity, and reduced fertility. Dissatisfaction with an economic growth model of development occurred during the 1960s, and by the mid-1980s, human resource development was capsuled in Asia and the Pacific Region in the Jakarta Plan of Action on Human Resources Development and adopted in 1988. Earlier approaches favored the supply side. This article emphasizes "human" development which considers people as more than inputs to productivity. The quality of human resources is dependent on the family and society, the educational system, and individual levels of health and nutrition. Differences in income levels between East and South Asia have been attributed by Oshima to full use of the labor force and mechanization and training of workers. Ogawa, Jones, and Williamson contend that huge investment in infrastructure, efficient absorption of advanced technology, a stable political environment, and commitment to human capital formation are key to development. Demographic transition and decline in fertility at one point reflect growth and engagement in the labor force and resource accumulation. Although East Asia had higher levels of literacy and educational attainment than many developing countries, South Asia still has high fertility. Human resource development is dependent on reduced population growth rates, but rapid population growth is not an insurmountable obstacle to achieving higher levels of education. Rapid population growth is a greater obstacle in poorer countries. The impact can be reflected in increased costs of attaining educational targets of universal primary education or in

  20. Gait adjustments in obstacle crossing, gait initiation and gait termination after a recent lower limb amputation

    NARCIS (Netherlands)

    Vrieling, Aline H.; van Keeken, Helco G.; Schoppen, Tanneke; Hof, At L.; Otten, Bert; Halbertsma, Jan P. K.; Postema, Klaas

    2009-01-01

    Objective: To describe the adjustments in gait characteristics of obstacle crossing, gait initiation and gait termination that occur in subjects with a recent lower limb amputation during the rehabilitation process. Design: Prospective and descriptive study. Subjects: Fourteen subjects with a recent

  1. Development of an Amphibious Snake-like Robot and Its Gaits on Ground and in Water%水陆两栖蛇形机器人的研制及其陆地和水下步态

    Institute of Scientific and Technical Information of China (English)

    郁树梅; 王明辉; 马书根; 李斌; 王越超

    2012-01-01

    Tough environments such as swamps and shoals deserve a snake-like robot to have better adaptability to the environments. After deep investigation of the latest researches on amphibious snake-like robot, a new amphibious snake-like robot is developed. The robot is composed of 9 waterproofed modular universal units and has smooth motion ability on ground and in water. A simplified Serpenoid curve is used to generate the serpentine gait, which is the basic two-dimensional gait of snake-like robots. Combining the basic motions on two perpendicular planes, the horizontal plane and the vertical plane, diverse gaits can be got through a heuristic three-dimensional gait generation method, including the lateral serpentine gait, the S-shape rolling gait, and the helical rolling gait, among which the S-shape rolling gait on the ground and helical rolling gait in the water are newly found The robot's motion ability on the ground and in the water is also validated by experiments. The results of the gait performance analysis obtained must be useful for the position and posture control of the robot in amphibious environments.%针对沼泽、浅滩等复杂环境对蛇形机器人的环境适应需求,在广泛分析国内外水陆两栖蛇形机器人研究最新进展的基础上,研发一种新型水陆两栖蛇形机器人.该机器人由9个具有密封设计的万向运动单元组成,保证了样机在陆地和水中均能灵活运动.基于简化的蛇形曲线得到水陆两栖蛇形机器人的基本二维运动步态即蜿蜒运动.对两个垂直平面上,即水平面和竖直面上基本步态进行复合,由基于启发式思想的三维步态生成方法,得到包括侧向蜿蜒等运动的水陆两栖蛇形机器人的多种陆地步态和水下步态,其中S形翻滚运动和螺旋翻滚运动为蛇形机器人的两种新型步态.通过步态试验验证了水陆两栖蛇形机器人的陆地和水下运动能力.在试验过程中,对陆地和水下步态的

  2. Health, Human Capital, and Development.

    Science.gov (United States)

    Bleakley, Hoyt

    2010-09-01

    How much does disease depress development in human capital and income around the world? I discuss a range of micro evidence, which finds that health is both human capital itself and an input to producing other forms of human capital. I use a standard model to integrate these results, and suggest a re-interpretation of much of the micro literature. I then discuss the aggregate implications of micro estimates, but note the complications in extrapolating to general equilibrium, especially because of health's effect on population size. I also review the macro evidence on this topic, which consists of either cross-country comparisons or measuring responses to health shocks. Micro estimates are 1-2 orders of magnitude smaller than the cross-country relationship, but nevertheless imply high benefit-to-cost ratios from improving certain forms of health.

  3. Health, Human Capital, and Development*

    Science.gov (United States)

    Bleakley, Hoyt

    2013-01-01

    How much does disease depress development in human capital and income around the world? I discuss a range of micro evidence, which finds that health is both human capital itself and an input to producing other forms of human capital. I use a standard model to integrate these results, and suggest a re-interpretation of much of the micro literature. I then discuss the aggregate implications of micro estimates, but note the complications in extrapolating to general equilibrium, especially because of health’s effect on population size. I also review the macro evidence on this topic, which consists of either cross-country comparisons or measuring responses to health shocks. Micro estimates are 1–2 orders of magnitude smaller than the cross-country relationship, but nevertheless imply high benefit-to-cost ratios from improving certain forms of health. PMID:24147187

  4. Change Energy Image for Gait Recognition: An Approach Based on Symbolic Representation

    OpenAIRE

    Mohan Kumar H P; Nagendraswamy H S

    2014-01-01

    Gait can be identified by observing static and dynamic parts of human body. In this paper a variant of gait energy image called change energy images (CEI) are generated to capture detailed static and dynamic information of human gait. Radon transform is applied to CEI in four different directions (vertical, horizontal and two opposite cross sections) considering four different angles to compute discriminative feature values. The extracted features are represented in the form of interval –valu...

  5. Gait Deviation Index, Gait Profile Score and Gait Variable Score in children with spastic cerebral palsy

    DEFF Research Database (Denmark)

    Rasmussen, Helle Mätzke; Nielsen, Dennis Brandborg; Pedersen, Niels Wisbech;

    2015-01-01

    Abstract The Gait Deviation Index (GDI) and Gait Profile Score (GPS) are the most used summary measures of gait in children with cerebral palsy (CP). However, the reliability and agreement of these indices have not been investigated, limiting their clinimetric quality for research and clinical...... practice. The aim of this study was to investigate the intra-rater reliability and agreement of summary measures of gait (GDI; GPS; and the Gait Variable Score (GVS) derived from the GPS). The intra-rater reliability and agreement were investigated across two repeated sessions in 18 children aged 5...

  6. Educational Solutions for Human Development

    Directory of Open Access Journals (Sweden)

    Inês Kisil Miskalo

    2009-06-01

    Full Text Available The biggest challenge for education in Brazil is not only to popularize school access, but also to provide conditions for students to remain at school successfully. Therefore, it is necessary to invest in teachers qualification and in the adoption of efficient and effective public policies based on managerial patterns designed to cater to human resources articulations, equipment, finance and, mainly, to methodologies focused on results. Quality reorganization of public policy will only be possible through a triplet effort involving political will from public government, cooperation from the private sector and contribution from civil society. These partnerships assure public sphere the development of essential projects to enable the country to grow. They also allow Education to occupy the important place it deserves in the national agenda as a tool to foster human development. It is essential to guarantee to people knowledge and abilities that enable them to make sensible choices, have their health improved and thus, take part in the society actively. This essay intends to provide information on Instituto Ayrton Senna´s mission to boost quality education for new Brazilian generations as a precondition for human development. Its education programs supply managerial praxes to state and municipal public school systems that warrant conceptual changes and alter the school failure vicious cycle.

  7. A Low-Cost Anthropometric Walking Robot for Reproducing Gait Lab Data

    Directory of Open Access Journals (Sweden)

    Rogério Eduardo da Silva Santana

    2008-01-01

    Full Text Available Human gait analysis is one of the resources that may be used in the study and treatment of pathologies of the locomotive system. This paper deals with the modelling and control aspects of the design, construction and testing of a biped walking robot conceived to, in limited extents, reproduce the human gait. Robot dimensions have been chosen in order to guarantee anthropomorphic proportions and then to help health professionals in gait studies. The robot has been assembled with low-cost components and can reproduce, in an assisted way, real-gait patterns generated from data previously acquired in gait laboratories. Part of the simulated and experimental results are addressed to demonstrate the ability of the biped robot in reproducing normal and pathological human gait.

  8. Footwear Decreases Gait Asymmetry during Running.

    Directory of Open Access Journals (Sweden)

    Stefan Hoerzer

    Full Text Available Previous research on elderly people has suggested that footwear may improve neuromuscular control of motion. If footwear does in fact improve neuromuscular control, then such an influence might already be present in young, healthy adults. A feature that is often used to assess neuromuscular control of motion is the level of gait asymmetry. The objectives of the study were (a to develop a comprehensive asymmetry index (CAI that is capable of detecting gait asymmetry changes caused by external boundary conditions such as footwear, and (b to use the CAI to investigate whether footwear influences gait asymmetry during running in a healthy, young cohort. Kinematic and kinetic data were collected for both legs of 15 subjects performing five barefoot and five shod over-ground running trials. Thirty continuous gait variables including ground reaction forces and variables of the hip, knee, and ankle joints were computed for each leg. For each individual, the differences between the variables for the right and left leg were calculated. Using this data, a principal component analysis was conducted to obtain the CAI. This study had two main outcomes. First, a sensitivity analysis suggested that the CAI had an improved sensitivity for detecting changes in gait asymmetry caused by external boundary conditions. The CAI may, therefore, have important clinical applications such as monitoring the progress of neuromuscular diseases (e.g. stroke or cerebral palsy. Second, the mean CAI for shod running (131.2 ± 48.5; mean ± standard deviation was significantly lower (p = 0.041 than the CAI for barefoot running (155.7 ± 39.5. This finding suggests that in healthy, young adults gait asymmetry is reduced when running in shoes compared to running barefoot, which may be a result of improved neuromuscular control caused by changes in the afferent sensory feedback.

  9. The golden ratio of gait harmony: repetitive proportions of repetitive gait phases.

    Science.gov (United States)

    Iosa, Marco; Fusco, Augusto; Marchetti, Fabio; Morone, Giovanni; Caltagirone, Carlo; Paolucci, Stefano; Peppe, Antonella

    2013-01-01

    In nature, many physical and biological systems have structures showing harmonic properties. Some of them were found related to the irrational number φ known as the golden ratio that has important symmetric and harmonic properties. In this study, the spatiotemporal gait parameters of 25 healthy subjects were analyzed using a stereophotogrammetric system with 25 retroreflective markers located on their skin. The proportions of gait phases were compared with φ, the value of which is about 1.6180. The ratio between the entire gait cycle and stance phase resulted in 1.620 ± 0.058, that between stance and the swing phase was 1.629 ± 0.173, and that between swing and the double support phase was 1.684 ± 0.357. All these ratios did not differ significantly from each other (F = 0.870, P = 0.422, repeated measure analysis of variance) or from φ (P = 0.670, 0.820, 0.422, resp., t-tests). The repetitive gait phases of physiological walking were found in turn in repetitive proportions with each other, revealing an intrinsic harmonic structure. Harmony could be the key for facilitating the control of repetitive walking. Harmony is a powerful unifying factor between seemingly disparate fields of nature, including human gait.

  10. The Golden Ratio of Gait Harmony: Repetitive Proportions of Repetitive Gait Phases

    Directory of Open Access Journals (Sweden)

    Marco Iosa

    2013-01-01

    Full Text Available In nature, many physical and biological systems have structures showing harmonic properties. Some of them were found related to the irrational number known as the golden ratio that has important symmetric and harmonic properties. In this study, the spatiotemporal gait parameters of 25 healthy subjects were analyzed using a stereophotogrammetric system with 25 retroreflective markers located on their skin. The proportions of gait phases were compared with , the value of which is about 1.6180. The ratio between the entire gait cycle and stance phase resulted in 1.620 ± 0.058, that between stance and the swing phase was 1.629 ± 0.173, and that between swing and the double support phase was 1.684 ± 0.357. All these ratios did not differ significantly from each other (, , repeated measure analysis of variance or from (, resp., t-tests. The repetitive gait phases of physiological walking were found in turn in repetitive proportions with each other, revealing an intrinsic harmonic structure. Harmony could be the key for facilitating the control of repetitive walking. Harmony is a powerful unifying factor between seemingly disparate fields of nature, including human gait.

  11. The dynamic balance of the children with cerebral palsy and typical developing during gait. Part I: Spatial relationship between COM and COP trajectories.

    Science.gov (United States)

    Hsue, Bih-Jen; Miller, Freeman; Su, Fong-Chin

    2009-04-01

    Analysis of the COM or COP movement has been a simplified method to illustrate the balance disorders in static stance and gait, but has its limitation when examined alone. Dynamic stability of 32 children with cerebral palsy (CP) was examined and compared with 10 typically developing (TD) children by measuring the displacement of center of mass (COM) and center of pressure (COP) and their spatial relationship. The children with CP were further divided into two groups based on topographical involvement, hemiplegia (Hemi) and diplegia (Di). The participants walked with their preferred speed at least 5 successful trials on a walkway with two force plates mounted in the middle. An eight-camera motion analysis was used to capture 26 reflective markers secured at the bony landmarks of the participant. The data obtained from motion analysis and force plates was used to calculate COM and COP. The results showed either of two CP groups demonstrated significantly greater peak-to-peak COM and COP displacement in medio-lateral (ML) and lower peak-to-peak COM and COP displacement in anterio-posterior (AP) direction than TD group. The root mean square (RMS) of COM-COP divergence of Hemi and Di groups were higher than that of TD group in AP and ML direction, but only the difference in ML direction was significant. Present study demonstrates that COM-COP divergence can characterize the dynamic balance of the CP children in walking, and thus assist in comparing and differentiating balance patterns.

  12. Contributions to the understanding of gait control.

    Science.gov (United States)

    Simonsen, Erik Bruun

    2014-04-01

    This thesis is based on ten published articles. The experimental work was carried out at the Faculty of Health Sciences, University of Copenhagen. The aim was to investigate and describe a number of basic mechanical and physiological mechanisms behind human walking. The methodologies used were biomechanical movement analysis and electrophysiology. The walking experiments were carried out in a gait lab, where the subjects were video recorded while they walked across two force platforms, which measured the ground reaction forces. Net joint moments about the hip-, knee- and ankle joint were calculated by combining the movement data and the external reaction forces (inverse dynamics). Muscle activity and sensory input to the spinal cord were measured by electromyography (EMG) and electrical stimulation of peripheral nerves. The results showed that the gait pattern varies to a great degree between individuals. Some people choose to exert the highest forces about the ankle joint while others prefer to use the knee joint. By use of a cluster analysis, fifteen healthy subjects could be divided into two groups. The extensor moment about the knee joint was the main factor for separating the two gait patterns, but the group with the highest extensor moments about the knee joint also walked with more flexed knee joints, higher EMG activity in the quadriceps muscle and higher bone-on-bone forces. This may lead to development of osteoarthritis over the years. Walking on high-heeled shoes reduced the ankle joint moment significantly either because of reduced muscle fiber length and/or increased co-contraction about the joint. On the contrary, the extensor moment about the knee joint was almost doubled in the high-heeled condition compared to bare footed walking at the same velocity. Also the EMG activity increased in the leg muscles. This could be an explanation pertaining to the higher incidence of osteoarthritis in women than in men. Patients with a drop-foot cannot put the

  13. Pyroelectric infrared alarm system based on human gait recognition%基于人体步态识别的热释电红外传感报警系统

    Institute of Scientific and Technical Information of China (English)

    张涛; 钟舜聪

    2011-01-01

    In order to solve the problem of difficult detecting the motionless human body using pyroelectric infrared (PIR) sensor, a passive PIR alarm system based on human gait recognition was investigated to enhance the intelligence of the system and to reduce the false alarm rate. As the detector, PIR sensor was employed in the system for non-contact monitoring the human body within a certain distance. The PIR signal was filtered, amplified, and then converted to a digital signal by an analog-to-digital converter. Consequently, the digital signal was sent to a microcomputer ( MCU ) for processing. The human body movement characteristics were analyzed to achieve accurate security alarm purpose. The experimental results demonstrate the stable performance, high sensitivity and low false alarm rate of the developed PIR alarm system, therefore, it can be recommended for the applications in security system of home, shopping center, and warehouse.%针对热释电红外传感器对运动后静止的人体无法感应的缺点,设计了一种基于人体步态识别的热释电红外报警系统,大大提高了系统感知智能度,减少了报警的误报率.该系统利用热释电红外传感器(PIR)作为探头,将感测到人体的红外信息转换成电压信号,通过滤波、放大等信号调理以及经过数据采集后,将信号传递给单片机处理,结合人体运动特征进行步态识别,从而实现智能报警,达到安全防护的目的.研究结果表明,基于人体步态识别的热释电红外报警系统具有性能稳定、灵敏度高、误报率低等优点,适合各种安全报警的场合,具有广泛的应用前景.

  14. Gait as evidence

    DEFF Research Database (Denmark)

    Lynnerup, Niels; Larsen, Peter Kastmand

    2014-01-01

    This study examines what in Denmark may constitute evidence based on forensic anthropological gait analyses, in the sense of pointing to a match (or not) between a perpetrator and a suspect, based on video and photographic imagery. Gait and anthropometric measures can be used when direct facial...... comparison is not possible because of perpetrators masking their faces. The nature of judicial and natural scientific forms of evidence is discussed, and rulings dealing with the admissibility of video footage and forensic evidence in general are given. Technical issues of video materials are discussed......, and the study also discusses how such evidence may be presented, both in written statements and in court. © The Institution of Engineering and Technology 2014....

  15. Stability of an underactuated bipedal gait.

    Science.gov (United States)

    Mukherjee, S; Sangwan, V; Taneja, A; Seth, B

    2007-01-01

    A self-excited biped walking mechanism consisting of two legs that are connected in series at the hip joint through a servomotor is studied as a cyclic system with collisions. A torque proportional to angle between the shank of the swinging leg and the vertical is seen to sustain a gait. Each leg has a thigh and a shank connected at a passive knee joint that has a knee stopper restricting hyperextension similar to the human knee. A mathematical model for the dynamics of the system including the impact equations is used to analyse the stability of the system through examination of phase plane plots. Attractor lines along which the system approaches stability have been identified. A leg length for optimal stability has been identified. The biological basis for the proposed system has been identified by comparison with human gait.

  16. COMPONENTS OF SUSTAINABLE HUMAN DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Neyda Ibañez

    2017-03-01

    Full Text Available The present research aimed to propose new components of measurement of sustainable human development based on the historical-theoretical trajectory of development. The research assumes a ontoepistemological posture based on positivism, addressing the technique of the survey and the written questionnaire instrument applied to thirty-one (31 experts in the area of knowledge, whose analysis allowed to conclude that the traditional models to measure the Insufficient to demonstrate the reality of nations. Therefore, the proposal of measurement is derived in seven components: ethical, spiritual and cultural, in addition to those formally established by Munasinghe (1993, 2011 and the UN (2012: economic, social, environmental, institutional , In total, by the selection of one hundred and fifty-five (155 variables, whose index is denominated ISIDEHUS.

  17. Change Energy Image for Gait Recognition: An Approach Based on Symbolic Representation

    Directory of Open Access Journals (Sweden)

    Mohan Kumar H P

    2014-03-01

    Full Text Available Gait can be identified by observing static and dynamic parts of human body. In this paper a variant of gait energy image called change energy images (CEI are generated to capture detailed static and dynamic information of human gait. Radon transform is applied to CEI in four different directions (vertical, horizontal and two opposite cross sections considering four different angles to compute discriminative feature values. The extracted features are represented in the form of interval –valued type symbolic data. The proposed method is capable of recognizing an individual when he/she have variations in their gait due to different clothes they wear, in different normal conditions and carrying a bag. A similarity measure suitable for the proposed gait representation is explored for the purpose of establishing similarity match for gait recognition. Experiments are conducted on CASIA database B and the results have shown better recognition performance compared to some of the existing methods.

  18. Objective biomarkers of balance and gait for Parkinson's disease using body-worn sensors.

    Science.gov (United States)

    Horak, Fay B; Mancini, Martina

    2013-09-15

    Balance and gait impairments characterize the progression of Parkinson's disease (PD), predict the risk of falling, and are important contributors to reduced quality of life. Advances in technology of small, body-worn, inertial sensors have made it possible to develop quick, objective measures of balance and gait impairments in the clinic for research trials and clinical practice. Objective balance and gait metrics may eventually provide useful biomarkers for PD. In fact, objective balance and gait measures are already being used as surrogate endpoints for demonstrating clinical efficacy of new treatments, in place of counting falls from diaries, using stop-watch measures of gait speed, or clinical balance rating scales. This review summarizes the types of objective measures available from body-worn sensors. The metrics are organized based on the neural control system for mobility affected by PD: postural stability in stance, postural responses, gait initiation, gait (temporal-spatial lower and upper body coordination and dynamic equilibrium), postural transitions, and freezing of gait. However, the explosion of metrics derived by wearable sensors during prescribed balance and gait tasks, which are abnormal in individuals with PD, do not yet qualify as behavioral biomarkers, because many balance and gait impairments observed in PD are not specific to the disease, nor have they been related to specific pathophysiologic biomarkers. In the future, the most useful balance and gait biomarkers for PD will be those that are sensitive and specific for early PD and are related to the underlying disease process.

  19. Gait Dynamics Sensing Using IMU Sensor Array System

    Directory of Open Access Journals (Sweden)

    Slavomir Kardos

    2017-01-01

    Full Text Available The article deals with a progressive approach in gait sensing. It is incorporated by IMU (Inertia Measurement Unit complex sensors whose field of acting is mainly the motion sensing in medicine, automotive and other industry, self-balancing systems, etc. They allow acquiring the position and orientation of an object in 3D space. Using several IMU units the sensing array for gait dynamics was made. Based on human gait analysis the 7-sensor array was designed to build a gait motion dynamics sensing system with the possibility of graphical interpretation of data from the sensing modules in real-time graphical application interface under the LabVIEW platform. The results of analyses can serve as the information for medical diagnostic purposes. The main control part of the system is microcontroller, whose function is to control the data collection and flow, provide the communication and power management.

  20. Invariant Gait Continuum Based on the Duty-Factor

    DEFF Research Database (Denmark)

    Fihl, Preben; Moeslund, Thomas B.

    2008-01-01

    In this paper we present a method to describe the continuum of human gait in an invariant manner. The gait description is based on the duty-factor which is adopted from the biomechanics literature. We generate a database of artificial silhouettes representing the three main types of gait, i.......e. walking, jogging, and running. By generating silhouettes from different camera angles we make the method invariant to camera viewpoint and to changing directions of movement. Silhouettes are extracted using the Code-book method and represented in a scale- and translation-invariant manner by using shape...... contexts and tangent orientations. Input silhouettes are matched to the database using the Hungarian method. We define a classifier based on the dissimilarity between the input silhouettes and the gait actions of the database. This classification achieves an overall recognition rate of 87.1% on a diverse...

  1. Household human development index in Lakshadweep

    OpenAIRE

    I, Sahadudheen

    2014-01-01

    Since the evolution of the human development index in 1990 there has been a vivacious debate on measurement related issues of quality of human life among the nations. It is a long-established verity that the existing HDI presents averages and thus conceals wide discrepancy and disproportion in distribution of human development in overall population and does not take into account the distribution of human development within a population subgroup. This study is intended to look in to human ...

  2. 一种减重步行训练机器人的研制%Development of a body weight-support gait training robot

    Institute of Scientific and Technical Information of China (English)

    陈鹍; 刘启栋; 王人成; 贾晓红; 胡伟

    2011-01-01

    Objective:To develop a kind of robot for patients' body weight-support gait training.Method:Two mechanical exoskeleton legs and a vertical slave support,as well as a control system were includedin this robot.Result:A robot prototype was developed, which was adjustable, could provide different training modes of activeand passive movements and could be adjusted according to the patients' bodily form.Conclusion:Preliminary tests show that this robot can meet the requirements of clinical training and provide thebase for further study.Author's address Division of Intelligent and Biomechanical System, State Key Laboratory of Tribology, TsinghuaUniversity, Beijing, 100084%研制可用于患者进行减重步行康复训练的机器人.方法:采用外骨骼机械腿和竖直随动支撑作为主要的机械结构,并设计了相应的控制系统.结果:研制出了一台减重步行训练机器人样机,该机能提供主动、被动等多种训练模式,并能根据患者的体型进行相应的调整.结论:测试实验初步说明了该机器人能满足临床训练的要求,为进一步的实验研究奠定了基础.

  3. Transcriptome Encyclopedia of Early Human Development.

    Science.gov (United States)

    Sahakyan, Anna; Plath, Kathrin

    2016-05-01

    Our understanding of human pre-implantation development is limited by the availability of human embryos and cannot completely rely on mouse studies. Petropoulos et al. now provide an extensive transcriptome analysis of a large number of human pre-implantation embryos at single-cell resolution, revealing previously unrecognized features unique to early human development.

  4. Gait patterns for crime fighting: statistical evaluation

    Science.gov (United States)

    Sulovská, Kateřina; Bělašková, Silvie; Adámek, Milan

    2013-10-01

    The criminality is omnipresent during the human history. Modern technology brings novel opportunities for identification of a perpetrator. One of these opportunities is an analysis of video recordings, which may be taken during the crime itself or before/after the crime. The video analysis can be classed as identification analyses, respectively identification of a person via externals. The bipedal locomotion focuses on human movement on the basis of their anatomical-physiological features. Nowadays, the human gait is tested by many laboratories to learn whether the identification via bipedal locomotion is possible or not. The aim of our study is to use 2D components out of 3D data from the VICON Mocap system for deep statistical analyses. This paper introduces recent results of a fundamental study focused on various gait patterns during different conditions. The study contains data from 12 participants. Curves obtained from these measurements were sorted, averaged and statistically tested to estimate the stability and distinctiveness of this biometrics. Results show satisfactory distinctness of some chosen points, while some do not embody significant difference. However, results presented in this paper are of initial phase of further deeper and more exacting analyses of gait patterns under different conditions.

  5. Gait Recognition based on Dynamic Texture descriptors

    Directory of Open Access Journals (Sweden)

    B. Abdolahi

    2013-09-01

    Full Text Available The human movement analysis is an attractive topic in biometric research. Recent studies indicate that people have considerable ability to recognize others by their natural walking. Therefore, gait recognition has obtained great interest in biometric systems. The common biometrics is usually time-consuming, limited and collaborative. These drawbacks pose major challenges to the recognition process. Gait analysis is inconspicuous, needs no contact, is difficult to hide and can be evaluated at distance. This paper presents a bag of word method for gait recognition based on dynamic textures. Dynamic textures combine appearance and motion information. Since human walking has statistical variations in both spatial and temporal space, it can be described with dynamic texture features. To obtain these features, we extract spatiotemporal interest points and describe them by a dynamic texture descriptor. Afterwards, the hierarchical K-means as a clustering algorithm is applied to obtain the visual dictionary of video-words. As a result, human walking is represented as a histogram of video-words occurrences. The performance of our method is evaluated on two dataset: the KTH and IXMAS multiview datasets.

  6. Efficacy of clinical gait analysis: A systematic review.

    Science.gov (United States)

    Wren, Tishya A L; Gorton, George E; Ounpuu, Sylvia; Tucker, Carole A

    2011-06-01

    The aim of this systematic review was to evaluate and summarize the current evidence base related to the clinical efficacy of gait analysis. A literature review was conducted to identify references related to human gait analysis published between January 2000 and September 2009 plus relevant older references. The references were assessed independently by four reviewers using a hierarchical model of efficacy adapted for gait analysis, and final scores were agreed upon by at least three of the four reviewers. 1528 references were identified relating to human instrumented gait analysis. Of these, 116 original articles addressed technical accuracy efficacy, 89 addressed diagnostic accuracy efficacy, 11 addressed diagnostic thinking and treatment efficacy, seven addressed patient outcomes efficacy, and one addressed societal efficacy, with some of the articles addressing multiple levels of efficacy. This body of literature provides strong evidence for the technical, diagnostic accuracy, diagnostic thinking and treatment efficacy of gait analysis. The existing evidence also indicates efficacy at the higher levels of patient outcomes and societal cost-effectiveness, but this evidence is more sparse and does not include any randomized controlled trials. Thus, the current evidence supports the clinical efficacy of gait analysis, particularly at the lower levels of efficacy, but additional research is needed to strengthen the evidence base at the higher levels of efficacy.

  7. A novel biomechanical analysis of gait changes in the MPTP mouse model of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Werner J. Geldenhuys

    2015-08-01

    Full Text Available Parkinson’s disease (PD is an age-associated neurodegenerative disorder hallmarked by a loss of mesencephalic dopaminergic neurons. Accurate recapitulation of the PD movement phenotype in animal models of the disease is critical for understanding disease etiology and developing novel therapeutic treatments. However, most existing behavioral assays currently applied to such animal models fail to adequately detect and subsequently quantify the subtle changes associated with the progressive stages of PD. In this study, we used a video-based analysis system to develop and validate a novel protocol for tracking locomotor performance in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of PD. We anticipated that (1 treated mice should use slower, shorter, and less frequent strides and (2 that gait deficits should monotonically increase following MPTP administration, as the effects of neurodegeneration become manifest. Video-based biomechanical analyses, utilizing behavioral measures motivated by the comparative biomechanics literature, were used to quantify gait dynamics over a seven-day period following MPTP treatment. Analyses revealed shuffling behaviors consistent with the gait symptoms of advanced PD in humans. Here we also document dramatic gender-based differences in locomotor performance during the progression of the MPTP-induced lesion, despite male and female mice showing similar losses of striatal dopaminergic cells following MPTP administration. Whereas female mice appeared to be protected against gait deficits, males showed multiple changes in gait kinematics, consistent with the loss of locomotor agility and stability. Overall, these data show that the novel video analysis protocol presented here is a robust method capable of detecting subtle changes in gait biomechanics in a mouse model of PD. Our findings indicate that this method is a useful means by which to easily and economically screen preclinical therapeutic

  8. Microprocessor-based gait analysis system to retrain Trendelenburg gait.

    Science.gov (United States)

    Petrofsky, J S

    2001-01-01

    A microprocessor-based gait analysis system is described that uses two electromyogram (EMG) amplifiers, two foot switches and an audio feedback device to allow the retraining of one type of improper gait, where the hip abductors (gluteus medius muscles) are weak on one side of the body, causing the opposite hip to drop during the swing phase of gait (Trendelenburg gait). As the abnormality is strictly on one side of the body in most people, the circuitry is minimised, as gait can be analysed by only comparing muscle activity in the affected gluteus medius muscle with that in the unaffected gluteus medius muscle, through the EMG. Two foot contact switches are used to help assess timing of the step cycle. If gait is different on the two sides of the body, an audio cue directs the patient to correct the abnormality by increasing activity on the affected side. The device is tested on five patients. Trendelenburg gait is reduced by an average of 29 degrees through the use of the device. The average stride length at the beginning of the study is 0.32 +/- 0.3 m. By the end of the study, the stride length is increased to 0.45 +/- 0.2 m for the entire group of five subjects. The speed of gait has increased from 1.6 +/- 0.4 kmh(-1) to 3.1 +/- 0.5km h(-1).

  9. FOREIGN LANGUAGES AND HUMAN DEVELOPMENT: THE CASE ...

    African Journals Online (AJOL)

    HP

    2017-07-01

    Jul 1, 2017 ... He published the first Human Development report ... The main objective of human development lies on the freedom of its citizens as well as ... scholarship were Professor S. Ade Ojo, the former Director of the French Language.

  10. The effects of human resource flexibility on human resources development

    Directory of Open Access Journals (Sweden)

    SeidMehdi Veise

    2014-08-01

    Full Text Available Human resources are the primary factor for development of competitiveness and innovation and reaching competitive advantage and they try to improve corporate capabilities through various characteristics such as value creation, scarcity and difficulty of imitation. This paper investigates the effect of human resource flexibility and its dimensions on human resource development and its dimensions. The survey was conducted using descriptive-correlation method that intended to describe how human resource flexibility was effective on human resource development. Questionnaire was tool of data collection. The statistical population included one hundred employees of the Electric Company in Ilam province, thus census method was used. Reliability of the questionnaire was measured via Cronbach's alpha equal to 0.96. The findings revealed that flexibility and its dimensions were effective on human resource development and dimensions of it. As a result, human resource flexibility should be considered for development of human resources and employees with the highest flexibility should be selected.

  11. 76 FR 40737 - Eunice Kennedy Shriver National Institute of Child Health & Human Development; Notice of Closed...

    Science.gov (United States)

    2011-07-11

    ... Development Special Emphasis Group, Asymmetric Robotic Gait Training and Asymmetric Reaching Training to..., Population Research; 93.865, Research for Mothers and Children; 93.929, Center for Medical...

  12. Sensitivity of the OLGA and VCM models to erroneous marker placement: effects on 3D-gait kinematics

    NARCIS (Netherlands)

    Groen, B.E.; Geurts, M.; Nienhuis, B.; Duysens, J.E.J.

    2012-01-01

    Gait data need to be reliable to be valuable for clinical decision-making. To reduce the impact of marker placement errors, the Optimized Lower Limb Gait Analysis (OLGA) model was developed. The purpose of this study was to assess the sensitivity of the kinematic gait data to a standard marker displ

  13. Macroeconomics and Human Development, by Deepak Nayyar

    Directory of Open Access Journals (Sweden)

    Cristiana Ioana ŞERBĂNEL

    2013-12-01

    Full Text Available Microeconomics and Human Development pursue to tackle both negative and positive effects of macroeconomics on human development and vice-versa through a series of external and internal factors. The book consists in a series of articles published in a prestigious publication: Journal of Human Development and Capabilities. The authors have a perennial echo in the economic field.

  14. Values Reflected in the Human Development Index

    Science.gov (United States)

    Lind, Niels

    2004-01-01

    The Human Development Index (HDI) implicitly defines "human development" and ranks countries accordingly. To elucidate the HDI's meaning of "human development," the paper examines the sensitivity of the HDI to changes in its components, namely social indicators of education, longevity and standard of living. The HDI is next compared with two…

  15. Low Power Shoe Integrated Intelligent Wireless Gait Measurement System

    Science.gov (United States)

    Wahab, Y.; Mazalan, M.; Bakar, N. A.; Anuar, A. F.; Zainol, M. Z.; Hamzah, F.

    2014-04-01

    Gait analysis measurement is a method to assess and identify gait events and the measurements of dynamic, motion and pressure parameters involving the lowest part of the body. This significant analysis is widely used in sports, rehabilitation as well as other health diagnostic towards improving the quality of life. This paper presents a new system empowered by Inertia Measurement Unit (IMU), ultrasonic sensors, piezoceramic sensors array, XBee wireless modules and Arduino processing unit. This research focuses on the design and development of a low power ultra-portable shoe integrated wireless intelligent gait measurement using MEMS and recent microelectronic devices for foot clearance, orientation, error correction, gait events and pressure measurement system. It is developed to be cheap, low power, wireless, real time and suitable for real life in-door and out-door environment.

  16. Gait analysis in anorexia and bulimia nervosa.

    Science.gov (United States)

    Cimolin, Veronica; Galli, Manuela; Vismara, Luca; Vimercati, Sara Laura; Precilios, Helmer; Cattani, Laila; Fabris De Souza, Shirley; Petroni, Maria Letizia; Capodaglio, Paolo

    2013-09-13

    Anorexia (AN) and Bulimia Nervosa (BN) are two common eating disorders, which appear to share some reduced motor capacities, such as a reduced balance. The presence and the extent of other motor disorders have not been investigated in a comprehensive way. The aim of this study was to quantify gait pattern in AN and BN individuals in order to ascertain possible differences from the normality range and provide novel data for developing some evidence-based rehabilitation strategies. Nineteen AN patients (age 30.16+9.73) and 20 BN patients (age 26.8+8.41) were assessed with quantitative 3D computerized Gait Analysis. Results were compared with a group of healthy controls (CG; 30.7+5.6). AN and BN patients were characterized by different gait strategies compared to CG. Spatio-temporal parameters indicated shorter step length, with AN showing the shortest values. AN walked slower than BN and CG. As for kinematics, AN and BN showed a nonphysiologic pattern at pelvis and hip level on the sagittal and frontal plane, with BN yielding the most abnormal values. Both AN and BN patients were characterized by high ankle plantar flexion capacity at toe-off when compared to CG. As for ankle kinetics, both AN and BN showed physiologic patterns. Stiffness at hip level was close to CG in both pathologic groups; at the ankle level, stiffness was significantly decreased in both groups, with AN displaying lower values. Both AN and BN were characterized by an altered gait pattern compared to CG. Biomechanical differences were evident mainly at pelvis and hip level. Loss of lean mass may lead to musculoskeletal adaptation, ultimately causing alterations in the gait pattern.

  17. Mechanical Information of Plantar Fascia during Normal Gait

    Science.gov (United States)

    Gu, Yaodong; Li, Zhiyong

    The plantar fascia is an important foot tissue in stabilizing the longitudinal arch of human foot. Direct measurement to monitor the mechanical situation of plantar fascia at human locomotion is difficult. The purpose of this study was to construct a three-dimensional finite element model of the foot to calculate the internal stress/strain value of plantar fascia during different stage of gait. The simulated stress distribution of plantar fascia was the lowest at heel-strike, which concentrated on the medial side of calcaneal tubercle. The peak stress of plantar fascia was appeared at push-off, and the value is more than 5 times of the heel-strike position. Current FE model was able to explore the plantar fascia tension trend at the main sub-phases of foot. More detailed fascia model and intrinsic muscle forces could be developed in the further study.

  18. Gait signal analysis with similarity measure.

    Science.gov (United States)

    Lee, Sanghyuk; Shin, Seungsoo

    2014-01-01

    Human gait decision was carried out with the help of similarity measure design. Gait signal was selected through hardware implementation including all in one sensor, control unit, and notebook with connector. Each gait signal was considered as high dimensional data. Therefore, high dimensional data analysis was considered via heuristic technique such as the similarity measure. Each human pattern such as walking, sitting, standing, and stepping up was obtained through experiment. By the results of the analysis, we also identified the overlapped and nonoverlapped data relation, and similarity measure analysis was also illustrated, and comparison with conventional similarity measure was also carried out. Hence, nonoverlapped data similarity analysis provided the clue to solve the similarity of high dimensional data. Considered high dimensional data analysis was designed with consideration of neighborhood information. Proposed similarity measure was applied to identify the behavior patterns of different persons, and different behaviours of the same person. Obtained analysis can be extended to organize health monitoring system for specially elderly persons.

  19. Gait Signal Analysis with Similarity Measure

    Directory of Open Access Journals (Sweden)

    Sanghyuk Lee

    2014-01-01

    Full Text Available Human gait decision was carried out with the help of similarity measure design. Gait signal was selected through hardware implementation including all in one sensor, control unit, and notebook with connector. Each gait signal was considered as high dimensional data. Therefore, high dimensional data analysis was considered via heuristic technique such as the similarity measure. Each human pattern such as walking, sitting, standing, and stepping up was obtained through experiment. By the results of the analysis, we also identified the overlapped and nonoverlapped data relation, and similarity measure analysis was also illustrated, and comparison with conventional similarity measure was also carried out. Hence, nonoverlapped data similarity analysis provided the clue to solve the similarity of high dimensional data. Considered high dimensional data analysis was designed with consideration of neighborhood information. Proposed similarity measure was applied to identify the behavior patterns of different persons, and different behaviours of the same person. Obtained analysis can be extended to organize health monitoring system for specially elderly persons.

  20. TBI Assessment of Readiness Using a Gait Evaluation Test (TARGET): Development of a Portable mTBI Screening Device

    Science.gov (United States)

    2016-05-01

    Evaluation Test (TARGET): Development of a Portable mTBI Screening Device 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0094 5c. PROGRAM ...determine the validity and reliability of an Android device-based mTBI (mild traumatic brain injury) screening test app for assessing motor function. The...deployment. This study seeks to determine the validity and reliability of an Android device-based mTBI (mild traumatic brain injury) screening test app

  1. Children and adults minimise activated muscle volume by selecting gait parameters that balance gross mechanical power and work demands.

    Science.gov (United States)

    Hubel, Tatjana Y; Usherwood, James R

    2015-09-01

    Terrestrial locomotion on legs is energetically expensive. Compared with cycling, or with locomotion in swimming or flying animals, walking and running are highly uneconomical. Legged gaits that minimise mechanical work have previously been identified and broadly match walking and running at appropriate speeds. Furthermore, the 'cost of muscle force' approaches are effective in relating locomotion kinetics to metabolic cost. However, few accounts have been made for why animals deviate from either work-minimising or muscle-force-minimising strategies. Also, there is no current mechanistic account for the scaling of locomotion kinetics with animal size and speed. Here, we report measurements of ground reaction forces in walking children and adult humans, and their stance durations during running. We find that many aspects of gait kinetics and kinematics scale with speed and size in a manner that is consistent with minimising muscle activation required for the more demanding between mechanical work and power: spreading the duration of muscle action reduces activation requirements for power, at the cost of greater work demands. Mechanical work is relatively more demanding for larger bipeds--adult humans--accounting for their symmetrical M-shaped vertical force traces in walking, and relatively brief stance durations in running compared with smaller bipeds--children. The gaits of small children, and the greater deviation of their mechanics from work-minimising strategies, may be understood as appropriate for their scale, not merely as immature, incompletely developed and energetically sub-optimal versions of adult gaits.

  2. Self-calibrating view-invariant gait biometrics.

    Science.gov (United States)

    Goffredo, Michela; Bouchrika, Imed; Carter, John N; Nixon, Mark S

    2010-08-01

    We present a new method for viewpoint independent gait biometrics. The system relies on a single camera, does not require camera calibration, and works with a wide range of camera views. This is achieved by a formulation where the gait is self-calibrating. These properties make the proposed method particularly suitable for identification by gait, where the advantages of completely unobtrusiveness, remoteness, and covertness of the biometric system preclude the availability of camera information and specific walking directions. The approach has been assessed for feature extraction and recognition capabilities on the SOTON gait database and then evaluated on a multiview database to establish recognition capability with respect to view invariance. Moreover, tests on the multiview CASIA-B database, composed of more than 2270 video sequences with 65 different subjects walking freely along different walking directions, have been performed. The obtained results show that human identification by gait can be achieved without any knowledge of internal or external camera parameters with a mean correct classification rate of 73.6% across all views using purely dynamic gait features. The performance of the proposed method is particularly encouraging for application in surveillance scenarios.

  3. A method to standardize gait and balance variables for gait velocity.

    NARCIS (Netherlands)

    Iersel, M.B. van; Olde Rikkert, M.G.M.; Borm, G.F.

    2007-01-01

    Many gait and balance variables depend on gait velocity, which seriously hinders the interpretation of gait and balance data derived from walks at different velocities. However, as far as we know there is no widely accepted method to correct for effects of gait velocity on other gait and balance mea

  4. Early development of the human pelvic diaphragm

    NARCIS (Netherlands)

    Koch, Wijnandus Franciscus Robertus Maria

    2006-01-01

    The last decade an increasing interest in the pelvic floor can be observed in medical sciences. The lack of data on the development of the human pelvic floor is striking. The early development of the human pelvic diaphragm was studied. Materials and methods Use was made of 38 human embryos and fetus

  5. Early development of the human pelvic diaphragm

    NARCIS (Netherlands)

    Koch, Wijnandus Franciscus Robertus Maria

    2006-01-01

    The last decade an increasing interest in the pelvic floor can be observed in medical sciences. The lack of data on the development of the human pelvic floor is striking. The early development of the human pelvic diaphragm was studied. Materials and methodsUse was made of 38 human embryos and

  6. Human Capital Development: A Family Objective.

    Science.gov (United States)

    Hildebrand, Verna

    1995-01-01

    Examines the concept of human capital as an economic construct. Suggests that human capital contributes to economic development, as do physical capital or natural resources, in that its development reinforces individuals' future economic output. Suggests that this perspective may prove useful for human service professionals because funding…

  7. Auditive Discrimination of Equine Gaits by Parade Horses

    Directory of Open Access Journals (Sweden)

    Duilio Cruz-Becerra

    2009-06-01

    Full Text Available The purpose of this study was to examine parade horses’ auditory discriminationamong four types of equine gaits: paso-fino (“fine step”, trote-reunido(“two-beat trot”, trocha (“trot”, and galope-reunido (“gallop”. Two experimentallynaïve horses were trained to discriminate the sound of their owngait (paso-fino or fine step, through an experimental module that dispensedfood if the subject pressed a lever after hearing a sound reproduction of aparticular gait. Three experimental phases were developed, defined by theperiod of exposure to the sounds (20, 10, and 5 seconds, respectively. Thechoice between pairs of sounds including the horse’s own gait (fine stepand two-beat trot; fine step and gallop; and fine step and trot was reinforceddifferentially. The results indicate that the fine step horses are able todiscriminate their own gait from others, and that receptivity to their ownsounds could be included in their training regime.

  8. Metatarsal Loading During Gait-A Musculoskeletal Analysis.

    Science.gov (United States)

    Al-Munajjed, Amir A; Bischoff, Jeffrey E; Dharia, Mehul A; Telfer, Scott; Woodburn, James; Carbes, Sylvain

    2016-03-01

    Detailed knowledge of the loading conditions within the human body is essential for the development and optimization of treatments for disorders and injuries of the musculoskeletal system. While loads in the major joints of the lower limb have been the subject of extensive study, relatively little is known about the forces applied to the individual bones of the foot. The objective of this study was to use a detailed musculoskeletal model to compute the loads applied to the metatarsal bones during gait across several healthy subjects. Motion-captured gait trials and computed tomography (CT) foot scans from four healthy subjects were used as the inputs to inverse dynamic simulations that allowed the computation of loads at the metatarsal joints. Low loads in the metatarsophalangeal (MTP) joint were predicted before terminal stance, however, increased to an average peak of 1.9 times body weight (BW) before toe-off in the first metatarsal. At the first tarsometatarsal (TMT) joint, loads of up to 1.0 times BW were seen during the early part of stance, reflecting tension in the ligaments and muscles. These loads subsequently increased to an average peak of 3.0 times BW. Loads in the first ray were higher compared to rays 2-5. The joints were primarily loaded in the longitudinal direction of the bone.

  9. Development of Humane Interpersonal Relationships

    Science.gov (United States)

    Kleptsova, Elena Yuryevna; Balabanov, Anton Anatolyevich

    2016-01-01

    The article reflects some theoretical aspects of humanization of interpersonal relationships in the sphere of education. The notion "humanization of interpersonal relationships" is being analyzed. The authors offer a characterization of some parameters of relationships: orientation, modality, valence, intensity, awareness,…

  10. Terminology and forensic gait analysis.

    Science.gov (United States)

    Birch, Ivan; Vernon, Wesley; Walker, Jeremy; Young, Maria

    2015-07-01

    The use of appropriate terminology is a fundamental aspect of forensic gait analysis. The language used in forensic gait analysis is an amalgam of that used in clinical practice, podiatric biomechanics and the wider field of biomechanics. The result can often be a lack of consistency in the language used, the definitions used and the clarity of the message given. Examples include the use of 'gait' and 'walking' as synonymous terms, confusion between 'step' and 'stride', the mixing of anatomical, positional and pathological descriptors, and inability to describe appropriately movements of major body segments such as the torso. The purpose of this paper is to share the well-established definitions of the fundamental parameters of gait, common to all professions, and advocate their use in forensic gait analysis to establish commonality. The paper provides guidance on the selection and use of appropriate terminology in the description of gait in the forensic context. This paper considers the established definitions of the terms commonly used, identifies those terms which have the potential to confuse readers, and suggests a framework of terminology which should be utilised in forensic gait analysis.

  11. Highlights of Human Resource Development Conferences 1979.

    Science.gov (United States)

    Bunker, Barbara Benedict; And Others

    1979-01-01

    The articles focus on building interpersonal skills utilizing experiential training to socialize new employees and develop leadership. They also focus on training decision makers, performance appraisal, career development, mobilizing human resources and ego stages in organizational development. (CMG)

  12. Design and Control of a Lower Limb Exoskeleton for Robot-Assisted Gait Training

    Directory of Open Access Journals (Sweden)

    Pieter Beyl

    2009-01-01

    Full Text Available Robot-assisted rehabilitation of gait still faces many challenges, one of which is improving physical human-robot interaction. The use of pleated pneumatic artificial muscles to power a step rehabilitation robot has the potential to meet this challenge. This paper reports on the development of a gait rehabilitation exoskeleton with a knee joint powered by pleated pneumatic artificial muscles. It is intended as a platform for the evaluation of design and control concepts in view of improved physical human-robot interaction. The design was focused on the optimal dimensioning of the actuator configuration. Safety being the most important prerequisite, a proxy-based sliding mode controller (PSMC was implemented as it combines accurate tracking during normal operation with a smooth, slow and safe recovery from large position errors. Treadmill walking experiments of a healthy subject wearing the powered exoskeleton show the potential of PSMC as a safe robot-in-charge control strategy for robot-assisted gait training.

  13. Fractional Langevin model of gait variability

    Directory of Open Access Journals (Sweden)

    Latka Miroslaw

    2005-08-01

    Full Text Available Abstract The stride interval in healthy human gait fluctuates from step to step in a random manner and scaling of the interstride interval time series motivated previous investigators to conclude that this time series is fractal. Early studies suggested that gait is a monofractal process, but more recent work indicates the time series is weakly multifractal. Herein we present additional evidence for the weakly multifractal nature of gait. We use the stride interval time series obtained from ten healthy adults walking at a normal relaxed pace for approximately fifteen minutes each as our data set. A fractional Langevin equation is constructed to model the underlying motor control system in which the order of the fractional derivative is itself a stochastic quantity. Using this model we find the fractal dimension for each of the ten data sets to be in agreement with earlier analyses. However, with the present model we are able to draw additional conclusions regarding the nature of the control system guiding walking. The analysis presented herein suggests that the observed scaling in interstride interval data may not be due to long-term memory alone, but may, in fact, be due partly to the statistics.

  14. Capability of 2 gait measures for detecting response to gait training in stroke survivors: Gait Assessment and Intervention Tool and the Tinetti Gait Scale.

    Science.gov (United States)

    Zimbelman, Janice; Daly, Janis J; Roenigk, Kristen L; Butler, Kristi; Burdsall, Richard; Holcomb, John P

    2012-01-01

    To characterize the performance of 2 observational gait measures, the Tinetti Gait Scale (TGS) and the Gait Assessment and Intervention Tool (G.A.I.T.), in identifying improvement in gait in response to gait training. In secondary analysis from a larger study of multimodal gait training for stroke survivors, we measured gait at pre-, mid-, and posttreatment according to G.A.I.T. and TGS, assessing their capability to capture recovery of coordinated gait components. Large medical center. Cohort of stroke survivors (N=44) greater than 6 months after stroke. All subjects received 48 sessions of a multimodal gait-training protocol. Treatment consisted of 1.5 hours per session, 4 sessions per week for 12 weeks, receiving these 3 treatment aspects: (1) coordination exercise, (2) body weight-supported treadmill training, and (3) overground gait training, with 46% of subjects receiving functional electrical stimulation. All subjects were evaluated with the G.A.I.T. and TGS before and after completing the 48-session intervention. An additional evaluation was performed at midtreatment (after session 24). For the total subject sample, there were significant pre-/post-, pre-/mid-, and mid-/posttreatment gains for both the G.A.I.T. and the TGS. According to the G.A.I.T., 40 subjects (91%) showed improved scores, 2 (4%) no change, and 2 (4%) a worsening score. According to the TGS, only 26 subjects (59%) showed improved scores, 16 (36%) no change, and 1 (2%) a worsening score. For 1 treatment group of chronic stroke survivors, the TGS failed to identify a significant treatment response to gait training, whereas the G.A.I.T. measure was successful. The G.A.I.T. is more sensitive than the TGS for individual patients and group treatment response in identifying recovery of volitional control of gait components in response to gait training. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. A Calibrated Index of Human Development

    Science.gov (United States)

    Lind, Niels

    2010-01-01

    The weightings of the four component indicators of the UNDP's Human Development Index HDI appear to be arbitrary and have not been given justification. This paper develops a variant of the HDI, calculated to reflect peoples' revealed evaluations of education and the productivity of work. The resulting Calibrated human Development Index CDI has a…

  16. A Calibrated Index of Human Development

    Science.gov (United States)

    Lind, Niels

    2010-01-01

    The weightings of the four component indicators of the UNDP's Human Development Index HDI appear to be arbitrary and have not been given justification. This paper develops a variant of the HDI, calculated to reflect peoples' revealed evaluations of education and the productivity of work. The resulting Calibrated human Development Index CDI has a…

  17. Human Development, Inequality and Poverty: empirical findings

    OpenAIRE

    Suman Seth; Antonio Villar

    2014-01-01

    This paper provides a discussion on the empirical findings surrounding the design of human development, inequality and poverty measures. We focus on the United Nations Development Program approach to those issues, in particular regarding the human development index and the multidimensional poverty index.

  18. Integrated Human Development Programme in Angola

    OpenAIRE

    UNDP - UNOPS EDINFODEC Project - Cooperazione italiana,

    2004-01-01

    This report is an excerpt from the sixth UNDP-UNOPS-Cooperazione Italiana Report on Multilateral Human Development Programmes (2004). The Integrated Human Development Programme in Angola began in 1999 and ended in 2003. It focused on the maintenance and consolidation of the Local Economic Development Agencies (LEDAs). The PDHI helped set up the LEDAs in the Provinces of Bengo, Benguela and Kwanza Sul.

  19. Treatment of Gait Ignition Failure with Ropinirole

    Directory of Open Access Journals (Sweden)

    Alexis N. Cohen-Oram

    2014-10-01

    Full Text Available Gait ignition failure (GIF is a syndrome characterized by hesitation or inability to initiate gait from a static position. It may occur in a variety of conditions, including normal pressure hydrocephalus, subcortical vascular disease, parkinsonian syndromes and a variety of focal lesions. Previous information on the treatment of GIF has been primarily anecdotal, but there have been a few reports of response to dopamine agonists. We report a 63-year-old man with anoxic encephalopathy who developed GIF nine years after the initial anoxic insult. The patient’s GIF responded robustly, albeit transiently, to ropinirole. MRI was unrevealing, but a positron emission tomography scan showed hypometabolism in the deep frontal ACA/MCA watershed area; this may have disconnected the basal ganglia from the motor cortex and/or interrupted dopaminergic mesocortical transmission. Our understanding of the pathophysiology and the treatment of GIF remains limited, but there may be at least a limited therapeutic role for dopamine agonists.

  20. Validity of the gait variability index in older adults: effect of aging and mobility impairments.

    Science.gov (United States)

    Balasubramanian, Chitralakshmi K; Clark, David J; Gouelle, Arnaud

    2015-05-01

    Gait variability, defined as the fluctuation in spatiotemporal characteristics between steps, is suggested to be a sensitive indicator of mobility deficits with aging and pathological processes. A challenge in quantifying gait variability is the decision of which spatiotemporal parameters to assess because gait parameters may exhibit different amounts of variability and may differentially relate to mobility performance. The Gait Variability Index (GVI), a composite measure of variability across several gait parameters, was previously developed to overcome this challenge. The present study seeks to validate the use of GVI in the older adult population. A retrospective analysis of gait and clinical data was conducted using data pooled from five prior studies. The final data set included 105 younger adults (YA, agegait variability in older adults, is sensitive to differentiate between high-functioning older adults and those with mild to moderate mobility deficits and is associated with some clinical measures of functional mobility and balance.

  1. Human Resource Development in Construction Industry

    OpenAIRE

    Behnam Neyerstani

    2014-01-01

    Human Resource Development (HRD) is the domain that performs core function in an organization for the advancement of personal and professional skills, knowledge and abilities of employees. Human resource development includes such opportunities as employee training, employee career development, performance management and development, coaching, mentoring, succession planning, key employee identification and organization development. HRD has the key role in improving knowledge and skills on huma...

  2. Towards Effective Non-Invasive Brain-Computer Interfaces Dedicated to Gait Rehabilitation Systems

    Directory of Open Access Journals (Sweden)

    Thierry Castermans

    2013-12-01

    Full Text Available In the last few years, significant progress has been made in the field of walk rehabilitation. Motor cortex signals in bipedal monkeys have been interpreted to predict walk kinematics. Epidural electrical stimulation in rats and in one young paraplegic has been realized to partially restore motor control after spinal cord injury. However, these experimental trials are far from being applicable to all patients suffering from motor impairments. Therefore, it is thought that more simple rehabilitation systems are desirable in the meanwhile. The goal of this review is to describe and summarize the progress made in the development of non-invasive brain-computer interfaces dedicated to motor rehabilitation systems. In the first part, the main principles of human locomotion control are presented. The paper then focuses on the mechanisms of supra-spinal centers active during gait, including results from electroencephalography, functional brain imaging technologies [near-infrared spectroscopy (NIRS, functional magnetic resonance imaging (fMRI, positron-emission tomography (PET, single-photon emission-computed tomography (SPECT] and invasive studies. The first brain-computer interface (BCI applications to gait rehabilitation are then presented, with a discussion about the different strategies developed in the field. The challenges to raise for future systems are identified and discussed. Finally, we present some proposals to address these challenges, in order to contribute to the improvement of BCI for gait rehabilitation.

  3. Gait Dynamics and Locomotor Metabolism

    Science.gov (United States)

    2009-05-01

    field settings from simple technologies such as gps monitors and pedometers. 15. SUBJECT TERMS Locomotion, gait, metabolism, body size, load...a reduction in exercise intensity. REFERENCES: 1. Alexander, RM. Sprinting and endurance for runners and cyclists . American Journal of

  4. Orthomolecular enhancement of human development

    Science.gov (United States)

    Pauling, L.

    1978-01-01

    The importance of molecules introduced into the human body by the way of foods is emphasized. Examples of orthomolecular therapy are given that range from the control of epileptic seizures, the therapy of mental illness, to the prevention of the common cold.

  5. Gait phase varies over velocities.

    Science.gov (United States)

    Liu, Yancheng; Lu, Kun; Yan, Songhua; Sun, Ming; Lester, D Kevin; Zhang, Kuan

    2014-02-01

    We sought to characterize the percent (PT) of the phases of a gait cycle (GC) as velocity changes to establish norms for pathological gait characteristics with higher resolution technology. Ninety five healthy subjects (49 males and 46 females with age 34.9 ± 11.8 yrs, body weight 64.0 ± 11.7 kg and BMI 23.5 ± 3.6) were enrolled and walked comfortably on a 10-m walkway at self-selected slower, normal, and faster velocities. Walking was recorded with a high speed camera (250 frames per second) and the eight phases of a GC were determined by examination of individual frames for each subject. The correlation coefficients between the mean PT of the phases of the three velocities gaits and PT defined by previous publications were all greater than 0.99. The correlation coefficient between velocity and PT of gait phases is -0.83 for loading response (LR), -0.75 for mid stance (MSt), and -0.84 for pre-swing (PSw). While the PT of the phases of three velocities from this study are highly correlated with PT described by Dr. Jacquenlin Perry decades ago, actual PT of each phase varied amongst these individuals with the largest coefficient variation of 24.31% for IC with slower velocity. From slower to faster walk, the mean PT of MSt diminished from 35.30% to 25.33%. High resolution recording revealed ambiguity of some gait phase definitions, and these data may benefit GC characterization of normal and pathological gait in clinical practice. The study results indicate that one should consider individual variations and walking velocity when evaluating gaits of subjects using standard gait phase classification.

  6. [Clinical gait analysis: user guide].

    Science.gov (United States)

    Armand, Stéphane; Bonnefoy-Mazure, Alice; Hoffmeyer, Pierre; De Coulon, Geraldo

    2015-10-14

    Clinical gait analysis has become an indispensable medical examination for the management of patients with complex gait disorders. As its name suggests, the purpose of this examination is to assess patients whilst they are walking in a laboratory setting. Measurements include: 3 dimensional joint motion, forces applied to joints, and electromyographic muscle activity. This quantitative data allows identification of walking deviations and to deduce the likely causes of these deviations thanks to the clinical data available for each patient.

  7. Towards more effective robotic gait training for stroke rehabilitation: a review

    Directory of Open Access Journals (Sweden)

    Pennycott Andrew

    2012-09-01

    Full Text Available Abstract Background Stroke is the most common cause of disability in the developed world and can severely degrade walking function. Robot-driven gait therapy can provide assistance to patients during training and offers a number of advantages over other forms of therapy. These potential benefits do not, however, seem to have been fully realised as of yet in clinical practice. Objectives This review determines ways in which robot-driven gait technology could be improved in order to achieve better outcomes in gait rehabilitation. Methods The literature on gait impairments caused by stroke is reviewed, followed by research detailing the different pathways to recovery. The outcomes of clinical trials investigating robot-driven gait therapy are then examined. Finally, an analysis of the literature focused on the technical features of the robot-based devices is presented. This review thus combines both clinical and technical aspects in order to determine the routes by which robot-driven gait therapy could be further developed. Conclusions Active subject participation in robot-driven gait therapy is vital to many of the potential recovery pathways and is therefore an important feature of gait training. Higher levels of subject participation and challenge could be promoted through designs with a high emphasis on robotic transparency and sufficient degrees of freedom to allow other aspects of gait such as balance to be incorporated.

  8. Economics and Human Resource Development: A Rejoinder

    Science.gov (United States)

    Wang, Greg G.; Swanson, Richard A.

    2008-01-01

    This article focuses on the areas agreement between two recent and seemingly disparate Human Resource Development Review articles by Wang and Swanson (2008) and McLean, Lynham, Azevedo, Lawrence, and Nafukho (2008). The foundational roles of economics in human resource development theory and practice are highlighted as well as the need for…

  9. Learning Human Aspects of Collaborative Software Development

    Science.gov (United States)

    Hadar, Irit; Sherman, Sofia; Hazzan, Orit

    2008-01-01

    Collaboration has become increasingly widespread in the software industry as systems have become larger and more complex, adding human complexity to the technological complexity already involved in developing software systems. To deal with this complexity, human-centric software development methods, such as Extreme Programming and other agile…

  10. Economics and Human Resource Development: A Rejoinder

    Science.gov (United States)

    Wang, Greg G.; Swanson, Richard A.

    2008-01-01

    This article focuses on the areas agreement between two recent and seemingly disparate Human Resource Development Review articles by Wang and Swanson (2008) and McLean, Lynham, Azevedo, Lawrence, and Nafukho (2008). The foundational roles of economics in human resource development theory and practice are highlighted as well as the need for…

  11. Linking Career Development and Human Resource Planning.

    Science.gov (United States)

    Gutteridge, Thomas G.

    When organizations integrate their career development and human resources planning activities into a comprehensive whole, it is the exception rather than the rule. One reason for the frequent dichotomy between career development and human resource planning is the failure to recognize that they are complements rather than synonyms or substitutes.…

  12. Learning Human Aspects of Collaborative Software Development

    Science.gov (United States)

    Hadar, Irit; Sherman, Sofia; Hazzan, Orit

    2008-01-01

    Collaboration has become increasingly widespread in the software industry as systems have become larger and more complex, adding human complexity to the technological complexity already involved in developing software systems. To deal with this complexity, human-centric software development methods, such as Extreme Programming and other agile…

  13. Selective hypergravity stimulation : Its effects on the human balance and gait functions. A model to assess, in normal gravity conditions, some aspects of the perturbations induced on human body by microgravity conditions

    Science.gov (United States)

    Lazerges, M.

    To assess on Earth some reactions of the muscle mechanoreceptors to transitions from normogravity to microgravity, we studied the effects of transitions from hypergravity to normogravity. Hypergravity was selectively applied to the extensor muscles by increasing their activity during half an hour by means of 2 rubber extensible springs stretched from shoulders to feet. Immediate effects and post effects of such a stimulation were measured on quantifying dynamic balance (angular or linear displacement) and gait functions (spatio-temporal parameters and inferior limb length variations). The main results are : (1) a post effect on the balance function, appearing 3 minutes after the end of the selective hypergravity stimulus and improving the efficiency of balance function compared with the basal one, (2) a post effect on the gait function, appearing immediately after the end of the selective stimulation. It concerns the measures which quantify the gait phases during which flexor muscles are active (swing phases). It decreases the efficiency of the gait function compared with the basal one. It disappears 3 minutes after the end of the selective hypergravity stimulation. According to these results, if the effects on the muscle mechanoreceptors of the transitions from normogravity to microgravity looks like those of transitions from hypergravity to normogravity, post effects could be a mechanism of the motor perturbations at the beginning of the orbital flights.

  14. DESIGN METHODS OF HUMAN DEVELOPMENT MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Stanislav E. Elkin

    2017-09-01

    Full Text Available The article discusses the concept of "human development" and the schematic diagram of the organizational design of regional management systems in relation to human development. Management as an organizational process in the study is considered as part of all social subsystems, specifies regularities of development and formation of new structures and functions. In the study applied the following methods: allocation of levels of models, techniques of domination, the allocation phases of the operation, the construction of generalized indicators, etc. As a result of research design problems of systems management human development revealed that the primary means of successful adaptation of organizations to changing conditions is an effective mechanism for management of human capacity, which will provide the best in current economic terms the end results that allows you to apply the concept of "innovation potential" in relation to the process of human development.

  15. Validity of a wearable accelerometer to quantify gait in spinocerebellar ataxia type 6.

    Science.gov (United States)

    Hickey, Aodhán; Gunn, Eleanor; Alcock, Lisa; Del Din, Silvia; Godfrey, Alan; Rochester, Lynn; Galna, Brook

    2016-11-01

    Biomarkers are required to track disease progression and measure the effectiveness of interventions for people with spinocerebellar ataxia type-6 (SCA6). Gait is a potential biomarker that is sensitive to SCA6 which can be measured using wearable technology, reducing the need for expensive specialist facilities. However, algorithms used to calculate gait using data from wearables have not been validated in SCA6. This study sought to examine the validity of a single wearable for deriving 14 spatio-temporal gait characteristics in SCA6 and control cohorts. Participants performed eight intermittent walks along a 7 m instrumented walkway at their preferred walking pace while also wearing a single accelerometer-based wearable on L5. Gait algorithms previously validated in neurological populations and controls were used to derive gait characteristics. We assessed the bias, agreement and sensitivity of gait characteristics derived using the instrumented walkway and the wearable. Mean gait characteristics showed good to excellent agreement for both groups, although gait variability and asymmetry showed poor agreement between the two systems. Agreement improved considerably in the SCA6 group when people who used walking sticks were excluded from the analysis, suggesting poorer agreement in people with more severe gait impairment. Despite poor agreement for some characteristics, gait measured using the wearable was generally more sensitive to group differences than the instrumented walkway. Our findings indicate mean gait characteristics can be accurately measured using an accelerometer-based wearable in people SCA6 with mild-to-moderately severe gait impairment yet further development of algorithms are required for people with more severe symptoms.

  16. Human Resources in Geothermal Development

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, I.B.

    1995-01-01

    Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

  17. Gait Analysis in Cervical Spondylotic Myelopathy

    OpenAIRE

    Nishimura, Hirosuke; Endo, Kenji; Suzuki, Hidekazu; Tanaka, Hidetoshi; Shishido, Takaaki; Yamamoto, Kengo

    2015-01-01

    Study Design Gait analysis of patients with cervical spondylotic myelopathy (CSM) by using a sheet-type gait analysis system. Purpose The aim of this study was to compare the gait patterns of patients with CSM, evaluated by the Nurick grades, and to determine the threshold values of gait parameters predicting the occurrence of a fall by using a gait recorder. Overview of Literature Gait disorder due to CSM may progress to severe paraplegia, following even a minor trauma such as a fall. The in...

  18. Development of an Integrated Human Factors Toolkit

    Science.gov (United States)

    Resnick, Marc L.

    2003-01-01

    An effective integration of human abilities and limitations is crucial to the success of all NASA missions. The Integrated Human Factors Toolkit facilitates this integration by assisting system designers and analysts to select the human factors tools that are most appropriate for the needs of each project. The HF Toolkit contains information about a broad variety of human factors tools addressing human requirements in the physical, information processing and human reliability domains. Analysis of each tool includes consideration of the most appropriate design stage, the amount of expertise in human factors that is required, the amount of experience with the tool and the target job tasks that are needed, and other factors that are critical for successful use of the tool. The benefits of the Toolkit include improved safety, reliability and effectiveness of NASA systems throughout the agency. This report outlines the initial stages of development for the Integrated Human Factors Toolkit.

  19. Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications

    Directory of Open Access Journals (Sweden)

    Alvaro Muro-de-la-Herran

    2014-02-01

    Full Text Available This article presents a review of the methods used in recognition and analysis of the human gait from three different approaches: image processing, floor sensors and sensors placed on the body. Progress in new technologies has led the development of a series of devices and techniques which allow for objective evaluation, making measurements more efficient and effective and providing specialists with reliable information. Firstly, an introduction of the key gait parameters and semi-subjective methods is presented. Secondly, technologies and studies on the different objective methods are reviewed. Finally, based on the latest research, the characteristics of each method are discussed. 40% of the reviewed articles published in late 2012 and 2013 were related to non-wearable systems, 37.5% presented inertial sensor-based systems, and the remaining 22.5% corresponded to other wearable systems. An increasing number of research works demonstrate that various parameters such as precision, conformability, usability or transportability have indicated that the portable systems based on body sensors are promising methods for gait analysis.

  20. Quantifying Variation in Gait Features from Wearable Inertial Sensors Using Mixed Effects Models.

    Science.gov (United States)

    Cresswell, Kellen Garrison; Shin, Yongyun; Chen, Shanshan

    2017-02-25

    The emerging technology of wearable inertial sensors has shown its advantages in collecting continuous longitudinal gait data outside laboratories. This freedom also presents challenges in collecting high-fidelity gait data. In the free-living environment, without constant supervision from researchers, sensor-based gait features are susceptible to variation from confounding factors such as gait speed and mounting uncertainty, which are challenging to control or estimate. This paper is one of the first attempts in the field to tackle such challenges using statistical modeling. By accepting the uncertainties and variation associated with wearable sensor-based gait data, we shift our efforts from detecting and correcting those variations to modeling them statistically. From gait data collected on one healthy, non-elderly subject during 48 full-factorial trials, we identified four major sources of variation, and quantified their impact on one gait outcome-range per cycle-using a random effects model and a fixed effects model. The methodology developed in this paper lays the groundwork for a statistical framework to account for sources of variation in wearable gait data, thus facilitating informative statistical inference for free-living gait analysis.

  1. Quantifying Variation in Gait Features from Wearable Inertial Sensors Using Mixed Effects Models

    Directory of Open Access Journals (Sweden)

    Kellen Garrison Cresswell

    2017-02-01

    Full Text Available The emerging technology of wearable inertial sensors has shown its advantages in collecting continuous longitudinal gait data outside laboratories. This freedom also presents challenges in collecting high-fidelity gait data. In the free-living environment, without constant supervision from researchers, sensor-based gait features are susceptible to variation from confounding factors such as gait speed and mounting uncertainty, which are challenging to control or estimate. This paper is one of the first attempts in the field to tackle such challenges using statistical modeling. By accepting the uncertainties and variation associated with wearable sensor-based gait data, we shift our efforts from detecting and correcting those variations to modeling them statistically. From gait data collected on one healthy, non-elderly subject during 48 full-factorial trials, we identified four major sources of variation, and quantified their impact on one gait outcome—range per cycle—using a random effects model and a fixed effects model. The methodology developed in this paper lays the groundwork for a statistical framework to account for sources of variation in wearable gait data, thus facilitating informative statistical inference for free-living gait analysis.

  2. New Lower-Limb Gait Asymmetry Indices Based on a Depth Camera

    Directory of Open Access Journals (Sweden)

    Edouard Auvinet

    2015-02-01

    Full Text Available Background: Various asymmetry indices have been proposed to compare the spatiotemporal, kinematic and kinetic parameters of lower limbs during the gait cycle. However, these indices rely on gait measurement systems that are costly and generally require manual examination, calibration procedures and the precise placement of sensors/markers on the body of the patient. Methods: To overcome these issues, this paper proposes a new asymmetry index, which uses an inexpensive, easy-to-use and markerless depth camera (Microsoft Kinect™ output. This asymmetry index directly uses depth images provided by the Kinect™ without requiring joint localization. It is based on the longitudinal spatial difference between lower-limb movements during the gait cycle. To evaluate the relevance of this index, fifteen healthy subjects were tested on a treadmill walking normally and then via an artificially-induced gait asymmetry with a thick sole placed under one shoe. The gait movement was simultaneously recorded using a Kinect™ placed in front of the subject and a motion capture system. Results: The proposed longitudinal index distinguished asymmetrical gait (p < 0.001, while other symmetry indices based on spatiotemporal gait parameters failed using such Kinect™ skeleton measurements. Moreover, the correlation coefficient between this index measured by Kinect™ and the ground truth of this index measured by motion capture is 0.968. Conclusion: This gait asymmetry index measured with a Kinect™ is low cost, easy to use and is a promising development for clinical gait analysis.

  3. Analyzing Gait Using a Time-of-Flight Camera

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Paulsen, Rasmus Reinhold; Larsen, Rasmus

    2009-01-01

    An algorithm is created, which performs human gait analysis using spatial data and amplitude images from a Time-of-flight camera. For each frame in a sequence the camera supplies cartesian coordinates in space for every pixel. By using an articulated model the subject pose is estimated in the depth...... on this model. The output data are: Speed, Cadence (steps per minute), Step length, Stride length (stride being two consecutive steps also known as a gait cycle), and Range of motion (angles of joints). The created system produces good output data of the described output parameters and requires no user...

  4. Analyzing Gait Using a Time-of-Flight Camera

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Paulsen, Rasmus Reinhold; Larsen, Rasmus

    2009-01-01

    An algorithm is created, which performs human gait analysis using spatial data and amplitude images from a Time-of-flight camera. For each frame in a sequence the camera supplies cartesian coordinates in space for every pixel. By using an articulated model the subject pose is estimated in the depth...... map in each frame. The pose estimation is based on likelihood, contrast in the amplitude image, smoothness and a shape prior used to solve a Markov random field. Based on the pose estimates, and the prior that movement is locally smooth, a sequential model is created, and a gait analysis is done...

  5. Statistical Removal of Shadow for Applications to Gait Recognition

    Science.gov (United States)

    2008-03-01

    methods. “Human movement analysis aims at gathering quantitative information about the mechanics of the musculo -skeletal system during the execution of...basic walking pattern, but their gaits are influence[d] by functions of their entire musculo -skeletal structure” (Post, 2006:1). The individuality of

  6. An energy efficient dynamic gait for a Nao robot

    NARCIS (Netherlands)

    Sun, Zhenglong; Roos, Nico

    2014-01-01

    This paper presents a framework to generate energy efficient dynamic human-like walk for a Nao humanoid robot. We first extend the inverted pendulum model with the goal of finding an energy efficient and stable walking gait. In this model, we propose a leg control policy which utilizes joint stiffne

  7. Ambulatory estimation of foot movement during gait using inertial sensors

    NARCIS (Netherlands)

    Schepers, H. Martin; Veltink, Petrus H.

    Human body movement analysis is commonly done in so-called 'gait laboratories’. In these laboratories, body movement is masured using optically based systems like Vicon, Optrotrak. The major drawback of these systems is the restriction to a laboratory environment. Therefore research is required to

  8. Fusion of sparse representation and dictionary matching for identification of humans in uncontrolled environment.

    Science.gov (United States)

    Fernandes, Steven Lawrence; Bala, G Josemin

    2016-09-01

    Biomechanics based human identification is a major area of research. Biomechanics based approaches depend on accurately recognizing humans using body movements, the accuracy of these approaches is enhanced by incorporating the knee-hip angle to angle relationships. Current biomechanics based models are developed by considering the biomechanics of human walking and running. In biomechanics the joint angle characteristics, also known as gait features play a vital role in identification of humans. In general, identification of humans can be broadly classified into two approaches: biomechanics based approach, also known as Gait Recognition and biometric based Composite Sketch Matching. Gait recognition is a biomechanics based approach which uses gait traits for person authentication, it discriminates people by the way they walk. Gait recognition uses shape and motion information of a person and identifies the individual; this information is generally acquired from an image sequence. The efficiency of gait recognition is mainly affected by covariates such as observation view, walking speed, clothing, and belongings. Biometric based approach for human identification is usually done by composite sketch matching. Composite sketches are sketches generated using a computer. This obviates the need of using a skilled sketch artist; these sketches can be easily drawn by eyewitness using face design system software in a very short time period. This doesn't require any prior specialized software training but identifying humans using only composite sketches is still a challenging task owing to the fact that human faces are not always clearly visible from a distance. Hence drawing a composite sketch at all times is not feasible. The key contribution of this paper is a fusion system developed by combining biomechanics based gait recognition and biometric based composite sketch matching for identifying humans in crowded scenes. First various existing biomechanics based approaches for

  9. Development of the asymmetric human

    Science.gov (United States)

    Wolpert, Lewis

    2005-10-01

    Symmetry across the midline is present in many animals, together with the left/right asymmetry of several organs, such as the heart in vertebrates. The development of such asymmetries during embryonic development requires first the specification of the midline and then specification of left/right. One model proposes the transfer of molecular asymmetry to the multicellular level. Nodal expression on the left side in mammals and chicks is a key event, and is due to the release of calcium on the left possibly involving an ion pump and the Notch pathway

  10. Making Human Beings Human: Bioecological Perspectives on Human Development. The SAGE Program on Applied Developmental Science

    Science.gov (United States)

    Bronfenbrenner, Urie, Ed.

    2004-01-01

    To a greater extent than any other species, human beings create the environments that, in turn, shape their own development. This book endeavors to demonstrate that human beings can also develop those environments to optimize their most constructive genetic potentials. What makes human beings human, therefore, is both the potential to shape their…

  11. Multiple gait parameters derived from iPod accelerometry predict age-related gait changes

    NARCIS (Netherlands)

    Kosse, Nienke; Vuillerme, Nicolas; Hortobagyi, Tibor; Lamoth, Claude

    2016-01-01

    Introduction Normative data of how natural aging affects gait can serve as a frame of reference for changes in gait dynamics due to pathologies. Therefore, the present study aims (1) to identify gait variables sensitive to age-related changes in gait over the adult life span using the iPod and (2) t

  12. Automated quantitative gait analysis in animal models of movement disorders

    Directory of Open Access Journals (Sweden)

    Vandeputte Caroline

    2010-08-01

    Full Text Available Abstract Background Accurate and reproducible behavioral tests in animal models are of major importance in the development and evaluation of new therapies for central nervous system disease. In this study we investigated for the first time gait parameters of rat models for Parkinson's disease (PD, Huntington's disease (HD and stroke using the Catwalk method, a novel automated gait analysis test. Static and dynamic gait parameters were measured in all animal models, and these data were compared to readouts of established behavioral tests, such as the cylinder test in the PD and stroke rats and the rotarod tests for the HD group. Results Hemiparkinsonian rats were generated by unilateral injection of the neurotoxin 6-hydroxydopamine in the striatum or in the medial forebrain bundle. For Huntington's disease, a transgenic rat model expressing a truncated huntingtin fragment with multiple CAG repeats was used. Thirdly, a stroke model was generated by a photothrombotic induced infarct in the right sensorimotor cortex. We found that multiple gait parameters were significantly altered in all three disease models compared to their respective controls. Behavioural deficits could be efficiently measured using the cylinder test in the PD and stroke animals, and in the case of the PD model, the deficits in gait essentially confirmed results obtained by the cylinder test. However, in the HD model and the stroke model the Catwalk analysis proved more sensitive than the rotarod test and also added new and more detailed information on specific gait parameters. Conclusion The automated quantitative gait analysis test may be a useful tool to study both motor impairment and recovery associated with various neurological motor disorders.

  13. Human-robot interaction strategies for walker-assisted locomotion

    CERN Document Server

    Cifuentes, Carlos A

    2016-01-01

    This book presents the development of a new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation. The aim is to achieve a closer interaction between the robotic device and the individual, empowering the rehabilitation potential of such devices in clinical applications. A new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation is presented. Trends and opportunities for future advances in the field of assistive locomotion via the development of hybrid solutions based on the combination of smart walkers and biomechatronic exoskeletons are also discussed. .

  14. Educating the Human Brain. Human Brain Development Series

    Science.gov (United States)

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  15. Educating the Human Brain. Human Brain Development Series

    Science.gov (United States)

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  16. Human Capital Development: Comparative Analysis of BRICs

    Science.gov (United States)

    Ardichvili, Alexandre; Zavyalova, Elena; Minina, Vera

    2012-01-01

    Purpose: The goal of this article is to conduct macro-level analysis of human capital (HC) development strategies, pursued by four countries commonly referred to as BRICs (Brazil, Russia, India, and China). Design/methodology/approach: This analysis is based on comparisons of macro indices of human capital and innovativeness of the economy and a…

  17. Human Resource Development in Changing Organizations.

    Science.gov (United States)

    London, Manuel; Wueste, Richard A.

    This book is intended to help managers and human resource professionals understand organizational change and manage its effects on their own development and that of their subordinates. The following topics are covered in 11 chapters: organizational change, employee motivation, new managerial roles, human performance systems, upward and peer…

  18. Pakistan's Water Challenges: A Human Development Perspective

    NARCIS (Netherlands)

    S. Shezad (Shafqat); K.A. Siegmann (Karin Astrid)

    2006-01-01

    textabstractAbstract This paper gives an overview of the human and social dimensions of Pakistan’s water policies to provide the basis for water-related policy interventions that contribute to the country’s human development, with special attention being given to the concerns of women and the poor.

  19. Human Capital Development: Comparative Analysis of BRICs

    Science.gov (United States)

    Ardichvili, Alexandre; Zavyalova, Elena; Minina, Vera

    2012-01-01

    Purpose: The goal of this article is to conduct macro-level analysis of human capital (HC) development strategies, pursued by four countries commonly referred to as BRICs (Brazil, Russia, India, and China). Design/methodology/approach: This analysis is based on comparisons of macro indices of human capital and innovativeness of the economy and a…

  20. Hegel's Hold on Conceptions of Human Development

    Science.gov (United States)

    Mulryan, Seamus

    2008-01-01

    The use of "development" is ubiquitous in everyday language, and theories regarding it can be found in the social sciences and humanities. Although much work has been done to examine the meaning of development and its history, little attention has been paid to Hegel's role as the philosophical anchor for the modern life of "development". By…

  1. Hegel's Hold on Conceptions of Human Development

    Science.gov (United States)

    Mulryan, Seamus

    2008-01-01

    The use of "development" is ubiquitous in everyday language, and theories regarding it can be found in the social sciences and humanities. Although much work has been done to examine the meaning of development and its history, little attention has been paid to Hegel's role as the philosophical anchor for the modern life of "development". By…

  2. Cultural Development through Human Resource Systems Integration.

    Science.gov (United States)

    Albert, Michael

    1985-01-01

    Discusses the framework for developing a cultural human resources management (HRM) perspective. Central to this framework is modifying HRM programs to reinforce the organization's preferred practices. Modification occurs through selection, orientation, training and development, performance appraisal, career development, and compensation and…

  3. Cultural Development through Human Resource Systems Integration.

    Science.gov (United States)

    Albert, Michael

    1985-01-01

    Discusses the framework for developing a cultural human resources management (HRM) perspective. Central to this framework is modifying HRM programs to reinforce the organization's preferred practices. Modification occurs through selection, orientation, training and development, performance appraisal, career development, and compensation and…

  4. Normative Spatiotemporal Gait Parameters in Older Adults

    OpenAIRE

    Hollman, John H; McDade, Eric M.; Petersen, Ronald C.

    2011-01-01

    While factor analyses have characterized pace, rhythm and variability as factors that explain variance in gait performance in older adults, comprehensive analyses incorporating many gait parameters have not been undertaken and normative data for many of those parameters are lacking. The purposes of this study were to conduct a factor analysis on nearly two dozen spatiotemporal gait parameters and to contribute to the normative database of gait parameters from healthy, able-bodied men and wome...

  5. Daily changes of individual gait patterns identified by means of support vector machines.

    Science.gov (United States)

    Horst, F; Kramer, F; Schäfer, B; Eekhoff, A; Hegen, P; Nigg, B M; Schöllhorn, W I

    2016-09-01

    Despite the common knowledge about the individual character of human gait patterns and about their non-repeatability, little is known about their stability, their interactions and their changes over time. Variations of gait patterns are typically described as random deviations around a stable mean curve derived from groups, which appear due to noise or experimental insufficiencies. The purpose of this study is to examine the nature of intrinsic inter-session variability in more detail by proving separable characteristics of gait patterns between individuals as well as within individuals in repeated measurement sessions. Eight healthy subjects performed 15 gait trials at a self-selected speed on eight days within two weeks. For each trial, the time-continuous ground reaction forces and lower body kinematics were quantified. A total of 960 gait patterns were analysed by means of support vector machines and the coefficient of multiple correlation. The results emphasise the remarkable amount of individual characteristics in human gait. Support vector machines results showed an error-free assignment of gait patterns to the corresponding individual. Thus, differences in gait patterns between individuals seem to be persistent over two weeks. Within the range of individual gait patterns, day specific characteristics could be distinguished by classification rates of 97.3% and 59.5% for the eight-day classification of lower body joint angles and ground reaction forces, respectively. Hence, gait patterns can be assumed not to be constant over time and rather exhibit discernible daily changes within previously stated good repeatability. Advantages for more individual and situational diagnoses or therapy are identified.

  6. Evaluation of the elderly patient with an abnormal gait.

    Science.gov (United States)

    Lim, Moe R; Huang, Russel C; Wu, Anita; Girardi, Federico P; Cammisa, Frank P

    2007-02-01

    Distinguishing between the normal gait of the elderly and pathologic gaits is often difficult. Pathologic gaits with neurologic causes include frontal gait, spastic hemiparetic gait, parkinsonian gait, cerebellar ataxic gait, and sensory ataxic gait. Pathologic gaits with combined neurologic and musculoskeletal causes include myelopathic gait, stooped gait of lumbar spinal stenosis, and steppage gait. Pathologic gaits with musculoskeletal causes include antalgic gait, coxalgic gait, Trendelenburg gait, knee hyperextension gait, and other gaits caused by inadequate joint mobility. A working knowledge of the characteristics of these gaits and a systematic approach to observational gait examination can help identify the causes of abnormal gait. Patients with abnormal gait can benefit from the treatment of the primary cause of the disorder as well as by general fall-prevention interventions. Treatable causes of gait disturbance are found in a substantial proportion of patients and include normal-pressure hydrocephalus, vitamin B(12) deficiency, Parkinson's disease, alcoholism, medication toxicity, cervical spondylotic myelopathy, lumbar spinal stenosis, joint contractures, and painful disorders of the lower extremity.

  7. Development of the human hypothalamus.

    Science.gov (United States)

    Swaab, D F

    1995-05-01

    The hypothalamus has been claimed to be involved in a great number of physiological functions in development, such as sexual differentiation (gender, sexual orientation) and birth, as well as in various developmental disorders including mental retardation, sudden infant death syndrome (SIDS), Kallman's syndrome and Prader-Willi syndrome. In this review a number of hypothalamic nuclei have therefore been discussed with respect to their development in health and disease. The suprachiasmatic nucleus (SCN) is the clock of the brain and shows circadian and seasonal fluctuations in vasopressin-expressing cell numbers. The SCN also seems to be involved in reproduction, adding interest to the sex differences in shape of the vasopressin-containing SCN subnucleus and in its VIP cell number. In addition, differences in relation to sexual orientation can be seen in this perspective. The vasopressin and VIP neurons of the SCN develop mainly postnatally, but as premature children may have circadian temperature rhythms, a different SCN cell type is probably more mature at birth. The sexually dimorphic nucleus (SDN, intermediate nucleus, INAH-1) is twice as large in young male adults as in young females. At the moment of birth only 20% of the SDN cell number is present. From birth until two to four years of age cell numbers increase equally rapidly in both sexes. After this age cell numbers start to decrease in girls, creating the sex difference. The size of the SDN does not show any relationship to sexual orientation in men. The large neurosecretory cells of the supraoptic (SON) and paraventricular nucleus (PVN) project to the neurohypophysis, where they release vasopressin and oxytocin into the blood circulation. In the fetus these hormones play an active role in the birth process. Fetal oxytocin may initiate or accelerate the course of labor. Fetal vasopressin plays a role in the adaptation to stress--caused by the birth process--by redistribution of the fetal blood flow

  8. FOREIGN LANGUAGES AND HUMAN DEVELOPMENT: THE CASE ...

    African Journals Online (AJOL)

    HP

    2017-07-01

    Jul 1, 2017 ... Key words: human development, foreign language, French. Introduction ..... to communicate with each other and exchange ideas. Not only ... This will enable learners have an early exposure to the language which will in turn.

  9. Human Resource Development Strategies: The Malaysian Scenario

    Directory of Open Access Journals (Sweden)

    Haslinda Abdullah

    2007-01-01

    Full Text Available The socio-economic development of Malaysia is greatly influenced by human resources activities in both the private and public sectors. But the private sector, particularly the industrial sector is the key player for the country’s economic growth. In acknowledging human resources importance in this sector, the country’s developmental plans developed thrusts that support the development of human resources to become skilled, creative and innovative. This article examines the concepts and nature of human resource development (HRD at the national level in Malaysia. In examining HRD from the national perspective, a review of documentary evidence from relevant Governmental reports and documents was utilised. The plans, policies, strategies, roles and responsibilities in HRD at the national level were discussed.

  10. Human Resources Development in the 70s

    Science.gov (United States)

    Ludeman, Bart L.

    1977-01-01

    Discusses five major objectives (put forth by the behavioral scientist, Dr. Gordon Lippitt) for human resource development which focus on the need for teamwork among future leaders, company management, and top educators. (LAS)

  11. Ecological Factors in Human Development.

    Science.gov (United States)

    Cross, William E

    2017-03-09

    Urie Bronfenbrenner (1992) helped developmental psychologists comprehend and define "context" as a rich, thick multidimensional construct. His ecological systems theory consists of five layers, and within each layer are developmental processes unique to each layer. The four articles in this section limit the exploration of context to the three innermost systems: the individual plus micro- and macrolayers. Rather than examine both the physical features and processes, the articles tend to focus solely on processes associated with a niche. Processes explored include social identity development, social network dynamics, peer influences, and school-based friendship patterns. The works tend to extend the generalization of extant theory to the developmental experience of various minority group experiences.

  12. Entrepreneurship and human development: A capability approach

    OpenAIRE

    Gries, Thomas; Naudé, Wim

    2010-01-01

    We provide a formal model of entrepreneurship in human development. The framework is provided by the capabilities approach (CA). Hence we extend not only the conceptualisation of entrepreneurship in development, but the reach of the CA into entrepreneurship. From a CA view, entrepreneurship is not only a production factor, or a means to an end, as is often taken to be the case by economists, but also an end in itself. Entrepreneurship can be a human functioning and can contribute towards expa...

  13. A wearable walking monitoring system for gait analysis.

    Science.gov (United States)

    Hsieh, Tsung-Han; Tsai, An-Chih; Chang, Cha-Wei; Ho, Ka-Hou; Hsu, Wei-Li; Lin, Ta-Te

    2012-01-01

    In this paper, both hardware and software design to develop a wearable walking monitoring system for gait analysis are presented. For hardware, the mechanism proposed is adaptive to different individuals to wear, and the portability of the design makes it easy to perform outdoor experiments. Four force sensors and two angle displacement sensors were used to measure plantar force distribution and the angles of hip and knee joints. For software design, a novel algorithm was developed to detect different gait phases and the four gait periods during the stance phase. Furthermore, the center of ground contact force was calculated based on the relationships of the force sensors. The results were compared with the VICON motion capture system and a force plate for validation. Experiments showed the behavior of the joint angles are similar to VICON system, and the average error in foot strike time is less than 90 ms.

  14. A mechanical energy analysis of gait initiation

    Science.gov (United States)

    Miller, C. A.; Verstraete, M. C.

    1999-01-01

    The analysis of gait initiation (the transient state between standing and walking) is an important diagnostic tool to study pathologic gait and to evaluate prosthetic devices. While past studies have quantified mechanical energy of the body during steady-state gait, to date no one has computed the mechanical energy of the body during gait initiation. In this study, gait initiation in seven normal male subjects was studied using a mechanical energy analysis to compute total body energy. The data showed three separate states: quiet standing, gait initiation, and steady-state gait. During gait initiation, the trends in the energy data for the individual segments were similar to those seen during steady-state gait (and in Winter DA, Quanbury AO, Reimer GD. Analysis of instantaneous energy of normal gait. J Biochem 1976;9:253-257), but diminished in amplitude. However, these amplitudes increased to those seen in steady-state during the gait initiation event (GIE), with the greatest increase occurring in the second step due to the push-off of the foundation leg. The baseline level of mechanical energy was due to the potential energy of the individual segments, while the cyclic nature of the data was indicative of the kinetic energy of the particular leg in swing phase during that step. The data presented showed differences in energy trends during gait initiation from those of steady state, thereby demonstrating the importance of this event in the study of locomotion.

  15. Nonstandard Gaits in Unsteady Hydrodynamics

    Science.gov (United States)

    Fairchild, Michael; Rowley, Clarence

    2016-11-01

    Marine biology has long inspired the design and engineering of underwater vehicles. The literature examining the kinematics and dynamics of fishes, ranging from undulatory anguilliform swimmers to oscillatory ostraciiform ones, is vast. Past numerical studies of these organisms have principally focused on gaits characterized by sinusoidal pitching and heaving motions. It is conceivable that more sophisticated gaits could perform better in some respects, for example as measured by thrust generation or by cost of transport. This work uses an unsteady boundary-element method to numerically investigate the hydrodynamics and propulsive efficiency of high-Reynolds-number swimmers whose gaits are encoded by Fourier series or by Jacobi elliptic functions. Numerical results are presented with an emphasis on identifying particular wake structures and modes of motion that are associated with optimal swimming. This work was supported by the Office of Naval Research through MURI Grant N00014-14-1-0533.

  16. Assessment of transmission in specific descending pathways in relation to gait and balance following spinal cord injury

    DEFF Research Database (Denmark)

    Barthélemy, Dorothy; Willerslev-Olsen, Maria; Lundell, Henrik

    2015-01-01

    Human bipedal gait requires supraspinal control and gait is consequently severely impaired in most persons with spinal cord injury (SCI). Little is known of the contribution of lesion of specific descending pathways to the clinical manifestations of gait deficits. Here, we assessed transmission...... in descending pathways using imaging and electrophysiological techniques and correlated them with clinical measures of impaired gait in persons with SCI. Twenty-five persons with SCI participated in the study. Functional assessment of gait included the Walking Index for Spinal Cord Injury (WISCI), the Timed......-Up and Go (TUG), the 6-Min Walking Test (6MWT), and the maximal treadmill gait speed. Balance was evaluated clinically by the Berg Balance Scale (BBS). The amplitude of tibialis anterior (TA) motor-evoked potentials (MEPs) at rest elicited by transcranial magnetic stimulation as a measure of corticospinal...

  17. Study and Development of the Biped Ice Skating Robot with Passive Wheels

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new passive wheel type of biped ice skating robot (BISR)which was able to imitate human skating motion was developed. Firstly, the characteristics of two types of human skating gait were introduced; secondly, after simplifying the kinematical model, the BISR's motion principle was presented; then the construction and control system of BISR were proposed; at last, the skating experiment of the BISR in a symmetric gait mode was conducted and some conclusions were drawn.

  18. ActiGait® A Partly Implantable Drop-Foot Stimulator System

    DEFF Research Database (Denmark)

    Larsen, Birgit Tine; Partriciu, Andrei

    2013-01-01

    ActiGait® is a four-channel partly implantable neuroprosthesis to control ankle dorsiflexion during the swing phase of gait. Besides being safe and effective it was the goal of the developers to make a device that was easily handled by users with various levels of disabilitities. To ensure optimal...... application of the ActiGait® during market introduction, additional monitoring tools were applied and developed such as preoperative and postoperative magnetic resonance imaging (MRI), intraoperative fluoroscopy, and surface recordings of the artifacts generated by the electrical stimulation of the nerve....... By employing close monitoring during the establisment of new ActiGait® clinical centers, ActiGait® has been shown to be well accepted by users in several European countries....

  19. Gait and balance analysis for patients with Alzheimer's disease using an inertial-sensor-based wearable instrument.

    Science.gov (United States)

    Hsu, Yu-Liang; Chung, Pau-Choo Julia; Wang, Wei-Hsin; Pai, Ming-Chyi; Wang, Chun-Yao; Lin, Chien-Wen; Wu, Hao-Li; Wang, Jeen-Shing

    2014-11-01

    Despite patients with Alzheimer's disease (AD) were reported of revealing gait disorders and balance problems, there is still lack of objective quantitative measurement of gait patterns and balance capability of AD patients. Based on an inertial-sensor-based wearable device, this paper develops gait and balance analyzing algorithms to obtain quantitative measurements and explores the essential indicators from the measurements for AD diagnosis. The gait analyzing algorithm is composed of stride detection followed by gait cycle decomposition so that gait parameters are developed from the decomposed gait details. On the other hand, the balance is measured by the sway speed in anterior-posterior (AP) and medial-lateral (ML) directions of the projection path of body's center of mass (COM). These devised gait and balance parameters were explored on twenty-one AD patients and fifty healthy controls (HCs). Special evaluation procedure including single-task and dual-task walking experiments for observing the cognitive function and attention is also devised for the comparison of AD and HC groups. Experimental results show that the wearable instrument with the designed gait and balance analyzing system is a promising tool for automatically analyzing gait information and balance ability, serving as assistant indicators for early diagnosis of AD.

  20. Measurement instruments to assess posture, gait, and balance in Parkinson's disease: Critique and recommendations.

    Science.gov (United States)

    Bloem, Bastiaan R; Marinus, Johan; Almeida, Quincy; Dibble, Lee; Nieuwboer, Alice; Post, Bart; Ruzicka, Evzen; Goetz, Christopher; Stebbins, Glenn; Martinez-Martin, Pablo; Schrag, Anette

    2016-09-01

    Disorders of posture, gait, and balance in Parkinson's disease (PD) are common and debilitating. This MDS-commissioned task force assessed clinimetric properties of existing rating scales, questionnaires, and timed tests that assess these features in PD. A literature review was conducted. Identified instruments were evaluated systematically and classified as "recommended," "suggested," or "listed." Inclusion of rating scales was restricted to those that could be used readily in clinical research and practice. One rating scale was classified as "recommended" (UPDRS-derived Postural Instability and Gait Difficulty score) and 2 as "suggested" (Tinetti Balance Scale, Rating Scale for Gait Evaluation). Three scales requiring equipment (Berg Balance Scale, Mini-BESTest, Dynamic Gait Index) also fulfilled criteria for "recommended" and 2 for "suggested" (FOG score, Gait and Balance Scale). Four questionnaires were "recommended" (Freezing of Gait Questionnaire, Activities-specific Balance Confidence Scale, Falls Efficacy Scale, Survey of Activities, and Fear of Falling in the Elderly-Modified). Four tests were classified as "recommended" (6-minute and 10-m walk tests, Timed Up-and-Go, Functional Reach). We identified several questionnaires that adequately assess freezing of gait and balance confidence in PD and a number of useful clinical tests. However, most clinical rating scales for gait, balance, and posture perform suboptimally or have been evaluated insufficiently. No instrument comprehensively and separately evaluates all relevant PD-specific gait characteristics with good clinimetric properties, and none provides separate balance and gait scores with adequate content validity for PD. We therefore recommend the development of such a PD-specific, easily administered, comprehensive gait and balance scale that separately assesses all relevant constructs. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder

  1. A Microsoft Kinect-Based Point-of-Care Gait Assessment Framework for Multiple Sclerosis Patients.

    Science.gov (United States)

    Gholami, Farnood; Trojan, Daria; Kovecses, Jozsef; Haddad, Wassim; Gholami, Behnood

    2016-07-21

    Gait impairment is a prevalent and important difficulty for patients with multiple sclerosis (MS), a common neurological disorder. An easy to use tool to objectively evaluate gait in MS patients in a clinical setting can assist clinicians to perform an objective assessment. The overall objective of this study is to develop a framework to quantify gait abnormalities in MS patients using the Microsoft Kinect for Windows sensor; an inexpensive, easy to use, portable camera. Specifically, we aim to evaluate its feasibility for utilization in a clinical setting, assess its reliability, evaluate the validity of gait indices obtained, and evaluate a novel set of gait indices based on the concept of dynamic time warping. In this study, 10 ambulatory MS patients, and 10 age and sex-matched normal controls were studied at one session in a clinical setting with gait assessment using a Kinect camera. The Expanded Disability Status Scale (EDSS) clinical ambulation score was calculated for the MS subjects, and patients completed the Multiple Sclerosis Walking Scale (MSWS). Based on this study, we established the potential feasibility of using a Microsoft Kinect camera in a clinical setting. Seven out of the eight gait indices obtained using the proposed method were reliable with intra-class correlation coefficients ranging from 0.61 to 0.99. All eight MS gait indices were significantly different from those of the controls (p-values less than 0.05). Finally, seven out of the eight MS gait indices were correlated with the objective and subjective gait measures (Pearson's correlation coefficients greater than 0.40). The study shows that the Kinect camera is as an easy to use tool to assess gait in MS patients in a clinical setting.

  2. Gait analysis in forensic medicine

    DEFF Research Database (Denmark)

    Larsen, Peter K; Simonsen, Erik B; Lynnerup, Niels

    2008-01-01

    Recordings from video surveillance systems are used as evidence from crime scenes. It would be useful to perform comparisons between disguised perpetrators and suspects based on their gait. We applied functional anatomical and biomechanical knowledge to analyze the gait of perpetrators, as recorded...... than the other. Based on these characteristic features, we are able to state with reasonable certainty whether the suspect could be the perpetrator, but it is not possible to identify the perpetrator positively. Nevertheless, we have been involved in several cases where the court has found...

  3. Development of human factors design review guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Oh, In Suk; Suh, Sang Moon; Lee, Hyun Chul [Korea Atomic Energy Research Institute, Taejon (Korea)

    1997-10-01

    The objective of this study is to develop human factors engineering program review guidelines and alarm system review guidelines in order to resolve the two major technical issues: 25. Human Factors Engineering Program Review Model and 26. Review Criteria for Human Factors Aspects of Advanced Controls and Instrumentation, which are related to the development of human factors safety regulation guides being performed by KINS. For the development of human factors program review guidelines, we made a Korean version of NUREG-0711 and added our comments by considering Korean regulatory situation and reviewing the reference documents of NUREG-0711. We also computerized the Korean version of NUREG-0711, additional comments, and selected portion of the reference documents for the developer of safety regulation guides in KINS to see the contents comparatively at a glance and use them easily. For the development of alarm system review guidelines, we made a Korean version of NUREG/CR-6105, which was published by NRC in 1994 as a guideline document for the human factors review of alarm systems. Then we will update the guidelines by reviewing the literature related to alarm design published after 1994. (author). 12 refs., 5 figs., 2 tabs.

  4. Gait feature extraction in Parkinson's disease using low-cost accelerometers.

    Science.gov (United States)

    Stamatakis, Julien; Crémers, Julien; Maquet, Didier; Macq, Benoit; Garraux, Gaëtan

    2011-01-01

    The clinical hallmarks of Parkinson's disease (PD) are movement poverty and slowness (i.e. bradykinesia), muscle rigidity, limb tremor or gait disturbances. Parkinson's gait includes slowness, shuffling, short steps, freezing of gait (FoG) and/or asymmetries in gait. There are currently no validated clinical instruments or device that allow a full characterization of gait disturbances in PD. As a step towards this goal, a four accelerometer-based system is proposed to increase the number of parameters that can be extracted to characterize parkinsonian gait disturbances such as FoG or gait asymmetries. After developing the hardware, an algorithm has been developed, that automatically epoched the signals on a stride-by-stride basis and quantified, among others, the gait velocity, the stride time, the stance and swing phases, the single and double support phases or the maximum acceleration at toe-off, as validated by visual inspection of video recordings during the task. The results obtained in a PD patient and a healthy volunteer are presented. The FoG detection will be improved using time-frequency analysis and the system is about to be validated with a state-of-the-art 3D movement analysis system.

  5. Coupled oscillators utilised as gait rhythm generators of a two-legged walking machine.

    Science.gov (United States)

    Zielińska, T

    1996-03-01

    The gait of current two-legged walking machines differs from that of humans, although the kinematic structures of these machines' legs frequently imitate human limbs. This paper presents a method of generating the trajectories of hip and knee joint angles resulting in a gait pattern similar to that of a human. For this purpose the solutions of coupled van der Pol oscillator equations are utilised. There is much evidence that these equations can be treated as a good model of the central pattern generator generating functional (also locomotional) rhythms in living creatures. The oscillator equations are solved by numerical integration. The method of changing the type of gait by changing appropriate parameter values in the oscillator equations is presented (change of velocity and trajectory of leg-ends). The results obtained enable enhanced control of two-legged walking systems by including gait pattern generators which will assume a similar role to that of biological generators.

  6. Sistema GaitGrabber na captação de dados cinemáticos durante a marcha GaitGrabber system on kinematic gait analyses

    Directory of Open Access Journals (Sweden)

    Renata Noce Kirkwood

    2012-09-01

    Full Text Available O objetivo do presente estudo foi desenvolver e testar a confiabilidade e validade do Sistema GaitGrabber na obtenção de dados cinemáticos no plano sagital durante a marcha. Dezoito indivíduos participaram do estudo de confiabilidade e 28 do estudo de validade concorrente. O Sistema Qualisys Pro-Reflex foi usado como padrão ouro. O GaitGrabber calcula os ângulos relativos de quadril, joelho e tornozelo no plano sagital. O Coeficiente de Correlação Intraclasse (CCI foi usado para comparação das médias dos picos angulares entre visitas. Para a validade, foi aplicada a análise de componentes principais. Os CCI variaram de moderados a excelentes e a validade do sistema foi comprovada para o tornozelo. Foi demonstrada diferença significativa na amplitude de movimento de quadril e joelho, a qual foi atribuída a características técnicas dos instrumentos. O Sistema GaitGrabber é válido e confiável e pode ser usado na clínica para análise cinemática da marcha no plano sagital.The purpose of this study was to develop and test the validity and reliability of the GaitGrabber System in measuring kinematic variables in the sagittal plane during gait. Eighteen individuals participated in the reliability study and 28 in the concurrent validity study. The Qualisys Pro-Reflex System used as a gold standard reference system. The GaitGrabber calculates the relative angles at the hip, knee and ankle in the sagittal plane. The Intraclass Correlation Coefficient (ICC was used to compare the average of the angular peaks between visits. The principal component analysis was used to test the validity of the system. The ICC ranged from moderate to excellent and the validity of the system was proved for the ankle. There were significant differences in the range of motion for the hip and knee joints which were attributed to different instrumental characteristics. The GaitGrabber system is valid and reliable and can be clinically used to analyze

  7. A protocol to examine vision and gait in Parkinson's disease: impact of cognition and response to visual cues.

    Science.gov (United States)

    Stuart, Samuel; Galna, Brook; Lord, Sue; Rochester, Lynn

    2015-01-01

    Background Cognitive and visual impairments are common in Parkinson's disease (PD) and contribute to gait deficit and falls. To date, cognition and vision in gait in PD have been assessed separately. Impact of both functions (which we term 'visuo-cognition') on gait however is likely interactive and can be tested using visual sampling (specifically saccadic eye movements) to provide an online behavioural measure of performance. Although experiments using static paradigms show saccadic impairment in PD, few studies have quantified visual sampling during dynamic motor tasks such as gait. This article describes a protocol developed for testing visuo-cognition during gait in order to examine the: 1) independent roles of cognition and vision in gait in PD, 2) interaction between both functions, and 3) role of visuo-cognition in gait in PD. Methods Two groups of older adults (≥50 years old) were recruited; non-demented people with PD (n=60) and age-matched controls (n=40). Participants attended one session and a sub-group (n=25) attended two further sessions in order to establish mobile eye-tracker reliability. Participants walked in a gait laboratory under different attentional (single and dual task), environmental (walk straight, through a door and turning), and cueing (no visual cues and visual cues) conditions. Visual sampling was recorded using synchronised mobile eye-tracker and electrooculography systems, and gait was measured using 3D motion analysis. Discussion This exploratory study examined visuo-cognitive processes and their impact on gait in PD. Improved understanding of the influence of cognitive and visual functions on visual sampling during gait and gait in PD will assist in development of interventions to improve gait and reduce falls risk. This study will also help establish robust mobile eye-tracking methods in older adults and people with PD.

  8. Objective assessment of gait in xylazine-induced ataxic horses.

    Science.gov (United States)

    Nout-Lomas, Y S; Page, K M; Kang, H G; Aanstoos, M E; Greene, H M

    2017-05-01

    There is poor agreement between observers of equine neurological gait abnormalities using the modified Mayhew grading scale. To stimulate a dose-dependent ataxia in horses through xylazine administration and identify quantifiable relevant gait parameters. Balanced, randomised, 2-way crossover design. Eight horses were assessed before and after administration of xylazine (low dose and high dose). Gait analyses performed before and after xylazine administration included: 1) kinematic data collected on an equine high-speed treadmill (flat and 10% decline) and from accelerometers placed on head and sacrum; and 2) kinetic data collected on a force plate. All horses developed dose-dependent ataxia. Horses developed a dose-dependent increased stride time, stride length, and time of contact (Pwalked on the treadmill, this movement decreased when walking over ground after administration of xylazine (P<0.05). Furthermore, centre of pressure and path length indices changed significantly in horses following administration of xylazine (P<0.05). This study examined one breed of horse (Arabian), all of similar height and weight. Accelerometers were attached to skin, not bone; no correction was made for artefacts from skin displacement. The sedative drug effect is of certain duration, limiting the data collection period. Administration of xylazine induced a dose-dependent ataxia in horses and resulted in significant changes of gait parameters, pelvic accelerations, and stabilographic variables, some of which changed in a dose-dependent fashion. Some of the altered gait parameters in this model were probably a result of overall slowing down of the stride cycle secondary to the sedative effect. Continued efforts to discover and evaluate quantifiable gait parameters that are susceptible to change following development of clinical neurological disease in horses is warranted. © 2016 EVJ Ltd.

  9. Development Tendencies of Sciences of Human Settlements

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In reviewing the scientific explorations in human settlements in the past century, as well as the new accomplishments in the study on Chinese human settlements, the author proposes that the Sciences of Human Settlements should respond to a series of new situations and chal-lenges of world development, such as global climate change and development mode transformation, in order to embody the ideal of "a Greater Science, a Greater Humanism, and a Greater Art". It is argued that the development tendencies of Sciences of Human Settlements in China should include: the concern for people’s livelihood based on the principle of people-oriented, the enhancement of strategic spatial planning for the new modes of spatial growth, the rising of ecological awareness for the Green Revolution, the balance of urban and rural development for rational urbanization, the exploration for the Third System from the perspectives of both Eastern and Western cultures, the innovations on the education of human settlements and the creation of both a better environment and a harmonious society.

  10. Human Resource Development in the Knowledge Economy

    DEFF Research Database (Denmark)

    Jørgensen, Sanne Lehmann

    . In this line of thinking, the aim is to propose a model for analysing the progress of knowledge improvements in developing countries as an outcome of the management of human, social and organisational capital. In this regard, the paper considers relevant practices and strategies in the context of developing...

  11. DNA Methylation Landscapes of Human Fetal Development

    NARCIS (Netherlands)

    Slieker, Roderick C.; Roost, Matthias S.; van Iperen, Liesbeth; Suchiman, H. Eka D; Tobi, Elmar W.; Carlotti, Françoise; de Koning, Eelco J P; Slagboom, P. Eline; Heijmans, Bastiaan T.; Chuva de Sousa Lopes, Susana M.

    2015-01-01

    Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA

  12. Human Resources Management & Development Handbook. Second Edition.

    Science.gov (United States)

    Tracey, William R., Ed.

    This revised handbook on the theory and practice of human resources management and development (HRM/D) focuses on people management and the personnel development processes. The book's 18 parts and 102 chapters by 107 contributors provide authoritative and comprehensive information on every aspect of modern HRM/D. Part 1 provides an overview of…

  13. National Cultures and Human Development Index

    Directory of Open Access Journals (Sweden)

    Edvard Konrad

    2012-12-01

    Full Text Available This paper explores the relationships between basic cultural characteristics of countries and some economic indexes. As cultural characteristics, the data from The Global Leadership and Organizational Behavior Effectiveness Research Program (GLOBE about the 9 cultural dimensions for 60 countries were used. Two facets of cultural dimensions were measured: the perceptions of actual practices and the perceptions of preferred values. On the other hand, the data about different economic indexes were taken from archival sources such as Human Development Report. Results show that some cultural practices and preferences are related to the development of countries as measured by Human Development Index (HDI. The implications of these results are discussed.

  14. Detecting Gait Phases from RGB-D Images Based on Hidden Markov Model.

    Science.gov (United States)

    Heravi, Hamed; Ebrahimi, Afshin; Olyaee, Ehsan

    2016-01-01

    Gait contains important information about the status of the human body and physiological signs. In many medical applications, it is important to monitor and accurately analyze the gait of the patient. Since walking shows the reproducibility signs in several phases, separating these phases can be used for the gait analysis. In this study, a method based on image processing for extracting phases of human gait from RGB-Depth images is presented. The sequence of depth images from the front view has been processed to extract the lower body depth profile and distance features. Feature vector extracted from image is the same as observation vector of hidden Markov model, and the phases of gait are considered as hidden states of the model. After training the model using the images which are randomly selected as training samples, the phase estimation of gait becomes possible using the model. The results confirm the rate of 60-40% of two major phases of the gait and also the mid-stance phase is recognized with 85% precision.

  15. Another Approach to Measuring Human Development: The Composite Dynamic Human Development Index

    Science.gov (United States)

    Bilbao-Ubillos, Javier

    2013-01-01

    This paper seeks mainly to contribute to the debate on how the relative degree of development of a country should be measured by proposing an indicator to build on the valuable starting point provided by the Human Development Index (HDI). The indicator proposed is called the "Composite, Dynamic Human Development Index". It incorporates in a simple…

  16. Another Approach to Measuring Human Development: The Composite Dynamic Human Development Index

    Science.gov (United States)

    Bilbao-Ubillos, Javier

    2013-01-01

    This paper seeks mainly to contribute to the debate on how the relative degree of development of a country should be measured by proposing an indicator to build on the valuable starting point provided by the Human Development Index (HDI). The indicator proposed is called the "Composite, Dynamic Human Development Index". It incorporates in a simple…

  17. The association between intersegmental coordination in the lower limb and gait speed in elderly females.

    Science.gov (United States)

    Ogaya, Shinya; Iwata, Akira; Higuchi, Yumi; Fuchioka, Satoshi

    2016-07-01

    Human multi-segmental motion is a complex task requiring motor coordination. Uncoordinated motor control may contribute to the decline in mobility; however, it is unknown whether the age-related decline in intersegmental coordination relates to the decline in gait performance. The aim of this study was to clarify the association between intersegmental coordination and gait speed in elderly females. Gait measurements were performed in 91 community-dwelling elderly females over 60 years old. Foot, shank, and thigh sagittal motions were assessed. Intersegmental coordination was analyzed using the mean value of the continuous relative phase (mCRP) during four phases of the gait cycle to investigate phase differences in foot-shank and shank-thigh motions during a normal gait. The results showed that foot-shank mCRP at late stance had negative correlations with gait speed (r=-0.53) and cadence (r=-0.54) and a positive correlation with age (r=0.25). In contrast, shank-thigh mCRP at late stance had positive correlations with gait speed (r=0.37) and cadence (r=0.56). Moreover, partial correlation, controlling age, height, and weight, revealed that foot-shank mCRP at late stance had negative correlations with gait speed (r=-0.52) and cadence (r=-0.54). Shank-thigh mCRP at late stance had a positive correlation with gait speed (r=0.28) and cadence (r=0.51). These findings imply that the foot-shank and shank-thigh coordination patterns at late stance relate to gait speed, and uncoordinated lower limb motion is believed to be associated with the age-related decline in cadence.

  18. Evaluation of a Gait Assessment Module Using 3D Motion Capture Technology

    Science.gov (United States)

    Baskwill, Amanda J.; Belli, Patricia; Kelleher, Leila

    2017-01-01

    Background Gait analysis is the study of human locomotion. In massage therapy, this observation is part of an assessment process that informs treatment planning. Massage therapy students must apply the theory of gait assessment to simulated patients. At Humber College, the gait assessment module traditionally consists of a textbook reading and a three-hour, in-class session in which students perform gait assessment on each other. In 2015, Humber College acquired a three-dimensional motion capture system. Purpose The purpose was to evaluate the use of 3D motion capture in a gait assessment module compared to the traditional gait assessment module. Participants Semester 2 massage therapy students who were enrolled in Massage Theory 2 (n = 38). Research Design Quasi-experimental, wait-list comparison study. Intervention The intervention group participated in an in-class session with a Qualisys motion capture system. Main Outcome Measure(s) The outcomes included knowledge and application of gait assessment theory as measured by quizzes, and students’ satisfaction as measured through a questionnaire. Results There were no statistically significant differences in baseline and post-module knowledge between both groups (pre-module: p = .46; post-module: p = .63). There was also no difference between groups on the final application question (p = .13). The intervention group enjoyed the in-class session because they could visualize the content, whereas the comparison group enjoyed the interactivity of the session. The intervention group recommended adding the assessment of gait on their classmates to their experience. Both groups noted more time was needed for the gait assessment module. Conclusions Based on the results of this study, it is recommended that the gait assessment module combine both the traditional in-class session and the 3D motion capture system. PMID:28293329

  19. The development of human nature in childhood

    Directory of Open Access Journals (Sweden)

    Gordana Simonovski

    2001-12-01

    Full Text Available The article deals with the development of human nature in children from 4 to 12 years of age. The concept of human nature is described by Oerter (Oerter, 1991, 1994; Oerter, Oerter, Agostiani, Kim, in Wibowo, 1996 in his theory of development of implicit anthropology. Two procedures were applied in the research: an interview on adulthood and a social dilemma story, which was followed by a guided interview. The distribution of the developmental stages of the concept of human nature in children of different age is presented, along with the frequency of higher-stage answers that progressively rises with subject's age. The frequency of the answers on the first, the second and the third developmental stage is compared between sexes. Higher level of conceptualisation of human nature in girls was found when compared with boys. The intering in personality, social and action theory are explained.

  20. Analysis of gait patterns in normal school-aged children.

    Science.gov (United States)

    Menkveld, S R; Knipstein, E A; Quinn, J R

    1988-01-01

    The continuing development of gait in 60 children aged 7-16 years was studied with plantar surface-attached transducers to describe the time pressure profiles of foot segments during stance. Decreased pronation/supination of the subtalar and midtarsal joints was shown by simultaneous onset and simultaneous peak on medial and lateral heel sensors. The resultant midstance showed a rapid lateral-to-medial loading of the forefoot. The foot-flat position with decreased rotation about the longitudinal axis of the foot persists even after the temporal parameters of gait attain mature values.

  1. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns.

    Science.gov (United States)

    Zhao, Dong; Banks, Scott A; Mitchell, Kim H; D'Lima, Darryl D; Colwell, Clifford W; Fregly, Benjamin J

    2007-06-01

    The external knee adduction torque has been proposed as a surrogate measure for medial compartment load during gait. However, a direct link between these two quantities has not been demonstrated using in vivo measurement of medial compartment load. This study uses in vivo data collected from a single subject with an instrumented knee implant to evaluate this link. The subject performed five different overground gait motions (normal, fast, slow, wide, and toe-out) with simultaneous collection of instrumented implant, video motion, and ground reaction data. For each trial, the knee adduction torque was measured externally while the total axial force applied to the tibial insert was measured internally. Based on data collected from the same subject performing treadmill gait under fluoroscopic motion analysis, a regression equation was developed to calculate medial contact force from the implant load cell measurements. Correlation analyses were performed for the stance phase and entire gait cycle to quantify the relationship between the knee adduction torque and both the medial contact force and the medial to total contact force ratio. When the entire gait cycle was analyzed, R(2) for medial contact force was 0.77 when all gait trials were analyzed together and between 0.69 and 0.93 when each gait trial was analyzed separately (p knee adduction torque is highly correlated with medial compartment contact force and medial to total force ratio during gait.

  2. Categorization of gait patterns in adults with cerebral palsy: a clustering approach.

    Science.gov (United States)

    Roche, Nicolas; Pradon, Didier; Cosson, Julie; Robertson, Johanna; Marchiori, Claire; Zory, Raphael

    2014-01-01

    Gait patterns in adults with cerebral palsy have, to our knowledge, never been assessed. This contrasts with the large number of studies which have attempted to categorize gait patterns in children with cerebral palsy. Several methodological approaches have been developed to objectively classify gait patterns in patients with central nervous system lesions. These methods enable the identification of groups of patients with common underlying clinical problems. One method is cluster analysis, a multivariate statistical method which is used to classify an entire data set into homogeneous groups or "clusters". The aim of this study was to determine, using cluster analysis, the principal gait patterns which can be found in adults with cerebral palsy. Data from 3D motion analyses of 44 adults with cerebral palsy were included. A hierarchical cluster analysis was used to subgroup the different gait patterns based on spatiotemporal and kinematic parameters in the sagittal and frontal planes. Five clusters were identified (C1-C5) among which, 3 subgroups were determined, based on spontaneous gait speed (C1/C2: slow, C3/C4: moderate and C5: almost normal). The different clusters were related to specific kinematic parameters that can be assessed in routine clinical practice. These 5 classifications can be used to follow changes in gait patterns throughout growth and aging as well to assess the effects of different treatments (physiotherapy, surgery, botulinum toxin, etc.) on gait patterns in adults with cerebral palsy.

  3. Implementation of a smartphone for evaluating gait characteristics of a trans-tibial prosthesis.

    Science.gov (United States)

    LeMoyne, Robert; Mastroianni, Timothy; Montoya, Kevin

    2014-01-01

    Smartphone applications have been demonstrated for their capacity to measure gait in functionally autonomous environments beyond the limitations of a traditional gait laboratory. A software application enables the iPhone to function as a wireless accelerometer platform. The recorded acceleration of gait can be transmitted wirelessly as an email attachment through Internet connectivity. The objective of the research was to demonstrate the capacity of the smartphone to quantify gait features of a trans-tibial prosthesis. The iPhone a standard smartphone was mounted to the carbon fiber blade of the prosthesis through an adapter developed by a 3D printer. The application demonstrated considerable accuracy and reliability for the quantification of gait characteristics.

  4. Gait post-stroke: Pathophysiology and rehabilitation strategies.

    Science.gov (United States)

    Beyaert, C; Vasa, R; Frykberg, G E

    2015-11-01

    We reviewed neural control and biomechanical description of gait in both non-disabled and post-stroke subjects. In addition, we reviewed most of the gait rehabilitation strategies currently in use or in development and observed their principles in relation to recent pathophysiology of post-stroke gait. In both non-disabled and post-stroke subjects, motor control is organized on a task-oriented basis using a common set of a few muscle modules to simultaneously achieve body support, balance control, and forward progression during gait. Hemiparesis following stroke is due to disruption of descending neural pathways, usually with no direct lesion of the brainstem and cerebellar structures involved in motor automatic processes. Post-stroke, improvements of motor activities including standing and locomotion are variable but are typically characterized by a common postural behaviour which involves the unaffected side more for body support and balance control, likely in response to initial muscle weakness of the affected side. Various rehabilitation strategies are regularly used or in development, targeting muscle activity, postural and gait tasks, using more or less high-technology equipment. Reduced walking speed often improves with time and with various rehabilitation strategies, but asymmetric postural behaviour during standing and walking is often reinforced, maintained, or only transitorily decreased. This asymmetric compensatory postural behaviour appears to be robust, driven by support and balance tasks maintaining the predominant use of the unaffected side over the initially impaired affected side. Based on these elements, stroke rehabilitation including affected muscle strengthening and often stretching would first need to correct the postural asymmetric pattern by exploiting postural automatic processes in various particular motor tasks secondarily beneficial to gait.

  5. 基于人体步态的下肢外骨骼动力学仿真研究%Dynamics simulation of lower extremity exoskeleton based on human gait

    Institute of Scientific and Technical Information of China (English)

    李杨; 管小荣; 徐诚

    2015-01-01

    In order to optimize the design of lower extremity exoskeleton,the dynamic simulation of lower extremity exoskeleton is carried out based on the analysis of human gaits. The dynamic data of each joint of lower extremity exoskeleton and the driving parameters of the needed hydraulic driving system are gained and analyzed combining zero torque point ( ZMP ) . The results prove that the traditional stability criterion of the ZMP is too conservative to be suitable for the motion control of lower extremity exoskeleton.%为了对下肢外骨骼助力装置的设计进行优化,在对人体步态分析的基础上,进行了下肢外骨骼动力学仿真研究。获得了下肢外骨骼各关节的动力学数据和所需液压系统驱动参数,并结合零点力矩( ZMP)理论进行分析。指出传统人形机器人常用的ZMP稳定性判据过于保守,不适用于下肢外骨骼助力装置的运动控制。

  6. Human prefrontal cortex: evolution, development, and pathology.

    Science.gov (United States)

    Teffer, Kate; Semendeferi, Katerina

    2012-01-01

    The prefrontal cortex is critical to many cognitive abilities that are considered particularly human, and forms a large part of a neural system crucial for normal socio-emotional and executive functioning in humans and other primates. In this chapter, we survey the literature regarding prefrontal development and pathology in humans as well as comparative studies of the region in humans and closely related primate species. The prefrontal cortex matures later in development than more caudal regions, and some of its neuronal subpopulations exhibit more complex dendritic arborizations. Comparative work suggests that the human prefrontal cortex differs from that of closely related primate species less in relative size than it does in organization. Specific reorganizational events in neural circuitry may have taken place either as a consequence of adjusting to increases in size or as adaptive responses to specific selection pressures. Living in complex environments has been recognized as a considerable factor in the evolution of primate cognition. Normal frontal lobe development and function are also compromised in several neurological and psychiatric disorders. A phylogenetically recent reorganization of frontal cortical circuitry may have been critical to the emergence of human-specific executive and social-emotional functions, and developmental pathology in these same systems underlies many psychiatric and neurological disorders, including autism and schizophrenia.

  7. Diabetes: energetics, development and human evolution.

    Science.gov (United States)

    Campbell, B C; Cajigal, A

    2001-07-01

    The recent emergence of the thrifty phenotype as an explanation for metabolic efficiency has brought evolutionary perspectives on diabetes, as represented by the thrifty genotype, under scrutiny. However, the logic of natural selection along with evidence from non-human primates supports the role for energetic constraints in the evolution of metabolic efficiency, particularly in skeletal muscle physiology. Environmental fluctuation during human evolution would have provided selective pressures for the development of efficient skeletal muscle starting prenatally and continuing throughout the lifespan. Such mechanisms including, glucose transporters, mitochondrial gene expression, leptin receptors and uncoupling proteins, should be present in all humans, though some living populations may exhibit particular 'thriftier' alleles. A focus on physical activity and the factors underlying efficient muscle physiology has implications for prevention of diabetes in both developing and developed societies. Copyright 2001 Harcourt Publishers Ltd.

  8. The development of human behavior analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Lee, Yong Hee; Park, Geun Ok; Cheon, Se Woo; Suh, Sang Moon; Oh, In Suk; Lee, Hyun Chul; Park, Jae Chang

    1997-07-01

    In this project, which is to study on man-machine interaction in Korean nuclear power plants, we developed SACOM (Simulation Analyzer with a Cognitive Operator Model), a tool for the assessment of task performance in the control rooms using software simulation, and also develop human error analysis and application techniques. SACOM was developed to assess operator`s physical workload, workload in information navigation at VDU workstations, and cognitive workload in procedural tasks. We developed trip analysis system including a procedure based on man-machine interaction analysis system including a procedure based on man-machine interaction analysis and a classification system. We analyzed a total of 277 trips occurred from 1978 to 1994 to produce trip summary information, and for 79 cases induced by human errors time-lined man-machine interactions. The INSTEC, a database system of our analysis results, was developed. The MARSTEC, a multimedia authoring and representation system for trip information, was also developed, and techniques for human error detection in human factors experiments were established. (author). 121 refs., 38 tabs., 52 figs.

  9. The human brain. Prenatal development and structure

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Padilla, Miguel

    2011-07-01

    This book is unique among the current literature in that it systematically documents the prenatal structural development of the human brain. It is based on lifelong study using essentially a single staining procedure, the classic rapid Golgi procedure, which ensures an unusual and desirable uniformity in the observations. The book is amply illustrated with 81 large, high-quality color photomicrographs never previously reproduced. These photomicrographs, obtained at 6, 7, 11, 15, 18, 20, 25, 30, 35, and 40 weeks of gestation, offer a fascinating insight into the sequential prenatal development of neurons, blood vessels, and glia in the human brain. (orig.)

  10. Micro-Doppler characteristics of elderly gait patterns with walking aids

    Science.gov (United States)

    Amin, Moeness G.; Ahmad, Fauzia; Zhang, Yimin D.; Boashash, Boualem

    2015-05-01

    In this paper, we analyze the micro-Doppler signatures of elderly gait patterns in the presence of walking aids using radars. The signatures are based on real data experiments conducted in a laboratory environment using human subjects walking with a walking cane and a walker. Short-time Fourier transform is used to provide the local signal behavior over frequency and to detail the changes in the micro-Doppler signatures over time. Intrinsic differences in the Doppler and micro-Doppler signatures of the elderly gait observed with and without the use of a walking aid are highlighted. Features that capture these differences can be effective in discriminating gait with walking aids from normal human gait.

  11. Gait patterns in Prader-Willi and Down syndrome patients

    Directory of Open Access Journals (Sweden)

    Albertini Giorgio

    2010-06-01

    Full Text Available Abstract Background Prader-Willi (PWS and Down Syndrome (DS are two genetic disorders characterised by some common clinical and functional features. A quantitative description and comparison of their patterns would contribute to a deeper understanding of the determinants of motor disability in these two syndromes. The aim of this study was to measure gait pattern in PWS and DS in order to provide data for developing evidence-based deficit-specific or common rehabilitation strategies. Methods 19 PWS patients (17.7-40 yr and 21 DS patients (18-39 yr were evaluated with an optoelectronic system and force platforms for measuring kinematic and kinetic parameters during walking. The results were compared with those obtained in a group of normal-weight controls (Control Group: CG; 33.4 + 9.6 yr. Results and Discussion The results show that PWS and DS are characterised by different gait strategies. Spatio-temporal parameters indicated a cautious, abnormal gait in both groups, but DS walked with a less stable strategy than PWS. As for kinematics, DS showed a significantly reduced hip and knee flexion, especially at initial contact and ankle range of motion than PWS. DS were characterised by lower ranges of motion (p Conclusions Our data show that DS walk with a less physiological gait pattern than PWS. Based on our results, PWS and DS patients need targeted rehabilitation and exercise prescription. Common to both groups is the aim to improve hypotonia, muscle strength and motor control during gait. In DS, improving pelvis and hip range of motion should represent a major specific goal to optimize gait pattern.

  12. Gait planning for a quadruped robot with one faulty actuator

    Science.gov (United States)

    Chen, Xianbao; Gao, Feng; Qi, Chenkun; Tian, Xinghua

    2015-01-01

    Fault tolerance is essential for quadruped robots when they work in remote areas or hazardous environments. Many fault-tolerant gaits planning method proposed in the past decade constrained more degrees of freedom(DOFs) of a robot than necessary. Thus a novel method to realize the fault-tolerant walking is proposed. The mobility of the robot is analyzed first by using the screw theory. The result shows that the translation of the center of body(CoB) can be kept with one faulty actuator if the rotations of the body are controlled. Thus the DOFs of the robot body are divided into two parts: the translation of the CoB and the rotation of the body. The kinematic model of the whole robot is built, the algorithm is developed to actively control the body orientations at the velocity level so that the planned CoB trajectory can be realized in spite of the constraint of the faulty actuator. This gait has a similar generation sequence with the normal gait and can be applied to the robot at any position. Simulations and experiments of the fault-tolerant gait with one faulty actuator are carried out. The CoB errors and the body rotation angles are measured. Comparing to the traditional fault-tolerant gait they can be reduced by at least 50%. A fault-tolerant gait planning algorithm is presented, which not only realizes the walking of a quadruped robot with a faulty actuator, but also efficiently improves the walking performances by taking full advantage of the remaining operational actuators according to the results of the simulations and experiments.

  13. Gait Planning for a Quadruped Robot with One Faulty Actuator

    Institute of Scientific and Technical Information of China (English)

    CHEN Xianbao; GAO Feng; QI Chenkun; TIAN Xinghua

    2015-01-01

    Fault tolerance is essential for quadruped robots when they work in remote areas or hazardous environments. Many fault-tolerant gaits planning method proposed in the past decade constrained more degrees of freedom(DOFs) of a robot than necessary. Thus a novel method to realize the fault-tolerant walking is proposed. The mobility of the robot is analyzed first by using the screw theory. The result shows that the translation of the center of body(CoB) can be kept with one faulty actuator if the rotations of the body are controlled. Thus the DOFs of the robot body are divided into two parts:the translation of the CoB and the rotation of the body. The kinematic model of the whole robot is built, the algorithm is developed to actively control the body orientations at the velocity level so that the planned CoB trajectory can be realized in spite of the constraint of the faulty actuator. This gait has a similar generation sequence with the normal gait and can be applied to the robot at any position. Simulations and experiments of the fault-tolerant gait with one faulty actuator are carried out. The CoB errors and the body rotation angles are measured. Comparing to the traditional fault-tolerant gait they can be reduced by at least 50%. A fault-tolerant gait planning algorithm is presented, which not only realizes the walking of a quadruped robot with a faulty actuator, but also efficiently improves the walking performances by taking full advantage of the remaining operational actuators according to the results of the simulations and experiments.

  14. Custom sizing of lower limb exoskeleton actuators using gait dynamic modelling of children with cerebral palsy.

    Science.gov (United States)

    Samadi, B; Achiche, S; Parent, A; Ballaz, L; Chouinard, U; Raison, M

    2016-11-01

    The use of exoskeletons as an aid for people with musculoskeletal disorder is the subject to an increasing interest in the research community. These devices are expected to meet the specific needs of users, such as children with cerebral palsy (CP) who are considered a significant population in pediatric rehabilitation. Although these exoskeletons should be designed to ease the movement of people with physical shortcoming, their design is generally based on data obtained from healthy adults, which leads to oversized components that are inadequate to the targeted users. Consequently, the objective of this study is to custom-size the lower limb exoskeleton actuators based on dynamic modeling of the human body for children with CP on the basis of hip, knee, and ankle joint kinematics and dynamics of human body during gait. For this purpose, a multibody modeling of the human body of 3 typically developed children (TD) and 3 children with CP is used. The results show significant differences in gait patterns especially in knee and ankle with respectively 0.39 and -0.33 (Nm/kg) maximum torque differences between TD children and children with CP. This study provides the recommendations to support the design of actuators to normalize the movement of children with CP.

  15. Bicycle ergometer versus treadmill on balance and gait parameters ...

    African Journals Online (AJOL)

    Rasha A. Mohamed

    2014-12-01

    Dec 1, 2014 ... Conclusion: Aerobic exercise, in the form of treadmill training for children ... body systems (cognitive, sensorimotor, and musculoskeletal ... force development pattern. ... receiving muscle relaxant that affect balance and gait. .... necessity of resistance training for children with hemophilia ... Statistical analysis.

  16. Feature selection gait-based gender classification under different circumstances

    Science.gov (United States)

    Sabir, Azhin; Al-Jawad, Naseer; Jassim, Sabah

    2014-05-01

    This paper proposes a gender classification based on human gait features and investigates the problem of two variations: clothing (wearing coats) and carrying bag condition as addition to the normal gait sequence. The feature vectors in the proposed system are constructed after applying wavelet transform. Three different sets of feature are proposed in this method. First, Spatio-temporal distance that is dealing with the distance of different parts of the human body (like feet, knees, hand, Human Height and shoulder) during one gait cycle. The second and third feature sets are constructed from approximation and non-approximation coefficient of human body respectively. To extract these two sets of feature we divided the human body into two parts, upper and lower body part, based on the golden ratio proportion. In this paper, we have adopted a statistical method for constructing the feature vector from the above sets. The dimension of the constructed feature vector is reduced based on the Fisher score as a feature selection method to optimize their discriminating significance. Finally k-Nearest Neighbor is applied as a classification method. Experimental results demonstrate that our approach is providing more realistic scenario and relatively better performance compared with the existing approaches.

  17. Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint Motion During Overground Gait.

    Science.gov (United States)

    Guan, Shanyuanye; Gray, Hans A; Keynejad, Farzad; Pandy, Marcus G

    2016-01-01

    Most X-ray fluoroscopy systems are stationary and impose restrictions on the measurement of dynamic joint motion; for example, knee-joint kinematics during gait is usually measured with the subject ambulating on a treadmill. We developed a computer-controlled, mobile, biplane, X-ray fluoroscopy system to track human body movement for high-speed imaging of 3D joint motion during overground gait. A robotic gantry mechanism translates the two X-ray units alongside the subject, tracking and imaging the joint of interest as the subject moves. The main aim of the present study was to determine the accuracy with which the mobile imaging system measures 3D knee-joint kinematics during walking. In vitro experiments were performed to measure the relative positions of the tibia and femur in an intact human cadaver knee and of the tibial and femoral components of a total knee arthroplasty (TKA) implant during simulated overground gait. Accuracy was determined by calculating mean, standard deviation and root-mean-squared errors from differences between kinematic measurements obtained using volumetric models of the bones and TKA components and reference measurements obtained from metal beads embedded in the bones. Measurement accuracy was enhanced by the ability to track and image the joint concurrently. Maximum root-mean-squared errors were 0.33 mm and 0.65° for translations and rotations of the TKA knee and 0.78 mm and 0.77° for translations and rotations of the intact knee, which are comparable to results reported for treadmill walking using stationary biplane systems. System capability for in vivo joint motion measurement was also demonstrated for overground gait.

  18. EVOLUTION OF KNOWLEDGE DEVELOPMENT IN HUMAN RESUSCITATION

    Directory of Open Access Journals (Sweden)

    O. Zabolotina

    2010-01-01

    Full Text Available Study of human resuscitation development history is the first step in understanding modern approaches to cardiopulmonary resuscitation. A significant increase in survival parameters is driven by accumulation of knowledge, expertise, improvement in resuscitation technologies. Development of cardiopulmonary resuscitation structure, development of recommendations approved for study and practical use, addressing these issues at the state level are accompanied with a significant reduction in mortality both at the hospital and pre-hospital levels. Key words: children, cardiopulmonary resuscitation, development stages, training of pediatricians. (Pediatric Pharmacology. – 2010; 7(3:25-27

  19. Gait analysis in hip viscosupplementation for osteoarthritis: a case report

    Directory of Open Access Journals (Sweden)

    L. Di Lorenzo

    2013-10-01

    Full Text Available Hip is a site very commonly affected by osteoarthritis and the intra-articular administration of hyaluronic acid in the management of osteoarthritic pain is increasingly used. However, the debate about its usefulness is still ongoing, as not all results of clinical trials confirm its effectiveness. In order to achieve the best outcome, clinical assessment and treatment choices should be based on subjective outcome, pathological and mechanical findings that should be integrated with qualitative analysis of human movement. After viscosupplementation, clinical trials often evaluate as endpoint subjective outcomes (i.e. pain visual analogic scale and static imaging such as radiographs and magnetic resonance imaging. In our clinical practice we use gait analysis as part of rehabilitation protocol to measure performance, enhancement and changes of several biomechanical factors. Taking advantage of available resources (BTS Bioengineering gait analysis Elite System we studied a patient’s gait after ultrasound guided hip injections for viscosupplementation. He showed an early clinical and biomechanical improvement during walking after a single intra articular injection of hyaluronic acid. Gait analysis parameters obtained suggest that the pre-treatment slower speed may be caused by antalgic walking patterns, the need for pain control and muscle weakness. After hip viscosupplementation, the joint displayed different temporal, kinetic and kinematic parameters associated with improved pain patterns.

  20. Gait analysis in hip viscosupplementation for osteoarthritis: a case report.

    Science.gov (United States)

    Di Lorenzo, L

    2013-10-31

    Hip is a site very commonly affected by osteoarthritis and the intra-articular administration of hyaluronic acid in the management of osteoarthritic pain is increasingly used. However, the debate about its usefulness is still ongoing, as not all results of clinical trials confirm its effectiveness. In order to achieve the best outcome, clinical assessment and treatment choices should be based on subjective outcome, pathological and mechanical findings that should be integrated with qualitative analysis of human movement. After viscosupplementation, clinical trials often evaluate as endpoint subjective outcomes (i.e. pain visual analogic scale) and static imaging such as radiographs and magnetic resonance imaging. In our clinical practice we use gait analysis as part of rehabilitation protocol to measure performance, enhancement and changes of several biomechanical factors. Taking advantage of available resources (BTS Bioengineering gait analysis Elite System) we studied a patient's gait after ultrasound guided hip injections for viscosupplementation. He showed an early clinical and biomechanical improvement during walking after a single intra articular injection of hyaluronic acid. Gait analysis parameters obtained suggest that the pre-treatment slower speed may be caused by antalgic walking patterns, the need for pain control and muscle weakness. After hip viscosupplementation, the joint displayed different temporal, kinetic and kinematic parameters associated with improved pain patterns.

  1. Android Platform for Realtime Gait Tracking Using Inertial Measurement Units

    Science.gov (United States)

    Aqueveque, Pablo; Sobarzo, Sergio; Saavedra, Francisco; Maldonado, Claudio; Gómez, Britam

    2016-01-01

    One of the most important movements performed by the humans is gait. Biomechanical Gait analysis is usually by optical capture systems. However, such systems are expensive and sensitive to light and obstacles. In order to reduce those costs a system based on Inertial Measurements Units (IMU) is proposed. IMU are a good option to make movement analisys indoor with a low post-processing data, allowing to connect those systems to an Android platform. The design is based on two elements: a) The IMU sensors and the b) Android device. The IMU sensor is simple, small (35 x 35 mm), portable and autonomous (7.8 hrs). A resolution of 0.01° in their measurements is obtained, and sends data via Bluetooth link. The Android application works for Android 4.2 or higher, and it is compatible with Bluetooth devices 2.0 or higher. Three IMU sensors send data to a Tablet wirelessly, in order to evaluate the angles evolution for each joint of the leg (hip, knee and ankle). This information is used to calculate gait index and evaluate the gait quality online during the physical therapist is working with the patient. PMID:27990241

  2. Android platform for realtime gait tracking using inertial measurement units

    Directory of Open Access Journals (Sweden)

    Pablo Aqueveque

    2016-07-01

    Full Text Available One of the most important movements performed by the humans is gait. Biomechanical Gait analysis is usually by optical capture systems. However, such systems are expensive and sensitive to light and obstacles. In order to reduce those costs a system based on Inertial Measurements Units (IMU is proposed. IMU are a good option to make movement analisys indoor with a low post-processing data, allowing to connect those systems to an Android platform. The design is based on two elements: a The IMU sensors and the b Android device. The IMU sensor is simple, small (35 x 35 mm, portable and autonomous (7.8 hrs. A resolution of 0.01° in their measurements is obtained, and sends data via Bluetooth link. The Android application works for Android 4.2 or higher, and it is compatible with Bluetooth devices 2.0 or higher. Three IMU sensors send data to a Tablet wirelessly, in order to evaluate the angles evolution for each joint of the leg (hip, knee and ankle. This information is used to calculate gait index and evaluate the gait quality online during the physical therapist is working with the patient.

  3. Android Platform for Realtime Gait Tracking Using Inertial Measurement Units.

    Science.gov (United States)

    Aqueveque, Pablo; Sobarzo, Sergio; Saavedra, Francisco; Maldonado, Claudio; Gómez, Britam

    2016-06-13

    One of the most important movements performed by the humans is gait. Biomechanical Gait analysis is usually by optical capture systems. However, such systems are expensive and sensitive to light and obstacles. In order to reduce those costs a system based on Inertial Measurements Units (IMU) is proposed. IMU are a good option to make movement analisys indoor with a low post-processing data, allowing to connect those systems to an Android platform. The design is based on two elements: a) The IMU sensors and the b) Android device. The IMU sensor is simple, small (35 x 35 mm), portable and autonomous (7.8 hrs). A resolution of 0.01° in their measurements is obtained, and sends data via Bluetooth link. The Android application works for Android 4.2 or higher, and it is compatible with Bluetooth devices 2.0 or higher. Three IMU sensors send data to a Tablet wirelessly, in order to evaluate the angles evolution for each joint of the leg (hip, knee and ankle). This information is used to calculate gait index and evaluate the gait quality online during the physical therapist is working with the patient.

  4. Altered spatiotemporal characteristics of gait in older adults with chronic low back pain.

    Science.gov (United States)

    Hicks, Gregory E; Sions, J Megan; Coyle, Peter C; Pohlig, Ryan T

    2017-06-01

    Previous studies in older adults have identified that chronic low back pain (CLBP) is associated with slower gait speed. Given that slower gait speed is a predictor of greater morbidity and mortality among older adults, it is important to understand the underlying spatiotemporal characteristics of gait among older adults with CLBP. The purposes of this study were to determine (1) if there are differences in spatiotemporal parameters of gait between older adults with and without CLBP during self-selected and fast walking and (2) whether any of these gait characteristics are correlated with performance of a challenging walking task, e.g. stair negotiation. Spatiotemporal characteristics of gait were evaluated using a computerized walkway in 54 community-dwelling older adults with CLBP and 54 age- and sex-matched healthy controls. Older adults with CLBP walked slower than their pain-free peers during self-selected and fast walking. After controlling for body mass index and gait speed, step width was significantly greater in the CLBP group during the fast walking condition. Within the CLBP group, step width and double limb support time are significantly correlated with stair ascent/descent times. From a clinical perspective, these gait characteristics, which may be indicative of balance performance, may need to be addressed to improve overall gait speed, as well as stair-climbing performance. Future longitudinal studies confirming our findings are needed, as well as investigations focused on developing interventions to improve gait speed and decrease subsequent risk of mobility decline. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. EEG Single-Trial Detection of Gait Speed Changes during Treadmill Walk.

    Directory of Open Access Journals (Sweden)

    Giuseppe Lisi

    Full Text Available In this study, we analyse the electroencephalography (EEG signal associated with gait speed changes (i.e. acceleration or deceleration. For data acquisition, healthy subjects were asked to perform volitional speed changes between 0, 1, and 2 Km/h, during treadmill walk. Simultaneously, the treadmill controller modified the speed of the belt according to the subject's linear speed. A classifier is trained to distinguish between the EEG signal associated with constant speed gait and with gait speed changes, respectively. Results indicate that the classification performance is fair to good for the majority of the subjects, with accuracies always above chance level, in both batch and pseudo-online approaches. Feature visualisation and equivalent dipole localisation suggest that the information used by the classifier is associated with increased activity in parietal areas, where mu and beta rhythms are suppressed during gait speed changes. Specifically, the parietal cortex may be involved in motor planning and visuomotor transformations throughout the online gait adaptation, which is in agreement with previous research. The findings of this study may help to shed light on the cortical involvement in human gait control, and represent a step towards a BMI for applications in post-stroke gait rehabilitation.

  6. EEG Single-Trial Detection of Gait Speed Changes during Treadmill Walk.

    Science.gov (United States)

    Lisi, Giuseppe; Morimoto, Jun

    2015-01-01

    In this study, we analyse the electroencephalography (EEG) signal associated with gait speed changes (i.e. acceleration or deceleration). For data acquisition, healthy subjects were asked to perform volitional speed changes between 0, 1, and 2 Km/h, during treadmill walk. Simultaneously, the treadmill controller modified the speed of the belt according to the subject's linear speed. A classifier is trained to distinguish between the EEG signal associated with constant speed gait and with gait speed changes, respectively. Results indicate that the classification performance is fair to good for the majority of the subjects, with accuracies always above chance level, in both batch and pseudo-online approaches. Feature visualisation and equivalent dipole localisation suggest that the information used by the classifier is associated with increased activity in parietal areas, where mu and beta rhythms are suppressed during gait speed changes. Specifically, the parietal cortex may be involved in motor planning and visuomotor transformations throughout the online gait adaptation, which is in agreement with previous research. The findings of this study may help to shed light on the cortical involvement in human gait control, and represent a step towards a BMI for applications in post-stroke gait rehabilitation.

  7. Experimental tests for foot pressure analysis during orthostatic position and gait

    Directory of Open Access Journals (Sweden)

    Ganea Daniel

    2017-01-01

    Full Text Available Human body postural deviation during normal activities such as gait or orthostatic position can cause injuries. The paper presents an experimental study regarding the distribution of contact pressures during gait and orthostatic position, aiming to evaluate the load distribution between forefoot (FF and rear-foot (RF, the projection of center of gravity and the support area variation while conducting stability metering and feet load distribution tests.

  8. Biomechanical consequences of gait impairment at the ankle and foot : Injury, malalignment, and co-contraction

    OpenAIRE

    Wang, Ruoli

    2012-01-01

    The human foot contributes significantly to the function of the whole lower extremity during standing and locomotion. Nevertheless, the foot and ankle often suffer injuries and are affected by many musculoskeletal and neurological pathologies. The overall aim of this thesis was to evaluate gait parameters and muscle function change due to foot and ankle injury, malalignment and co-contraction. Using 3D gait analysis, analytical analyses and computational simulations, biomechanical consequence...

  9. How to Find Out in: Human Development.

    Science.gov (United States)

    Kaplan, Doris F.

    This library handbook was designed to aid the student in human development. It lists reference materials basic to general research and gives their location in the Fogler Library at the University of Maine. Materials are listed in five categories: (1) bibliographies; (2) handbooks and guides; (3) yearbooks; (4) congresses; and (5) documents. Some…

  10. The Dictionary for Human Resource Development.

    Science.gov (United States)

    Smith, Douglas H., Comp.

    This dictionary lists and defines approximately 360 words and phrases used in the field of human resource development (HRD). It reflects the opinions and collective expertise of a diverse range of HRD practitioners and faculty. The words and phrases selected were drawn from a search of more than 300 current and recent texts and 10 periodicals in…

  11. Human rights and sustainable spatial development

    NARCIS (Netherlands)

    Pallemaerts, M.

    2009-01-01

    What is the relationship between spatial planning and human rights? Though this question may seem highly theoretical at first glance, closer analysis will reveal that there are in fact a number of ways in which public policies in the area of territorial planning and development and the imperative of

  12. Human Capital Development Policies: Enhancing Employees Satisfaction

    Science.gov (United States)

    Wan, Hooi Lan

    2007-01-01

    Purpose--The aim of this article is to gain insight into some of the human capital development (HCD) policies that enhance employee satisfaction. A salient focus of the study is to assess whether employees in globalised foreign-owned MNCs are likely to be more satisfied with the HCD policies than with the practices employed by locally owned MNCs.…

  13. Human Resource Development and Organizational Values

    Science.gov (United States)

    Hassan, Arif

    2007-01-01

    Purpose: Organizations create mission statements and emphasize core values. Inculcating those values depends on the way employees are treated and nurtured. Therefore, there seems to be a strong relationship between human resource development (HRD) practices and organizational values. The paper aims to empirically examine this relationship.…

  14. How to Find Out in: Human Development.

    Science.gov (United States)

    Kaplan, Doris F.

    This library handbook was designed to aid the student in human development. It lists reference materials basic to general research and gives their location in the Fogler Library at the University of Maine. Materials are listed in five categories: (1) bibliographies; (2) handbooks and guides; (3) yearbooks; (4) congresses; and (5) documents. Some…

  15. Development of Human System Integration at NASA

    Science.gov (United States)

    Whitmore, Mihriban; McGuire, Kerry; Thompson, Shelby; Vos, Gordon

    2012-01-01

    Human Systems Integration seeks to design systems around the capabilities and limitations of the humans which use and interact with the system, ensuring greater efficiency of use, reduced error rates, and less rework in the design, manufacturing and operational deployment of hardware and software. One of the primary goals of HSI is to get the human factors practitioner involved early in the design process. In doing so, the aim is to reduce future budget costs and resources in redesign and training. By the preliminary design phase of a project nearly 80% of the total cost of the project is locked in. Potential design changes recommended by evaluations past this point will have little effect due to lack of funding or a huge cost in terms of resources to make changes. Three key concepts define an effective HSI program. First, systems are comprised of hardware, software, and the human, all of which operate within an environment. Too often, engineers and developers fail to consider the human capacity or requirements as part of the system. This leads to poor task allocation within the system. To promote ideal task allocation, it is critical that the human element be considered early in system development. Poor design, or designs that do not adequately consider the human component, could negatively affect physical or mental performance, as well as, social behavior. Second, successful HSI depends upon integration and collaboration of all the domains that represent acquisition efforts. Too often, these domains exist as independent disciplines due to the location of expertise within the service structure. Proper implementation of HSI through participation would help to integrate these domains and disciplines to leverage and apply their interdependencies to attain an optimal design. Via this process domain interests can be integrated to perform effective HSI through trade-offs and collaboration. This provides a common basis upon which to make knowledgeable decisions. Finally

  16. INTERDEPENDENCE BETWEEN SUSTAINABLE DEVELOPMENT AND HUMAN HEALTH

    Directory of Open Access Journals (Sweden)

    Dorina MOCUTA

    2013-01-01

    Full Text Available Sustainable development in Romania can be achieved only through consensus orchestrated prioritizing people's attitudes and values. In order to achieve a maximum performance, cultural change must precede structural and functional changes, such an approach leading to a lasting transformation. Cultural change is not about social traditions, history, language, art, etc.., But those on the behavior, mentality, attitude towards work, economy and society. Sustainable development have to mean quality and achieve only limited natural capital, social and anthropogenic own or attracted. A drawing resources must be addressed by cost and their global rarity. Sustainable development for Romania, represents the effective management of resources in the national competitiveness and national foreign goods and services. Human health suppliers, health organizations that offer health services and those who need these services, meet on a market, called health services market, whose mechanism has features different from the other markets, not only from the point of view of the two forces, demand and supply, but also from the third party who pays. In the context of globalization, human development, defined as a process of people’s expanding possibilities to choose, cannot exist without an appropriate health. People often make choices in the economic, social and political fields, situated in the centre of development policies. From the human health perspective, attention is aimed at quality of the economic development, and not quantity, in three critical domains: expectation and quality of life, educational level and access to all the necessary economic resources in order to lead a decent life.

  17. Wearable gait measurement system with an instrumented cane for exoskeleton control.

    Science.gov (United States)

    Hassan, Modar; Kadone, Hideki; Suzuki, Kenji; Sankai, Yoshiyuki

    2014-01-17

    In this research we introduce a wearable sensory system for motion intention estimation and control of exoskeleton robot. The system comprises wearable inertial motion sensors and shoe-embedded force sensors. The system utilizes an instrumented cane as a part of the interface between the user and the robot. The cane reflects the motion of upper limbs, and is used in terms of human inter-limb synergies. The developed control system provides assisted motion in coherence with the motion of other unassisted limbs. The system utilizes the instrumented cane together with body worn sensors, and provides assistance for start, stop and continuous walking. We verified the function of the proposed method and the developed wearable system through gait trials on treadmill and on ground. The achievement contributes to finding an intuitive and feasible interface between human and robot through wearable gait sensors for practical use of assistive technology. It also contributes to the technology for cognitively assisted locomotion, which helps the locomotion of physically challenged people.

  18. Wearable Gait Measurement System with an Instrumented Cane for Exoskeleton Control

    Directory of Open Access Journals (Sweden)

    Modar Hassan

    2014-01-01

    Full Text Available In this research we introduce a wearable sensory system for motion intention estimation and control of exoskeleton robot. The system comprises wearable inertial motion sensors and shoe-embedded force sensors. The system utilizes an instrumented cane as a part of the interface between the user and the robot. The cane reflects the motion of upper limbs, and is used in terms of human inter-limb synergies. The developed control system provides assisted motion in coherence with the motion of other unassisted limbs. The system utilizes the instrumented cane together with body worn sensors, and provides assistance for start, stop and continuous walking. We verified the function of the proposed method and the developed wearable system through gait trials on treadmill and on ground. The achievement contributes to finding an intuitive and feasible interface between human and robot through wearable gait sensors for practical use of assistive technology. It also contributes to the technology for cognitively assisted locomotion, which helps the locomotion of physically challenged people.

  19. Inertial Gait Phase Detection for control of a drop foot stimulator: Inertial sensing for gait phase detection

    NARCIS (Netherlands)

    Kotiadis, D; Hermens, H.J.; Veltink, P.H.

    2010-01-01

    An Inertial Gait Phase Detection system was developed to replace heel switches and footswitches currently being used for the triggering of drop foot stimulators. A series of four algorithms utilising accelerometers and gyroscopes individually and in combination were tested and initial results are sh

  20. The effectiveness of posterior knee capsulotomies and knee extension osteotomies in crouched gait in children with cerebral palsy.

    Science.gov (United States)

    Taylor, Daveda; Connor, Justin; Church, Chris; Lennon, Nancy; Henley, John; Niiler, Tim; Miller, Freeman

    2016-11-01

    Crouched gait is common in children with cerebral palsy (CP), and there are various treatment options. This study evaluated the effectiveness of single-event multilevel surgery including posterior knee capsulotomy or distal femoral extension osteotomy to correct knee flexion contracture in children with CP. Gait analyses were carried out to evaluate gait preoperatively and postoperatively. Significant improvements were found in physical examination and kinematic measures, which showed that children with CP and crouched gait who develop knee flexion contractures can be treated effectively using single-event multilevel surgery including a posterior knee capsulotomy or distal femoral extension osteotomy.

  1. DFLAT: functional annotation for human development.

    Science.gov (United States)

    Wick, Heather C; Drabkin, Harold; Ngu, Huy; Sackman, Michael; Fournier, Craig; Haggett, Jessica; Blake, Judith A; Bianchi, Diana W; Slonim, Donna K

    2014-02-07

    Recent increases in genomic studies of the developing human fetus and neonate have led to a need for widespread characterization of the functional roles of genes at different developmental stages. The Gene Ontology (GO), a valuable and widely-used resource for characterizing gene function, offers perhaps the most suitable functional annotation system for this purpose. However, due in part to the difficulty of studying molecular genetic effects in humans, even the current collection of comprehensive GO annotations for human genes and gene products often lacks adequate developmental context for scientists wishing to study gene function in the human fetus. The Developmental FunctionaL Annotation at Tufts (DFLAT) project aims to improve the quality of analyses of fetal gene expression and regulation by curating human fetal gene functions using both manual and semi-automated GO procedures. Eligible annotations are then contributed to the GO database and included in GO releases of human data. DFLAT has produced a considerable body of functional annotation that we demonstrate provides valuable information about developmental genomics. A collection of gene sets (genes implicated in the same function or biological process), made by combining existing GO annotations with the 13,344 new DFLAT annotations, is available for use in novel analyses. Gene set analyses of expression in several data sets, including amniotic fluid RNA from fetuses with trisomies 21 and 18, umbilical cord blood, and blood from newborns with bronchopulmonary dysplasia, were conducted both with and without the DFLAT annotation. Functional analysis of expression data using the DFLAT annotation increases the number of implicated gene sets, reflecting the DFLAT's improved representation of current knowledge. Blinded literature review supports the validity of newly significant findings obtained with the DFLAT annotations. Newly implicated significant gene sets also suggest specific hypotheses for future

  2. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective.

    Science.gov (United States)

    Kuo, Arthur D

    2007-08-01

    We examine two prevailing, yet surprisingly contradictory, theories of human walking. The six determinants of gait are kinematic features of gait proposed to minimize the energetic cost of locomotion by reducing the vertical displacement of the body center of mass (COM). The inverted pendulum analogy proposes that it is beneficial for the stance leg to behave like a pendulum, prescribing a more circular arc, rather than a horizontal path, for the COM. Recent literature presents evidence against the six determinants theory, and a simple mathematical analysis shows that a flattened COM trajectory in fact increases muscle work and force requirements. A similar analysis shows that the inverted pendulum fares better, but paradoxically predicts no work or force requirements. The paradox may be resolved through the dynamic walking approach, which refers to periodic gaits produced almost entirely by the dynamics of the limbs alone. Demonstrations include passive dynamic walking machines that descend a gentle slope, and active dynamic walking robots that walk on level ground. Dynamic walking takes advantage of the inverted pendulum mechanism, but requires mechanical work to transition from one pendular stance leg to the next. We show how the step-to-step transition is an unavoidable energetic consequence of the inverted pendulum gait, and gives rise to predictions that are experimentally testable on humans and machines. The dynamic walking approach provides a new perspective, focusing on mechanical work rather than the kinematics or forces of gait. It is helpful for explaining human gait features in a constructive rather than interpretive manner.

  3. Challenges of Research and Human Capital Development in Nigeria

    Science.gov (United States)

    Chikwe, Christian K.; Ogidi, Reuben C.; Nwachukwu, K.

    2015-01-01

    The paper discussed the challenges of research and human capital development in Nigeria. Research and human capital development are critical to the development of any nation. Research facilitates human capital development. A high rating in human capital development indices places a country among the leading countries of the world. The paper…

  4. Human Resource Development in the Knowledge Economy

    DEFF Research Database (Denmark)

    Jørgensen, Sanne Lehmann

    This paper addresses the crucial call for upgrading to more value-added production in developing country firms in the light of increased global competition and suggests that such upgrading demands a shift in focus from investment in technology to investment in people, knowledge and learning....... In this line of thinking, the aim is to propose a model for analysing the progress of knowledge improvements in developing countries as an outcome of the management of human, social and organisational capital. In this regard, the paper considers relevant practices and strategies in the context of developing...

  5. Dynamic Locomotion of a Biomorphic Quadruped ‘Tekken’ Robot Using Various Gaits: Walk, Trot, Free-Gait and Bound

    Directory of Open Access Journals (Sweden)

    Y. Fukuoka

    2009-01-01

    Full Text Available Numerous quadruped walking and running robots have been developed to date. Each robot walks by means of a crawl, walk, trot or pace gait, or runs by means of a bound and/or gallop gait. However, it is very difficult to design a single robot that can both walk and run because of problems related to mechanisms and control. In response to this, we adapted a biological control method for legged locomotion in order to develop a dog-like quadruped robot we have named ‘Tekken’. Tekken has a control system that incorporates central pattern generators, reflexes and responses as well as a mechanism that makes the most of the control system. Tekken, which is equipped with a single mechanism, an unchangeable control method, and modifiable parameters, is capable of achieving walking and trotting on flat terrain, can walk using a free gait on irregular terrain, and is capable of running on flat terrain using a bounding gait. In this paper, we describe the mechanism, the control method and the experimental results of our new development.

  6. Biomechanics of Gait during Pregnancy

    OpenAIRE

    2014-01-01

    Introduction. During pregnancy women experience several changes in the body’s physiology, morphology, and hormonal system. These changes may affect the balance and body stability and can cause discomfort and pain. The adaptations of the musculoskeletal system due to morphological changes during pregnancy are not fully understood. Few studies clarify the biomechanical changes of gait that occur during pregnancy and in postpartum period. Purposes. The purpose of this re...

  7. Toward a low-cost gait analysis system for clinical and free-living assessment.

    Science.gov (United States)

    Ladha, Cassim; Del Din, Silvia; Nazarpour, Kianoush; Hickey, Aodhan; Morris, Rosie; Catt, Michael; Rochester, Lynn; Godfrey, Alan

    2016-08-01

    Gait is an important clinical assessment tool since changes in gait may reflect changes in general health. Measurement of gait is a complex process which has been restricted to bespoke clinical facilities until recently. The use of inexpensive wearable technologies is an attractive alternative and offers the potential to assess gait in any environment. In this paper we present the development of a low cost analysis gait system built using entirely open source components. The system is used to capture spatio-temporal gait characteristics derived from an existing conceptual model, sensitive to ageing and neurodegenerative pathology (e.g. Parkinson's disease). We demonstrate the system is suitable for use in a clinical unit and will lead to pragmatic use in a free-living (home) environment. The system consists of a wearable (tri-axial accelerometer and gyroscope) with a Raspberry Pi module for data storage and analysis. This forms ongoing work to develop gait as a low cost diagnostic in modern healthcare.

  8. Functional Neuroanatomy for Posture and Gait Control

    OpenAIRE

    Takakusaki, Kaoru

    2017-01-01

    Here we argue functional neuroanatomy for posture-gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture-gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending p...

  9. The Pathomechanics Of Calcaneal Gait

    Science.gov (United States)

    Sutherland, David H.; Cooper, Les

    1980-07-01

    The data acquisition system employed in our laboratory includes optical, electronic and computer subsystems. Three movie camera freeze the motion for analysis. The film is displayed on a motion analyzer, and the body segment positions are recorded in a three dimensional coordinate system with Graf/pen sonic digitizer. The angular rotations are calculated by computer and automatically plotted. The force plate provides measurements of vertical force, foreaft shear, medial-lateral shear, torque, and center of pressure. Electromyograms are superimposed upon gait movies to permit measurement of muscle phasic activity. The Hycam movie camera si-multaneously films (through separate lens) the subject and oscilloscope. Movement measurements, electromyograms, and floor reaction forces provide the data base for analysis. From a study of the gait changes in five normal subjects following tibial nerve block, and from additional studies of patients with paralysis of the ankle plantar flexors, the pathomechanics of calcaneal gait can be described. Inability to transfer weight to the forward part of the foot produces ankle instability and reduction of contralateral step length. Excessive drop of the center of mass necessitates com-pensatory increased lift energy output through the sound limb to restore the height of the center of mass. Excessive stance phase ankle dorsiflexion produces knee instability requiring prolonged quadriceps muscle phasic activity.

  10. The development of human factors technologies -The development of human factors experimental evaluation techniques-

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Bong Sik; Oh, In Suk; Cha, Kyung Hoh; Lee, Hyun Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    In this year, we studied the followings: (1) Development of operator mental workload evaluation techniques, (2) Development of a prototype for preliminary human factors experiment, (3) Suitability test of information display on a large scale display panel, (4) Development of guidelines for VDU-based control room design, (5) Development of integrated test facility (ITF). (6) Establishment of an eye tracking system, and we got the following results: (1) Mental workload evaluation techniques for MMI evaluation, (2) PROTOPEX (PROTOtype for preliminary human factors experiment) for preliminary human factors experiments, (3) Usage methods of APTEA (Analysis-Prototyping-Training-Experiment-Analysis) experiment design, (4) Design guidelines for human factors verification, (5) Detail design requirements and development plan of ITF, (6) Eye movement measurement system. 38 figs, 20 tabs, 54 refs. (Author).

  11. [Development of the human adrenal glands].

    Science.gov (United States)

    Folligan, K; Bouvier, R; Targe, F; Morel, Y; Trouillas, J

    2005-09-01

    The human adrenal is an endocrine gland located at the superior part of the kidney. Composed of the adrenal cortex of mesoblastic origin and the adrenal medulla of neuroectoblastic origin, the human fetal adrenal grows considerably during the first three months of development. From 12 to 18 weeks of development (WD), the weight of the adrenals increases seven-fold. The gland's weight doubles from 18 to 28 WD and from 28 to 36 WD. At birth, the two adrenals weigh on average 10 g. At the 8th week, two zones are individualized in the adrenal cortex: the definitive zone and the fetal inner zone. At the second trimester, according to ultrastructural and biochemical studies, a third zone, called the transition zone, is individualized between the definitive zone and the fetal inner zone. The definitive zone persists, but the origin of the three zones (glomerular, fascicular and reticular) of adult adrenal cortex is not known. The fetal inner zone regresses from the 5th month of gestation and disappears totally one year after birth. At the 8th week, the immature neuroblasts migrate to the definitive zone, then to the fetal inner zone to compose the adrenal medulla, which develops essentially after birth and during the first year. Before the 10th week, the human fetal adrenal is able to produce steroid hormones, in particular dehydroepiandrosterone sulfate (DHEA-S); the secretion of cortisol remains discussed. The development of the human fetal adrenal is complex and is under the control of hormones (ACTH, LH and betaHCG), growth factors (ACTH essentially) and transcription factors (essentially SF1 and DAX-1). Knowledge of morphological and molecular phenomena of this development permits to understand the pathophisiology of congenital adrenal deficiencies.

  12. Gait and upper limb variability in Parkinson's disease patients with and without freezing of gait

    NARCIS (Netherlands)

    Barbe, M.T.; Amarell, M.; Snijders, A.H.; Florin, E.; Quatuor, E.L.; Schonau, E.; Fink, G.R.; Bloem, B.R.; Timmermann, L.

    2014-01-01

    Patients with Parkinson's disease (PD) and freezing of gait (FOG) (freezers) demonstrate high gait variability. The objective of this study was to determine whether freezers display a higher variability of upper limb movements and elucidate if these changes correlate with gait. We were the first gro

  13. The development of human factors technologies -The development of human behaviour analysis techniques-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Lee, Yong Heui; Park, Keun Ok; Chun, Se Woo; Suh, Sang Moon; Park, Jae Chang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    In order to contribute to human error reduction through the studies on human-machine interaction in nuclear power plants, this project has objectives to develop SACOM(Simulation Analyzer with a Cognitive Operator Model) and techniques for human error analysis and application. In this year, we studied the followings: development of SACOM> (1) Site investigation of operator tasks, (2) Development of operator task micro structure and revision of micro structure, (3) Development of knowledge representation software and SACOM prototype, (4) Development of performance assessment methodologies in task simulation and analysis of the effects of performance shaping factors. development of human error analysis and application techniques> (1) Classification of error shaping factors(ESFs) and development of software for ESF evaluation, (2) Analysis of human error occurrences and revision of analysis procedure, (3) Experiment for human error data collection using a compact nuclear simulator, (4) Development of a prototype data base system of the analyzed information on trip cases. 55 figs, 23 tabs, 33 refs. (Author).

  14. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.

    Science.gov (United States)

    Au, Samuel; Berniker, Max; Herr, Hugh

    2008-05-01

    The human ankle varies impedance and delivers net positive work during the stance period of walking. In contrast, commercially available ankle-foot prostheses are passive during stance, causing many clinical problems for transtibial amputees, including non-symmetric gait patterns, higher gait metabolism, and poorer shock absorption. In this investigation, we develop and evaluate a myoelectric-driven, finite state controller for a powered ankle-foot prosthesis that modulates both impedance and power output during stance. The system employs both sensory inputs measured local to the external prosthesis, and myoelectric inputs measured from residual limb muscles. Using local prosthetic sensing, we first develop two finite state controllers to produce biomimetic movement patterns for level-ground and stair-descent gaits. We then employ myoelectric signals as control commands to manage the transition between these finite state controllers. To transition from level-ground to stairs, the amputee flexes the gastrocnemius muscle, triggering the prosthetic ankle to plantar flex at terminal swing, and initiating the stair-descent state machine algorithm. To transition back to level-ground walking, the amputee flexes the tibialis anterior muscle, triggering the ankle to remain dorsiflexed at terminal swing, and initiating the level-ground state machine algorithm. As a preliminary evaluation of clinical efficacy, we test the device on a transtibial amputee with both the proposed controller and a conventional passive-elastic control. We find that the amputee can robustly transition between the finite state controllers through direct muscle activation, allowing rapid transitioning from level-ground to stair walking patterns. Additionally, we find that the proposed finite state controllers result in a more biomimetic ankle response, producing net propulsive work during level-ground walking and greater shock absorption during stair descent. The results of this study highlight the

  15. Segmentation and classification of gait cycles.

    Science.gov (United States)

    Agostini, Valentina; Balestra, Gabriella; Knaflitz, Marco

    2014-09-01

    Gait abnormalities can be studied by means of instrumented gait analysis. Foot-switches are useful to study the foot-floor contact and for timing the gait phases in many gait disorders, provided that a reliable foot-switch signal may be collected. Considering long walks allows reducing the intra-subject variability, but requires automatic and user-independent methods to analyze a large number of gait cycles. The aim of this work is to describe and validate an algorithm for the segmentation of the foot-switch signal and the classification of the gait cycles. The performance of the algorithm was assessed comparing its results against the manual segmentation and classification performed by a gait analysis expert on the same signal. The performance was found to be equal to 100% for healthy subjects and over 98% for pathological subjects. The algorithm allows determining the atypical cycles (cycles that do not match the standard sequence of gait phases) for many different kinds of pathological gait, since it is not based on pathology-specific templates.

  16. Gait, posture and cognition in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Alessandra Ferreira Barbosa

    Full Text Available ABSTRACT Gait disorders and postural instability are the leading causes of falls and disability in Parkinson's disease (PD. Cognition plays an important role in postural control and may interfere with gait and posture assessment and treatment. It is important to recognize gait, posture and balance dysfunctions by choosing proper assessment tools for PD. Patients at higher risk of falling must be referred for rehabilitation as early as possible, because antiparkinsonian drugs and surgery do not improve gait and posture in PD.

  17. Skeletal and Clinical Effects of Exoskeleton-Assisted Gait

    Science.gov (United States)

    2015-10-01

    moments generated by the subject arise from one of three possible sources: 1) passive muscle resistance, which may be worse if contractures are present; 2...assisted gait on bone health, muscle mass, and functional outcomes. Specific Aim 1 is associated with three major tasks: 1) to obtain human subject...assume that subject’s joint moments arise from active spasticity Page | 4 contractions. In this approach, we calculate muscle length change based on

  18. Gait-related cerebral alterations in patients with Parkinson's disease with freezing of gait.

    Science.gov (United States)

    Snijders, Anke H; Leunissen, Inge; Bakker, Maaike; Overeem, Sebastiaan; Helmich, Rick C; Bloem, Bastiaan R; Toni, Ivan

    2011-01-01

    Freezing of gait is a common, debilitating feature of Parkinson's disease. We have studied gait planning in patients with freezing of gait, using motor imagery of walking in combination with functional magnetic resonance imaging. This approach exploits the large neural overlap that exists between planning and imagining a movement. In addition, it avoids confounds introduced by brain responses to altered motor performance and somatosensory feedback during actual freezing episodes. We included 24 patients with Parkinson's disease: 12 patients with freezing of gait, 12 matched patients without freezing of gait and 21 matched healthy controls. Subjects performed two previously validated tasks--motor imagery of gait and a visual imagery control task. During functional magnetic resonance imaging scanning, we quantified imagery performance by measuring the time required to imagine walking on paths of different widths and lengths. In addition, we used voxel-based morphometry to test whether between-group differences in imagery-related activity were related to structural differences. Imagery times indicated that patients with freezing of gait, patients without freezing of gait and controls engaged in motor imagery of gait, with matched task performance. During motor imagery of gait, patients with freezing of gait showed more activity than patients without freezing of gait in the mesencephalic locomotor region. Patients with freezing of gait also tended to have decreased responses in mesial frontal and posterior parietal regions. Furthermore, patients with freezing of gait had grey matter atrophy in a small portion of the mesencephalic locomotor region. The gait-related hyperactivity of the mesencephalic locomotor region correlated with clinical parameters (freezing of gait severity and disease duration), but not with the degree of atrophy. These results indicate that patients with Parkinson's disease with freezing of gait have structural and functional alterations in the

  19. [Contribution of epigenetics to understand human development].

    Science.gov (United States)

    Bedregal, Paula; Shand, Beatriz; Santos, Manuel J; Ventura-Juncá, Patricio

    2010-03-01

    Epigenetics refers to the study of how genes produce their effect on the phenotype of the organism. This article is a review on the scope and importance of recently discovered epigenetic mechanisms on human development and their relationship to perinatal epidemiological issues. It shows a general view and present concepts about epigenetics and its contribution to the comprehension of several physiologic and pathological conditions of human beings. Secondly, it analyzes the evidence coming from epidemiological and animal studies, about the influence of events that occur in the perinatal and early postnatal periods on adult life and the possible epigenetic mechanisms involved. Lastly, it underscores the implications of these results of future research and the design of public policies that take into account the importance of events in early life in the future development of individuals.

  20. Gait Characteristics in a Canine Model of X-linked Myotubular Myopathy

    Science.gov (United States)

    Goddard, Melissa A.; Burlingame, Emily; Beggs, Alan H.; Buj-Bello, Anna; Childers, Martin K.; Marsh, Anthony P.; Kelly, Valerie E.

    2014-01-01

    X-linked myotubular myopathy (XLMTM) is a fatal pediatric disease where affected boys display profound weakness of the skeletal muscles. Possible therapies are under development but robust outcome measures in animal models are required for effective translation to human patients. We established a naturally-occuring canine model, where XLMTM dogs display clinical symptoms similar to those observed in humans. The aim of this study was to determine potential endpoints for the assessment of future treatments in this model. Video-based gait analysis was selected, as it is a well-established method of assessing limb function in neuromuscular disease and measures have been correlated to patient quality of life. XLMTM dogs (N=3) and their true littermate wild type controls (N=3) were assessed at 4–5 time points, beginning at 10 weeks and continuing through 17 weeks. Motion capture and an instrumented carpet were used separately to evaluate spatiotemporal and kinematic changes over time. XLMTM dogs walk more slowly and with shorter stride lengths than wild type dogs, and these differences became greater over time. However, there was no clear difference in angular measures between affected and unaffected dogs. These data demonstrate that spatiotemporal parameters capture functional changes in gait in an XLMTM canine model and support their utility in future therapeutic trials. PMID:25281397

  1. A happiness index of human development

    OpenAIRE

    Filipe, Carina da Conceição

    2010-01-01

    A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics Nowadays many social scientists defend the advantages to define a measure of well being able to complement the GDP per capita. This work project proposes a new index of human development: the happiness index. Many studies have been undertaken in order to determine the best measurement of happiness. Happiness is much more than just...

  2. Centre for human development, stem cells & regeneration.

    Science.gov (United States)

    Oreffo, Richard O C

    2014-01-01

    The Centre for Human Development, Stem Cells and Regeneration (CHDSCR) was founded in 2004 as a cross-disciplinary research and translational program within the Faculty of Medicine at the University of Southampton. The Centre undertakes fundamental research into early development and stem cells together with applied translational research for patient benefit. The Centre has vibrant and thriving multidisciplinary research programs that harness the translational strength of the Faculty together with an innovative Stem Cell PhD program, outstanding clinical infrastructure and enterprise to deliver on this vision.

  3. Gait Impairment in a Rat Model of Focal Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Saara Parkkinen

    2013-01-01

    Full Text Available The availability of proper tests for gait evaluation following cerebral ischemia in rats has been limited. The automated, quantitative CatWalk system, which was initially designed to measure gait in models of spinal cord injury, neuropathic pain, and peripheral nerve injury, is said to be a useful tool for the study of motor impairment in stroke animals. Here we report our experiences of using CatWalk XT with rats subjected to transient middle cerebral artery occlusion (MCAO, during their six-week followup. Large corticostriatal infarct was confirmed by MRI in all MCAO rats, which was associated with severe sensorimotor impairment. In contrast, the gait impairment was at most mild, which is consistent with seemingly normal locomotion of MCAO rats. Many of the gait parameters were affected by body weight, walking speed, and motivation despite the use of a goal box. In addition, MCAO rats showed bilateral compensation, which was developed to stabilize proper locomotion. All of these interferences may confound the data interpretation. Taken together, the translational applicability of CatWalk XT in evaluating motor impairment and treatment efficacy remains to be limited at least in rats with severe corticostriatal infarct and loss of body weight.

  4. Gait analysis in rats with peripheral nerve injury.

    Science.gov (United States)

    Yu, P; Matloub, H S; Sanger, J R; Narini, P

    2001-02-01

    Rats are commonly used to study peripheral nerve repair and grafting. The traditional footprint method to assess functional recovery is messy, indirect, and not useful when contractures develop in the animal model. The aim of the present study was to establish an accurate, reproducible, but simple, method to assess dynamic limb function. The basic quantitative aspects of a normal gait were characterized from 59 recorded walks in 23 rats. The video was digitized and analyzed frame by frame on a personal computer. Seven parameters of the gait were assessed: (1) walking speed; (2) stance phase, swing phase and right to left stance/swing ratio; (3) step length and step length ratio; (4) ankle angles at terminal stance and midswing; (5) tail height; (6) midline deviation; and (7) tail deviation. These gait parameters were then applied to groups of animals with sciatic (group S), tibial (group T), and peroneal (group P) nerve injuries. A discriminant analysis was performed to analyze each parameter and to compute a functional score. We found that the video gait analysis was superior to the footprint method and believe it will be very useful in future studies on peripheral nerve injury.

  5. Automatic classification of pathological gait patterns using ground reaction forces and machine learning algorithms.

    Science.gov (United States)

    Alaqtash, Murad; Sarkodie-Gyan, Thompson; Yu, Huiying; Fuentes, Olac; Brower, Richard; Abdelgawad, Amr

    2011-01-01

    An automated gait classification method is developed in this study, which can be applied to analysis and to classify pathological gait patterns using 3D ground reaction force (GRFs) data. The study involved the discrimination of gait patterns of healthy, cerebral palsy (CP) and multiple sclerosis subjects. The acquired 3D GRFs data were categorized into three groups. Two different algorithms were used to extract the gait features; the GRFs parameters and the discrete wavelet transform (DWT), respectively. Nearest neighbor classifier (NNC) and artificial neural networks (ANN) were also investigated for the classification of gait features in this study. Furthermore, different feature sets were formed using a combination of the 3D GRFs components (mediolateral, anterioposterior, and vertical) and their various impacts on the acquired results were evaluated. The best leave-one-out (LOO) classification accuracy 85% was achieved. The results showed some improvement through the application of a features selection algorithm based on M-shaped value of vertical force and the statistical test ANOVA of mediolateral and anterioposterior forces. The optimal feature set of six features enhanced the accuracy to 95%. This work can provide an automated gait classification tool that may be useful to the clinician in the diagnosis and identification of pathological gait impairments.

  6. Motor coordination during gait after anterior cruciate ligament injury: a systematic review of the literature

    Directory of Open Access Journals (Sweden)

    Gustavo Leporace

    2013-08-01

    Full Text Available To investigate the state of art about motor coordination during gait in patients with anterior cruciate ligament (ACL injury. Searches were carried out, limited from 1980 to 2010, in various databases with keywords related to motor coordination, gait and ACL injury. From the analysis of titles and applying the inclusion/exclusion criteria 24 studies were initially selected and, after reading the abstract, eight studies remained in the final analysis. ACL deficient patients tend to have a more rigid and less variable gait, while injured patients with ACL reconstruction have less rigid and more variable gait with respect to healthy individuals. The overall results suggest the existence of differences in motor coordination between the segments with intact and those with injured knee, regardless of ligament reconstruction. ACL injured patients present aspects related to the impairment of the capability to adapt the gait pattern to different environmental conditions, possibly leading to premature knee degeneration. However, the techniques used for biomechanical gait data processing are limited with respect to obtaining information that leads to the development of intervention strategies aimed at the rehabilitation of that injury, since it is not possible to identify the location within the gait cycle where the differences could be explained.

  7. Gait and cognition: Mapping the global and discrete relationships in ageing and neurodegenerative disease.

    Science.gov (United States)

    Morris, Rosie; Lord, Sue; Bunce, Jennifer; Burn, David; Rochester, Lynn

    2016-05-01

    Recent research highlights the association of gait and cognition in older adults but a stronger understanding is needed to discern coincident pathophysiology, patterns of change, examine underlying mechanisms and aid diagnosis. This structured review mapped associations and predictors of gait and cognition in older adults with and without cognitive impairment, and Parkinson's disease. Fifty papers out of an initial yield of 22,128 were reviewed and a model of gait guided analysis and interpretation. Associations were dominated by the pace domain of gait; the most frequently studied domain. In older adults pace was identified as a predictor for cognitive decline. Where comprehensive measurement of gait was conducted, more specific pathological patterns of association were evident highlighting the importance of this approach. This review confirmed a robust association between gait and cognition and argues for a selective, comprehensive measurement approach. Results suggest gait may be a surrogate marker of cognitive impairment and cognitive decline. Understanding the specific nature of this relationship is essential for refinement of diagnostics and development of novel therapies.

  8. Gait Training in Chronic Stroke Using Walk-Even Feedback Device: A Pilot Study

    Directory of Open Access Journals (Sweden)

    V. Krishnan

    2016-01-01

    Full Text Available Asymmetrical gait and a reduction in weight bearing on the affected side are a common finding in chronic stroke survivors. The purpose of this pilot study was to determine the effectiveness of a shoe insole device that we developed, called Walk-Even, in correcting asymmetric gait in chronic stroke survivors. Six individuals with chronic (>6 months stroke underwent 8 weeks of intervention with 2 sessions/week, each consisting of 20 minutes of gait training and 20 minutes of lower-extremity strength training. The 2 control participants underwent conventional gait training, while 4 participants underwent gait training using the Walk-Even. Following intervention, all the participants improved on most of the gait measures: peak pressure of the foot, time of transfer of weight from heel-to-forefoot, center of pressure (COP trajectory, COP velocity, asymmetry ratio of stance, mean-force-heel, mean-force-metatarsals, Timed “Up and Go,” and Activities-specific Balance Scale. The improvement was more pronounced in the 4 participants that underwent training with Walk-Even compared to the control participants. This pilot study suggests that a combination of strength and gait training with real-time feedback may reduce temporal asymmetry and enhance weight-bearing on the affected side in chronic stroke survivors. A large randomized controlled study is needed to confirm its efficacy.

  9. Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke

    Directory of Open Access Journals (Sweden)

    Krebs Hermano I

    2010-05-01

    Full Text Available Abstract Background Hemiparesis after stroke often leads to impaired ankle motor control that impacts gait function. In recent studies, robotic devices have been developed to address this impairment. While capable of imparting forces to assist during training and gait, these devices add mass to the paretic leg which might encumber patients' gait pattern. The purpose of this study was to assess the effects of the added mass of one of these robots, the MIT's Anklebot, while unpowered, on gait of chronic stroke survivors during overground and treadmill walking. Methods Nine chronic stroke survivors walked overground and on a treadmill with and without the anklebot mounted on the paretic leg. Gait parameters, interlimb symmetry, and joint kinematics were collected for the four conditions. Repeated-measures analysis of variance (ANOVA tests were conducted to examine for possible differences across four conditions for the paretic and nonparetic leg. Results The added inertia and friction of the unpowered anklebot had no statistically significant effect on spatio-temporal parameters of gait, including paretic and nonparetic step time and stance percentage, in both overground and treadmill conditions. Noteworthy, interlimb symmetry as characterized by relative stance duration was greater on the treadmill than overground regardless of loading conditions. The presence of the unpowered robot loading reduced the nonparetic knee peak flexion on the treadmill and paretic peak dorsiflexion overground (p Conclusions Our results suggest that for these subjects the added inertia and friction of this backdriveable robot did not significantly alter their gait pattern.

  10. A computational method for reliable gait event detection and abnormality detection for feedback in rehabilitation.

    Science.gov (United States)

    Senanayake, Chathuri; Senanayake, S M N Arosha

    2011-10-01

    In this paper, a gait event detection algorithm is presented that uses computer intelligence (fuzzy logic) to identify seven gait phases in walking gait. Two inertial measurement units and four force-sensitive resistors were used to obtain knee angle and foot pressure patterns, respectively. Fuzzy logic is used to address the complexity in distinguishing gait phases based on discrete events. A novel application of the seven-dimensional vector analysis method to estimate the amount of abnormalities detected was also investigated based on the two gait parameters. Experiments were carried out to validate the application of the two proposed algorithms to provide accurate feedback in rehabilitation. The algorithm responses were tested for two cases, normal and abnormal gait. The large amount of data required for reliable gait-phase detection necessitate the utilisation of computer methods to store and manage the data. Therefore, a database management system and an interactive graphical user interface were developed for the utilisation of the overall system in a clinical environment.

  11. Early presentation of gait impairment in Wolfram Syndrome

    Directory of Open Access Journals (Sweden)

    Pickett Kristen A

    2012-12-01

    Full Text Available Abstract Background Classically characterized by early onset insulin-dependent diabetes mellitus, optic atrophy, deafness, diabetes insipidus, and neurological abnormalities, Wolfram syndrome (WFS is also associated with atypical brainstem and cerebellar findings in the first decade of life. As such, we hypothesized that gait differences between individuals with WFS and typically developing (TD individuals may be detectable across the course of the disease. Methods Gait was assessed for 13 individuals with WFS (min 6.4 yrs, max 25.8 yrs and 29 age-matched, typically developing individuals (min 5.6 yrs, max 28.5 yrs using a GAITRite ® walkway system. Velocity, cadence, step length, base of support and double support time were compared between groups. Results Across all tasks, individuals with WFS walked slower (p = 0.03, took shorter (p ≤ 0.001 and wider (p ≤ 0.001 steps and spent a greater proportion of the gait cycle in double support (p = 0.03 compared to TD individuals. Cadence did not differ between groups (p = 0.62. Across all tasks, age was significantly correlated with cadence and double support time in the TD group but only double support time was correlated with age in the WFS group and only during preferred pace forward (rs= 0.564, p = 0.045 and dual task forward walking (rs= 0.720, p = 0.006 tasks. Individuals with WFS also had a greater number of missteps during tandem walking (p ≤ 0.001. Within the WFS group, spatiotemporal measures of gait did not correlate with measures of visual acuity. Balance measures negatively correlated with normalized gait velocity during fast forward walking (rs = −0.59, p = 0.03 and percent of gait cycle in double support during backward walking (rs = −0.64, p = 0.03. Conclusions Quantifiable gait impairments can be detected in individuals with WFS earlier than previous clinical observations suggested. These impairments are not fully accounted for by the visual or balance deficits

  12. Application of the Gillette Gait Index, Gait Deviation Index and Gait Profile Score to multiple clinical pediatric populations.

    Science.gov (United States)

    McMulkin, Mark L; MacWilliams, Bruce A

    2015-02-01

    Gait indices are now commonly used to assess overall pathology and outcomes from studies with instrumented gait analyses. There are differences in how these indices are calculated and therefore inherent differences in their sensitivities to detect changes or differences between groups. The purpose of the current study was to examine the three most commonly used gait indices, Gillette Gait Index (GGI), Gait Deviation Index (GDI), and Gait Profile Score (GPS), comparing the statistical sensitivity and the ability to make meaningful interpretations of the clinical results. In addition, the GDI*, a log transformed and scaled version of the GPS score which closely matches the GDI was examined. For seven previous or ongoing studies representing varying gait pathologies seen in clinical laboratories, the GGI, GDI, and GPS/GDI* were calculated retrospectively. The GDI and GPS/GDI* proved to be the most sensitive measures in assessing differences pre/post-treatment or from a control population. A power analysis revealed the GDI and GDI* to be the most sensitive statistical measures (lowest sample sizes required). Subjectively, the GDI and GDI* interpretation seemed to be the most intuitive measure for assessing clinical changes. However, the gait variable sub-scores of the GPS determined several statistical differences which were not previously noted and was the only index tool for quantifying the relative contributions of specific joints or planes of motion. The GGI did not offer any advantages over the other two indices.

  13. Comparison of Upright Gait with Supine Bungee-Cord Gait

    Science.gov (United States)

    Boda, Wanda L.; Hargens, Alan R.; Campbell, J. A.; Yang, C.; Holton, Emily M. (Technical Monitor)

    1998-01-01

    Running on a treadmill with bungee-cord resistance is currently used on the Russian space station MIR as a countermeasure for the loss of bone and muscular strength which occurs during spaceflight. However, it is unknown whether ground reaction force (GRF) at the feet using bungee-cord resistance is similar to that which occurs during upright walking and running on Earth. We hypothesized-that the DRAMs generated during upright walking and running are greater than the DRAMs generated during supine bungee-cord gait. Eleven healthy subjects walked (4.8 +/- 0.13 km/h, mean +/- SE) and ran (9.1 +/- 0.51 km/h) during upright and supine bungee-cord exercise on an active treadmill. Subjects exercised for 3 min in each condition using a resistance of 1 body weight calibrated during an initial, stationary standing position. Data were sampled at a frequency of 500Hz and the mean of 3 trials was analyzed for each condition. A repeated measures analysis of variance tested significance between the conditions. Peak DRAMs during upright walking were significantly greater (1084.9 +/- 111.4 N) than during supine bungee-cord walking (770.3 +/- 59.8 N; p less than 0.05). Peak GRFs were also significantly greater for upright running (1548.3 +/- 135.4 N) than for supine bungee-cord running (1099.5 +/- 158.46 N). Analysis of GRF curves indicated that forces decreased throughout the stance phase for bungee-cord gait but not during upright gait. These results indicate that bungee-cord exercise may not create sufficient loads at the feet to counteract the loss of bone and muscular strength that occurs during long-duration exposure to microgravity.

  14. Development of a network system combined with ambulatory and non-conscious physiological measurements for supporting challenged kids - a new proposal of a gait monitoring system for use in rehabilitation.

    Science.gov (United States)

    Motoi, Kosuke; Oyama, Takanobu; Tanaka, Naoto; Yuji, Tadahiko; Higashi, Yuji; Sagawa, Koichi; Fujimoto, Toshiro; Yamakoshi, Ken-Ichi

    2013-01-01

    Various physiological measurement techniques have been developed to support healthcare and daily living of adult including elderly. However, in light of the rapid growth of the declining birth rate, promotion in care and life support for children are not enough. Especially in rehabilitation for disabled children, i.e., challenged kids, it is important for therapist to evaluate the efficacy of rehabilitation and the health condition. Share of these information with educational, welfare, and government institutions are also needed for accurate life support. Therefore, the quantitative data of the activities and daily health status are helpful. From these viewpoints, we are developing a new network system for monitoring the activities and the health status of children using ambulatory and non-conscious physiological measurements as well as data browse at anytime and anywhere. Firstly, we propose a wearable gait monitoring system to support evaluation for the efficacy of rehabilitation. In this study, the present system can successfully detect the characteristics of postural changes in children with disorder of movement, demonstrating its usefulness and availability to the evaluation for the effect of the brace attached to the subject's lower limb.

  15. Health monitors for chronic disease by gait analysis with mobile phones.

    Science.gov (United States)

    Juen, Joshua; Cheng, Qian; Prieto-Centurion, Valentin; Krishnan, Jerry A; Schatz, Bruce

    2014-11-01

    We have developed GaitTrack, a phone application to detect health status while the smartphone is carried normally. GaitTrack software monitors walking patterns, using only accelerometers embedded in phones to record spatiotemporal motion, without the need for sensors external to the phone. Our software transforms smartphones into health monitors, using eight parameters of phone motion transformed into body motion by the gait model. GaitTrack is designed to detect health status while the smartphone is carried during normal activities, namely, free-living walking. The current method for assessing free-living walking is medical accelerometers, so we present evidence that mobile phones running our software are more accurate. We then show our gait model is more accurate than medical pedometers for counting steps of patients with chronic disease. Our gait model was evaluated in a pilot study involving 30 patients with chronic lung disease. The six-minute walk test (6 MWT) is a major assessment for chronic heart and lung disease, including congestive heart failure and especially chronic obstructive pulmonary disease (COPD), affecting millions of persons. The 6 MWT consists of walking back and forth along a measured distance for 6 minutes. The gait model using linear regression performed with 94.13% accuracy in measuring walk distance, compared with the established standard of direct observation. We also evaluated a different statistical model using the same gait parameters to predict health status through lung function. This gait model has high accuracy when applied to demographic cohorts, for example, 89.22% accuracy testing the cohort of 12 female patients with ages 50-64 years.

  16. Gait parameters extraction by using mobile robot equipped with Kinect v2

    Science.gov (United States)

    Ogawa, Ami; Mita, Akira; Yorozu, Ayanori; Takahashi, Masaki

    2016-04-01

    The needs for monitoring systems to be used in houses are getting stronger because of the increase of the single household population due to the low birth rate and longevity. Among others, gait parameters are under the spotlight to be examined as the relations with several diseases have been reported. It is known that the gait parameters obtained at a walk test are different from those obtained under the daily life. Thus, the system which can measure the gait parameters in the real living environment is needed. Generally, gait abilities are evaluated by a measurement test, such as Timed Up and Go test and 6-minute walking test. However, these methods need measurers, so the accuracy depends on them and the lack of objectivity is pointed out. Although, a precise motion capture system is used for more objective measurement, it is hard to be used in daily measurement, because the subjects have to put the markers on their body. To solve this problem, marker less sensors, such as Kinect, are developed and used for gait information acquisition. When they are attached to a mobile robot, there is no limitation of distance. However, they still have challenges of calibration for gait parameters, and the important gait parameters to be acquired are not well examined. Therefore, in this study, we extract the important parameters for gait analysis, which have correlations with diseases and age differences, and suggest the gait parameters extraction from depth data by Kinect v2 which is mounted on a mobile robot aiming at applying to the living environment.

  17. Poor Gait Performance and Prediction of Dementia: Results From a Meta-Analysis

    Science.gov (United States)

    Beauchet, Olivier; Annweiler, Cédric; Callisaya, Michele L.; De Cock, Anne-Marie; Helbostad, Jorunn L.; Kressig, Reto W.; Srikanth, Velandai; Steinmetz, Jean-Paul; Blumen, Helena M.; Verghese, Joe; Allali, Gilles

    2017-01-01

    Background Poor gait performance predicts risk of developing dementia. No structured critical evaluation has been conducted to study this association yet. The aim of this meta-analysis was to systematically examine the association of poor gait performance with incidence of dementia. Methods An English and French Medline search was conducted in June 2015, with no limit of date, using the medical subject headings terms “Gait” OR “Gait Disorders, Neurologic” OR “Gait Apraxia” OR “Gait Ataxia” AND “Dementia” OR “Frontotemporal Dementia” OR “Dementia, Multi-Infarct” OR “Dementia, Vascular” OR “Alzheimer Disease” OR “Lewy Body Disease” OR “Frontotemporal Dementia With Motor Neuron Disease” (Supplementary Concept). Poor gait performance was defined by standardized tests of walking, and dementia was diagnosed according to international consensus criteria. Four etiologies of dementia were identified: any dementia, Alzheimer disease (AD), vascular dementia (VaD), and non-AD (ie, pooling VaD, mixed dementias, and other dementias). Fixed effects meta-analyses were performed on the estimates in order to generate summary values. Results Of the 796 identified abstracts, 12 (1.5%) were included in this systematic review and meta-analysis. Poor gait performance predicted dementia [pooled hazard ratio (HR) combined with relative risk and odds ratio = 1.53 with P < .001 for any dementia, pooled HR = 1.79 with P < .001 for VaD, HR = 1.89 with P value < .001 for non-AD]. Findings were weaker for predicting AD (HR = 1.03 with P value = .004). Conclusions This meta-analysis provides evidence that poor gait performance predicts dementia. This association depends on the type of dementia; poor gait performance is a stronger predictor of non-AD dementias than AD. PMID:26852960

  18. Variability and similarity of gait as evaluated by joint angles: implications for forensic gait analysis.

    Science.gov (United States)

    Yang, Sylvia X M; Larsen, Peter K; Alkjær, Tine; Simonsen, Erik B; Lynnerup, Niels

    2014-03-01

    Closed-circuit television (CCTV) footage is used in criminal investigations to compare perpetrators with suspects. Usually, incomplete gait cycles are collected, making evidential gait analysis challenging. This study aimed to analyze the discriminatory power of joint angles throughout a gait cycle. Six sets from 12 men were collected. For each man, a variability range VR (mean ± 1SD) of a specific joint angle at a specific time point (a gait cycle was 100 time points) was calculated. In turn, each individual was compared with the 11 others, and whenever 1 of these 11 had a value within this individual’s VR, it counted as positive. By adding the positives throughout the gait cycle, we created simple bar graphs; tall bars indicated a small discriminatory power, short bars indicated a larger one. The highest discriminatory power was at time points 60–80 in the gait cycle. We show how our data can assess gait data from an actual case.

  19. A machine learning approach for gait speed estimation using skin-mounted wearable sensors: From healthy controls to individuals with multiple sclerosis

    National Research Council Canada - National Science Library

    Ryan S McGinnis; Nikhil Mahadevan; Yaejin Moon; Kirsten Seagers; Nirav Sheth; John A Wright Jr; Steven DiCristofaro; Ikaro Silva; Elise Jortberg; Melissa Ceruolo; Jesus A Pindado; Jacob Sosnoff; Roozbeh Ghaffari; Shyamal Patel

    2017-01-01

    .... Recent advances in wearable sensor technologies have fostered the development of new methods for monitoring parameters that characterize mobility impairment, such as gait speed, outside the clinic...

  20. Italy-Japan international project-based learning for developing human resources using design of welfare equipment as a subject.

    Science.gov (United States)

    Hanafusa, A; Komeda, T; Ito, K; Zobel, P Beomonte

    2015-08-01

    Project-based learning (PBL) is effective for developing human resources of young students. The design of welfare equipment, such as wheelchairs and gait assistive devices, is taken as the subject in this study because these devices must be fit to their environment, users, and method of use; students must consider the circumstances of each country concerned. The program commenced in 2012 at L'Aquila, Italy, and the Shibaura Institute of Technology, Japan and has been continuing for three years. Students were divided into four groups and discussions were held on how to adapt the equipment to the user and environment. After discussion, they designed and simulated a model of the equipment using CAD. Finally, they presented their designs to each other. Through the program, students had fruitful discussions, exchanged ideas from different cultures, and learned from each other. Furthermore, friendships among the students were nurtured. It is believed that the objective of the program was satisfactorily accomplished.

  1. Walking (Gait), Balance, and Coordination Problems

    Science.gov (United States)

    ... Seeking Services: Questions to Ask d Employment Disclosure Decisions Career Options Accommodations d Resources for Specific Populations Pediatric ... MS Navigator Program Patient Resources Contact Us d Careers in MS ... MS Symptoms Walking (Gait) Difficulties Share this page Facebook Twitter Email Walking (Gait) ...

  2. THE GAIT OF UNILATERAL TRANSFEMORAL AMPUTEES

    NARCIS (Netherlands)

    BOONSTRA, AM; SCHRAMA, J; FIDLER, [No Value; EISMA, WH

    1994-01-01

    The aim of this study was to describe the gait of persons with a unilateral transfemoral amputation by means of a questionnaire, gait analysis and measurement of energy expenditure, and to find correlations among the variables studied. The study included 29 transfemoral amputees amputated for other

  3. THE GAIT OF UNILATERAL TRANSFEMORAL AMPUTEES

    NARCIS (Netherlands)

    BOONSTRA, AM; SCHRAMA, J; FIDLER, [No Value; EISMA, WH

    1994-01-01

    The aim of this study was to describe the gait of persons with a unilateral transfemoral amputation by means of a questionnaire, gait analysis and measurement of energy expenditure, and to find correlations among the variables studied. The study included 29 transfemoral amputees amputated for other

  4. Clinical gait data analysis based on Spatio-Temporal features

    CERN Document Server

    Katiyar, Rohit

    2010-01-01

    Analysing human gait has found considerable interest in recent computer vision research. So far, however, contributions to this topic exclusively dealt with the tasks of person identification or activity recognition. In this paper, we consider a different application for gait analysis and examine its use as a means of deducing the physical well-being of people. The proposed method is based on transforming the joint motion trajectories using wavelets to extract spatio-temporal features which are then fed as input to a vector quantiser; a self-organising map for classification of walking patterns of individuals with and without pathology. We show that our proposed algorithm is successful in extracting features that successfully discriminate between individuals with and without locomotion impairment.

  5. Foot kinematics and kinetics during adolescent gait.

    Science.gov (United States)

    MacWilliams, Bruce A; Cowley, Matthew; Nicholson, Diane E

    2003-06-01

    Gait analysis models typically analyze the ankle joint complex and treat the foot as a rigid segment. Such models are inadequate for clinical decision making for patients with foot impairments. While previous multisegment foot models have been presented, no comprehensive kinematic and kinetic databases for normal gait exist. This study provides normative foot joint angles, moments and powers during adolescent gait. Eighteen subjects were evaluated using 19 retroreflective markers, six cameras, a pressure platform and a force plate. A nine-segment model determined 3D angles, 3D moments, and powers in eight joints or joint complexes. A complete sets of sagittal, coronal and frontal plane results are presented. Results indicate that single link models of the foot significantly overestimate ankle joint powers during gait. Understanding normal joint kinematics and kinetics during gait will provide a baseline for documenting impairments in patients with foot disorders.

  6. EFFICACY OF POSTURAL CORRECTION SUIT ON GAIT PARAMETERS AND EXECUTIVE MOBILITY ACTIVITIES IN DIPLEGIC CHILDREN

    OpenAIRE

    Mohamed Ali Elshafey

    2014-01-01

    Background: Spastic diplegic children walk with abnormal gait pattern, suit therapy used for treatment and rehabilitation of diplegic children as it improved gross motor development and corrected abnormal posture via its elastic strapping system, but there was no suit designed especially for postural correction. Purpose: The purpose of the current study was to investigate the efficacy of the postural correction suit on gait parameters and executive mobility activities in diplegic ...

  7. Interactive Gait Rehabilitation System with a Locomotion Interface for Training Patients to Climb Stairs

    OpenAIRE

    Yano, Hiroaki; Tamefusa, Shintaro; TANAKA, Naoki; Saito, Hideyuki; Iwata, Hiroo

    2012-01-01

    This paper describes the development of a gait rehabilitation system with a locomotion interface (LI) for training patients to climb stairs. The LI consists of two 2-DOF manipulators equipped with footpads. These can move the patient's feet while his or her body remains stationary. The footpads follow the prerecorded motion of the feet of healthy individuals. For gait training, the patient progresses sequentially through successively more advanced modes. In this study, two modes, the enforced...

  8. Physical biology of human brain development

    Directory of Open Access Journals (Sweden)

    Silvia eBudday

    2015-07-01

    Full Text Available Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view towards surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level towards form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.

  9. Physical biology of human brain development.

    Science.gov (United States)

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2015-01-01

    Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view toward surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level toward form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.

  10. Statistical Parametric Mapping to Identify Differences between Consensus-Based Joint Patterns during Gait in Children with Cerebral Palsy

    Science.gov (United States)

    Papageorgiou, Eirini; Desloovere, Kaat; Molenaers, Guy; De Laet, Tinne

    2017-01-01

    Experts recently identified 49 joint motion patterns in children with cerebral palsy during a Delphi consensus study. Pattern definitions were therefore the result of subjective expert opinion. The present study aims to provide objective, quantitative data supporting the identification of these consensus-based patterns. To do so, statistical parametric mapping was used to compare the mean kinematic waveforms of 154 trials of typically developing children (n = 56) to the mean kinematic waveforms of 1719 trials of children with cerebral palsy (n = 356), which were classified following the classification rules of the Delphi study. Three hypotheses stated that: (a) joint motion patterns with ‘no or minor gait deviations’ (n = 11 patterns) do not differ significantly from the gait pattern of typically developing children; (b) all other pathological joint motion patterns (n = 38 patterns) differ from typically developing gait and the locations of difference within the gait cycle, highlighted by statistical parametric mapping, concur with the consensus-based classification rules. (c) all joint motion patterns at the level of each joint (n = 49 patterns) differ from each other during at least one phase of the gait cycle. Results showed that: (a) ten patterns with ‘no or minor gait deviations’ differed somewhat unexpectedly from typically developing gait, but these differences were generally small (≤3°); (b) all other joint motion patterns (n = 38) differed from typically developing gait and the significant locations within the gait cycle that were indicated by the statistical analyses, coincided well with the classification rules; (c) joint motion patterns at the level of each joint significantly differed from each other, apart from two sagittal plane pelvic patterns. In addition to these results, for several joints, statistical analyses indicated other significant areas during the gait cycle that were not included in the pattern definitions of the consensus

  11. Development of the human infant intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Chana Palmer

    2007-07-01

    Full Text Available Almost immediately after a human being is born, so too is a new microbial ecosystem, one that resides in that person's gastrointestinal tract. Although it is a universal and integral part of human biology, the temporal progression of this process, the sources of the microbes that make up the ecosystem, how and why it varies from one infant to another, and how the composition of this ecosystem influences human physiology, development, and disease are still poorly understood. As a step toward systematically investigating these questions, we designed a microarray to detect and quantitate the small subunit ribosomal RNA (SSU rRNA gene sequences of most currently recognized species and taxonomic groups of bacteria. We used this microarray, along with sequencing of cloned libraries of PCR-amplified SSU rDNA, to profile the microbial communities in an average of 26 stool samples each from 14 healthy, full-term human infants, including a pair of dizygotic twins, beginning with the first stool after birth and continuing at defined intervals throughout the first year of life. To investigate possible origins of the infant microbiota, we also profiled vaginal and milk samples from most of the mothers, and stool samples from all of the mothers, most of the fathers, and two siblings. The composition and temporal patterns of the microbial communities varied widely from baby to baby. Despite considerable temporal variation, the distinct features of each baby's microbial community were recognizable for intervals of weeks to months. The strikingly parallel temporal patterns of the twins suggested that incidental environmental exposures play a major role in determining the distinctive characteristics of the microbial community in each baby. By the end of the first year of life, the idiosyncratic microbial ecosystems in each baby, although still distinct, had converged toward a profile characteristic of the adult gastrointestinal tract.

  12. Influences of trunk flexion on mechanical energy flow in the lower extremities during gait

    Science.gov (United States)

    Takeda, Takuya; Anan, Masaya; Takahashi, Makoto; Ogata, Yuta; Tanimoto, Kenji; Shinkoda, Koichi

    2016-01-01

    [Purpose] The time-series waveforms of mechanical energy generation, absorption, and transfer through the joints indicate how movements are produced and controlled. Previous studies have used these waveforms to evaluate and describe the efficiency of human movements. The purpose of this study was to examine the influence of trunk flexion on mechanical energy flow in the lower extremities during gait. [Subjects and Methods] The subjects were 8 healthy young males (mean age, 21.8 ± 1.3 years, mean height, 170.5 ± 6.8 cm, and mean weight, 60.2 ± 6.8 kg). Subjects walked at a self-selected gait speed under 2 conditions: normal gait (condition N), and gait with trunk flexion formed with a brace to simulate spinal curvature (condition TF). The data collected from initial contact to the mid-stance of gait was analyzed. [Results] There were no significant differences between the 2 conditions in the mechanical energy flow in the knee joint and negative mechanical work in the knee joint. However, the positive mechanical work of the knee joint under condition TF was significantly less than that under condition N. [Conclusion] Trunk flexion led to knee flexion in a standing posture. Thus, a strategy of moving of center of mass upward by knee extension using less mechanical energy was selected during gait in the trunk flexed posture. PMID:27313351

  13. DETERMINANTS OF GLOBAL DEVELOPMENT IN HUMAN MOTIVATION

    Directory of Open Access Journals (Sweden)

    ŢÂMPU DIANA LARISA

    2015-06-01

    Full Text Available We live in a world were manner of use of information is crucial in determining the level of performance. Each country around the globe uses a proper way of spreading information and communication. Studies present the Information and Communication Technology (ICT indicator the proper tool to provide an objective evaluation of the countries performance. The question that this research wants to answer is what are the main ways of motivation (extrinsic and intrinsic in countries where ICT Development Index reaches the highest values in the last 2 years. In this way, we want to verify if ICT has different predictors and different possible consequence that depend on human motivation. Thus relying on calculations made by the International Telecommunication Union for ICT and key factors of motivation this paper will present if there is any relationship between citizens motivation and ICT. This hypothesized model will be illustrated with data from thirty developed countries.

  14. Human vomeronasal epithelium development: An immunohistochemical overview.

    Science.gov (United States)

    Dénes, Lóránd; Pap, Zsuzsanna; Szántó, Annamária; Gergely, István; Pop, Tudor Sorin

    2015-06-01

    The vomeronasal organ (VNO) is the receptor structure of the vomeronasal system (VNS) in vertebrates. It is found bilaterally in the submucosa of the inferior part of the nasal septum. There are ongoing controversies regarding the functionality of this organ in humans. In this study we propose the immunohistochemical evaluation of changes in components of the human vomeronasal epithelium during foetal development. We used 45 foetuses of different age, which were included in three age groups. After VNO identification immunohistochemical reactions were performed using primary antibodies against the following: neuron specific enolase, calretinin, neurofilament, chromogranin, synaptophysin, cytokeratin 7, pan-cytokeratin and S100 protein. Digital slides were obtained and following colorimetric segmentation, surface area measurements were performed. The VNO was found in less than half of the studied specimens (42.2%). Neuron specific enolase and calretinin immunoexpression showed a decreasing trend with foetal age, while the other neural/neuroendocrine markers were negative in all specimens. Cytokeratin 7 expression increased with age, while Pan-Ctk had no significant variations. S100 protein immunoexpression also decreased around the VNO. The results of the present work uphold the theory of regression of the neuroepithelium that is present during initial stages of foetal development.

  15. Development of cue integration in human navigation.

    Science.gov (United States)

    Nardini, Marko; Jones, Peter; Bedford, Rachael; Braddick, Oliver

    2008-05-06

    Mammalian navigation depends both on visual landmarks and on self-generated (e.g., vestibular and proprioceptive) cues that signal the organism's own movement [1-5]. When these conflict, landmarks can either reset estimates of self-motion or be integrated with them [6-9]. We asked how humans combine these information sources and whether children, who use both from a young age [10-12], combine them as adults do. Participants attempted to return an object to its original place in an arena when given either visual landmarks only, nonvisual self-motion information only, or both. Adults, but not 4- to 5-year-olds or 7- to 8-year-olds, reduced their response variance when both information sources were available. In an additional "conflict" condition that measured relative reliance on landmarks and self-motion, we predicted behavior under two models: integration (weighted averaging) of the cues and alternation between them. Adults' behavior was predicted by integration, in which the cues were weighted nearly optimally to reduce variance, whereas children's behavior was predicted by alternation. These results suggest that development of individual spatial-representational systems precedes development of the capacity to combine these within a common reference frame. Humans can integrate spatial cues nearly optimally to navigate, but this ability depends on an extended developmental process.

  16. A protocol to examine vision and gait in Parkinson’s disease: impact of cognition and response to visual cues [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Samuel Stuart

    2016-03-01

    Full Text Available Background Cognitive and visual impairments are common in Parkinson’s disease (PD and contribute to gait deficit and falls. To date, cognition and vision in gait in PD have been assessed separately. Impact of both functions (which we term ‘visuo-cognition’ on gait however is likely interactive and can be tested using visual sampling (specifically saccadic eye movements to provide an online behavioural measure of performance. Although experiments using static paradigms show saccadic impairment in PD, few studies have quantified visual sampling during dynamic motor tasks such as gait. This article describes a protocol developed for testing visuo-cognition during gait in order to examine the: 1 independent roles of cognition and vision in gait in PD, 2 interaction between both functions, and 3 role of visuo-cognition in gait in PD. Methods Two groups of older adults (≥50 years old were recruited; non-demented people with PD (n=60 and age-matched controls (n=40. Participants attended one session and a sub-group (n=25 attended two further sessions in order to establish mobile eye-tracker reliability. Participants walked in a gait laboratory under different attentional (single and dual task, environmental (walk straight, through a door and turning, and cueing (no visual cues and visual cues conditions. Visual sampling was recorded using synchronised mobile eye-tracker and electrooculography systems, and gait was measured using 3D motion analysis. Discussion This exploratory study examined visuo-cognitive processes and their impact on gait in PD. Improved understanding of the influence of cognitive and visual functions on visual sampling during gait and gait in PD will assist in development of interventions to improve gait and reduce falls risk. This study will also help establish robust mobile eye-tracking methods in older adults and people with PD.

  17. Applications of markerless motion capture in gait recognition.

    Science.gov (United States)

    Sandau, Martin

    2016-03-01

    This thesis is based on four manuscripts where two of them were accepted and two were submitted to peer-reviewed journals. The experimental work behind the thesis was conducted at the Institute of Neuroscience and Pharmacology, University of Copenhagen. The purpose of the studies was to explore the variability of human gait and to conduct new methods for precise estimation of the kinematic parameters applied in forensic gait analysis. The gait studies were conducted in a custom built gait laboratory designed to obtain optimal conditions for markerless motion analysis. The set-up consisted of eight synchronised cameras located in the corners of the laboratory, which were connected to a single computer. The captured images were processed with stereovision-based algorithms to provide accurate 3D reconstructions of the participants. The 3D reconstructions of the participants were obtained during normal walking and the kinematics were extracted with manual and automatic methods. The kinematic results from the automatic approach were compared to marker-based motion capture to validate the precision. The results showed that the proposed markerless motion capture method had a precision comparable to marker-based methods in the frontal plane and the sagittal plane. Similar markerless motion capture methods could therefore provide the basis for reliable gait recognition based on kinematic parameters. The manual annotations were compared to the actual anthropometric measurements obtained from MRI scans and the intra- and inter-observer variability was also quantified to observe the associated effect on recognition. The results showed not only that the kinematics in the lower extremities were important but also that the kinematics in the shoulders had a high discriminatory power. Likewise, the shank length was also highly discriminatory, which has not been previously reported. However, it is important that the same expert performs all annotations, as the inter

  18. Functional clinical typology of the foot and kinematic gait parameters

    Directory of Open Access Journals (Sweden)

    Jitka Marenčáková

    2016-06-01

    Full Text Available Background: The foot plays a key role in a standing posture, walking and running performance. Changes in its structure or function may alter upper segments of kinematic chain which can lead to formation of musculoskeletal disorders. Although functional clinical typology provides a complex view of foot kinesiology there is a lack of knowledge and evidence about influences of different foot types on human gait. Objective: The aim of the study was to analyse differences of kinematic gait parameters of lower extremity joints and pelvis between functional clinical foot types in healthy young men. Methods: Three-dimensional kinematic analysis by the Vicon Motion Capture MX System device in synchronization with 2 Kistler force platforms was used to obtain kinematic data from 18 healthy men (mean age 23.2 ± 1.9 years. The functional clinical foot type was clinically examined and sorted into 3 basic foot type groups - forefoot varus (FFvar, rearfoot varus (RFvar and forefoot valgus (FFvalg. Peak angular values and range of an angular displacement in all of three movement planes were analysed for pelvis, hip, knee and ankle joint. For statistical analysis of kinematic gait parameters differences between foot types Mann Whitney U test at a statistical significance level p < .05 and Cohen's coefficient d for effect size were used. Results: This study showed that functional clinical foot type can affect kinematic parameters of gait in the joints of the lower limb and pelvis. Significant differences were presented in the FFvar in comparison with other two foot type groups with middle and high size of effect. The most alterations were observed in pelvis area and in a sagittal plane of movement. Nevertheless, significant differences between FFvalg and RFvar foot types were not noticed. Conclusions: Functional clinical foot typology provides one of the possible methods to describe foot structure and function. Our results showed that foot type could

  19. Automated health alerts from Kinect-based in-home gait measurements.

    Science.gov (United States)

    Stone, Erik E; Skubic, Marjorie; Back, Jessica

    2014-01-01

    A method for automatically generating alerts to clinicians in response to changes in in-home gait parameters is investigated. Kinect-based gait measurement systems were installed in apartments in a senior living facility. The systems continuously monitored the walking speed, stride time, and stride length of apartment residents. A framework for modeling uncertainty in the residents' gait parameter estimates, which is critical for robust change detection, is developed; along with an algorithm for detecting changes that may be clinically relevant. Three retrospective case studies, of individuals who had their gait monitored for periods ranging from 12 to 29 months, are presented to illustrate use of the alert method. Evidence suggests that clinicians could be alerted to health changes at an early stage, while they are still small and interventions may be most successful. Additional potential uses are also discussed.

  20. The application of multilevel modelling to account for the influence of walking speed in gait analysis.

    Science.gov (United States)

    Keene, David J; Moe-Nilssen, Rolf; Lamb, Sarah E

    2016-01-01

    Differences in gait performance can be explained by variations in walking speed, which is a major analytical problem. Some investigators have standardised speed during testing, but this can result in an unnatural control of gait characteristics. Other investigators have developed test procedures where participants walking at their self-selected slow, preferred and fast speeds, with computation of gait characteristics at a standardised speed. However, this analysis is dependent upon an overlap in the ranges of gait speed observed within and between participants, and this is difficult to achieve under self-selected conditions. In this report a statistical analysis procedure is introduced that utilises multilevel modelling to analyse data from walking tests at self-selected speeds, without requiring an overlap in the range of speeds observed or the routine use of data transformations.