WorldWideScience

Sample records for human fetal forebrain

  1. Forebrain development in fetal MRI: evaluation of anatomical landmarks before gestational week 27

    International Nuclear Information System (INIS)

    Schmook, Maria T.; Weber, Michael; Kasprian, Gregor; Nemec, Stefan; Prayer, Daniela; Brugger, Peter C.; Krampl-Bettelheim, Elisabeth

    2010-01-01

    Forebrain malformations include some of the most severe developmental anomalies and require early diagnosis. The proof of normal or abnormal prosencephalic development may have an influence on further management in the event of a suspected fetal malformation. The purpose of this retrospective study was to evaluate the detectability of anatomical landmarks of forebrain development using in vivo fetal magnetic resonance imaging (MRI) before gestational week (gw) 27. MRI studies of 83 singleton fetuses (gw 16-26, average ±sd: gw 22 ± 2) performed at 1.5 Tesla were assessed. T2-weighted (w) fast spin echo, T1w gradient-echo and diffusion-weighted sequences were screened for the detectability of anatomical landmarks as listed below. The interhemispheric fissure, ocular bulbs, corpus callosum, infundibulum, chiasm, septum pellucidum (SP), profile, and palate were detectable in 95%, 95%, 89%, 87%, 82%, 81%, 78%, 78% of cases. Olfactory tracts were more easily delineated than bulbs and sulci (37% versus 18% and 8%), with significantly higher detection rates in the coronal plane. The pituitary gland could be detected on T1w images in 60% with an increasing diameter with gestational age (p=0.041). The delineation of olfactory tracts (coronal plane), chiasm, SP and pituitary gland were significantly increased after week 21 (p<0.05). Pathologies were found in 28% of cases. This study provides detection rates for anatomical landmarks of forebrain development with fetal MRI before gw 27. Several anatomical structures are readily detectable with routine fetal MRI sequences; thus, if these landmarks are not delineable, it should raise the suspicion of a pathology. Recommendations regarding favorable sequences/planes are provided. (orig.)

  2. Forebrain development in fetal MRI: evaluation of anatomical landmarks before gestational week 27

    Energy Technology Data Exchange (ETDEWEB)

    Schmook, Maria T.; Weber, Michael; Kasprian, Gregor; Nemec, Stefan; Prayer, Daniela [Medical University of Vienna, Department of Radiology/Division of Neuro- and Musculoskeletal Radiology, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Integrative Morphology Group, Center for Anatomy and Cell Biology, Vienna (Austria); Krampl-Bettelheim, Elisabeth [Department of Obstetrics and Gynecology / Division of Obstetrics and Feto-maternal Medicine, Vienna (Austria)

    2010-06-15

    Forebrain malformations include some of the most severe developmental anomalies and require early diagnosis. The proof of normal or abnormal prosencephalic development may have an influence on further management in the event of a suspected fetal malformation. The purpose of this retrospective study was to evaluate the detectability of anatomical landmarks of forebrain development using in vivo fetal magnetic resonance imaging (MRI) before gestational week (gw) 27. MRI studies of 83 singleton fetuses (gw 16-26, average {+-}sd: gw 22 {+-} 2) performed at 1.5 Tesla were assessed. T2-weighted (w) fast spin echo, T1w gradient-echo and diffusion-weighted sequences were screened for the detectability of anatomical landmarks as listed below. The interhemispheric fissure, ocular bulbs, corpus callosum, infundibulum, chiasm, septum pellucidum (SP), profile, and palate were detectable in 95%, 95%, 89%, 87%, 82%, 81%, 78%, 78% of cases. Olfactory tracts were more easily delineated than bulbs and sulci (37% versus 18% and 8%), with significantly higher detection rates in the coronal plane. The pituitary gland could be detected on T1w images in 60% with an increasing diameter with gestational age (p=0.041). The delineation of olfactory tracts (coronal plane), chiasm, SP and pituitary gland were significantly increased after week 21 (p<0.05). Pathologies were found in 28% of cases. This study provides detection rates for anatomical landmarks of forebrain development with fetal MRI before gw 27. Several anatomical structures are readily detectable with routine fetal MRI sequences; thus, if these landmarks are not delineable, it should raise the suspicion of a pathology. Recommendations regarding favorable sequences/planes are provided. (orig.)

  3. Reduced cell number in the neocortical part of the human fetal brain in Down syndrome

    DEFF Research Database (Denmark)

    Larsen, K.B.; Laursen, H.; Graem, N.

    2008-01-01

    Mental retardation is seen in all individuals with Down syndrome (DS) and different brain abnormalities are reported. The aim of this study was to investigate if mental retardation at least in part is a result of a lower cell number in the neocortical part of the human fetal forebrain. We therefore...

  4. Gonadotropin-releasing hormone immunoreactivity in the adult and fetal human olfactory system.

    Science.gov (United States)

    Kim, K H; Patel, L; Tobet, S A; King, J C; Rubin, B S; Stopa, E G

    1999-05-01

    Studies in fetal brain tissue of rodents, nonhuman primates and birds have demonstrated that cells containing gonadotropin-releasing hormone (GnRH) migrate from the olfactory placode across the nasal septum into the forebrain. The purpose of this study was to examine GnRH neurons in components of the adult and fetal human olfactory system. In the adult human brain (n=4), immunoreactive GnRH was evident within diffusely scattered cell bodies and processes in the olfactory bulb, olfactory nerve, olfactory cortex, and nervus terminalis located on the anterior surface of the gyrus rectus. GnRH-immunoreactive structures showed a similar distribution in 20-week human fetal brains (n=2), indicating that the migration of GnRH neurons is complete at this time. In 10-11-week fetal brains (n=2), more cells were noted in the nasal cavity than in the brain. Our data are consistent with observations made in other species, confirming olfactory derivation and migration of GnRH neurons into the brain from the olfactory placode. Copyright 1999 Elsevier Science B.V.

  5. Populations of subplate and interstitial neurons in fetal and adult human telencephalon.

    Science.gov (United States)

    Judaš, Miloš; Sedmak, Goran; Pletikos, Mihovil; Jovanov-Milošević, Nataša

    2010-10-01

    In the adult human telencephalon, subcortical (gyral) white matter contains a special population of interstitial neurons considered to be surviving descendants of fetal subplate neurons [Kostovic & Rakic (1980) Cytology and the time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol9, 219]. We designate this population of cells as superficial (gyral) interstitial neurons and describe their morphology and distribution in the postnatal and adult human cerebrum. Human fetal subplate neurons cannot be regarded as interstitial, because the subplate zone is an essential part of the fetal cortex, the major site of synaptogenesis and the 'waiting' compartment for growing cortical afferents, and contains both projection neurons and interneurons with distinct input-output connectivity. However, although the subplate zone is a transient fetal structure, many subplate neurons survive postnatally as superficial (gyral) interstitial neurons. The fetal white matter is represented by the intermediate zone and well-defined deep periventricular tracts of growing axons, such as the corpus callosum, anterior commissure, internal and external capsule, and the fountainhead of the corona radiata. These tracts gradually occupy the territory of transient fetal subventricular and ventricular zones.The human fetal white matter also contains distinct populations of deep fetal interstitial neurons, which, by virtue of their location, morphology, molecular phenotypes and advanced level of dendritic maturation, remain distinct from subplate neurons and neurons in adjacent structures (e.g. basal ganglia, basal forebrain). We describe the morphological, histochemical (nicotinamide-adenine dinucleotide phosphate-diaphorase) and immunocytochemical (neuron-specific nuclear protein, microtubule-associated protein-2, calbindin, calretinin, neuropeptide Y) features of both deep fetal interstitial neurons and deep (periventricular

  6. High-Content Screening in hPSC-Neural Progenitors Identifies Drug Candidates that Inhibit Zika Virus Infection in Fetal-like Organoids and Adult Brain.

    Science.gov (United States)

    Zhou, Ting; Tan, Lei; Cederquist, Gustav Y; Fan, Yujie; Hartley, Brigham J; Mukherjee, Suranjit; Tomishima, Mark; Brennand, Kristen J; Zhang, Qisheng; Schwartz, Robert E; Evans, Todd; Studer, Lorenz; Chen, Shuibing

    2017-08-03

    Zika virus (ZIKV) infects fetal and adult human brain and is associated with serious neurological complications. To date, no therapeutic treatment is available to treat ZIKV-infected patients. We performed a high-content chemical screen using human pluripotent stem cell-derived cortical neural progenitor cells (hNPCs) and found that hippeastrine hydrobromide (HH) and amodiaquine dihydrochloride dihydrate (AQ) can inhibit ZIKV infection in hNPCs. Further validation showed that HH also rescues ZIKV-induced growth and differentiation defects in hNPCs and human fetal-like forebrain organoids. Finally, HH and AQ inhibit ZIKV infection in adult mouse brain in vivo. Strikingly, HH suppresses viral propagation when administered to adult mice with active ZIKV infection, highlighting its therapeutic potential. Our approach highlights the power of stem cell-based screens and validation in human forebrain organoids and mouse models in identifying drug candidates for treating ZIKV infection and related neurological complications in fetal and adult patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Forebrain Mechanisms of Nociception and Pain: Analysis through Imaging

    Science.gov (United States)

    Casey, Kenneth L.

    1999-07-01

    Pain is a unified experience composed of interacting discriminative, affective-motivational, and cognitive components, each of which is mediated and modulated through forebrain mechanisms acting at spinal, brainstem, and cerebral levels. The size of the human forebrain in relation to the spinal cord gives anatomical emphasis to forebrain control over nociceptive processing. Human forebrain pathology can cause pain without the activation of nociceptors. Functional imaging of the normal human brain with positron emission tomography (PET) shows synaptically induced increases in regional cerebral blood flow (rCBF) in several regions specifically during pain. We have examined the variables of gender, type of noxious stimulus, and the origin of nociceptive input as potential determinants of the pattern and intensity of rCBF responses. The structures most consistently activated across genders and during contact heat pain, cold pain, cutaneous laser pain or intramuscular pain were the contralateral insula and anterior cingulate cortex, the bilateral thalamus and premotor cortex, and the cerebellar vermis. These regions are commonly activated in PET studies of pain conducted by other investigators, and the intensity of the brain rCBF response correlates parametrically with perceived pain intensity. To complement the human studies, we developed an animal model for investigating stimulus-induced rCBF responses in the rat. In accord with behavioral measures and the results of human PET, there is a progressive and selective activation of somatosensory and limbic system structures in the brain and brainstem following the subcutaneous injection of formalin. The animal model and human PET studies should be mutually reinforcing and thus facilitate progress in understanding forebrain mechanisms of normal and pathological pain.

  8. Cholesterol synthesis by human fetal hepatocytes: effect of lipoproteins

    International Nuclear Information System (INIS)

    Carr, B.R.; Simpson, E.R.

    1984-01-01

    The purpose of the present investigation was to determine the effect of various lipoproteins on the rate of cholesterol synthesis of human fetal liver cells maintained in culture. This was accomplished by measuring the rate of incorporation of tritium from tritiated water or carbon 14-labeled acetate into cholesterol in human fetal liver cells. Optimal conditions for each assay were determined. When human fetal liver cells were maintained in the presence of low-density lipoprotein, cholesterol synthesis was inhibited in a concentration-dependent fashion. Intermediate--density lipoprotein and very-low-density lipoprotein also suppressed cholesterol synthesis in human fetal liver cells. In contrast, high-density lipoprotein stimulated cholesterol synthesis in human fetal liver cells. The results of the present as well as our previous investigations suggest that multiple interrelationships exist between fetal liver cholesterol synthesis and lipoprotein-cholesterol utilization by the human fetal adrenal gland and that these processes serve to regulate the lipoprotein-cholesterol levels in fetal plasma

  9. Distribution of melatonin receptor in human fetal brain

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-quan; SHAO Fu-yuan; ZHAO Ying; LIU Zhi-min

    2001-01-01

    Objective: To study the distribution of 2 kinds of melatonin receptor subtypes (mtl and MT2) in human fetal brain. Methods: The fetal brain tissues were sliced and the distribution ofmelatonin receptors in human fetal brain were detected using immunohistochemistry and in situ hybridization. Results: Melatonin receptor mtl existed in the cerebellun and hypothalamus, melatonin receptor MT2 exists in hypothalamus, occipital and medulla. Conclusion: Two kinds of melatonin receptors, mtl and MT2 exist in the membrane and cytosol of brain cells, indicating that human fetal brain is a target organ of melatonin.

  10. SSEA-4 and YKL-40 positive progenitor subtypes in the subventricular zone of developing human neocortex

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Møllgård, Kjeld

    2016-01-01

    The glycosphingolipid SSEA-4 and the glycoprotein YKL-40 have both been associated with human embryonic and neural stem cell differentiation. We investigated the distribution of SSEA-4 and YKL-40 positive cells in proliferative zones of human fetal forebrain using immunohistochemistry and double-...

  11. Generation of Regionally Specified Neural Progenitors and Functional Neurons from Human Embryonic Stem Cells under Defined Conditions

    Directory of Open Access Journals (Sweden)

    Agnete Kirkeby

    2012-06-01

    Full Text Available To model human neural-cell-fate specification and to provide cells for regenerative therapies, we have developed a method to generate human neural progenitors and neurons from human embryonic stem cells, which recapitulates human fetal brain development. Through the addition of a small molecule that activates canonical WNT signaling, we induced rapid and efficient dose-dependent specification of regionally defined neural progenitors ranging from telencephalic forebrain to posterior hindbrain fates. Ten days after initiation of differentiation, the progenitors could be transplanted to the adult rat striatum, where they formed neuron-rich and tumor-free grafts with maintained regional specification. Cells patterned toward a ventral midbrain (VM identity generated a high proportion of authentic dopaminergic neurons after transplantation. The dopamine neurons showed morphology, projection pattern, and protein expression identical to that of human fetal VM cells grafted in parallel. VM-patterned but not forebrain-patterned neurons released dopamine and reversed motor deficits in an animal model of Parkinson's disease.

  12. Fetal thrombocytopenia in pregnancies with fetal human parvovirus-B19 infection.

    Science.gov (United States)

    Melamed, Nir; Whittle, Wendy; Kelly, Edmond N; Windrim, Rory; Seaward, P Gareth R; Keunen, Johannes; Keating, Sarah; Ryan, Greg

    2015-06-01

    Fetal infection with human parvovirus B19 (hParvo-B19) has been associated mainly with fetal anemia, although data regarding other fetal hematologic effects are limited. Our aim was to assess the rate and consequences of severe fetal thrombocytopenia after fetal hParvo-B19 infection. We conducted a retrospective study of pregnancies that were complicated by fetal hParvo-B19 infection that underwent fetal blood sampling (FBS). The characteristics and outcomes of fetuses with severe thrombocytopenia (B19 infection. A total of 37 pregnancies that were affected by fetal hParvo-B19 infection were identified. Of the 29 cases that underwent FBS and had information regarding fetal platelets, 11 cases (38%) were complicated by severe fetal thrombocytopenia. Severely thrombocytopenic fetuses were characterized by a lower hemoglobin concentration (2.6 ± 0.9 g/dL vs 5.5 ± 3.6 g/dL; P = .01), lower reticulocyte count (9.1% ± 2.8% vs 17.3% ± 10.6%; P = .02), and lower gestational age at the time of diagnosis (21.4 ± 3.1 wk vs 23.6 ± 2.2 wk; P = .03). Both the fetal death rate within 48 hours of FBS (27.3% vs 0%; P = .02) and the risk of prematurity (100.0% vs 13.3%; P B19 infection, can be further worsened by IUT, and may be associated with an increased risk of procedure-related fetal loss after either FBS or IUT. Copyright © 2015. Published by Elsevier Inc.

  13. Metabolism of lipoproteins by human fetal hepatocytes

    International Nuclear Information System (INIS)

    Carr, B.R.

    1987-01-01

    The rate of clearance of lipoproteins from plasma appears to play a role in the development of atherogenesis. The liver may account for as much as two thirds of the removal of low-density lipoprotein and one third of the clearance of high-density lipoprotein in certain animal species and humans, mainly by receptor-mediated pathways. The purpose of the present investigation was to determine if human fetal hepatocytes maintained in vitro take up and degrade lipoproteins. We first determined that the maximal binding capacity of iodine 125-iodo-LDL was approximately 300 ng of low-density lipoprotein protein/mg of membrane protein and an apparent dissociation constant of approximately 60 micrograms low-density lipoprotein protein/ml in membranes prepared from human fetal liver. We found that the maximal uptake of [ 125 I]iodo-LDL and [ 125 I]iodo-HDL by fetal hepatocytes occurred after 12 hours of incubation. Low-density lipoprotein uptake preceded the appearance of degradation products by 4 hours, and thereafter the degradation of low-density lipoprotein increased linearly for at least 24 hours. In contrast, high-density lipoprotein was not degraded to any extent by fetal hepatocytes. [ 125 I]Iodo-LDL uptake and degradation were inhibited more than 75% by preincubation with low-density lipoprotein but not significantly by high-density lipoprotein, whereas [ 125 I]iodo-HDL uptake was inhibited 70% by preincubation with high-density lipoprotein but not by low-density lipoprotein. In summary, human fetal hepatocytes take up and degrade low-density lipoprotein by a receptor-mediated process similar to that described for human extrahepatic tissues

  14. Cross-hemispheric functional connectivity in the human fetal brain.

    Science.gov (United States)

    Thomason, Moriah E; Dassanayake, Maya T; Shen, Stephen; Katkuri, Yashwanth; Alexis, Mitchell; Anderson, Amy L; Yeo, Lami; Mody, Swati; Hernandez-Andrade, Edgar; Hassan, Sonia S; Studholme, Colin; Jeong, Jeong-Won; Romero, Roberto

    2013-02-20

    Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC.

  15. Dissociating basal forebrain and medial temporal amnesic syndromes: insights from classical conditioning.

    Science.gov (United States)

    Myer, Catherine E; Bryant, Deborah; DeLuca, John; Gluck, Mark A

    2002-01-01

    In humans, anterograde amnesia can result from damage to the medial temporal (MT) lobes (including hippocampus), as well as to other brain areas such as basal forebrain. Results from animal classical conditioning studies suggest that there may be qualitative differences in the memory impairment following MT vs. basal forebrain damage. Specifically, delay eyeblink conditioning is spared after MT damage in animals and humans, but impaired in animals with basal forebrain damage. Recently, we have likewise shown delay eyeblink conditioning impairment in humans with amnesia following anterior communicating artery (ACoA) aneurysm rupture, which damages the basal forebrain. Another associative learning task, a computer-based concurrent visual discrimination, also appears to be spared in MT amnesia while ACoA amnesics are slower to learn the discriminations. Conversely, animal and computational models suggest that, even though MT amnesics may learn quickly, they may learn qualitatively differently from controls, and these differences may result in impaired transfer when familiar information is presented in novel combinations. Our initial data suggests such a two-phase learning and transfer task may provide a double dissociation between MT amnesics (spared initial learning but impaired transfer) and ACoA amnesics (slow initial learning but spared transfer). Together, these emerging data suggest that there are subtle but dissociable differences in the amnesic syndrome following damage to the MT lobes vs. basal forebrain, and that these differences may be most visible in non-declarative tasks such as eyeblink classical conditioning and simple associative learning.

  16. Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells.

    Science.gov (United States)

    Hu, Yao; Qu, Zhuang-Yin; Cao, Shi-Ying; Li, Qi; Ma, Lixiang; Krencik, Robert; Xu, Min; Liu, Yan

    2016-06-15

    Basal forebrain cholinergic neurons (BFCNs) play critical roles in learning, memory and cognition. Dysfunction or degeneration of BFCNs may connect to neuropathology, such as Alzheimer's disease, Down's syndrome and dementia. Generation of functional BFCNs may contribute to the studies of cell-based therapy and pathogenesis that is related to learning and memory deficits. Here we describe a detail method for robust generation of BFCNs from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). In this method, BFCN progenitors are patterned from hESC or hiPSC-derived primitive neuroepithelial cells, with the treatment of sonic hedgehog (SHH) or combination with its agonist Purmorphamine, and by co-culturing with human astrocytes. At day 20, ∼90% hPSC-derived progenitors expressed NKX2.1, which is a transcriptional marker for MGE. Moreover, around 40% of NKX2.1+ cells co-expressed OLIG2 and ∼15% of NKX2.1+ cells co-expressed ISLET1, which are ventral markers. At day 35, ∼40% neurons robustly express ChAT, most of which are co-labeled with NKX2.1, ISLET1 and FOXG1, indicating the basal forebrain-like identity. At day 45, these neurons express mature neuronal markers MAP2, Synapsin, and VAChT. In this method, undefined conditions including genetic modification or cell-sorting are avoided. As a choice, feeder free conditions are used to avoid ingredients of animal origin. Moreover, Purmorphamine can be substituted for SHH to induce ventral progenitors effectively and economically. We provide an efficient method to generate BFCNs from multiple hPSC lines, which offers the potential application for disease modeling and pharmacological studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. O6-methylguanine DNA methyltransferase in human fetal tissues: fetal and maternal factors

    International Nuclear Information System (INIS)

    D'Ambrosio, S.M.; Samuel, M.J.; Dutta-Choudhury, T.A.; Wani, A.A.

    1986-01-01

    O 6 -Methylguanine methyltransferase (O 6 -MT) was measured and compared in extracts of 7 human fetal tissues obtained from 21 different fetal specimens as a function of fetal age and race, and maternal smoking and drug usage. Activity was determined from the proteinase-K solubilized radioactivity transferred from the DNA to the O 6 -MT. S9 homogenates were incubated with a heat depurinated [ 3 H]-methylnitrosourea alkylated DNA. Liver exhibited the highest activity followed by kidney, lung, small intestine, large intestine, skin and brain. Each of the tissues exhibited a 3- to 5-fold level of interindividual variation of O 6 -MT. There did not appear to be any significant difference of O 6 -MT in the tissues obtained from mothers who smoked cigarettes during pregnancy. Also, fetal race and age did not appear to account for the level of variation of O 6 -MT. The fetal tissues obtained from an individual using phenobarbital and smoking exhibited 4-fold increases in O 6 -MT activity. The tissues obtained from another individual on kidney dialysis were 2- to 3-fold higher than the normal population. These data suggest that the variation in human O 6 -MT can not be explained by racial or smoking factors, but may be modulated by certain drugs

  18. Differing levels of excision repair in human fetal dermis and brain cells

    International Nuclear Information System (INIS)

    Gibson, R.E.; D'Ambrosio, S.M.; Ohio State Univ., Columbus

    1982-01-01

    The levels of DNA excision repair, as measured by unscheduled DNA synthesis (UDS) and the UV-endonuclease sensitive site assay, were compared in cells derived from human fetal brain and dermal tissues. The level of UDS induced following ultraviolet (UV) irradiation was found to be lower (approx. 60%) in the fetal brain cells than in fetal dermal cells. It was determined, using the UV-endonuclease sensitive site assay to confirm the UDS observation, that 50% of the dimers induced by UV in fetal dermal cells were repaired in 8 h. while only 15% were removed in the fetal brain cells during the same period of time. Even after 24 h. only 44% of the dimers induced by UV in the fetal brain cells were repaired, while 65% were removed in the dermal cells. These data suggest that cultured human fetal brain cells exhibit lower levels of excision repair compared to cultured human fetal dermal cells. (author)

  19. Characterization of the fetal blood transcriptome and proteome in maternal anti-fetal rejection: evidence of a distinct and novel type of human fetal systemic inflammatory response.

    Science.gov (United States)

    Lee, Joonho; Romero, Roberto; Chaiworapongsa, Tinnakorn; Dong, Zhong; Tarca, Adi L; Xu, Yi; Chiang, Po Jen; Kusanovic, Juan Pedro; Hassan, Sonia S; Yeo, Lami; Yoon, Bo Hyun; Than, Nandor Gabor; Kim, Chong Jai

    2013-10-01

    The human fetus is able to mount a systemic inflammatory response when exposed to microorganisms. This stereotypic response has been termed the 'fetal inflammatory response syndrome' (FIRS), defined as an elevation of fetal plasma interleukin-6 (IL-6). FIRS is frequently observed in patients whose preterm deliveries are associated with intra-amniotic infection, acute inflammatory lesions of the placenta, and a high rate of neonatal morbidity. Recently, a novel form of fetal systemic inflammation, characterized by an elevation of fetal plasma CXCL10, has been identified in patients with placental lesions consistent with 'maternal anti-fetal rejection'. These lesions include chronic chorioamnionitis, plasma cell deciduitis, and villitis of unknown etiology. In addition, positivity for human leukocyte antigen (HLA) panel-reactive antibodies (PRA) in maternal sera can also be used to increase the index of suspicion for maternal anti-fetal rejection. The purpose of this study was to determine (i) the frequency of pathologic lesions consistent with maternal anti-fetal rejection in term and spontaneous preterm births; (ii) the fetal serum concentration of CXCL10 in patients with and without evidence of maternal anti-fetal rejection; and (iii) the fetal blood transcriptome and proteome in cases with a fetal inflammatory response associated with maternal anti-fetal rejection. Maternal and fetal sera were obtained from normal term (n = 150) and spontaneous preterm births (n = 150). A fetal inflammatory response associated with maternal anti-fetal rejection was diagnosed when the patients met two or more of the following criteria: (i) presence of chronic placental inflammation; (ii) ≥80% of maternal HLA class I PRA positivity; and (iii) fetal serum CXCL10 concentration >75th percentile. Maternal HLA PRA was analyzed by flow cytometry. The concentrations of fetal CXCL10 and IL-6 were determined by ELISA. Transcriptome analysis was undertaken after the extraction of total RNA

  20. Retinoic Acid signalling and the control of meiotic entry in the human fetal gonad.

    Directory of Open Access Journals (Sweden)

    Andrew J Childs

    Full Text Available The development of mammalian fetal germ cells along oogenic or spermatogenic fate trajectories is dictated by signals from the surrounding gonadal environment. Germ cells in the fetal testis enter mitotic arrest, whilst those in the fetal ovary undergo sex-specific entry into meiosis, the initiation of which is thought to be mediated by selective exposure of fetal ovarian germ cells to mesonephros-derived retinoic acid (RA. Aspects of this model are hard to reconcile with the spatiotemporal pattern of germ cell differentiation in the human fetal ovary, however. We have therefore examined the expression of components of the RA synthesis, metabolism and signalling pathways, and their downstream effectors and inhibitors in germ cells around the time of the initiation of meiosis in the human fetal gonad. Expression of the three RA-synthesising enzymes, ALDH1A1, 2 and 3 in the fetal ovary and testis was equal to or greater than that in the mesonephros at 8-9 weeks gestation, indicating an intrinsic capacity within the gonad to synthesise RA. Using immunohistochemistry to detect RA receptors RARα, β and RXRα, we find germ cells to be the predominant target of RA signalling in the fetal human ovary, but also reveal widespread receptor nuclear localization indicative of signalling in the testis, suggesting that human fetal testicular germ cells are not efficiently shielded from RA by the action of the RA-metabolising enzyme CYP26B1. Consistent with this, expression of CYP26B1 was greater in the human fetal ovary than testis, although the sexually-dimorphic expression patterns of the germ cell-intrinsic regulators of meiotic initiation, STRA8 and NANOS2, appear conserved. Finally, we demonstrate that RA induces a two-fold increase in STRA8 expression in cultures of human fetal testis, but is not sufficient to cause widespread meiosis-associated gene expression. Together, these data indicate that while local production of RA within the fetal ovary may

  1. Retinoic Acid Signalling and the Control of Meiotic Entry in the Human Fetal Gonad

    Science.gov (United States)

    Kinnell, Hazel L.; Anderson, Richard A.; Saunders, Philippa T. K.

    2011-01-01

    The development of mammalian fetal germ cells along oogenic or spermatogenic fate trajectories is dictated by signals from the surrounding gonadal environment. Germ cells in the fetal testis enter mitotic arrest, whilst those in the fetal ovary undergo sex-specific entry into meiosis, the initiation of which is thought to be mediated by selective exposure of fetal ovarian germ cells to mesonephros-derived retinoic acid (RA). Aspects of this model are hard to reconcile with the spatiotemporal pattern of germ cell differentiation in the human fetal ovary, however. We have therefore examined the expression of components of the RA synthesis, metabolism and signalling pathways, and their downstream effectors and inhibitors in germ cells around the time of the initiation of meiosis in the human fetal gonad. Expression of the three RA-synthesising enzymes, ALDH1A1, 2 and 3 in the fetal ovary and testis was equal to or greater than that in the mesonephros at 8–9 weeks gestation, indicating an intrinsic capacity within the gonad to synthesise RA. Using immunohistochemistry to detect RA receptors RARα, β and RXRα, we find germ cells to be the predominant target of RA signalling in the fetal human ovary, but also reveal widespread receptor nuclear localization indicative of signalling in the testis, suggesting that human fetal testicular germ cells are not efficiently shielded from RA by the action of the RA-metabolising enzyme CYP26B1. Consistent with this, expression of CYP26B1 was greater in the human fetal ovary than testis, although the sexually-dimorphic expression patterns of the germ cell-intrinsic regulators of meiotic initiation, STRA8 and NANOS2, appear conserved. Finally, we demonstrate that RA induces a two-fold increase in STRA8 expression in cultures of human fetal testis, but is not sufficient to cause widespread meiosis-associated gene expression. Together, these data indicate that while local production of RA within the fetal ovary may be important in

  2. Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain.

    Science.gov (United States)

    Bonnin, A; Levitt, P

    2011-12-01

    In addition to its role in neurotransmission, embryonic serotonin (5-HT) has been implicated in the regulation of neurodevelopmental processes. For example, we recently showed that a subset of 5-HT1-receptors expressed in the fetal forebrain mediate a serotonergic modulation of thalamocortical axons response to axon guidance cues, both in vitro and in vivo. This influence of 5-HT signaling on fetal brain wiring raised important questions regarding the source of the ligand during pregnancy. Until recently, it was thought that 5-HT sources impacting brain development arose from maternal transport to the fetus, or from raphe neurons in the brainstem of the fetus. Using genetic mouse models, we uncovered previously unknown differences in 5-HT accumulation between the fore- and hindbrain during early and late fetal stages, through an exogenous source of 5-HT. Using additional genetic strategies, a new technology for studying placental biology ex vivo, and direct manipulation of placental neosynthesis, we investigated the nature of this exogenous source and uncovered a placental 5-HT synthetic pathway from a maternal tryptophan precursor, in both mice and humans. These results implicate a new, direct role for placental metabolic pathways in modulating fetal brain development and suggest an important role for maternal-placental-fetal interactions and 5-HT in the fetal programming of adult mental disorders. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Distinct functional programming of human fetal and adult monocytes.

    Science.gov (United States)

    Krow-Lucal, Elisabeth R; Kim, Charles C; Burt, Trevor D; McCune, Joseph M

    2014-03-20

    Preterm birth affects 1 out of 9 infants in the United States and is the leading cause of long-term neurologic handicap and infant mortality, accounting for 35% of all infant deaths in 2008. Although cytokines including interferon-γ (IFN-γ), interleukin-10 (IL-10), IL-6, and IL-1 are produced in response to in utero infection and are strongly associated with preterm labor, little is known about how human fetal immune cells respond to these cytokines. We demonstrate that fetal and adult CD14(+)CD16(-) classical monocytes are distinct in terms of basal transcriptional profiles and in phosphorylation of signal transducers and activators of transcription (STATs) in response to cytokines. Fetal monocytes phosphorylate canonical and noncanonical STATs and respond more strongly to IFN-γ, IL-6, and IL-4 than adult monocytes. We demonstrate a higher ratio of SOCS3 to IL-6 receptor in adult monocytes than in fetal monocytes, potentially explaining differences in STAT phosphorylation. Additionally, IFN-γ signaling results in upregulation of antigen presentation and costimulatory machinery in adult, but not fetal, monocytes. These findings represent the first evidence that primary human fetal and adult monocytes are functionally distinct, potentially explaining how these cells respond differentially to cytokines implicated in development, in utero infections, and the pathogenesis of preterm labor.

  4. Dissecting human cerebral organoids and fetal neocortex using single-cell RNAseq

    Science.gov (United States)

    Treutlein, Barbara

    Cerebral organoids - three-dimensional cultures of human cerebral tissue derived from pluripotent stem cells - have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and novel interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages, and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue in order to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures.

  5. Anti-inflammatory Elafin in human fetal membranes.

    Science.gov (United States)

    Stalberg, Cecilia; Noda, Nathalia; Polettini, Jossimara; Jacobsson, Bo; Menon, Ramkumar

    2017-02-01

    Elafin is a low molecular weight protein with antileukoproteinase, anti-inflammatory, antibacterial and immunomodulating properties. The profile of Elafin in fetal membranes is not well characterized. This study determined the changes in Elafin expression and concentration in human fetal membrane from patients with preterm prelabor rupture of membranes (PPROM) and in vitro in response to intra-amniotic polymicrobial pathogens. Elafin messenger RNA (mRNA) expressions were studied in fetal membranes from PPROM, normal term as well as in normal term not in labor membranes in an organ explant system treated (24 h) with lipopolysaccharide (LPS), using quantitative reverse transcription-polymerase chain reaction (RT-PCR). Enzyme-linked immunosorbent assay (ELISA) measured Elafin concentrations in culture supernatants from tissues treated with LPS and polybacterial combinations of heat-inactivated Mycoplasma hominis (MH), Ureaplasma urealyticum (UU) and Gardnerella vaginalis (GV). Elafin mRNA expression in fetal membranes from women with PPROM was significantly higher compared to women who delivered at term after normal pregnancy (5.09±3.50 vs. 11.71±2.21; Pmembranes showed a significantly increased Elafin m-RNA expression (Pmembranes also showed no changes in Elafin protein concentrations compared to untreated controls. Higher Elafin expression in PPROM fetal membranes suggests a host response to an inflammatory pathology. However, lack of Elafin response to LPS and polymicrobial treatment is indicative of the minimal anti-inflammatory impact of this molecule in fetal membranes.

  6. Human fetal anatomy: MR imaging.

    Science.gov (United States)

    Weinreb, J C; Lowe, T; Cohen, J M; Kutler, M

    1985-12-01

    Twenty-four pregnant women carrying 26 fetuses (two sets of twins) were imaged with magnetic resonance (MR) imaging at 0.35 T following sonographic evaluation. Each study was retrospectively evaluated to determine which of 33 normal fetal structures were visible on the images and which imaging parameters were most useful for depicting fetal anatomy. Fetal motion degraded fetal images in all but two cases, both with oligohydramnios and in the third trimester of gestation. Nevertheless, many fetal structures were identifiable, particularly in the third trimester. Visualization of fetal anatomy improved with intravenous maternal sedation in five cases. Relatively T1-weighted images occasionally offered the advantage of less image degradation owing to fetal motion and improved contrast between different fetal structures. More T2 weighting was believed to be advantageous in one case for outlining the fetal head and in one case for delineation of the brain. In many cases, structures were similarly identifiable (though with different signal intensities) regardless of the parameters selected. The authors conclude that MR imaging of many fetal structures is currently unsatisfactory and is probably of limited value, particularly in the first and second trimesters. However, the relative frequency and detail with which the fetal head and liver can be depicted indicate that these may be areas for further investigation, and the potential utility of imaging fetal fat warrants further investigation.

  7. Myocardial bridges of the coronary arteries in the human fetal heart.

    Science.gov (United States)

    Cakmak, Yusuf Ozgür; Cavdar, Safiye; Yalin, Aymelek; Yener, Nuran; Ozdogmus, Omer

    2010-09-01

    During the last century, many investigators reported on myocardial bridges in the adult human heart. In the present study, 39 human fetal hearts (the mean gestastional age was 30 weeks) were studied for myocardial bridging, and the results were correlated with adult data. Among the 39 (27 male and 12 female) fetal hearts studied, 26 bridges were observed on 18 fetal hearts (46.2%). Ten of the bridges had one myocardial bridge, whereas double myocardial bridges were observed in eight fetal hearts. The most frequent myocardial bridges were observed on the left anterior descending artery (LAD), which had 13 bridges (50%). Eight (30.7%) myocardial bridges were on the diagonal artery, and on the posterior descending artery there were five (19.3%). Myocardial bridges were not observed on the circumflex artery. The data presented in this study may provide potentially useful information for the preoperative evaluation of the newborn and may have a clinical implication for sudden fetal death.

  8. Histochemical and radioautographic studies of normal human fetal colon

    International Nuclear Information System (INIS)

    Lev, R.; Orlic, D.; New York Medical Coll., N.Y.

    1974-01-01

    Twenty fetal and infant colons ranging from 10 weeks in utero to 20 months postpartum, and 12 adult human colons were examined using histochemical techniques in conjunction with in vitro radioautography using Na 2 35 SO 4 as a sulfomucin precursor. Only the sulfated components of mucus in fetal goblet cells was found to differ significantly from adult colonic mucins. In the fetus sulfomucin staining was much weaker than in the adult, and was more intense in the left colon which is the reverse of the adult pattern. Sulfomucin was concentrated in the crypts throughout the fetal colon whereas in the adult right colon it predominated in the surface cells. As in the adult, saponification liberated carboxyl groups, possibly belonging to sialic acid, and vicinal hydroxyl groups from fetal mucins suggesting that this procedure hydrolyses an ester linkage between these 2 reactive groups. During the middle trimester of fetal life the colon possesses villi whose constituent cells display alkaline phosphatase in their surface coat. These and other morphological and histochemical similarities to fetal small intestine suggest that the fetal colon may have a limited capacity to absorb materials contained within swallowed amniotic fluid during this period. (orig.) [de

  9. Discovery and Characterization of piRNAs in the Human Fetal Ovary

    Directory of Open Access Journals (Sweden)

    Zev Williams

    2015-10-01

    Full Text Available Piwi-interacting RNAs (piRNAs, a class of 26- to 32-nt non-coding RNAs (ncRNAs, function in germline development, transposon silencing, and epigenetic regulation. We performed deep sequencing and annotation of untreated and periodate-treated small RNA cDNA libraries from human fetal and adult germline and reference somatic tissues. This revealed abundant piRNAs originating from 150 piRNA-encoding genes, including some exhibiting gender-specific expression, in fetal ovary and adult testis—developmental periods coinciding with mitotic cell divisions expanding fetal germ cells prior to meiotic divisions. The absence of reads mapping uniquely to annotated piRNA genes demonstrated their paucity in fetal testis and adult ovary and absence in somatic tissues. We curated human piRNA-expressing regions and defined their precise borders and observed piRNA-guided cleavage of transcripts antisense to some piRNA-producing genes. This study provides insights into sex-specific mammalian piRNA expression and function and serves as a reference for human piRNA analysis and annotation.

  10. Assessment of fetal activity concentration and fetal dose for selected radionuclides based on animal and human data

    International Nuclear Information System (INIS)

    Roedler, H.D.

    1987-01-01

    Biokinetic data of selected radionuclide compounds from investigations in man and animal were taken from literature references with the purpose to provide a basis for a comparative assessment of fetal and adult radiation doses after intake or administration of radionuclides. The following ratios of fetal to adult doses were derived from human data: 0.5 for caesium 137 and total body, 2.3 for iron 59 and liver, 0.06 - 0.3 - 1.1 for iodine 131 and thyroid, and 0.1 - 0.3 for strontium 90 and bone. The ratios of activity concentrations in fetal and adult tissues are of considerable variability - up to three orders of magnitude. Further studies on fetal and adult biokinetics specifically designed for comparative dose assessment are indispensable. 106 refs.; 6 tabs

  11. Programmed Fetal Membrane Senescence and Exosome-Mediated Signaling: A Mechanism Associated With Timing of Human Parturition

    Directory of Open Access Journals (Sweden)

    Ramkumar Menon

    2017-08-01

    Full Text Available Human parturition is an inflammatory process that involves both fetal and maternal compartments. The precise immune cell interactions have not been well delineated in human uterine tissues during parturition, but insights into human labor initiation have been informed by studies in animal models. Unfortunately, the timing of parturition relative to fetal maturation varies among viviparous species—indicative of different phylogenetic clocks and alarms—but what is clear is that important common pathways must converge to control the birth process. Herein, we hypothesize a novel signaling mechanism initiated by human fetal membrane aging and senescence-associated inflammation. Programmed events of fetal membrane aging coincide with fetal growth and organ maturation. Mechanistically, senescence involves in telomere shortening and activation of p38 mitogen-activated signaling kinase resulting in aging-associated phenotypic transition. Senescent tissues release inflammatory signals that are propagated via exosomes to cause functional changes in maternal uterine tissues. In vitro, oxidative stress causes increased release of inflammatory mediators (senescence-associated secretory phenotype and damage-associated molecular pattern markers that can be packaged inside the exosomes. These exosomes traverse through tissues layers, reach maternal tissues to increase overall inflammatory load transitioning them from a quiescent to active state. Animal model studies have shown that fetal exosomes can travel from fetal to the maternal side. Thus, aging fetal membranes and membrane-derived exosomes cargo fetal signals to the uterus and cervix and may trigger parturition. This review highlights a novel hypothesis in human parturition research based on data from ongoing research using human fetal membrane model system.

  12. Immunohistochemical distribution of regulatory peptides in the human fetal adenohypophysis

    Science.gov (United States)

    Reyes, R; Valladares, F; Gutiérrez, R; González, M; Bello, A R

    2008-01-01

    We have studied here the cellular distribution of several regulatory peptides in hormone-producing cells of the human pituitary during the fetal period. Immunohistochemistry was used to show the expression of several regulatory peptides, namely Angiotensin-II, Neurotensin and Galanin, at successive gestational stages and their co-localization with hormones in the human fetal adenohypophysis. Somatotrophs, gonadotrophs and thyrotrophs were differentiated earliest. At gestational week 9, Angiotensin-II immunoreactivity was co-localized only with growth hormone immunoreactivity in somatotrophs, one of the first hormone-producing cells to differentiate. This co-localization remained until week 37. Neurotensin immunoreactivity was present in gonadotrophs and thyrotrophs in week 23, after FSH and TSH hormone differentiation. Galanin immunoreactivity was present in all hormone-producing cell types except corticotrophs. The different pro-opiomelanocortin-derived peptides were detected at different stages of gestation and adrenocorticotrophic hormone immunoreaction was the last to be detected. Our results show an interesting relationship between regulatory peptides and hormones during human fetal development, which could imply that these peptides play a regulatory role in the development of pituitary function. PMID:18510508

  13. Mathematical models of human cerebellar development in the fetal period.

    Science.gov (United States)

    Dudek, Krzysztof; Nowakowska-Kotas, Marta; Kędzia, Alicja

    2018-04-01

    The evaluation of cerebellar growth in the fetal period forms a part of a widely used examination to identify any features of abnormalities in early stages of human development. It is well known that the development of anatomical structures, including the cerebellum, does not always follow a linear model of growth. The aim of the study was to analyse a variety of mathematical models of human cerebellar development in fetal life to determine their adequacy. The study comprised 101 fetuses (48 males and 53 females) between the 15th and 28th weeks of fetal life. The cerebellum was exposed and measurements of the vermis and hemispheres were performed, together with statistical analyses. The mathematical model parameters of fetal growth were assessed for crown-rump length (CRL) increases, transverse cerebellar diameter and ventrodorsal dimensions of the cerebellar vermis in the transverse plane, and rostrocaudal dimensions of the cerebellar vermis and hemispheres in the frontal plane. A variety of mathematical models were applied, including linear and non-linear functions. Taking into consideration the variance between models and measurements, as well as correlation parameters, the exponential and Gompertz models proved to be the most suitable for modelling cerebellar growth in the second and third trimesters of pregnancy. However, the linear model gave a satisfactory approximation of cerebellar growth, especially in older fetuses. The proposed models of fetal cerebellar growth constructed on the basis of anatomical examination and objective mathematical calculations could be useful in the estimation of fetal development. © 2018 Anatomical Society.

  14. Quaternary structure and spin state of human fetal methemoglobin

    International Nuclear Information System (INIS)

    Chevion, M.; Navok, T.; Ilan, Y.A.; Czapski, G.

    1981-01-01

    Using the pulse-radiolysis technique, solutions of fetal human methemoglobin were irradiated in order to reduce a single heme-iron within the protein tetramers. The valence-hybrids thus formed ere reacted wjth oxygen. Kinetics of the reactions were studied. The effects of p and inositol-hexaphosphate (IHP) were examined. The kinetics of the ligation of oxygen to stripped valence-hybrids showed a single-phase behaviour at the pH range 7-9. As the pH was lowered below 6.5, a second slower phase became apparent. This slow phase consisted of approximately 50% at pH 5.8. In the presence of IHP above pH 7.4, the kinetics of oxygen-binding was of a single-phase. As the pH was lowered a transition to a second, slower phase was noticed. Below pH 7 the slower phase was the only detectable one. The analysis of the relative contribution of the faster phase to the total reaction, as a function of the pH, showed a typical sigmoidal transition curve characterized by a pK = 7.2 and a Hill parameter n = 3.06. On this basis it is concluded that stripped, fetal human methemoglobin resides in an R quaternary structure while the presence of IHP stabilizes the T structure at pH below 7.2. The switch between the high spin aquomet- and the low spin hydroxymet-derivatives of adult and fetal human hemoglobins was studied optically in detail. These switches were found to be only slightly affected by IHP, and exhibited very low cooperativity (pK = 8.04; n = 1.1 and pK = 8.10; n = 1.3 for adult methemoglobin when stripped and in the presence of IHP, respectively; pK = 8.18; n = 1.11 and pK = 8.21; n = 1.28 for fetal methemoglobin when stripped and in the presence of IHP, respectively). These findings lead to the conclusion that the transition between quaternary structures in either human or fetal methemoglobins is not coupled to the switch of the spin state of the ferric heme. (author)

  15. Maturation of the human fetal startle response: evidence for sex-specific maturation of the human fetus.

    Science.gov (United States)

    Buss, Claudia; Davis, Elysia Poggi; Class, Quetzal A; Gierczak, Matt; Pattillo, Carol; Glynn, Laura M; Sandman, Curt A

    2009-10-01

    Despite the evidence for early fetal experience exerting programming influences on later neurological development and health risk, very few prospective studies of human fetal behavior have been reported. In a prospective longitudinal study, fetal nervous system maturation was serially assessed by monitoring fetal heart rate (FHR) responses to vibroacoustic stimulation (VAS) in 191 maternal/fetal dyads. Responses were not detected at 26 weeks gestational age (GA). Sex-specific, age-characteristic changes in the FHR response to VAS were observed by 31 weeks' GA. Males showed larger responses and continued to exhibit maturational changes until 37 weeks' GA, females however, presented with a mature FHR startle response by 31 weeks' GA. The results indicate that there are different rates of maturation in the male and female fetuses that may have implications for sex-specific programming influences.

  16. File list: ALL.Neu.50.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX093315,SRX377672,SR...SRX377671,SRX377674,SRX669235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Forebrain.bed ...

  17. File list: ALL.Neu.20.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX093315,SRX377672,SR...SRX377674,SRX317036,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Forebrain.bed ...

  18. File list: ALL.Neu.10.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX093315,SRX377672,SR...SRX377673,SRX377671,SRX317036 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Forebrain.bed ...

  19. File list: ALL.Neu.05.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX002660,SRX093315,SR...SRX377673,SRX669235,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Forebrain.bed ...

  20. File list: His.Neu.20.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377672,SRX3776...70,SRX377678,SRX377676,SRX093314,SRX377674 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Forebrain.bed ...

  1. File list: His.Neu.50.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377672,SRX3776...70,SRX377678,SRX377676,SRX093314,SRX377674 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Forebrain.bed ...

  2. File list: His.Neu.10.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377672,SRX3776...70,SRX377678,SRX377676,SRX093314,SRX377674 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Forebrain.bed ...

  3. File list: His.Neu.05.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377678,SRX3776...72,SRX377670,SRX377676,SRX377674,SRX093314 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Forebrain.bed ...

  4. Maternal exercise, season and sex modify the human fetal circadian rhythm.

    Science.gov (United States)

    Sletten, Julie; Cornelissen, Germaine; Assmus, Jørg; Kiserud, Torvid; Albrechtsen, Susanne; Kessler, Jörg

    2018-05-13

    The knowledge on circadian rhythmicity is rapidly expanding. We aimed to define the longitudinal development of the circadian heart rate rhythm in the human fetus in an unrestricted, out-of-hospital setting, and to examine the effects of maternal physical activity, season and fetal sex. We recruited 48 women with low-risk singleton pregnancies. Using a portable monitor for continuous fetal electrocardiography, fetal heart rate recordings were obtained around gestational weeks 24, 28, 32 and 36. Circadian rhythmicity in fetal heart rate and fetal heart rate variation was detected by cosinor analysis; developmental trends were calculated by population-mean cosinor and multilevel analysis. For the fetal heart rate and fetal heart rate variation, a significant circadian rhythm was present in 122/123 (99.2%) and 116/121 (95.9%) of the individual recordings, respectively. The rhythms were best described by combining cosine waves with periods of 24 and 8 hours. With increasing gestational age, the magnitude of the fetal heart rate rhythm increased, and the peak of the fetal heart rate variation rhythm shifted from a mean of 14:25 (24 weeks) to 20:52 (36 weeks). With advancing gestation, the rhythm-adjusted mean value of the fetal heart rate decreased linearly in females (prhythm diversity was found in male fetuses, during higher maternal physical activity and during the summer season. The dynamic development of the fetal circadian heart rate rhythm during the second half of pregnancy is modified by fetal sex, maternal physical activity and season. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Proteolytic processing of anti-Müllerian hormone differs between human fetal testes and adult ovaries

    DEFF Research Database (Denmark)

    Mamsen, L S; Petersen, T S; Jeppesen, J V

    2015-01-01

    and specificity of a panel of five novel high-affinity AMH monoclonal antibodies. Two recognize the mature C-terminal form of AMH, whereas three recognize the active pro-mature form of AMH in human tissue. The antibodies were tested on fetal male testicular and mesonephric tissue aged 8-19 weeks post conception...... (pc), fetal male serum aged 16-26 weeks pc and human immature GCs by immunofluorescence, immunohistochemistry, ELISA and western blotting. The active pro-mature forms of AMH were expressed in both Sertoli cells from human fetal testis and human immature GCs. In contrast, the mature C-terminal form...... of AMH was hardly detected in Sertoli cells, but was readily detected in GCs. This particular form was also located to the nucleus in GCs, whereas the other investigated AMH forms remained in the cytoplasm. Interestingly, the distribution of the AMH forms in the fetal serum of boys showed...

  6. Effect of mono-(2-ethylhexyl) phthalate on human and mouse fetal testis: In vitro and in vivo approaches

    Energy Technology Data Exchange (ETDEWEB)

    Muczynski, V. [Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, BP 6, 92265 Fontenay-aux-Roses (France); CEA, DSV, iRCM, SCSR, LDRG, 92265 Fontenay-aux-Roses (France); INSERM, Unité 967, F-92265, Fontenay aux Roses (France); Cravedi, J.P. [INRA, INP, Université de Toulouse, UMR1331 TOXALIM, F-31027, Toulouse (France); Lehraiki, A.; Levacher, C.; Moison, D.; Lecureuil, C.; Messiaen, S. [Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, BP 6, 92265 Fontenay-aux-Roses (France); CEA, DSV, iRCM, SCSR, LDRG, 92265 Fontenay-aux-Roses (France); INSERM, Unité 967, F-92265, Fontenay aux Roses (France); Perdu, E. [INRA, INP, Université de Toulouse, UMR1331 TOXALIM, F-31027, Toulouse (France); Frydman, R. [Service de Gynécologie-Obstétrique, Hôpital A. Béclère, Université Paris Sud F-92141 Clamart (France); Habert, R. [Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, BP 6, 92265 Fontenay-aux-Roses (France); CEA, DSV, iRCM, SCSR, LDRG, 92265 Fontenay-aux-Roses (France); INSERM, Unité 967, F-92265, Fontenay aux Roses (France); and others

    2012-05-15

    The present study was conducted to determine whether exposure to the mono-(2-ethylhexyl) phthalate (MEHP) represents a genuine threat to male human reproductive function. To this aim, we investigated the effects on human male fetal germ cells of a 10{sup −5} M exposure. This dose is slightly above the mean concentrations found in human fetal cord blood samples by biomonitoring studies. The in vitro experimental approach was further validated for phthalate toxicity assessment by comparing the effects of in vitro and in vivo exposure in mouse testes. Human fetal testes were recovered during the first trimester (7–12 weeks) of gestation and cultured in the presence or not of 10{sup −5} M MEHP for three days. Apoptosis was quantified by measuring the percentage of Caspase-3 positive germ cells. The concentration of phthalate reaching the fetal gonads was determined by radioactivity measurements, after incubations with {sup 14}C-MEHP. A 10{sup −5} M exposure significantly increased the rate of apoptosis in human male fetal germ cells. The intratesticular MEHP concentration measured corresponded to the concentration added in vitro to the culture medium. Furthermore, a comparable effect on germ cell apoptosis in mouse fetal testes was induced both in vitro and in vivo. This study suggests that this 10{sup −5} M exposure is sufficient to induce changes to the in vivo development of the human fetal male germ cells. -- Highlights: ► 10{sup −5} M of MEHP impairs germ cell development in the human fetal testis. ► Organotypic culture is a suitable approach to investigate phthalate effects in human. ► MEHP is not metabolized in the human fetal testis. ► In mice, MEHP triggers similar effects both in vivo and in vitro.

  7. ESC-Derived Basal Forebrain Cholinergic Neurons Ameliorate the Cognitive Symptoms Associated with Alzheimer’s Disease in Mouse Models

    Directory of Open Access Journals (Sweden)

    Wei Yue

    2015-11-01

    Full Text Available Degeneration of basal forebrain cholinergic neurons (BFCNs is associated with cognitive impairments of Alzheimer’s disease (AD, implying that BFCNs hold potentials in exploring stem cell-based replacement therapy for AD. However, studies on derivation of BFCNs from embryonic stem cells (ESCs are limited, and the application of ESC-derived BFCNs remains to be determined. Here, we report on differentiation approaches for directing both mouse and human ESCs into mature BFCNs. These ESC-derived BFCNs exhibit features similar to those of their in vivo counterparts and acquire appropriate functional properties. After transplantation into the basal forebrain of AD model mice, ESC-derived BFCN progenitors predominantly differentiate into mature cholinergic neurons that functionally integrate into the endogenous basal forebrain cholinergic projection system. The AD mice grafted with mouse or human BFCNs exhibit improvements in learning and memory performances. Our findings suggest a promising perspective of ESC-derived BFCNs in the development of stem cell-based therapies for treatment of AD.

  8. A radiographic study of the human fetal spine

    International Nuclear Information System (INIS)

    Bagnall, K.M.; Harris, P.F.; Jones, P.R.M.

    1979-01-01

    Regression equations are presented which describe the growth in length of the various regions of the vertebral column in the human fetus. From 8 weeks on the thoracic is always the longest region and the sacral the shortest, while the lumbar region is longer than the cervical. From the regression equations predictions of fetal vertebral length can be made from fetal age: this should be useful in obstetric practice when diagnostic ultrasound techniques are being employed for the diagnosis of growth disorders and skeletal abnormalities. A different development pattern emerges when average 'vertebral units' for each region are compared. The lumbar vertebrae are always the largest with the thoracic, cervical and sacral vertebrae being progressively smaller. (author)

  9. ABSORPTION-SPECTRA OF HUMAN FETAL AND ADULT OXYHEMOGLOBIN, DE-OXYHEMOGLOBIN, CARBOXYHEMOGLOBIN, AND METHEMOGLOBIN

    NARCIS (Netherlands)

    ZIJLSTRA, WG; MEEUWSENVANDERROEST, WP

    We determined the millimolar absorptivities of the four clinically relevant derivatives of fetal and adult human hemoglobin in the visible and near-infrared spectral range (450-1000 nm). As expected, spectral absorption curves of similar shape were found, but the small differences between fetal and

  10. Cellular and Molecular Effect of MEHP Involving LXRα in Human Fetal Testis and Ovary

    OpenAIRE

    Muczynski, Vincent; Lecureuil, Charlotte; Messiaen, Sébastien; Guerquin, Marie-Justine; N’Tumba-Byn, Thierry; Moison, Delphine; Hodroj, Wassim; Benjelloun, Hinde; Baijer, Jan; Livera, Gabriel; Frydman, René; Benachi, Alexandra; Habert, René; Rouiller-Fabre, Virginie

    2012-01-01

    Background Phthalates have been shown to have reprotoxic effects in rodents and human during fetal life. Previous studies indicate that some members of the nuclear receptor (NR) superfamilly potentially mediate phthalate effects. This study aimed to assess if expression of these nuclear receptors are modulated in the response to MEHP exposure on the human fetal gonads in vitro. Methodology/Principal Findings Testes and ovaries from 7 to 12 gestational weeks human fetuses were exposed to 10−4M...

  11. Altered Decorin and Smad Expression in Human Fetal Membranes in PPROM1

    Science.gov (United States)

    Horgan, Casie E.; Roumimper, Hailey; Tucker, Richard; Lechner, Beatrice E.

    2014-01-01

    ABSTRACT Humans with Ehlers-Danlos syndrome, a subtype of which is caused by abnormal decorin expression, are at increased risk of preterm birth due to preterm premature rupture of fetal membranes (PPROM). In the mouse model, the absence of decorin leads to fetal membrane abnormalities, preterm birth, and dysregulation of decorin's downstream pathway components, including the transcription factor p-Smad-2. However, the role of decorin and p-Smad-2 in idiopathic human PPROM is unknown. Fetal membranes from 20–25 pregnancies per group were obtained as a cross-sectional sample of births at one institution between January 2010 and December 2012. The groups were term, preterm without PPROM, and preterm with PPROM. Immunohistochemical analysis of fetal membranes was performed for decorin and p-Smad-2 using localization and quantification assessment. Decorin expression is developmentally regulated in fetal membranes and is decreased in preterm birth with PPROM compared to preterm birth without PPROM. In preterm with PPROM samples, the presence of infection is associated with significant decorin downregulation compared to preterm with PPROM samples without infection. The preterm with PPROM group exhibited decreased p-Smad-2 staining compared to both the term controls and the preterm-without-PPROM group. Our findings suggest that dysregulation of decorin and its downstream pathway component p-Smad-2 occurs in fetal membranes during the second trimester in pathological pregnancies, thus supporting a role for decorin and p-Smad-2 in the pathophysiology of fetal membranes and adverse pregnancy outcomes. These findings may lead to the discovery of new targets for the diagnosis and treatment of PPROM. PMID:25232019

  12. Maturation of the human fetal startle response: Evidence for sex-specific maturation of the human fetus1

    Science.gov (United States)

    Buss, Claudia; Davis, Elysia Poggi; Class, Quetzal A.; Gierczak, Matt; Pattillo, Carol; Glynn, Laura M.; Sandman, Curt A.

    2009-01-01

    Despite the evidence for early fetal experience exerting programming influences on later neurological development and health risk, very few prospective studies of human fetal behavior have been reported. In a prospective longitudinal study, fetal nervous system maturation was serially assessed by monitoring fetal heart rate (FHR) responses to vibroacoustic stimulation (VAS) in 191 maternal/fetal dyads. Responses were not detected at 26 weeks gestational age (GA). Sex-specific, age-characteristic changes in the FHR response to VAS were observed by 31 weeks’ GA. Males showed larger responses and continued to exhibit maturational changes until 37 weeks’ GA, females however, presented with a mature FHR startle response by 31 weeks’ GA. The results indicate that there are different rates of maturation in the male and female fetus that may have implications for sex-specific programming influences. PMID:19726143

  13. Basal Forebrain Gating by Somatostatin Neurons Drives Prefrontal Cortical Activity.

    Science.gov (United States)

    Espinosa, Nelson; Alonso, Alejandra; Morales, Cristian; Espinosa, Pedro; Chávez, Andrés E; Fuentealba, Pablo

    2017-11-17

    The basal forebrain provides modulatory input to the cortex regulating brain states and cognitive processing. Somatostatin-expressing neurons constitute a heterogeneous GABAergic population known to functionally inhibit basal forebrain cortically projecting cells thus favoring sleep and cortical synchronization. However, it remains unclear if somatostatin cells can regulate population activity patterns in the basal forebrain and modulate cortical dynamics. Here, we demonstrate that somatostatin neurons regulate the corticopetal synaptic output of the basal forebrain impinging on cortical activity and behavior. Optogenetic inactivation of somatostatin neurons in vivo rapidly modified neural activity in the basal forebrain, with the consequent enhancement and desynchronization of activity in the prefrontal cortex, reflected in both neuronal spiking and network oscillations. Cortical activation was partially dependent on cholinergic transmission, suppressing slow waves and potentiating gamma oscillations. In addition, recruitment dynamics was cell type-specific, with interneurons showing similar temporal profiles, but stronger responses than pyramidal cells. Finally, optogenetic stimulation of quiescent animals during resting periods prompted locomotor activity, suggesting generalized cortical activation and increased arousal. Altogether, we provide physiological and behavioral evidence indicating that somatostatin neurons are pivotal in gating the synaptic output of the basal forebrain, thus indirectly controlling cortical operations via both cholinergic and non-cholinergic mechanisms. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. File list: InP.Neu.20.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Forebrain mm9 Input control Neural Forebrain SRX377677,SRX377675,S...RX377679,SRX377673,SRX669236,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Forebrain.bed ...

  15. File list: InP.Neu.10.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Forebrain mm9 Input control Neural Forebrain SRX377679,SRX669236,S...RX377677,SRX377675,SRX377673,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Forebrain.bed ...

  16. File list: InP.Neu.50.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Forebrain mm9 Input control Neural Forebrain SRX377679,SRX377675,S...RX377677,SRX377673,SRX669236,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Forebrain.bed ...

  17. Chromosome 11-linked determinant controls fetal globin expression and the fetal-to-adult globin switch

    International Nuclear Information System (INIS)

    Melis, M.; Demopulos, G.; Najfeld, V.; Zhang, J.W.; Brice, M.; Papayannopoulou, T.; Stamatoyannopoulos, G.

    1987-01-01

    Hybrids formed by fusing mouse erythroleukemia (MEL) cells with human fetal erythroid cells produce human fetal globin, but they switch to adult globin production as culture time advances. To obtain information on the chromosomal assignment of the elements that control γ-to-β switching, the authors analyzed the chromosomal composition of hybrids producing exclusively or predominantly human fetal globin and hybrids producing only adult human globin. No human chromosome was consistently present in hybrids expressing fetal globin and consistently absent in hybrids expressing adult globin. Subcloning experiments demonstrated identical chromosomal compositions in subclones displaying the fetal globin program and those that had switched to expression of the adult globin program. These data indicate that retention of only one human chromosome -- i.e., chromosome 11 -- is sufficient for expression of human fetal globin and the subsequent γ-to-β switch. The results suggest that the γ-to-β switch is controlled either cis to the β-globin locus of by a trans-acting mechanism, the genes of which reside on human chromosome 11

  18. IL-27 induces a pro-inflammatory response in human fetal membranes mediating preterm birth.

    Science.gov (United States)

    Yin, Nanlin; Wang, Hanbing; Zhang, Hua; Ge, Huisheng; Tan, Bing; Yuan, Yu; Luo, Xiaofang; Olson, David M; Baker, Philip N; Qi, Hongbo

    2017-09-01

    Inflammation at the maternal-fetal interface has been shown to be involved in the pathogenesis of preterm birth. Interleukin 27 (IL-27), a heterodimeric cytokine, is known to mediate an inflammatory response in some pregnancy complications. In this study, we aimed to determine whether IL-27 could induce an inflammatory reaction at the maternal-fetal interface that would mediate the onset of preterm birth. We found elevated expression of IL-27 in human peripheral serum and elevated expression of its specific receptor (wsx-1) on fetal membranes in cases of preterm birth. Moreover, the release of inflammatory markers (CXCL10, IFN-γ, MCP-1, IL-6, IL-1β and TNF-α), especially CXCL10, was markedly augmented upon stimulation of IL-27 in the fetal membranes. Additionally, IL-27 and IFN-γ cooperated to amplify the expression of CXCL10 in the fetal membranes. Moreover, the production of CXCL10 was increased in IL-27-treated fetal membrane through JNK, PI3K or Erk signaling pathways. Finally, MMP2 and MMP9 were activated by IL-27 in human fetal membranes, which may be related to the onset of preterm premature rupture of membranes (pPROM). In conclusion, for the first time, we reported that the aberrant expression of IL-27 could mediate an excessive inflammatory response in fetal membranes through the JNK, PI3K or Erk signaling pathways, which contributes to preterm birth. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Microglia Modulate Wiring of the Embryonic Forebrain

    Directory of Open Access Journals (Sweden)

    Paola Squarzoni

    2014-09-01

    Full Text Available Dysfunction of microglia, the tissue macrophages of the brain, has been associated with the etiology of several neuropsychiatric disorders. Consistently, microglia have been shown to regulate neurogenesis and synaptic maturation at perinatal and postnatal stages. However, microglia invade the brain during mid-embryogenesis and thus could play an earlier prenatal role. Here, we show that embryonic microglia, which display a transiently uneven distribution, regulate the wiring of forebrain circuits. Using multiple mouse models, including cell-depletion approaches and cx3cr1−/−, CR3−/−, and DAP12−/− mutants, we find that perturbing microglial activity affects the outgrowth of dopaminergic axons in the forebrain and the laminar positioning of subsets of neocortical interneurons. Since defects in both dopamine innervation and cortical networks have been linked to neuropsychiatric diseases, our study provides insights into how microglial dysfunction can impact forebrain connectivity and reveals roles for immune cells during normal assembly of brain circuits.

  20. Forebrain neurogenesis: From embryo to adult.

    Science.gov (United States)

    Dennis, Daniel; Picketts, David; Slack, Ruth S; Schuurmans, Carol

    2016-01-01

    A satellite symposium to the Canadian Developmental Biology Conference 2016 was held on March 16-17, 2016 in Banff, Alberta, Canada, entitled Forebrain Neurogenesis : From embryo to adult . The Forebrain Neurogenesis symposium was a focused, high-intensity meeting, bringing together the top Canadian and international researchers in the field. This symposium reported the latest breaking news, along with 'state of the art' techniques to answer fundamental questions in developmental neurobiology. Topics covered ranged from stem cell regulation to neurocircuitry development, culminating with a session focused on neuropsychiatric disorders. Understanding the underlying causes of neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) is of great interest as diagnoses of these conditions are climbing at alarming rates. For instance, in 2012, the Centers for Disease Control reported that the prevalence rate of ASD in the U.S. was 1 in 88; while more recent data indicate that the number is as high as 1 in 68 (Centers for Disease Control and Prevention MMWR Surveillance Summaries. Vol. 63. No. 2). Similarly, the incidence of ASD is on the rise in Canada, increasing from 1 in 150 in 2000 to 1 in 63 in 2012 in southeastern Ontario (Centers for Disease Control and Prevention). Currently very little is known regarding the deficits underlying these neurodevelopmental conditions. Moreover, the development of effective therapies is further limited by major gaps in our understanding of the fundamental processes that regulate forebrain development and adult neurogenesis. The Forebrain Neurogenesis satellite symposium was thus timely, and it played a key role in advancing research in this important field, while also fostering collaborations between international leaders, and inspiring young researchers.

  1. Fetal magnetic resonance imaging and human genetics

    International Nuclear Information System (INIS)

    Hengstschlaeger, Markus

    2006-01-01

    The use of fetal magnetic resonance imaging (MRI), in addition to prenatal genetic testing and sonography, has the potential to improve prenatal diagnosis of genetic disorders. MRI plays an important role in the evaluation of fetal abnormalities and malformations. Fetal MRI often enables a differential diagnosis, a determination of the extent of the disorder, the prognosis, and an improvement in therapeutic management. For counseling of parents, as well as to basically understand how genetic aberrations affect fetal development, it is of great importance to correlate different genotypes with fetal MRI data

  2. Fetal magnetic resonance imaging and human genetics

    Energy Technology Data Exchange (ETDEWEB)

    Hengstschlaeger, Markus [Medical Genetics, Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)]. E-mail: markus.hengstschlaeger@meduniwien.ac.at

    2006-02-15

    The use of fetal magnetic resonance imaging (MRI), in addition to prenatal genetic testing and sonography, has the potential to improve prenatal diagnosis of genetic disorders. MRI plays an important role in the evaluation of fetal abnormalities and malformations. Fetal MRI often enables a differential diagnosis, a determination of the extent of the disorder, the prognosis, and an improvement in therapeutic management. For counseling of parents, as well as to basically understand how genetic aberrations affect fetal development, it is of great importance to correlate different genotypes with fetal MRI data.

  3. Lactobacillus rhamnosus GG and its SpaC pilus adhesin modulate inflammatory responsiveness and TLR-related gene expression in the fetal human gut

    Science.gov (United States)

    Ganguli, Kriston; Collado, Maria Carmen; Rautava, Jaana; Lu, Lei; Satokari, Reetta; von Ossowski, Ingemar; Reunanen, Justus; de Vos, Willem M.; Palva, Airi; Isolauri, Erika; Salminen, Seppo; Walker, W. Allan; Rautava, Samuli

    2015-01-01

    Background Bacterial contact in utero modulates fetal and neonatal immune responses. Maternal probiotic supplementation reduces the risk of immune-mediated disease in the infant. We investigated the immunomodulatory properties of live Lactobacillus rhamnosus GG and its SpaC pilus adhesin in human fetal intestinal models. Methods TNF-α mRNA expression was measured by qPCR in a human fetal intestinal organ culture model exposed to live L. rhamnosus GG and proinflammatory stimuli. Binding of recombinant SpaC pilus protein to intestinal epithelial cells was assessed in human fetal intestinal organ culture and the human fetal intestinal epithelial cell line H4 by immunohistochemistry and immunofluorescence, respectively. TLR-related gene expression in fetal ileal organ culture after exposure to recombinant SpaC was assessed by qPCR. Results Live L. rhamnosus GG significantly attenuates pathogen-induced TNF-α mRNA expression in the human fetal gut. Recombinant SpaC protein was found to adhere to the fetal gut and to modulate varying levels of TLR-related gene expression. Conclusion The human fetal gut is responsive to luminal microbes. L. rhamnosus GG significantly attenuates fetal intestinal inflammatory responses to pathogenic bacteria. The L. rhamnosus GG pilus adhesin SpaC binds to immature human intestinal epithelial cells and directly modulates intestinal epithelial cell innate immune gene expression. PMID:25580735

  4. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, H.S.; Hains, J.M.; Laramee, G.R.; Rosenthal, A.; Winslow, J.W. (Genentech, San Francisco, CA (USA))

    1990-10-12

    Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) are homologs of the well-known neurotrophic factor nerve growth factor. The three members of this family display distinct patterns of target specificity. To examine the distribution in brain of messenger RNA for these molecules, in situ hybridization was performed. Cells hybridizing intensely to antisense BDNF probe were located throughout the major targets of the rat basal forebrain cholinergic system, that is, the hippocampus, amygdala, and neocortex. Strongly hybridizing cells were also observed in structures associated with the olfactory system. The distribution of NT3 mRNA in forebrain was much more limited. Within the hippocampus, labeled cells were restricted to CA2, the most medial portion of CA1, and the dentate gyrus. In human hippocampus, cells expressing BDNF and mRNA are distributed in a fashion similar to that observed in the rat. These findings point to both basal forebrain cholinergic cells and olfactory pathways as potential central targets for BDNF.

  5. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons

    International Nuclear Information System (INIS)

    Phillips, H.S.; Hains, J.M.; Laramee, G.R.; Rosenthal, A.; Winslow, J.W.

    1990-01-01

    Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) are homologs of the well-known neurotrophic factor nerve growth factor. The three members of this family display distinct patterns of target specificity. To examine the distribution in brain of messenger RNA for these molecules, in situ hybridization was performed. Cells hybridizing intensely to antisense BDNF probe were located throughout the major targets of the rat basal forebrain cholinergic system, that is, the hippocampus, amygdala, and neocortex. Strongly hybridizing cells were also observed in structures associated with the olfactory system. The distribution of NT3 mRNA in forebrain was much more limited. Within the hippocampus, labeled cells were restricted to CA2, the most medial portion of CA1, and the dentate gyrus. In human hippocampus, cells expressing BDNF and mRNA are distributed in a fashion similar to that observed in the rat. These findings point to both basal forebrain cholinergic cells and olfactory pathways as potential central targets for BDNF

  6. BMP signaling in the human fetal ovary is developmentally regulated and promotes primordial germ cell apoptosis.

    Science.gov (United States)

    Childs, Andrew J; Kinnell, Hazel L; Collins, Craig S; Hogg, Kirsten; Bayne, Rosemary A L; Green, Samira J; McNeilly, Alan S; Anderson, Richard A

    2010-08-01

    Primordial germ cells (PGCs) are the embryonic precursors of gametes in the adult organism, and their development, differentiation, and survival are regulated by a combination of growth factors collectively known as the germ cell niche. Although many candidate niche components have been identified through studies on mouse PGCs, the growth factor composition of the human PGC niche has not been studied extensively. Here we report a detailed analysis of the expression of components of the bone morphogenetic protein (BMP) signaling apparatus in the human fetal ovary, from postmigratory PGC proliferation to the onset of primordial follicle formation. We find developmentally regulated and reciprocal patterns of expression of BMP2 and BMP4 and identify germ cells to be the exclusive targets of ovarian BMP signaling. By establishing long-term cultures of human fetal ovaries in which PGCs are retained within their physiological niche, we find that BMP4 negatively regulates postmigratory PGC numbers in the human fetal ovary by promoting PGC apoptosis. Finally, we report expression of both muscle segment homeobox (MSX)1 and MSX2 in the human fetal ovary and reveal a selective upregulation of MSX2 expression in human fetal ovary in response to BMP4, suggesting this gene may act as a downstream effector of BMP-induced apoptosis in the ovary, as in other systems. These data reveal for the first time growth factor regulation of human PGC development in a physiologically relevant context and have significant implications for the development of cultures systems for the in vitro maturation of germ cells, and their derivation from pluripotent stem cells.

  7. Increasing fetal ovine number per gestation alters fetal plasma clinical chemistry values.

    Science.gov (United States)

    Zywicki, Micaela; Blohowiak, Sharon E; Magness, Ronald R; Segar, Jeffrey L; Kling, Pamela J

    2016-08-01

    Intrauterine growth restriction (IUGR) is interconnected with developmental programming of lifelong pathophysiology. IUGR is seen in human multifetal pregnancies, with stepwise rises in fetal numbers interfering with placental nutrient delivery. It remains unknown whether fetal blood analyses would reflect fetal nutrition, liver, and excretory function in the last trimester of human or ovine IUGR In an ovine model, we hypothesized that fetal plasma biochemical values would reflect progressive placental, fetal liver, and fetal kidney dysfunction as the number of fetuses per gestation rose. To determine fetal plasma biochemical values in singleton, twin, triplet, and quadruplet/quintuplet ovine gestation, we investigated morphometric measures and comprehensive metabolic panels with nutritional measures, liver enzymes, and placental and fetal kidney excretory measures at gestational day (GD) 130 (90% gestation). As anticipated, placental dysfunction was supported by a stepwise fall in fetal weight, fetal plasma glucose, and triglyceride levels as fetal number per ewe rose. Fetal glucose and triglycerides were directly related to fetal weight. Plasma creatinine, reflecting fetal renal excretory function, and plasma cholesterol, reflecting placental excretory function, were inversely correlated with fetal weight. Progressive biochemical disturbances and growth restriction accompanied the rise in fetal number. Understanding the compensatory and adaptive responses of growth-restricted fetuses at the biochemical level may help explain how metabolic pathways in growth restriction can be predetermined at birth. This physiological understanding is important for clinical care and generating interventional strategies to prevent altered developmental programming in multifetal gestation. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  8. Comparison of the biological features between human fetal hepatocyte and immortalized L-02 hepatocyte in vitro

    International Nuclear Information System (INIS)

    Kong Weiwei; Teng Gaojun

    2004-01-01

    Objective: To evaluate the feasibilities of the potential donors in liver cell transplantation using the human fetal hepatocytes and immortalized L-02 hepatocytes by comparing their biological features. Methods: Human fetal hepatocytes were isolated from aborted fetal livers (gestational ages from 14 w to 24 w) by an improved two-stage perfusion method and cultured in a conditioned medium without any growth factors. α-fetal protein (AFP) and albumin (ALB) were detected by radioimmunoassay (RIA) and cytokeratin-19 (CK-19 ) was identified by cellular immunochemistry study. Immortalized L-02 hepatocytes were cultured in the same condition and the characteristic proteins were detected by the same methods. Results: The viability of human fetal hepatocytes was approximately 95% using the perfusion method, and the maximum survival time of the cultured hepatocytes was 3 weeks. The expression of AFP, ALB, and CK19 was detected at the same time, especially during Day 3 to Day 7 in the culture. By comparison, the proliferation ability of L-02 hepatocyte was greater, although with a lower level of ALB secretion. The expression of AFP and CK19 was not detected. Furthermore, during the long culture, L-02 hepatocytes may undergo a morphologic change and fail to express ALB. Conclusion: Human fetal hepatocyte may be a practical donor for hepatocyte transplantation with its high-level protein expression and potential bi-differentiation ability. In view of the absent expression of ALB and the morphologic change in culture, although with better proliferation, L-02 hepatocyte seems not useful for hepatocyte transplantation

  9. Immortalization of Human Fetal Hepatocyte by Ectopic Expression of Human Telomerase Reverse Transcriptase, Human Papilloma Virus (E7) and Simian Virus 40 Large T (SV40 T) Antigen Towards Bioartificial Liver Support.

    Science.gov (United States)

    Giri, Shibashish; Bader, Augustinus

    2014-09-01

    Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5-7 days. The remaining transfected hepatocytes persisted for 2-4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose consumption. We established a

  10. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues

    International Nuclear Information System (INIS)

    Prody, C.A.; Zevin-Sonkin, D.; Gnatt, A.; Goldberg, O.; Soreq, H.

    1987-01-01

    To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase and Torpedo electric organ true acetylcholinesterase. Using these probes, the authors isolated several cDNA clones from λgt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. In RNA blots of poly(A) + RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These finding demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species

  11. Fetal abdominal magnetic resonance imaging

    International Nuclear Information System (INIS)

    Brugger, Peter C.; Prayer, Daniela

    2006-01-01

    This review deals with the in vivo magnetic resonance imaging (MRI) appearance of the human fetal abdomen. Imaging findings are correlated with current knowledge of human fetal anatomy and physiology, which are crucial to understand and interpret fetal abdominal MRI scans. As fetal MRI covers a period of more than 20 weeks, which is characterized not only by organ growth, but also by changes and maturation of organ function, a different MR appearance of the fetal abdomen results. This not only applies to the fetal intestines, but also to the fetal liver, spleen, and adrenal glands. Choosing the appropriate sequences, various aspects of age-related and organ-specific function can be visualized with fetal MRI, as these are mirrored by changes in signal intensities. Knowledge of normal development is essential to delineate normal from pathological findings in the respective developmental stages

  12. Fetal abdominal magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, Peter C. [Center of Anatomy and Cell Biology, Integrative Morphology Group, Medical University of Vienna, Waehringerstrasse 13, 1090 Vienna (Austria)]. E-mail: peter.brugger@meduniwien.ac.at; Prayer, Daniela [Department of Radiology, Medical University of Vienna, Waehringerguertel 18-20, 1090 Vienna (Austria)

    2006-02-15

    This review deals with the in vivo magnetic resonance imaging (MRI) appearance of the human fetal abdomen. Imaging findings are correlated with current knowledge of human fetal anatomy and physiology, which are crucial to understand and interpret fetal abdominal MRI scans. As fetal MRI covers a period of more than 20 weeks, which is characterized not only by organ growth, but also by changes and maturation of organ function, a different MR appearance of the fetal abdomen results. This not only applies to the fetal intestines, but also to the fetal liver, spleen, and adrenal glands. Choosing the appropriate sequences, various aspects of age-related and organ-specific function can be visualized with fetal MRI, as these are mirrored by changes in signal intensities. Knowledge of normal development is essential to delineate normal from pathological findings in the respective developmental stages.

  13. Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly

    Directory of Open Access Journals (Sweden)

    David M. McKean

    2012-07-01

    Holoprosencephaly is the most common forebrain defect in humans. We describe two novel mouse mutants that display a holoprosencephaly-like phenotype. Both mutations disrupt genes in the glycerophosphatidyl inositol (GPI biosynthesis pathway: gonzo disrupts Pign and beaker disrupts Pgap1. GPI anchors normally target and anchor a diverse group of proteins to lipid raft domains. Mechanistically we show that GPI anchored proteins are mislocalized in GPI biosynthesis mutants. Disruption of the GPI-anchored protein Cripto (mouse and TDGF1 (human ortholog have been shown to result in holoprosencephaly, leading to our hypothesis that Cripto is the key GPI anchored protein whose altered function results in an HPE-like phenotype. Cripto is an obligate Nodal co-factor involved in TGFβ signaling, and we show that TGFβ signaling is reduced both in vitro and in vivo. This work demonstrates the importance of the GPI anchor in normal forebrain development and suggests that GPI biosynthesis genes should be screened for association with human holoprosencephaly.

  14. DNA repair and induction of plasminogen activator in human fetal cells treated with ultraviolet light

    International Nuclear Information System (INIS)

    Ben-Ishai, R.; Sharon, R.; Rothman, M.; Miskin, R.

    1984-01-01

    We have tested human fetal fibroblasts for development associated changes in DNA repair by utilizing nucleoid sedimentation as an assay for excision repair. Among skin fibroblasts the rate of excision repair was significantly higher in non-fetal cells than in fibroblasts derived from an 8 week fetus; this was evident by a delay in both the relaxation and the restoration of DNA supercoiling in nucleoids after irradiation. Skin fibroblasts derived at 12 week gestation were more repair proficient than those derived at 8 week gestation. However, they exhibited a somewhat lower rate of repair than non-fetal cells. The same fetal and non-fetal cells were also tested for induction of the protease plasminogen activator (PA) after u.v. irradiation. Enhancement of PA was higher in skin fibroblasts derived at 8 week than in those derived at 12 week gestation and was absent in non-fetal skin fibroblasts. These results are consistent with our previous findings that in human cells u.v. light-induced PA synthesis is correlated with reduced DNA repair capacity. Excision repair and PA inducibility were found to depend on tissue of origin in addition to gestational stage, as shown for skin and lung fibroblasts from the same 12 week fetus. Lung compared to skin fibroblasts exhibited lower repair rates and produced higher levels of PA after irradiation. The sedimentation velocity of nucleoids, prepared from unirradiated fibroblasts, in neutral sucrose gradients with or without ethidium bromide, indicated the presence of DNA strand breaks in fetal cells. It is proposed that reduced DNA repair in fetal cells may result from alterations in DNA supercoiling, and that persistent DNA strand breaks enhance transcription of PA gene(s)

  15. Spatiotemporal distribution of PAX6 and MEIS2 expression and total cell numbers in the ganglionic eminence in the early developing human forebrain

    DEFF Research Database (Denmark)

    Larsen, Karen B; Lutterodt, Melissa C; Laursen, Henning

    2010-01-01

    The development of the human neocortex is a complex and highly regulated process involving a time-related expression of many transcription factors including the homeobox genes Pax6 and Meis2. During early development, Pax6 is expressed in nuclei of radial glia cells in the neocortical proliferative...... in the same time window. We demonstrate by in situ hybridization and immunohistochemistry that the two homeobox genes are expressed during early fetal brain development in humans. PAX6 mRNA and protein were located in the proliferative zones of the neocortex and in single cells in the cortical preplate at 7...... in the proliferative zones of the human fetal neocortex and a higher expression of MEIS2 than PAX6 was observed in these areas at 9 fetal weeks. Further, MEIS2 was expressed at a very high level in the developing ganglionic eminence and at a more moderate level in the cortical plate....

  16. Recent advances in the prenatal interrogation of the human fetal genome.

    Science.gov (United States)

    Hui, Lisa; Bianchi, Diana W

    2013-02-01

    The amount of genetic and genomic information obtainable from the human fetus during pregnancy is accelerating at an unprecedented rate. Two themes have dominated recent technological advances in prenatal diagnosis: interrogation of the fetal genome in increasingly high resolution and the development of non-invasive methods of fetal testing using cell-free DNA in maternal plasma. These two areas of advancement have now converged with several recent reports of non-invasive assessment of the entire fetal genome from maternal blood. However, technological progress is outpacing the ability of the healthcare providers and patients to incorporate these new tests into existing clinical care, and further complicates many of the economic and ethical dilemmas in prenatal diagnosis. This review summarizes recent work in this field and discusses the integration of these new technologies into the clinic and society. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation.

    Directory of Open Access Journals (Sweden)

    Adam S Hamlin

    Full Text Available Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic or uncued (idiothetic recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze, and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer's disease.

  18. Forebrain CRF1 Modulates Early-Life Stress-Programmed Cognitive Deficits

    Science.gov (United States)

    Wang, Xiao-Dong; Rammes, Gerhard; Kraev, Igor; Wolf, Miriam; Liebl, Claudia; Scharf, Sebastian H.; Rice, Courtney J.; Wurst, Wolfgang; Holsboer, Florian; Deussing, Jan M.; Baram, Tallie Z.; Stewart, Michael G.; Müller, Marianne B.; Schmidt, Mathias V.

    2012-01-01

    Childhood traumatic events hamper the development of the hippocampus and impair declarative memory in susceptible individuals. Persistent elevations of hippocampal corticotropin-releasing factor (CRF), acting through CRF receptor 1 (CRF1), in experimental models of early-life stress have suggested a role for this endogenous stress hormone in the resulting structural modifications and cognitive dysfunction. However, direct testing of this possibility has been difficult. In the current study, we subjected conditional forebrain CRF1 knock-out (CRF1-CKO) mice to an impoverished postnatal environment and examined the role of forebrain CRF1 in the long-lasting effects of early-life stress on learning and memory. Early-life stress impaired spatial learning and memory in wild-type mice, and postnatal forebrain CRF overexpression reproduced these deleterious effects. Cognitive deficits in stressed wild-type mice were associated with disrupted long-term potentiation (LTP) and a reduced number of dendritic spines in area CA3 but not in CA1. Forebrain CRF1 deficiency restored cognitive function, LTP and spine density in area CA3, and augmented CA1 LTP and spine density in stressed mice. In addition, early-life stress differentially regulated the amount of hippocampal excitatory and inhibitory synapses in wild-type and CRF1-CKO mice, accompanied by alterations in the neurexin-neuroligin complex. These data suggest that the functional, structural and molecular changes evoked by early-life stress are at least partly dependent on persistent forebrain CRF1 signaling, providing a molecular target for the prevention of cognitive deficits in adults with a history of early-life adversity. PMID:21940453

  19. 3H-cyclosporine internalization and secretion by human fetal pancreatic islets

    International Nuclear Information System (INIS)

    Formby, B.; Walker, L.; Peterson, C.M.

    1988-01-01

    Human fetal pancreatic islets were isolated from 16- to 20-week-old fetuses by a collagenase technique and cultured 48 hr in RPMI 1640 containing 10% human adult serum and unlabeled 0 to 5 micrograms cyclosporine A (CsA)/ml. Insulin secretory capacity of human fetal islets was expressed as a fractional stimulatory ratio FSR = F2/F1 of the fractional secretion rates during two successive 1 hr static incubations first with 2 mM glucose (F1) to stabilize secretion followed by maximal stimulus, i.e., 25 mM glucose plus 10 mM L-leucine and 10 mM L-arginine (F2). Unlabeled CsA at the above concentrations had no significant effects on the insulin secretory capacity expressed by FSR-values. Studies of net uptake of 3H-CsA by islets cultured for varying periods up to 40 hr and expressed as picomole 3H-CsA per picomole islet insulin content demonstrated that uptake rate was slow and did not reach isotopic equilibrium over the 40 hr of culture. When isolated fetal islets were cultured for 48 hr in the presence of 3H-CsA and varying concentrations of unlabeled CsA it was found during two successive 1 hr static incubations that fetal islets secrete insulin concomitantly with 3H-CsA following maximal stimulus for secretion. An optimal secretory molar ratio of 3H-CsA to insulin of 4.0 +/- 1.3 (n = 7) was found after islets were cultured 48 hr in the presence of a saturating 2.128 micrograms 3H-CsA per milliliter culture medium. In three successive 30-min static incubations of 3H-CsA loaded islets, first with low glucose, followed by high glucose plus L-arginine and L-leucine, and finally with high glucose plus L-arginine and L-leucine and 10 mM theophylline, the proportional fractional secretion rates of insulin and 3H-CsA were of the same magnitude

  20. Lens artifacts in human fetal eyes - the challenge of interpreting the histomorphology of human fetal lenses.

    Science.gov (United States)

    Herwig, Martina C; Müller, Annette M; Klarmann-Schulz, Ute; Holz, Frank G; Loeffler, Karin U

    2014-01-01

    Evaluation of the lens, including cataractous changes, is often of paramount importance in the classification of fetal syndromes or forensic questions. On histology, the crystalline lens is - especially in fetal and infant eyes - an organ susceptible to numerous artifacts. Thus, the aim of our study was to study various factors (including fixatives) that might have an impact on lens histomorphology. Twenty eyes from ten fetuses (formalin fixation: n = 10, glutaraldehyde fixation: n = 10), matched for gestational age and abortion (spontaneous vs. induced), were investigated macroscopically and by light microscopy. Sections were stained with routine hematoxylin & eosin (H&E), and periodic acid schiff (PAS). The age of the fetal eyes ranged from 15 to 36 weeks of gestation. Lens artifacts were analyzed and compared to fetal and adult lenses with definitive cataractous changes. In addition, 34 eyes from 27 fetuses with trisomy 21 were investigated for lens changes. All lenses showed artifacts of varying extent, in particular globules, vacuoles, clefts, anterior/posterior capsular separation, subcapsular proteinaceous material, fragmentation of the lens capsule/epithelium, and a posterior umbilication. Glutaraldehyde-fixed lenses displayed less artifacts compared to those fixed in formalin. Slight differences in the appearance of artifacts were found dependent on the fixative (formaldehyde vs glutaraldehyde) and the kind of abortion (iatrogenous vs spontaneous). The gestational age did not have a significant influence on the type and extent of lens artifacts. The lenses from fetuses with trisomy 21 displayed similar lens artifacts with no specific findings. Alterations in fetal lens morphology are extremely frequent and variable. These artifacts have to be carefully taken into account when interpreting post-mortem findings. Thus, the postmortem diagnosis of a fetal cataract should be made with great caution, and should include, in adherence to our proposed

  1. Cholinergic basal forebrain structures are not essential for mediation of the arousing action of glutamate.

    Science.gov (United States)

    Lelkes, Zoltán; Abdurakhmanova, Shamsiiat; Porkka-Heiskanen, Tarja

    2017-09-18

    The cholinergic basal forebrain contributes to cortical activation and receives rich innervations from the ascending activating system. It is involved in the mediation of the arousing actions of noradrenaline and histamine. Glutamatergic stimulation in the basal forebrain results in cortical acetylcholine release and suppression of sleep. However, it is not known to what extent the cholinergic versus non-cholinergic basal forebrain projection neurones contribute to the arousing action of glutamate. To clarify this question, we administered N-methyl-D-aspartate (NMDA), a glutamate agonist, into the basal forebrain in intact rats and after destruction of the cholinergic cells in the basal forebrain with 192 immunoglobulin (Ig)G-saporin. In eight Han-Wistar rats with implanted electroencephalogram/electromyogram (EEG/EMG) electrodes and guide cannulas for microdialysis probes, 0.23 μg 192 IgG-saporin was administered into the basal forebrain, while the eight control animals received artificial cerebrospinal fluid. Two weeks later, a microdialysis probe targeted into the basal forebrain was perfused with cerebrospinal fluid on the baseline day and for 3 h with 0.3 mmNMDA on the subsequent day. Sleep-wake activity was recorded for 24 h on both days. NMDA exhibited a robust arousing effect in both the intact and the lesioned rats. Wakefulness was increased and both non-REM and REM sleep were decreased significantly during the 3-h NMDA perfusion. Destruction of the basal forebrain cholinergic neurones did not abolish the wake-enhancing action of NMDA. Thus, the cholinergic basal forebrain structures are not essential for the mediation of the arousing action of glutamate. © 2017 European Sleep Research Society.

  2. Transforming growth factor-β (TGF-β) signaling in healthy human fetal skin: a descriptive study.

    Science.gov (United States)

    Walraven, M; Beelen, R H J; Ulrich, M M W

    2015-05-01

    TGF-β plays an important role in growth and development but is also involved in scarring and fibrosis. Differences for this growth factor are known between scarless fetal wound healing and adult wound healing. Nonetheless, most of the data in this area are from animal studies or in vitro studies and, thus, information about the human situation is incomplete and scarce. The aim of this study was to compare the canonical TGF-β signaling in unwounded human fetal and adult skin. Q-PCR, immunohistochemistry, Western Blot and Luminex assays were used to determine gene expression, protein levels and protein localization of components of this pathway in healthy skin. All components of the canonical TGF-β pathway were present in unwounded fetal skin. Compared to adult skin, fetal skin had differential concentrations of the TGF-β isoforms, had high levels of phosphorylated receptor-Smads, especially in the epidermis, and had low expression of several fibrosis-associated target genes. Further, the results indicated that the processes of receptor endocytosis might also differ between fetal and adult skin. This descriptive study showed that there are differences in gene expression, protein concentrations and protein localization for most components of the canonical TGF-β pathway between fetal and adult skin. The findings of this study can be a starting point for further research into the role of TGF-β signaling in scarless healing. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Long chain poly-unsaturated fatty acids attenuate the IL-1?-induced pro-inflammatory response in human fetal intestinal epithelial cells

    OpenAIRE

    Wijendran, Vasuki; Brenna, JT; Wang, Dong Hao; Zhu, Weishu; Meng, Di; Ganguli, Kriston; Kothapalli, Kumar SD; Requena, Pilar; Innis, Sheila; Walker, WA

    2015-01-01

    Background Evidence suggests that excessive inflammation of the immature intestine may predispose premature infants to necrotizing enterocolitis (NEC). We investigated the anti-inflammatory effects of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (ARA) in human fetal and adult intestinal epithelial cells (IEC) in primary culture. Methods Human fetal IEC in culture were derived from a healthy fetal small intestine (H4) or resected small intestine of a neonate wit...

  4. Fetal Microchimerism in Cancer Protection and Promotion: Current Understanding in Dogs and the Implications for Human Health.

    Science.gov (United States)

    Bryan, Jeffrey N

    2015-05-01

    Fetal microchimerism is the co-existence of small numbers of cells from genetically distinct individuals living within a mother's body following pregnancy. During pregnancy, bi-directional exchange of cells occurs resulting in maternal microchimerism and even sibling microchimerism in offspring. The presence of fetal microchimerism has been identified with lower frequency in patients with cancers such as breast and lymphoma and with higher frequency in patients with colon cancer and autoimmune diseases. Microchimeric cells have been identified in healing and healed tissues as well as normal and tumor tissues. This has led to the hypothesis that fetal microchimerism may play a protective role in some cancers and may provoke other cancers or autoimmune disease. The long periods of risk for these diseases make it a challenge to prospectively study this phenomenon in human populations. Dogs get similar cancers as humans, share our homes and environmental exposures, and live compressed life-spans, allowing easier prospective study of disease development. This review describes the current state of understanding of fetal microchimerism in humans and dogs and highlights the similarities of the common cancers mammary carcinoma, lymphoma, and colon cancer between the two species. Study of fetal microchimerism in dogs might hold the key to characterization of the type and function of microchimeric cells and their role in health and disease. Such an understanding could then be applied to preventing and treating disease in humans.

  5. Midbrain and forebrain patterning delivers immunocytochemically and functionally similar populations of neuropeptide Y containing GABAergic neurons.

    Science.gov (United States)

    Khaira, S K; Nefzger, C M; Beh, S J; Pouton, C W; Haynes, J M

    2011-09-01

    Neurons differentiated in vitro from embryonic stem cells (ESCs) have the potential to serve both as models of disease states and in drug discovery programs. In this study, we use sonic hedgehog (SHH) and fibroblast growth factor 8 (FGF-8) to enrich for forebrain and midbrain phenotypes from mouse ESCs. We then investigate, using Ca(2+) imaging and [(3)H]-GABA release studies, whether the GABAergic neurons produced exhibit distinct functional phenotypes. At day 24 of differentiation, reverse transcriptase-PCR showed the presence of both forebrain (Bf-1, Hesx1, Pgc-1α, Six3) and midbrain (GATA2, GATA3) selective mRNA markers in developing forebrain-enriched cultures. All markers were present in midbrain cultures except for Bf-1 and Pgc-1α. Irrespective of culture conditions all GABA immunoreactive neurons were also immunoreactive to neuropeptide Y (NPY) antibodies. Forebrain and midbrain GABAergic neurons responded to ATP (1 mM), L-glutamate (30 μM), noradrenaline (30 μM), acetylcholine (30 μM) and dopamine (30 μM), with similar elevations of intracellular Ca(2+)([Ca(2+)](i)). The presence of GABA(A) and GABA(B) antagonists, bicuculline (30 μM) and CGP55845 (1 μM), increased the elevation of [Ca(2+)](i) in response to dopamine (30 μM) in midbrain, but not forebrain GABAergic neurons. All agonists, except dopamine, elicited similar [(3)H]-GABA release from forebrain and midbrain cultures. Dopamine (30 μM) did not stimulate significant [(3)H]-GABA release in midbrain cultures, although it was effective in forebrain cultures. This study shows that differentiating neurons toward a midbrain fate restricts the expression of forebrain markers. Forebrain differentiation results in the expression of forebrain and midbrain markers. All GABA(+) neurons contain NPY, and show similar agonist-induced elevations of [Ca(2+)](i) and [(3)H]-GABA release. This study indicates that the pharmacological phenotype of these particular neurons may be independent of the addition of

  6. KeyGenes, a Tool to Probe Tissue Differentiation Using a Human Fetal Transcriptional Atlas

    NARCIS (Netherlands)

    Roost, Matthias S; van Iperen, Liesbeth; Ariyurek, Yavuz; Buermans, Henk P; Arindrarto, Wibowo; Devalla, Harsha D; Passier, Robert; Mummery, Christine L; Carlotti, Françoise; de Koning, Eelco J P; van Zwet, Erik W; Goeman, Jelle J; Chuva de Sousa Lopes, Susana M

    2015-01-01

    Differentiated derivatives of human pluripotent stem cells in culture are generally phenotypically immature compared to their adult counterparts. Their identity is often difficult to determine with certainty because little is known about their human fetal equivalents in vivo. Cellular identity and

  7. Effect of placental factors on growth and function of the human fetal adrenal in vitro.

    Science.gov (United States)

    Riopel, L; Branchaud, C L; Goodyer, C G; Zweig, M; Lipowski, L; Adkar, V; Lefebvre, Y

    1989-11-01

    Conditioned medium from human placental monolayer cultures (PM) had a marked stimulatory effect on proliferation (3H-thymidine uptake) of human fetal zone adrenal cells in primary monolayer culture, even in the absence of serum. Epidermal growth factor (EGF) and fibroblast growth factor (FGF) also significantly stimulated fetal adrenal cell growth. However, the effects of PM differed from those of EGF and FGF in several respects: 1) maximal response to PM was 2-5 times greater; 2) mitogenic effects of EGF and FGF were suppressed by adrenocorticotropic hormone (ACTH), whereas that of 50% PM was not; 3) PM inhibited ACTH-stimulated steroidogenesis (dehydroepiandrosterone sulfate and cortisol), but EGF and FGF did not. Preliminary characterization studies have indicated that approximately half of the placental growth-promoting activity is heat resistant and sensitive to bacterial proteases, and that 50-60% of the activity is lost after dialysis with membranes having a molecular weight cutoff of 3500. These findings suggest a role for the placenta in the growth and differentiated function of the human fetal adrenal gland.

  8. Effect of placental factors on growth and function of the human fetal adrenal in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Riopel, L.; Branchaud, C.L.; Goodyer, C.G.; Zweig, M.; Lipowski, L.; Adkar, V.; Lefebvre, Y. (McGill Univ.-Montreal Children' s Hospital Research Institute, Quebec (Canada))

    1989-11-01

    Conditioned medium from human placental monolayer cultures (PM) had a marked stimulatory effect on proliferation (3H-thymidine uptake) of human fetal zone adrenal cells in primary monolayer culture, even in the absence of serum. Epidermal growth factor (EGF) and fibroblast growth factor (FGF) also significantly stimulated fetal adrenal cell growth. However, the effects of PM differed from those of EGF and FGF in several respects: (1) maximal response to PM was 2-5 times greater; (2) mitogenic effects of EGF and FGF were suppressed by adrenocorticotropic hormone (ACTH), whereas that of 50% PM was not; (3) PM inhibited ACTH-stimulated steroidogenesis (dehydroepiandrosterone sulfate and cortisol), but EGF and FGF did not. Preliminary characterization studies have indicated that approximately half of the placental growth-promoting activity is heat resistant and sensitive to bacterial proteases, and that 50-60% of the activity is lost after dialysis with membranes having a molecular weight cutoff of 3500. These findings suggest a role for the placenta in the growth and differentiated function of the human fetal adrenal gland.

  9. Effect of placental factors on growth and function of the human fetal adrenal in vitro

    International Nuclear Information System (INIS)

    Riopel, L.; Branchaud, C.L.; Goodyer, C.G.; Zweig, M.; Lipowski, L.; Adkar, V.; Lefebvre, Y.

    1989-01-01

    Conditioned medium from human placental monolayer cultures (PM) had a marked stimulatory effect on proliferation (3H-thymidine uptake) of human fetal zone adrenal cells in primary monolayer culture, even in the absence of serum. Epidermal growth factor (EGF) and fibroblast growth factor (FGF) also significantly stimulated fetal adrenal cell growth. However, the effects of PM differed from those of EGF and FGF in several respects: (1) maximal response to PM was 2-5 times greater; (2) mitogenic effects of EGF and FGF were suppressed by adrenocorticotropic hormone (ACTH), whereas that of 50% PM was not; (3) PM inhibited ACTH-stimulated steroidogenesis (dehydroepiandrosterone sulfate and cortisol), but EGF and FGF did not. Preliminary characterization studies have indicated that approximately half of the placental growth-promoting activity is heat resistant and sensitive to bacterial proteases, and that 50-60% of the activity is lost after dialysis with membranes having a molecular weight cutoff of 3500. These findings suggest a role for the placenta in the growth and differentiated function of the human fetal adrenal gland

  10. A Case of Alloimmune Thrombocytopenia, Hemorrhagic Anemia-Induced Fetal Hydrops, Maternal Mirror Syndrome, and Human Chorionic Gonadotropin–Induced Thyrotoxicosis

    Directory of Open Access Journals (Sweden)

    Venu Jain

    2013-05-01

    Full Text Available Fetal/neonatal alloimmune thrombocytopenia (FNAIT can be a cause of severe fetal thrombocytopenia, with the common presentation being intracranial hemorrhage in the fetus, usually in the third trimester. A very unusual case of fetal anemia progressed to hydrops. This was further complicated by maternal Mirror syndrome and human chorionic gonadotropin–induced thyrotoxicosis. Without knowledge of etiology, and possibly due to associated cardiac dysfunction, fetal transfusion resulted in fetal demise. Subsequent testing revealed FNAIT as the cause of severe hemorrhagic anemia. In cases with fetal anemia without presence of red blood cell antibodies, FNAIT must be ruled out as a cause prior to performing fetal transfusion. Fetal heart may adapt differently to acute hemorrhagic anemia compared with a more subacute hemolytic anemia.

  11. Induced pluripotent stem (iPS) cells from human fetal stem cells.

    Science.gov (United States)

    Guillot, Pascale V

    2016-02-01

    Pluripotency defines the ability of stem cells to differentiate into all the lineages of the three germ layers and self-renew indefinitely. Somatic cells can regain the developmental potential of embryonic stem cells following ectopic expression of a set of transcription factors or, in certain circumstances, via modulation of culture conditions and supplementation with small molecule, that is, induced pluripotent stem (iPS) cells. Here, we discuss the use of fetal tissues for reprogramming, focusing in particular on stem cells derived from human amniotic fluid, and the development of chemical reprogramming. We next address the advantages and disadvantages of deriving pluripotent cells from fetal tissues and the potential clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The anatomy of the human medial forebrain bundle: Ventral tegmental area connections to reward-associated subcortical and frontal lobe regions

    Directory of Open Access Journals (Sweden)

    Volker Arnd Coenen

    Full Text Available Introduction: Despite their importance in reward, motivation, and learning there is only sparse anatomical knowledge about the human medial forebrain bundle (MFB and the connectivity of the ventral tegmental area (VTA. A thorough anatomical and microstructural description of the reward related PFC/OFC regions and their connection to the VTA - the superolateral branch of the MFB (slMFB - is however mandatory to enable an interpretation of distinct therapeutic effects from different interventional treatment modalities in neuropsychiatric disorders (DBS, TMS etc.. This work aims at a normative description of the human MFB (and more detailed the slMFB anatomy with respect to distant prefrontal connections and microstructural features. Methods and material: Healthy subjects (n = 55; mean age ± SD, 40 ± 10 years; 32 females underwent high resolution anatomical magnetic resonance imaging including diffusion tensor imaging. Connectivity of the VTA and the resulting slMFB were investigated on the group level using a global tractography approach. The Desikan/Killiany parceling (8 segments of the prefrontal cortex was used to describe sub-segments of the MFB. A qualitative overlap with Brodmann areas was additionally described. Additionally, a pure visual analysis was performed comparing local and global tracking approaches for their ability to fully visualize the slMFB. Results: The MFB could be robustly described both in the present sample as well as in additional control analyses in data from the human connectome project. Most VTA- connections reached the superior frontal gyrus, the middel frontal gyrus and the lateral orbitofrontal region corresponding to Brodmann areas 10, 9, 8, 11, and 11m. The projections to these regions comprised 97% (right and 98% (left of the total relative fiber counts of the slMFB. Discussion: The anatomical description of the human MFB shows far reaching connectivity of VTA to reward-related subcortical and

  13. Permeability of human placenta and fetal membranes to thyrotropin-stimulating hormone in vitro.

    Science.gov (United States)

    Bajoria, R; Fisk, N M

    1998-05-01

    We determined the placental transfer of TSH in an in vitro model of dually perfused isolated lobule in 28 human term placentas by adding varying concentrations (5-60 microIU mL(-1)) of TSH as a single bolus dose to the closed maternal circulation. Transmembrane transfer of TSH was also studied by adding 45 microIU mL(-1) to the maternal or fetal compartment of a dual chamber of fetal membranes in culture. Passage of freely diffusible markers creatinine and antipyrine were also studied in this model. TSH concentration was measured by third generation chemiluminescence assay with a sensitivity of 10 mIU mL(-1). In the perfusion experiments, at physiologic concentrations the slow decline of TSH in the maternal circulation was associated with a small linear increase in fetal levels to 0.11 +/- 0.04% of initial dose at 2 h. The placental transfer rate was 0.08 microIU min(-1). Increasing maternal concentrations of TSH were associated with proportional increases in transfer rate (y = 0.002x; R2 = 0.99) and placental uptake (y = 0.01x; R2 = 0.97). The placental permeability of TSH was 2.4 x 10(-4) mL min(-1) g(-1) and was proportional to its coefficients of diffusion in water and molecular size. The transmembrane transfer and permeability of TSH was comparable to those of the placenta. We conclude that TSH crosses the human term placenta and fetal membranes sparingly.

  14. Cellular and molecular effect of MEHP Involving LXRα in human fetal testis and ovary.

    Science.gov (United States)

    Muczynski, Vincent; Lecureuil, Charlotte; Messiaen, Sébastien; Guerquin, Marie-Justine; N'tumba-Byn, Thierry; Moison, Delphine; Hodroj, Wassim; Benjelloun, Hinde; Baijer, Jan; Livera, Gabriel; Frydman, René; Benachi, Alexandra; Habert, René; Rouiller-Fabre, Virginie

    2012-01-01

    Phthalates have been shown to have reprotoxic effects in rodents and human during fetal life. Previous studies indicate that some members of the nuclear receptor (NR) superfamilly potentially mediate phthalate effects. This study aimed to assess if expression of these nuclear receptors are modulated in the response to MEHP exposure on the human fetal gonads in vitro. Testes and ovaries from 7 to 12 gestational weeks human fetuses were exposed to 10(-4)M MEHP for 72 h in vitro. Transcriptional level of NRs and of downstream genes was then investigated using TLDA (TaqMan Low Density Array) and qPCR approaches. To determine whether somatic or germ cells of the testis are involved in the response to MEHP exposure, we developed a highly efficient cytometric germ cell sorting approach. In vitro exposure of fetal testes and ovaries to MEHP up-regulated the expression of LXRα, SREBP members and of downstream genes involved in the lipid and cholesterol synthesis in the whole gonad. In sorted testicular cells, this effect is only observable in somatic cells but not in the gonocytes. Moreover, the germ cell loss induced by MEHP exposure, that we previously described, is restricted to the male gonad as oogonia density is not affected in vitro. We evidenced for the first time that phthalate increases the levels of mRNA for LXRα, and SREBP members potentially deregulating lipids/cholesterol synthesis in human fetal gonads. Interestingly, this novel effect is observable in both male and female whereas the germ cell apoptosis is restricted to the male gonad. Furthermore, we presented here a novel and potentially very useful flow cytometric cell sorting method to analyse molecular changes in germ cells versus somatic cells.

  15. Cellular and molecular effect of MEHP Involving LXRα in human fetal testis and ovary.

    Directory of Open Access Journals (Sweden)

    Vincent Muczynski

    Full Text Available Phthalates have been shown to have reprotoxic effects in rodents and human during fetal life. Previous studies indicate that some members of the nuclear receptor (NR superfamilly potentially mediate phthalate effects. This study aimed to assess if expression of these nuclear receptors are modulated in the response to MEHP exposure on the human fetal gonads in vitro.Testes and ovaries from 7 to 12 gestational weeks human fetuses were exposed to 10(-4M MEHP for 72 h in vitro. Transcriptional level of NRs and of downstream genes was then investigated using TLDA (TaqMan Low Density Array and qPCR approaches. To determine whether somatic or germ cells of the testis are involved in the response to MEHP exposure, we developed a highly efficient cytometric germ cell sorting approach. In vitro exposure of fetal testes and ovaries to MEHP up-regulated the expression of LXRα, SREBP members and of downstream genes involved in the lipid and cholesterol synthesis in the whole gonad. In sorted testicular cells, this effect is only observable in somatic cells but not in the gonocytes. Moreover, the germ cell loss induced by MEHP exposure, that we previously described, is restricted to the male gonad as oogonia density is not affected in vitro.We evidenced for the first time that phthalate increases the levels of mRNA for LXRα, and SREBP members potentially deregulating lipids/cholesterol synthesis in human fetal gonads. Interestingly, this novel effect is observable in both male and female whereas the germ cell apoptosis is restricted to the male gonad. Furthermore, we presented here a novel and potentially very useful flow cytometric cell sorting method to analyse molecular changes in germ cells versus somatic cells.

  16. Epicardial excitation pattern as observed in the isolated revived and perfused fetal human heart

    NARCIS (Netherlands)

    Durrer, D.; Büller, J.; Graaff, P.; Lo, G.I.; Meijler, F.L.

    1961-01-01

    The resuscitated fetal human heart can be used as an experimental tooI for the investigation of the excitatory process in the human heart. During perfusion the configuration of the epicardial electrocardiograms does not change appreciably. For accurate recording permitting a detailed analysis, the

  17. The origin of fetal sterols in second-trimester amniotic fluid : endogenous synthesis or maternal-fetal transport?

    NARCIS (Netherlands)

    Baardman, Maria E.; Erwich, Jan Jaap H. M.; Berger, Rolf M. F.; Hofstra, Robert M. W.; Kerstjens-Frederikse, Wilhelmina S.; Luetjohann, Dieter; Plosch, Torsten; Lutjohann, D.

    OBJECTIVE: Cholesterol is crucial for fetal development. To gain more insight into the origin of the fetal cholesterol pool in early human pregnancy, we determined cholesterol and its precursors in the amniotic fluid of uncomplicated, singleton human pregnancies. STUDY DESIGN: Total sterols were

  18. The protective effect of ursodeoxycholic acid in an in vitro model of the human fetal heart occurs via targeting cardiac fibroblasts.

    Science.gov (United States)

    Schultz, Francisca; Hasan, Alveera; Alvarez-Laviada, Anita; Miragoli, Michele; Bhogal, Navneet; Wells, Sarah; Poulet, Claire; Chambers, Jenny; Williamson, Catherine; Gorelik, Julia

    2016-01-01

    Bile acids are elevated in the blood of women with intrahepatic cholestasis of pregnancy (ICP) and this may lead to fetal arrhythmia, fetal hypoxia and potentially fetal death in utero. The bile acid taurocholic acid (TC) causes abnormal calcium dynamics and contraction in neonatal rat cardiomyocytes. Ursodeoxycholic acid (UDCA), a drug clinically used to treat ICP, prevents adverse effects of TC. During development, the fetus is in a state of relative hypoxia. Although this is essential for the development of the heart and vasculature, resident fibroblasts can transiently differentiate into myofibroblasts and form gap junctions with cardiomyocytes in vitro, resulting in cardiomyocyte depolarization. We expanded on previously published work using an in vitro hypoxia model to investigate the differentiation of human fetal fibroblasts into myofibroblasts. Recent evidence shows that potassium channels are involved in maintaining the membrane potential of ventricular fibroblasts and that ATP-dependent potassium (KATP) channel subunits are expressed in cultured fibroblasts. KATP channels are a valuable target as they are thought to have a cardioprotective role during ischaemic and hypoxic conditions. We investigated whether UDCA could modulate fibroblast membrane potential. We established the isolation and culture of human fetal cardiomyocytes and fibroblasts to investigate the effect of hypoxia, TC and UDCA on human fetal cardiac cells. UDCA hyperpolarized myofibroblasts and prevented TC-induced depolarisation, possibly through the activation of KATP channels that are expressed in cultured fibroblasts. Also, similar to the rat model, UDCA can counteract TC-induced calcium abnormalities in human fetal cultures of cardiomyocytes and myofibroblasts. Under normoxic conditions, we found a higher number of myofibroblasts in cultures derived from human fetal hearts compared to cells isolated from neonatal rat hearts, indicating a possible increased number of myofibroblasts

  19. Studies on the isolation, structural analysis and tissue localization of fetal antigen 1 and its relation to a human adrenal-specific cDNA, pG2

    DEFF Research Database (Denmark)

    Jensen, Charlotte Harken; Teisner, Børge; Højrup, Peter

    1993-01-01

    Fetal antigen 1 was purified from second trimester human amniotic fluid by immunospecific affinity chromatography followed by reversed-phase chromatography. Fetal antigen 1 is a single chain glycoprotein with a M(r) of 32-38 kDa. The amino acid composition revealed a high content of cysteines......, prolines and amino acids (aa) with acidic side-chains indicating that fetal antigen 1 is a compactly folded, strongly hydrophilic molecule. The N-terminal amino acid sequence (37 aa) revealed no homology to other known protein sequences, implying that fetal antigen 1 is a 'novel' human protein. When the aa...... sequence was back-translated into the appropriate degenerate sequence of nucleic acids, fetal antigen 1 could be partially aligned to a 'human adrenal-specific mRNA, pG2'. The indirect immunoperoxidase technique demonstrated fetal antigen 1 in fetal hepatocytes, glandular cells of fetal pancreas...

  20. Transcriptional maturation of the mouse auditory forebrain.

    Science.gov (United States)

    Hackett, Troy A; Guo, Yan; Clause, Amanda; Hackett, Nicholas J; Garbett, Krassimira; Zhang, Pan; Polley, Daniel B; Mirnics, Karoly

    2015-08-14

    The maturation of the brain involves the coordinated expression of thousands of genes, proteins and regulatory elements over time. In sensory pathways, gene expression profiles are modified by age and sensory experience in a manner that differs between brain regions and cell types. In the auditory system of altricial animals, neuronal activity increases markedly after the opening of the ear canals, initiating events that culminate in the maturation of auditory circuitry in the brain. This window provides a unique opportunity to study how gene expression patterns are modified by the onset of sensory experience through maturity. As a tool for capturing these features, next-generation sequencing of total RNA (RNAseq) has tremendous utility, because the entire transcriptome can be screened to index expression of any gene. To date, whole transcriptome profiles have not been generated for any central auditory structure in any species at any age. In the present study, RNAseq was used to profile two regions of the mouse auditory forebrain (A1, primary auditory cortex; MG, medial geniculate) at key stages of postnatal development (P7, P14, P21, adult) before and after the onset of hearing (~P12). Hierarchical clustering, differential expression, and functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all genes. Selected genesets related to neurotransmission, developmental plasticity, critical periods and brain structure were highlighted. An accessible repository of the entire dataset was also constructed that permits extraction and screening of all data from the global through single-gene levels. To our knowledge, this is the first whole transcriptome sequencing study of the forebrain of any mammalian sensory system. Although the data are most relevant for the auditory system, they are generally applicable to forebrain structures in the visual and somatosensory systems, as well. The main findings were: (1) Global gene expression

  1. Amniotic oxytocin and vasopressin in relation to human fetal development and labour

    NARCIS (Netherlands)

    Oosterbaan, H. P.; Swaab, D. F.

    1989-01-01

    Previous experiments in rats revealed increased amniotic oxytocin (OXT) levels in the course of normal development and increased vasopressin (AVP) levels in retarded fetal growth. In order to see whether similar changes would also occur in human, OXT and AVP levels were determined in amniotic fluid,

  2. A forebrain atlas of the lizard Gekko gecko.

    Science.gov (United States)

    Smeets, W J; Hoogland, P V; Lohman, A H

    1986-12-01

    An atlas of the forebrain of the lizard Gekko gecko has been provided, which will serve as the basis for subsequent experimental tracing and immunohistochemical studies. Apart from a strongly developed medial cortex and septal area, the Tokay gecko shows all the main features of the forebrain of the lacertid-type lizards. When its convenience as an experimental animal is also taken into account, this species seems to be very suitable for studying the limbic system in reptiles. The atlas comprises topographical reconstructions of the telencephalon and diencephalon and a series of transverse sections of which the levels have been indicated in the reconstructions. The results obtained in the Gekko are briefly compared with those found in other lizards studied.

  3. Adult forebrain NMDA receptors gate social motivation and social memory.

    Science.gov (United States)

    Jacobs, Stephanie; Tsien, Joe Z

    2017-02-01

    Motivation to engage in social interaction is critical to ensure normal social behaviors, whereas dysregulation in social motivation can contribute to psychiatric diseases such as schizophrenia, autism, social anxiety disorders and post-traumatic stress disorder (PTSD). While dopamine is well known to regulate motivation, its downstream targets are poorly understood. Given the fact that the dopamine 1 (D1) receptors are often physically coupled with the NMDA receptors, we hypothesize that the NMDA receptor activity in the adult forebrain principal neurons are crucial not only for learning and memory, but also for the proper gating of social motivation. Here, we tested this hypothesis by examining sociability and social memory in inducible forebrain-specific NR1 knockout mice. These mice are ideal for exploring the role of the NR1 subunit in social behavior because the NR1 subunit can be selectively knocked out after the critical developmental period, in which NR1 is required for normal development. We found that the inducible deletion of the NMDA receptors prior to behavioral assays impaired, not only object and social recognition memory tests, but also resulted in profound deficits in social motivation. Mice with ablated NR1 subunits in the forebrain demonstrated significant decreases in sociability compared to their wild type counterparts. These results suggest that in addition to its crucial role in learning and memory, the NMDA receptors in the adult forebrain principal neurons gate social motivation, independent of neuronal development. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A developmental stage-specific switch from DAZL to BOLL occurs during fetal oogenesis in humans, but not mice.

    Directory of Open Access Journals (Sweden)

    Jing He

    Full Text Available The Deleted in Azoospermia gene family encodes three germ cell-specific RNA-binding proteins (DAZ, DAZL and BOLL that are essential for gametogenesis in diverse species. Targeted disruption of Boll in mice causes male-specific spermiogenic defects, but females are apparently fertile. Overexpression of human BOLL promotes the derivation of germ cell-like cells from genetically female (XX, but not male (XY human ES cells however, suggesting a functional role for BOLL in regulating female gametogenesis in humans. Whether BOLL is expressed during oogenesis in mammals also remains unclear. We have therefore investigated the expression of BOLL during fetal oogenesis in humans and mice. We demonstrate that BOLL protein is expressed in the germ cells of the human fetal ovary, at a later developmental stage than, and almost mutually-exclusive to, the expression of DAZL. Strikingly, BOLL is downregulated, and DAZL re-expressed, as primordial follicles form, revealing BOLL expression to be restricted to a narrow window during fetal oogenesis. By quantifying the extent of co-expression of DAZL and BOLL with markers of meiosis, we show that this window likely corresponds to the later stages of meiotic prophase I. Finally, we demonstrate that Boll is also transiently expressed during oogenesis in the fetal mouse ovary, but is simultaneously co-expressed within the same germ cells as Dazl. These data reveal significant similarities and differences between the expression of BOLL homologues during oogenesis in humans and mice, and raise questions as to the validity of the Boll(-/- mouse as a model for understanding BOLL function during human oogenesis.

  5. Ex vivo culture of human fetal gonads: manipulation of meiosis signalling by retinoic acid treatment disrupts testis development.

    Science.gov (United States)

    Jørgensen, A; Nielsen, J E; Perlman, S; Lundvall, L; Mitchell, R T; Juul, A; Rajpert-De Meyts, E

    2015-10-01

    What are the effects of experimentally manipulating meiosis signalling by addition of retinoic acid (RA) in cultured human fetal gonads? RA-treatment accelerated meiotic entry in cultured fetal ovary samples, while addition of RA resulted in a dysgenetic gonadal phenotype in fetal testis cultures. One of the first manifestations of sex differentiation is the initiation of meiosis in fetal ovaries. In contrast, meiotic entry is actively prevented in the fetal testis at this developmental time-point. It has previously been shown that RA-treatment mediates initiation of meiosis in human fetal ovary ex vivo. This was a controlled ex vivo study of human fetal gonads treated with RA in 'hanging-drop' tissue cultures. The applied experimental set-up preserves germ cell-somatic niche interactions and the investigated outcomes included tissue integrity and morphology, cell proliferation and survival and the expression of markers of meiosis and sex differentiation. Tissue from 24 first trimester human fetuses was included in this study, all from elective terminations at gestational week (GW) 7-12. Gonads were cultured for 2 weeks with and without addition of 1 µM RA. Samples were subsequently formalin-fixed and investigated by immunohistochemistry and cell counting. Proteins investigated and quantified included; octamer-binding transcription factor 4 (OCT4), transcription factor AP-2 gamma (AP2γ) (embryonic germ cell markers), SRY (sex determining region Y)-box 9 (SOX9), anti-Müllerian hormone (AMH) (immature Sertoli cell markers), COUP transcription factor 2 (COUP-TFII) (marker of interstitial cells), forkhead box L2 (FOXL2) (granulosa cell marker), H2A histone family, member X (γH2AX) (meiosis marker), doublesex and mab-3 related transcription factor 1 (DMRT1) (meiosis regulator), cleaved poly ADP ribose polymerase (PARP), cleaved Caspase 3 (apoptosis markers) and Ki-67 antigen (Ki-67) (proliferation marker). Also, proliferation was determined using a 5'-bromo-2

  6. Typing of human fetal organs for the histocompatibility antigens A, B and DR.

    Science.gov (United States)

    Tuch, B E; Doran, T J; Messel, N; Turtle, J R

    1985-01-01

    In the transplantation of human fetal pancreatic explants into diabetic man, the importance of matching the histocompatibility antigens of donor and recipient to decrease the chances of rejection is unknown. Before this question can be answered human fetuses must be tissue typed. We have shown that lymphocytes harvested from fetal liver, thymus, bone marrow and spleen can be successfully HLA DR typed in 64% and A and B typed in 57% of 58 fetuses aged 15 wk or more. Typing should ideally be carried out on unseparated T and B cells. Best results were achieved if all four of the above organs were available and more than one million viable cells were able to be harvested for typing. Whilst the DR antigens could be typed from all tissues, the A and B antigens could be typed, with few exceptions only from thymus, spleen and bone marrow. The efficacy of matching the histocompatibility antigens of recipient and donor fetuses, especially the DR antigens can now be tested in the human diabetic being transplanted with pancreatic explants.

  7. Song exposure regulates known and novel microRNAs in the zebra finch auditory forebrain

    Directory of Open Access Journals (Sweden)

    Kim Jong H

    2011-05-01

    Full Text Available Abstract Background In an important model for neuroscience, songbirds learn to discriminate songs they hear during tape-recorded playbacks, as demonstrated by song-specific habituation of both behavioral and neurogenomic responses in the auditory forebrain. We hypothesized that microRNAs (miRNAs or miRs may participate in the changing pattern of gene expression induced by song exposure. To test this, we used massively parallel Illumina sequencing to analyse small RNAs from auditory forebrain of adult zebra finches exposed to tape-recorded birdsong or silence. Results In the auditory forebrain, we identified 121 known miRNAs conserved in other vertebrates. We also identified 34 novel miRNAs that do not align to human or chicken genomes. Five conserved miRNAs showed significant and consistent changes in copy number after song exposure across three biological replications of the song-silence comparison, with two increasing (tgu-miR-25, tgu-miR-192 and three decreasing (tgu-miR-92, tgu-miR-124, tgu-miR-129-5p. We also detected a locus on the Z sex chromosome that produces three different novel miRNAs, with supporting evidence from Northern blot and TaqMan qPCR assays for differential expression in males and females and in response to song playbacks. One of these, tgu-miR-2954-3p, is predicted (by TargetScan to regulate eight song-responsive mRNAs that all have functions in cellular proliferation and neuronal differentiation. Conclusions The experience of hearing another bird singing alters the profile of miRNAs in the auditory forebrain of zebra finches. The response involves both known conserved miRNAs and novel miRNAs described so far only in the zebra finch, including a novel sex-linked, song-responsive miRNA. These results indicate that miRNAs are likely to contribute to the unique behavioural biology of learned song communication in songbirds.

  8. Effects of heavy ions on rabbit tissues: damage to the forebrain

    International Nuclear Information System (INIS)

    Cox, A.B.; Keng, P.C.; Lee, A.C.; Lett, J.T.

    1982-01-01

    As part of a study of progressive radiation effects in normal tissues, the forebrains of New Zealand white rabbits (Oryctolagus cuniculus) (about 6 weeks old) were irradiated locally with single acute doses of 60 Co γ-photons (LETsub(infinity)=0.3 keV/μm), Ne ions (LETsub(infinity)=35+-3 keV/μm) or Ar ions (LETsub(infinity)=90+-5 keV/μm). Other rabbits received fractionated doses of 60 Co γ-photons according to a standard radiotherapeutic protocol. Irradiated rabbits and appropriately aged controls were sacrificed at selected intervals, and whole sagittal sections of their brains were examined for pathological changes. Forebrain damage was scored with subjective indices based on histological differences between the anterior (irradiated) and posterior (unirradiated) regions of the brain. Those indices ranged from zero (no apparent damage) to five (severe infarctions, etc.). At intermediate levels of forebrain damage, the relative biological effectiveness (r.b.e.) of each heavy ion was similar to that found for alopecia and cataractogenesis, and the early expression of the damage was also accelerated as the LETsub(infinity) increased. Late deterioration of the forebrain appeared also to be accelerated by increasing LETsub(infinity), although its accurate quantification was not possible because other priorities in the overall experimental design limited systematic sacrifice of the animals. (author)

  9. Platelet-rich plasma can replace fetal bovine serum in human meniscus cell cultures

    NARCIS (Netherlands)

    Gonzales, V.K.; Mulder, E.L.W. de; Boer, T. den; Hannink, G.; Tienen, T.G. van; Heerde, W.L. van; Buma, P.

    2013-01-01

    Concerns over fetal bovine serum (FBS) limit the clinical application of cultured tissue-engineered constructs. Therefore, we investigated if platelet-rich plasma (PRP) can fully replace FBS for meniscus tissue engineering purposes. Human PRP and platelet-poor plasma (PPP) were isolated from three

  10. Fetal cardiology

    International Nuclear Information System (INIS)

    Meijboom, E.J.; Rijsterborgh, N.; Bom, N.

    1986-01-01

    Doppler echocardiography makes it possible to diagnose congenital heart disease in early pregnancy. It allows us to study the anatomical configuration of the fetal heart, and additionally, to evaluate the physiological conditions of the fetus. Evaluation of the direction, velocity, wave form pattern, and quantification of blood flow at the various sites in the fetal heart helps us to assess the characteristics of the fetal circulation and condition of the fetal heart. In order to use this technique in pathological situations, an initial study of the developing normal human fetal circulation was necessary. The authors studied 34 uncomplicated pregnancies by serial Doppler echocardiography. The studies were performed every 4 weeks from 16-weeks gestation to term. The pulsed Doppler sector scanner provided cardiac cross-sectional images, mitral and tricuspid blood velocities were obtained from apical four-chamber views. Angle corrected maximal and mean temporal velocities were calculated by digitizing the Doppler frequency shift recording on a graphic tablet computed with a minicomputer. The angle between the Doppler interrogation beam and the direction of blood flow was kept as small as possible in order to minimize the error

  11. Transport and Biodistribution of Dendrimers Across Human Fetal Membranes: Implications for Intravaginal Administration of Dendrimers

    Science.gov (United States)

    Menjoge, Anupa R.; Navath, Raghavendra S.; Asad, Abbas; Kannan, Sujatha; Kim, Chong Jai; Romero, Roberto; Kannan, Rangaramanujam M.

    2010-01-01

    Dendrimers are emerging as promising topical antimicrobial agents, and as targeted nanoscale drug delivery vehicles. Topical intravaginal antimicrobial agents are prescribed to treat the ascending genital infections in pregnant women. The fetal membranes separate the extra-amniotic space and fetus. The purpose of the study is to determine if the dendrimers can be selectively used for local intravaginal application to pregnant women without crossing the membranes into the fetus. In the present study, the transport and permeability of PAMAM (poly(amidoamine)) dendrimers, across human fetal membrane (using a side-by-side diffusion chamber), and its biodistribution (using immunofluorescence) are evaluated ex-vivo. Transport across human fetal membranes (from the maternal side) was evaluated using Fluorescein (FITC), an established transplacental marker (positive control, size~ 400 Da) and fluorophore-tagged G4-PAMAM dendrimers (~ 16 kDa). The fluorophore-tagged G4-PAMAM dendrimers were synthesized and characterized using 1H NMR, MALDI TOF-MS and HPLC analysis. Transfer was measured across the intact fetal membrane (chorioamnion), and the separated chorion and amnion layers. Over a five hour period, the dendrimer transport across all the three membranes was less than transport of FITC was relatively fast with as much as 49% transport across the amnion. The permeability of FITC (7.9 × 10-7 cm2/s) through the chorioamnion was 7-fold higher than that of the dendrimer (5.8 × 10-8 cm2/s). The biodistribution showed that the dendrimers were largely present in interstitial spaces in the decidual stromal cells and the chorionic trophoblast cells (in 2.5 to 4 h) and surprisingly, to a smaller extent internalized in nuclei of trophoblast cells and nuclei and cytoplasm of stromal cells. Passive diffusion and paracellular transport appear to be the major route for dendrimer transport. The overall findings further suggest that entry of drugs conjugated to dendrimers would be

  12. Ascending connections to the forebrain in the Tegu lizard.

    Science.gov (United States)

    Lohman, A H; van Woerden-Verkley, I

    1978-12-01

    The ascending connections to the striatum and the cortex of the Tegu lizard, Tupinambis nigropunctatus, were studied by means of anterograde fiber degeneration and retrograde axonal transport. The striatum receives projections by way of the dorsal peduncle of the lateral forebrain bundle from four dorsal thalamic nuclei: nucleus rotundus, nucleus reuniens, the posterior part of the dorsal lateral geniculate nucleus and nucleus dorsomedialis. The former three nuclei project to circumscribed areas of the dorsal striatum, whereas nucleus dorsomedialis has a distribution to the whole dorsal striatum. Other sources of origin to the striatum are the mesencephalic reticular formation, substantia nigra and nucleus cerebelli lateralis. With the exception of the latter afferentation all these projections are ipsilateral. The ascending connections to the pallium originate for the major part from nucleus dorsolateralis anterior of the dorsal thalamus. The fibers course in both the medial forebrain bundle and the dorsal peduncle of the lateral forebrain bundle and terminate ipsilaterally in the middle of the molecular layer of the small-celled part of the mediodorsal cortex and bilaterally above the intermediate region of the dorsal cortex. The latter area is reached also by fibers from the septal area. The large-celled part of the mediodorsal cortex receives projections from nucleus raphes superior and the corpus mammillare.

  13. STEREOLOGICAL STUDIES ON FETAL VASCULAR DEVELOPMENT IN HUMAN PLACENTAL VILLI

    Directory of Open Access Journals (Sweden)

    Terry M Mayhew

    2011-05-01

    Full Text Available In human pregnancy, fetal well-being depends on the development of placental villi and the creation and maintenance of fetal microvessels within them. The aim of this study was to define stereological measures of the growth, capillarization and maturation of villi and of fetoplacental angiogenesis and capillary remodelling. Placentas were collected at 12-41 weeks of gestation and assigned to six age groups spanning equal age ranges. Tissue samples were randomised for position and orientation. Overall growth of peripheral (intermediate and terminal villi and their capillaries was evaluated using total volumes, surface areas and lengths. Measures of villous capillarization comprised capillary volume, surface and length densities and capillary:villus surface and length ratios. Size and shape remodelling of villi and capillaries was assessed using mean cross-sectional areas, perimeters and shape coefficients (perimeter2/area. Group comparisons were drawn by analysis of variance. Villous and capillary volumes, surfaces and lengths increased significantly throughout gestation. Villous maturation involved phasic (capillary:villus surface and length ratios or progressive (volume, surface and length densities increases in indices of villous capillarization. It also involved isomorphic thinning (cross-sectional areas and perimeters declined but shape coefficients did not alter. In contrast, growth of capillaries did not involve changes in luminal areas or perimeters. The results show that villous growth and fetal angiogenesis involve increases in overall length rather than calibre and that villous differentiation involves increased capillarization. Although they do not distinguish between increases in the lengths versus numbers of capillary segments, other studies have shown that capillaries switch from branching to non-branching angiogenesis during gestation. Combined with maintenance of capillary calibres, these processes will contribute to the reduced

  14. Cellular localization of transforming growth factor-alpha mRNA in rat forebrain.

    Science.gov (United States)

    Seroogy, K B; Lundgren, K H; Lee, D C; Guthrie, K M; Gall, C M

    1993-05-01

    The cellular localization of transforming growth factor-alpha (TGF alpha) mRNA in juvenile and adult rat forebrain was examined using in situ hybridization with a 35S-labeled cRNA probe. TGF alpha cRNA-labeled neuronal perikarya were distributed across many forebrain regions including the olfactory bulb, caudate-putamen, nucleus accumbens, olfactory tubercle, ventral pallidum, amygdala, hippocampal stratum granulosum and CA3 stratum pyramidale, and piriform, entorhinal, and retrosplenial cortices. TGF alpha cRNA-hybridizing cells were also localized to several thalamic nuclei and to the suprachiasmatic, dorsomedial, and ventromedial nuclei of the hypothalamus. In addition, labeled cells were present in regions of white matter including the corpus callosum, anterior commissure, internal and external capsules, optic tract, and lateral olfactory tract. Thus, both neurons and glia appear to synthesize TGF alpha in normal brain. Hybridization densities were greater in neuronal fields at 2 weeks of age compared with the adult, suggesting a role for TGF alpha in the development of several forebrain systems. Our results demonstrating the prominent and wide-spread expression of TGF alpha mRNA in forebrain, combined with the extremely low abundance of epidermal growth factor mRNA in brain, support the argument that TGF alpha is the principal endogenous ligand for the epidermal growth factor receptor in normal brain.

  15. Central vagal sensory and motor connections: human embryonic and fetal development.

    Science.gov (United States)

    Cheng, Gang; Zhou, Xiangtian; Qu, Jia; Ashwell, Ken W S; Paxinos, G

    2004-07-30

    The embryonic and fetal development of the nuclear components and pathways of vagal sensorimotor circuits in the human has been studied using Nissl staining and carbocyanine dye tracing techniques. Eight fetal brains ranging from 8 to 28 weeks of development had DiI (1,1'-dioctadecyl-3,3,3',3' tetramethylindocarbocyanine perchlorate) inserted into either the thoracic vagus nerve at the level of the sternal angle (two specimens of 8 and 9 weeks of gestation) or into vagal rootlets at the surface of the medulla (at all other ages), while a further five were used for study of cytoarchitectural development. The first central labeling resulting from peripheral application of DiI to the thoracic vagus nerve was seen at 8 weeks. By 9 weeks, labeled bipolar cells at the ventricular surface around the sulcus limitans (sl) were seen after DiI application to the thoracic vagus nerve. Subnuclear organization as revealed by both Nissl staining and carbocyanine dye tracing was found to be advanced at a relatively early fetal age, with afferent segregation in the medial Sol apparent at 13 weeks and subnuclear organization of efferent magnocellular divisions of dorsal motor nucleus of vagus nerve noticeable at the same stage. The results of the present study also confirm that vagal afferents are distributed to the dorsomedial subnuclei of the human nucleus of the solitary tract, with particular concentrations of afferent axons in the gelatinosus subnucleus. These vagal afferents appeared to have a restricted zone of termination from quite early in development (13 weeks) suggesting that there is no initial exuberance in the termination field of vagal afferents in the developing human nucleus of the solitary tract. On the other hand, the first suggestion of afferents invading 10N from the medial Sol was not seen until 20 weeks and was not well developed until 24 weeks, suggesting that direct monosynaptic connections between the sensory and effector components of the vagal

  16. Medial forebrain bundle lesions fail to structurally and functionally disconnect the ventral tegmental area from many ipsilateral forebrain nuclei: implications for the neural substrate of brain stimulation reward.

    Science.gov (United States)

    Simmons, J M; Ackermann, R F; Gallistel, C R

    1998-10-15

    Lesions in the medial forebrain bundle rostral to a stimulating electrode have variable effects on the rewarding efficacy of self-stimulation. We attempted to account for this variability by measuring the anatomical and functional effects of electrolytic lesions at the level of the lateral hypothalamus (LH) and by correlating these effects to postlesion changes in threshold pulse frequency (pps) for self-stimulation in the ventral tegmental area (VTA). We implanted True Blue in the VTA and compared cell labeling patterns in forebrain regions of intact and lesioned animals. We also compared stimulation-induced regional [14C]deoxyglucose (DG) accumulation patterns in the forebrains of intact and lesioned animals. As expected, postlesion threshold shifts varied: threshold pps remained the same or decreased in eight animals, increased by small but significant amounts in three rats, and increased substantially in six subjects. Unexpectedly, LH lesions did not anatomically or functionally disconnect all forebrain nuclei from the VTA. Most septal and preoptic regions contained equivalent levels of True Blue label in intact and lesioned animals. In both intact and lesioned groups, VTA stimulation increased metabolic activity in the fundus of the striatum (FS), the nucleus of the diagonal band, and the medial preoptic area. On the other hand, True Blue labeling demonstrated anatomical disconnection of the accumbens, FS, substantia innominata/magnocellular preoptic nucleus (SI/MA), and bed nucleus of the stria terminalis. [14C]DG autoradiography indicated functional disconnection of the lateral preoptic area and SI/MA. Correlations between patterns of True Blue labeling or [14C]deoxyglucose accumulation and postlesion shifts in threshold pulse frequency were weak and generally negative. These direct measures of connectivity concord with the behavioral measures in suggesting a diffuse net-like connection between forebrain nuclei and the VTA.

  17. Resveratrol inhibits steroidogenesis in human fetal adrenocortical cells at the end of first trimester

    DEFF Research Database (Denmark)

    Savchuk, Iuliia; Morvan, Marie-Line; Søeborg, Tue

    2017-01-01

    SCOPE: Resveratrol has a diverse array of healthful effects on metabolic parameters in different experimental paradigms but has also potential to inhibit steroidogenesis in rodent adrenals. The aim of the present study was to characterize the effects of resveratrol on human fetal adrenal...... steroidogenesis at gestational weeks (GW) 9-12. METHODS AND RESULTS: Adrenals from aborted fetuses (GW10-12) were used to prepare primary cultures of human fetal adrenocortical cells (HFAC). HFAC were treated in the presence or absence of ACTH (10 ng/ml) with or without resveratrol (10 μM) for 24 hours....... The production of steroids by HFAC was analyzed by gas and liquid chromatography coupled to tandem/mass spectrometry. The expression of steroidogenic enzymes at GW 9-12 was quantified by automated Western blotting. We observed that resveratrol significantly suppressed synthesis of dehydroepiandrosterone (DHEA...

  18. A Brief Account of the Discovery of the Fetal/Placental Unit for Estrogen Production in Equine and Human Pregnancies: Relation to Human Medicine.

    Science.gov (United States)

    Raeside, James I

    2017-09-01

    The role of steroids in human medicine is well recognized, but the major contributions made by the large domestic animals as a source of material in the discovery, isolation, and determination of the structure of the steroid hormones is less well appreciated. After a brief reminder of the early efforts to obtain a reliable source of steroids for clinical use, the narrative here is to outline one example where success was ultimately achieved for estrogen replacement therapy. Whereas knowledge of the high concentrations of estrogens in urine of pregnant women and mares dates from the late 1920s, it was not until the 1940s that the latter was shown to be a practical source. Initially, the placenta was held to be responsible, but the involvement of the fetus in each case was eventually established. The remarkable enlargement of the human fetal adrenal glands and the fetal gonads in the horse, with characteristic features of steroid secreting tissues, suggested their participation. Ultimately, it was 16-hydroxylation by the fetal liver that resulted in estriol being the major estrogen type, by far, in late human pregnancy. In the mare, the pattern of estrogen production reflected that of the growth and later regression of the fetal gonads. The characteristic production ring-B, unsaturated estrogens in the mare is derived from an alternative pathway involving retention of the additional double bond in the biosynthesis of equilin.

  19. In an in-vitro model using human fetal membranes, 17-α hydroxyprogesterone caproate is not an optimal progestogen for inhibition of fetal membrane weakening.

    Science.gov (United States)

    Kumar, Deepak; Moore, Robert M; Mercer, Brian M; Mansour, Joseph M; Mesiano, Sam; Schatz, Frederick; Lockwood, Charles J; Moore, John J

    2017-12-01

    The progestogen 17-α hydroxyprogesterone caproate (17-OHPC) is 1 of only 2 agents recommended for clinical use in the prevention of spontaneous preterm delivery, and studies of its efficacy have been conflicting. We have developed an in-vitro model to study the fetal membrane weakening process that leads to rupture in preterm premature rupture of the fetal membranes (pPROM). Inflammation/infection associated with tumor necrosis factor-α (TNF-α) induction and decidual bleeding/abruption associated thrombin release are leading causes of preterm premature rupture of the fetal membranes. Both agents (TNF-α and thrombin) cause fetal membrane weakening in the model system. Furthermore, granulocyte-macrophage colony-stimulating factor (GM-CSF) is a critical intermediate for both TNF-α and thrombin-induced fetal membrane weakening. In a previous report, we demonstrated that 3 progestogens, progesterone, 17-alpha hydroxyprogesterone (17-OHP), and medroxyprogesterone acetate (MPA), each inhibit both TNF-α- and thrombin-induced fetal membrane weakening at 2 distinct points of the fetal membrane weakening pathway. Each block both the production of and the downstream action of the critical intermediate granulocyte-macrophage colony-stimulating factor. The objective of the study was to characterize the inhibitory effects of 17-OHPC on TNF-α- and thrombin-induced fetal membrane weakening in vitro. Full-thickness human fetal membrane fragments from uncomplicated term repeat cesarean deliveries were mounted in 2.5 cm Transwell inserts and cultured with/without 17-alpha hydroxyprogesterone caproate (10 -9 to 10 -7 M). After 24 hours, medium (supernatant) was removed and replaced with/without the addition of tumor necrosis factor-alpha (20 ng/mL) or thrombin (10 U/mL) or granulocyte-macrophage colony-stimulating factor (200 ng/mL). After 48 hours of culture, medium from the maternal side compartment of the model was assayed for granulocyte-macrophage colony

  20. Mast cells in the sheep, hedgehog and rat forebrain

    Science.gov (United States)

    MICHALOUDI, HELEN C.; PAPADOPOULOS, GEORGIOS C.

    1999-01-01

    The study was designed to reveal the distribution of various mast cell types in the forebrain of the adult sheep, hedgehog and rat. Based on their histochemical and immunocytochemical characteristics, mast cells were categorised as (1) connective tissue-type mast cells, staining metachromatically purple with the toluidine blue method, or pale red with the Alcian blue/safranin method, (2) mucosal-type or immature mast cells staining blue with the Alcian blue/safranin method and (3) serotonin immunopositive mast cells. All 3 types of brain mast cells in all species studied were located in both white and grey matter, often associated with intraparenchymal blood vessels. Their distribution pattern exhibited interspecies differences, while their number varied considerably not only between species but also between individuals of each species. A distributional left-right asymmetry, with more cells present on the left side, was observed in all species studied but it was most prominent in the sheep brain. In the sheep, mast cells were abundantly distributed in forebrain areas, while in the hedgehog and the rat forebrain, mast cells were less widely distributed and were relatively or substantially fewer in number respectively. A limited number of brain mast cells, in all 3 species, but primarily in the rat, were found to react both immunocytochemically to 5-HT antibody and histochemically with Alcian blue/safranin staining. PMID:10634696

  1. Transport and biodistribution of dendrimers across human fetal membranes: implications for intravaginal administration of dendrimer-drug conjugates.

    Science.gov (United States)

    Menjoge, Anupa R; Navath, Raghavendra S; Asad, Abbas; Kannan, Sujatha; Kim, Chong J; Romero, Roberto; Kannan, Rangaramanujam M

    2010-06-01

    Dendrimers are emerging as promising topical antimicrobial agents, and as targeted nanoscale drug delivery vehicles. Topical intravaginal antimicrobial agents are prescribed to treat the ascending genital infections in pregnant women. The fetal membranes separate the extra-amniotic space and fetus. The purpose of the study is to determine if the dendrimers can be selectively used for local intravaginal application to pregnant women without crossing the membranes into the fetus. In the present study, the transport and permeability of PAMAM (poly (amidoamine)) dendrimers, across human fetal membrane (using a side by side diffusion chamber), and its biodistribution (using immunofluorescence) are evaluated ex-vivo. Transport across human fetal membranes (from the maternal side) was evaluated using Fluorescein (FITC), an established transplacental marker (positive control, size approximately 400 Da) and fluorophore-tagged G(4)-PAMAM dendrimers (approximately 16 kDa). The fluorophore-tagged G(4)-PAMAM dendrimers were synthesized and characterized using (1)H NMR, MALDI TOF MS and HPLC analysis. Transfer was measured across the intact fetal membrane (chorioamnion), and the separated chorion and amnion layers. Over a 5 h period, the dendrimer transport across all the three membranes was less than dendrimer (5.8 x 10(-8) cm(2)/s). The biodistribution showed that the dendrimers were largely present in interstitial spaces in the decidual stromal cells and the chorionic trophoblast cells (in 2.5-4 h) and surprisingly, to a smaller extent internalized in nuclei of trophoblast cells and nuclei and cytoplasm of stromal cells. Passive diffusion and paracellular transport appear to be the major route for dendrimer transport. The overall findings further suggest that entry of drugs conjugated to dendrimers would be restricted across the human fetal membranes when administered topically by intravaginal route, suggesting new ways of selectively delivering therapeutics to the mother

  2. Births and deaths including fetal deaths

    Data.gov (United States)

    U.S. Department of Health & Human Services — Access to a variety of United States birth and death files including fetal deaths: Birth Files, 1968-2009; 1995-2005; Fetal death file, 1982-2005; Mortality files,...

  3. Distribution of 131I-labeled recombinant human erythropoietin in maternal and fetal organs following intravenous administration in pregnant rats

    International Nuclear Information System (INIS)

    Yilmaz, O.; Lambrecht, F.Y.; Durkan, K.; Gokmen, N.; Erbayraktar, S.

    2007-01-01

    The aim of the present study was to demonstrate the possible transplacental transmission of 131 I labeled recombinant human erythropoietin ( 131 I-rh-EPO) in pregnant rats and its distribution through maternal and fetal organs. Six Wistar Albino Rats in their pregnancy of 18 days were used 131 I labeled recombinant human erythropoietin (specific activity = 2.4 μCi/IU) was injected into the tail vein of rats. After 30 minutes labeled erythropoietin infusion maternal stomach, kidney, lung, liver, brain and heart as well as fetus were removed. Then, the same organs were removed from each fetus. Measuring weight of maternal and fetal organs as well as placenta were followed by radioactivity count via Cd(Te) detector. 131 I labeled recombinant human erythropoietin was found to be able to pass rat placenta and its distribution order in fetal organs was similar to those of maternal organs. Besides, as measurements were performed closer to cornu uteri, uptakes were decreasing in every fetus and its corresponding placenta. (author)

  4. Radiation absorbed dose to the human fetal thyroid

    International Nuclear Information System (INIS)

    Watson, E.E.

    1992-01-01

    The embryo/fetus is recognized to be particularly susceptible to damage from exposure to radiation. Many advisory groups have studied available information concerning radiation doses and radiation effects with the goal of reducing the risk to the embryo/fetus. Of particular interest are radioactive isotopes of iodine. Radioiodine taken into the body of a pregnant woman presents a possible hazard for the embryo/fetus. The fetal thyroid begins to concentrate iodine at about 13 weeks after conception and continues to do so throughout gestation. At term, the organic iodine concentration in the fetal blood is about 75% of that in the mother's blood. This paper presents a review the models that have been proposed for the calculation of the dose to the fetal thyroid from radioisotopes of iodine taken into the body of the pregnant woman as sodium iodide. A somewhat different model has been proposed, and estimates of the radiation dose to the fetal thyroid calculated from this model are given for each month of pregnancy from 123 I , 124 I , 125 I , and 131 I

  5. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Agneta Månsson-Broberg

    2016-04-01

    Full Text Available The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo.

  6. Human fetal growth is constrained below optimal for perinatal survival

    NARCIS (Netherlands)

    Vasak, B.; Koenen, S. V.; Koster, M. P. H.; Hukkelhoven, C. W. P. M.; Franx, A.; Hanson, M. A.; Visser, GHA

    ObjectiveThe use of fetal growth charts assumes that the optimal size at birth is at the 50(th) birth-weight centile, but interaction between maternal constraints on fetal growth and the risks associated with small and large fetal size at birth may indicate that this assumption is not valid for

  7. Fetal Mesenchymal Stromal Cells Differentiating towards Chondrocytes Acquire a Gene Expression Profile Resembling Human Growth Plate Cartilage

    NARCIS (Netherlands)

    van Gool, S.A.; Emons, J.A.M.; Leijten, Jeroen Christianus Hermanus; Decker, E.; Sticht, C.; van Houwelingen, J.C.; Goeman, J.J.; Kleijburg, C.; Scherjon, S.; Gretz, N.; Wit, J.M.; Rappold, G.; Post, Janine Nicole; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Abstract We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs) differentiating towards chondrocytes as an alternative model for the human growth plate (GP). Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether

  8. 125I-human epidermal growth factor specific binding to placentas and fetal membranes from varoius pregnancy states

    International Nuclear Information System (INIS)

    Hofmann, G.E.; Siddiqi, T.A.; Rao, Ch. V.; Carman, F.R.

    1988-01-01

    Specific binding of 125 I-human epidermal growth factor (hEGF) to homogenates of term human placentas and fetal membranes from normal and appropriate for gestational age (N = 20), intrauterine growth retarded (N = 9), twin (N = 11), White class A/B diabetic (N = 12), and large for gestational age (N = 13) pregnancies was measured. In all pregnancy states, placentas bound approximately four times more 125 I-hEGF than did fetal membranes (P 125 I-hEGF binding to fetal membranes from the various pregnancy states (P 125 I-hEGF specific binding to placentas from intrauterine growth retarded or twin pregnancies was significantly greater compared with placentas from normal and appropriate for gestational age pregnancies (P 125 I-hEGF specific binding did not differ between placentas from intrauterine growth retarded or twin pregnancies (P 125 I-hEGF binding did not vary with fetal sex, maternal race, placental weight, or gestational age between 37 to 42 weeks (P 125 I-hEGF binding increased with increasing infant weight when appropriate for gestational age and large for gestational age infants were included (P<0.05, r = 0.38, N = 32) but not for intrauterine growth retarded, appropriate for gestational age, or large for gestational age infants alone. (author)

  9. Receptors for GRP/bombesin-like peptides in the rat forebrain

    International Nuclear Information System (INIS)

    Wolf, S.S.; Moody, T.W.

    1985-01-01

    Binding sites in the rat forebrain were characterized using ( 125 I-Tyr4)bombesin as a receptor probe. Pharmacology experiments indicate that gastrin releasing peptide (GRP) and the GRP fragments GRP as well as Ac-GRP inhibited radiolabeled (Tyr4)bombesin binding with high affinity. Biochemistry experiments indicated that heat, N-ethyl maleimide or trypsin greatly reduced radiolabeled (Tyr4)bombesin binding. Also, autoradiographic studies indicated that highest grain densities were present in the stria terminalis, periventricular and suprachiasmatic nucleus of the hypothalamus, dorsomedial and rhomboid thalamus, dentate gyrus, hippocampus and medial amygdaloid nucleus. The data suggest that CNS protein receptors, which are discretely distributed in the rat forebrain, may mediate the action of endogenous GRP/bombesin-like peptides

  10. Fetal and perinatal outcomes in type 1 diabetes pregnancy: a randomized study comparing insulin aspart with human insulin in 322 subjects

    DEFF Research Database (Denmark)

    Hod, Moshe; Damm, Peter; Kaaja, Risto

    2008-01-01

    The objective of the study was a comparison of insulin aspart (IAsp) with human insulin (HI) in basal-bolus therapy with neutral protamine Hagedorn for fetal and perinatal outcomes of type 1 diabetes in pregnancy.......The objective of the study was a comparison of insulin aspart (IAsp) with human insulin (HI) in basal-bolus therapy with neutral protamine Hagedorn for fetal and perinatal outcomes of type 1 diabetes in pregnancy....

  11. The human protooncogene product p33pim is expressed during fetal hematopoiesis and in diverse leukemias

    International Nuclear Information System (INIS)

    Amson, R.; Przedborski, S.; Telerman, A.; Sigaux, F.; Flandrin, G.; Givol, D.

    1989-01-01

    The authors measured the human pim-1 protooncogene (PIM) expression during fetal development and in hematopoietic malignancies. The data indicate that during human fetal hematopoiesis the 33-kDa pim product, p33pim, is highly expressed in the liver and the spleen. In contrast, a the adult stage it is only slightly expressed in circulating granulocytes. Out of 70 hematopoietic malignancies analyzed, 51 patients and 19 cell lines, p33pim was overexpressed in ∼ 30% of the samples, particularly in myeloid and lymphoid acute leukemias. This overexpression was unrelated to any stage of cellular differentiation and was not due to gene rearrangement or amplification. These results imply a physiological role of the pim-1 protooncogene during hematopoietic development and a deregulation in various leukemias

  12. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.

    Science.gov (United States)

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V; Field, Bianca; Deutch, Ariel Y; Rayport, Stephen

    2015-12-09

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are

  13. Hypoglycemia and the origin of hypoxia-induced reduction in human fetal growth.

    Directory of Open Access Journals (Sweden)

    Stacy Zamudio

    2010-01-01

    Full Text Available The most well known reproductive consequence of residence at high altitude (HA >2700 m is reduction in fetal growth. Reduced fetoplacental oxygenation is an underlying cause of pregnancy pathologies, including intrauterine growth restriction and preeclampsia, which are more common at HA. Therefore, altitude is a natural experimental model to study the etiology of pregnancy pathophysiologies. We have shown that the proximate cause of decreased fetal growth is not reduced oxygen availability, delivery, or consumption. We therefore asked whether glucose, the primary substrate for fetal growth, might be decreased and/or whether altered fetoplacental glucose metabolism might account for reduced fetal growth at HA.Doppler and ultrasound were used to measure maternal uterine and fetal umbilical blood flows in 69 and 58 residents of 400 vs 3600 m. Arterial and venous blood samples from mother and fetus were collected at elective cesarean delivery and analyzed for glucose, lactate and insulin. Maternal delivery and fetal uptakes for oxygen and glucose were calculated.The maternal arterial - venous glucose concentration difference was greater at HA. However, umbilical venous and arterial glucose concentrations were markedly decreased, resulting in lower glucose delivery at 3600 m. Fetal glucose consumption was reduced by >28%, but strongly correlated with glucose delivery, highlighting the relevance of glucose concentration to fetal uptake. At altitude, fetal lactate levels were increased, insulin concentrations decreased, and the expression of GLUT1 glucose transporter protein in the placental basal membrane was reduced.Our results support that preferential anaerobic consumption of glucose by the placenta at high altitude spares oxygen for fetal use, but limits glucose availability for fetal growth. Thus reduced fetal growth at high altitude is associated with fetal hypoglycemia, hypoinsulinemia and a trend towards lactacidemia. Our data support that

  14. /sup 125/I-human epidermal growth factor specific binding to placentas and fetal membranes from varoius pregnancy states

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, G.E.; Siddiqi, T.A.; Rao, Ch. V.; Carman, F.R.

    1988-01-01

    Specific binding of /sup 125/I-human epidermal growth factor (hEGF) to homogenates of term human placentas and fetal membranes from normal and appropriate for gestational age (N = 20), intrauterine growth retarded (N = 9), twin (N = 11), White class AB diabetic (N = 12), and large for gestational age (N = 13) pregnancies was measured. In all pregnancy states, placentas bound approximately four times more /sup 125/I-hEGF than did fetal membranes (P<0.0001). There was no significant differnce in /sup 125/I-hEGF binding to fetal membranes from the various pregnancy states (P<0.05). /sup 125/I-hEGF specific binding to placentas from intrauterine growth retarded or twin pregnancies was significantly greater compared with placentas from normal and appropriate for gestational age pregnancies (P<0.05). The binding to placentas from pregnancies complicated by White class AB diabetes or large for gestational age infants, on the other hand, was not significantly different from that to placentas from normal and appropriate for gestational age pregnancies. /sup 125/I-hEGF specific binding did not differ between placentas from intrauterine growth retarded or twin pregnancies (P<0.05). Placental and fetal membrane /sup 125/I-hEGF binding did not vary with fetal sex, maternal race, placental weight, or gestational age between 37 to 42 weeks (P<0.05). Placental but not fetal membrane /sup 125/I-hEGF binding increased with increasing infant weight when appropriate for gestational age and large for gestational age infants were included (P<0.05, r = 0.38, N = 32) but not for intrauterine growth retarded, appropriate for gestational age, or large for gestational age infants alone.

  15. TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine.

    Science.gov (United States)

    Vu, Michael T; Du, Guizhi; Bayliss, Douglas A; Horner, Richard L

    2015-10-07

    Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K(+) (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K(+) current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASK(f/f) mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30-50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30-50 Hz activity in ChAT-Cre:TASK(f/f) mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. Attentive states and cognitive function are associated with the generation of γ EEG activity. Basal forebrain

  16. Efficient in vivo electroporation of the postnatal rodent forebrain.

    Directory of Open Access Journals (Sweden)

    Camille Boutin

    Full Text Available Functional gene analysis in vivo represents still a major challenge in biomedical research. Here we present a new method for the efficient introduction of nucleic acids into the postnatal mouse forebrain. We show that intraventricular injection of DNA followed by electroporation induces strong expression of transgenes in radial glia, neuronal precursors and neurons of the olfactory system. We present two proof-of-principle experiments to validate our approach. First, we show that expression of a human isoform of the neural cell adhesion molecule (hNCAM-140 in radial glia cells induces their differentiation into cells showing a neural precursor phenotype. Second, we demonstrate that p21 acts as a cell cycle inhibitor for postnatal neural stem cells. This approach will represent an important tool for future studies of postnatal neurogenesis and of neural development in general.

  17. GLI3 Links Environmental Arsenic Exposure and Human Fetal Growth

    Directory of Open Access Journals (Sweden)

    Emily F. Winterbottom

    2015-06-01

    Full Text Available Although considerable evidence suggests that in utero arsenic exposure affects children's health, these data are mainly from areas of the world where groundwater arsenic levels far exceed the World Health Organization limit of 10 μg/L. We, and others, have found that more common levels of in utero arsenic exposure may also impact children's health. However, the underlying molecular mechanisms are poorly understood. To address this issue, we analyzed the expression of key developmental genes in fetal placenta in a birth cohort of women using unregulated water supplies in a US region with elevated groundwater arsenic. We identified several genes whose expression associated with maternal arsenic exposure in a fetal sex-specific manner. In particular, expression of the HEDGEHOG pathway component, GLI3, in female placentae was both negatively associated with arsenic exposure and positively associated with infant birth weight. This suggests that modulation of GLI3 in the fetal placenta, and perhaps in other fetal tissues, contributes to arsenic's detrimental effects on fetal growth. We showed previously that arsenic-exposed NIH3T3 cells have reduced GLI3 repressor protein. Together, these studies identify GLI3 as a key signaling node that is affected by arsenic, mediating a subset of its effects on developmental signaling and fetal health.

  18. Increased oxidative stress in human fetal membranes overlying the cervix from term non-labouring and post labour deliveries.

    Science.gov (United States)

    Chai, M; Barker, G; Menon, R; Lappas, M

    2012-08-01

    Enzymatic breakdown of the collagen-rich extracellular matrix (ECM) that connects the amnion and chorion layers of the fetal membranes is one of the key events leading to rupture of membranes. Oxidant stress caused by increased formation of reactive oxygen species and/or reduced antioxidant capacity may predispose to membrane rupture, a major cause of preterm birth. The aim of this study was to determine the effect of human labour and supracervical (SC) apposition on antioxidant enzymes and 8-isoprostane (a marker of lipid peroxidation). To determine the effect of human labour on oxidative stress status, fetal membranes from the SC site (SCS) were collected from women at term Caesarean section (no labour), and from the site of membrane rupture (SOR) after spontaneous labour onset and delivery (post labour). To determine the effect of SC apposition on oxidative stress status, amnion was collected from the SCS and a distal site (DS) in women at term Caesarean section in the absence of labour. The release of 8-isoprostane was significantly higher in amnion from the SCS compared to DS, and in fetal membranes from the SOR compared to the SCS. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity were lower in amnion from the SC compared to DS. SOD gene expression and enzyme activity were lower in fetal membranes after labour. There was no difference in expression or activity in catalase, GPx and glutathione reductase (GSR) between no labour and post labour fetal membranes. In primary amnion cells, SOD supplementation significantly augmented IL-1β induced MMP-9 expression and activity. In summary, non-labouring SC fetal membranes are characterised by reduced antioxidant enzyme activity when compared to distal membranes, and, as such, may be more susceptible to oxidative damage and thus membrane rupture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Epigenetic regulation and fetal programming.

    Science.gov (United States)

    Gicquel, Christine; El-Osta, Assam; Le Bouc, Yves

    2008-02-01

    Fetal programming encompasses the role of developmental plasticity in response to environmental and nutritional signals during early life and its potential adverse consequences (risk of cardiovascular, metabolic and behavioural diseases) in later life. The first studies in this field highlighted an association between poor fetal growth and chronic adult diseases. However, environmental signals during early life may lead to adverse long-term effects independently of obvious effects on fetal growth. Adverse long-term effects reflect a mismatch between early (fetal and neonatal) environmental conditions and the conditions that the individual will confront later in life. The mechanisms underlying this risk remain unclear. However, experimental data in rodents and recent observations in humans suggest that epigenetic changes in regulatory genes and growth-related genes play a significant role in fetal programming. Improvements in our understanding of the biochemical and molecular mechanisms at play in fetal programming would make it possible to identify biomarkers for detecting infants at high risk of adult-onset diseases. Such improvements should also lead to the development of preventive and therapeutic strategies.

  20. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone.

    Science.gov (United States)

    Pearson, Helen; Britt, Rodney D; Pabelick, Christine M; Prakash, Y S; Amrani, Yassine; Pandya, Hitesh C

    2015-12-01

    Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Cultured fetal human ASM cells stimulated with TNF-α (0-20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases.

  1. Isolation and characterization of neural stem cells from human fetal striatum

    International Nuclear Information System (INIS)

    Li Xiaoxia; Xu Jinchong; Bai Yun; Wang Xuan; Dai Xin; Liu Yinan; Zhang Jun; Zou Junhua; Shen Li; Li Lingsong

    2005-01-01

    This paper described that neural stem cells (hsNSCs) were isolated and expanded rapidly from human fetal striatum in adherent culture. The population was serum- and growth factor-dependent and expressed neural stem cell markers. They were capable of multi-differentiation into neurons, astrocytes, and oligodendrocytes. When plated in the dopaminergic neuron inducing medium, human striatum neural stem cells could differentiate into tyrosine hydroxylase positive neurons. hsNSCs were morphologically homogeneous and possessed high proliferation ability. The population doubled every 44.28 h and until now it has divided for more than 82 generations in vitro. Normal human diploid karyotype was unchanged throughout the in vitro culture period. Together, this study has exploited a method for continuous and rapid expansion of human neural stem cells as pure population, which maintained the capacity to generate almost fifty percent neurons. The availability of such cells may hold great interest for basic and applied neuroscience

  2. Prosomeric map of the lamprey forebrain based on calretinin immunocytochemistry, Nissl stain, and ancillary markers.

    Science.gov (United States)

    Pombal, M A; Puelles, L

    1999-11-22

    The structural organization of the lamprey extratelencephalic forebrain is re-examined from the perspective of the prosomeric segmental paradigm. The question asked was whether the prosomeric forebrain model used for gnathostomes is of material advantage for interpreting subdivisions in the lamprey forebrain. To this aim, the main longitudinal and transverse landmarks recognized by the prosomeric model in other vertebrates were identified in Nissl-stained lamprey material. Lines of cytoarchitectural discontinuity and contours of migrated neuronal groups were mapped in a two-dimensional sagittal representation and were also classified according to their radial position. Immunocytochemical mapping of calretinin expression in adjacent sections served to define particular structural units better, in particular, the dorsal thalamus. These data were complemented by numerous other chemoarchitectonic observations obtained with ancillary markers, which identified additional specific formations, subdivisions, or boundaries. Emphasis was placed on studying whether such chemically defined neuronal groups showed boundaries aligned with the postulated inter- or intraprosomeric boundaries. The course of diverse axonal tracts was studied also with regard to their prosomeric topography. This analysis showed that the full prosomeric model applies straightforwardly to the lamprey forebrain. This finding implies that a common segmental and longitudinal organization of the neural tube may be primitive for all vertebrates. Interesting novel aspects appear in the interpretation of the lamprey pretectum, the dorsal and ventral thalami, and the hypothalamus. The topologic continuity of the prosomeric forebrain regions with evaginated or non-evaginated portions of the telencephalon was also examined. Copyright 1999 Wiley-Liss, Inc.

  3. Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development.

    Directory of Open Access Journals (Sweden)

    Keith M Godfrey

    Full Text Available Among primates, human neonates have the largest brains but also the highest proportion of body fat. If placental nutrient supply is limited, the fetus faces a dilemma: should resources be allocated to brain growth, or to fat deposition for use as a potential postnatal energy reserve? We hypothesised that resolving this dilemma operates at the level of umbilical blood distribution entering the fetal liver. In 381 uncomplicated pregnancies in third trimester, we measured blood flow perfusing the fetal liver, or bypassing it via the ductus venosus to supply the brain and heart using ultrasound techniques. Across the range of fetal growth and independent of the mother's adiposity and parity, greater liver blood flow was associated with greater offspring fat mass measured by dual-energy X-ray absorptiometry, both in the infant at birth (r = 0.43, P<0.001 and at age 4 years (r = 0.16, P = 0.02. In contrast, smaller placentas less able to meet fetal demand for essential nutrients were associated with a brain-sparing flow pattern (r = 0.17, p = 0.02. This flow pattern was also associated with a higher degree of shunting through ductus venosus (P = 0.04. We propose that humans evolved a developmental strategy to prioritize nutrient allocation for prenatal fat deposition when the supply of conditionally essential nutrients requiring hepatic inter-conversion is limited, switching resource allocation to favour the brain if the supply of essential nutrients is limited. Facilitated placental transfer mechanisms for glucose and other nutrients evolved in environments less affluent than those now prevalent in developed populations, and we propose that in circumstances of maternal adiposity and nutrient excess these mechanisms now also lead to prenatal fat deposition. Prenatal developmental influences play important roles in the human propensity to deposit fat.

  4. NCAM deficiency in the mouse forebrain impairs innate and learned avoidance behaviours.

    Science.gov (United States)

    Brandewiede, J; Stork, O; Schachner, M

    2014-06-01

    The neural cell adhesion molecule (NCAM) has been implicated in the development and plasticity of neural circuits and the control of hippocampus- and amygdala-dependent learning and behaviour. Previous studies in constitutive NCAM null mutants identified emotional behaviour deficits related to disturbances of hippocampal and amygdala functions. Here, we studied these behaviours in mice conditionally deficient in NCAM in the postmigratory forebrain neurons. We report deficits in both innate and learned avoidance behaviours, as observed in elevated plus maze and passive avoidance tasks. In contrast, general locomotor activity, trait anxiety or neophobia were unaffected by the mutation. Altered avoidance behaviour of the conditional NCAM mutants was associated with a deficit in serotonergic signalling, as indicated by their reduced responsiveness to (±)-8-hydroxy-2-(dipropylamino)-tetralin-induced hypothermia. Another serotonin-dependent behaviour, namely intermale aggression that is massively increased in constitutively NCAM-deficient mice, was not affected in the forebrain-specific mutants. Our data suggest that genetically or environmentally induced changes of NCAM expression in the late postnatal and mature forebrain determine avoidance behaviour and serotonin (5-HT)1A receptor signalling. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  5. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.

    Science.gov (United States)

    Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl

    2016-07-15

    A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The Navigation Guide—Evidence-Based Medicine Meets Environmental Health: Integration of Animal and Human Evidence for PFOA Effects on Fetal Growth

    Science.gov (United States)

    Koustas, Erica; Sutton, Patrice; Johnson, Paula I.; Atchley, Dylan S.; Sen, Saunak; Robinson, Karen A.; Axelrad, Daniel A.; Woodruff, Tracey J.

    2014-01-01

    Background: The Navigation Guide is a novel systematic review method to synthesize scientific evidence and reach strength of evidence conclusions for environmental health decision making. Objective: Our aim was to integrate scientific findings from human and nonhuman studies to determine the overall strength of evidence for the question “Does developmental exposure to perfluorooctanoic acid (PFOA) affect fetal growth in humans?” Methods: We developed and applied prespecified criteria to systematically and transparently a) rate the quality of the scientific evidence as “high,” “moderate,” or “low”; b) rate the strength of the human and nonhuman evidence separately as “sufficient,” “limited,” “moderate,” or “evidence of lack of toxicity”; and c) integrate the strength of the human and nonhuman evidence ratings into a strength of the evidence conclusion. Results: We identified 18 epidemiology studies and 21 animal toxicology studies relevant to our study question. We rated both the human and nonhuman mammalian evidence as “moderate” quality and “sufficient” strength. Integration of these evidence ratings produced a final strength of evidence rating in which review authors concluded that PFOA is “known to be toxic” to human reproduction and development based on sufficient evidence of decreased fetal growth in both human and nonhuman mammalian species. Conclusion: We concluded that developmental exposure to PFOA adversely affects human health based on sufficient evidence of decreased fetal growth in both human and nonhuman mammalian species. The results of this case study demonstrate the application of a systematic and transparent methodology, via the Navigation Guide, for reaching strength of evidence conclusions in environmental health. Citation: Lam J, Koustas E, Sutton P, Johnson PI, Atchley DS, Sen S, Robinson KA, Axelrad DA, Woodruff TJ. 2014. The Navigation Guide—evidence-based medicine meets environmental health

  7. Activation of AMPK in human fetal membranes alleviates infection-induced expression of pro-inflammatory and pro-labour mediators.

    Science.gov (United States)

    Lim, R; Barker, G; Lappas, M

    2015-04-01

    In non-gestational tissues, the activation of adenosine monophosphate (AMP)-activated kinase (AMPK) is associated with potent anti-inflammatory actions. Infection and/or inflammation, by stimulating pro-inflammatory cytokines and matrix metalloproteinase (MMP)-9, play a central role in the rupture of fetal membranes. However, no studies have examined the role of AMPK in human labour. Fetal membranes, from term and preterm, were obtained from non-labouring and labouring women, and after preterm pre-labour rupture of membranes (PPROM). AMPK activity was assessed by Western blotting of phosphorylated AMPK expression. To determine the effect of AMPK activators on pro-inflammatory cytokines, fetal membranes were pre-treated with AMPK activators then stimulated with bacterial products LPS and flagellin or viral dsDNA analogue poly(I:C). Primary amnion cells were used to determine the effect of AMPK activators on IL-1β-stimulated MMP-9 expression. AMPK activity was decreased with term labour. There was no effect of preterm labour. AMPK activity was also decreased in preterm fetal membranes, in the absence of labour, with PROM compared to intact membranes. AMPK activators AICAR, phenformin and A769662 significantly decreased IL-6 and IL-8 stimulated by LPS, flagellin and poly(I:C). Primary amnion cells treated with AMPK activators significantly decreased IL-1β-induced MMP-9 expression. The decrease in AMPK activity in fetal membranes after spontaneous term labour and PPROM indicates an anti-inflammatory role for AMPK in human labour and delivery. The use of AMPK activators as possible therapeutics for threatened preterm labour would be an exciting future avenue of research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Decreased levels of free D-aspartic acid in the forebrain of serine racemase (Srr) knock-out mice.

    Science.gov (United States)

    Horio, Mao; Ishima, Tamaki; Fujita, Yuko; Inoue, Ran; Mori, Hisashi; Hashimoto, Kenji

    2013-05-01

    d-Serine, an endogenous co-agonist of the N-methyl-d-aspartate (NMDA) receptor is synthesized from l-serine by serine racemase (SRR). A previous study of Srr knockout (Srr-KO) mice showed that levels of d-serine in forebrain regions, such as frontal cortex, hippocampus, and striatum, but not cerebellum, of mutant mice are significantly lower than those of wild-type (WT) mice, suggesting that SRR is responsible for d-serine production in the forebrain. In this study, we attempted to determine whether SRR affects the level of other amino acids in brain tissue. We found that tissue levels of d-aspartic acid in the forebrains (frontal cortex, hippocampus and striatum) of Srr-KO mice were significantly lower than in WT mice, whereas levels of d-aspartic acid in the cerebellum were not altered. Levels of d-alanine, l-alanine, l-aspartic acid, taurine, asparagine, arginine, threonine, γ-amino butyric acid (GABA) and methionine, remained the same in frontal cortex, hippocampus, striatum and cerebellum of WT and mutant mice. Furthermore, no differences in d-aspartate oxidase (DDO) activity were detected in the forebrains of WT and Srr-KO mice. These results suggest that SRR and/or d-serine may be involved in the production of d-aspartic acid in mouse forebrains, although further detailed studies will be necessary to confirm this finding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Studies in Fetal Behavior: Revisited, Renewed, and Reimagined

    Science.gov (United States)

    DiPietro, Janet A.; Costigan, Kathleen A.; Voegtline, Kristin M.

    2016-01-01

    Among the earliest volumes of this Monograph series was a report by Lester Sontag and colleagues, of the esteemed Fels Institute, on the heart rate of the human fetus as an expression of the developing nervous system. Here, some 75 years later, we commemorate this work and provide historical and contemporary context on knowledge regarding fetal development, as well as results from our own research. These are based on synchronized monitoring of maternal and fetal parameters assessed between 24 and 36 weeks gestation on 740 maternal-fetal pairs compiled from eight separate longitudinal studies, which commenced in the early 1990s. Data include maternal heart rate, respiratory sinus arrhythmia, and electrodermal activity and fetal heart rate, motor activity, and their integration. Hierarchical linear modeling of developmental trajectories reveals that the fetus develops in predictable ways consistent with advancing parasympathetic regulation. Findings also include: within-fetus stability (i.e., preservation of rank ordering over time) for heart rate, motor, and coupling measures; a transitional period of decelerating development near 30 weeks gestation; sex differences in fetal heart rate measures but not in most fetal motor activity measures; modest correspondence in fetal neurodevelopment among siblings as compared to unrelated fetuses; and deviations from normative fetal development in fetuses affected by intrauterine growth restriction and other conditions. Maternal parameters also change during this period of gestation and there is evidence that fetal sex and individual variation in fetal neurobehavior influence maternal physiological processes and the local intrauterine context. Results are discussed within the framework of neuromaturation, the emergence of individual differences, and the bidirectional nature of the maternal-fetal relationship. We pose a number of open questions for future research. Although the human fetus remains just out of reach, new

  10. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    Full Text Available In guiding hES cell technology toward the clinic, one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs we isolated human fetal liver stromal cells (hFLSCs from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (about 100 days. Basic fibroblast growth factor (bFGF is known to play an important role in promoting self-renewal of human embryonic stem (hES cells. So, we established transgenic hFLSCs that stably express bFGF by lentiviral vectors. These transgenic human feeder cells--bFGF-hFLSCs maintained the properties of H9 hES cells without supplementing with any exogenous growth factors. H9 hES cells culturing under these conditions maintained all hES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. Our results demonstrated that bFGF-hFLSCs feeder cells were central to establishing the signaling network among bFGF, insulin-like growth factor 2 (IGF-2, and transforming growth factor β (TGF-β, thereby providing the framework in which hES cells were instructed to self-renew or to differentiate. We also found that the conditioned medium of bFGF-hFLSCs could maintain the H9 hES cells under feeder-free conditions without supplementing with bFGF. Taken together, bFGF-hFLSCs had great potential as feeders for maintaining pluripotent hES cell lines more safely and economically.

  11. Optogenetic fMRI and electrophysiological identification of region-specific connectivity between the cerebellar cortex and forebrain.

    Science.gov (United States)

    Choe, Katrina Y; Sanchez, Carlos F; Harris, Neil G; Otis, Thomas S; Mathews, Paul J

    2018-06-01

    Complex animal behavior is produced by dynamic interactions between discrete regions of the brain. As such, defining functional connections between brain regions is critical in gaining a full understanding of how the brain generates behavior. Evidence suggests that discrete regions of the cerebellar cortex functionally project to the forebrain, mediating long-range communication potentially important in motor and non-motor behaviors. However, the connectivity map remains largely incomplete owing to the challenge of driving both reliable and selective output from the cerebellar cortex, as well as the need for methods to detect region specific activation across the entire forebrain. Here we utilize a paired optogenetic and fMRI (ofMRI) approach to elucidate the downstream forebrain regions modulated by activating a region of the cerebellum that induces stereotypical, ipsilateral forelimb movements. We demonstrate with ofMRI, that activating this forelimb motor region of the cerebellar cortex results in functional activation of a variety of forebrain and midbrain areas of the brain, including the hippocampus and primary motor, retrosplenial and anterior cingulate cortices. We further validate these findings using optogenetic stimulation paired with multi-electrode array recordings and post-hoc staining for molecular markers of activated neurons (i.e. c-Fos). Together, these findings demonstrate that a single discrete region of the cerebellar cortex is capable of influencing motor output and the activity of a number of downstream forebrain as well as midbrain regions thought to be involved in different aspects of behavior. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Recognizing different tissues in human fetal femur cartilage by label-free Raman microspectroscopy

    Science.gov (United States)

    Kunstar, Aliz; Leijten, Jeroen; van Leuveren, Stefan; Hilderink, Janneke; Otto, Cees; van Blitterswijk, Clemens A.; Karperien, Marcel; van Apeldoorn, Aart A.

    2012-11-01

    Traditionally, the composition of bone and cartilage is determined by standard histological methods. We used Raman microscopy, which provides a molecular "fingerprint" of the investigated sample, to detect differences between the zones in human fetal femur cartilage without the need for additional staining or labeling. Raman area scans were made from the (pre)articular cartilage, resting, proliferative, and hypertrophic zones of growth plate and endochondral bone within human fetal femora. Multivariate data analysis was performed on Raman spectral datasets to construct cluster images with corresponding cluster averages. Cluster analysis resulted in detection of individual chondrocyte spectra that could be separated from cartilage extracellular matrix (ECM) spectra and was verified by comparing cluster images with intensity-based Raman images for the deoxyribonucleic acid/ribonucleic acid (DNA/RNA) band. Specific dendrograms were created using Ward's clustering method, and principal component analysis (PCA) was performed with the separated and averaged Raman spectra of cells and ECM of all measured zones. Overall (dis)similarities between measured zones were effectively visualized on the dendrograms and main spectral differences were revealed by PCA allowing for label-free detection of individual cartilaginous zones and for label-free evaluation of proper cartilaginous matrix formation for future tissue engineering and clinical purposes.

  13. Low vascularization of the nephrogenic zone of the fetal kidney suggests a major role for hypoxia in human nephrogenesis.

    Science.gov (United States)

    Gerosa, C; Fanni, D; Faa, A; Van Eyken, P; Ravarino, A; Fanos, V; Faa, G

    2017-09-01

    CD31 reactivity is generally utilized as a marker of endothelial cells. CD31 immunoreactivity in the developing human kidney revealed that fetal glomerular capillary endothelial cells change their immunohistochemical phenotype during maturation. The aim of this study was to analyze CD31 reactivity in the fetal human kidney in the different stages of intrauterine development: We observed different distribution of CD31-reactive vascular progenitors in the different areas of the developing kidney. In particular, the nephrogenic zone and the renal capsule were characterized by a scarcity of CD31-reactive cells at all gestational ages. These data suggest the hypothesis that nephrogenesis does not need high oxygen levels and confirms a major role of hypoxia in nephrogenesis.

  14. 21 CFR 864.7455 - Fetal hemoglobin assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal hemoglobin assay. 864.7455 Section 864.7455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7455 Fetal hemoglobin...

  15. Β-amyloid 1-42 oligomers impair function of human embryonic stem cell-derived forebrain cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Linn Wicklund

    Full Text Available Cognitive impairment in Alzheimer's disease (AD patients is associated with a decline in the levels of growth factors, impairment of axonal transport and marked degeneration of basal forebrain cholinergic neurons (BFCNs. Neurogenesis persists in the adult human brain, and the stimulation of regenerative processes in the CNS is an attractive prospect for neuroreplacement therapy in neurodegenerative diseases such as AD. Currently, it is still not clear how the pathophysiological environment in the AD brain affects stem cell biology. Previous studies investigating the effects of the β-amyloid (Aβ peptide on neurogenesis have been inconclusive, since both neurogenic and neurotoxic effects on progenitor cell populations have been reported. In this study, we treated pluripotent human embryonic stem (hES cells with nerve growth factor (NGF as well as with fibrillar and oligomeric Aβ1-40 and Aβ1-42 (nM-µM concentrations and thereafter studied the differentiation in vitro during 28-35 days. The process applied real time quantitative PCR, immunocytochemistry as well as functional studies of intracellular calcium signaling. Treatment with NGF promoted the differentiation into functionally mature BFCNs. In comparison to untreated cells, oligomeric Aβ1-40 increased the number of functional neurons, whereas oligomeric Aβ1-42 suppressed the number of functional neurons. Interestingly, oligomeric Aβ exposure did not influence the number of hES cell-derived neurons compared with untreated cells, while in contrast fibrillar Aβ1-40 and Aβ1-42 induced gliogenesis. These findings indicate that Aβ1-42 oligomers may impair the function of stem cell-derived neurons. We propose that it may be possible for future AD therapies to promote the maturation of functional stem cell-derived neurons by altering the brain microenvironment with trophic support and by targeting different aggregation forms of Aβ.

  16. Anatomical relationships between testis and epididymis during the fetal period in humans (10-36 weeks postconception)

    NARCIS (Netherlands)

    Favorito, LA; Sampaio, FJB

    1998-01-01

    Objective: To determine the anatomy of the epididymis and its relationship with the testis during the fetal period in normal individuals. Methods: We studied bilaterally 146 testes and epididymides taken from 73 normal fresh human fetuses ranging in age from 10 to 36 weeks postconception. The

  17. Effects of environmental Bisphenol A exposures on germ cell development and Leydig cell function in the human fetal testis.

    Directory of Open Access Journals (Sweden)

    Soria Eladak

    Full Text Available Using an organotypic culture system termed human Fetal Testis Assay (hFeTA we previously showed that 0.01 μM BPA decreases basal, but not LH-stimulated, testosterone secreted by the first trimester human fetal testis. The present study was conducted to determine the potential for a long-term antiandrogenic effect of BPA using a xenograft model, and also to study the effect of BPA on germ cell development using both the hFETA and xenograft models.Using the hFeTA system, first trimester testes were cultured for 3 days with 0.01 to 10 μM BPA. For xenografts, adult castrate male nude mice were injected with hCG and grafted with first trimester testes. Host mice received 10 μM BPA (~ 500 μg/kg/day in their drinking water for 5 weeks. Plasma levels of total and unconjugated BPA were 0.10 μM and 0.038 μM respectively. Mice grafted with second trimester testes received 0.5 and 50 μg/kg/day BPA by oral gavage for 5 weeks.With first trimester human testes, using the hFeTA model, 10 μM BPA increased germ cell apoptosis. In xenografts, germ cell density was also reduced by BPA exposure. Importantly, BPA exposure significantly decreased the percentage of germ cells expressing the pluripotency marker AP-2γ, whilst the percentage of those expressing the pre-spermatogonial marker MAGE-A4 significantly increased. BPA exposure did not affect hCG-stimulated androgen production in first and second trimester xenografts as evaluated by both plasma testosterone level and seminal vesicle weight in host mice.Exposure to BPA at environmentally relevant concentrations impairs germ cell development in first trimester human fetal testis, whilst gonadotrophin-stimulated testosterone production was unaffected in both first and second trimester testis. Studies using first trimester human fetal testis demonstrate the complementarity of the FeTA and xenograft models for determining the respective short-term and long term effects of environmental exposures.

  18. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation?

    Science.gov (United States)

    Burnouf, Thierry; Strunk, Dirk; Koh, Mickey B C; Schallmoser, Katharina

    2016-01-01

    The essential physiological role of platelets in wound healing and tissue repair builds the rationale for the use of human platelet derivatives in regenerative medicine. Abundant growth factors and cytokines stored in platelet granules can be naturally released by thrombin activation and clotting or artificially by freeze/thaw-mediated platelet lysis, sonication or chemical treatment. Human platelet lysate prepared by the various release strategies has been established as a suitable alternative to fetal bovine serum as culture medium supplement, enabling efficient propagation of human cells under animal serum-free conditions for a multiplicity of applications in advanced somatic cell therapy and tissue engineering. The rapidly increasing number of studies using platelet derived products for inducing human cell proliferation and differentiation has also uncovered a considerable variability of human platelet lysate preparations which limits comparability of results. The main variations discussed herein encompass aspects of donor selection, preparation of the starting material, the possibility for pooling in plasma or additive solution, the implementation of pathogen inactivation and consideration of ABO blood groups, all of which can influence applicability. This review outlines the current knowledge about human platelet lysate as a powerful additive for human cell propagation and highlights its role as a prevailing supplement for human cell culture capable to replace animal serum in a growing spectrum of applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The Navigation Guide - evidence-based medicine meets environmental health: integration of animal and human evidence for PFOA effects on fetal growth.

    Science.gov (United States)

    Lam, Juleen; Koustas, Erica; Sutton, Patrice; Johnson, Paula I; Atchley, Dylan S; Sen, Saunak; Robinson, Karen A; Axelrad, Daniel A; Woodruff, Tracey J

    2014-10-01

    The Navigation Guide is a novel systematic review method to synthesize scientific evidence and reach strength of evidence conclusions for environmental health decision making. Our aim was to integrate scientific findings from human and nonhuman studies to determine the overall strength of evidence for the question "Does developmental exposure to perfluorooctanoic acid (PFOA) affect fetal growth in humans?" We developed and applied prespecified criteria to systematically and transparently a) rate the quality of the scientific evidence as "high," "moderate," or "low"; b) rate the strength of the human and nonhuman evidence separately as "sufficient," "limited," "moderate," or "evidence of lack of toxicity"; and c) integrate the strength of the human and nonhuman evidence ratings into a strength of the evidence conclusion. We identified 18 epidemiology studies and 21 animal toxicology studies relevant to our study question. We rated both the human and nonhuman mammalian evidence as "moderate" quality and "sufficient" strength. Integration of these evidence ratings produced a final strength of evidence rating in which review authors concluded that PFOA is "known to be toxic" to human reproduction and development based on sufficient evidence of decreased fetal growth in both human and nonhuman mammalian species. We concluded that developmental exposure to PFOA adversely affects human health based on sufficient evidence of decreased fetal growth in both human and nonhuman mammalian species. The results of this case study demonstrate the application of a systematic and transparent methodology, via the Navigation Guide, for reaching strength of evidence conclusions in environmental health.

  20. Morphometric Studies Of The Cerebellum And Forebrain Of The ...

    African Journals Online (AJOL)

    Morphometric studies were undertaken using the brains of six African giant rats. The mean of weights and lengths (tip of the olfactory bulb to the caudal border of the cerebellum) were observed tobe 4.88 0.183g and 4.40 0.193g, respectively. Similarly, the mean weight and length of the cerebellum and the forebrain ...

  1. Towards a new era in fetal medicine in the Nordic countries

    DEFF Research Database (Denmark)

    Sitras, Vasilis; Brodszki, Jana; Carlsson, Ylva

    2016-01-01

    Fetal medicine is a subspecialty of obstetrics investigating the development, growth and disease of the human fetus. The advances in fetal imaging (ultrasonography, MRI) and molecular diagnostic techniques, together with the possibility of intervention in utero, make fetal medicine an important, ...

  2. Development of steroid signaling pathways during primordial follicle formation in the human fetal ovary.

    Science.gov (United States)

    Fowler, Paul A; Anderson, Richard A; Saunders, Philippa T; Kinnell, Hazel; Mason, J Ian; Evans, Dean B; Bhattacharya, Siladitya; Flannigan, Samantha; Franks, Stephen; Monteiro, Ana; O'Shaughnessy, Peter J

    2011-06-01

    Ovarian primordial follicle formation is critical for subsequent human female fertility. It is likely that steroid, and especially estrogen, signaling is required for this process, but details of the pathways involved are currently lacking. The aim was to identify and characterize key members of the steroid-signaling pathway expressed in the second trimester human fetal ovary. We conducted an observational study of the female fetus, quantifying and localizing steroid-signaling pathway members. The study was conducted at the Universities of Aberdeen, Edinburgh, and Glasgow. Ovaries were collected from 43 morphologically normal human female fetuses from women undergoing elective termination of second trimester pregnancies. We measured mRNA transcript levels and immunolocalized key steroidogenic enzymes and steroid receptors, including those encoded by ESR2, AR, and CYP19A1. Levels of mRNA encoding the steroidogenic apparatus and steroid receptors increased across the second trimester. CYP19A1 transcript increased 4.7-fold during this period with intense immunostaining for CYP19A detected in pregranulosa cells around primordial follicles and somatic cells around oocyte nests. ESR2 was localized primarily to germ cells, but androgen receptor was exclusively expressed in somatic cells. CYP17A1 and HSD3B2 were also localized to oocytes, whereas CYP11A1 was detected in oocytes and some pregranulosa cells. The human fetal ovary expresses the machinery to produce and detect multiple steroid signaling pathways, including estrogenic signaling, with the oocyte acting as a key component. This study provides a step-change in our understanding of local dynamics of steroid hormone signaling during the key period of human primordial follicle formation.

  3. Fetal hyperglycemia changes human preadipocyte function in adult life

    DEFF Research Database (Denmark)

    Hansen, Ninna Schiøler; Strasko, Klaudia Stanislawa; Hjort, Line

    2017-01-01

    Context: Offspring of women with gestational diabetes (O-GDM) or type 1 diabetes mellitus (O-T1DM) have been exposed to hyperglycemia in utero and have an increased risk of developing metabolic disease in adulthood. Design: In total, we recruited 206 adult offspring comprising the two fetal...... acid supply. Conclusions: Taken together, these findings show that intrinsic epigenetic and functional changes exist in preadipocyte cultures from individuals exposed to fetal hyperglycemia who are at increased risk of developing metabolic disease....

  4. MSCs can be differentially isolated from maternal, middle and fetal segments of the human umbilical cord.

    Science.gov (United States)

    Lim, Jezamine; Razi, Zainul Rashid Mohamad; Law, Jiaxian; Nawi, Azmawati Mohammed; Idrus, Ruszymah Binti Haji; Ng, Min Hwei

    2016-12-01

    Human Wharton's jelly-derived mesenchymal stromal cells (hWJMSCs) are possibly the most suitable allogeneic cell source for stromal cell therapy and tissue engineering applications because of their hypo-immunogenic and non-tumorigenic properties, easy availability and minimal ethical concerns. Furthermore, hWJMSCs possess unique properties of both adult mesenchymal stromal cells and embryonic stromal cells. The human umbilical cord (UC) is approximately 50-60 cm long and the existing studies in the literature have not provided information on which segment of the UC was studied. In this study, hWJMSCs derived from three anatomical segments of the UC are compared. Three segments of the whole UC, each 3 cm in length, were identified anatomically as the maternal, middle and fetal segments. The hWJMSCs from the different segments were analyzed via trypan blue exclusion assay to determine the growth kinetics and cell viability, flow cytometry for immunophenotyping and immunofluorescence and reverse transcriptase polymerase chain reaction (RT-PCR) for expression of stromal cell transcriptional factors. Furthermore, the trilineage differentiation potential (osteogenic, adipogenic and chondrogenic) of these cells was also assessed. hWJMSCs isolated from the maternal and fetal segments displayed greater viability and possessed a significantly higher proliferation rate compared with cells from the middle segment. Immunophenotyping revealed that hWJMSCs derived from all three segments expressed the MSC markers CD105, CD73, CD90, CD44, CD13 and CD29, as well as HLA-ABC and HLA-DR, but were negative for hematopoietic markers CD14, CD34 and CD45. Analysis of the embryonic markers showed that all three segments expressed Nanog and Oct 3/4, but only the maternal and fetal segments expressed SSEA 4 and TRA-160. Cells from all three segments were able to differentiate into chondrogenic, osteogenic and adipogenic lineages with the middle segments showing much lower differentiation

  5. Congenital heart block maternal sera autoantibodies target an extracellular epitope on the α1G T-type calcium channel in human fetal hearts.

    Directory of Open Access Journals (Sweden)

    Linn S Strandberg

    Full Text Available Congenital heart block (CHB is a transplacentally acquired autoimmune disease associated with anti-Ro/SSA and anti-La/SSB maternal autoantibodies and is characterized primarily by atrioventricular (AV block of the fetal heart. This study aims to investigate whether the T-type calcium channel subunit α1G may be a fetal target of maternal sera autoantibodies in CHB.We demonstrate differential mRNA expression of the T-type calcium channel CACNA1G (α1G gene in the AV junction of human fetal hearts compared to the apex (18-22.6 weeks gestation. Using human fetal hearts (20-22 wks gestation, our immunoprecipitation (IP, Western blot analysis and immunofluorescence (IF staining results, taken together, demonstrate accessibility of the α1G epitope on the surfaces of cardiomyocytes as well as reactivity of maternal serum from CHB affected pregnancies to the α1G protein. By ELISA we demonstrated maternal sera reactivity to α1G was significantly higher in CHB maternal sera compared to controls, and reactivity was epitope mapped to a peptide designated as p305 (corresponding to aa305-319 of the extracellular loop linking transmembrane segments S5-S6 in α1G repeat I. Maternal sera from CHB affected pregnancies also reacted more weakly to the homologous region (7/15 amino acids conserved of the α1H channel. Electrophysiology experiments with single-cell patch-clamp also demonstrated effects of CHB maternal sera on T-type current in mouse sinoatrial node (SAN cells.Taken together, these results indicate that CHB maternal sera antibodies readily target an extracellular epitope of α1G T-type calcium channels in human fetal cardiomyocytes. CHB maternal sera also show reactivity for α1H suggesting that autoantibodies can target multiple fetal targets.

  6. Rab11 family expression in the human placenta: Localization at the maternal-fetal interface

    Science.gov (United States)

    Artemiuk, Patrycja A.; Hanscom, Sara R.; Lindsay, Andrew J.; Wuebbolt, Danielle; Breathnach, Fionnuala M.; Tully, Elizabeth C.; Khan, Amir R.; McCaffrey, Mary W.

    2017-01-01

    Rab proteins are a family of small GTPases involved in a variety of cellular processes. The Rab11 subfamily in particular directs key steps of intracellular functions involving vesicle trafficking of the endosomal recycling pathway. This Rab subfamily works through a series of effector proteins including the Rab11-FIPs (Rab11 Family-Interacting Proteins). While the Rab11 subfamily has been well characterized at the cellular level, its function within human organ systems is still being explored. In an effort to further study these proteins, we conducted a preliminary investigation of a subgroup of endosomal Rab proteins in a range of human cell lines by Western blotting. The results from this analysis indicated that Rab11a, Rab11c(Rab25) and Rab14 were expressed in a wide range of cell lines, including the human placental trophoblastic BeWo cell line. These findings encouraged us to further analyse the localization of these Rabs and their common effector protein, the Rab Coupling Protein (RCP), by immunofluorescence microscopy and to extend this work to normal human placental tissue. The placenta is a highly active exchange interface, facilitating transfer between mother and fetus during pregnancy. As Rab11 proteins are closely involved in transcytosis we hypothesized that the placenta would be an interesting human tissue model system for Rab investigation. By immunofluorescence microscopy, Rab11a, Rab11c(Rab25), Rab14 as well as their common FIP effector RCP showed prominent expression in the placental cell lines. We also identified the expression of these proteins in human placental lysates by Western blot analysis. Further, via fluorescent immunohistochemistry, we noted abundant localization of these proteins within key functional areas of primary human placental tissues, namely the outer syncytial layer of placental villous tissue and the endothelia of fetal blood vessels. Overall these findings highlight the expression of the Rab11 family within the human

  7. The human homeobox genes MSX-1, MSX-2, and MOX-1 are differentially expressed in the dermis and epidermis in fetal and adult skin.

    Science.gov (United States)

    Stelnicki, E J; Kömüves, L G; Holmes, D; Clavin, W; Harrison, M R; Adzick, N S; Largman, C

    1997-10-01

    In order to identify homeobox genes which may regulate skin development and possibly mediate scarless fetal wound healing we have screened amplified human fetal skin cDNAs by polymerase chain reaction (PCR) using degenerate oligonucleotide primers designed against highly conserved regions within the homeobox. We identified three non-HOX homeobox genes, MSX-1, MSX-2, and MOX-1, which were differentially expressed in fetal and adult human skin. MSX-1 and MSX-2 were detected in the epidermis, hair follicles, and fibroblasts of the developing fetal skin by in situ hybridization. In contrast, MSX-1 and MSX-2 expression in adult skin was confined to epithelially derived structures. Immunohistochemical analysis of these two genes suggested that their respective homeoproteins may be differentially regulated. While Msx-1 was detected in the cell nucleus of both fetal and adult skin; Msx-2 was detected as a diffuse cytoplasmic signal in fetal epidermis and portions of the hair follicle and dermis, but was localized to the nucleus in adult epidermis. MOX-1 was expressed in a pattern similar to MSX early in gestation but then was restricted exclusively to follicular cells in the innermost layer of the outer root sheath by 21 weeks of development. Furthermore, MOX-1 expression was completely absent in adult cutaneous tissue. These data imply that each of these homeobox genes plays a specific role in skin development.

  8. Fetal injury induced by Ca-DTPA in dogs

    International Nuclear Information System (INIS)

    Taylor, G.N.; Mays, C.W.

    1978-01-01

    The chelating agent Ca-DTPA, used to remove plutonium from the body, has produced fetal deaths and deformities in mice and rats. Damage is caused by depletion of essential trace elements, particularly zinc and manganese. It is suggested that a relationship may exist between the daily amount of Ca-DTPA,per kg body weight needed,to produce fetal toxicity and the daily intake of dietary zinc per kg body weight, and that this relationship could be used to predict fetal toxicity thresholds in various species. Results of a study on beagles are presented. Ca-DTPA treatment at the dose levels used in human therapy did not produce any symptoms in the pregnant dams but the fetuses showed depressed birth weight, abnormal hair colour due to pigmentary deficiency, brain damage and neutropenia. Extrapolation from dogs to humans predicts a toxic fetal dose less that one sixth of the daily dosage presently used for an adult woman, and emphasizes the hazards of Ca-DTPA therapy during pregnancy. (author)

  9. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    Science.gov (United States)

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists.

  10. Ontogenetic distribution of the transcription factor Nkx2.2 in the developing forebrain of Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Laura eDominguez

    2011-03-01

    Full Text Available The expression of the Nkx2.2 gene is involved in the organization of the alar-basal boundary in the forebrain of vertebrates. Its expression in different diencephalic and telencephalic regions, helped to define distinct progenitor domains in mouse and chick. Here we investigated the pattern of Nkx2.2 protein distribution throughout the development of the forebrain of the anuran amphibian, Xenopus laevis. We used immunohistochemical and in situ hybridization techniques for its detection in combination with other essential territorial markers in the forebrain. No expression was observed in the telencephalon. In the alar hypothalamus, Nkx2.2 positive cells were scattered in the suprachiasmatic territory, but also in the supraoptoparaventricular area, as defined by the expression of the transcription factor Otp and the lack of xDll4. In the basal hypothalamus Nkx2.2 expressing cells were localized in the tuberal region, with the exception of the arcuate nucleus, rich in Otp expressing cells. In the diencephalon it was expressed in all three prosomeres (P1-P3 and not in the zona limitans intrathalamica. The presence of Nkx2.2 expressing cells in P3 was restricted to the alar portion, as well as in prosomere P2, whereas in P1 the Nkx2.2 expressing cells were located in the basal plate and identified the alar/basal boundary. These results showed that Nkx2.2 and Sonic hedgehog are expressed in parallel adjacent stripes along the anterior-posterior axis. The results of this study showed a conserved distribution pattern of Nkx2.2 among vertebrates, crucial to recognize subdivisions that are otherwise indistinct, and supported the relevance of this transcription factor in the organization of the forebrain, particularly in the delineation of the alar/basal boundary of the forebrain.

  11. The use of small interfering RNAs to inhibit adipocyte differentiation in human preadipocytes and fetal-femur-derived mesenchymal cells

    International Nuclear Information System (INIS)

    Xu, Y.; Mirmalek-Sani, S.-H.; Yang, X.; Zhang, J.; Oreffo, R.O.C.

    2006-01-01

    RNA interference (RNAi) has been used in functional genomics and offers innovative approaches in the development of novel therapeutics. Human mesenchymal stem cells offer a unique cell source for tissue engineering/regeneration strategies. The current study examined the potential of small interfering RNAs (siRNA) against human peroxisome proliferator activated receptor gamma (PPARγ) to suppress adipocyte differentiation (adipogenesis) in human preadipocytes and fetal-femur-derived mesenchymal cells. Adipogenesis was investigated using cellular and biochemical analysis. Transient transfection with PPARγ-siRNA using a liposomal-based strategy resulted in a significant inhibition of adipogenesis in human preadipocytes and fetal-femur-derived mesenchymal cells, compared to controls (cell, liposomal and negative siRNA). The inhibitory effect of PPARγ-siRNA was supported by testing human PPARγ mRNA and adipogenic associated genes using reverse transcription polymerase chain reaction (RT-PCR) to adiponectin receptor 1 and 2 as well as examination of fatty acid binding protein 3 (FABP 3 ) expression, an adipocyte-specific marker. The current studies indicate that PPARγ-siRNA is a useful tool to study adipogenesis in human cells, with potential applications both therapeutic and in the elucidation of mesenchymal cell differentiation in the modulation of cell differentiation in human mesenchymal cells

  12. Malnutrition during fetal life, fetal programming and implications for farm aninals productivity

    DEFF Research Database (Denmark)

    Nielsen, Mette Olaf; Khanal, Prabhat; Johnsen, Lærke

    Some 20 years ago, observations from human epidemiological research revolutionized the scientific view of the importance of fetal life development for body functions in postnatal life. Until then, it was believed that the genome received from the parents at conception in mammals would define the ...

  13. Development of the penis during the human fetal period (13 to 36 weeks after conception).

    Science.gov (United States)

    Gallo, Carla B M; Costa, Waldemar S; Furriel, Angelica; Bastos, Ana L; Sampaio, Francisco J B

    2013-11-01

    We analyzed the development of the area of the penis and erectile structures (corpora cavernosa and corpus spongiosum) and the thickness of the tunica albuginea during the fetal period (13 to 36 weeks after conception) in humans to establish normative patterns of growth. We studied 56 male human fetuses at 13 to 36 weeks after conception. We used histochemical and morphometric techniques to analyze the parameters of total penile area, area of corpora cavernosa, area of corpus spongiosum, and thickness of tunica albuginea in the dorsal and ventral regions using ImageJ software (National Institutes of Health, Bethesda, Maryland). Between 13 and 36 weeks after conception the area of the penis varies from 0.95 to 24.25 mm2. The area of the corpora cavernosa varies from 0.28 to 9.12 mm2, and the area of the corpus spongiosum varies from 0.14 to 3.99 mm2. The thickness of the tunica albuginea varies from 0.029 to 0.296 mm in the dorsal region and from 0.014 to 0.113 mm in the ventral region of the corpora cavernosa. We found a strong correlation between the total penile area, corpora cavernosa and corpus spongiosum with fetal age (weeks following conception). The growth rate was more intense during the second trimester (13 to 24 weeks of gestation) compared to the third trimester (25 to 36 weeks). Tunica albuginea thickness also was strongly correlated with fetal age and this structure was thicker in the dorsal vs ventral region. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Is there a place for human fetal-derived stem cells for cell replacement therapy in Huntington's disease?

    Science.gov (United States)

    Precious, Sophie V; Zietlow, Rike; Dunnett, Stephen B; Kelly, Claire M; Rosser, Anne E

    2017-06-01

    Huntington's disease (HD) is a neurodegenerative disease that offers an excellent paradigm for cell replacement therapy because of the associated relatively focal cell loss in the striatum. The predominant cells lost in this condition are striatal medium spiny neurons (MSNs). Transplantation of developing MSNs taken from the fetal brain has provided proof of concept that donor MSNs can survive, integrate and bring about a degree of functional recovery in both pre-clinical studies and in a limited number of clinical trials. The scarcity of human fetal tissue, and the logistics of coordinating collection and dissection of tissue with neurosurgical procedures makes the use of fetal tissue for this purpose both complex and limiting. Alternative donor cell sources which are expandable in culture prior to transplantation are currently being sought. Two potential donor cell sources which have received most attention recently are embryonic stem (ES) cells and adult induced pluripotent stem (iPS) cells, both of which can be directed to MSN-like fates, although achieving a genuine MSN fate has proven to be difficult. All potential donor sources have challenges in terms of their clinical application for regenerative medicine, and thus it is important to continue exploring a wide variety of expandable cells. In this review we discuss two less well-reported potential donor cell sources; embryonic germ (EG) cells and fetal neural precursors (FNPs), both are which are fetal-derived and have some properties that could make them useful for regenerative medicine applications. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex.

    Science.gov (United States)

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok

    2016-01-01

    Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by ¹⁸F-2-fluoro-2-deoxyglucose positron emission tomography. During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.

  16. Effect of basal forebrain stimulation on extracellular acetylcholine release and blood flow in the olfactory bulb.

    Science.gov (United States)

    Uchida, Sae; Kagitani, Fusako

    2017-05-12

    The olfactory bulb receives cholinergic basal forebrain input, as does the neocortex; however, the in vivo physiological functions regarding the release of extracellular acetylcholine and regulation of regional blood flow in the olfactory bulb are unclear. We used in vivo microdialysis to measure the extracellular acetylcholine levels in the olfactory bulb of urethane-anesthetized rats. Focal chemical stimulation by microinjection of L-glutamate into the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain, which is the main source of cholinergic input to the olfactory bulb, increased extracellular acetylcholine release in the ipsilateral olfactory bulb. When the regional cerebral blood flow was measured using laser speckle contrast imaging, the focal chemical stimulation of the HDB did not significantly alter the blood flow in the olfactory bulb, while increases were observed in the neocortex. Our results suggest a functional difference between the olfactory bulb and neocortex regarding cerebral blood flow regulation through the release of acetylcholine by cholinergic basal forebrain input.

  17. Agmatine protection against chlorpromazine-induced forebrain cortex injury in rats.

    Science.gov (United States)

    Dejanovic, Bratislav; Stevanovic, Ivana; Ninkovic, Milica; Stojanovic, Ivana; Lavrnja, Irena; Radicevic, Tatjana; Pavlovic, Milos

    2016-03-01

    This study was conducted to investigate whether agmatine (AGM) provides protection against oxidative stress induced by treatment with chlorpromazine (CPZ) in Wistar rats. In addition, the role of reactive oxygen species and efficiency of antioxidant protection in the brain homogenates of forebrain cortexes prepared 48 h after treatment were investigated. Chlorpromazine was applied intraperitoneally (i.p.) in single dose of 38.7 mg/kg body weight (BW) The second group was treated with both CPZ and AGM (75 mg/kg BW). The control group was treated with 0.9% saline solution in the same manner. All tested compounds were administered i.p. in a single dose. Rats were sacrificed by decapitation 48 h after treatment Treatment with AGM significantly attenuated the oxidative stress parameters and restored antioxidant capacity in the forebrain cortex. The data indicated that i.p. administered AGM exerted antioxidant action in CPZ-treated animals. Moreover, reactive astrocytes and microglia may contribute to secondary nerve-cell damage and participate in the balance of destructive vs. protective actions involved in the pathogenesis after poisoning.

  18. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    International Nuclear Information System (INIS)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona; Husain, Nuzhat; Srivastava, Savita; Rathore, Ram K.S.; Sarma, Manoj K.; Malik, Gyanendra K.; Das, Vinita; Pradhan, Mandakini; Pandey, Chandra M.; Narayana, Ponnada A.

    2009-01-01

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA ≤ 28 weeks for frontal cortical region and GA≤22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  19. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona [Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radiodiagnosis, Lucknow, UP (India); Husain, Nuzhat; Srivastava, Savita [CSM Medical University, Department of Pathology, Lucknow (India); Rathore, Ram K.S.; Sarma, Manoj K. [Indian Institute of Technology, Department of Mathematics and Statistics, Kanpur (India); Malik, Gyanendra K. [CSM Medical University, Department of Pediatrics, Lucknow (India); Das, Vinita [CSM Medical University, Department of Obstetrics and Gynecology, Lucknow (India); Pradhan, Mandakini [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Medical Genetics, Lucknow (India); Pandey, Chandra M. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Biostatistics, Lucknow (India); Narayana, Ponnada A. [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Houston, TX (United States)

    2009-09-15

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA {<=} 28 weeks for frontal cortical region and GA{<=}22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  20. The complexity of the calretinin-expressing progenitors in the human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Nevena V Radonjic

    2014-08-01

    Full Text Available The complex structure and function of the cerebral cortex critically depend on the balance of excitation and inhibition provided by the pyramidal projection neurons and GABAergic interneurons, respectively. The calretinin-expressing (CalR+ cell is a subtype of GABAergic cortical interneurons that is more prevalent in humans than in rodents. In rodents, CalR+ interneurons originate in the caudal ganglionic eminence (CGE from Gsx2+ progenitors, but in humans it has been suggested that a subpopulation of CalR+ cells can also be generated in the cortical ventricular/subventricular zone (VZ/SVZ. The progenitors for cortically generated CalR+ subpopulation in primates are not yet characterized. Hence, the aim of this study was to identify patterns of expression of the transcription factors (TFs that commit cortical stem cells to the CalR fate, with a focus on Gsx2. First, we studied the expression of Gsx2 and its downstream effectors, Ascl1 and Sp8 in the cortical regions of the fetal human forebrain at midgestation. Next, we established that a subpopulation of cells expressing these TFs are proliferating in the cortical SVZ, and can be co-labeled with CalR. The presence and proliferation of Gsx2+ cells, not only in the ventral telencephalon (GE as previously reported, but also in the cerebral cortex suggests cortical origin of a subpopulation of CalR+ neurons in humans. In vitro treatment of human cortical progenitors with Sonic hedgehog (Shh, an important morphogen in the specification of interneurons, decreased levels of Ascl1 and Sp8 proteins, but did not affect Gsx2 levels. Taken together, our ex-vivo and in vitro results on human fetal brain suggest complex endogenous and exogenous regulation of TFs implied in the specification of different subtypes of CalR+ cortical interneurons.

  1. The Anti-Inflammatory Effects of Lipoxygenase and Cyclo-Oxygenase Inhibitors in Inflammation-Induced Human Fetal Glia Cells and the Aβ Degradation Capacity of Human Fetal Astrocytes in an Ex vivo Assay

    Directory of Open Access Journals (Sweden)

    Rea Pihlaja

    2017-05-01

    Full Text Available Chronic inflammation is a common phenomenon present in the background of multiple neurodegenerative diseases, including Alzheimer's disease (AD. The arachidonic acid pathway overproduces proinflammatory eicosanoids during these states and glial cells in the brain gradually lose their vital functions of protecting and supporting neurons. In this study, the role of different key enzymes of the eicosanoid pathway mediating inflammatory responses was examined in vitro and ex vivo using human fetal glial cells. Astrocytes and microglia were exposed to proinflammatory agents i.e., cytokines interleukin 1-β (IL-1β and tumor necrosis factor (TNF-α. ELISA assays were used to examine the effects of inhibitors of key enzymes in the eicosanoid pathway. Inhibitors for 5-lipoxygenase (5-LOX and cyclo-oxygenase 2 (COX-2 in both cell types and 5-, 12-, and 15-LOX-inhibitor in astrocytes reduced significantly IL-6 secretion, compared to exposed glial cells without inhibitors. The cytokine antibody array showed that especially treatments with 5, -12, and -15 LOX inhibitor in astrocytes, 5-LOX inhibitor in microglia and COX-2 inhibitor in both glial cell types significantly reduced the expression of multiple proinflammatory cytokines. Furthermore, human fetal astrocytes and microglia were cultured on top of AD-affected and control human brain sections for 30 h. According to the immunochemical evaluation of the level of total Aβ, astrocytes were very efficient at degrading Aβ from AD-affected brain sections ex vivo; simultaneously added enzyme inhibitors did not increase their Aβ degradation capabilities. Microglia were not able to reduce the level of total Aβ during the 30 h incubation time.

  2. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex

    OpenAIRE

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok

    2015-01-01

    Purpose Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused ...

  3. Fucosylated glycans in the periventricular structures and the cerebrospinal fluid of the fetal rat forebrain. An autoradiographic and lectin binding histiotopic study

    Czech Academy of Sciences Publication Activity Database

    Mareš, Vladislav; Brückner, G.

    2001-01-01

    Roč. 19, č. 3 (2001), s. 297-303 ISSN 0736-5748 Institutional research plan: CEZ:AV0Z5011922 Keywords : fetal rat brain * fucosylated glycans * cerebrospinal fluid Subject RIV: FH - Neurology Impact factor: 2.156, year: 2001

  4. Hierarchical prediction errors in midbrain and basal forebrain during sensory learning.

    Science.gov (United States)

    Iglesias, Sandra; Mathys, Christoph; Brodersen, Kay H; Kasper, Lars; Piccirelli, Marco; den Ouden, Hanneke E M; Stephan, Klaas E

    2013-10-16

    In Bayesian brain theories, hierarchically related prediction errors (PEs) play a central role for predicting sensory inputs and inferring their underlying causes, e.g., the probabilistic structure of the environment and its volatility. Notably, PEs at different hierarchical levels may be encoded by different neuromodulatory transmitters. Here, we tested this possibility in computational fMRI studies of audio-visual learning. Using a hierarchical Bayesian model, we found that low-level PEs about visual stimulus outcome were reflected by widespread activity in visual and supramodal areas but also in the midbrain. In contrast, high-level PEs about stimulus probabilities were encoded by the basal forebrain. These findings were replicated in two groups of healthy volunteers. While our fMRI measures do not reveal the exact neuron types activated in midbrain and basal forebrain, they suggest a dichotomy between neuromodulatory systems, linking dopamine to low-level PEs about stimulus outcome and acetylcholine to more abstract PEs about stimulus probabilities. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Magnetic resonance angiography of fetal vasculature at 3.0 T

    Science.gov (United States)

    Krishnamurthy, Uday; Jella, Pavan K.; Mody, Swati S.; Yadav, Brijesh K.; Hendershot, Kelly; Hernandez-Andrade, Edgar; Yeo, Lami; Cabrera, Maria D.; Haacke, Ewart M.; Hassan, Sonia S.; Romero, Roberto

    2016-01-01

    Magnetic resonance angiography has not been used much previously for visualizing fetal vessels in utero for reasons that include a contraindication for the use of exogenous contrast agents, maternal respiratory motion and fetal motion. In this work, we report the feasibility of using an appropriately modified clinical time-of-flight magnetic resonance imaging sequence for non-contrast angiography of human fetal and placental vessels at 3.0 T. Using this 2D angiography technique, it is possible to visualize fetal vascular networks in late pregnancy. PMID:27189488

  6. Magnetic resonance angiography of fetal vasculature at 3.0 T

    International Nuclear Information System (INIS)

    Neelavalli, Jaladhar; Krishnamurthy, Uday; Yadav, Brijesh K.; Haacke, Ewart M.; Jella, Pavan K.; Hendershot, Kelly; Cabrera, Maria D.; Mody, Swati S.; Hernandez-Andrade, Edgar; Yeo, Lami; Hassan, Sonia S.; Romero, Roberto

    2016-01-01

    Magnetic resonance angiography has not been used much previously for visualizing fetal vessels in utero for reasons that include a contraindication for the use of exogenous contrast agents, maternal respiratory motion and fetal motion. In this work, we report the feasibility of using an appropriately modified clinical time-of-flight magnetic resonance imaging sequence for non-contrast angiography of human fetal and placental vessels at 3.0 T. Using this 2D angiography technique, it is possible to visualize fetal vascular networks in late pregnancy. (orig.)

  7. Magnetic resonance angiography of fetal vasculature at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Neelavalli, Jaladhar; Krishnamurthy, Uday; Yadav, Brijesh K.; Haacke, Ewart M. [Wayne State University School of Medicine, Department of Radiology, Detroit, MI (United States); Wayne State University, Department of Biomedical Engineering, Detroit, MI (United States); Jella, Pavan K.; Hendershot, Kelly; Cabrera, Maria D. [Wayne State University School of Medicine, Department of Radiology, Detroit, MI (United States); Mody, Swati S. [Wayne State University School of Medicine, Department of Radiology, Detroit, MI (United States); Children' s Hospital of Michigan, Department of Radiology, Detroit, MI (United States); Hernandez-Andrade, Edgar; Yeo, Lami; Hassan, Sonia S. [Wayne State University, Department of Obstetrics and Gynecology, Detroit, MI (United States); Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI (United States); Romero, Roberto [Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI (United States); University of Michigan, Department of Obstetrics and Gynecology, Ann Arbor, MI (United States); Michigan State University, Department of Epidemiology and Biostatistics, East Lansing, MI (United States); Wayne State University, Center for Molecular Medicine and Genetics, Detroit, MI (United States)

    2016-12-15

    Magnetic resonance angiography has not been used much previously for visualizing fetal vessels in utero for reasons that include a contraindication for the use of exogenous contrast agents, maternal respiratory motion and fetal motion. In this work, we report the feasibility of using an appropriately modified clinical time-of-flight magnetic resonance imaging sequence for non-contrast angiography of human fetal and placental vessels at 3.0 T. Using this 2D angiography technique, it is possible to visualize fetal vascular networks in late pregnancy. (orig.)

  8. Analysis of gene expression in fetal and adult cells infected with rubella virus

    International Nuclear Information System (INIS)

    Adamo, Maria Pilar; Zapata, Marta; Frey, Teryl K.

    2008-01-01

    Congenital infection with rubella virus (RUB) leads to persistent infection and congenital defects and we showed previously that primary human fetal fibroblasts did not undergo apoptosis when infected with RUB, which could promote fetal virus persistence [Adamo, P., Asis, L., Silveyra, P., Cuffini, C., Pedranti, M., Zapata, M., 2004. Rubella virus does not induce apoptosis in primary human embryo fibroblasts cultures: a possible way of viral persistence in congenital infection. Viral Immunol. 17, 87-100]. To extend this observation, gene chip analysis was performed on a line of primary human fetal fibroblasts (10 weeks gestation) and a line of human adult lung fibroblasts (which underwent apoptosis in response to RUB infection) to compare gene expression in infected and uninfected cells. A total of 632 and 516 genes were upregulated or downregulated in the infected fetal and adult cells respectively in comparison to uninfected cells, however only 52 genes were regulated in both cell types. Although the regulated genes were different, across functional gene categories the patterns of gene regulation were similar. In general, regulation of pro- and anti-apoptotic genes following infection appeared to favor apoptosis in the adult cells and lack of apoptosis in the fetal cells, however there was a greater relative expression of anti-apoptotic genes and reduced expression of pro-apoptotic genes in uninfected fetal cells versus uninfected adult cells and thus the lack of apoptosis in fetal cells following RUB infection was also due to the prevailing background of gene expression that is antagonistic to apoptosis. In support of this hypothesis, it was found that of a battery of five chemicals known to induce apoptosis, two induced apoptosis in the adult cells, but not in fetal cells, and two induced apoptosis more rapidly in the adult cells than in fetal cells (the fifth did not induce apoptosis in either). A robust interferon-stimulated gene response was induced

  9. Fetal echocardiography

    International Nuclear Information System (INIS)

    Chaubal, Nitin G.; Chaubal, Jyoti

    2009-01-01

    USG performed with a high-end machine, using a good cine-loop facility is extremely helpful in the diagnosis of fetal cardiac anomalies. In fetal echocardiography, the four-chamber view and the outflow-tract view are used to diagnose cardiac anomalies. The most important objective during a targeted anomaly scan is to identify those cases that need a dedicated fetal echocardiogram. Associated truncal and chromosomal anomalies need to be identified. This review shows how fetal echocardiography, apart from identifying structural defects in the fetal heart, can be used to look at rhythm abnormalities and other functional aspects of the fetal heart

  10. Progesterone promotes maternal–fetal tolerance by reducing human maternal T‐cell polyfunctionality and inducing a specific cytokine profile

    Science.gov (United States)

    Eldershaw, Suzy A.; Inman, Charlotte F.; Coomarasamy, Aravinthan; Moss, Paul A. H.; Kilby, Mark D.

    2015-01-01

    Progesterone is a steroid hormone essential for the maintenance of human pregnancy, and its actions are thought to include promoting maternal immune tolerance of the semiallogenic fetus. We report that exposure of maternal T cells to progesterone at physiological doses induced a unique skewing of the cytokine production profile of CD4+ and CD8+ T cells, with reductions not only in potentially deleterious IFN‐γ and TNF‐α production but also in IL‐10 and IL‐5. Conversely, production of IL‐4 was increased. Maternal T cells also became less polyfunctional, focussing cytokine production toward profiles including IL‐4. This was accompanied by reduced T‐cell proliferation. Using fetal and viral antigen‐specific CD8+ T‐cell clones, we confirmed that this as a direct, nonantigen‐specific effect. Yet human T cells lacked conventional nuclear progesterone receptors, implicating a membrane progesterone receptor. CD4+ and CD8+ T cells responded to progesterone in a dose‐dependent manner, with subtle effects at concentrations comparable to those in maternal blood, but profound effects at concentrations similar to those at the maternal–fetal interface. This characterization of how progesterone modulates T‐cell function is important in understanding the normal biology of pregnancy and informing the rational use of progesterone therapy in pregnancies at risk of fetal loss. PMID:26249148

  11. Growth-inhibitory effect of TGF-B on human fetal adrenal cells in primary monolayer culture.

    Science.gov (United States)

    Riopel, L; Branchaud, C L; Goodyer, C G; Adkar, V; Lefebvre, Y

    1989-08-01

    We examined the effects of transforming-growth factor-B (TGF-B) on growth ([3H]-thymidine uptake) and function (dehydroepiandrosterone sulfate [DHAS] and cortisol production) of human fetal zone adrenal cells. Results indicate that TGF-B significantly inhibits, in a dose-related manner, both basal and epidermal growth factor (EGF)-stimulated cell growth: IC50 = 0.1-0.25 ng/ml. EGF is ineffective in overcoming the inhibitory effect of TGF-B, suggesting a noncompetitive antagonism between the two factors. Also, the inhibitory effect of TGF-B is additive to that of adrenocorticotropic hormone (ACTH). On the other hand, TGF-B (1 ng/ml) does not significantly change basal or ACTH-stimulated DHAS or cortisol secretion. We conclude that, unlike its effect on other steroid-producing cells, TGF-B inhibits growth of fetal zone cells and does not appear to have a significant inhibitory effect on steroidogenesis.

  12. Role of Shp2 in forebrain neurons in regulating metabolic and cardiovascular functions and responses to leptin.

    Science.gov (United States)

    do Carmo, J M; da Silva, A A; Sessums, P O; Ebaady, S H; Pace, B R; Rushing, J S; Davis, M T; Hall, J E

    2014-06-01

    We examined whether deficiency of Src homology 2 containing phosphatase (Shp2) signaling in forebrain neurons alters metabolic and cardiovascular regulation under various conditions and if it attenuates the anorexic and cardiovascular effects of leptin. We also tested whether forebrain Shp2 deficiency alters blood pressure (BP) and heart rate (HR) responses to acute stress. Forebrain Shp2(-/-) mice were generated by crossing Shp2(flox/flox) mice with CamKIIα-cre mice. At 22-24 weeks of age, the mice were instrumented for telemetry for measurement of BP, HR and body temperature (BT). Oxygen consumption (VO2), energy expenditure and motor activity were monitored by indirect calorimetry. Shp2/CamKIIα-cre mice were heavier (46±3 vs 32±1 g), hyperglycemic, hyperleptinemic, hyperinsulinemic and hyperphagic compared to Shp2(flox/flox) control mice. Shp2/CamKIIα-cre mice exhibited reduced food intake responses to fasting/refeeding and impaired regulation of BT when exposed to 15 and 30 °C ambient temperatures. Despite being obese and having many features of metabolic syndrome, Shp2/CamKIIα-cre mice had similar daily average BP and HR compared to Shp2(flox/flox) mice (112±2 vs 113±1 mm Hg and 595±34 vs 650±40 b.p.m.), but exhibited increased BP and HR responses to cold exposure and acute air-jet stress test. Leptin's ability to reduce food intake and to raise BP were markedly attenuated in Shp2/CamKIIα-cre mice. These results suggest that forebrain Shp2 signaling regulates food intake, appetite responses to caloric deprivation and thermogenic control of body temperature during variations in ambient temperature. Deficiency of Shp2 signaling in the forebrain is associated with augmented cardiovascular responses to cold and acute stress but attenuated BP responses to leptin.

  13. Fetal magnetic resonance: technique applications and normal fetal anatomy

    International Nuclear Information System (INIS)

    Martin, C.; Darnell, A.; Duran, C.; Mellado, F.; Corona, M

    2003-01-01

    Ultrasonography is the preferred diagnostic imaging technique for intrauterine fetal examination. Nevertheless, circumstances sometimes dictate the use of other techniques in order to analyze fetal structures. The advent of ultra rapid magnetic resonance (MR) sequencing has led to the possibility of doing MR fetal studies, since images are obtained in an extradordiarily short time and are not affected by either maternal or fetal movements. It does not employ ionizing radiations, it provides high-contrast images and it can obtain such images in any plane of space without being influenced by either the child bearer's physical characteristics of fetal position. MR provides good quality images of most fetal organs. It is extremely useful in analysing distinct structures, as well as permitting an evaluation of cervical structures, lungs, diaphragms, intra-abdominal and retroperitoneal structures, and fetal extremities. It can also provide useful information regarding the placenta,umbilical cord, amniotic fluid and uterus. The objective of this work is to describe MR technique as applied to intrauterine fetal examination, and to illustrate normal fetal anatomy as manifested by MR and its applications. (Author) 42 refs

  14. Research ethics in Canada: experience of a group operating a human embryo and fetal tissue bank.

    Science.gov (United States)

    Milos, N; Bamforth, S; Bagnall, K

    1999-04-01

    A Canadian research group is establishing a human embryo and fetal tissue bank. Its purpose is to provide researchers with frozen or fixed tissue specimens for use in protein and gene expression studies. Several legal and ethical issues have arisen, including questions about consent, use of these rare tissues, cost recovery, and profit-making. These issues are discussed here in light of the present lack of legislation in Canada. We make recommendations in these areas, and suggest that the bank's operations could legally fall under the jurisdiction of the Human Tissue Gift Act.

  15. Human herpesvirus 6A induces apoptosis of primary human fetal astrocytes via both caspase-dependent and -independent pathways

    Directory of Open Access Journals (Sweden)

    Gu Bin

    2011-12-01

    Full Text Available Abstract Background Human herpesvirus 6 (HHV-6 is a T-lymphtropic and neurotropic virus that can infect various types of cells. Sequential studies reported that apoptosis of glia and neurons induced by HHV-6 might act a potential trigger for some central nervous system (CNS diseases. HHV-6 is involved in the pathogenesis of encephalitis, multiple sclerosis (MS and fatigue syndrome. However, the mechanisms responsible for the apoptosis of infected CNS cells induced by HHV-6 are poorly understood. In this study, we investigated the cell death processes of primary human fetal astrocytes (PHFAs during productive HHV-6A infection and the underlying mechanisms. Results HHV-6A can cause productive infection in primary human fetal astrocytes. Annexin V-PI staining and electron microscopic analysis indicated that HHV-6A was an inducer of apoptosis. The cell death was associated with activation of caspase-3 and cleavage of poly (ADP-ribose polymerase (PARP, which is known to be an important substrate for activated caspase-3. Caspase-8 and -9 were also significantly activated in HHV-6A-infected cells. Moreover, HHV-6A infection led to Bax up-regulation and Bcl-2 down-regulation. HHV-6A infection increased the release of Smac/Diablo, AIF and cytochrome c from mitochondria to cytosol, which induced apoptosis via the caspase-dependent and -independent pathways. In addition, we also found that anti-apoptotic factors such as IAPs and NF-κB decreased in HHV-6A infected PHFAs. Conclusion This is the first demonstration of caspase-dependent and -independent apoptosis in HHV-6A-infected glial cells. These findings would be helpful in understanding the mechanisms of CNS diseases caused by HHV-6.

  16. Analysis of fetal movements by Doppler actocardiogram and fetal B-mode imaging.

    Science.gov (United States)

    Maeda, K; Tatsumura, M; Utsu, M

    1999-12-01

    We have presented that fetal surveillance may be enhanced by use of the fetal actocardiogram and by computerized processing of fetal motion as well as fetal B-mode ultrasound imaging. Ultrasonic Doppler fetal actogram is a sensitive and objective method for detecting and recording fetal movements. Computer processing of the actograph output signals enables powerful, detailed, and convenient analysis of fetal physiologic phenomena. The actocardiogram is a useful measurement tool not only in fetal behavioral studies but also in evaluation of fetal well-being. It reduces false-positive, nonreactive NST and false-positive sinusoidal FHR pattern. It is a valuable tool to predict fetal distress. The results of intrapartum fetal monitoring are further improved by the antepartum application of the actocardiogram. Quantified fetal motion analysis is a useful, objective evaluation of the embryo and fetus. This method allows monitoring of changes in fetal movement, as well as frequency, amplitude, and duration. Furthermore, quantification of fetal motion enables evaluation of fetal behavior states and how these states relate to other measurements, such as changes in FHR. Numeric analysis of both fetal actogram and fetal motion from B-mode images is a promising application in the correlation of fetal activity or behavior with other fetal physiologic measurements.

  17. Cumulative effects of prenatal-exposure to exogenous chemicals and psychosocial stress on fetal growth: Systematic-review of the human and animal evidence.

    Science.gov (United States)

    Vesterinen, Hanna M; Morello-Frosch, Rachel; Sen, Saunak; Zeise, Lauren; Woodruff, Tracey J

    2017-01-01

    Adverse effects of prenatal stress or environmental chemical exposures on fetal growth are well described, yet their combined effect remains unclear. To conduct a systematic review on the combined impact and interaction of prenatal exposure to stress and chemicals on developmental outcomes. We used the first three steps of the Navigation Guide systematic review. We wrote a protocol, performed a robust literature search to identify relevant animal and human studies and extracted data on developmental outcomes. For the most common outcome (fetal growth), we evaluated risk of bias, calculated effect sizes for main effects of individual and combined exposures, and performed a random effects meta-analysis of those studies reporting on odds of low birthweight (LBW) by smoking and socioeconomic status (SES). We identified 17 human- and 22 animal-studies of combined chemical and stress exposures and fetal growth. Human studies tended to have a lower risk of bias across nine domains. Generally, we found stronger effects for chemicals than stress, and these exposures were associated with reduced fetal growth in the low-stress group and the association was often greater in high stress groups, with limited evidence of effect modification. We found smoking associated with significantly increased odds of LBW, with a greater effect for high stress (low SES; OR 4.75 (2.46-9.16)) compared to low stress (high SES; OR 1.95 (95% CI 1.53-2.48)). Animal studies generally had a high risk of bias with no significant combined effect or effect modification. We found that despite concern for the combined effects of environmental chemicals and stress, this is still an under-studied topic, though limited available human studies indicate chemical exposures exert stronger effects than stress, and this effect is generally larger in the presence of stress.

  18. Intrapartum fetal heart rate profiles with and without fetal asphyxia.

    Science.gov (United States)

    Low, J A; Pancham, S R; Worthington, D N

    1977-04-01

    Fetal heart rate profiles for periods up to 12 hours prior to delivery have been reviewed in 515 patients with a fetus at risk. Mechanisms other than fetal asphyxia will cause fetal heart rate decelerations, and fetal asphyxia may in some instances develop in the absence of total or late decelerations. However, an increasing incidence of total decelerations and late decelerations and particularly a marked pattern of total decelerations and late decelerations are of value in the prediction of fetal asphyxia. Fetal heart rate deceleration patterns can predict the probability of fetal asphyxia at the time of initial intervention, while a progression of fetal heart rate deceleration patterns in the individual fetus can be of assistance in the subsequent scheduling of serial acid-base assessments during labor.

  19. Influence of the fetal bovine serum proteins on the growth of human osteoblast cells on graphene

    Czech Academy of Sciences Publication Activity Database

    Kalbáčová, M.; Brož, A.; Kalbáč, Martin

    100A, č. 11 (2012), s. 3001-3007 ISSN 1549-3296 R&D Projects: GA AV ČR IAA400400911; GA AV ČR KAN200100801; GA ČR GAP204/10/1677; GA ČR(CZ) GAP208/12/1062; GA MŠk ME09060 Institutional support: RVO:61388955 Keywords : human osteoblast * graphene * fetal bovine serum Subject RIV: CG - Electrochemistry Impact factor: 2.834, year: 2012

  20. Sex-specific differences in fetal germ cell apoptosis induced by ionizing radiation

    International Nuclear Information System (INIS)

    Guerquin, M.J.; Duquenne, C.; Coffigny, H.; Rouiller-Fabre, V.; Lambrot, R.; Habert, R.; Livera, G.; Guerquin, M.J.; Duquenne, C.; Coffigny, H.; Rouiller-Fabre, V.; Lambrot, R.; Habert, R.; Livera, G.; Guerquin, M.J.; Duquenne, C.; Coffigny, H.; Rouiller-Fabre, V.; Lambrot, R.; Habert, R.; Livera, G.; Bakalska, M.; Frydman, R.; Frydman, R.; Frydman, R.

    2009-01-01

    Background: We have previously shown that male human fetal germ cells are highly radiosensitive and that their death depends on p53 activation. Male germ cell apoptosis was initiated with doses as low as 0.1 Gy and was prevented by pifithrin α, a p53 inhibitor. In this study, we investigated the radiosensitivity of early female and male fetal proliferating germ cells. Methods and results: Both male and female fetal germ cells displayed a similar number of γH2AX foci in response to ionizing radiation (IR). In organ culture of human fetal ovaries, the germ cells underwent apoptosis only when exposed to high doses of IR (1.5 Gy and above). Accumulation of p53 was detected in irradiated male human fetal germ cells but not in female ones. Inhibition of p53 with pifithrin α did not affect oogonia apoptosis following irradiation. IR induced apoptosis similarly in mouse fetal ovaries in organ culture and in vivo during oogonial proliferation. Germ cell survival in testes from p53 knockout or p63 knockout mice exposed to IR was better than wild-type, whereas female germ cell survival was unaffected by p53 or p63 knockout. Conclusions: These findings show that pre-meiotic male and female fetal germ cells behave differently in response to a genotoxic stress-irradiation with oogonia being less sensitive and undergoing p53-independent apoptosis. (authors)

  1. Sex-specific differences in fetal germ cell apoptosis induced by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Guerquin, M.J.; Duquenne, C.; Coffigny, H.; Rouiller-Fabre, V.; Lambrot, R.; Habert, R.; Livera, G. [CEA, DSV/DRR/SEGG/LDRG, Laboratory of Differentiation and Radiobiology of the Gonads, Unit of Gametogenesis and Genotoxicity, F-92265 Fontenay aux Roses (France); Guerquin, M.J.; Duquenne, C.; Coffigny, H.; Rouiller-Fabre, V.; Lambrot, R.; Habert, R.; Livera, G. [Univ. Paris 7-Denis Diderot, UFR of Biology, UMR-S 566, F-92265 Fontenay aux Roses (France); Guerquin, M.J.; Duquenne, C.; Coffigny, H.; Rouiller-Fabre, V.; Lambrot, R.; Habert, R.; Livera, G. [INSERM, U566, F-92265 Fontenay aux Roses (France); Bakalska, M. [Institute of Experimental Morphology and Anthropology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Frydman, R. [Univ Paris-Sud, Clamart F-92140 (France); Frydman, R. [AP-HP, Service de Gynecologie-Obstetrique et Medecine de la Reproduction, Hopital Antoine Beclere, Clamart F-92141 (France); Frydman, R. [INSERM, U782, Clamart F-92140 (France)

    2009-07-01

    Background: We have previously shown that male human fetal germ cells are highly radiosensitive and that their death depends on p53 activation. Male germ cell apoptosis was initiated with doses as low as 0.1 Gy and was prevented by pifithrin {alpha}, a p53 inhibitor. In this study, we investigated the radiosensitivity of early female and male fetal proliferating germ cells. Methods and results: Both male and female fetal germ cells displayed a similar number of {gamma}H2AX foci in response to ionizing radiation (IR). In organ culture of human fetal ovaries, the germ cells underwent apoptosis only when exposed to high doses of IR (1.5 Gy and above). Accumulation of p53 was detected in irradiated male human fetal germ cells but not in female ones. Inhibition of p53 with pifithrin {alpha} did not affect oogonia apoptosis following irradiation. IR induced apoptosis similarly in mouse fetal ovaries in organ culture and in vivo during oogonial proliferation. Germ cell survival in testes from p53 knockout or p63 knockout mice exposed to IR was better than wild-type, whereas female germ cell survival was unaffected by p53 or p63 knockout. Conclusions: These findings show that pre-meiotic male and female fetal germ cells behave differently in response to a genotoxic stress-irradiation with oogonia being less sensitive and undergoing p53-independent apoptosis. (authors)

  2. Cholinergic Inputs from Basal Forebrain Add an Excitatory Bias to Odor Coding in the Olfactory Bulb

    Science.gov (United States)

    Rothermel, Markus; Carey, Ryan M.; Puche, Adam; Shipley, Michael T.

    2014-01-01

    Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment. PMID:24672011

  3. The effect of fetal sex on customized fetal growth charts.

    Science.gov (United States)

    Rizzo, Giuseppe; Prefumo, Federico; Ferrazzi, Enrico; Zanardini, Cristina; Di Martino, Daniela; Boito, Simona; Aiello, Elisa; Ghi, Tullio

    2016-12-01

    To evaluate the effect of fetal sex on singleton pregnancy growth charts customized for parental characteristics, race, and parity Methods: In a multicentric cross-sectional study, 8070 ultrasonographic examinations from low-risk singleton pregnancies between 16 and 40 weeks of gestation were considered. The fetal measurements obtained were biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length (FL). Quantile regression was used to examine the impact of fetal sex across the biometric percentiles of the fetal measurements considered together with parents' height, weight, parity, and race. Fetal gender resulted to be a significant covariate for BDP, HC, and AC with higher values for male fetuses (p ≤ 0.0009). Minimal differences were found among sexes for FL. Parity, maternal race, paternal height and maternal height, and weight resulted significantly related to the fetal biometric parameters considered independently from fetal gender. In this study, we constructed customized biometric growth charts for fetal sex, parental, and obstetrical characteristics using quantile regression. The use of gender-specific charts offers the advantage to define individualized normal ranges of fetal biometric parameters at each specific centile. This approach may improve the antenatal identification of abnormal fetal growth.

  4. The Navigation Guide—Evidence-Based Medicine Meets Environmental Health: Systematic Review of Human Evidence for PFOA Effects on Fetal Growth

    Science.gov (United States)

    Sutton, Patrice; Atchley, Dylan S.; Koustas, Erica; Lam, Juleen; Sen, Saunak; Robinson, Karen A.; Axelrad, Daniel A.; Woodruff, Tracey J.

    2014-01-01

    Background: The Navigation Guide methodology was developed to meet the need for a robust method of systematic and transparent research synthesis in environmental health science. We conducted a case study systematic review to support proof of concept of the method. Objective: We applied the Navigation Guide systematic review methodology to determine whether developmental exposure to perfluorooctanoic acid (PFOA) affects fetal growth in humans. Methods: We applied the first 3 steps of the Navigation Guide methodology to human epidemiological data: 1) specify the study question, 2) select the evidence, and 3) rate the quality and strength of the evidence. We developed a protocol, conducted a comprehensive search of the literature, and identified relevant studies using prespecified criteria. We evaluated each study for risk of bias and conducted meta-analyses on a subset of studies. We rated quality and strength of the entire body of human evidence. Results: We identified 18 human studies that met our inclusion criteria, and 9 of these were combined through meta-analysis. Through meta-analysis, we estimated that a 1-ng/mL increase in serum or plasma PFOA was associated with a –18.9 g (95% CI: –29.8, –7.9) difference in birth weight. We concluded that the risk of bias across studies was low, and we assigned a “moderate” quality rating to the overall body of human evidence. Conclusion: On the basis of this first application of the Navigation Guide systematic review methodology, we concluded that there is “sufficient” human evidence that developmental exposure to PFOA reduces fetal growth. Citation: Johnson PI, Sutton P, Atchley DS, Koustas E, Lam J, Sen S, Robinson KA, Axelrad DA, Woodruff TJ. 2014. The Navigation Guide—evidence-based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth. Environ Health Perspect 122:1028–1039; http://dx.doi.org/10.1289/ehp.1307893 PMID:24968388

  5. Vitamin D: Effects on human reproduction, pregnancy, and fetal well-being.

    Science.gov (United States)

    Heyden, E L; Wimalawansa, S J

    2018-06-01

    Pregnancy places exceptional demands on vitamin D and calcium availability; thus, their deficiencies during pregnancy threaten the woman and her fetus. Globally, vitamin D and other micronutrient deficiencies are common during pregnancy, especially in developing countries where pregnant women have less access to nutritional supplements. Vitamin D deficiency has been reported to be as high as 40% among pregnant women. As a pregnancy progresses, the requirements for vitamin D increase and thus, can worsen preexisting hypovitaminosis D. Consequently, hypovitaminosis D is increasingly associated with a higher incidence of fetal miscarriage, preeclampsia, gestational diabetes, bacterial vaginosis, and impaired fetal and childhood growth and development. This review explores the recent advances in the understanding of vitamin D and the pivotal role it plays in human reproduction, with an emphasis on pregnancy and its outcomes. Given the seriousness of the issue, there is a pressing need for clinicians to become aware of the risks associated with not identifying and correcting vitamin D deficiency. Identifying and correcting vitamin D deficiency, including safe exposure to sunlight, is particularly relevant for those who seek assistance with fertility issues or prenatal counseling, and those in the beginning of their pregnancy. The data point to a significant protective effects of vitamin D during pregnancy when the 25(OH)D serum level exceeds 30 ng/mL before pregnancy and during the first trimester and, sufficient levels are maintained throughout the pregnancy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The hallucinogen d-lysergic acid diethylamide (d-LSD) induces the immediate-early gene c-Fos in rat forebrain.

    Science.gov (United States)

    Frankel, Paul S; Cunningham, Kathryn A

    2002-12-27

    The hallucinogen d-lysergic acid diethylamide (d-LSD) evokes dramatic somatic and psychological effects. In order to analyze the neural activation induced by this unique psychoactive drug, we tested the hypothesis that expression of the immediate-early gene product c-Fos is induced in specific regions of the rat forebrain by a relatively low, behaviorally active, dose of d-LSD (0.16 mg/kg, i.p.); c-Fos protein expression was assessed at 30 min, and 1, 2 and 4 h following d-LSD injection. A time- and region-dependent expression of c-Fos was observed with a significant increase (PLSD administration. These data demonstrate a unique pattern of c-Fos expression in the rat forebrain following a relatively low dose of d-LSD and suggest that activation of these forebrain regions contributes to the unique behavioral effects of d-LSD. Copyright 2002 Elsevier Science B.V.

  7. Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study.

    Science.gov (United States)

    Seed, Mike; van Amerom, Joshua F P; Yoo, Shi-Joon; Al Nafisi, Bahiyah; Grosse-Wortmann, Lars; Jaeggi, Edgar; Jansz, Michael S; Macgowan, Christopher K

    2012-11-26

    We present the first phase contrast (PC) cardiovascular magnetic resonance (CMR) measurements of the distribution of blood flow in twelve late gestation human fetuses. These were obtained using a retrospective gating technique known as metric optimised gating (MOG). A validation experiment was performed in five adult volunteers where conventional cardiac gating was compared with MOG. Linear regression and Bland Altman plots were used to compare MOG with the gold standard of conventional gating. Measurements using MOG were then made in twelve normal fetuses at a median gestational age of 37 weeks (range 30-39 weeks). Flow was measured in the major fetal vessels and indexed to the fetal weight. There was good correlation between the conventional gated and MOG measurements in the adult validation experiment (R=0.96). Mean flows in ml/min/kg with standard deviations in the major fetal vessels were as follows: combined ventricular output (CVO) 540 ± 101, main pulmonary artery (MPA) 327 ± 68, ascending aorta (AAo) 198 ± 38, superior vena cava (SVC) 147 ± 46, ductus arteriosus (DA) 220 ± 39,pulmonary blood flow (PBF) 106 ± 59,descending aorta (DAo) 273 ± 85, umbilical vein (UV) 160 ± 62, foramen ovale (FO)107 ± 54. Results expressed as mean percentages of the CVO with standard deviations were as follows: MPA 60 ± 4, AAo37 ± 4, SVC 28 ± 7, DA 41 ± 8, PBF 19 ± 10, DAo50 ± 12, UV 30 ± 9, FO 21 ± 12. This study demonstrates how PC CMR with MOG is a feasible technique for measuring the distribution of the normal human fetal circulation in late pregnancy. Our preliminary results are in keeping with findings from previous experimental work in fetal lambs.

  8. Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Seed Mike

    2012-11-01

    Full Text Available Abstract Background We present the first phase contrast (PC cardiovascular magnetic resonance (CMR measurements of the distribution of blood flow in twelve late gestation human fetuses. These were obtained using a retrospective gating technique known as metric optimised gating (MOG. Methods A validation experiment was performed in five adult volunteers where conventional cardiac gating was compared with MOG. Linear regression and Bland Altman plots were used to compare MOG with the gold standard of conventional gating. Measurements using MOG were then made in twelve normal fetuses at a median gestational age of 37 weeks (range 30–39 weeks. Flow was measured in the major fetal vessels and indexed to the fetal weight. Results There was good correlation between the conventional gated and MOG measurements in the adult validation experiment (R=0.96. Mean flows in ml/min/kg with standard deviations in the major fetal vessels were as follows: combined ventricular output (CVO 540±101, main pulmonary artery (MPA 327±68, ascending aorta (AAo 198±38, superior vena cava (SVC 147±46, ductus arteriosus (DA 220±39,pulmonary blood flow (PBF 106±59,descending aorta (DAo 273±85, umbilical vein (UV 160±62, foramen ovale (FO107±54. Results expressed as mean percentages of the CVO with standard deviations were as follows: MPA 60±4, AAo37±4, SVC 28±7, DA 41±8, PBF 19±10, DAo50±12, UV 30±9, FO 21±12. Conclusion This study demonstrates how PC CMR with MOG is a feasible technique for measuring the distribution of the normal human fetal circulation in late pregnancy. Our preliminary results are in keeping with findings from previous experimental work in fetal lambs.

  9. Progesterone promotes maternal-fetal tolerance by reducing human maternal T-cell polyfunctionality and inducing a specific cytokine profile.

    Science.gov (United States)

    Lissauer, David; Eldershaw, Suzy A; Inman, Charlotte F; Coomarasamy, Aravinthan; Moss, Paul A H; Kilby, Mark D

    2015-10-01

    Progesterone is a steroid hormone essential for the maintenance of human pregnancy, and its actions are thought to include promoting maternal immune tolerance of the semiallogenic fetus. We report that exposure of maternal T cells to progesterone at physiological doses induced a unique skewing of the cytokine production profile of CD4(+) and CD8(+) T cells, with reductions not only in potentially deleterious IFN-γ and TNF-α production but also in IL-10 and IL-5. Conversely, production of IL-4 was increased. Maternal T cells also became less polyfunctional, focussing cytokine production toward profiles including IL-4. This was accompanied by reduced T-cell proliferation. Using fetal and viral antigen-specific CD8(+) T-cell clones, we confirmed that this as a direct, nonantigen-specific effect. Yet human T cells lacked conventional nuclear progesterone receptors, implicating a membrane progesterone receptor. CD4(+) and CD8(+) T cells responded to progesterone in a dose-dependent manner, with subtle effects at concentrations comparable to those in maternal blood, but profound effects at concentrations similar to those at the maternal-fetal interface. This characterization of how progesterone modulates T-cell function is important in understanding the normal biology of pregnancy and informing the rational use of progesterone therapy in pregnancies at risk of fetal loss. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fetal MRI; Fetales MRT

    Energy Technology Data Exchange (ETDEWEB)

    Blondin, D. [Inst. fuer Diagn. Radiologie, Uniklinikum Duesseldorf (Germany); Turowski, B. [Inst. fuer Diagn. Radiologie, Neuroradiologie, Uniklinikum Duesseldorf (Germany); Schaper, J. [Inst. fuer Diagn. Radiologie, Kinderradiologie, Uniklinikum Duesseldorf (Germany)

    2007-02-15

    Ultrasonography is the method of choice for prenatal malformation screening, but it does not always provide sufficient information for correct diagnosis or adequate abnormality evaluation. Fetal MRI is increasingly being used to complete sonographic findings. It was initially used for evaluation of cerebral abnormalities but is increasingly being applied to other fetal areas. In vivo investigation of fetal brain maturation has been enhanced by MRI. An adequate analysis of fetal chest and abdomen can be achieved with fast T2-, T1-weighted and diffusion-weighted imaging (DWI). The advantages include the great field of view and the excellent soft tissue contrast. This allows correct diagnosis of congenital diaphragmatic hernia and evaluation of the consequences on pulmonary growth. Other pulmonary malformations, such as cystic adenomatoid malformation, sequestration and brochogenic cysts, can also be easily identified. Renal position can be quickly determined using DWI sequences and renal agenesia can be easily diagnosed with only one sequence. Prenatal MRI is virtually as effective as postnatal examination, dispenses with transport of a potentially very ill newborn, and provides logistic advantages. Therefore, prenatal MRI is useful for adequate postnatal treatment of newborns with malformations. (orig.)

  11. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.

    Science.gov (United States)

    McBrayer, Zofeyah L; Dimova, Jiva; Pisansky, Marc T; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C; O'Connor, Michael B

    2015-01-01

    To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.

  12. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.

    Directory of Open Access Journals (Sweden)

    Zofeyah L McBrayer

    Full Text Available To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.

  13. Wound healing in a fetal, adult, and scar tissue model: a comparative study

    NARCIS (Netherlands)

    Coolen, N.A.; Schouten, K.C.; Boekema, B.K.; Middelkoop, E.; Ulrich, M.

    2010-01-01

    Early gestation fetal wounds heal without scar formation. Understanding the mechanism of this scarless healing may lead to new therapeutic strategies for improving adult wound healing. The aims of this study were to develop a human fetal wound model in which fetal healing can be studied and to

  14. Magnetic resonance angiography of fetal vasculature at 3.0 T

    OpenAIRE

    Neelavalli, Jaladhar; Krishnamurthy, Uday; Jella, Pavan K.; Mody, Swati S.; Yadav, Brijesh K.; Hendershot, Kelly; Hernandez-Andrade, Edgar; Yeo, Lami; Cabrera, Maria D.; Haacke, Ewart M.; Hassan, Sonia S.; Romero, Roberto

    2016-01-01

    Magnetic resonance angiography has not been used much previously for visualizing fetal vessels in utero for reasons that include a contraindication for the use of exogenous contrast agents, maternal respiratory motion and fetal motion. In this work, we report the feasibility of using an appropriately modified clinical time-of-flight magnetic resonance imaging sequence for non-contrast angiography of human fetal and placental vessels at 3.0 T. Using this 2D angiography technique, it is possibl...

  15. Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells.

    Science.gov (United States)

    Hemeda, Hatim; Giebel, Bernd; Wagner, Wolfgang

    2014-02-01

    Culture media for therapeutic cell preparations-such as mesenchymal stromal cells (MSCs)-usually comprise serum additives. Traditionally, fetal bovine serum is supplemented in basic research and in most clinical trials. Within the past years, many laboratories adapted their culture conditions to human platelet lysate (hPL), which further stimulates proliferation and expansion of MSCs. Particularly with regard to clinical application, human alternatives for fetal bovine serum are clearly to be preferred. hPL is generated from human platelet units by disruption of the platelet membrane, which is commonly performed by repeated freeze and thaw cycles. Such culture supplements are notoriously ill-defined, and many parameters contribute to batch-to-batch variation in hPL such as different amounts of plasma, a broad range of growth factors and donor-specific effects. The plasma components of hPL necessitate addition of anticoagulants such as heparins to prevent gelatinization of hPL medium, and their concentration must be standardized. Labels for description of hPL-such as "xenogen-free," "animal-free" and "serum free"-are not used consistently in the literature and may be misleading if not critically assessed. Further analysis of the precise composition of relevant growth factors, attachment factors, microRNAs and exosomes will pave the way for optimized and defined culture conditions. The use of hPL has several advantages and disadvantages: they must be taken into account because the choice of cell culture additive has major impact on cell preparations. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration

    Directory of Open Access Journals (Sweden)

    William Sealy Hambright

    2017-08-01

    Full Text Available Synaptic loss and neuron death are the underlying cause of neurodegenerative diseases such as Alzheimer's disease (AD; however, the modalities of cell death in those diseases remain unclear. Ferroptosis, a newly identified oxidative cell death mechanism triggered by massive lipid peroxidation, is implicated in the degeneration of neurons populations such as spinal motor neurons and midbrain neurons. Here, we investigated whether neurons in forebrain regions (cerebral cortex and hippocampus that are severely afflicted in AD patients might be vulnerable to ferroptosis. To this end, we generated Gpx4BIKO mouse, a mouse model with conditional deletion in forebrain neurons of glutathione peroxidase 4 (Gpx4, a key regulator of ferroptosis, and showed that treatment with tamoxifen led to deletion of Gpx4 primarily in forebrain neurons of adult Gpx4BIKO mice. Starting at 12 weeks after tamoxifen treatment, Gpx4BIKO mice exhibited significant deficits in spatial learning and memory function versus Control mice as determined by the Morris water maze task. Further examinations revealed that the cognitively impaired Gpx4BIKO mice exhibited hippocampal neurodegeneration. Notably, markers associated with ferroptosis, such as elevated lipid peroxidation, ERK activation and augmented neuroinflammation, were observed in Gpx4BIKO mice. We also showed that Gpx4BIKO mice fed a diet deficient in vitamin E, a lipid soluble antioxidant with anti-ferroptosis activity, had an expedited rate of hippocampal neurodegeneration and behavior dysfunction, and that treatment with a small-molecule ferroptosis inhibitor ameliorated neurodegeneration in those mice. Taken together, our results indicate that forebrain neurons are susceptible to ferroptosis, suggesting that ferroptosis may be an important neurodegenerative mechanism in diseases such as AD. Keywords: Ferroptosis, Neurodegeneration, Cognitive impairment, Alzheimer's disease, Glutathione peroxidase 4, Transgenic mice

  17. Nonproductive human immunodeficiency virus type 1 infection of human fetal astrocytes: independence from CD4 and major chemokine receptors.

    Science.gov (United States)

    Sabri, F; Tresoldi, E; Di Stefano, M; Polo, S; Monaco, M C; Verani, A; Fiore, J R; Lusso, P; Major, E; Chiodi, F; Scarlatti, G

    1999-11-25

    Human immunodeficiency virus type 1 (HIV-1) infection of the brain is associated with neurological manifestations both in adults and in children. The primary target for HIV-1 infection in the brain is the microglia, but astrocytes can also be infected. We tested 26 primary HIV-1 isolates for their capacity to infect human fetal astrocytes in culture. Eight of these isolates, independent of their biological phenotype and chemokine receptor usage, were able to infect astrocytes. Although no sustained viral replication could be demonstrated, the virus was recovered by coculture with receptive cells such as macrophages or on stimulation with interleukin-1beta. To gain knowledge into the molecular events that regulate attachment and penetration of HIV-1 in astrocytes, we investigated the expression of several chemokine receptors. Fluorocytometry and calcium-mobilization assay did not provide evidence of expression of any of the major HIV-1 coreceptors, including CXCR4, CCR5, CCR3, and CCR2b, as well as the CD4 molecule on the cell surface of human fetal astrocytes. However, mRNA transcripts for CXCR4, CCR5, Bonzo/STRL33/TYMSTR, and APJ were detected by RT-PCR. Furthermore, infection of astrocytes by HIV-1 isolates with different chemokine receptor usage was not inhibited by the chemokines SDF-1beta, RANTES, MIP-1beta, or MCP-1 or by antibodies directed against the third variable region or the CD4 binding site of gp120. These data show that astrocytes can be infected by primary HIV-1 isolates via a mechanism independent of CD4 or major chemokine receptors. Furthermore, astrocytes are potential carriers of latent HIV-1 and on activation may be implicated in spreading the infection to other neighbouring cells, such as microglia or macrophages. Copyright 1999 Academic Press.

  18. Dcc regulates asymmetric outgrowth of forebrain neurons in zebrafish.

    Directory of Open Access Journals (Sweden)

    Jingxia Gao

    Full Text Available The guidance receptor DCC (deleted in colorectal cancer ortholog UNC-40 regulates neuronal asymmetry development in Caenorhabditis elegans, but it is not known whether DCC plays a role in the specification of neuronal polarity in vertebrates. To examine the roles of DCC in neuronal asymmetry regulation in vertebrates, we studied zebrafish anterior dorsal telencephalon (ADt neuronal axons. We generated transgenic zebrafish animals expressing the photo-convertible fluorescent protein Kaede in ADt neurons and then photo-converted Kaede to label specifically the ADt neuron axons. We found that ADt axons normally project ventrally. Knock down of Dcc function by injecting antisense morpholino oligonucleotides caused the ADt neurons to project axons dorsally. To examine the axon projection pattern of individual ADt neurons, we labeled single ADt neurons using a forebrain-specific promoter to drive fluorescent protein expression. We found that individual ADt neurons projected axons dorsally or formed multiple processes after morpholino knock down of Dcc function. We further found that knock down of the Dcc ligand, Netrin1, also caused ADt neurons to project axons dorsally. Knockdown of Neogenin1, a guidance receptor closely related to Dcc, enhanced the formation of aberrant dorsal axons in embryos injected with Dcc morpholino. These experiments provide the first evidence that Dcc regulates polarized axon initiation and asymmetric outgrowth of forebrain neurons in vertebrates.

  19. Human Chorionic Gonadotropin Has Anti-Inflammatory Effects at the Maternal-Fetal Interface and Prevents Endotoxin-Induced Preterm Birth, but Causes Dystocia and Fetal Compromise in Mice1

    Science.gov (United States)

    Furcron, Amy-Eunice; Romero, Roberto; Mial, Tara N.; Balancio, Amapola; Panaitescu, Bogdan; Hassan, Sonia S.; Sahi, Aashna; Nord, Claire; Gomez-Lopez, Nardhy

    2016-01-01

    Human chorionic gonadotropin (hCG) is implicated in the maintenance of uterine quiescence by down-regulating myometrial gap junctions during pregnancy, and it was considered as a strategy to prevent preterm birth after the occurrence of preterm labor. However, the effect of hCG on innate and adaptive immune cells implicated in parturition is poorly understood. Herein, we investigated the immune effects of hCG at the maternal-fetal interface during late gestation, and whether this hormone can safely prevent endotoxin-induced preterm birth. Using immunophenotyping, we demonstrated that hCG has immune effects at the maternal-fetal interface (decidual tissues) by: 1) increasing the proportion of regulatory T cells; 2) reducing the proportion of macrophages and neutrophils; 3) inducing an M1 → M2 macrophage polarization; and 4) increasing the proportion of T helper 17 cells. Next, ELISAs were used to determine whether the local immune changes were associated with systemic concentrations of progesterone, estradiol, and/or cytokines (IFNgamma, IL1beta, IL2, IL4, IL5, IL6, IL10, IL12p70, KC/GRO, and TNFalpha). Plasma concentrations of IL1beta, but not progesterone, estradiol, or any other cytokine, were increased following hCG administration. Pretreatment with hCG prevented endotoxin-induced preterm birth by 44%, proving the effectiveness of this hormone as an anti-inflammatory agent. However, hCG administration alone caused dystocia and fetal compromise, as proven by Doppler ultrasound. These results provide insight into the mechanisms whereby hCG induces an anti-inflammatory microenvironment at the maternal-fetal interface during late gestation, and demonstrate its effectiveness in preventing preterm labor/birth. However, the deleterious effects of this hormone on mothers and fetuses warrant caution. PMID:27146032

  20. Oxidative and nonoxidative metabolism of polycyclic aromatic hydrocarbons in rabbit and chicken aortas and in human fetal smooth-muscle cells

    International Nuclear Information System (INIS)

    Bond, J.A.; Kocan, R.M.; Benditt, E.P.; Juchau, M.R.

    1980-01-01

    A description of the various enzyme systems in aortas of rabbits and chickens and in human fetal smooth muscle cells in culture which are responsible overall for the metabolism of F, 12-dimethylbenz(a)anthracene and benzo(a)pyrene-4, 5-oxide are provided

  1. A transcriptome-wide screen for mRNAs enriched in fetal Leydig cells: CRHR1 agonism stimulates rat and mouse fetal testis steroidogenesis.

    Directory of Open Access Journals (Sweden)

    Erin N McDowell

    Full Text Available Fetal testis steroidogenesis plays an important role in the reproductive development of the male fetus. While regulators of certain aspects of steroidogenesis are known, the initial driver of steroidogenesis in the human and rodent fetal testis is unclear. Through comparative analysis of rodent fetal testis microarray datasets, 54 candidate fetal Leydig cell-specific genes were identified. Fetal mouse testis interstitial expression of a subset of these genes with unknown expression (Crhr1, Gramd1b, Itih5, Vgll3, and Vsnl1 was verified by whole-mount in situ hybridization. Among the candidate fetal Leydig cell-specific factors, three receptors (CRHR1, PRLR, and PROKR2 were tested for a steroidogenic function using ex vivo fetal testes treated with receptor agonists (CRH, PRL, and PROK2. While PRL and PROK2 had no effect, CRH, at low (approximately 1 to 10 nM concentration, increased expression of the steroidogenic genes Cyp11a1, Cyp17a1, Scarb1, and Star in GD15 mouse and GD17 rat testes, and in conjunction, testosterone production was increased. Exposure of GD15 fetal mouse testis to a specific CRHR1 antagonist blunted the CRH-induced steroidogenic gene expression and testosterone responses. Similar to ex vivo rodent fetal testes, ≥ 10 nM CRH exposure of MA-10 Leydig cells increased steroidogenic pathway mRNA and progesterone levels, showing CRH can enhance steroidogenesis by directly targeting Leydig cells. Crh mRNA expression was observed in rodent fetal hypothalamus, and CRH peptide was detected in rodent amniotic fluid. Together, these data provide a resource for discovering factors controlling fetal Leydig cell biology and suggest that CRHR1 activation by CRH stimulates rat and mouse fetal Leydig cell steroidogenesis in vivo.

  2. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    Directory of Open Access Journals (Sweden)

    Andras eJakab

    2014-10-01

    Full Text Available The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st – 38th gestational weeks (GW with a network-based statistical inference approach. The overall connectivity network, short range and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29. GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW, temporal (peak: 26 GW, frontal (peak: 26.4 GW and parietal expansion (peak: 27.5 GW. We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macroconnectivity.

  3. Fetal functional imaging portrays heterogeneous development of emerging human brain networks.

    Science.gov (United States)

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity.

  4. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death

    International Nuclear Information System (INIS)

    Tomiyama, Ken-ichi; Funada, Masahiko

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB 1 receptor antagonist AM251, but not with the selective CB 2 receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB 1 receptor, but not by the CB 2 receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB 1 receptor, but not by the CB 2 receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB 1 receptors

  5. Adolescent Intermittent Alcohol Exposure: Deficits in Object Recognition Memory and Forebrain Cholinergic Markers.

    Directory of Open Access Journals (Sweden)

    H Scott Swartzwelder

    Full Text Available The long-term effects of intermittent ethanol exposure during adolescence (AIE are of intensive interest and investigation. The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after ethanol abuse during adolescence. Although studies of such deficits after AIE hold much promise for identifying mechanisms and therapeutic interventions, the findings are sparse and inconclusive. The present results identify a specific deficit in memory function after AIE and establish a possible neural mechanism of that deficit that may be of translational significance. Male rats (starting at PND-30 received exposure to AIE (5g/kg, i.g. or vehicle and were allowed to mature into adulthood. At PND-71, one group of animals was assessed using the spatial-temporal object recognition (stOR test to evaluate memory function. A separate group of animals was used to assess the density of cholinergic neurons in forebrain areas Ch1-4 using immunohistochemistry. AIE exposed animals manifested deficits in the temporal component of the stOR task relative to controls, and a significant decrease in the number of ChAT labeled neurons in forebrain areas Ch1-4. These findings add to the growing literature indicating long-lasting neural and behavioral effects of AIE that persist into adulthood and indicate that memory-related deficits after AIE depend upon the tasks employed, and possibly their degree of complexity. Finally, the parallel finding of diminished cholinergic neuron density suggests a possible mechanism underlying the effects of AIE on memory and hippocampal function as well as possible therapeutic or preventive strategies for AIE.

  6. Visual training paired with electrical stimulation of the basal forebrain improves orientation-selective visual acuity in the rat.

    Science.gov (United States)

    Kang, Jun Il; Groleau, Marianne; Dotigny, Florence; Giguère, Hugo; Vaucher, Elvire

    2014-07-01

    The cholinergic afferents from the basal forebrain to the primary visual cortex play a key role in visual attention and cortical plasticity. These afferent fibers modulate acute and long-term responses of visual neurons to specific stimuli. The present study evaluates whether this cholinergic modulation of visual neurons results in cortical activity and visual perception changes. Awake adult rats were exposed repeatedly for 2 weeks to an orientation-specific grating with or without coupling this visual stimulation to an electrical stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze before and after the exposure to the orientation-specific grating, was increased in the group of trained rats with simultaneous basal forebrain/visual stimulation. The increase in visual acuity was not observed when visual training or basal forebrain stimulation was performed separately or when cholinergic fibers were selectively lesioned prior to the visual stimulation. The visual evoked potentials show a long-lasting increase in cortical reactivity of the primary visual cortex after coupled visual/cholinergic stimulation, as well as c-Fos immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with visual training, the cholinergic system improves visual performance for the trained orientation probably through enhancement of attentional processes and cortical plasticity in V1 related to the ratio of excitatory/inhibitory inputs. This study opens the possibility of establishing efficient rehabilitation strategies for facilitating visual capacity.

  7. SLC9B1 methylation predicts fetal intolerance of labor.

    Science.gov (United States)

    Knight, Anna K; Conneely, Karen N; Kilaru, Varun; Cobb, Dawayland; Payne, Jennifer L; Meilman, Samantha; Corwin, Elizabeth J; Kaminsky, Zachary A; Dunlop, Anne L; Smith, Alicia K

    2018-01-01

    Fetal intolerance of labor is a common indication for delivery by Caesarean section. Diagnosis is based on the presence of category III fetal heart rate tracing, which is an abnormal heart tracing associated with increased likelihood of fetal hypoxia and metabolic acidemia. This study analyzed data from 177 unique women who, during their prenatal visits (7-15 weeks and/or 24-32 weeks) to Atlanta area prenatal care clinics, consented to provide blood samples for DNA methylation (HumanMethylation450 BeadChip) and gene expression (Human HT-12 v4 Expression BeadChip) analyses. We focused on 57 women aged 18-36 (mean 25.4), who had DNA methylation data available from their second prenatal visit. DNA methylation patterns at CpG sites across the genome were interrogated for associations with fetal intolerance of labor. Four CpG sites (P value intolerance of labor. DNA methylation and gene expression were negatively associated when examined longitudinally during pregnancy using a linear mixed-effects model. Positive predictive values of methylation of these four sites ranged from 0.80 to 0.89, while negative predictive values ranged from 0.91 to 0.92. The four CpG sites were also associated with fetal intolerance of labor in an independent cohort (the Johns Hopkins Prospective PPD cohort). Therefore, fetal intolerance of labor could be accurately predicted from maternal blood samples obtained between 24-32 weeks gestation. Fetal intolerance of labor may be accurately predicted from maternal blood samples obtained between 24-32 weeks gestation by assessing DNA methylation patterns of SLC9B1. The identification of pregnant women at elevated risk for fetal intolerance of labor may allow for the development of targeted treatments or management plans.

  8. Magnetic resonance angiography of fetal vasculature at 3.0 T.

    Science.gov (United States)

    Neelavalli, Jaladhar; Krishnamurthy, Uday; Jella, Pavan K; Mody, Swati S; Yadav, Brijesh K; Hendershot, Kelly; Hernandez-Andrade, Edgar; Yeo, Lami; Cabrera, Maria D; Haacke, Ewart M; Hassan, Sonia S; Romero, Roberto

    2016-12-01

    Magnetic resonance angiography has not been used much previously for visualizing fetal vessels in utero for reasons that include a contraindication for the use of exogenous contrast agents, maternal respiratory motion and fetal motion. In this work, we report the feasibility of using an appropriately modified clinical time-of-flight magnetic resonance imaging sequence for non-contrast angiography of human fetal and placental vessels at 3.0 T. Using this 2D angiography technique, it is possible to visualize fetal vascular networks in late pregnancy. • 3D-visualization of fetal vasculature is feasible using non-contrast MRA at 3.0 T. • Visualization of placental vasculature is also possible with this method. • Fetal MRA can serve as a vascular localizer for quantitative MRI studies. • This method can be extended to 1.5 T.

  9. Fetal alcohol exposure and development of the integument

    Directory of Open Access Journals (Sweden)

    Longhurst WD

    2016-05-01

    Full Text Available William D Longhurst,1 Jordan Ernst,2 Larry Burd3 1Center for Emergency Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA; 2University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA; 3Department of Pediatrics, North Dakota Fetal Alcohol Syndrome Center, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA Background: The physiology of fetal alcohol exposure changes across gestation. Early in pregnancy placental, fetal, and amniotic fluid concentrations of alcohol exposure are equivalent. Beginning in mid-pregnancy, the maturing fetal epidermis adds keratins which decrease permeability resulting in development of a barrier between fetal circulation and the amniotic fluid. Barrier function development is essential for viability in late pregnancy and in the extra-uterine environment. In this paper we provide a selected review of the effects of barrier function on fetal alcohol exposure. Methods: We utilized a search of PubMed and Google for all years in all languages for MeSH on Demand terms: alcohol drinking, amnion, amniotic fluid, epidermis, ethanol, female, fetal development, fetus, humans, keratins, permeability, and pregnancy. We also reviewed the reference lists of relevant papers and hand-searched reference lists of textbooks for additional references. Results: By 30 gestational weeks, development of barrier function alters the pathophysiology of ethanol dispersion between the fetus and amniotic fluid. Firstly, increases in the effectiveness of barrier function decreases the rate of diffusion of alcohol from fetal circulation across fetal skin into the amniotic fluid. This reduces the volume of alcohol entering the amniotic fluid. Secondly, barrier function increases the duration of fetal exposure by decreasing the rate of alcohol diffusion from amniotic fluid back into fetal circulation. Ethanol is then transported into

  10. Maternal exposure to hurricane destruction and fetal mortality.

    Science.gov (United States)

    Zahran, Sammy; Breunig, Ian M; Link, Bruce G; Snodgrass, Jeffrey G; Weiler, Stephan; Mielke, Howard W

    2014-08-01

    The majority of research documenting the public health impacts of natural disasters focuses on the well-being of adults and their living children. Negative effects may also occur in the unborn, exposed to disaster stressors when critical organ systems are developing and when the consequences of exposure are large. We exploit spatial and temporal variation in hurricane behaviour as a quasi-experimental design to assess whether fetal death is dose-responsive in the extent of hurricane damage. Data on births and fetal deaths are merged with Parish-level housing wreckage data. Fetal outcomes are regressed on housing wreckage adjusting for the maternal, fetal, placental and other risk factors. The average causal effect of maternal exposure to hurricane destruction is captured by difference-in-differences analyses. The adjusted odds of fetal death are 1.40 (1.07-1.83) and 2.37 (1.684-3.327) times higher in parishes suffering 10-50% and >50% wreckage to housing stock, respectively. For every 1% increase in the destruction of housing stock, we observe a 1.7% (1.1-2.4%) increase in fetal death. Of the 410 officially recorded fetal deaths in these parishes, between 117 and 205 may be attributable to hurricane destruction and postdisaster disorder. The estimated fetal death toll is 17.4-30.6% of the human death toll. The destruction caused by Hurricanes Katrina and Rita imposed significant measurable losses in terms of fetal death. Postdisaster migratory dynamics suggest that the reported effects of maternal exposure to hurricane destruction on fetal death may be conservative. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. [Medical use of fetal cells and tissue: ethical aspects].

    Science.gov (United States)

    Wolff, H P

    1992-04-01

    After considering the moral status of the living and of the dead human fetus, the article examines various ethical arguments connected with the use of fetal remains following elective abortion: financial or humanitarian incentives for the termination of pregnancy, conflicts of interest between mother and user, authority over fetal remains and modality of donation and utilization of the fetus. To prevent improper use of fetal remains it is recommended: to separate completely the decisions relating to abortion (first) and to the subsequent use of fetal tissues (second); to obtain explicit informed consent from the mother, making it impossible for her to direct any specific use of the fetal tissues; to base decisions on the method and timing of an abortion on the mother's health care needs alone; to exclude those involved in the process of abortion from any use of the fetus; to protect the anonymity of donor and recipient through an intermediary (tissue bank).

  12. Fetal plasma erythropoietin concentration in severe growth retardation.

    Science.gov (United States)

    Snijders, R J; Abbas, A; Melby, O; Ireland, R M; Nicolaides, K H

    1993-02-01

    The aim of this study was to determine whether hypoxemia induces an increase in plasma erythropoietin concentration in human fetal life and, if so, whether this response stimulates fetal erythropoiesis. The plasma erythropoietin concentration in blood samples from 33 small-for-gestational-age fetuses at 26 to 38 weeks' gestation was measured. Measurements were compared with the reference range for gestation, and associations with PO2, pH, and erythroblast and erythrocyte counts were examined. The mean plasma erythropoietin concentration in the small-for-gestational-age fetuses was significantly increased, and the degree of increase was significantly associated both with fetal acidemia and, more strongly, with fetal erythroblastosis. Erythropoietin production in response to tissue hypoxia occurs from at least 26 weeks' gestation with measurable physiologic effects on erythropoiesis. Furthermore, more accurate assessment of tissue oxygenation may be obtained by measuring the erythroblast count rather than the blood pH.

  13. Variation in ovarian follicle density during human fetal development.

    Science.gov (United States)

    Geber, Selmo; Megale, Rodrigo; Vale, Fabiene; Lanna, Ana Maria Arruda; Cabral, Antônio Carlos Vieira

    2012-09-01

    To obtain a precise estimate of ovarian follicle density and variation in the number of follicles at several gestational ages during human fetal development. Twelve necropsied ovaries from 9 fetuses (gestational age: 24 to 36 weeks) and 3 neonates (who died within the first hours of life) were studied. Ovaries were fixed with 4 % formaldehyde and embedded in paraffin. Serial, 7 mm thick sections of the ovaries were cut and evaluated at every 50 cuts. Follicles were counted in 10 regions (each measuring 625 μm(2)) of the ovarian cortex and the number of follicles per mm³ was calculated. The number of follicles per 0.25 mm² ranged from 10.9 (± 4.8) in a neonate to 34.7 (± 10.6) also in a neonate. Among fetuses, follicle density was lowest at 36 weeks of gestation (11.1 ± 6.2) and highest at 26 weeks (32 ± 8.9). The total number of follicles ranged from 500,000 at the age of 22 weeks to > 1,000,000 at the age of 39 weeks. Our results show a peak in the number of follicles during intrauterine life at approximately 26 weeks, followed by a rapid reduction in this number before birth, providing a step forward towards the understanding of primordial follicular assembly in humans and, ultimately, the identification of the determinants of reproductive capacity.

  14. Assisted Reproduction Causes Reduced Fetal Growth Associated with Downregulation of Paternally Expressed Imprinted Genes That Enhance Fetal Growth in Mice.

    Science.gov (United States)

    Li, Bo; Chen, Shuqiang; Tang, Na; Xiao, Xifeng; Huang, Jianlei; Jiang, Feng; Huang, Xiuying; Sun, Fangzhen; Wang, Xiaohong

    2016-02-01

    Alteration of intrauterine growth trajectory is linked to metabolic diseases in adulthood. In mammalian and, specifically, human species, pregnancies through assisted reproductive technology (ART) are associated with changes in intrauterine growth trajectory. However, it is still unclear how ART alters intrauterine growth trajectory, especially reduced fetal growth in early to midgestation. In this study, using a mouse model, it was found that ART procedures reduce fetal and placental growth at Embryonic Day 10.5. Furthermore, ART leads to decreased methylation levels at H19, KvDMR1, and Snrpn imprinting control regions in the placentae, instead of fetuses. Furthermore, in the placenta, ART downregulated a majority of parentally expressed imprinted genes, which enhance fetal growth, whereas it upregulated a majority of maternally expressed genes which repress fetal growth. Additionally, the expression of genes that regulate placental development was also affected by ART. ART also downregulated a majority of placental nutrient transporters. Disruption of genomic imprinting and abnormal expression of developmentally and functionally relevant genes in placenta may influence the placental development and function, which affect fetal growth and reprogramming. © 2016 by the Society for the Study of Reproduction, Inc.

  15. Studies in Fetal Behavior: Revisited, Renewed, and Reimagined

    OpenAIRE

    DiPietro, Janet A.; Costigan, Kathleen A.; Voegtline, Kristin M.

    2015-01-01

    Among the earliest volumes of this Monograph series was a report by Lester Sontag and colleagues, of the esteemed Fels Institute, on the heart rate of the human fetus as an expression of the developing nervous system. Here, some 75 years later, we commemorate this work and provide historical and contemporary context on knowledge regarding fetal development, as well as results from our own research. These are based on synchronized monitoring of maternal and fetal parameters assessed between 24...

  16. A competitive advantage by neonatally engrafted human glial progenitors yields mice whose brains are chimeric for human glia

    DEFF Research Database (Denmark)

    Windrem, Martha S; Schanz, Steven J; Morrow, Carolyn

    2014-01-01

    Neonatally transplanted human glial progenitor cells (hGPCs) densely engraft and myelinate the hypomyelinated shiverer mouse. We found that, in hGPC-xenografted mice, the human donor cells continue to expand throughout the forebrain, systematically replacing the host murine glia. The differentiat...

  17. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes.

    Science.gov (United States)

    Baxter, Melissa; Withey, Sarah; Harrison, Sean; Segeritz, Charis-Patricia; Zhang, Fang; Atkinson-Dell, Rebecca; Rowe, Cliff; Gerrard, Dave T; Sison-Young, Rowena; Jenkins, Roz; Henry, Joanne; Berry, Andrew A; Mohamet, Lisa; Best, Marie; Fenwick, Stephen W; Malik, Hassan; Kitteringham, Neil R; Goldring, Chris E; Piper Hanley, Karen; Vallier, Ludovic; Hanley, Neil A

    2015-03-01

    Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  18. Zika virus infection in immunocompetent pregnant mice causes fetal damage and placental pathology in the absence of fetal infection

    Science.gov (United States)

    Kummer, Lawrence W.; Lanthier, Paula; Kim, In-Jeong; Kuki, Atsuo; Thomas, Stephen J.

    2018-01-01

    Zika virus (ZIKV) infection during human pregnancy may cause diverse and serious congenital defects in the developing fetus. Previous efforts to generate animal models of human ZIKV infection and clinical symptoms often involved manipulating mice to impair their Type I interferon (IFN) signaling, thereby allowing enhanced infection and vertical transmission of virus to the embryo. Here, we show that even pregnant mice competent to generate Type I IFN responses that can limit ZIKV infection nonetheless develop profound placental pathology and high frequency of fetal demise. We consistently found that maternal ZIKV exposure led to placental pathology and that ZIKV RNA levels measured in maternal, placental or embryonic tissues were not predictive of the pathological effects seen in the embryos. Placental pathology included trophoblast hyperplasia in the labyrinth, trophoblast giant cell necrosis in the junctional zone, and loss of embryonic vessels. Our findings suggest that, in this context of limited infection, placental pathology rather than embryonic/fetal viral infection may be a stronger contributor to adverse pregnancy outcomes in mice. Our finding demonstrates that in immunocompetent mice, direct viral infection of the embryo is not essential for fetal demise. Our immunologically unmanipulated pregnancy mouse model provides a consistent and easily measurable congenital abnormality readout to assess fetal outcome, and may serve as an additional model to test prophylactic and therapeutic interventions to protect the fetus during pregnancy, and for studying the mechanisms of ZIKV congenital immunopathogenesis. PMID:29634758

  19. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB{sub 1} receptors and apoptotic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Tomiyama, Ken-ichi; Funada, Masahiko, E-mail: mfunada@ncnp.go.jp

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB{sub 1} receptor antagonist AM251, but not with the selective CB{sub 2} receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB{sub 1} receptors.

  20. Epigenetic regulation during fetal femur development: DNA methylation matters.

    Directory of Open Access Journals (Sweden)

    María C de Andrés

    Full Text Available Epigenetic modifications are heritable changes in gene expression without changes in DNA sequence. DNA methylation has been implicated in the control of several cellular processes including differentiation, gene regulation, development, genomic imprinting and X-chromosome inactivation. Methylated cytosine residues at CpG dinucleotides are commonly associated with gene repression; conversely, strategic loss of methylation during development could lead to activation of lineage-specific genes. Evidence is emerging that bone development and growth are programmed; although, interestingly, bone is constantly remodelled throughout life. Using human embryonic stem cells, human fetal bone cells (HFBCs, adult chondrocytes and STRO-1(+ marrow stromal cells from human bone marrow, we have examined a spectrum of developmental stages of femur development and the role of DNA methylation therein. Using pyrosequencing methodology we analysed the status of methylation of genes implicated in bone biology; furthermore, we correlated these methylation levels with gene expression levels using qRT-PCR and protein distribution during fetal development evaluated using immunohistochemistry. We found that during fetal femur development DNA methylation inversely correlates with expression of genes including iNOS (NOS2 and COL9A1, but not catabolic genes including MMP13 and IL1B. Furthermore, significant demethylation was evident in the osteocalcin promoter between the fetal and adult developmental stages. Increased TET1 expression and decreased expression of DNA (cytosine-5--methyltransferase 1 (DNMT1 in adult chondrocytes compared to HFBCs could contribute to the loss of methylation observed during fetal development. HFBC multipotency confirms these cells to be an ideal developmental system for investigation of DNA methylation regulation. In conclusion, these findings demonstrate the role of epigenetic regulation, specifically DNA methylation, in bone development

  1. Derivation and characterization of human fetal MSCs: an alternative cell source for large-scale production of cardioprotective microparticles.

    Science.gov (United States)

    Lai, Ruenn Chai; Arslan, Fatih; Tan, Soon Sim; Tan, Betty; Choo, Andre; Lee, May May; Chen, Tian Sheng; Teh, Bao Ju; Eng, John Kun Long; Sidik, Harwin; Tanavde, Vivek; Hwang, Wei Sek; Lee, Chuen Neng; El Oakley, Reida Menshawe; Pasterkamp, Gerard; de Kleijn, Dominique P V; Tan, Kok Hian; Lim, Sai Kiang

    2010-06-01

    The therapeutic effects of mesenchymal stem cells (MSCs) transplantation are increasingly thought to be mediated by MSC secretion. We have previously demonstrated that human ESC-derived MSCs (hESC-MSCs) produce cardioprotective microparticles in pig model of myocardial ischemia/reperfusion (MI/R) injury. As the safety and availability of clinical grade human ESCs remain a concern, MSCs from fetal tissue sources were evaluated as alternatives. Here we derived five MSC cultures from limb, kidney and liver tissues of three first trimester aborted fetuses and like our previously described hESC-derived MSCs; they were highly expandable and had similar telomerase activities. Each line has the potential to generate at least 10(16-19) cells or 10(7-10) doses of cardioprotective secretion for a pig model of MI/R injury. Unlike previously described fetal MSCs, they did not express pluripotency-associated markers such as Oct4, Nanog or Tra1-60. They displayed a typical MSC surface antigen profile and differentiated into adipocytes, osteocytes and chondrocytes in vitro. Global gene expression analysis by microarray and qRT-PCR revealed a typical MSC gene expression profile that was highly correlated among the five fetal MSC cultures and with that of hESC-MSCs (r(2)>0.90). Like hESC-MSCs, they produced secretion that was cardioprotective in a mouse model of MI/R injury. HPLC analysis of the secretion revealed the presence of a population of microparticles with a hydrodynamic radius of 50-65 nm. This purified population of microparticles was cardioprotective at approximately 1/10 dosage of the crude secretion. (c) 2009 Elsevier Ltd. All rights reserved.

  2. The uptake of tritium-labelled carnitine by monolayer cultures of human fetal muscle and its potential as a label in cytotoxicity studies

    International Nuclear Information System (INIS)

    Cambridge, G.; Stern, C.M.M.

    1981-01-01

    As a novel approach to the investigation of immune responses directed against muscle antigens in inflammatory muscle disease, the use of tritium-labelled carnitine as a selective marker for myotubes in monolayer cultures was investigated. Tritium-labelled carnitine was incubated either with monolayer cultures of human fetal muscle or with syngeneic monolayer cultures of human fetal fibroblasts. The rate of uptake and loss of tritium-labelled carnitine by muscle cultures was compared with that shown by fibroblast cultures; values for the ratio Ksub(m)/Vsub(max) were 3.1 for muscle cultures and 0.46 for fibroblast cultures. Freeze-dried radioautographs of muscle monolayers, previously incubated with tritium-labelled carnitine confirmed the specific intra-tubular localization of the label. Fetal muscle monolayers, previously incubated with tritium-labelled carnitine, were used as targets in long-term cytotoxicity experiments into lymphocyte-mediated myotoxicity. Peripheral blood lymphocytes from patients with inflammatory muscle disease were shown to be myotoxic, but lymphocytes from normal individuals or those with non-inflammatory muscle disease were not. Carnitine-based measures of myotoxicity closely followed the clinical activity of the disease in one patient and the test shows considerable potential as a means of assessing myotube killing by lymphocytes on a per-cell basis. (author)

  3. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Erica L. McGrath

    2017-03-01

    Full Text Available Zika virus (ZIKV infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7, to infect primary human neural stem cells (hNSCs originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection.

  4. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection.

    Science.gov (United States)

    McGrath, Erica L; Rossi, Shannan L; Gao, Junling; Widen, Steven G; Grant, Auston C; Dunn, Tiffany J; Azar, Sasha R; Roundy, Christopher M; Xiong, Ying; Prusak, Deborah J; Loucas, Bradford D; Wood, Thomas G; Yu, Yongjia; Fernández-Salas, Ildefonso; Weaver, Scott C; Vasilakis, Nikos; Wu, Ping

    2017-03-14

    Zika virus (ZIKV) infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7), to infect primary human neural stem cells (hNSCs) originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Average fetal depth in utero: data for estimation of fetal absorbed radiation dose

    International Nuclear Information System (INIS)

    Ragozzino, M.W.; Breckle, R.; Hill, L.M.; Gray, J.E.

    1986-01-01

    To estimate fetal absorbed dose from radiographic examinations, the depth from the anterior maternal surface to the midline of the fetal skull and abdomen was measured by ultrasound in 97 pregnant women. The relationships between fetal depth, fetal presentation, and maternal parameters of height, weight, anteroposterior (AP) thickness, gestational age, placental location, and bladder volume were analyzed. Maternal AP thickness (MAP) can be estimated from gestational age, maternal height, and maternal weight. Fetal midskull and abdominal depths were nearly equal. Fetal depth normalized to MAP was independent or nearly independent of maternal parameters and fetal presentation. These data enable a reasonable estimation of absorbed dose to fetal brain, abdomen, and whole body

  6. MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13

    OpenAIRE

    Sankaran, Vijay G.; Menne, Tobias F.; Šćepanović, Danilo; Vergilio, Jo-Anne; Ji, Peng; Kim, Jinkuk; Thiru, Prathapan; Orkin, Stuart H.; Lander, Eric S.; Lodish, Harvey F.

    2011-01-01

    Many human aneuploidy syndromes have unique phenotypic consequences, but in most instances it is unclear whether these phenotypes are attributable to alterations in the dosage of specific genes. In human trisomy 13, there is delayed switching and persistence of fetal hemoglobin (HbF) and elevation of embryonic hemoglobin in newborns. Using partial trisomy cases, we mapped this trait to chromosomal band 13q14; by examining the genes in this region, two microRNAs, miR-15a and -16-1, appear as t...

  7. Fetal behavioral teratology.

    Science.gov (United States)

    Visser, Gerard H A; Mulder, Eduard J H; Tessa Ververs, F F

    2010-10-01

    Ultrasound studies of fetal motor behavior provide direct – in vivo – insight in the functioning of the motor component of the fetal central nervous system. In this article, studies are reviewed showing changes in the first timetable of appearance of fetal movements, changes in quality and/or quantity of movements and disturbances in the development of fetal behavioral states in case of endogenous malfunctions, maternal diseases and exogenous behavioral teratogens.

  8. Donor-Specific Anti-HLA Antibodies in Huntington's Disease Recipients of Human Fetal Striatal Grafts.

    Science.gov (United States)

    Porfirio, Berardino; Paganini, Marco; Mazzanti, Benedetta; Bagnoli, Silvia; Bucciantini, Sandra; Ghelli, Elena; Nacmias, Benedetta; Putignano, Anna Laura; Rombolà, Giovanni; Saccardi, Riccardo; Lombardini, Letizia; Di Lorenzo, Nicola; Vannelli, Gabriella B; Gallina, Pasquale

    2015-01-01

    Fetal grafting in a human diseased brain was thought to be less immunogenic than other solid organ transplants, hence the minor impact on the efficacy of the transplant. How much prophylactic immune protection is required for neural allotransplantation is also debated. High-sensitive anti-HLA antibody screening in this field has never been reported. Sixteen patients with Huntington's disease underwent human fetal striatal transplantation in the frame of an open-label observational trial, which is being carried out at Florence University. All patients had both brain hemispheres grafted in two separate robotic-stereotactic procedures. The trial started in February 2006 with the first graft to the first patient (R1). R16 was given his second graft on March 2011. All patients received triple immunosuppressive treatment. Pre- and posttransplant sera were analyzed for the presence of anti-HLA antibodies using the multiplexed microsphere-based suspension array Luminex xMAP technology. Median follow-up was 38.5 months (range 13-85). Six patients developed anti-HLA antibodies, which turned out to be donor specific. Alloimmunization occurred in a time window of 0-49 months after the first neurosurgical procedure. The immunogenic determinants were non-self-epitopes from mismatched HLA antigens. These determinants were both public epitopes shared by two or more HLA molecules and private epitopes unique to individual HLA molecules. One patient had non-donor-specific anti-HLA antibodies in her pretransplant serum sample, possibly due to previous sensitization events. Although the clinical significance of donor-specific antibodies is far from being established, particularly in the setting of neuronal transplantation, these findings underline the need of careful pre- and posttransplant immunogenetic evaluation of patients with intracerebral grafts.

  9. Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory

    Science.gov (United States)

    Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.

    2004-01-01

    A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…

  10. Lactobacillus rhamnosus GG and its SpaC pilus adhesin modulate inflammatory responsiveness and TLR-related gene expression in the fetal human gut

    NARCIS (Netherlands)

    Ganguli, K.; Collado, M.C.; Rautava, J.; Lu, L.; Satokari, R.M.; Ossowski, von I.; Reunanen, J.; Vos, de W.M.; Palva, A.; Isolauri, E.; Salminen, S.; Walker, W.A.; Rautava, S.

    2015-01-01

    BACKGROUND: Bacterial contact in utero modulates fetal and neonatal immune responses. Maternal probiotic supplementation reduces the risk of immune-mediated disease in the infant. We investigated the immunomodulatory properties of live Lactobacillus rhamnosus GG and its SpaC pilus adhesin in human

  11. We have got you 'covered': how the meninges control brain development.

    Science.gov (United States)

    Siegenthaler, Julie A; Pleasure, Samuel J

    2011-06-01

    The meninges have traditionally been viewed as specialized membranes surrounding and protecting the adult brain from injury. However, there is increasing evidence that the fetal meninges play important roles during brain development. Through the release of diffusible factors, the meninges influence the proliferative and migratory behaviors of neural progenitors and neurons in the forebrain and hindbrain. Meningeal cells also secrete and organize the pial basement membrane (BM), a critical anchor point for the radially oriented fibers of neuroepithelial stem cells. With its emerging role in brain development, the potential that defects in meningeal development may underlie certain congenital brain abnormalities in humans should be considered. In this review, we will discuss what is known about assembly of the fetal meninges and review the role of meningeal-derived proteins in mouse and human brain development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Melatonin modulates the fetal cardiovascular defense response to acute hypoxia.

    Science.gov (United States)

    Thakor, Avnesh S; Allison, Beth J; Niu, Youguo; Botting, Kimberley J; Serón-Ferré, Maria; Herrera, Emilio A; Giussani, Dino A

    2015-08-01

    Experimental studies in animal models supporting protective effects on the fetus of melatonin in adverse pregnancy have prompted clinical trials in human pregnancy complicated by fetal growth restriction. However, the effects of melatonin on the fetal defense to acute hypoxia, such as that which may occur during labor, remain unknown. This translational study tested the hypothesis, in vivo, that melatonin modulates the fetal cardiometabolic defense responses to acute hypoxia in chronically instrumented late gestation fetal sheep via alterations in fetal nitric oxide (NO) bioavailability. Under anesthesia, 6 fetal sheep at 0.85 gestation were instrumented with vascular catheters and a Transonic flow probe around a femoral artery. Five days later, fetuses were exposed to acute hypoxia with or without melatonin treatment. Fetal blood was taken to determine blood gas and metabolic status and plasma catecholamine concentrations. Hypoxia during melatonin treatment was repeated during in vivo NO blockade with the NO clamp. This technique permits blockade of de novo synthesis of NO while compensating for the tonic production of the gas, thereby maintaining basal cardiovascular function. Melatonin suppressed the redistribution of blood flow away from peripheral circulations and the glycemic and plasma catecholamine responses to acute hypoxia. These are important components of the fetal brain sparing response to acute hypoxia. The effects of melatonin involved NO-dependent mechanisms as the responses were reverted by fetal treatment with the NO clamp. Melatonin modulates the in vivo fetal cardiometabolic responses to acute hypoxia by increasing NO bioavailability. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. The Navigation Guide - evidence-based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth.

    Science.gov (United States)

    Johnson, Paula I; Sutton, Patrice; Atchley, Dylan S; Koustas, Erica; Lam, Juleen; Sen, Saunak; Robinson, Karen A; Axelrad, Daniel A; Woodruff, Tracey J

    2014-10-01

    The Navigation Guide methodology was developed to meet the need for a robust method of systematic and transparent research synthesis in environmental health science. We conducted a case study systematic review to support proof of concept of the method. We applied the Navigation Guide systematic review methodology to determine whether developmental exposure to perfluorooctanoic acid (PFOA) affects fetal growth in humans. We applied the first 3 steps of the Navigation Guide methodology to human epidemiological data: 1) specify the study question, 2) select the evidence, and 3) rate the quality and strength of the evidence. We developed a protocol, conducted a comprehensive search of the literature, and identified relevant studies using prespecified criteria. We evaluated each study for risk of bias and conducted meta-analyses on a subset of studies. We rated quality and strength of the entire body of human evidence. We identified 18 human studies that met our inclusion criteria, and 9 of these were combined through meta-analysis. Through meta-analysis, we estimated that a 1-ng/mL increase in serum or plasma PFOA was associated with a -18.9 g (95% CI: -29.8, -7.9) difference in birth weight. We concluded that the risk of bias across studies was low, and we assigned a "moderate" quality rating to the overall body of human evidence. On the basis of this first application of the Navigation Guide systematic review methodology, we concluded that there is "sufficient" human evidence that developmental exposure to PFOA reduces fetal growth.

  14. Yeast-2-Hybrid data file showing progranulin interactions in human fetal brain and bone marrow libraries.

    Science.gov (United States)

    Tegeder, Irmgard

    2016-12-01

    Progranulin deficiency in humans is associated with neurodegeneration. Its mechanisms are not yet fully understood. We performed a Yeast-2-Hybrid screen using human full-length progranulin as bait to assess the interactions of progranulin. Progranulin was screened against human fetal brain and human bone marrow libraries using the standard Matchmaker technology (Clontech). This article contains the full Y2H data table, including blast results and sequences, a sorted table according to selection criteria for likely positive, putatively positive, likely false and false preys, and tables showing the gene ontology terms associated with the likely and putative preys of the brain and bone marrow libraries. The interactions with autophagy proteins were confirmed and functionally analyzed in "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy" (C. Altmann, S. Hardt, C. Fischer, J. Heidler, H.Y. Lim, A. Haussler, B. Albuquerque, B. Zimmer, C. Moser, C. Behrends, F. Koentgen, I. Wittig, M.H. Schmidt, A.M. Clement, T. Deller, I. Tegeder, 2016) [1].

  15. Regulatory interactions of stress and reward on rat forebrain opioidergic and GABAergic circuitry.

    Science.gov (United States)

    Christiansen, A M; Herman, J P; Ulrich-Lai, Y M

    2011-03-01

    Palatable food intake reduces stress responses, suggesting that individuals may consume such ?comfort? food as self-medication for stress relief. The mechanism by which palatable foods provide stress relief is not known, but likely lies at the intersection of forebrain reward and stress regulatory circuits. Forebrain opioidergic and gamma-aminobutyric acid ergic signaling is critical for both reward and stress regulation, suggesting that these systems are prime candidates for mediating stress relief by palatable foods. Thus, the present study (1) determines how palatable ?comfort? food alters stress-induced changes in the mRNA expression of inhibitory neurotransmitters in reward and stress neurocircuitry and (2) identifies candidate brain regions that may underlie comfort food-mediated stress reduction. We used a model of palatable ?snacking? in combination with a model of chronic variable stress followed by in situ hybridization to determine forebrain levels of pro-opioid and glutamic acid decarboxylase (GAD) mRNA. The data identify regions within the extended amygdala, striatum, and hypothalamus as potential regions for mediating hypothalamic-pituitary-adrenal axis buffering following palatable snacking. Specifically, palatable snacking alone decreased pro-enkephalin-A (ENK) mRNA expression in the anterior bed nucleus of the stria terminalis (BST) and the nucleus accumbens, and decreased GAD65 mRNA in the posterior BST. Chronic stress alone increased ENK mRNA in the hypothalamus, nucleus accumbens, amygdala, and hippocampus; increased dynorphin mRNA in the nucleus accumbens; increased GAD65 mRNA in the anterior hypothalamus and BST; and decreased GAD65 mRNA in the dorsal hypothalamus. Importantly, palatable food intake prevented stress-induced gene expression changes in subregions of the hypothalamus, BST, and nucleus accumbens. Overall, these data suggest that complex interactions exist between brain reward and stress pathways and that palatable snacking can

  16. Fetal echocardiography

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007340.htm Fetal echocardiography To use the sharing features on this page, please enable JavaScript. Fetal echocardiography is a test that uses sound waves ( ultrasound ) ...

  17. Dynamic gene and protein expression patterns of the autism-associated met receptor tyrosine kinase in the developing mouse forebrain.

    Science.gov (United States)

    Judson, Matthew C; Bergman, Mica Y; Campbell, Daniel B; Eagleson, Kathie L; Levitt, Pat

    2009-04-10

    The establishment of appropriate neural circuitry depends on the coordination of multiple developmental events across space and time. These events include proliferation, migration, differentiation, and survival-all of which can be mediated by hepatocyte growth factor (HGF) signaling through the Met receptor tyrosine kinase. We previously found a functional promoter variant of the MET gene to be associated with autism spectrum disorder, suggesting that forebrain circuits governing social and emotional function may be especially vulnerable to developmental disruptions in HGF/Met signaling. However, little is known about the spatiotemporal distribution of Met expression in the forebrain during the development of such circuits. To advance our understanding of the neurodevelopmental influences of Met activation, we employed complementary Western blotting, in situ hybridization, and immunohistochemistry to comprehensively map Met transcript and protein expression throughout perinatal and postnatal development of the mouse forebrain. Our studies reveal complex and dynamic spatiotemporal patterns of expression during this period. Spatially, Met transcript is localized primarily to specific populations of projection neurons within the neocortex and in structures of the limbic system, including the amygdala, hippocampus, and septum. Met protein appears to be principally located in axon tracts. Temporally, peak expression of transcript and protein occurs during the second postnatal week. This period is characterized by extensive neurite outgrowth and synaptogenesis, supporting a role for the receptor in these processes. Collectively, these data suggest that Met signaling may be necessary for the appropriate wiring of forebrain circuits, with particular relevance to the social and emotional dimensions of behavior. (c) 2009 Wiley-Liss, Inc.

  18. Fetal electrocardiogram (ECG) for fetal monitoring during labour.

    Science.gov (United States)

    Neilson, James P

    2015-12-21

    Hypoxaemia during labour can alter the shape of the fetal electrocardiogram (ECG) waveform, notably the relation of the PR to RR intervals, and elevation or depression of the ST segment. Technical systems have therefore been developed to monitor the fetal ECG during labour as an adjunct to continuous electronic fetal heart rate monitoring with the aim of improving fetal outcome and minimising unnecessary obstetric interference. To compare the effects of analysis of fetal ECG waveforms during labour with alternative methods of fetal monitoring. The Cochrane Pregnancy and Childbirth Group's Trials Register (latest search 23 September 2015) and reference lists of retrieved studies. Randomised trials comparing fetal ECG waveform analysis with alternative methods of fetal monitoring during labour. One review author independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. One review author assessed the quality of the evidence using the GRADE approach. Seven trials (27,403 women) were included: six trials of ST waveform analysis (26,446 women) and one trial of PR interval analysis (957 women). The trials were generally at low risk of bias for most domains and the quality of evidence for ST waveform analysis trials was graded moderate to high. In comparison to continuous electronic fetal heart rate monitoring alone, the use of adjunctive ST waveform analysis made no obvious difference to primary outcomes: births by caesarean section (risk ratio (RR) 1.02, 95% confidence interval (CI) 0.96 to 1.08; six trials, 26,446 women; high quality evidence); the number of babies with severe metabolic acidosis at birth (cord arterial pH less than 7.05 and base deficit greater than 12 mmol/L) (average RR 0.72, 95% CI 0.43 to 1.20; six trials, 25,682 babies; moderate quality evidence); or babies with neonatal encephalopathy (RR 0.61, 95% CI 0.30 to 1.22; six trials, 26,410 babies; high quality evidence). There were, however, on average

  19. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development.

    Science.gov (United States)

    Szabo, Linda; Morey, Robert; Palpant, Nathan J; Wang, Peter L; Afari, Nastaran; Jiang, Chuan; Parast, Mana M; Murry, Charles E; Laurent, Louise C; Salzman, Julia

    2015-06-16

    The pervasive expression of circular RNA is a recently discovered feature of gene expression in highly diverged eukaryotes, but the functions of most circular RNAs are still unknown. Computational methods to discover and quantify circular RNA are essential. Moreover, discovering biological contexts where circular RNAs are regulated will shed light on potential functional roles they may play. We present a new algorithm that increases the sensitivity and specificity of circular RNA detection by discovering and quantifying circular and linear RNA splicing events at both annotated and un-annotated exon boundaries, including intergenic regions of the genome, with high statistical confidence. Unlike approaches that rely on read count and exon homology to determine confidence in prediction of circular RNA expression, our algorithm uses a statistical approach. Using our algorithm, we unveiled striking induction of general and tissue-specific circular RNAs, including in the heart and lung, during human fetal development. We discover regions of the human fetal brain, such as the frontal cortex, with marked enrichment for genes where circular RNA isoforms are dominant. The vast majority of circular RNA production occurs at major spliceosome splice sites; however, we find the first examples of developmentally induced circular RNAs processed by the minor spliceosome, and an enriched propensity of minor spliceosome donors to splice into circular RNA at un-annotated, rather than annotated, exons. Together, these results suggest a potentially significant role for circular RNA in human development.

  20. Telomere length and fetal programming: A review of recent scientific advances.

    Science.gov (United States)

    Whiteman, Valerie E; Goswami, Anjali; Salihu, Hamisu M

    2017-05-01

    We sought to synthesize a comprehensive literature review comprising recent research linking fetal programming to fetal telomere length. We also explored the potential effects fetal telomere length shortening has on fetal phenotypes. Utilizing the PubMed database as our primary search engine, we retrieved and reviewed 165 articles of published research. The inclusion criteria limited the articles to those that appeared within the last ten years, were pertinent to humans, and without restriction to language of publication. Our results showed that socio-demographic factors like age, sex, genetic inheritance, and acquired disease impact telomere length. Further, we found several maternal characteristics to be associated with fetal telomere length shortening, and these include maternal chemical exposure (eg, tobacco smoke), maternal stress during pregnancy, maternal nutritional and sleeping disorders during pregnancy as well as maternal disease status. Due to paucity of data, our review could not synthesize evidence directly linking fetal phenotypes to telomere length shortening. Although the research summarized in this review shows some association between determinants of intrauterine programming and fetal telomere length, there is still significant work that needs to be done to delineate the direct relationship of telomere attrition with specific fetal phenotypes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. FA1 immunoreactivity in endocrine tumours and during development of the human fetal pancreas; negative correlation with glucagon expression

    DEFF Research Database (Denmark)

    Tornehave, D; Jensen, Charlotte Harken; Teisner, B

    1996-01-01

    Fetal antigen 1 (FA1) is a glycoprotein containing six epidermal growth factor (EGF)-like repeats. It is closely similar to the protein translated from the human delta-like (dlk) cDNA and probably constitutes a proteolytically processed form of dlk. dlk is homologous to the Drosophila homeotic...... proteins delta and notch and to the murine preadipocyte differentiation factor Pref-1. These proteins participate in determining cell fate choices during differentiation. We now report that FA1 immunoreactivity is present in a number of neuroectodermally derived tumours as well as in pancreatic endocrine...... tumours. A negative correlation between FA1 and glucagon immunoreactants in these tumours prompted a reexamination of FA1 immunoreactants during fetal pancreatic development. At the earliest stages of development, FA1 was expressed by most of the non-endocrine parenchymal cells and, with ensuing...

  2. Pulmonary Hypoplasia Caused by Fetal Ascites in Congenital Cytomegalovirus Infection Despite Fetal Therapy

    Directory of Open Access Journals (Sweden)

    Kazumichi Fujioka

    2017-11-01

    Full Text Available We report two cases of pulmonary hypoplasia due to fetal ascites in symptomatic congenital cytomegalovirus (CMV infections despite fetal therapy. The patients died soon after birth. The pathogenesis of pulmonary hypoplasia in our cases might be thoracic compression due to massive fetal ascites as a result of liver insufficiency. Despite aggressive fetal treatment, including multiple immunoglobulin administration, which was supposed to diminish the pathogenic effects of CMV either by neutralization or immunomodulatory effects, the fetal ascites was uncontrollable. To prevent development of pulmonary hypoplasia in symptomatic congenital CMV infections, further fetal intervention to reduce ascites should be considered.

  3. Dose-related gene expression changes in forebrain following acute, low-level chlorpyrifos exposure in neonatal rats

    International Nuclear Information System (INIS)

    Ray, Anamika; Liu Jing; Ayoubi, Patricia; Pope, Carey

    2010-01-01

    Chlorpyrifos (CPF) is a widely used organophosphorus insecticide (OP) and putative developmental neurotoxicant in humans. The acute toxicity of CPF is elicited by acetylcholinesterase (AChE) inhibition. We characterized dose-related (0.1, 0.5, 1 and 2 mg/kg) gene expression profiles and changes in cell signaling pathways 24 h following acute CPF exposure in 7-day-old rats. Microarray experiments indicated that approximately 9% of the 44,000 genes were differentially expressed following either one of the four CPF dosages studied (546, 505, 522, and 3,066 genes with 0.1, 0.5, 1.0 and 2.0 mg/kg CPF). Genes were grouped according to dose-related expression patterns using K-means clustering while gene networks and canonical pathways were evaluated using Ingenuity Pathway Analysis (registered) . Twenty clusters were identified and differential expression of selected genes was verified by RT-PCR. The four largest clusters (each containing from 276 to 905 genes) constituted over 50% of all differentially expressed genes and exhibited up-regulation following exposure to the highest dosage (2 mg/kg CPF). The total number of gene networks affected by CPF also rose sharply with the highest dosage of CPF (18, 16, 18 and 50 with 0.1, 0.5, 1 and 2 mg/kg CPF). Forebrain cholinesterase (ChE) activity was significantly reduced (26%) only in the highest dosage group. Based on magnitude of dose-related changes in differentially expressed genes, relative numbers of gene clusters and signaling networks affected, and forebrain ChE inhibition only at 2 mg/kg CPF, we focused subsequent analyses on this treatment group. Six canonical pathways were identified that were significantly affected by 2 mg/kg CPF (MAPK, oxidative stress, NFΚB, mitochondrial dysfunction, arylhydrocarbon receptor and adrenergic receptor signaling). Evaluation of different cellular functions of the differentially expressed genes suggested changes related to olfactory receptors, cell adhesion/migration, synapse

  4. Fetal scalp pH testing

    Science.gov (United States)

    Fetal scalp blood; Scalp pH testing; Fetal blood testing - scalp; Fetal distress - fetal scalp testing; Labor - fetal scalp testing ... a baby. In these cases, testing the scalp pH can help the doctor decide whether the fetus ...

  5. [Incidence of fetal macrosomia: maternal and fetal morbidity].

    Science.gov (United States)

    Rodríguez-Rojas, R R; Cantú-Esquivel, M G; Benavides-de la Garza, L; Benavides-de Anda, L

    1996-06-01

    The macrosomia is an obstetric eventuality associated to high maternal-fetal morbidity-mortality. This assay was planned in order to know the incidence of macrosomia in our institution, the relation between vaginal and abdominal deliveries and the fetal-maternal morbidity we reviewed 3590 records and we found 5.6% incidence of macrosomia in the global obstetric population. There was 58% of vaginal deliveries, 68% of the newborn were male. The main complications were in the C. sections, 2 laceration of the hysterectomy, and 2 peroperative atonias. In the vaginal deliveries, the lacerations of III and IV grade were 9 of each grade. The main fetal complications were 5 slight to severe asphyxia and 4 shoulder dystocias. This assay concludes that the macrosomia in our service is similar to the already published ones, a 42% were C. section and the maternal-fetal morbidity was low.

  6. The use of non-invasive fetal electrocardiography in diagnosing second-degree fetal atrioventricular block.

    Science.gov (United States)

    Lakhno, Igor; Behar, Joachim A; Oster, Julien; Shulgin, Vyacheslav; Ostras, Oleksii; Andreotti, Fernando

    2017-01-01

    Complete atrioventricular block in fetuses is known to be mostly associated with autoimmune disease and can be irreversible if no steroids treatment is provided. Conventional methods used in clinical practice for diagnosing fetal arrhythmia are limited since they do not reflect the primary electrophysiological conduction processes that take place in the myocardium. The non-invasive fetal electrocardiogram has the potential to better support fetal arrhythmias diagnosis through the continuous analysis of the beat to beat variation of the fetal heart rate and morphological analysis of the PQRST complex. We present two retrospective case reports on which atrioventricular block diagnosis could have been supported by the non-invasive fetal electrocardiogram. The two cases comprised a 22-year-old pregnant woman with the gestational age of 31 weeks and a 25-year-old pregnant woman with the gestational age of 41 weeks. Both women were admitted to the Department of Maternal and Fetal Medicine at the Kyiv and Kharkiv municipal perinatal clinics. Patients were observed using standard fetal monitoring methods as well as the non-invasive fetal electrocardiogram. The non-invasive fetal electrocardiographic recordings were analyzed retrospectively, where it is possible to identify the presence of the atrioventricular block. This study demonstrates, for the first time, the feasibility of the non-invasive fetal electrocardiogram as a supplementary method to diagnose of the fetal atrioventricular block. Combined with current fetal monitoring techniques, non-invasive fetal electrocardiography could support clinical decisions.

  7. Fetal magnetic resonance imaging: methods and techniques; Fetale Magnetresonanztomographie: Methoden und Technik

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, P.C. [Zentrum fuer Anatomie und Zellbiologie, Medizinische Universitaet Wien (Austria). Arbeitsgruppe Integrative Morphologie; Stuhr, F.; Lindner, C.; Prayer, D. [Medizinische Universitaet Wien (Austria). Klinik fuer Radiodiagnostik

    2006-02-15

    Since the introduction of fetal magnetic resonance imaging (MRI) into prenatal diagnostics, advances in coil technology and development of ultrafast sequences have further enhanced this technique. At present numerous sequences are available to visualize the whole fetus with high resolution and image quality, even in late stages of pregnancy. Taking into consideration the special circumstances of examination and adjusting sequence parameters to gestational age, fetal anatomy can be accurately depicted. The variety of sequences also allows further characterization of fetal tissues and pathologies. Fetal MRI not only supplies additional information to routine ultrasound studies, but also reveals fetal morphology and pathology in a way hitherto not possible. (orig.) [German] Seit Einfuehrung der fetalen Magnetresonanztomographie (MRT) in die praenatale Diagnostik wurde das Verfahren durch neue Spulentechniken und die Entwicklung ultraschneller Sequenzen kontinuierlich weiter entwickelt. Gegenwaertig steht eine Vielzahl von Sequenzen zur Verfuegung, die es erlauben, mit hoher Bildqualitaet und raeumlicher Aufloesung selbst in fortgeschrittenen Schwangerschaftsstadien den gesamten Feten darzustellen. Unter Beruecksichtigung der speziellen Untersuchungsbedingungen und des Schwangerschaftsalters kann so die fetale Anatomie genau abgebildet werden. Die Vielfalt an Sequenzen und deren gezielter Einsatz ermoeglichen es weiter, fetale Gewebe und Pathologien naeher zu charakterisierten. Auf diese Weise liefert die fetale MRT nicht nur Zusatzinformationen zur Routineultraschalluntersuchung, sie gibt auch Aufschluss ueber bestimmte fetale Morphologien und Pathologien, die bisher nicht darstellbar waren. (orig.)

  8. Supplements in human islet culture: human serum albumin is inferior to fetal bovine serum.

    Science.gov (United States)

    Avgoustiniatos, Efstathios S; Scott, William E; Suszynski, Thomas M; Schuurman, Henk-Jan; Nelson, Rebecca A; Rozak, Phillip R; Mueller, Kate R; Balamurugan, A N; Ansite, Jeffrey D; Fraga, Daniel W; Friberg, Andrew S; Wildey, Gina M; Tanaka, Tomohiro; Lyons, Connor A; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2012-01-01

    Culture of human islets before clinical transplantation or distribution for research purposes is standard practice. At the time the Edmonton protocol was introduced, clinical islet manufacturing did not include culture, and human serum albumin (HSA), instead of fetal bovine serum (FBS), was used during other steps of the process to avoid the introduction of xenogeneic material. When culture was subsequently introduced, HSA was also used for medium supplementation instead of FBS, which was typically used for research islet culture. The use of HSA as culture supplement was not evaluated before this implementation. We performed a retrospective analysis of 103 high-purity islet preparations (76 research preparations, all with FBS culture supplementation, and 27 clinical preparations, all with HSA supplementation) for oxygen consumption rate per DNA content (OCR/DNA; a measure of viability) and diabetes reversal rate in diabetic nude mice (a measure of potency). After 2-day culture, research preparations exhibited an average OCR/DNA 51% higher (p < 0.001) and an average diabetes reversal rate 54% higher (p < 0.05) than clinical preparations, despite 87% of the research islet preparations having been derived from research-grade pancreata that are considered of lower quality. In a prospective paired study on islets from eight research preparations, OCR/DNA was, on average, 27% higher with FBS supplementation than that with HSA supplementation (p < 0.05). We conclude that the quality of clinical islet preparations can be improved when culture is performed in media supplemented with serum instead of albumin.

  9. Functional and structural microanatomy of the fetal sciatic nerve.

    Science.gov (United States)

    Creze, Maud; Zaitouna, Mazen; Krystel, Nyangoh Timoh; Diallo, Djibril; Lebacle, Cédric; Bellin, Marie-France; Ducreux, Denis; Benoit, Gérard; Bessede, Thomas

    2017-10-01

    The ultrastructure of a nerve has implications for surgical nerve repair. The aim of our study was to characterize the fascicular versus fibrillar anatomy and the autonomic versus somatic nature of the fetal sciatic nerve (SN). Immunohistochemistry for vesicular acetylcholine transporter, tyrosine hydroxylase, and peripheral myelin protein 22 was performed to identify cholinergic, adrenergic, and somatic axons, respectively, in the human fetal SN. Two-dimensional (2D) analysis and 3D reconstructions were performed. The fetal SN is composed of one-third stromal tissue and two-thirds neural tissue. Autonomic fibers are predominant over somatic fibers within the neural tissue. The distribution of somatic fibers is initially random, but then become topographically organized after intra- and interfascicular rearrangements have occurred within the nerve. The fetal model presents limitations but enables illustration of the nature of the nerve fibers and the 3D fascicular anatomy of the SN. Muscle Nerve 56: 787-796, 2017. © 2017 Wiley Periodicals, Inc.

  10. Transplantation of Expanded Fetal Intestinal Progenitors Contributes to Colon Regeneration after Injury

    DEFF Research Database (Denmark)

    Fordham, Robert P; Yui, Shiro; Hannan, Nicholas R F

    2013-01-01

    Regeneration and homeostasis in the adult intestinal epithelium is driven by proliferative resident stem cells, whose functional properties during organismal development are largely unknown. Here, we show that human and mouse fetal intestine contains proliferative, immature progenitors, which can...... be expanded in vitro as Fetal Enterospheres (FEnS). A highly similar progenitor population can be established during intestinal differentiation of human induced pluripotent stem cells. Established cultures of mouse fetal intestinal progenitors express lower levels of Lgr5 than mature progenitors and propagate...... in the presence of the Wnt antagonist Dkk1, and new cultures can be induced to form mature intestinal organoids by exposure to Wnt3a. Following transplantation in a colonic injury model, FEnS contribute to regeneration of colonic epithelium by forming epithelial crypt-like structures expressing region...

  11. Observation of the human fetal corpses with maxillofacial malformations. 1. CT and MRI examinations of the fetal cleft lip and/or palate

    International Nuclear Information System (INIS)

    Saito, Chikara; Nakano, Yoko; Shigematsu, Shiro

    1999-01-01

    Of the various types of congenital malformations, the cleft lip and/or palate is one of the most frequent. Observation of human fetal corpses exhibiting cleft lip and palate is very important to research on its onset of its mechanism and development. In recent years, some of researchers have performed clinical studies on prenatal diagnosis and surgical treatment for the entirety. However, there have hardly been any reports on detailed observations of the maxillofacial structure of a fetus with cleft lip and palate. We seized an opportunity of observing the maxillofacial structure of fetuses with cleft lip and/or palate using three-dimensional CT (3D-CT) and MR imaging as non-disjunctive methods. In the present study, nine fetal corpses having cleft lip and/or palate were examined. The results were as follows: CT and MRI were useful for non-invasive observation of the maxillofacial structure, including soft tissues. Because the osseous tissues of young fetus tissue is not fully mature, observation of bone structures was slightly difficult. When corpses were immersed in formalin for a long time, osseous tissue was decalcified, thus making it difficult to obtain clear images. We could observe the details of the maxillofacial structures such as the alveolar process, the hard palate, the maxillary sinus, the nasal cavity, the nasal bone, and the vomer, in some of the cases. 3D-CT and MR findings observed in the fetuses with cleft lip and/or palate should provide some basement of the imaging diagnosis of congenital disorder. (author))

  12. Observation of the human fetal corpses with maxillofacial malformations. 1. CT and MRI examinations of the fetal cleft lip and/or palate

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Chikara; Nakano, Yoko; Shigematsu, Shiro [Tokyo Dental Coll., Chiba (Japan)] (and others)

    1999-06-01

    Of the various types of congenital malformations, the cleft lip and/or palate is one of the most frequent. Observation of human fetal corpses exhibiting cleft lip and palate is very important to research on its onset of its mechanism and development. In recent years, some of researchers have performed clinical studies on prenatal diagnosis and surgical treatment for the entirey. However, there have hardly been any reports on detailed observations of the maxillofacial structure of a fetus with cleft lip and palate. We seized an opportunity of observing the maxillofacial structure of fetuses with cleft lip and/or palate using three-dimensional CT (3D-CT) and MR imaging as non-disjunctive methods. In the present study, nine fetal corpses having cleft lip and/or palate were examined. The results were as follows: CT and MRI were useful for non-invasive observation of the maxillofacial structure, including soft tissues. Because the osseous tissues of young fetus tissue is not fully mature, observation of bone structures was slightly difficult. When corpses were immersed in formalin for a long time, osseous tissue was decalcified, thus making it difficult to obtain clear images. We could observe the details of the maxillofacial structures such as the alveolar process, the hard palate, the maxillary sinus, the nasal cavity, the nasal bone, and the vomer, in some of the cases. 3D-CT and MR findings observed in the fetuses with cleft lip and/or palate should provide some basement of the imaging diagnosis of congenital disorder. (author)

  13. Concurrent determination of bisphenol A pharmacokinetics in maternal and fetal rhesus monkeys

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Tucker A. [Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Twaddle, Nathan C. [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Roegge, Cindy S. [Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Callicott, Ralph J. [U.S. Food and Drug Administration and Priority One Services Corp, Jefferson, AR 72079 (United States); Fisher, Jeffrey W. [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Doerge, Daniel R., E-mail: daniel.doerge@fda.hhs.gov [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States)

    2013-02-15

    Bisphenol A (BPA) is an important industrial chemical used as the monomer for polycarbonate plastic and in epoxy resins for food can liners. Worldwide biomonitoring studies consistently find a high prevalence of BPA conjugates in urine (> 90%) in amounts consistent with aggregate exposure at levels below 1 μg/kg bw/d. The current study used LC/MS/MS to measure concurrently the pharmacokinetics of aglycone (active) and conjugated (inactive) deuterated BPA (d6) in maternal and fetal rhesus monkey serum, amniotic fluid, and placenta following intravenous injection in the dam (100 μg/kg bw). Internal exposures of the fetus to aglycone d6-BPA (serum AUC) were attenuated by maternal, placental, and fetal Phase II metabolism to less than half that in the dam. Levels of aglycone and conjugated d6-BPA measured in whole placenta were consistent with a role in metabolic detoxification. The monotonic elimination of aglycone d6-BPA from the fetal compartment accompanied by persistent conjugate levels provides further evidence arguing against the hypothesis that BPA conjugates are selectively deconjugated by either the placenta or fetus. These results also provide benchmarks to guide the interpretation of human cord blood, amniotic fluid, and placenta sampling and measurement strategies as a basis for estimating fetal exposures to BPA. This study in a non-human primate model provides additional pharmacokinetic data for use in PBPK modeling of perinatal exposures to BPA from food contact, medical devices, and other environmental sources. - Highlights: ► Maternal, placental, and fetal Phase II metabolism attenuate fetal exposure to BPA. ► Serum AUC for aglycone BPA in fetal monkeys is less than half of that in the dam. ► BPA profiles in monkey fetus rule out selective deconjugation and accumulation. ► BPA levels in monkey placenta are similar to other metabolically active tissues. ► Some published human cord blood data for BPA are inconsistent with these measurements.

  14. Fetal demise and failed antibody therapy during Zika virus infection of pregnant macaques.

    Science.gov (United States)

    Magnani, Diogo M; Rogers, Thomas F; Maness, Nicholas J; Grubaugh, Nathan D; Beutler, Nathan; Bailey, Varian K; Gonzalez-Nieto, Lucas; Gutman, Martin J; Pedreño-Lopez, Núria; Kwal, Jaclyn M; Ricciardi, Michael J; Myers, Tereance A; Julander, Justin G; Bohm, Rudolf P; Gilbert, Margaret H; Schiro, Faith; Aye, Pyone P; Blair, Robert V; Martins, Mauricio A; Falkenstein, Kathrine P; Kaur, Amitinder; Curry, Christine L; Kallas, Esper G; Desrosiers, Ronald C; Goldschmidt-Clermont, Pascal J; Whitehead, Stephen S; Andersen, Kristian G; Bonaldo, Myrna C; Lackner, Andrew A; Panganiban, Antonito T; Burton, Dennis R; Watkins, David I

    2018-04-24

    Zika virus (ZIKV) infection of pregnant women is associated with pathologic complications of fetal development. Here, we infect pregnant rhesus macaques (Macaca mulatta) with a minimally passaged ZIKV isolate from Rio de Janeiro, where a high rate of fetal development complications was observed. The infection of pregnant macaques with this virus results in maternal viremia, virus crossing into the amniotic fluid (AF), and in utero fetal deaths. We also treated three additional ZIKV-infected pregnant macaques with a cocktail of ZIKV-neutralizing human monoclonal antibodies (nmAbs) at peak viremia. While the nmAbs can be effective in clearing the virus from the maternal sera of treated monkeys, it is not sufficient to clear ZIKV from AF. Our report suggests that ZIKV from Brazil causes fetal demise in non-human primates (NHPs) without additional mutations or confounding co-factors. Treatment with a neutralizing anti-ZIKV nmAb cocktail is insufficient to fully stop vertical transmission.

  15. Using the Optical Fractionator to Estimate Total Cell Numbers in the Normal and Abnormal Developing Human Forebrain

    DEFF Research Database (Denmark)

    Larsen, Karen B

    2017-01-01

    abnormal development. Furthermore, many studies of brain cell numbers have employed biased counting methods, whereas innovations in stereology during the past 20-30 years enable reliable and efficient estimates of cell numbers. However, estimates of cell volumes and densities in fetal brain samples...

  16. Maternal and fetal mechanisms of B cell regulation during pregnancy: human Chorionic Gonadotropin stimulates B cells to produce IL-10 while alpha-fetoprotein drives them into apoptosis

    Directory of Open Access Journals (Sweden)

    Franziska Fettke

    2016-12-01

    Full Text Available Maternal immune tolerance towards the fetus is an essential requisite for pregnancy. While T cell functions are well documented, little is known about the participation of B cells. We have previously suggested that IL-10 producing B cells are involved in pregnancy tolerance in mice and humans. By employing murine and human systems, we report now that fetal trophoblasts positively regulate the generation of IL-10 producing B cells. We next studied the participation of hormones produced by the placenta as well as the fetal protein alpha-fetoprotein (AFP in B cell modulation. Human Chorionic Gonadotropin (hCG, but not progesterone, estrogen or a combination of both, was able to promote changes in B cell phenotype and boost their IL-10 production, which was abolished after blocking hCG. The hCG-induced B cell phenotype was not associated with augmented galactosylation, sialylation or fucosylation of IgG subclasses in their Fc. In vitro, hCG induced the synthesis of asymmetrically glycosylated antibodies in their Fab region. Interestingly, AFP had dual effects depending on the concentration. At concentrations corresponding to maternal serum levels, it did not modify the phenotype or IL-10 secretion of B cells. At fetal concentrations, however, AFP was able to drive B cells into apoptosis, which may indicate a protective mechanism to avoid maternal B cells to reach the fetus.Our data suggests that the fetus secrete factors that promote a pregnancy-friendly B cell phenotype, unraveling interesting aspects of B cell function and modulation by pregnancy hormones and fetal proteins.

  17. Prospective assessment of early fetal loss using an immunoenzymometric screening assay for detection of urinary human chorionic gonadotropin.

    Science.gov (United States)

    Taylor, C A; Overstreet, J W; Samuels, S J; Boyers, S P; Canfield, R E; O'Connor, J F; Hanson, F W; Lasley, B L

    1992-06-01

    To develop an economical, nonradiometric immunoenzymometric assay (IEMA) for the detection of urinary human chorionic gonadotropin (hCG) in studies of early fetal loss. To be effective, the IEMA must have a sensitivity equal to the standard immunoradiometric assay (IRMA) and sufficient specificity to eliminate the need for screening most nonconceptive cycles with the expensive and labor-intensive IRMA. Two different assays were used to measure hCG in daily early morning urine samples from potential conceptive cycles. Women undergoing donor artificial insemination (AI) were evaluated in a prospective study. Ninety-two women volunteers were selected on the basis of apparent normal reproductive health. Artificial insemination with nonfrozen donor semen was performed by cervical cup twice each menstrual cycle at 48-hour intervals, and daily urine samples were self-collected throughout the menstrual cycle. An IEMA was developed to detect urinary hCG using the same antibodies as in the standard IRMA; a study was designed to determine whether this nonradiometric assay could successfully detect the early fetal loss that was detected by the IRMA. Of 224 menstrual cycles analyzed by both assays, a total of six early fetal losses were detected by the IRMA. When the tentative screening rule was set to allow all six of these losses and 95% of future losses to be detected by the IEMA, an additional 34 false-positive results were detected by the IEMA. The specificity of the IEMA with this rule was calculated to be 84%. An IEMA based on the same antibodies used for the standard IRMA can serve as an efficient screening assay for the detection of early fetal loss. When the IEMA is used in this manner, nearly 80% of screened menstrual cycles can be eliminated without further testing by the IRMA.

  18. Topographic Organization of Cholinergic Innervation From the Basal Forebrain to the Visual Cortex in the Rat

    Directory of Open Access Journals (Sweden)

    Frédéric Huppé-Gourgues

    2018-03-01

    Full Text Available Acetylcholine is an important neurotransmitter for the regulation of visual attention, plasticity, and perceptual learning. It is released in the visual cortex predominantly by cholinergic projections from the basal forebrain, where stimulation may produce potentiation of visual processes. However, little is known about the fine organization of these corticopetal projections, such as whether basal forebrain neurons projecting to the primary and secondary visual cortical areas (V1 and V2, respectively are organized retinotopically. The aim of this study was to map these basal forebrain-V1/V2 projections. Microinjections of the fluorescent retrograde tracer cholera toxin b fragment in different sites within V1 and V2 in Long–Evans rats were performed. Retrogradely labeled cell bodies in the horizontal and vertical limbs of the diagonal band of Broca (HDB and VDB, respectively, nucleus basalis magnocellularis, and substantia innominata (SI, were mapped ex vivo with a computer-assisted microscope stage controlled by stereological software. Choline acetyltranferase immunohistochemistry was used to identify cholinergic cells. Our results showed a predominance of cholinergic projections coming from the HDB. These projections were not retinotopically organized but projections to V1 arised from neurons located in the anterior HDB/SI whereas projections to V2 arised from neurons located throughout the whole extent of HDB/SI. The absence of a clear topography of these projections suggests that BF activation can stimulate visual cortices broadly.

  19. Data from three prospective longitudinal human cohorts of prenatal marijuana exposure and offspring outcomes from the fetal period through young adulthood

    Directory of Open Access Journals (Sweden)

    Gabrielle L. McLemore

    2016-12-01

    Full Text Available This article includes data from three prospective longitudinal human cohorts of prenatal marijuana exposure (PME and offspring outcomes from the fetal period through young adulthood. The table herein contains an overview of the major adverse effects associated with PME from the following human cohorts: (1 The Ottawa Prenatal Prospective Study (OPPS; (2 The Maternal Health Practices and Child Development Study (MHPCD; and (3 The Generation R Study (Gen R. In the OPPS, fetal gestational age was measured and age-appropriate standardized neuropsychological instruments were used to assess neonatal responses, and infant–child and adolescent–young adult cognitive and behavioral skills. In the MHPCD, birth length and weight, neonatal body length, and infant–child sleep, cognition, and behavioral parameters were measured. In the Gen R, birth weight and growth were measured, as were infant–child attention and aggression. The data in this article are in support of our report entitled “Prenatal Cannabis Exposure - The "First Hit" to the Endocannabinoid System” (K.A. Richardson, A.K. Hester, G.L. McLemore, 2016 [13].

  20. Sildenafil Citrate Increases Fetal Weight in a Mouse Model of Fetal Growth Restriction with a Normal Vascular Phenotype

    Science.gov (United States)

    Dilworth, Mark Robert; Andersson, Irene; Renshall, Lewis James; Cowley, Elizabeth; Baker, Philip; Greenwood, Susan; Sibley, Colin Peter; Wareing, Mark

    2013-01-01

    Fetal growth restriction (FGR) is defined as the inability of a fetus to achieve its genetic growth potential and is associated with a significantly increased risk of morbidity and mortality. Clinically, FGR is diagnosed as a fetus falling below the 5th centile of customised growth charts. Sildenafil citrate (SC, Viagra™), a potent and selective phosphodiesterase-5 inhibitor, corrects ex vivo placental vascular dysfunction in FGR, demonstrating potential as a therapy for this condition. However, many FGR cases present without an abnormal vascular phenotype, as assessed by Doppler measures of uterine/umbilical artery blood flow velocity. Thus, we hypothesized that SC would not increase fetal growth in a mouse model of FGR, the placental-specific Igf2 knockout mouse, which has altered placental exchange capacity but normal placental blood flow. Fetal weights were increased (by 8%) in P0 mice following maternal SC treatment (0.4 mg/ml) via drinking water. There was also a trend towards increased placental weight in treated P0 mice (P = 0.056). Additionally, 75% of the P0 fetal weights were below the 5th centile, the criterion used to define human FGR, of the non-treated WT fetal weights; this was reduced to 51% when dams were treated with SC. Umbilical artery and vein blood flow velocity measures confirmed the lack of an abnormal vascular phenotype in the P0 mouse; and were unaffected by SC treatment. 14C-methylaminoisobutyric acid transfer (measured to assess effects on placental nutrient transporter activity) per g placenta was unaffected by SC, versus untreated, though total transfer was increased, commensurate with the trend towards larger placentas in this group. These data suggest that SC may improve fetal growth even in the absence of an abnormal placental blood flow, potentially affording use in multiple sub-populations of individuals presenting with FGR. PMID:24204949

  1. Sildenafil citrate increases fetal weight in a mouse model of fetal growth restriction with a normal vascular phenotype.

    Directory of Open Access Journals (Sweden)

    Mark Robert Dilworth

    Full Text Available Fetal growth restriction (FGR is defined as the inability of a fetus to achieve its genetic growth potential and is associated with a significantly increased risk of morbidity and mortality. Clinically, FGR is diagnosed as a fetus falling below the 5(th centile of customised growth charts. Sildenafil citrate (SC, Viagra™, a potent and selective phosphodiesterase-5 inhibitor, corrects ex vivo placental vascular dysfunction in FGR, demonstrating potential as a therapy for this condition. However, many FGR cases present without an abnormal vascular phenotype, as assessed by Doppler measures of uterine/umbilical artery blood flow velocity. Thus, we hypothesized that SC would not increase fetal growth in a mouse model of FGR, the placental-specific Igf2 knockout mouse, which has altered placental exchange capacity but normal placental blood flow. Fetal weights were increased (by 8% in P0 mice following maternal SC treatment (0.4 mg/ml via drinking water. There was also a trend towards increased placental weight in treated P0 mice (P = 0.056. Additionally, 75% of the P0 fetal weights were below the 5(th centile, the criterion used to define human FGR, of the non-treated WT fetal weights; this was reduced to 51% when dams were treated with SC. Umbilical artery and vein blood flow velocity measures confirmed the lack of an abnormal vascular phenotype in the P0 mouse; and were unaffected by SC treatment. (14C-methylaminoisobutyric acid transfer (measured to assess effects on placental nutrient transporter activity per g placenta was unaffected by SC, versus untreated, though total transfer was increased, commensurate with the trend towards larger placentas in this group. These data suggest that SC may improve fetal growth even in the absence of an abnormal placental blood flow, potentially affording use in multiple sub-populations of individuals presenting with FGR.

  2. Neuropeptide Y in the forebrain of the adult male cichlid fish Oreochromis mossambicus: distribution, effects of castration and testosterone replacement.

    Science.gov (United States)

    Sakharkar, Amul J; Singru, Praful S; Sarkar, Koustav; Subhedar, Nishikant K

    2005-08-22

    We studied the organization of the neuropeptide Y (NPY)-immunoreactive system in the forebrain of adult male cichlid fish Oreochromis mossambicus and its response to castration and testosterone replacement by using morphometric methods. Immunoreactivity for NPY was widely distributed in the forebrain, and the pattern generally resembled that in other teleosts. Whereas immunoreactivity was conspicuous in the ganglia of nervus terminalis (NT; or nucleus olfactoretinalis), a weak reaction was detected in some granule cells in the olfactory bulb and in the cells of area ventralis telencephali pars lateralis (Vl). Moderately to intensely immunoreactive cells were distinctly seen in the nucleus entopeduncularis (NE), nucleus preopticus (NPO), nucleus lateralis tuberis (NLT), paraventricular organ (PVO), and midbrain tegmentum (MT). NPY fibers were widely distributed in the forebrain. Castration for 10/15 days resulted in a drastic loss of immunoreactivity in the cells of NE (P<0.001) and a significant decrease (P<0.01) in their cell nuclear size. However, cell nuclei of the NT neurons showed a significant increase in size. A highly significant reduction in the NPY-immunoreactive fiber density (P<0.001) was observed in several areas of the forebrain. Although testosterone replacement reversed these changes, fibers in some areas showed supranormal responses. Immunoreactive cells in Vl, NPO, NLT, PVO, and MT and fiber density in some other areas did not respond to castration. We suggest that the NPY-immunoreactive elements that respond to castration and testosterone replacement may serve as the substrate for processing the positive feedback action of the steroid hormone. (c) 2005 Wiley-Liss, Inc.

  3. Computational fluid dynamics (CFD) study on the fetal aortic coarctation

    Science.gov (United States)

    Zhou, Yue; Zhang, Yutao; Wang, Jingying

    2018-03-01

    Blood flows in normal and coarctate fetal aortas are simulated by the CFD technique using T-rex grids. The three-dimensional (3-D) digital model of the fetal arota is reconstructed by the computer-aided design (CAD) software based on two-dimensional (2-D) ultrasono tomographic images. Simulation results displays the development and enhancement of the secondary flow structure in the coarctate fetal arota. As the diameter narrow ratio rises greater than 45%, the pressure and wall shear stress (WSS) of the aorta arch increase exponentially, which is consistent with the conventional clinical concept. The present study also demonstrates that CFD is a very promising assistant technique to investigate human cardiovascular diseases.

  4. Evaluation of Fetal Intestinal Cell Growth and Antimicrobial Biofunctionalities of Donor Human Milk After Preparative Processes.

    Science.gov (United States)

    Kanaprach, Pasinee; Pongsakul, Nutkridta; Apiwattanakul, Nopporn; Muanprasat, Chatchai; Supapannachart, Sarayut; Nuntnarumit, Pracha; Chutipongtanate, Somchai

    2018-04-01

    Donor human milk is considered the next best nutrition following mother's own milk to prevent neonatal infection and necrotizing enterocolitis in preterm infants who are admitted at neonatal intensive care unit. However, donor milk biofunctionalities after preparative processes have rarely been documented. To evaluate biofunctionalities preserved in donor milk after preparative processes by cell-based assays. Ten pools of donor milk were produced from 40 independent specimens. After preparative processes, including bacterial elimination methods (holder pasteurization and cold-sterilization microfiltration) and storage conditions (-20°C freezing storage and lyophilization) with varied duration of storage (0, 3, and 6, months), donor milk biofunctionalities were examined by fetal intestinal cell growth and antimicrobial assays. At baseline, raw donor milk exhibited 193.1% ± 12.3% of fetal intestinal cell growth and 42.4% ± 11.8% of antimicrobial activities against Escherichia coli. After bacteria eliminating processes, growth promoting activity was better preserved in pasteurized donor milk than microfiltrated donor milk (169.5% ± 14.3% versus 146.0% ± 11.8%, respectively; p pasteurized donor milk was further examined for the effects of storage conditions at 3 and 6 months. Freezing storage, but not lyophilization, could preserve higher growth-promoting activity during 6 months of storage (163.0% ± 9.4% versus 72.8% ± 6.2%, respectively; p < 0.005). Nonetheless, antimicrobial activity was lost at 6 months, regardless of the storage methods. This study revealed that fetal intestinal cell growth and antimicrobial assays could be applied to measure donor milk biofunctionalities and support the utilization of donor milk within 3 months after preparative processes.

  5. Increases in extracellular serotonin and dopamine metabolite levels in the basal forebrain during sleep deprivation

    NARCIS (Netherlands)

    Zant, J.C.; Leenaars, C.H.; Kostin, A.; van Someren, E.J.W.; Porrka-Heiskanen, T.

    2011-01-01

    The basal forebrain (BF) is an important mediator of cortical arousal, which is innervated by all ascending arousal systems. During sleep deprivation (SD) a site-specific accumulation of sleep factors in the BF results in increased sleep pressure (Kalinchuk et al., 2006; Porkka-Heiskanen et al.,

  6. Selective immunotoxic lesions of basal forebrain cholinergic cells: effects on learning and memory in rats.

    Science.gov (United States)

    Baxter, Mark G; Bucci, David J; Gorman, Linda K; Wiley, Ronald G; Gallagher, Michela

    2013-10-01

    Male Long-Evans rats were given injections of either 192 IgG-saporin, an apparently selective toxin for basal forebrain cholinergic neurons (LES), or vehicle (CON) into either the medial septum and vertical limb of the diagonal band (MS/VDB) or bilaterally into the nucleus basalis magnocellularis and substantia innominata (nBM/SI). Place discrimination in the Morris water maze assessed spatial learning, and a trial-unique matching-to-place task in the water maze assessed memory for place information over varying delays. MS/VDB-LES and nBM/SI-LES rats were not impaired relative to CON rats in acquisition of the place discrimination, but were mildly impaired relative to CON rats in performance of the memory task even at the shortest delay, suggesting a nonmnemonic deficit. These results contrast with effects of less selective lesions, which have been taken to support a role for basal forebrain cholinergic neurons in learning and memory. 2013 APA, all rights reserved

  7. Yeast-2-Hybrid data file showing progranulin interactions in human fetal brain and bone marrow libraries

    Directory of Open Access Journals (Sweden)

    Irmgard Tegeder

    2016-12-01

    Full Text Available Progranulin deficiency in humans is associated with neurodegeneration. Its mechanisms are not yet fully understood. We performed a Yeast-2-Hybrid screen using human full-length progranulin as bait to assess the interactions of progranulin. Progranulin was screened against human fetal brain and human bone marrow libraries using the standard Matchmaker technology (Clontech. This article contains the full Y2H data table, including blast results and sequences, a sorted table according to selection criteria for likely positive, putatively positive, likely false and false preys, and tables showing the gene ontology terms associated with the likely and putative preys of the brain and bone marrow libraries. The interactions with autophagy proteins were confirmed and functionally analyzed in "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy" (C. Altmann, S. Hardt, C. Fischer, J. Heidler, H.Y. Lim, A. Haussler, B. Albuquerque, B. Zimmer, C. Moser, C. Behrends, F. Koentgen, I. Wittig, M.H. Schmidt, A.M. Clement, T. Deller, I. Tegeder, 2016 [1].

  8. Fetal MSCs

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Derived from extra embryonic tissues (amniotic fluid, placenta, cord blood, Wharton's Jelly) and fetal tissues (aborted fetuses). Derived from extra embryonic tissues (amniotic fluid, placenta, cord blood, Wharton's Jelly) and fetal tissues (aborted fetuses). In comparison ...

  9. Fetal and neo-natal maxillary ontogeny in extant humans and the utility of prenatal maxillary morphology in predicting ancestral affiliation

    Science.gov (United States)

    Nicholas, Christina L.

    2016-01-01

    Objectives The midface of extant H. sapiens is known to undergo shape changes through fetal and neo-natal ontogeny; however, little work has been done to quantify these shape changes. Further, while midfacial traits which vary in frequency between populations of extant humans are presumed to develop prenatally, patterns of population-specific variation maxillary shape across ontogeny are not well documented. Only one study of fetal ontogeny which included specific discussion of the midface has taken a 3D geometric morphometric approach, and that study was limited to one population (Japanese). The present research project seeks to augment our understanding of fetal maxillary growth patterns, most especially in terms of intraspecific variation. Materials and Methods Three-dimensional coordinate landmark data were collected on the right maxillae of 102 fetal and neo-natal individuals from three groups (Euro-American, African-American, “Mixed Ancestry”). Results Shape changes were seen mainly in the lateral wall of the piriform aperture, the anterior nasal spine, and the subnasal alveolar region. The greatest difference across age groups (2nd Trimester, 3rd Trimester, Neonates) was between the second and third trimester. Euro-Americans and African-Americans clustered by population and differences in midfacial morphology related to ancestry could be discerned as early as the second trimester (p=0.002), indicating that population variation in maxillary morphology appears very early in ontogeny. Discussion The midface is a critical region of the skull for assessing ancestry and these results indicate that maxillary morphology may be useful for estimating ancestry for prenatal individuals as young as the second trimester. PMID:27412693

  10. A competitive advantage by neonatally engrafted human glial progenitors yields mice whose brains are chimeric for human glia.

    Science.gov (United States)

    Windrem, Martha S; Schanz, Steven J; Morrow, Carolyn; Munir, Jared; Chandler-Militello, Devin; Wang, Su; Goldman, Steven A

    2014-11-26

    Neonatally transplanted human glial progenitor cells (hGPCs) densely engraft and myelinate the hypomyelinated shiverer mouse. We found that, in hGPC-xenografted mice, the human donor cells continue to expand throughout the forebrain, systematically replacing the host murine glia. The differentiation of the donor cells is influenced by the host environment, such that more donor cells differentiated as oligodendrocytes in the hypomyelinated shiverer brain than in myelin wild-types, in which hGPCs were more likely to remain as progenitors. Yet in each recipient, both the number and relative proportion of mouse GPCs fell as a function of time, concomitant with the mitotic expansion and spread of donor hGPCs. By a year after neonatal xenograft, the forebrain GPC populations of implanted mice were largely, and often entirely, of human origin. Thus, neonatally implanted hGPCs outcompeted and ultimately replaced the host population of mouse GPCs, ultimately generating mice with a humanized glial progenitor population. These human glial chimeric mice should permit us to define the specific contributions of glia to a broad variety of neurological disorders, using human cells in vivo. Copyright © 2014 the authors 0270-6474/14/3416153-09$15.00/0.

  11. Neuroregulatory and neuroendocrine GnRH pathways in the hypothalamus and forebrain of the baboon.

    Science.gov (United States)

    Marshall, P E; Goldsmith, P C

    1980-07-14

    The distribution of neurons containing gonadotropin-releasing hormone (GnRH) in the baboon hypothalamus and forebrain was studied immunocytochemically by light and electron microscopy. GnRH was present in the perikarya, axonal and dendritic processes of immunoreactive neurons. Three populations of GnRH neurons could be distinguished. Most of the GnRH neurons which are assumed to directly influence the anterior pituitary were in the medial basal hypothalamus. Other cells that projected to the median eminence were found scattered throughout the hypothalamus. A second, larger population of neurons apparently was not involved with control of the anterior pituitary. These neurons were generally found within afferent and efferent pathways of the hypothalamus and forebrain, and may receive external information affecting reproduction. A few neurons projecting to the median eminence were also observed sending collaterals to other brain areas. Thus, in addition to their neuroendocrine role, these cells possibly have neuroregulatory functions. The inference is made that these bifunctional neurons, together with the widely observed GnRH-GnRH cellular interactions may help to synchronize ovulation and sexual behavior.

  12. Effects of Exposure to Acetaminophen and Ibuprofen on Fetal Germ Cell Development in Both Sexes in Rodent and Human Using Multiple Experimental Systems

    DEFF Research Database (Denmark)

    Hurtado-Gonzalez, Pablo; Anderson, Richard A; Macdonald, Joni

    2018-01-01

    /ovaries using in vitro and xenograft approaches. METHODS: Gonocyte (TFAP2C+) number was reduced relative to controls in first-trimester human fetal testes exposed in vitro to acetaminophen (-28%) or ibuprofen (-22%) and also in ovaries exposed to acetaminophen (-43%) or ibuprofen (-49%). Acetaminophen exposure...

  13. Maternal Therapy with Ad.VEGF-A165 Increases Fetal Weight at Term in a Guinea-Pig Model of Fetal Growth Restriction.

    Science.gov (United States)

    Swanson, Anna M; Rossi, Carlo A; Ofir, Keren; Mehta, Vedanta; Boyd, Michael; Barker, Hannah; Ledwozyw, Agata; Vaughan, Owen; Martin, John; Zachary, Ian; Sebire, Neil; Peebles, Donald M; David, Anna L

    2016-12-01

    In a model of growth-restricted sheep pregnancy, it was previously demonstrated that transient uterine artery VEGF overexpression can improve fetal growth. This approach was tested in guinea-pig pregnancies, where placental physiology is more similar to humans. Fetal growth restriction (FGR) was attained through peri-conceptual nutrient restriction in virgin guinea pigs. Ad.VEGF-A 165 or Ad.LacZ (1 × 10 10 vp) was applied at mid-gestation via laparotomy, delivered externally to the uterine circulation with thermosensitive gel. At short-term (3-8 days post surgery) or at term gestation, pups were weighed, and tissues were sampled for vector spread analysis, VEGF expression, and its downstream effects. Fetal weight at term was increased (88.01 ± 13.36 g; n = 26) in Ad.VEGF-A 165 -treated animals compared with Ad.LacZ-treated animals (85.52 ± 13.00 g; n = 19; p = 0.028). The brain, liver, and lung weight and crown rump length were significantly larger in short-term analyses, as well as VEGF expression in transduced tissues. At term, molecular analyses confirmed the presence of VEGF transgene in target tissues but not in fetal samples. Tissue histology analysis and blood biochemistry/hematological examination were comparable with controls. Uterine artery relaxation in Ad.VEGF-A 165 -treated dams was higher compared with Ad.LacZ-treated dams. Maternal uterine artery Ad.VEGF-A 165 increases fetal growth velocity and term fetal weight in growth-restricted guinea-pig pregnancy.

  14. Cloning of a novel cell type from human fetal liver expressing cytoplasmic CD3 delta and epsilon but not membrane CD3

    NARCIS (Netherlands)

    Hori, T.; de Waal Malefyt, R.; Duncan, B. W.; Harrison, M. R.; Roncarolo, M. G.; Spits, H.

    1991-01-01

    Seventeen-week human fetal liver cells cultured with a feeder cell mixture of irradiated PBL, irradiated JY cells (an EBV-transformed B cell line) and PHA contained a subpopulation of CD3- cells in addition to a major population of T cells with the mature phenotype. After 12 days in culture, CD3-

  15. Effects of cytokine-suppressive anti-inflammatory drugs on inflammatory activation in ex vivo human and ovine fetal membranes.

    Science.gov (United States)

    Stinson, Lisa F; Ireland, Demelza J; Kemp, Matthew W; Payne, Matthew S; Stock, Sarah J; Newnham, John P; Keelan, Jeffrey A

    2014-03-01

    Intrauterine infection and inflammation are responsible for the majority of early (PTBs). Anti-inflammatory agents, delivered intra-amniotically together with antibiotics, may be an effective strategy for preventing PTB. In this study, the effects of four cytokine-suppressive anti-inflammatory drugs (CSAIDs: N-acetyl cysteine (NAC), SB239063, TPCA-1 and NEMO binding domain inhibitor (NBDI)) were assessed on human and ovine gestational membrane inflammation. Full-thickness membranes were collected from healthy, term, human placentas delivered by Caesarean section (n=5). Using a Transwell model, they were stimulated ex vivo with γ-irradiation-killed Escherichia coli applied to the amniotic face. Membranes from near-term, ovine placentas were stimulated in utero with lipopolysaccharide, Ureaplasma parvum or saline control and subjected to explant culture. The effects of treatment with CSAIDs or vehicle (1% DMSO) on accumulation of PGE2 and cytokines (human interleukin 6 (IL6), IL10 and TNFα; ovine IL8 (oIL8)) were assessed in conditioned media at various time points (3-20  h). In human membranes, the IKKβ inhibitor TPCA-1 (7  μM) and p38 MAPK inhibitor SB239063 (20  μM) administered to the amniotic compartment were the most effective in inhibiting accumulation of cytokines and PGE2 in the fetal compartment. NAC (10  mM) inhibited accumulation of PGE2 and IL10 only; NBDI (10  μM) had no significant effect. In addition to the fetal compartment, SB239063 also exerted consistent and significant inhibitory effects in the maternal compartment. TPCA-1 and SB239063 suppressed oIL8 production, while all CSAIDs tested suppressed ovine PGE2 production. These results support the further investigation of intra-amniotically delivered CSAIDs for the prevention of inflammation-mediated PTB.

  16. Fetal tachycardia : diagnosis and treatment

    NARCIS (Netherlands)

    Oudijk, Martijn Alexander

    2003-01-01

    Part I: Fetal tachyarrhythmias Diagnosis Fetal tachycardia is a serious condition warranting specialized evaluation. In chapter 2, methods of diagnosis of fetal tachycardia are described, including doppler and M-mode echocardiography and fetal magnetocardiography. The study presented in chapter 3

  17. Fetal short time variation during labor: a non-invasive alternative to fetal scalp pH measurements?

    Science.gov (United States)

    Schiermeier, Sven; Reinhard, Joscha; Hatzmann, Hendrike; Zimmermann, Ralf C; Westhof, Gregor

    2009-01-01

    To determine whether short time variation (STV) of fetal heart beat correlates with scalp pH measurements during labor. From 1279 deliveries, 197 women had at least one fetal scalp pH measurement. Using the CTG-Player, STVs were calculated from the electronically saved cardiotocography (CTG) traces and related to the fetal scalp pH measurements. There was no correlation between STV and fetal scalp pH measurements (r=-0.0592). Fetal STV is an important parameter with high sensitivity for antenatal fetal acidosis. This study shows that STV calculations do not correlate with fetal scalp pH measurements during labor, hence are not helpful in identifying fetal acidosis.

  18. The relationship between maternal and fetal vitamin D, insulin resistance, and fetal growth.

    LENUS (Irish Health Repository)

    Walsh, Jennifer M

    2013-05-01

    Evidence for a role of vitamin D in maintaining normal glucose homeostasis is inconclusive. We sought to clarify the relationship between maternal and fetal insulin resistance and vitamin D status. This is a prospective cohort study of 60 caucasian pregnant women. Concentrations of 25-hydroxyvitamin D (25-OHD), glucose, insulin, and leptin were measured in early pregnancy and at 28 weeks. Ultrasound at 34 weeks assessed fetal anthropometry including abdominal wall width, a marker of fetal adiposity. At delivery birth weight was recorded and fetal 25-OHD, glucose, C-peptide, and leptin measured in cord blood. Insulin resistance was calculated using the Homeostasis Model Assessment (HOMA) equation. We found that those with lower 25-OHD in early pregnancy had higher HOMA indices at 28 weeks, (r = -.32, P = .02). No significant relationship existed between maternal or fetal leptin and 25-OHD, or between maternal or fetal 25-OHD and fetal anthropometry or birth weight. The incidence of vitamin D deficiency was high at each time point (15%-45%). These findings lend support to routine antenatal supplementation with vitamin D in at risk populations.

  19. Fetal Echocardiography and Indications

    Directory of Open Access Journals (Sweden)

    Melih Atahan Güven

    2008-09-01

    Full Text Available Congenital heart diseases are encountered in 0.8% of live births and are among the most frequently diagnosed malformations. At least half of these anomalies end up with death or require surgical interventions and are responsible for 30% of the perinatal mortality. Fetal echocardiography is the sum of knowledge, skill and orientation rather than knowing the embryologic details of the fetal heart. The purpose of fetal echocardiography is to document the presence of normal fetal cardiac anatomy and rhythm in high risk group and to define the anomaly and arrhythmia if present. A certain sequence should be followed during the evaluation of fetal heart. Sequential segmental analysis (SSA and basic definition terminology made it possible to determine a lot of complex cardiac anomalies during prenatal period. By the end of 1970’s, Shinebourne started using sequential segmental analysis for fetal cardiac evaluation and today, prenatal diagnosis of congenital heart disease is possible without any confusion. In this manner, whole fetal heart can be evaluated as the relation of three segments (atria, ventricles and the great arteries with each other, irrelevant of complexity of a possible cardiac anomaly. Presence of increased nuchal thickness during early gestation and abnormal four-chamber-view during ultrasonography by the obstetrician presents a clear indication for fetal echocardiography,however, one should keep in mind that 80-90% of the babies born with a congenital heart disease do not have a familial or maternal risk factor. In addition, it should be remembered that expectant mothers with diabetes mellitus pose an indication for fetal echocardiography.

  20. Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: correlation with neuropathology

    International Nuclear Information System (INIS)

    Ginsberg, M.D.; Graham, D.I.; Busto, R.

    1985-01-01

    Regional patterns of cerebral glucose utilization (rCMRglc) and blood flow (rCBF) were examined in the early recovery period following transient forebrain ischemia in order to correlate early postischemic physiological events with regionally selective patterns of ischemic neuropathology. Wistar rats were subjected to 30 or 60 minutes of graded forebrain ischemia by a method combining unilateral occlusion of the common carotid artery with moderate elevation of intracranial pressure and mild hypotension; this procedure results in a high-grade ischemic deficit affecting chiefly the lateral neocortex, striatum, and hippocampus ipsilateral to the carotid occlusion. Simultaneous measurements of rCMRglc and rCBF made in regional tissue samples after 2 and 4 hours of postischemic recirculation using a double-tracer radioisotopic strategy revealed a disproportionately high level of glucose metabolism relative to blood flow in the early postischemic striatum, owing to the resumption of nearly normal rCMRglc in the face of depressed flow. In contrast, the neocortex, which had been equally ischemic, showed parallel depressions of both metabolism and blood flow during early recovery. Light microscopy at 4 and 8 hours after recovery revealed the striatum to be the predominant locus of ischemic neuronal alterations, whereas neocortical lesions were much less prominent in extent and severity at this time. The resumption of normal levels of metabolism in the setting of a disproportionate depression of rCBF in the early postischemic period may accentuate the process of neuronal injury initiated by ischemia and may contribute to the genesis of neuronal necrosis in selectively vulnerable areas of the forebrain

  1. Value of amniocentesis versus fetal tissue for cytogenetic analysis in cases of fetal demise.

    Science.gov (United States)

    Bryant Borders, Ann E; Greenberg, Jessica; Plaga, Stacey; Shepard-Hinton, Megan; Yates, Carin; Elias, Sherman; Shulman, Lee P

    2009-01-01

    Use of fetal tissue for cytogenetic analysis in cases of second- and third-trimester fetal demise frequently results in unacceptably high failure rates. We reviewed our ongoing use of amniocentesis prior to uterine evacuation to determine if this provided a better source of cells for cytogenetic analysis. We compared cytogenetic results using fetal tissues obtained following uterine evacuation to our ongoing use of amniotic fluid cell obtained by transabdominal amniocentesis prior to uterine evacuation from 2003 to 2008. In 49 of the 63 cases evaluated by fetal tissue biopsies performed after uterine evacuation, a karyotypic analysis was obtained (77.8%). Among the 38 cases evaluated by amniocentesis, an amniotic fluid sample and fetal cytogenetic results were obtained in all 38 (100%) cases. Our findings indicate that amniocentesis is a more reliable source of cytogenetic information than fetal tissue in cases of second- and third-trimester fetal demise.

  2. The World Health Organization fetal growth charts: concept, findings, interpretation, and application.

    Science.gov (United States)

    Kiserud, Torvid; Benachi, Alexandra; Hecher, Kurt; Perez, Rogelio González; Carvalho, José; Piaggio, Gilda; Platt, Lawrence D

    2018-02-01

    weight was strongest on the lowest percentiles and smallest on the highest percentiles for estimated fetal weight. (3) When adjustment was made for maternal covariates, there was still a significant effect of country as covariate that indicated that ethnic, cultural, and geographic variation play a role. (4) Variation between populations was not restricted to fetal size because there were also differences in growth trajectories. (5) The wide physiologic ranges, as illustrated by the 5th-95th percentile for estimated fetal weight being 2205-3538 g at 37 weeks gestation, signify that human fetal growth under optimized maternal conditions is not uniform. Rather, it has a remarkable variation that largely is unexplained by commonly known factors. We suggest this variation could be part of our common biologic strategy that makes human evolution extremely successful. The World Health Organization fetal growth charts are intended to be used internationally based on low-risk pregnancies from populations in Africa, Asia, Europe, and South America. We consider it prudent to test and monitor whether the growth charts' performance meets the local needs, because refinements are possible by a change in cut-offs or customization for fetal sex, maternal factors, and populations. In the same line, the study finding of variations emphasizes the need for carefully adjusted growth charts that reflect optimal local growth when public health issues are addressed. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Clinical implications from monitoring fetal activity.

    Science.gov (United States)

    Rayburn, W F

    1982-12-15

    The monitoring of fetal motion in high-risk pregnancies has been shown to be worthwhile in predicting fetal distress and impending fetal death. The maternal recording of perceived fetal activity is an inexpensive surveillance technique which is most useful when there is chronic uteroplacental insufficiency or when a stillbirth may be expected. The presence of an active, vigorous fetus is reassuring, but documented fetal inactivity required a reassessment of the underlying antepartum complication and further fetal evaluation with real-time ultrasonography, fetal heart rate testing, and biochemical testing. Fetal distress from such acute changes as abruptio placentae or umbilical cord compression may not be predicted by monitoring fetal motion. Although not used for routine clinical investigation, electromechanical devices such as tocodynamometry have provided much insight into fetal behavioral patterns at many stages of pregnancy and in pregnancies with an antepartum complication.

  4. Creation of an in vitro microenvironment to enhance human fetal synovium-derived stem cell chondrogenesis.

    Science.gov (United States)

    Li, Jingting; He, Fan; Pei, Ming

    2011-09-01

    Our aim was to assess the feasibility of the sequential application of extracellular matrix (ECM) and low oxygen to enhance chondrogenesis in human fetal synovium-derived stem cells (hfSDSCs). Human fetal synovial fibroblasts (hfSFs) were characterized and found to include hfSDSCs, as evidenced by their multi-differentiation capacity and the surface phenotype markers typical of mesenchymal stem cells. Passage-7 hfSFs were plated on either conventional plastic flasks (P) or ECM deposited by hfSFs (E) for one passage. Passage-8 hfSFs were then reseeded for an additional passage on either P or E. The pellets from expanded hfSFs were incubated in a serum-free chondrogenic medium supplemented with 10 ng/ml transforming growth factor-β3 under either normoxia (21% O(2); 21) or hypoxia (5% O(2); 5) for 14 days. Pellets were collected for evaluation of the treatments (EE21, EE5, EP21, EP5, PE21, PE5, PP21, and PP5) on expanded hfSF chondrogenesis by using histology, immunostaining, biochemistry, and real-time polymerase chain reaction. Our data suggest that, compared with seeding on conventional plastic flasks, hfSFs expanded on ECM exhibit a lower expression of senescence-associated β-galactosidase and an enhanced level of stage-specific embryonic antigen-4. ECM-expanded hfSFs also show increased cell numbers and an enhanced chondrogenic potential. Low oxygen (5% O(2)) during pellet culture enhances hfSF chondrogenesis. Thus, we demonstrate, for the first time, the presence of stem cells in hfSFs, and that modulation of the in vitro microenvironment can enhance hfSDSC chondrogenesis. hfSDSCs might represent a promising cell source for cartilage tissue engineering and regeneration.

  5. Lack of cross-tolerance between haloperidol and clozapine towards Fos-protein induction in rat forebrain regions

    NARCIS (Netherlands)

    Sebens, JB; Koch, T; Korf, J

    1996-01-01

    We investigated whether the acute effects of haloperidol and clozapine on Fos expression in the rat forebrain are mediated by the same receptors through evaluation of cross-tolerance, particularly in the commonly affected areas. Acutely administered haloperidol (1 mg/kg, i.p.) and clozapine (20

  6. Adult, embryonic and fetal hemoglobin are expressed in human glioblastoma cells.

    Science.gov (United States)

    Emara, Marwan; Turner, A Robert; Allalunis-Turner, Joan

    2014-02-01

    Hemoglobin is a hemoprotein, produced mainly in erythrocytes circulating in the blood. However, non-erythroid hemoglobins have been previously reported in other cell types including human and rodent neurons of embryonic and adult brain, but not astrocytes and oligodendrocytes. Human glioblastoma multiforme (GBM) is the most aggressive tumor among gliomas. However, despite extensive basic and clinical research studies on GBM cells, little is known about glial defence mechanisms that allow these cells to survive and resist various types of treatment. We have shown previously that the newest members of vertebrate globin family, neuroglobin (Ngb) and cytoglobin (Cygb), are expressed in human GBM cells. In this study, we sought to determine whether hemoglobin is also expressed in GBM cells. Conventional RT-PCR, DNA sequencing, western blot analysis, mass spectrometry and fluorescence microscopy were used to investigate globin expression in GBM cell lines (M006x, M059J, M059K, M010b, U87R and U87T) that have unique characteristics in terms of tumor invasion and response to radiotherapy and hypoxia. The data showed that α, β, γ, δ, ζ and ε globins are expressed in all tested GBM cell lines. To our knowledge, we are the first to report expression of fetal, embryonic and adult hemoglobin in GBM cells under normal physiological conditions that may suggest an undefined function of those expressed hemoglobins. Together with our previous reports on globins (Ngb and Cygb) expression in GBM cells, the expression of different hemoglobins may constitute a part of series of active defence mechanisms supporting these cells to resist various types of treatments including chemotherapy and radiotherapy.

  7. The effect of high mesencephalic transection (cerveau isolé) and pentobarbital on basal forebrain mechanisms of EEG synchronization.

    Science.gov (United States)

    Obál, F; Benedek, G; Szikszay, M; Obál, F

    1979-01-01

    A study was made of the effects of high mesencephalic transection (cerveau isolé) and low doses of pentobarbital on the cortical synchronizations elicited in acute immobilized cats by (a) low frequency stimulation of the lateral hypothalamus (HL) and nucleus ventralis anterior thalami (VA) and (b) by low and high frequency stimulation of the laterobasal preoptic region (RPO) and olfactory tubercle (TbOf). The results obtained were as follows: (1) The synchronizations induced by basal forebrain stimulations were found to survive in acute cerveau isolé cats, moreover, even a facilitation of the synchronizing effect were observed. (2) A gradual facilitation was observed upon TbOf and RPO stimulation, while in the case of VA and HL stimulations, the facilitation appeared immediately after the transection. (3) Low doses of pentobarbital depressed the cortical effects of TbOf stimulation, while an increase of the synchronizing effect of low frequency VA and HL stimulation was found. The observations suggested that (i) the synchronizing mechanism in the ventral part of the basal forebrain (RPO and TbOf) differs from that of the thalamus and HL; (ii) the basal forebrain synchronizing mechanism is effective without the contribution of the brain stem; (iii) the mechanism responsible for the synchronizing effect of low frequency HL stimulation is similar as that described for the thalamus.

  8. Fetal body weight and the development of the control of the cardiovascular system in fetal sheep.

    Science.gov (United States)

    Frasch, M G; Müller, T; Wicher, C; Weiss, C; Löhle, M; Schwab, K; Schubert, H; Nathanielsz, P W; Witte, O W; Schwab, M

    2007-03-15

    Reduced birth weight predisposes to cardiovascular diseases in later life. We examined in fetal sheep at 0.76 (n = 18) and 0.87 (n = 17) gestation whether spontaneously occurring variations in fetal weight affect maturation of autonomic control of cardiovascular function. Fetal weights at both gestational ages were grouped statistically in low (LW) and normal weights (NW) (P fetal sheep not constituting a major malnutritive condition. Mean fetal blood pressure (FBP) of all fetuses was negatively correlated to fetal weight at 0.76 but not 0.87 gestation (P fetal heart rate depended on fetal weight (P fetal weight within the normal weight span is accompanied by a different trajectory of development of sympathetic blood pressure and vagal heart rate control. This may contribute to the development of elevated blood pressure in later life. Examination of the underlying mechanisms and consequences may contribute to the understanding of programming of cardiovascular diseases.

  9. Screening for fetal growth restriction using fetal biometry combined with maternal biomarkers.

    Science.gov (United States)

    Gaccioli, Francesca; Aye, Irving L M H; Sovio, Ulla; Charnock-Jones, D Stephen; Smith, Gordon C S

    2018-02-01

    Fetal growth restriction is a major determinant of perinatal morbidity and mortality. Screening for fetal growth restriction is a key element of prenatal care but it is recognized to be problematic. Screening using clinical risk assessment and targeting ultrasound to high-risk women is the standard of care in the United States and United Kingdom, but the approach is known to have low sensitivity. Systematic reviews of randomized controlled trials do not demonstrate any benefit from universal ultrasound screening for fetal growth restriction in the third trimester, but the evidence base is not strong. Implementation of universal ultrasound screening in low-risk women in France failed to reduce the risk of complications among small-for-gestational-age infants but did appear to cause iatrogenic harm to false positives. One strategy to making progress is to improve screening by developing more sensitive and specific tests with the key goal of differentiating between healthy small fetuses and those that are small through fetal growth restriction. As abnormal placentation is thought to be the major cause of fetal growth restriction, one approach is to combine fetal biometry with an indicator of placental dysfunction. In the past, these indicators were generally ultrasonic measurements, such as Doppler flow velocimetry of the uteroplacental circulation. However, another promising approach is to combine ultrasonic suspicion of small-for-gestational-age infant with a blood test indicating placental dysfunction. Thus far, much of the research on maternal serum biomarkers for fetal growth restriction has involved the secondary analysis of tests performed for other indications, such as fetal aneuploidies. An exemplar of this is pregnancy-associated plasma protein A. This blood test is performed primarily to assess the risk of Down syndrome, but women with low first-trimester levels are now serially scanned in later pregnancy due to associations with placental causes of

  10. Thyroid hormone modulates the development of cholinergic terminal fields in the rat forebrain: relation to nerve growth factor receptor.

    Science.gov (United States)

    Oh, J D; Butcher, L L; Woolf, N J

    1991-04-24

    Hyperthyroidism, induced in rat pups by the daily intraperitoneal administration of 1 microgram/g body weight triiodothyronine, facilitated the development of ChAT fiber plexuses in brain regions innervated by basal forebrain cholinergic neurons, leading to an earlier and increased expression of cholinergic markers in those fibers in the cortex, hippocampus and amygdala. A similar enhancement was seen in the caudate-putamen complex. This histochemical profile was correlated with an accelerated appearance of ChAT-positive telencephalic puncta, as well as with a larger total number of cholinergic terminals expressed, which persisted throughout the eight postnatal week, the longest time examined in the present study. Hypothyroidism was produced in rat pups by adding 0.5% propylthiouracil to the dams' diet beginning the day after birth. This dietary manipulation resulted in the diminished expression of ChAT in forebrain fibers and terminals. Hypothyroid treatment also reduced the quantity of ChAT puncta present during postnatal weeks 2 and 3, and, from week 4 and continuing through week 6, the number of ChAT-positive terminals in the telencephalic regions examined was actually less than the amount extant during the former developmental epoch. Immunostaining for nerve growth factor receptor (NGF-R), which is associated almost exclusively with ChAT-positive somata and fibers in the basal forebrain, demonstrated a different time course of postnatal development. Forebrain fibers and terminals demonstrating NGF-R were maximally visualized 1 week postnatally, a time at which these same neuronal elements evinced minimal ChAT-like immunopositivity. Thereafter and correlated with increased immunoreactivity for ChAT, fine details of NGF-R stained fibers were observed less frequently. Although propylthiouracil administration decreased NGF-R immunodensity, no alteration in the development of that receptor was observed as a function of triiodothyronine treatment. Cholinergic

  11. Prolonged exposure to acetaminophen reduces testosterone production by the human fetal testis in a xenograft model

    DEFF Research Database (Denmark)

    van den Driesche, Sander; Macdonald, Joni; Anderson, Richard A

    2015-01-01

    Most common male reproductive disorders are linked to lower testosterone exposure in fetal life, although the factors responsible for suppressing fetal testosterone remain largely unknown. Protracted use of acetaminophen during pregnancy is associated with increased risk of cryptorchidism in sons...

  12. Clinical significance of perceptible fetal motion.

    Science.gov (United States)

    Rayburn, W F

    1980-09-15

    The monitoring of fetal activity during the last trimester of pregnancy has been proposed to be useful in assessing fetal welfare. The maternal perception of fetal activity was tested among 82 patients using real-time ultrasonography. All perceived fetal movements were visualized on the scanner and involved motion of the lower limbs. Conversely, 82% of all visualized motions of fetal limbs were perceived by the patients. All combined motions of fetal trunk with limbs were preceived by the patients and described as strong movements, whereas clusters of isolated, weak motions of the fetal limbs were less accurately perceived (56% accuracy). The number of fetal movements perceived during the 15-minute test period was significantly (p fetal motion was present (44 of 45 cases) than when it was absent (five of 10 cases). These findings reveal that perceived fetal motion is: (1) reliable; (2) related to the strength of lower limb motion; (3) increased with ruptured amniotic membranes; and (4) reassuring if considered to be active.

  13. Differential diagnosis between fetal extrarenal pelvis and obstructive uropathy on fetal ultrasonogram

    Energy Technology Data Exchange (ETDEWEB)

    Han, Byoung Hee; Cho, Jeong Yeon; Cho, Byung Jae; Lee, Kyung Sang [Samsung Cheil Hospital, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2003-03-15

    To establish the standard guideline for differentiating the extrarenal pelvis from obstructive uropathy on fetal ultrasonogram (US) to avoid unnecessary postnatal follow-up and other additional examinations. From July 2000 to July 2001, Thirty-four kidneys with hydronephrosis diagnosed on fetal ultrasonogram performed during the third trimester of pregnancy were included in this study. Hydronephrosis was defined as the pelvic anteroposterior (AP) diameter being 4 mm or greater before 33 weeks of gestation while 7 mm or greater at or after 33 weeks of gestation. The size of the renal pelvis was measured at intrarenal, intra-extrarenal junctional and extrarenal portions in every kidney on the transverse view of the fetal renal hiluin. Postnatally, all neonates underwent renal ultrasonogram 2 to 8 days after birth, and renal pelvic diameters were measured using the same method as the fetal US in 28 kidneys. We then compared the extrarenal-intrarenal ratio (E/I ratio) of pelvic diameter between fetal and neoatal kidneys. We presumed that the extrarenal pelvis in fetal US was the pelvis showing the normal intrarenal pelvic diameter accompanied by the most dilated exrtarenal pelvic diameter. Follow-up ultrasonograms were measured using the same method as the fetal US in 28 kidneys. We then compared the extrarenal intrarenal ratio (E/I ratio) of pelvic diameter between fetal and neonatal kidneys. We presumed that the extrarenal pelvis on fetal US was the pelvis showing the normal intrarenal pelvic diameter accompanied by the most dilated extrarenal pelvic diameter. Follow-up ultrasonograms were performed in 12 of 17 neonates who had the maximal diameter at extrarenal portion on fetal ultrasonogram. VCUG and IVU were taken in 2 patients with a persistent dilatation of the renal pelvis on follow-up ultrasonograms. On fetal US, 17/34 kidneys showed the extrarenal portion with the most dilatation while in 12/34 kidneys, the intra-extra renal junction portion was the most

  14. Differential diagnosis between fetal extrarenal pelvis and obstructive uropathy on fetal ultrasonogram

    International Nuclear Information System (INIS)

    Han, Byoung Hee; Cho, Jeong Yeon; Cho, Byung Jae; Lee, Kyung Sang

    2003-01-01

    To establish the standard guideline for differentiating the extrarenal pelvis from obstructive uropathy on fetal ultrasonogram (US) to avoid unnecessary postnatal follow-up and other additional examinations. From July 2000 to July 2001, Thirty-four kidneys with hydronephrosis diagnosed on fetal ultrasonogram performed during the third trimester of pregnancy were included in this study. Hydronephrosis was defined as the pelvic anteroposterior (AP) diameter being 4 mm or greater before 33 weeks of gestation while 7 mm or greater at or after 33 weeks of gestation. The size of the renal pelvis was measured at intrarenal, intra-extrarenal junctional and extrarenal portions in every kidney on the transverse view of the fetal renal hiluin. Postnatally, all neonates underwent renal ultrasonogram 2 to 8 days after birth, and renal pelvic diameters were measured using the same method as the fetal US in 28 kidneys. We then compared the extrarenal-intrarenal ratio (E/I ratio) of pelvic diameter between fetal and neoatal kidneys. We presumed that the extrarenal pelvis in fetal US was the pelvis showing the normal intrarenal pelvic diameter accompanied by the most dilated exrtarenal pelvic diameter. Follow-up ultrasonograms were measured using the same method as the fetal US in 28 kidneys. We then compared the extrarenal intrarenal ratio (E/I ratio) of pelvic diameter between fetal and neonatal kidneys. We presumed that the extrarenal pelvis on fetal US was the pelvis showing the normal intrarenal pelvic diameter accompanied by the most dilated extrarenal pelvic diameter. Follow-up ultrasonograms were performed in 12 of 17 neonates who had the maximal diameter at extrarenal portion on fetal ultrasonogram. VCUG and IVU were taken in 2 patients with a persistent dilatation of the renal pelvis on follow-up ultrasonograms. On fetal US, 17/34 kidneys showed the extrarenal portion with the most dilatation while in 12/34 kidneys, the intra-extra renal junction portion was the most

  15. Pooled human platelet lysate versus fetal bovine serum—investigating the proliferation rate, chromosome stability and angiogenic potential of human adipose tissue-derived stem cells intended for clinical use

    DEFF Research Database (Denmark)

    Trojahn Kølle, Stig-Frederik; Oliveri, Roberto S; Glovinski, Peter V

    2013-01-01

    Because of an increasing focus on the use of adipose-derived stem cells (ASCs) in clinical trials, the culture conditions for these cells are being optimized. We compared the proliferation rates and chromosomal stability of ASCs that had been cultured in Dulbecco's modified Eagle's Medium (DMEM) ......) supplemented with either pooled human platelet lysate (pHPL) or clinical-grade fetal bovine serum (FBS) (DMEM(pHPL) versus DMEM(FBS))....

  16. Shp2 in Forebrain Neurons Regulates Synaptic Plasticity, Locomotion, and Memory Formation in Mice

    Science.gov (United States)

    Kusakari, Shinya; Saitow, Fumihito; Ago, Yukio; Shibasaki, Koji; Sato-Hashimoto, Miho; Matsuzaki, Yasunori; Kotani, Takenori; Murata, Yoji; Hirai, Hirokazu; Matsuda, Toshio; Suzuki, Hidenori

    2015-01-01

    Shp2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) regulates neural cell differentiation. It is also expressed in postmitotic neurons, however, and mutations of Shp2 are associated with clinical syndromes characterized by mental retardation. Here we show that conditional-knockout (cKO) mice lacking Shp2 specifically in postmitotic forebrain neurons manifest abnormal behavior, including hyperactivity. Novelty-induced expression of immediate-early genes and activation of extracellular-signal-regulated kinase (Erk) were attenuated in the cerebral cortex and hippocampus of Shp2 cKO mice, suggestive of reduced neuronal activity. In contrast, ablation of Shp2 enhanced high-K+-induced Erk activation in both cultured cortical neurons and synaptosomes, whereas it inhibited that induced by brain-derived growth factor in cultured neurons. Posttetanic potentiation and paired-pulse facilitation were attenuated and enhanced, respectively, in hippocampal slices from Shp2 cKO mice. The mutant mice also manifested transient impairment of memory formation in the Morris water maze. Our data suggest that Shp2 contributes to regulation of Erk activation and synaptic plasticity in postmitotic forebrain neurons and thereby controls locomotor activity and memory formation. PMID:25713104

  17. Characterization of muscarinic receptor subtypes in human tissues

    International Nuclear Information System (INIS)

    Giraldo, E.; Martos, F.; Gomez, A.; Garcia, A.; Vigano, M.A.; Ladinsky, H.; Sanchez de La Cuesta, F.

    1988-01-01

    The affinities of selective, pirenzepine and AF-DX 116, and classical, N-methylscopolamine and atropine, muscarinic cholinergic receptor antagonists were investigated in displacement binding experiments with [ 3 H]Pirenzepine and [ 3 H]N-methylscopolamine in membranes from human autoptic tissues (forebrain, cerebellum, atria, ventricle and submaxillary salivary glands). Affinity estimates of N-methylscopolamine and atropine indicated a non-selective profile. Pirenzepine showed differentiation between the M 1 neuronal receptor of the forebrain and the receptors in other tissues while AF-DX 116 clearly discriminated between muscarinic receptors of heart and glands. The results in human tissues confirm the previously described selectivity profiles of pirenzepine and AF-DX 116 in rat tissues. These findings thus reveal the presence also in man of three distinct muscarinic receptor subtypes: the neuronal M 1 , the cardiac M 2 and the glandular M 3

  18. Development of the Human Placenta and Fetal Heart: Synergic or Independent?

    Directory of Open Access Journals (Sweden)

    Graham J. Burton

    2018-04-01

    Full Text Available The placenta is the largest fetal organ, and toward the end of pregnancy the umbilical circulation receives at least 40% of the biventricular cardiac output. It is not surprising, therefore, that there are likely to be close haemodynamic links between the development of the placenta and the fetal heart. Development of the placenta is precocious, and in advance of that of the fetus. The placenta undergoes considerable remodeling at the end of the first trimester of pregnancy, and its vasculature is capable of adapting to environmental conditions and to variations in the blood supply received from the mother. There are two components to the placental membranes to consider, the secondary yolk sac and the chorioallantoic placenta. The yolk sac is the first of the extraembryonic membranes to be vascularized, and condensations in the mesenchyme at ~17 days post-conception (p.c. give rise to endothelial and erythroid precursors. A network of blood vessels is established ~24 days p.c., with the vitelline vein draining through the region of the developing liver into the sinus venosus. Gestational sacs of early pregnancy failures often display aberrant development of the yolk sac, which is likely to be secondary to abnormal fetal development. Vasculogenesis occurs in the villous mesenchyme of the chorioallantoic placenta at a similarly early stage. Nucleated erythrocytes occupy the lumens of the placental capillaries and end-diastolic flow is absent in the umbilical arterial circulation throughout most of the first trimester, indicating a high resistance to blood flow. Resistance begins to fall in the umbilico-placental circulation around 12–14 weeks. During normal early pregnancy the placental capillary network is plastic, and considerable remodeling occurs in response to the local oxygen concentration, and in particular to oxidative stress. In pregnancies complicated by preeclampsia and/or fetal growth restriction, utero-placental malperfusion induces

  19. Fetal antigen 1 in healthy adults and patients with pituitary disease

    DEFF Research Database (Denmark)

    Andersen, M; Jensen, Charlotte Harken; Støving, René Klinkby

    2001-01-01

    Immunohistochemical analysis of the distribution of human fetal antigen 1 (FA1) in adult human tissues has demonstrated a strong association between FA1 and (neuro)endocrine structures. In the anterior pituitary gland FA1 was colocalized with GH, and the present study was performed to evaluate...

  20. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration

    OpenAIRE

    McBrayer, Zofeyah L.; Dimova, Jiva; Pisansky, Marc T.; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C.; O’Connor, Michael B.

    2015-01-01

    To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not ...

  1. Visceral hyperalgesia induced by forebrain-specific suppression of native Kv7/KCNQ/M-current in mice

    Directory of Open Access Journals (Sweden)

    Bian Xiling

    2011-10-01

    Full Text Available Abstract Background Dysfunction of brain-gut interaction is thought to underlie visceral hypersensitivity which causes unexplained abdominal pain syndromes. However, the mechanism by which alteration of brain function in the brain-gut axis influences the perception of visceral pain remains largely elusive. In this study we investigated whether altered brain activity can generate visceral hyperalgesia. Results Using a forebrain specific αCaMKII promoter, we established a line of transgenic (Tg mice expressing a dominant-negative pore mutant of the Kv7.2/KCNQ2 channel which suppresses native KCNQ/M-current and enhances forebrain neuronal excitability. Brain slice recording of hippocampal pyramidal neurons from these Tg mice confirmed the presence of hyperexcitable properties with increased firing. Behavioral evaluation of Tg mice exhibited increased sensitivity to visceral pain induced by intraperitoneal (i.p. injection of either acetic acid or magnesium sulfate, and intracolon capsaicin stimulation, but not cutaneous sensation for thermal or inflammatory pain. Immunohistological staining showed increased c-Fos expression in the somatosensory SII cortex and insular cortex of Tg mice that were injected intraperitoneally with acetic acid. To mimic the effect of cortical hyperexcitability on visceral hyperalgesia, we injected KCNQ/M channel blocker XE991 into the lateral ventricle of wild type (WT mice. Intracerebroventricular injection of XE991 resulted in increased writhes of WT mice induced by acetic acid, and this effect was reversed by co-injection of the channel opener retigabine. Conclusions Our findings provide evidence that forebrain hyperexcitability confers visceral hyperalgesia, and suppression of central hyperexcitability by activation of KCNQ/M-channel function may provide a therapeutic potential for treatment of abdominal pain syndromes.

  2. Effects of Maternal Obesity on Fetal Programming: Molecular Approaches

    Science.gov (United States)

    Neri, Caterina; Edlow, Andrea G.

    2016-01-01

    Maternal obesity has become a worldwide epidemic. Obesity and a high-fat diet have been shown to have deleterious effects on fetal programming, predisposing offspring to adverse cardiometabolic and neurodevelopmental outcomes. Although large epidemiological studies have shown an association between maternal obesity and adverse outcomes for offspring, the underlying mechanisms remain unclear. Molecular approaches have played a key role in elucidating the mechanistic underpinnings of fetal malprogramming in the setting of maternal obesity. These approaches include, among others, characterization of epigenetic modifications, microRNA expression, the gut microbiome, the transcriptome, and evaluation of specific mRNA expression via quantitative reverse transcription polmerase chain reaction (RT-qPCR) in fetuses and offspring of obese females. This work will review the data from animal models and human fluids/cells regarding the effects of maternal obesity on fetal and offspring neurodevelopment and cardiometabolic outcomes, with a particular focus on molecular approaches. PMID:26337113

  3. Effects of short-term hormonal replacement on learning and on basal forebrain ChAT and TrkA content in ovariectomized rats.

    Science.gov (United States)

    Espinosa-Raya, Judith; Plata-Cruz, Noemí; Neri-Gómez, Teresa; Camacho-Arroyo, Ignacio; Picazo, Ofir

    2011-02-23

    It has been proposed that sex steroid hormones improve performance in some cognitive tasks by regulating the basal forebrain cholinergic function. However, the molecular basis of such influence still remains unknown. Current study analyzed the performance of ovariectomized rats in an autoshaping learning task after a short-term treatment with 17β-estradiol (E2: 4 and 40μg/kg) and/or progesterone (P4: 4mg/kg). These results were correlated with basal forebrain choline acetyltransferase (ChAT) and TrkA protein content. The high dose of E2 enhanced both acquisition in the autoshaping task and the content of ChAT and TrkA. P4 treatment increased ChAT and TrkA content without affecting performance of rats in the autoshaping learning task. Interestingly, the continuous and simultaneous administration of E2 plus P4 did not significantly modify behavioral and biochemical evaluated parameters. These results address the influence of both E2 and P4 on cholinergic and TrkA activity and suggest that the effects of ovarian hormones on cognitive performance involve basal forebrain cholinergic neurons. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Fetal Alcohol Syndrome and Fetal Alcohol Effects in Child Development.

    Science.gov (United States)

    Pancratz, Diane R.

    This literature review defines Fetal Alcohol Syndrome (FAS) and Fetal Alcohol Effects (FAE) and considers their causes, diagnoses, prevalence, and educational ramifications. Effects of alcohol during each of the trimesters of pregnancy are summarized. Specific diagnostic characteristics of FAS are listed: (1) growth deficiency, (2) a…

  5. Human fetal antehypophysis in vitro. Immunocytological study and radioimmunoassay of LH and FSH

    International Nuclear Information System (INIS)

    Li, J.Y.; Begeot, M.; Dubois, P.M.; Claustrat, B.

    1977-01-01

    Human fetal antehypophysis (16 males, 16 females and 4 unknown sex) were cultivated during several weeks. By immunocytochemistry LH gonadotroph cells were determined with anti-hTSH and anti-pLH serum. The release in vitro of LH and FSH was studied by radioimmunoassay. At the first medium change, the quantity of LH and FSH release was related to the gestational age and sex. A rapid decline of both LH and FSH occured over the 10 first days. There after, a basal release of LH was maintained during several months; the release of FSH was generally maintained at the lower limit of the assay. After 1 month in vitro, the level of LH could not be related to the sex. Release of LH was stimulated by synthetic LRF. A significant increase was observed independently of the sex and age of the fetuses studied [fr

  6. Fetal scalp blood sampling during labor

    DEFF Research Database (Denmark)

    Chandraharan, Edwin; Wiberg, Nana

    2014-01-01

    Fetal cardiotocography is characterized by low specificity; therefore, in an attempt to ensure fetal well-being, fetal scalp blood sampling has been recommended by most obstetric societies in the case of a non-reassuring cardiotocography. The scientific agreement on the evidence for using fetal...... scalp blood sampling to decrease the rate of operative delivery for fetal distress is ambiguous. Based on the same studies, a Cochrane review states that fetal scalp blood sampling increases the rate of instrumental delivery while decreasing neonatal acidosis, whereas the National Institute of Health...... and Clinical Excellence guideline considers that fetal scalp blood sampling decreases instrumental delivery without differences in other outcome variables. The fetal scalp is supplied by vessels outside the skull below the level of the cranial vault, which is likely to be compressed during contractions...

  7. Zika Virus Infection during Pregnancy in Mice Causes Placental Damage and Fetal Demise.

    Science.gov (United States)

    Miner, Jonathan J; Cao, Bin; Govero, Jennifer; Smith, Amber M; Fernandez, Estefania; Cabrera, Omar H; Garber, Charise; Noll, Michelle; Klein, Robyn S; Noguchi, Kevin K; Mysorekar, Indira U; Diamond, Michael S

    2016-05-19

    Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1(-/-)) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Expanding the spectrum of human ganglionic eminence region anomalies on fetal magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Righini, Andrea; Parazzini, Cecilia; Izzo, Giana [Children' s Hospital ' ' V. Buzzi' ' , Department of Radiology and Neuroradiology, Milan (Italy); Cesaretti, Claudia [Children' s Hospital ' ' V. Buzzi' ' , Department of Radiology and Neuroradiology, Milan (Italy); Ospedale Maggiore Policlinico, Medical Genetics Unit, Fondazione I.R.C.C.S. Ca' Granda, Milan (Italy); Conte, Giorgio [Children' s Hospital ' ' V. Buzzi' ' , Department of Radiology and Neuroradiology, Milan (Italy); University of Milan, Department of Health Sciences, Milan (Italy); Frassoni, Carolina; Inverardi, Francesca [Fondazione I.R.C.C.S. Istituto Neurologico ' ' C. Besta' ' , Clinical Epileptology and Experimental Neurophysiology Unit, Milan (Italy); Bulfamante, Gaetano; Avagliano, Laura [San Paolo Hospital, Division of Human Pathology, Milan (Italy); Rustico, Mariangela [Children' s Hospital ' ' V. Buzzi' ' , Department of Obstetrics and Gynaecology, Prenatal Diagnosis, Milan (Italy)

    2016-03-15

    Ganglionic eminence (GE) is a transient fetal brain structure that harvests a significant amount of precursors of cortical GABA-ergic interneurons. Prenatal magnetic resonance (MR) imaging features of GE anomalies (i.e., cavitations) have already been reported associated with severe micro-lissencephaly. The purpose of this report was to illustrate the MR imaging features of GE anomalies in conditions other than severe micro-lissencephalies. Among all the fetuses submitted to prenatal MR imaging at our center from 2005 to 2014, we collected eight cases with GE anomalies and only limited associated brain anomalies. The median gestational age at the time of MR imaging was 21 weeks ranging from 19 to 29 weeks. Two senior pediatric neuroradiologists categorized the anomalies of the GE region in two groups: group one showing cavitation in the GE region and group two showing enlarged GE region. For each fetal case, associated cranial anomalies were also reported. Five out of the eight cases were included in group one and three in group two. Besides the GE region abnormality, all eight cases had additional intracranial anomalies, such as mild partial callosal agenesis, vermian hypoplasia and rotation, cerebellar hypoplasia, ventriculomegaly, enlarged subarachnoid spaces, molar tooth malformation. Ultrasound generally detected most of the associated intracranial anomalies, prompting the MR investigation; on the contrary in none of the cases, GE anomalies had been detected by ultrasound. Our observation expands the spectrum of human GE anomalies, demonstrating that these may take place also without associated severe micro-lissencephalies. (orig.)

  9. Expanding the spectrum of human ganglionic eminence region anomalies on fetal magnetic resonance imaging

    International Nuclear Information System (INIS)

    Righini, Andrea; Parazzini, Cecilia; Izzo, Giana; Cesaretti, Claudia; Conte, Giorgio; Frassoni, Carolina; Inverardi, Francesca; Bulfamante, Gaetano; Avagliano, Laura; Rustico, Mariangela

    2016-01-01

    Ganglionic eminence (GE) is a transient fetal brain structure that harvests a significant amount of precursors of cortical GABA-ergic interneurons. Prenatal magnetic resonance (MR) imaging features of GE anomalies (i.e., cavitations) have already been reported associated with severe micro-lissencephaly. The purpose of this report was to illustrate the MR imaging features of GE anomalies in conditions other than severe micro-lissencephalies. Among all the fetuses submitted to prenatal MR imaging at our center from 2005 to 2014, we collected eight cases with GE anomalies and only limited associated brain anomalies. The median gestational age at the time of MR imaging was 21 weeks ranging from 19 to 29 weeks. Two senior pediatric neuroradiologists categorized the anomalies of the GE region in two groups: group one showing cavitation in the GE region and group two showing enlarged GE region. For each fetal case, associated cranial anomalies were also reported. Five out of the eight cases were included in group one and three in group two. Besides the GE region abnormality, all eight cases had additional intracranial anomalies, such as mild partial callosal agenesis, vermian hypoplasia and rotation, cerebellar hypoplasia, ventriculomegaly, enlarged subarachnoid spaces, molar tooth malformation. Ultrasound generally detected most of the associated intracranial anomalies, prompting the MR investigation; on the contrary in none of the cases, GE anomalies had been detected by ultrasound. Our observation expands the spectrum of human GE anomalies, demonstrating that these may take place also without associated severe micro-lissencephalies. (orig.)

  10. Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas.

    Directory of Open Access Journals (Sweden)

    Sidarta Ribeiro

    2004-01-01

    Full Text Available The discovery of experience-dependent brain reactivation during both slow-wave (SW and rapid eye-movement (REM sleep led to the notion that the consolidation of recently acquired memory traces requires neural replay during sleep. To date, however, several observations continue to undermine this hypothesis. To address some of these objections, we investigated the effects of a transient novel experience on the long-term evolution of ongoing neuronal activity in the rat forebrain. We observed that spatiotemporal patterns of neuronal ensemble activity originally produced by the tactile exploration of novel objects recurred for up to 48 h in the cerebral cortex, hippocampus, putamen, and thalamus. This novelty-induced recurrence was characterized by low but significant correlations values. Nearly identical results were found for neuronal activity sampled when animals were moving between objects without touching them. In contrast, negligible recurrence was observed for neuronal patterns obtained when animals explored a familiar environment. While the reverberation of past patterns of neuronal activity was strongest during SW sleep, waking was correlated with a decrease of neuronal reverberation. REM sleep showed more variable results across animals. In contrast with data from hippocampal place cells, we found no evidence of time compression or expansion of neuronal reverberation in any of the sampled forebrain areas. Our results indicate that persistent experience-dependent neuronal reverberation is a general property of multiple forebrain structures. It does not consist of an exact replay of previous activity, but instead it defines a mild and consistent bias towards salient neural ensemble firing patterns. These results are compatible with a slow and progressive process of memory consolidation, reflecting novelty-related neuronal ensemble relationships that seem to be context- rather than stimulus-specific. Based on our current and previous results

  11. In vitro characterization of a human neural progenitor cell coexpressing SSEA4 and CD133

    DEFF Research Database (Denmark)

    Barraud, Perrine; Stott, Simon; Møllgård, Kjeld

    2007-01-01

    The stage-specific embryonic antigen 4 (SSEA4) is commonly used as a cell surface marker to identify the pluripotent human embryonic stem (ES) cells. Immunohistochemistry on human embryonic central nervous system revealed that SSEA4 is detectable in the early neuroepithelium, and its expression....... Therefore, we propose that SSEA4 associated with CD133 can be used for both the positive selection and the enrichment of neural stem/progenitor cells from human embryonic forebrain....... decreases as development proceeds. Flow cytometry analysis of forebrain-derived cells demonstrated that the SSEA4-expressing cells are enriched in the neural stem/progenitor cell fraction (CD133(+)), but are rarely codetected with the neural stem cell (NSC) marker CD15. Using a sphere-forming assay, we...

  12. Targeted electroporation of defined lateral ventricular walls: a novel and rapid method to study fate specification during postnatal forebrain neurogenesis

    Directory of Open Access Journals (Sweden)

    Cremer Harold

    2011-04-01

    Full Text Available Abstract Background Postnatal olfactory bulb (OB neurogenesis involves the generation of granule and periglomerular cells by neural stem cells (NSCs located in the walls of the lateral ventricle (LV. Recent studies show that NSCs located in different regions of the LV give rise to different types of OB neurons. However, the molecular mechanisms governing neuronal specification remain largely unknown and new methods to approach these questions are needed. Results In this study, we refine electroporation of the postnatal forebrain as a technique to perform precise and accurate delivery of transgenes to NSCs located in distinct walls of the LV in the mouse. Using this method, we confirm and expand previous studies showing that NSCs in distinct walls of the LV produce neurons that invade different layers of the OB. Fate mapping of the progeny of radial glial cells located in these distinct LV walls reveals their specification into defined subtypes of granule and periglomerular neurons. Conclusions Our results provide a baseline with which future studies aiming at investigating the role of factors in postnatal forebrain neuronal specification can be compared. Targeted electroporation of defined LV NSC populations will prove valuable to study the genetic factors involved in forebrain neuronal specification.

  13. Revisiting the argument from fetal potential

    Directory of Open Access Journals (Sweden)

    Manninen Bertha

    2007-05-01

    Full Text Available Abstract One of the most famous, and most derided, arguments against the morality of abortion is the argument from potential, which maintains that the fetus' potential to become a person and enjoy the valuable life common to persons, entails that its destruction is prima facie morally impermissible. In this paper, I will revisit and offer a defense of the argument from potential. First, I will criticize the classical arguments proffered against the importance of fetal potential, specifically the arguments put forth by philosophers Peter Singer and David Boonin, by carefully unpacking the claims made in these arguments and illustrating why they are flawed. Secondly, I will maintain that fetal potential is morally relevant when it comes to the morality of abortion, but that it must be accorded a proper place in the argument. This proper place, however, cannot be found until we first answer a very important and complex question: we must first address the issue of personal identity, and when the fetus becomes the type of being who is relevantly identical to a future person. I will illustrate why the question of fetal potential can only be meaningfully addressed after we have first answered the question of personal identity and how it relates to the human fetus.

  14. Intrapartum fetal monitoring by ST-analysis of the fetal ECG

    NARCIS (Netherlands)

    Westerhuis, M.E.M.H.

    2010-01-01

    Objective Intrapartum fetal monitoring aims to identify fetuses at risk for neonatal and long-term injury due to asphyxia. To serve this purpose, cardiotocography (CTG) combined with ST-analysis of the fetal electrocardiogram (ECG), which is a relatively new method, may be used. The main aim of this

  15. Ontogenesis of testicular function in humans.

    Directory of Open Access Journals (Sweden)

    GaĂŤlle Angenard

    2010-01-01

    Full Text Available The two major functions of the testis, steroidogenesis and gametogenesis, take place during fetal life. These two functions have been extensively studied in rodents and adult humans. However, their onset during fetal life is poorly documented in humans. In the first part of this work we presented both our experimental data and some data of literature concerning the development of the human fetal testis. In the second part of this article, using the organ culture system we previously developed, we have investigated the regulations or perturbations of fetal testis development both in rodent and human models. Our findings provide important insight into the potential role of exposure to environmental pollutants (physical factors, in particular ionizing radiation, cadmium and endocrine disruptors such as phthalates during fetal testicular development and their potential deleterious effects on male fertility in adulthood. Our results highlight the specificity of the human model compared with rodent models.

  16. Linkage of regulators of TGF-β activity in the fetal ovary to polycystic ovary syndrome

    Science.gov (United States)

    Hatzirodos, Nicholas; Bayne, Rosemary A.; Irving-Rodgers, Helen F.; Hummitzsch, Katja; Sabatier, Laetitia; Lee, Sam; Bonner, Wendy; Gibson, Mark A.; Rainey, William E.; Carr, Bruce R.; Mason, Helen D.; Reinhardt, Dieter P.; Anderson, Richard A.; Rodgers, Raymond J.

    2011-01-01

    Although not often discussed, the ovaries of women with polycystic ovary syndrome (PCOS) show all the hallmarks of increased TGF-β activity, with increased amounts of fibrous tissue and collagen in the ovarian capsule or tunica albuginea and ovarian stroma. Recent studies suggest that PCOS could have fetal origins. Genetic studies of PCOS have also found linkage with a microsatellite located in intron 55 of the extracellular matrix protein fibrillin 3. Fibrillins regulate TGF-β bioactivity in tissues by binding latent TGF-β binding proteins. We therefore examined expression of fibrillins 1–3, latent TGF-β binding proteins 1–4, and TGF-β 1–3 in bovine and human fetal ovaries at different stages of gestation and in adult ovaries. We also immunolocalized fibrillins 1 and 3. The results indicate that TGF-β pathways operate during ovarian fetal development, but most important, we show fibrillin 3 is present in the stromal compartments of fetal ovaries and is highly expressed at a critical stage early in developing human and bovine fetal ovaries when stroma is expanding and follicles are forming. These changes in expression of fibrillin 3 in the fetal ovary could lead to a predisposition to develop PCOS in later life.—Hatzirodos, N., Bayne, R. A., Irving-Rodgers, H. F., Hummitzsch, K., Sabatier, L., Lee, S., Bonner, W., Gibson, M. A., Rainey, W. E., Carr, B. R., Mason, H. D., Reinhardt, D. P., Anderson, R. A., Rodgers, R. J. Linkage of regulators of TGF-β activity in the fetal ovary to polycystic ovary syndrome. PMID:21411746

  17. Paternal genetic contribution influences fetal vulnerability to maternal alcohol consumption in a rat model of fetal alcohol spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Laura J Sittig

    2010-04-01

    Full Text Available Fetal alcohol exposure causes in the offspring a collection of permanent physiological and neuropsychological deficits collectively termed Fetal Alcohol Spectrum Disorder (FASD. The timing and amount of exposure cannot fully explain the substantial variability among affected individuals, pointing to genetic influences that mediate fetal vulnerability. However, the aspects of vulnerability that depend on the mother, the father, or both, are not known.Using the outbred Sprague-Dawley (SD and inbred Brown Norway (BN rat strains as well as their reciprocal crosses, we administered ethanol (E, pair-fed (PF, or control (C diets to the pregnant dams. The dams' plasma levels of free thyroxine (fT4, triiodothyronine (T3, free T3 (fT3, and thyroid stimulating hormone (TSH were measured to elucidate potential differences in maternal thyroid hormonal environment, which affects specific aspects of FASD. We then compared alcohol-exposed, pair fed, and control offspring of each fetal strain on gestational day 21 (G21 to identify maternal and paternal genetic effects on bodyweight and placental weight of male and female fetuses.SD and BN dams exhibited different baseline hypothalamic-pituitary-thyroid function. Moreover, the thyroid function of SD dams was more severely affected by alcohol consumption while that of BN dams was relatively resistant. This novel finding suggests that genetic differences in maternal thyroid function are one source of maternal genetic effects on fetal vulnerability to FASD. The fetal vulnerability to decreased bodyweight after alcohol exposure depended on the genetic contribution of both parents, not only maternal contribution as previously thought. In contrast, the effect of maternal alcohol consumption on placental weight was consistent and not strain-dependent. Interestingly, placental weight in fetuses with different paternal genetic contributions exhibited opposite responses to caloric restriction (pair feeding. In summary

  18. Generation of human cortical neurons from a new immortal fetal neural stem cell line

    International Nuclear Information System (INIS)

    Cacci, E.; Villa, A.; Parmar, M.; Cavallaro, M.; Mandahl, N.; Lindvall, O.; Martinez-Serrano, A.; Kokaia, Z.

    2007-01-01

    Isolation and expansion of neural stem cells (NSCs) of human origin are crucial for successful development of cell therapy approaches in neurodegenerative diseases. Different epigenetic and genetic immortalization strategies have been established for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new, clonal NSC (hc-NSC) line, derived from human fetal cortical tissue, based on v-myc immortalization. Using immunocytochemistry, we show that these cells retain the characteristics of NSCs after more than 50 passages. Under proliferation conditions, when supplemented with epidermal and basic fibroblast growth factors, the hc-NSCs expressed neural stem/progenitor cell markers like nestin, vimentin and Sox2. When growth factors were withdrawn, proliferation and expression of v-myc and telomerase were dramatically reduced, and the hc-NSCs differentiated into glia and neurons (mostly glutamatergic and GABAergic, as well as tyrosine hydroxylase-positive, presumably dopaminergic neurons). RT-PCR analysis showed that the hc-NSCs retained expression of Pax6, Emx2 and Neurogenin2, which are genes associated with regionalization and cell commitment in cortical precursors during brain development. Our data indicate that this hc-NSC line could be useful for exploring the potential of human NSCs to replace dead or damaged cortical cells in animal models of acute and chronic neurodegenerative diseases. Taking advantage of its clonality and homogeneity, this cell line will also be a valuable experimental tool to study the regulatory role of intrinsic and extrinsic factors in human NSC biology

  19. Fetal short time variation during labor: a non-invasive alternative to fetal scalp pH measurements?

    OpenAIRE

    Schiermeier, Sven; Reinhard, Joscha; Hatzmann, Hendrike; Zimmermann, Ralf C.; Westhof, Gregor

    2009-01-01

    Objective: To determine whether short time variation (STV) of fetal heart beat correlates with scalp pH measurements during labor. Patients and methods: From 1279 deliveries, 197 women had at least one fetal scalp pH measurement. Using the CTG-Player®, STVs were calculated from the electronically saved cardiotocography (CTG) traces and related to the fetal scalp pH measurements. Results: There was no correlation between STV and fetal scalp pH measurements (r=−0.0592). Conclusions: Fetal ST...

  20. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    Science.gov (United States)

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  1. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory

    OpenAIRE

    Kana Okada; Kayo Nishizawa; Tomoko Kobayashi; Shogo Sakata; Kazuto Kobayashi

    2015-01-01

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer?s disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remai...

  2. Real-Time Automatic Fetal Brain Extraction in Fetal MRI by Deep Learning

    OpenAIRE

    Salehi, Seyed Sadegh Mohseni; Hashemi, Seyed Raein; Velasco-Annis, Clemente; Ouaalam, Abdelhakim; Estroff, Judy A.; Erdogmus, Deniz; Warfield, Simon K.; Gholipour, Ali

    2017-01-01

    Brain segmentation is a fundamental first step in neuroimage analysis. In the case of fetal MRI, it is particularly challenging and important due to the arbitrary orientation of the fetus, organs that surround the fetal head, and intermittent fetal motion. Several promising methods have been proposed but are limited in their performance in challenging cases and in real-time segmentation. We aimed to develop a fully automatic segmentation method that independently segments sections of the feta...

  3. Fetal Eye Movements on Magnetic Resonance Imaging

    Science.gov (United States)

    Woitek, Ramona; Kasprian, Gregor; Lindner, Christian; Stuhr, Fritz; Weber, Michael; Schöpf, Veronika; Brugger, Peter C.; Asenbaum, Ulrika; Furtner, Julia; Bettelheim, Dieter; Seidl, Rainer; Prayer, Daniela

    2013-01-01

    Objectives Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. Methods Dynamic SSFP sequences were acquired in 72 singleton fetuses (17–40 GW, three age groups [17–23 GW, 24–32 GW, 33–40 GW]). Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981): Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. Results In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%). Significant differences between the age groups were found for Type I (p = 0.03), Type Ia (p = 0.031), and Type IV eye movements (p = 0.033). Consistently parallel bulbs were found in 27.3–45%. Conclusions In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations. PMID:24194885

  4. Fetal eye movements on magnetic resonance imaging.

    Science.gov (United States)

    Woitek, Ramona; Kasprian, Gregor; Lindner, Christian; Stuhr, Fritz; Weber, Michael; Schöpf, Veronika; Brugger, Peter C; Asenbaum, Ulrika; Furtner, Julia; Bettelheim, Dieter; Seidl, Rainer; Prayer, Daniela

    2013-01-01

    Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. Dynamic SSFP sequences were acquired in 72 singleton fetuses (17-40 GW, three age groups [17-23 GW, 24-32 GW, 33-40 GW]). Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981): Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%). Significant differences between the age groups were found for Type I (p = 0.03), Type Ia (p = 0.031), and Type IV eye movements (p = 0.033). Consistently parallel bulbs were found in 27.3-45%. In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations.

  5. Non-invasive pulsed cavitational ultrasound for fetal tissue ablation: feasibility study in a fetal sheep model.

    Science.gov (United States)

    Kim, Y; Gelehrter, S K; Fifer, C G; Lu, J C; Owens, G E; Berman, D R; Williams, J; Wilkinson, J E; Ives, K A; Xu, Z

    2011-04-01

    Currently available fetal intervention techniques rely on invasive procedures that carry inherent risks. A non-invasive technique for fetal intervention could potentially reduce the risk of fetal and obstetric complications. Pulsed cavitational ultrasound therapy (histotripsy) is an ablation technique that mechanically fractionates tissue at the focal region using extracorporeal ultrasound. In this study, we investigated the feasibility of using histotripsy as a non-invasive approach to fetal intervention in a sheep model. The experiments involved 11 gravid sheep at 102-129 days of gestation. Fetal kidney, liver, lung and heart were exposed to ultrasound pulses (bones. Histological assessment confirmed lesion locations and sizes corresponding to regions where cavitation was monitored, with no lesions found when cavitation was absent. Inability to generate cavitation was primarily associated with increased depth to target and obstructing structures such as fetal limbs. Extracorporeal histotripsy therapy successfully created targeted lesions in fetal sheep organs without significant damage to overlying structures. With further improvements, histotripsy may evolve into a viable technique for non-invasive fetal intervention procedures. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  6. Fetal blood drawing.

    Science.gov (United States)

    Hobbins, J C; Mahoney, M J

    1975-07-19

    A small sample of fetal blood suitable for studies of haemoglobin synthesis was obtained from a placental vessel under endoscopic visualisation in 23 of 26 patients in whom the procedure was attempted prior to second-trimester abortion. Fetal blood loss, calculated in 23 cases, was between 0-2 ml. and 2-5 ml., and fetal blood-volume depletion varied from 0-5% to 15%. No short-term ill-effects were demonstrated in mother or fetus in any of 16 patients in whom the injection of aborti-facient was postponed for between 16 and 24 hours after the procedure.

  7. Placenta expresses anti-Müllerian hormone and its receptor: Sex-related difference in fetal membranes.

    Science.gov (United States)

    Novembri, R; Funghi, L; Voltolini, C; Belmonte, G; Vannuccini, S; Torricelli, M; Petraglia, F

    2015-07-01

    Anti-Müllerian hormone (AMH) is a member of the transforming growth factor-β superfamily, playing a role in sexual differentiation and recruitment. Since a correlation exists between AMH serum levels in cord blood and fetal sex, the present study aimed to identify mRNA and protein expression of AMH and AMHRII in placenta and fetal membranes according to fetal sex. Placenta and fetal membranes samples (n = 40) were collected from women with singleton uncomplicated pregnancies at term. Identification of AMH protein in placenta and fetal membranes was carried out by immunohistochemistry and AMH and AMHRII protein localization by immunofluorescence, while mRNA expression was assessed by quantitative real-time PCR. AMH and AMHRII mRNAs were expressed by placenta and fetal membranes at term, without any significant difference between males and females. Placental immunostaining showed a syncytial localization of AMH without sex-related differences; while fetal membranes immunostaining was significantly more intense in male than in female fetuses (p membranes. The present study for the first time demonstrated that human placenta and fetal membranes expresses and co-localizes AMH and AMHRII. Although no sex-related difference was found for the mRNA expression both in placenta and fetal membranes, a most intense staining for AMH in male fetal membranes supports AMH as a gender specific hormone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Fetal programming of the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Aleksandra Marciniak

    2017-04-01

    Full Text Available Prenatal development is currently recognized as a critical period in the etiology of human diseases. This is particularly so when an unfavorable environment interacts with a genetic predisposition. The fetal programming concept suggests that maternal nutritional imbalance and metabolic disturbances may have a persistent and intergenerational effect on the health of offspring and on the risk of diseases such as obesity, diabetes, and cardiovascular diseases.

  9. Maternal high fat diet is associated with decreased plasma n-3 fatty acids and fetal hepatic apoptosis in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Wilmon F Grant

    2011-02-01

    Full Text Available To begin to understand the contributions of maternal obesity and over-nutrition to human development and the early origins of obesity, we utilized a non-human primate model to investigate the effects of maternal high-fat feeding and obesity on breast milk, maternal and fetal plasma fatty acid composition and fetal hepatic development. While the high-fat diet (HFD contained equivalent levels of n-3 fatty acids (FA's and higher levels of n-6 FA's than the control diet (CTR, we found significant decreases in docosahexaenoic acid (DHA and total n-3 FA's in HFD maternal and fetal plasma. Furthermore, the HFD fetal plasma n-6:n-3 ratio was elevated and was significantly correlated to the maternal plasma n-6:n-3 ratio and maternal hyperinsulinemia. Hepatic apoptosis was also increased in the HFD fetal liver. Switching HFD females to a CTR diet during a subsequent pregnancy normalized fetal DHA, n-3 FA's and fetal hepatic apoptosis to CTR levels. Breast milk from HFD dams contained lower levels of eicosopentanoic acid (EPA and DHA and lower levels of total protein than CTR breast milk. This study links chronic maternal consumption of a HFD with fetal hepatic apoptosis and suggests that a potentially pathological maternal fatty acid milieu is replicated in the developing fetal circulation in the nonhuman primate.

  10. Long-term effects of cholinergic basal forebrain lesions on neuropeptide Y and somatostatin immunoreactivity in rat neocortex

    NARCIS (Netherlands)

    Gaykema, R.P.A.; Compaan, J.C.; Nyakas, C.; Horvath, E.; Luiten, P.G.M.

    1989-01-01

    The effect of cholinergic basal forebrain lesions on immunoreactivity to somatostatin (SOM-i) and neuropeptide-Y (NPY-i) was investigated in the rat parietal cortex, 16-18 months after multiple bilateral ibotenic acid injections in the nucleus basalis complex. As a result of the lesion, the

  11. Mapping directionality specific volume changes using tensor based morphometry: an application to the study of gyrogenesis and lateralization of the human fetal brain.

    Science.gov (United States)

    Rajagopalan, Vidya; Scott, Julia; Habas, Piotr A; Kim, Kio; Rousseau, Francois; Glenn, Orit A; Barkovich, A James; Studholme, Colin

    2012-11-01

    Tensor based morphometry (TBM) is a powerful approach to analyze local structural changes in brain anatomy. However, conventional scalar TBM methods do not completely capture all direction specific volume changes required to model complex changes such as those during brain growth. In this paper, we describe novel TBM descriptors for studying direction-specific changes in a subject population which can be used in conjunction with scalar TBM to analyze local patterns in directionality of volume change during brain development. We also extend the methodology to provide a new approach to mapping directional asymmetry in deformation tensors associated with the emergence of structural asymmetry in the developing brain. We illustrate the use of these methods by studying developmental patterns in the human fetal brain, in vivo. Results show that fetal brain development exhibits a distinct spatial pattern of anisotropic growth. The most significant changes in the directionality of growth occur in the cortical plate at major sulci. Our analysis also detected directional growth asymmetry in the peri-Sylvian region and the medial frontal lobe of the fetal brain. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Mutator/hypermutable fetal/juvenile metakaryotic stem cells and human colorectal carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Lohith G. Kini

    2013-10-01

    Full Text Available Adult age-specific colorectal cancer incidence rates increase exponentially from maturity, reach a maximum, then decline in extreme old age. Armitage and Doll (1957 postulated that the exponential increase resulted from n mutations occurring throughout adult life in normal cells at risk that initiated the growth of a preneoplastic colony in which subsequent m mutations promoted one of the preneoplastic cells at risk to form a lethal neoplasia. We have reported cytologic evidence that these cells at risk are fetal/juvenile organogenic, then preneoplastic metakaryotic stem cells. Metakaryotic cells display stem-like behaviors of both symmetric and asymmetric nuclear divisions and peculiarities such as bell shaped nuclei and amitotic nuclear fission that distinguish them from embryonic, eukaryotic stem cells. Analyses of mutant colony sizes and numbers in adult lung epithelia supported the inferences that the metakaryotic organogenic stem cells are constitutively mutator/hypermutable and that their contributions to cancer initiation are limited to the fetal/juvenile period. We have amended the two-stage model of Armitage and Doll and incorporated these several inferences in a computer program CancerFit v.5.0. We compared the expectations of the amended model to adult (15-104 yr age-specific colon cancer rates for European American males born 1890-99 and observed remarkable concordance. When estimates of normal colonic fetal/juvenile APC and OAT gene mutation rates (~2-5 x 10-5 per stem cell doubling and preneoplastic colonic gene loss rates (~ 8 x 10-3 were applied, the model was in accordance only for the values of n = 2 and m = 4 or 5.

  13. Fetal and neonatal thyrotoxicosis

    Science.gov (United States)

    Batra, Chandar Mohan

    2013-01-01

    Fetal thyrotoxicosis is a rare disease occurring in 1 out of 70 pregnancies with Grave's disease or in 1 out of 4000-50,000 deliveries. The mortality is 12-20%, usually from heart failure, but other complications are tracheal compression, infections and thrombocytopenia. It results from transfer of thyroid stimulating immunoglobulins from mother to fetus through the placenta. This transplacental transfer begins around 20th week of pregnancy and reaches its maximum by 30th week. These autoantibodies bind to the fetal thyroid stimulating hormone (TSH) receptors and increase the secretion of the thyroid hormones. The mother has an active autoimmune thyroid disease or has been treated for it in the past. She may be absolutely euthyroid due to past treatment by drugs, surgery or radioiodine ablation, but still have active TSH receptor stimulating autoantibodies, which can cause fetal thyrotoxicosis. The other features of this disease are fetal tachycardia, fetal goiter and history of spontaneous abortions and findings of goiter, ascites, craniosyntosis, fetal growth retardation, maceration and hydrops at fetal autopsy. If untreated, this disease can result in intrauterine death. The treatment for this disease consists of giving carbimazole to the mother, which is transferred through the placenta to the fetus. The dose of carbimazole is titrated with the fetal heart rate. If the mother becomes hypothyroid due to carbimazole, thyroxine is added taking advantage of the fact that very little of thyroxine is transferred across the placenta. Neonatal thyrotoxicosis patients are very sick and require emergency treatment. The goal of the treatment is to normalize thyroid functions as quickly as possible, to avoid iatrogenic hypothyroidism while providing management and supportive therapy for the infant's specific signs and symptoms. PMID:24251220

  14. Statistical learning of recurring sound patterns encodes auditory objects in songbird forebrain.

    Science.gov (United States)

    Lu, Kai; Vicario, David S

    2014-10-07

    Auditory neurophysiology has demonstrated how basic acoustic features are mapped in the brain, but it is still not clear how multiple sound components are integrated over time and recognized as an object. We investigated the role of statistical learning in encoding the sequential features of complex sounds by recording neuronal responses bilaterally in the auditory forebrain of awake songbirds that were passively exposed to long sound streams. These streams contained sequential regularities, and were similar to streams used in human infants to demonstrate statistical learning for speech sounds. For stimulus patterns with contiguous transitions and with nonadjacent elements, single and multiunit responses reflected neuronal discrimination of the familiar patterns from novel patterns. In addition, discrimination of nonadjacent patterns was stronger in the right hemisphere than in the left, and may reflect an effect of top-down modulation that is lateralized. Responses to recurring patterns showed stimulus-specific adaptation, a sparsening of neural activity that may contribute to encoding invariants in the sound stream and that appears to increase coding efficiency for the familiar stimuli across the population of neurons recorded. As auditory information about the world must be received serially over time, recognition of complex auditory objects may depend on this type of mnemonic process to create and differentiate representations of recently heard sounds.

  15. Divergent lactate dehydrogenase isoenzyme profile in cellular compartments of primate forebrain structures.

    Science.gov (United States)

    Duka, Tetyana; Collins, Zachary; Anderson, Sarah M; Raghanti, Mary Ann; Ely, John J; Hof, Patrick R; Wildman, Derek E; Goodman, Morris; Grossman, Lawrence I; Sherwood, Chet C

    2017-07-01

    The compartmentalization and association of lactate dehydrogenase (LDH) with specific cellular structures (e.g., synaptosomal, sarcoplasmic or mitochondrial) may play an important role in brain energy metabolism. Our previous research revealed that LDH in the synaptosomal fraction shifts toward the aerobic isoforms (LDH-B) among the large-brained haplorhine primates compared to strepsirrhines. Here, we further analyzed the subcellular localization of LDH in primate forebrain structures using quantitative Western blotting and ELISA. We show that, in cytosolic and mitochondrial subfractions, LDH-B expression level was relatively elevated and LDH-A declined in haplorhines compared to strepsirrhines. LDH-B expression in mitochondrial fractions of the neocortex was preferentially increased, showing a particularly significant rise in the ratio of LDH-B to LDH-A in chimpanzees and humans. We also found a significant correlation between the protein levels of LDH-B in mitochondrial fractions from haplorhine neocortex and the synaptosomal LDH-B that suggests LDH isoforms shift from a predominance of A-subunits toward B-subunits as part of a system that spatially buffers dynamic energy requirements of brain cells. Our results indicate that there is differential subcellular compartmentalization of LDH isoenzymes that evolved among different primate lineages to meet the energy requirements in neocortical and striatal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Fetal MRI of pathological brain development; Fetale MRT der pathologischen Hirnentwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, P.C. [Medizinische Universitaet Wien (Austria). Arbeitsgruppe Integrative Morphologie, Zentrum fuer Anatomie und Zellbiologie; Prayer, D. [Medizinische Universitaet Wien (Austria). Klinik fuer Radiodiagnostik

    2006-02-15

    Because of the superior tissue contrast, high spatial resolution, and multiplanar capabilities, fetal magnetic resonance imaging (MRI) can depict fetal brain pathologies with high accuracy. Pathological fetal brain development may result from malformations or acquired conditions. Differentiation of these etiologies is important with respect to managing the actual pregnancy or counseling future pregnancies. As a widened ventricular system is a common hallmark of both maldevelopment and acquired conditions, it may cause problems in the differential diagnosis. Fetal MRI can provide detailed morphological information, which allows refinement of the diagnosis of ventricular enlargement in a large number of cases. Systematic work-up of morphological details that may be recognized on MR images provides an approach for achieving a correct diagnosis in cases of ventricle enlargement. (orig.) [German] Aufgrund des hervorragenden Gewebekontrastes, der hohen raeumlichen Aufloesung und multiplanaren Moeglichkeiten erlaubt die fetale Magnetresonanztomographie (MRT) eine detaillierte Darstellung fetaler Hirnpathologien. Eine pathologische Hirnentwicklung kann sowohl auf Fehlbildungen als auch waehrend der Schwangerschaft erworbenen Stoerungen beruhen. Nachdem die weiteren Konsequenzen fuer die bestehende, aber auch fuer folgende Schwangerschaften zu einem grossen Teil von einer Differenzierung dieser Aetiologien abhaengig sein kann, ist ein Erkennen der jeweiligen Pathologie wesentlich. Die morphologische Praesentation erworbener und fehlbildungsbedingter Veraenderungen auf MR-Bildern ist u. U. sehr aehnlich. Besondere differenzialdiagnostische Probleme bereitet dabei das Vorliegen eines erweiterten Ventrikelsystems, das als Symptom unterschiedlichster Veraenderungen vorliegen kann. Anhand einer systematischen Darstellung mittels MR-erfassbarer morphologischer Details wird eine Anleitung gegeben, bei Bestehen dieses Leitsymptoms zu einer moeglichst genauen Diagnose zu kommen

  17. Antithyroid drug-induced fetal goitrous hypothyroidism

    DEFF Research Database (Denmark)

    Bliddal, Sofie; Rasmussen, Ase Krogh; Sundberg, Karin

    2011-01-01

    Maternal overtreatment with antithyroid drugs can induce fetal goitrous hypothyroidism. This condition can have a critical effect on pregnancy outcome, as well as on fetal growth and neurological development. The purpose of this Review is to clarify if and how fetal goitrous hypothyroidism can...... be prevented, and how to react when prevention has failed. Understanding the importance of pregnancy-related changes in maternal thyroid status when treating a pregnant woman is crucial to preventing fetal goitrous hypothyroidism. Maternal levels of free T(4) are the most consistent indication of maternal...... and fetal thyroid status. In patients with fetal goitrous hypothyroidism, intra-amniotic levothyroxine injections improve fetal outcome. The best way to avoid maternal overtreatment with antithyroid drugs is to monitor closely the maternal thyroid status, especially estimates of free T(4) levels....

  18. Prenatal cerebellar growth trajectories and the impact of periconceptional maternal and fetal factors

    NARCIS (Netherlands)

    Koning, I V; Dudink, J; Groenenberg, I A L; Willemsen, S P; Reiss, I K M; Steegers-Theunissen, R P M

    2017-01-01

    STUDY QUESTION: CAN WE assess human prenatal cerebellar growth from the first until the third trimester of pregnancy and create growth trajectories to investigate associations with periconceptional maternal and fetal characteristics? SUMMARY ANSWER: Prenatal growth trajectories of the human

  19. Neuroprotective effects of ebselen following forebrain ischemia: involvement of glutamate and nitric oxide.

    Science.gov (United States)

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Suehiro, Eiichi; Shirao, Satoshi; Suzuki, Michiyasu

    2011-01-01

    Ebselen is a mimic of glutathione peroxidase that reacts with peroxynitrite and inhibits nitric oxide (NO) synthase. Ebselen has beneficial effects on the neurological outcome of patients with stroke. In this study, the mechanisms by which ebselen can elicit neuroprotective effects against ischemic brain injury were investigated in male Wistar rats. Experimental forebrain ischemia was induced by bilateral common carotid artery occlusion with hemorrhagic hypotension. Ebselen was administered to animals in the treatment group 2 hours prior to the induction of forebrain ischemia, and placebo was administered in the control group. Cerebral blood flow (CBF) was measured by the hydrogen clearance method. Cortical extracellular levels of excitatory amino acids (EAAs) and NO were evaluated using in vivo microdialysis. Neuronal damage in the CA1 subfield of the hippocampus was assessed in brains harvested after a 24-hour period of survival. CBF did not recover to normal physiological levels after ischemic insults in either the control or treatment groups. The differences in the sequential changes in extracellular EAA and NO levels between groups were not statistically significant. There was a significantly larger mean density of intact, undamaged neurons in the CA1 subfield in the treatment group than in the control group. The neuroprotective effects of ebselen were reflected in the histological findings, without significant inhibition of glutamate release or NO synthesis during the acute phase of experimentally induced cerebral ischemia.

  20. Histo-blood group antigens in human fetal thymus and in thymomas

    DEFF Research Database (Denmark)

    Engel, P; Dabelsteen, Erik; Francis, D

    1996-01-01

    -y, Le-x and sialyl-Le-x) of the ABO-histo-blood group system was investigated in 19 normal fetal thymuses (gestational age 16 to 39 weeks) and in 19 thymomas in order to study possible tumor-associated changes in the glycosylation pattern. The material was investigated by immunochemical stainings...

  1. MR evaluation of fetal demise

    International Nuclear Information System (INIS)

    Victoria, Teresa; Chauvin, Nancy Anne; Johnson, Ann M.; Kramer, Sandra Sue; Epelman, Monica; Capilla, Elena

    2011-01-01

    Fetal demise is an uncommon event encountered at MR imaging. When it occurs, recognition by the interpreting radiologist is important to initiate appropriate patient management. To identify MR findings of fetal demise. Following IRB approval, a retrospective search of the radiology fetal MR database was conducted searching the words ''fetal demise'' and ''fetal death.'' Fetuses with obvious maceration or no sonographic confirmation of death were excluded. Eleven cases formed the study group. These were matched randomly to live fetuses of similar gestational age. Images were reviewed independently by three pediatric radiologists. The deceased fetus demonstrates decreased MR soft-tissue contrast and definition of tissue planes, including loss of gray-white matter differentiation in the brain. The signal within the cardiac chambers, when visible, is bright on HASTE sequences from the stagnant blood; the heart is small. Pleural effusions and decreased lung volumes may be seen. Interestingly, the fetal orbits lose their anatomical round shape and become smaller and more elliptical; a dark, irregular rim resembling a mask may be seen. Although fetal demise is uncommonly encountered at MR imaging, radiologists should be aware of such imaging findings so prompt management can be instituted. (orig.)

  2. Isolating the role of elevated Phlda2 in asymmetric late fetal growth restriction in mice

    Directory of Open Access Journals (Sweden)

    Simon J. Tunster

    2014-10-01

    Full Text Available Pleckstrin homology-like domain family A member 2 (PHLDA2 is a maternally expressed imprinted gene whose elevated expression has been linked to fetal growth restriction in a number of human studies. In mice, Phlda2 negatively regulates placental growth and limits the accumulation of placental glycogen. We previously reported that a three-copy transgene spanning the Phlda2 locus drove a fetal growth restriction phenotype late in gestation, suggesting a causative role for PHLDA2 in human growth restriction. However, in this mouse model, Phlda2 was overexpressed by fourfold, alongside overexpression of a second imprinted gene, Slc22a18. Here, we genetically isolate the role of Phlda2 in driving late fetal growth restriction in mice. We furthermore show that this Phlda2-driven growth restriction is asymmetrical, with a relative sparing of the brain, followed by rapid catch-up growth after birth, classic features of placental insufficiency. Strikingly, fetal growth restriction showed strain-specific differences, being apparent on the 129S2/SvHsd (129 genetic background and absent on the C57BL6 (BL6 background. A key difference between these two strains is the placenta. Specifically, BL6 placentae possess a more extensive endocrine compartment and substantially greater stores of placental glycogen. Taken together, these data support a direct role for elevated Phlda2 in limiting fetal growth but also suggest that growth restriction only manifests when there is limited placental reserve. These findings should be taken into account in interpreting the results from human studies.

  3. 21 CFR 884.2900 - Fetal stethoscope.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal stethoscope. 884.2900 Section 884.2900 Food... Fetal stethoscope. (a) Identification. A fetal stethoscope is a device used for listening to fetal heart... conventional stethoscopes. (b) Classification. Class I (general controls). The device is exempt from the...

  4. The relationship between human placental morphometry and ultrasonic measurements of utero-placental blood flow and fetal growth

    NARCIS (Netherlands)

    Salavati, Nastaran; Sovio, U.; Mayo, R. Plitman; Charnock-Jones, D. S.; Smith, G. C. S.

    Introduction: Ultrasonic fetal biometry and arterial Doppler flow velocimetry are widely used to assess the risk of pregnancy complications. There is an extensive literature on the relationship between pregnancy outcomes and the size and shape of the placenta. However, ultrasonic fetal biometry and

  5. Maternal hair testing for the assessment of fetal exposure to drug of abuse during early pregnancy: Comparison with testing in placental and fetal remains.

    Science.gov (United States)

    Falcon, M; Pichini, S; Joya, J; Pujadas, M; Sanchez, A; Vall, O; García Algar, O; Luna, A; de la Torre, R; Rotolo, M C; Pellegrini, M

    2012-05-10

    Drug use by pregnant women in the first trimester of pregnancy and subsequent fetal exposure during early gestation can be assessed only by repetitive/systematic maternal blood/urine analysis or segmental hair analysis. No evidence of any relationship between maternal/fetal exposure during this specific period of gestation has been demonstrated to date in a human model. To clarify drugs toxicokinetics and transplacental passage during early pregnancy, the presence of the most widely used recreational drugs of abuse and metabolites was investigated in the proximal 4cm hair segments of women undergoing voluntary termination of pregnancy (n=280) during the 12th week of gestation and the results were compared to those from placenta and fetal tissue samples in order to verify whether maternal hair testing can reflect fetal exposure and, if so, to what extent. Hair, placenta and fetal remains were analyzed by validated gas chromatography mass spectrometry assays. Eighty one positive hair samples were identified: 60 were positive for cannabis (74.1%), 28 for cocaine (34.6%), 7 for opiates (8.6%), 3 for MDMA (3.7%) and 18.5% were positive for more than one drug. The positive hair test results were confirmed in placenta/fetal tissues in 10 cases out of 60 for cannabis (16. 7%); in 7 out of 28 for cocaine (25%); and none for the 6 opiates positive cases and 3 MDMA cases, respectively. Drugs/metabolites in hair of pregnant women can be used as biomarkers of past drug use (repetitive or sporadic), although the use is not always reflected in fetal/placental tissues. There are several possible hypotheses to explain the results: (1) the use occurred before the start of pregnancy, (2) past sporadic consumption which could be measured in hair but not in fetal and placental remains because of the narrow window of drug detection in placental/fetal tissues; (3) the sensitivity of the analytical methods was not high enough for the detection of the minute amount of drugs of abuse and

  6. Abandonment and reconciliation: addressing political and common law objections to fetal homicide laws.

    Science.gov (United States)

    Curran, Douglas S

    2009-03-01

    Fetal homicide laws criminalize killing a fetus largely to the same extent as killing any other human being. Historically, the common law did not generally recognize feticide as a crime, but this was because of the evidentiary "born-alive" rule, not because of the substantive understanding of the term "human being." As medicine and science have advanced, states have become increasingly willing to abandon this evidentiary rule and to criminalize feticide as homicide. Although most states have recognized the crime of fetal homicide, fourteen have not. This is largely the result of two independent obstacles: (judicial) adherence to the born-alive rule and (legislative) concern that fetal homicide laws could erode constitutionally protected reproductive rights. This Note explores a variety of fetal homicide laws that states have adopted, demonstrating that popular opinion has shifted toward recognizing this crime. It then directly confronts the objections that have prevented other states from adopting such laws: it first reviews the literature suggesting that the born-alive rule should be abandoned, as it is an obsolete evidentiary standard; it then argues that constitutionally protected reproductive liberties can be reconciled with, and in fact augmented by, punishing the killing of a fetus as a homicide.

  7. Human Platelet Lysate versus Fetal Calf Serum: These Supplements Do Not Select for Different Mesenchymal Stromal Cells.

    Science.gov (United States)

    Fernandez-Rebollo, Eduardo; Mentrup, Birgit; Ebert, Regina; Franzen, Julia; Abagnale, Giulio; Sieben, Torsten; Ostrowska, Alina; Hoffmann, Per; Roux, Pierre-François; Rath, Björn; Goodhardt, Michele; Lemaitre, Jean-Marc; Bischof, Oliver; Jakob, Franz; Wagner, Wolfgang

    2017-07-11

    Culture medium of mesenchymal stromal cells (MSCs) is usually supplemented with either human platelet lysate (HPL) or fetal calf serum (FCS). Many studies have demonstrated that proliferation and cellular morphology are affected by these supplements - it is therefore important to determine if they favor outgrowth of different subpopulations and thereby impact on the heterogeneous composition of MSCs. We have isolated and expanded human bone marrow-derived MSCs in parallel with HPL or FCS and demonstrated that HPL significantly increases proliferation and leads to dramatic differences in cellular morphology. Remarkably, global DNA-methylation profiles did not reveal any significant differences. Even at the transcriptomic level, there were only moderate changes in pairwise comparison. Furthermore, the effects on proliferation, cytoskeletal organization, and focal adhesions were reversible by interchanging to opposite culture conditions. These results indicate that cultivation of MSCs with HPL or FCS has no systematic bias for specific cell types.

  8. Characterization of death of human fetal bone marrow CD34+ cells after different dose of γ-irradiation

    International Nuclear Information System (INIS)

    Xiang Yingsong; Yang Rujun; Tang Gusheng

    2001-01-01

    Objective: To investigate the characterization of death of the human hematopoietic stem cells after irradiation. Methods: Human fetal bone marrow mononuclear cells were irradiated with different doses of 60 Co γ-rays at different high dose rates. Apoptosis and necrosis of CD34 + cells were analyzed by flow cytometry, following three-color labelling with PE-CD34/FITC-Annexin V/7AAD at different times after irradiation. Results: The death of CD34 + cells after 5 Gy and 8 Gy irradiation showed a continuous process of reproductive death during the first week,and the main death type was apoptosis. A majority of CD34 + cells died of necrosis during the first day after 10 Gy and 12 Gy irradiation, and all of them died within a week. Conclusion: Niches are continuously vacated every day within a week following irradiation and reproductive death of hematopoietic stem cells occurred

  9. Human Serum is as Efficient as Fetal Bovine Serum in Supporting Proliferation and Differentiation of Human Multipotent Stromal (Mesenchymal) Stem Cells In Vitro and In Vivo

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Haack-Sørensen, Mandana; Al-Nbaheen, May

    2011-01-01

    BACKGROUND: Human multipotent stromal (skeletal, mesenchymal) stem cells (hMSC) are employed in an increasing number of clinical trials for tissue regeneration of age-related degenerative diseases. However, routine use of fetal bovine sera (FBS) for their in vitro expansion is not optimal and may......) or adipocytic markers (PPAR-gamma2, lipoprotein lipase (LPL), aP2), respectively. In order to test for the functional capacity of hMSC-TERT that have been maintained in long-term cultures in the presence of HuS vs. FBS, the cells were mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) and implanted...... subcutaneously in immune deficient mice. hMSC maintained in HuS vs. FBS formed comparable heterotopic bone. DISCUSSION: Human serum can support proliferation and differentiation of hMSC in vitro and can maintain their bone forming capacity in vivo. The use of human serum in cell cultures of hMSC intended...

  10. Ablation of CaV2.1 Voltage-Gated Ca2+ Channels in Mouse Forebrain Generates Multiple Cognitive Impairments

    Science.gov (United States)

    Mallmann, Robert Theodor; Elgueta, Claudio; Sleman, Faten; Castonguay, Jan; Wilmes, Thomas; van den Maagdenberg, Arn; Klugbauer, Norbert

    2013-01-01

    Voltage-gated CaV2.1 (P/Q-type) Ca2+ channels located at the presynaptic membrane are known to control a multitude of Ca2+-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic CaV2.1 mouse models. Global CaV2.1 knock-out mice lacking the α1 subunit Cacna1a gene product exhibit early postnatal lethality which makes them unsuitable to analyse the relevance of CaV2.1 Ca2+ channels for complex behaviour in adult mice. Consequently we established a forebrain specific CaV2.1 knock-out model by crossing mice with a floxed Cacna1a gene with mice expressing Cre-recombinase under the control of the NEX promoter. This novel mouse model enabled us to investigate the contribution of CaV2.1 to complex cognitive functions, particularly learning and memory. Electrophysiological analysis allowed us to test the specificity of our conditional knock-out model and revealed an impaired synaptic transmission at hippocampal glutamatergic synapses. At the behavioural level, the forebrain-specific CaV2.1 knock-out resulted in deficits in spatial learning and reference memory, reduced recognition memory, increased exploratory behaviour and a strong attenuation of circadian rhythmicity. In summary, we present a novel conditional CaV2.1 knock-out model that is most suitable for analysing the in vivo functions of CaV2.1 in the adult murine forebrain. PMID:24205277

  11. Measurement of the capability of DNA synthesis of human fetal liver cells by the assay of 3H-TdR incorporation

    International Nuclear Information System (INIS)

    Wang Tao; Ma Xiangrui; Wang Hongyun; Cao Xia

    1987-01-01

    The fetal liver is one of the major sites of hematopoiesis during gestation. Under erythropoietin (EPO) stimulation, in erythroid precusor cells of fetal liver, proliferation and differentiation occurred and function of metabolism was enhanced. The technique of 3 H-TdR incorporation was used to measure the function of fetal liver cellular DNA synthesis. As EPO concentration at the range of approximately 20 ∼ 100 mU/ml, the counts of 3 H-TdR incorporation into fetal liver cells increased. As the concentration of EPO increased, however, its incorporation counts are lower than that in bone marrow of either the fetal or the adult. It suggested that precusors of erythrocyte of fetal liver has differentiated to later phases with the progressive accumulation of mature cells, therefore, both proliferation and function of metabolism are more or less decreased respectively. Under EPO stimulation, however, precusor of erythroid of fetal liver can greatly increase potential effects on DNA synthesis

  12. Formation of the Periotic Space During the Early Fetal Period in Humans.

    Science.gov (United States)

    Ishikawa, Aoi; Ohtsuki, Sae; Yamada, Shigehito; Uwabe, Chigako; Imai, Hirohiko; Matsuda, Tetsuya; Takakuwa, Tetsuya

    2018-04-01

    The inner ear is a very complicated structure, composed of a bony labyrinth (otic capsule; OC), membranous labyrinth, with a space between them, named the periotic labyrinth or periotic space. We investigated how periotic tissue fluid spaces covered the membranous labyrinth three-dimensionally, leading to formation of the periotic labyrinth encapsulated in the OC during human fetal development. Digital data sets from magnetic resonance images and phase-contrast X-ray tomography images of 24 inner ear organs from 24 human fetuses from the Kyoto Collection (fetuses in trimesters 1 and 2; crown-rump length: 14.4-197 mm) were analyzed. The membranous labyrinth was morphologically differentiated in samples at the end of the embryonic period (Carnegie stage 23), and had grown linearly to more than eight times in size during the observation period. The periotic space was first detected at the 35-mm samples, around the vestibule and basal turn of the cochlea, which elongated rapidly to the tip of the cochlea and semicircular ducts, successively, and almost covered the membranous labyrinth at the 115-mm CRL stage or later. In those samples, several ossification centers were detected around the space. This article thus demonstrated that formation of the membranous labyrinth, periotic space (labyrinth), and ossification of the OC occurs successively, according to an intricate timetable. Anat Rec, 301:563-570, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  13. Maternal-fetal cholesterol transport in the second half of mouse pregnancy does not involve LDL receptor-related protein 2.

    Science.gov (United States)

    Zwier, M V; Baardman, M E; van Dijk, T H; Jurdzinski, A; Wisse, L J; Bloks, V W; Berger, R M F; DeRuiter, M C; Groen, A K; Plösch, T

    2017-08-01

    LDL receptor-related protein type 2 (LRP2) is highly expressed on both yolk sac and placenta. Mutations in the corresponding gene are associated with severe birth defects in humans, known as Donnai-Barrow syndrome. We here characterized the contribution of LRP2 and maternal plasma cholesterol availability to maternal-fetal cholesterol transport and fetal cholesterol levels in utero in mice. Lrp2 +/- mice were mated heterozygously to yield fetuses of all three genotypes. Half of the dams received a 0.5% probucol-enriched diet during gestation to decrease maternal HDL cholesterol. At E13.5, the dams received an injection of D7-labelled cholesterol and were provided with 1- 13 C acetate-supplemented drinking water. At E16.5, fetal tissues were collected and maternal cholesterol transport and fetal synthesis quantified by isotope enrichments in fetal tissues by GC-MS. The Lrp2 genotype did not influence maternal-fetal cholesterol transport and fetal cholesterol. However, lowering of maternal plasma cholesterol levels by probucol significantly reduced maternal-fetal cholesterol transport. In the fetal liver, this was associated with increased cholesterol synthesis rates. No indications were found for an interaction between the Lrp2 genotype and maternal probucol treatment. Maternal-fetal cholesterol transport and endogenous fetal cholesterol synthesis depend on maternal cholesterol concentrations but do not involve LRP2 in the second half of murine pregnancy. Our results suggest that the mouse fetus can compensate for decreased maternal cholesterol levels. It remains a relevant question how the delicate system of cholesterol transport and synthesis is regulated in the human fetus and placenta. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  14. Value of fetal skeletal radiographs in the diagnosis of fetal death

    International Nuclear Information System (INIS)

    Bourliere-Najean, B.; Russel, A.S.; Petit, P.; Devred, P.; Panuel, M.; Piercecchi-Marti, M.D.; Fredouille, C.; Sigaudy, S.; Philip, N.

    2003-01-01

    The aim of this study was to assess the value of fetal skeletal radiographs in determining the etiology of fetal death. A total of 1193 post-mortem fetal skeletal radiographs were analysed. Fetuses were classified into one of three groups (group I: abnormality diagnosed during pregnancy; group II: maternal pathology; group III: spontaneous abortion of pregnancy, IIIa before 26 weeks of gestation (WG), IIIb after 26 weeks of gestation). Face, supine and lateral skeletal views were performed. Skeletal abnormalities were detected in 33.9% of the fetuses, including 22.7% with minor abnormalities (abnormal rib number, no nasal bone ossification, amesophalangia or P2 hypoplasia of the fifth digit) and 14.5% with major abnormalities (other skeletal abnormalities). Among the fetuses with major abnormalities, 98.8% came from group I, 2.9% came from group II, 2.3% came from group IIIa and none came from group IIIb. Fetal skeletal radiographs are not useful in fetuses arising from spontaneous abortion of pregnancy without abnormality on ultrasound screening, abnormality clinical examination or in fetuses with prenatal diagnosis of chromosomal abnormality. This practice is valuable only if there is a multidisciplinary team, with all the participants (pathologists, radiologists, geneticists) knowledgeable about fetal pathology. In the absence of this multidisciplinary approach, it is easier to X-ray all fetuses to avoid misdiagnosis and the important consequences for genetic counselling. (orig.)

  15. Value of fetal skeletal radiographs in the diagnosis of fetal death

    Energy Technology Data Exchange (ETDEWEB)

    Bourliere-Najean, B.; Russel, A.S.; Petit, P.; Devred, P. [Department of Pediatric Radiology, CHU Timone, 264 rue St. Pierre, 13385 Marseille cedex 5 (France); Panuel, M. [Department of Radiology, Hopital Nord, chemin Bourrelys, 13915 Marseille cedex 20 (France); Piercecchi-Marti, M.D.; Fredouille, C. [Department of Pathology, CHU Timone, 264 rue St. Pierre, 13385 Marseille cedex 5 (France); Sigaudy, S.; Philip, N. [Department of Genetics, CHU Timone, 264 rue St. Pierre, 13385 Marseille cedex 5 (France)

    2003-05-01

    The aim of this study was to assess the value of fetal skeletal radiographs in determining the etiology of fetal death. A total of 1193 post-mortem fetal skeletal radiographs were analysed. Fetuses were classified into one of three groups (group I: abnormality diagnosed during pregnancy; group II: maternal pathology; group III: spontaneous abortion of pregnancy, IIIa before 26 weeks of gestation (WG), IIIb after 26 weeks of gestation). Face, supine and lateral skeletal views were performed. Skeletal abnormalities were detected in 33.9% of the fetuses, including 22.7% with minor abnormalities (abnormal rib number, no nasal bone ossification, amesophalangia or P2 hypoplasia of the fifth digit) and 14.5% with major abnormalities (other skeletal abnormalities). Among the fetuses with major abnormalities, 98.8% came from group I, 2.9% came from group II, 2.3% came from group IIIa and none came from group IIIb. Fetal skeletal radiographs are not useful in fetuses arising from spontaneous abortion of pregnancy without abnormality on ultrasound screening, abnormality clinical examination or in fetuses with prenatal diagnosis of chromosomal abnormality. This practice is valuable only if there is a multidisciplinary team, with all the participants (pathologists, radiologists, geneticists) knowledgeable about fetal pathology. In the absence of this multidisciplinary approach, it is easier to X-ray all fetuses to avoid misdiagnosis and the important consequences for genetic counselling. (orig.)

  16. MYSTERIES OF THE HUMAN FETUS REVEALED.

    Science.gov (United States)

    Sandman, Curt A

    2015-09-01

    The impressive program of research from the DiPietro laboratory succeeds in its aim to document the ontogeny of human fetal neurobehavioral development. From studies of great depth and breadth, and wielding creative methods of assessment, DiPietro et al. open a window into the largely inaccessible developing human fetal brain. This commentary, with reference to the seminal cardiovascular studies of the Laceys, supports the measures of the fetal heart to index fetal well-being and to provide evidence of stimulus processing. A separate case is made that the DiPietro program provides unique and invaluable information for assessing the influential Developmental Origins of Health and Disease or Fetal Programming Models. The goal of these models, to predict or understand the influences of early experience or response patterns on later postnatal life, is identical to the ultimate goal of the DiPietro program. Because human fetal behavior is uncontaminated by socialization or parenting or peers, it may be the best reflection of fetal exposures. The remarkable neurobehavioral profiles generated by the DiPietro program can make a critical contribution to the Fetal Programming Model in terms of sensitive and critical periods of nervous system vulnerability and to specify gestational periods of neurobehavioral risk. © 2015 The Society for Research in Child Development, Inc.

  17. Omeprazole induces heme oxygenase-1 in fetal human pulmonary microvascular endothelial cells via hydrogen peroxide-independent Nrf2 signaling pathway

    International Nuclear Information System (INIS)

    Patel, Ananddeep; Zhang, Shaojie; Shrestha, Amrit Kumar; Maturu, Paramahamsa; Moorthy, Bhagavatula; Shivanna, Binoy

    2016-01-01

    Omeprazole (OM) is an aryl hydrocarbon receptor (AhR) agonist and a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Recently, we showed that OM induces NAD (P) H quinone oxidoreductase-1 (NQO1) via nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent mechanism. Heme oxygenase-1 (HO-1) is another cytoprotective and antioxidant enzyme that is regulated by Nrf2. Whether OM induces HO-1 in fetal human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce HO-1 expression via Nrf2 in HPMEC. OM induced HO-1 mRNA and protein expression in a dose-dependent manner. siRNA-mediated knockdown of AhR failed to abrogate, whereas knockdown of Nrf2 abrogated HO-1 induction by OM. To identify the underlying molecular mechanisms, we determined the effects of OM on cellular hydrogen peroxide (H 2 O 2 ) levels since oxidative stress mediated by the latter is known to activate Nrf2. Interestingly, the concentration at which OM induced HO-1 also increased H 2 O 2 levels. Furthermore, H 2 O 2 independently augmented HO-1 expression. Although N-acetyl cysteine (NAC) significantly decreased H 2 O 2 levels in OM-treated cells, we observed that OM further increased HO-1 mRNA and protein expression in NAC-pretreated compared to vehicle-pretreated cells, suggesting that OM induces HO-1 via H 2 O 2 -independent mechanisms. In conclusion, we provide evidence that OM transcriptionally induces HO-1 via AhR - and H 2 O 2 - independent, but Nrf2 - dependent mechanisms. These results have important implications for human disorders where Nrf2 and HO-1 play a beneficial role. - Highlights: • Omeprazole induces HO-1 in human fetal lung cells. • AhR deficiency fails to abrogate omeprazole-mediated induction of HO-1. • Nrf2 knockdown abrogates omeprazole-mediated HO-1 induction in human lung cells. • Hydrogen peroxide depletion augments omeprazole-mediated induction of HO-1.

  18. Fetal adaptations in insulin secretion result from high catecholamines during placental insufficiency.

    Science.gov (United States)

    Limesand, Sean W; Rozance, Paul J

    2017-08-01

    Placental insufficiency and intrauterine growth restriction (IUGR) of the fetus affects approximately 8% of all pregnancies and is associated with short- and long-term disturbances in metabolism. In pregnant sheep, experimental models with a small, defective placenta that restricts delivery of nutrients and oxygen to the fetus result in IUGR. Low blood oxygen concentrations increase fetal plasma catecholamine concentrations, which lower fetal insulin concentrations. All of these observations in sheep models with placental insufficiency are consistent with cases of human IUGR. We propose that sustained high catecholamine concentrations observed in the IUGR fetus produce developmental adaptations in pancreatic β-cells that impair fetal insulin secretion. Experimental evidence supporting this hypothesis shows that chronic elevation in circulating catecholamines in IUGR fetuses persistently inhibits insulin concentrations and secretion. Elevated catecholamines also allow for maintenance of a normal fetal basal metabolic rate despite low fetal insulin and glucose concentrations while suppressing fetal growth. Importantly, a compensatory augmentation in insulin secretion occurs following inhibition or cessation of catecholamine signalling in IUGR fetuses. This finding has been replicated in normally grown sheep fetuses following a 7-day noradrenaline (norepinephrine) infusion. Together, these programmed effects will potentially create an imbalance between insulin secretion and insulin-stimulated glucose utilization in the neonate which probably explains the transient hyperinsulinism and hypoglycaemia in some IUGR infants. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  19. Analysis of NR3A receptor subunits in human native NMDA receptors

    DEFF Research Database (Denmark)

    Nilsson, Anna; Eriksson, Maria; Muly, E Chris

    2007-01-01

    NR3A, representing the third class of NMDA receptor subunits, was first studied in rats, demonstrating ubiquitous expression in the developing central nervous system (CNS), but in the adult mainly expressed in spinal cord and some forebrain nuclei. Subsequent studies showed that rodent and non-human...... primate NR3A expression differs. We have studied the distribution of NR3A in the human CNS and show a widespread distribution of NR3A protein in adult human brain. NR3A mRNA and protein were found in all regions of the cerebral cortex, and also in the subcortical forebrain, midbrain and hindbrain. Only...... very low levels of NR3A mRNA and protein could be detected in homogenized adult human spinal cord, and in situ hybridization showed that expression was limited to ventral motoneurons. We found that NR3A is associated with NR1, NR2A and NR2B in adult human CNS, suggesting the existence of native NR1-NR2...

  20. Fetal pancreatic beta-cell function in pregnancies complicated by maternal diabetes mellitus: relationship to fetal acidemia and macrosomia.

    Science.gov (United States)

    Salvesen, D R; Brudenell, J M; Proudler, A J; Crook, D; Nicolaides, K H

    1993-05-01

    Our purpose was to investigate the relationship between fetal pancreatic beta-cell function and fetal acidemia and macrosomia in pregnancies complicated by maternal diabetes mellitus. A cross-sectional study at the Harris Birthright Research Centre for Fetal Medicine, London, was performed. In 32 pregnancies complicated by maternal diabetes mellitus cordocentesis was performed at 36 to 39 weeks' gestation for the measurement of umbilical venous blood pH, PO2, PCO2, lactate, and glucose concentration; plasma insulin immunoreactivity; and insulin/glucose ratio. A reference range for plasma insulin and insulin/glucose ratio was constructed by studying fetal blood samples from 80 women who did not have diabetes mellitus. Mean umbilical venous blood pH was significantly lower and plasma insulin immunoreactivity and insulin/glucose ratio were significantly higher than the appropriate normal mean for gestation. There were significant associations between (1) maternal and fetal blood glucose concentrations (r = 0.95, p < 0.0001), (2) fetal blood glucose and plasma insulin immunoreactivity (r = 0.57, p < 0.01), (3) fetal plasma insulin immunoreactivity and blood pH (r = -0.39, p < 0.05), and (4) fetal insulin/glucose ratio and degree of macrosomia (r = 0.76, p < 0.0001). Fetal pancreatic beta-cell hyperplasia is implicated in the pathogenesis of both fetal acidemia and macrosomia.

  1. Fetal magnetic resonance imaging of thoracic and abdominal malformations; Fetale Magnetresonanztomographie thorakaler und abdomineller Malformationen

    Energy Technology Data Exchange (ETDEWEB)

    Woitek, R.; Asenbaum, U.; Furtner, J.; Prayer, D. [Medizinische Universitaet Wien, Abteilung fuer Neuroradiologie und Muskuloskelettale Radiologie, Universitaetsklinik fuer Radiodiagnostik, Wien (Austria); Brugger, P.C. [Medizinische Universitaet Wien, Zentrum fuer Anatomie und Zellbiologie, Wien (Austria)

    2013-02-15

    Diagnosis and differential diagnosis of fetal thoracic and abdominal malformations. Ultrasound and magnetic resonance imaging (MRI). In cases of suspected pathologies based on fetal ultrasound MRI can be used for more detailed examinations and can be of assistance in the differential diagnostic process. Improved imaging of anatomical structures and of the composition of different tissues by the use of different MRI sequences. Fetal MRI has become a part of clinical routine in thoracic and abdominal malformations and is the basis for scientific research in this field. In cases of thoracic or abdominal malformations fetal MRI provides important information additional to ultrasound to improve diagnostic accuracy, prognostic evaluation and surgical planning. (orig.) [German] Diagnose und Differenzialdiagnose fetaler thorakaler und abdomineller Malformationen. Ultraschall, MRT. MRT zur weiteren Abklaerung und genaueren Differenzierung bei vielen im Ultraschall gestellten Verdachtsdiagnosen. Verbesserte anatomische Darstellung mittels MRT und Darstellung unterschiedlicher Gewebezusammensetzung mittels verschiedener MR-Sequenzen. Die fetale MRT ist bei der angegebenen Fragestellung in die klinische Routine eingegangen und liefert weiterhin die Basis fuer wissenschaftliche Untersuchungen in diesem Bereich. Die fetale MRT liefert beim Vorliegen thorakaler oder abdomineller Malformationen komplementaer zum Ultraschall wichtige Zusatzinformationen, um die diagnostische Genauigkeit zu erhoehen, die Prognoseabschaetzung zu verbessern und ggf. eine bessere chirurgische Planung zu ermoeglichen. (orig.)

  2. Detection of fetal-specific DNA after enrichment for trophoblasts using the monoclonal antibody LK26 in model systems but failure to demonstrate fetal DNA in maternal peripheral blood

    DEFF Research Database (Denmark)

    Hviid, T V; Sørensen, S; Morling, N

    1999-01-01

    Trophoblast cells can be detected in maternal blood during normal human pregnancy and DNA from these cells may be used for non-invasive prenatal diagnosis of inherited diseases. The possibility of enriching trophoblast cells from maternal blood samples using a monoclonal antibody (LK26) against...... a folate-binding protein, which recognizes trophoblast in normal tissues, in conjunction with immunomagnetic cell sorting was investigated. Verification of the presence of fetal DNA in the sorted samples was done by detection of fetal/paternal-specific short tandem repeat (STR) alleles using polymerase...... on peripheral maternal blood samples. However, it was not possible to detect fetal DNA sequences in these samples, most probably due to the extremely low number of trophoblast cells. Positive identification and retrieval of trophoblast cells in suspension or trophoblast nuclear material prepared on microscope...

  3. Frecuencia cardiaca y movimientos fetales posterior a la administracion de betametasona para maduración pulmonar fetal

    Directory of Open Access Journals (Sweden)

    Yolima Ruiz Lopez

    2013-05-01

    Full Text Available El objetivo de la investigación fue demostrar las modificaciones de la frecuencia cardiaca y los movimientos fetales producidas por la administración de betametasona para maduración pulmonar fetal. Se realizó una investigación de tipo explicativa, prospectiva y longitudinal con un diseño cuasi-experimental y una muestra no probabilística de 106 gestantes entre 24 y 34 semanas, con diagnóstico de amenaza de parto pretérmino tratadas con betametasona (12 mg intramuscular cada 24 horas por dos dosis que acudieron al Hospital Central “Dr. Urquinaona”. Se evaluaron los movimientos fetales y frecuencia cardiaca materna y fetal. No se encontraron diferencias significativas en la frecuencia cardiaca materna comparado con los valores iniciales (p = ns. Se observó que el valor inicial de la frecuencia cardiaca fetal fue de 135,1±9,7 latidos por minuto para aumentar luego a 137,2±8,9 latidos por minuto (p = ns para presentar un nuevo aumento hasta (142,9±9,9 latidos por minuto que fue significativo comparado con los valores iniciales (p < 0,05. Se observó una disminución significativa de movimientos fetales medidos en 30 minutos después de la primera inyección (23,1±6,0 movimientos comparado con 14,8±7,0 movimientos, para aumentar después de la segunda inyección pero aun presentando valores significativamente más bajos comparado con los valores iniciales (20,0 ±6,7 movimientos; p < 0,05. Se concluye que la administración de betametasona para maduración pulmonar fetal produce incremento significativo en la frecuencia cardiaca y reducción marcada de los movimientos fetales. Abstract Fetal heart rate and movements after betamethasone administration for fetal lung maturity The objective of research was to demonstrate fetal heart rate and movements modifications by the use of betamethasone for fetal lung maturity. An explicative, prospective and longitudinal research was done with a quasi-experimental design and a non

  4. A Humanized Mouse Model Generated Using Surplus Neonatal Tissue

    Directory of Open Access Journals (Sweden)

    Matthew E. Brown

    2018-04-01

    Full Text Available Summary: Here, we describe the NeoThy humanized mouse model created using non-fetal human tissue sources, cryopreserved neonatal thymus and umbilical cord blood hematopoietic stem cells (HSCs. Conventional humanized mouse models are made by engrafting human fetal thymus and HSCs into immunocompromised mice. These mice harbor functional human T cells that have matured in the presence of human self-peptides and human leukocyte antigen molecules. Neonatal thymus tissue is more abundant and developmentally mature and allows for creation of up to ∼50-fold more mice per donor compared with fetal tissue models. The NeoThy has equivalent frequencies of engrafted human immune cells compared with fetal tissue humanized mice and exhibits T cell function in assays of ex vivo cell proliferation, interferon γ secretion, and in vivo graft infiltration. The NeoThy model may provide significant advantages for induced pluripotent stem cell immunogenicity studies, while bypassing the requirement for fetal tissue. : Corresponding author William Burlingham and colleagues created a humanized mouse model called the NeoThy. The NeoThy uses human neonatal, rather than fetal, tissue sources for generating a human immune system within immunocompromised mouse hosts. NeoThy mice are an attractive alternative to conventional humanized mouse models, as they enable robust and reproducible iPSC immunogenicity experiments in vivo. Keywords: NeoThy, humanized mouse, iPSC, PSC, immunogenicity, transplantation, immunology, hematopoietic stem cells, induced pluripotent stem cells, thymus

  5. Comparison of rat and rabbit embryo-fetal developmental ...

    Science.gov (United States)

    Regulatory non-clinical safety testing of human pharmaceutical compounds typically requires embryo fetal developmental toxicity (EFDT) testing in two species, (one rodent and one non-rodent, usually the rat and the rabbit). The question has been raised whether under some conditions EFDT testing could be limited to one species, or whether the need for testing in a second species could be decided on a case by case basis. As part of an RIVM/CBG-MEB/HESI/US EPA consortium initiative, we built and queried a database of 379 EFDT studies conducted for marketed and non-marketed pharmaceutical compounds. The animal models (rat and rabbit) were assessed for their potential for adverse developmental and maternal outcomes. The database was analyzed for the prevalence of EFDT incidence and the nature and severity of adverse findings in the two species. Some manifestation of EFDT in either one or both species (rat and rabbit) was demonstrated for 282 compounds (74%), and EFDT was detected in only one species (rat or rabbit) in almost a third (31%, 118 compounds), with approximately 58% rat and 42% rabbit studies identifying an EFDT signal among the 379 compounds tested. For 24 compounds (6%), fetal malformations were observed in one species (rat or rabbit) in the absence of any EFDT in the second species. In general, growth retardation, fetal variations, and malformations were more prominent in the rat, whereas embryo-fetal death was observed more often in the rabbit. Discor

  6. Fetal Echocardiography/Your Unborn Baby's Heart

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Fetal Echocardiography / Your Unborn Baby's Heart Updated:Oct 6,2016 ... Your Risk • Symptoms & Diagnosis Introduction Common Tests Fetal Echocardiography/Your Unborn Baby's Heart - Fetal Echocardiogram Test - Detection ...

  7. Fetal programming by maternal stress: Insights from a conflict perspective.

    Science.gov (United States)

    Del Giudice, Marco

    2012-10-01

    Maternal stress during pregnancy has pervasive effects on the offspring's physiology and behavior, including the development of anxious, reactive temperament and increased stress responsivity. These outcomes can be seen as the result of adaptive developmental plasticity: maternal stress hormones carry useful information about the state of the external world, which can be used by the developing fetus to match its phenotype to the predicted environment. This account, however, neglects the inherent conflict of interest between mother and fetus about the outcomes of fetal programming. The aim of this paper is to extend the adaptive model of prenatal stress by framing mother-fetus interactions in an evolutionary conflict perspective. In the paper, I show how a conflict perspective provides many new insights in the functions and mechanisms of fetal programming, with particular emphasis on human pregnancy. I then take advantage of those insights to make sense of some puzzling features of maternal and fetal physiology and generate novel empirical predictions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Mitochondrial DNA Hypomethylation Is a Biomarker Associated with Induced Senescence in Human Fetal Heart Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Dehai Yu

    2017-01-01

    Full Text Available Background. Fetal heart can regenerate to restore its normal anatomy and function in response to injury, but this regenerative capacity is lost within the first week of postnatal life. Although the specific molecular mechanisms remain to be defined, it is presumed that aging of cardiac stem or progenitor cells may contribute to the loss of regenerative potential. Methods. To study this aging-related dysfunction, we cultured mesenchymal stem cells (MSCs from human fetal heart tissues. Senescence was induced by exposing cells to chronic oxidative stress/low serum. Mitochondrial DNA methylation was examined during the period of senescence. Results. Senescent MSCs exhibited flattened and enlarged morphology and were positive for the senescence-associated beta-galactosidase (SA-β-Gal. By scanning the entire mitochondrial genome, we found that four CpG islands were hypomethylated in close association with senescence in MSCs. The mitochondrial COX1 gene, which encodes the main subunit of the cytochrome c oxidase complex and contains the differentially methylated CpG island 4, was upregulated in MSCs in parallel with the onset of senescence. Knockdown of DNA methyltransferases (DNMT1, DNMT3a, and DNMT3B also upregulated COX1 expression and induced cellular senescence in MSCs. Conclusions. This study demonstrates that mitochondrial CpG hypomethylation may serve as a critical biomarker associated with cellular senescence induced by chronic oxidative stress.

  9. Transgenic up-regulation of alpha-CaMKII in forebrain leads to increased anxiety-like behaviors and aggression

    Directory of Open Access Journals (Sweden)

    Hasegawa Shunsuke

    2009-03-01

    Full Text Available Abstract Background Previous studies have demonstrated essential roles for alpha-calcium/calmodulin-dependent protein kinase II (alpha-CaMKII in learning, memory and long-term potentiation (LTP. However, previous studies have also shown that alpha-CaMKII (+/- heterozygous knockout mice display a dramatic decrease in anxiety-like and fearful behaviors, and an increase in defensive aggression. These findings indicated that alpha-CaMKII is important not only for learning and memory but also for emotional behaviors. In this study, to understand the roles of alpha-CaMKII in emotional behavior, we generated transgenic mice overexpressing alpha-CaMKII in the forebrain and analyzed their behavioral phenotypes. Results We generated transgenic mice overexpressing alpha-CaMKII in the forebrain under the control of the alpha-CaMKII promoter. In contrast to alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in anxiety-like behaviors in open field, elevated zero maze, light-dark transition and social interaction tests, and a decrease in locomotor activity in their home cages and novel environments; these phenotypes were the opposite to those observed in alpha-CaMKII (+/- heterozygous knockout mice. In addition, similarly with alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in aggression. However, in contrast to the increase in defensive aggression observed in alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in offensive aggression. Conclusion Up-regulation of alpha-CaMKII expression in the forebrain leads to an increase in anxiety-like behaviors and offensive aggression. From the comparisons with previous findings, we suggest that the expression levels of alpha-CaMKII are associated with the state of emotion; the expression level of alpha-CaMKII positively correlates with the anxiety state and strongly affects

  10. The basal forebrain cholinergic system in aging and dementia : Rescuing cholinergic neurons from neurotoxic amyloid-beta 42 with memantine

    NARCIS (Netherlands)

    Nyakas, Csaba; Granic, Ivica; Halmy, Laszlo G.; Banerjee, Pradeep; Luiten, Paul G. M.

    2011-01-01

    The dysfunction and loss of basal forebrain cholinergic neurons and their cortical projections are among the earliest pathological events in the pathogenesis of Alzheimer's disease (AD). The evidence pointing to cholinergic impairments come from studies that report a decline in the activity of

  11. Fetal Toxicity and Cytotoxicity of Lannea kerstingii Engl and Krause ...

    African Journals Online (AJOL)

    Purpose: To evaluate the fetal toxicity and cytotoxicity of L. kerstingii in pregnant rats exposed in the organogenic ... was performed and uterine horns were removed. The number of .... microplate reader (Dynatech MR 4000, .... activity, diarrhoea and vaginal bleeding. .... abnormal Savda Munziq aqueous extract in human.

  12. Fetal- and uterine-specific antigens in human amniotic fluid.

    Science.gov (United States)

    Sutcliffe, R G; Brock, D J; Nicholson, L V; Dunn, E

    1978-09-01

    Removal of the major maternal serum proteins from second trimester amniotic fluid by antibody affinity chromatography revealed various soluble tissue antigens, of which two were fetal-specific skin proteins and another, of alpha2-mobility, was specific to the uterus, and was therefore designated alpha-uterine protein (AUP). These proteins could not be detected in maternal serum by antibody-antigen crossed electrophoresis. The concentration of AUP in amniotic fluid reached a maximum between 10 and 20 weeks of gestation, suggesting that there is an influx of uterine protein into the amniotic fluid at this stage of pregnancy.

  13. Maternal hemodynamics, fetal biometry and Dopplers in pregnancies followed up for suspected fetal growth restriction.

    Science.gov (United States)

    Roberts, Llinos A; Ling, Hua Zen; Poon, Liona; Nicolaides, Kypros H; Kametas, Nikos A

    2018-04-01

    To assess whether in a cohort of patients with small for gestational age (SGA) foetuses with estimated fetal weight ≤10 th percentile, maternal hemodynamics, fetal biometry and Dopplers at presentation, can predict the subsequent development of abnormal fetal Dopplers or delivery with birthweight Cheetah), mean arterial pressure, fetal biometry, umbilical artery (UA), middle cerebral artery (MCA) and uterine artery (UT) pulsatility index (PI) and the deepest vertical pool (DVP) of amniotic fluid. Z-scores of these variables were calculated based on reported reference ranges and the values were compared between those with evidence of abnormal fetal Dopplers at presentation (group 1), those that developed abnormal Dopplers in subsequent visits (group 2) and those who did not develop abnormal Dopplers throughout pregnancy (group 3). Abnormal fetal Dopplers were defined as UAPI >95 th percentile, or MCA PI <5 th percentile. Differences in measured variables at presentation were also compared between pregnancies delivering a baby with birthweight <3 rd and ≥3 rd percentile. Multivariate logistic regression analysis was used to determine significant predictors of birthweight <3 rd percentile and evolution from normal fetal Dopplers to abnormal fetal Dopplers in groups 2 and 3. In the study population 14 (16%) cases were in group 1, 19 (22%) in group 2 and 53 (62%) in group 3. The birthweight was <3 rd percentile in 39 (45%) cases and ≥3 rd percentile in 47 (55%). In the study groups, compared to normal populations, there was decreased cardiac output and stroke volume and increased peripheral vascular resistance and mean arterial pressure (MAP) and the deviations from normal were most marked in group 1. Pregnancies with a birthweight <3 rd , compared to those ≥3 rd percentile, had higher deviations from normal in fetal biometry, maternal cardiac output, stroke volume, heart rate and peripheral vascular resistance and UT-PI. Multivariate logistic regression

  14. What makes humanity humane

    OpenAIRE

    Pribram, Karl H

    2006-01-01

    Scientific and popular lore have promulgated a connection between emotion and the limbic forebrain. However, there are a variety of structures that are considered limbic, and disagreement as to what is meant by "emotion". This essay traces the initial studies upon which the connection between emotion and the limbic forebrain was based and how subsequent experimental evidence led to confusion both with regard to brain systems and to the behaviors examined. In the process of sorting out the bas...

  15. Digital atlas of fetal brain MRI.

    Science.gov (United States)

    Chapman, Teresa; Matesan, Manuela; Weinberger, Ed; Bulas, Dorothy I

    2010-02-01

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C#, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download from http://radiology.seattlechildrens.org/teaching/fetal_brain . Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development.

  16. Maternal protein-energy malnutrition during early pregnancy in sheep impacts the fetal ornithine cycle to reduce fetal kidney microvascular development.

    Science.gov (United States)

    Dunford, Louise J; Sinclair, Kevin D; Kwong, Wing Y; Sturrock, Craig; Clifford, Bethan L; Giles, Tom C; Gardner, David S

    2014-11-01

    This paper identifies a common nutritional pathway relating maternal through to fetal protein-energy malnutrition (PEM) and compromised fetal kidney development. Thirty-one twin-bearing sheep were fed either a control (n=15) or low-protein diet (n=16, 17 vs. 8.7 g crude protein/MJ metabolizable energy) from d 0 to 65 gestation (term, ∼ 145 d). Effects on the maternal and fetal nutritional environment were characterized by sampling blood and amniotic fluid. Kidney development was characterized by histology, immunohistochemistry, vascular corrosion casts, and molecular biology. PEM had little measureable effect on maternal and fetal macronutrient balance (glucose, total protein, total amino acids, and lactate were unaffected) or on fetal growth. PEM decreased maternal and fetal urea concentration, which blunted fetal ornithine availability and affected fetal hepatic polyamine production. For the first time in a large animal model, we associated these nutritional effects with reduced micro- but not macrovascular development in the fetal kidney. Maternal PEM specifically impacts the fetal ornithine cycle, affecting cellular polyamine metabolism and microvascular development of the fetal kidney, effects that likely underpin programming of kidney development and function by a maternal low protein diet. © FASEB.

  17. Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis.

    Science.gov (United States)

    Marami, Bahram; Mohseni Salehi, Seyed Sadegh; Afacan, Onur; Scherrer, Benoit; Rollins, Caitlin K; Yang, Edward; Estroff, Judy A; Warfield, Simon K; Gholipour, Ali

    2017-08-01

    Diffusion weighted magnetic resonance imaging, or DWI, is one of the most promising tools for the analysis of neural microstructure and the structural connectome of the human brain. The application of DWI to map early development of the human connectome in-utero, however, is challenged by intermittent fetal and maternal motion that disrupts the spatial correspondence of data acquired in the relatively long DWI acquisitions. Fetuses move continuously during DWI scans. Reliable and accurate analysis of the fetal brain structural connectome requires careful compensation of motion effects and robust reconstruction to avoid introducing bias based on the degree of fetal motion. In this paper we introduce a novel robust algorithm to reconstruct in-vivo diffusion-tensor MRI (DTI) of the moving fetal brain and show its effect on structural connectivity analysis. The proposed algorithm involves multiple steps of image registration incorporating a dynamic registration-based motion tracking algorithm to restore the spatial correspondence of DWI data at the slice level and reconstruct DTI of the fetal brain in the standard (atlas) coordinate space. A weighted linear least squares approach is adapted to remove the effect of intra-slice motion and reconstruct DTI from motion-corrected data. The proposed algorithm was tested on data obtained from 21 healthy fetuses scanned in-utero at 22-38 weeks gestation. Significantly higher fractional anisotropy values in fiber-rich regions, and the analysis of whole-brain tractography and group structural connectivity, showed the efficacy of the proposed method compared to the analyses based on original data and previously proposed methods. The results of this study show that slice-level motion correction and robust reconstruction is necessary for reliable in-vivo structural connectivity analysis of the fetal brain. Connectivity analysis based on graph theoretic measures show high degree of modularity and clustering, and short average

  18. Intact fetal ovarian cord formation promotes mouse oocyte survival and development

    Directory of Open Access Journals (Sweden)

    Pera Renee

    2010-01-01

    human fetal ovary, the identification of genetic components and molecular mechanisms of pre-follicle stage germ and somatic cell structures may be important for understanding human female infertility. In addition, this work provides a foundation for development of a robust fetal ovarian niche and transplantation based system to direct stem cell-derived oocyte differentiation as a potential therapeutic strategy for the treatment of infertility.

  19. Loss of MeCP2 From Forebrain Excitatory Neurons Leads to Cortical Hyperexcitation and Seizures

    Science.gov (United States)

    Zhang, Wen; Peterson, Matthew; Beyer, Barbara; Frankel, Wayne N.

    2014-01-01

    Mutations of MECP2 cause Rett syndrome (RTT), a neurodevelopmental disorder leading to loss of motor and cognitive functions, impaired social interactions, and seizure at young ages. Defects of neuronal circuit development and function are thought to be responsible for the symptoms of RTT. The majority of RTT patients show recurrent seizures, indicating that neuronal hyperexcitation is a common feature of RTT. However, mechanisms underlying hyperexcitation in RTT are poorly understood. Here we show that deletion of Mecp2 from cortical excitatory neurons but not forebrain inhibitory neurons in the mouse leads to spontaneous seizures. Selective deletion of Mecp2 from excitatory but not inhibitory neurons in the forebrain reduces GABAergic transmission in layer 5 pyramidal neurons in the prefrontal and somatosensory cortices. Loss of MeCP2 from cortical excitatory neurons reduces the number of GABAergic synapses in the cortex, and enhances the excitability of layer 5 pyramidal neurons. Using single-cell deletion of Mecp2 in layer 2/3 pyramidal neurons, we show that GABAergic transmission is reduced in neurons without MeCP2, but is normal in neighboring neurons with MeCP2. Together, these results suggest that MeCP2 in cortical excitatory neurons plays a critical role in the regulation of GABAergic transmission and cortical excitability. PMID:24523563

  20. Impacts of maternal dietary protein intake on fetal survival, growth, and development.

    Science.gov (United States)

    Herring, Cassandra M; Bazer, Fuller W; Johnson, Gregory A; Wu, Guoyao

    2018-03-01

    Maternal nutrition during gestation, especially dietary protein intake, is a key determinant in embryonic survival, growth, and development. Low maternal dietary protein intake can cause embryonic losses, intra-uterine growth restriction, and reduced postnatal growth due to a deficiency in specific amino acids that are important for cell metabolism and function. Of note, high maternal dietary protein intake can also result in intra-uterine growth restriction and embryonic death, due to amino acid excesses, as well as the toxicity of ammonia, homocysteine, and H 2 S that are generated from amino acid catabolism. Maternal protein nutrition has a pronounced impact on fetal programming and alters the expression of genes in the fetal genome. As a precursor to the synthesis of molecules (e.g. nitric oxide, polyamines, and creatine) with cell signaling and metabolic functions, L-arginine (Arg) is essential during pregnancy for growth and development of the conceptus. With inadequate maternal dietary protein intake, Arg and other important amino acids are deficient in mother and fetus. Dietary supplementation of Arg during gestation has been effective in improving embryonic survival and development of the conceptus in many species, including humans, pigs, sheep, mice, and rats. Both the balance among amino acids and their quantity are critical for healthy pregnancies and offspring. Impact statement This review aims at: highlighting adverse effects of elevated levels of ammonia in mother or fetus on embryonic/fetal survival, growth, and development; helping nutritionists and practitioners to understand the mechanisms whereby elevated levels of ammonia in mother or fetus results in embryonic/fetal death, growth restriction, and developmental abnormalities; and bringing, into the attention of nutritionists and practitioners, the problems of excess or inadequate dietary intake of protein or amino acids on pregnancy outcomes in animals and humans. The article provides new

  1. Accounting for Fetal Origins

    DEFF Research Database (Denmark)

    Dalgaard, Carl-Johan Lars; Hansen, Casper Worm; Strulik, Holger

    2017-01-01

    The Fetal Origins hypothesis has received considerable empirical support, both within epidemiology and economics. The present study compares the ability of two rival theoretical frameworks in accounting for the kind of path dependence implied by the Fetal Origins Hypothesis. We argue that while...

  2. Propagated but Topologically Distributed Forebrain Neurons Expressing Alpha-Synuclein in Aged Macaques.

    Directory of Open Access Journals (Sweden)

    Katsuo Kimura

    Full Text Available In neurodegenerative disorders, such as Parkinson's disease (PD, alpha-synuclein (α-syn accumulates to induce cell death and/or form a cytoplasmic inclusion called Lewy body (LB. This α-syn-related pathology is termed synucleinopathy. It remains unclear how α-syn accumulation expands during the progress of synucleinopathy in the human brain. In our study, we investigated the patterns of distribution and propagation of forebrain neurons expressing α-syn in aged macaques. It was found that the occurrence of α-syn-positive neurons proceeded topologically based on the midbrain dopamine pathways arising from the substantia nigra and the ventral tegmental area where they were primarily observed. In the nigrostriatal or mesolimbic dopamine pathway, the age-dependent increase in α-syn-positive neurons was evident in the striatum or the nucleus accumbens, respectively. Concerning the nigrostriatal pathway, a mediolateral or rostrocaudal gradient was seen in the substantia nigra or the striatum, respectively, and a compensatory increase in dopamine transporter occurred in the striatum regardless of the decreased dopamine level. In the mesocortical dopamine pathway, α-syn-positive neurons appeared in the prefrontal and then motor areas of the frontal lobe. Given that neither LB formation nor clinical phenotype manifestation was detected in any of the monkeys examined in the present study, aged macaques may be useful as a potential presymptomatic model for PD and LB-related neuropsychiatric disorders.

  3. The number of fetal cells in maternal blood is associated to exercise and fetal gender

    DEFF Research Database (Denmark)

    Schlütter, Jacob Mørup; Kirkegaard, Ida; Christensen, Connie Britta

    Introduction: We have established a robust method to specifically identify and isolate a placental fetal cell in maternal blood (fcmbs) at a gestational age of 12 weeks. The concentration of these cells, however, varies considerably among pregnant women (median 3 fcmbs/30 mL blood, range 0...... activity was obtained by a questionnaire and a structured interview. The number of fcmbs was assessed in 30 mL blood processed by a proprietary method developed in-house. Fetal cells in the blood, binding to fetal cell specific antibodies, were initially isolated by magnetic cell sorting. The fetal cells...... vs. 4, p=0.06) decreased the number of fcmbs, whereas coitus the evening before increased the number (4 vs. 3, p=0.11). Conclusion: The number of fcmbs is affected by normal activities. This should be taken into account when planning collection of fetal cells in connection for prenatal diagnosis...

  4. Fetal response to maternal hunger and satiation - novel finding from a qualitative descriptive study of maternal perception of fetal movements.

    Science.gov (United States)

    Bradford, Billie; Maude, Robyn

    2014-08-26

    Maternal perception of decreased fetal movements is a specific indicator of fetal compromise, notably in the context of poor fetal growth. There is currently no agreed numerical definition of decreased fetal movements, with the subjective perception of a decrease on the part of the mother being the most significant definition clinically. Both qualitative and quantitative aspects of fetal activity may be important in identifying the compromised fetus.Yet, how pregnant women perceive and describe fetal activity is under-investigated by qualitative means. The aim of this study was to explore normal fetal activity, through first-hand descriptive accounts by pregnant women. Using qualitative descriptive methodology, interviews were conducted with 19 low-risk women experiencing their first pregnancy, at two timepoints in their third trimester. Interview transcripts were later analysed using qualitative content analysis and patterns of fetal activity identified were then considered along-side the characteristics of the women and their birth outcomes. This paper focuses on a novel finding; the description by pregnant women of fetal behaviour indicative of hunger and satiation. Full findings will be presented in later papers. Most participants (74% 14 of 19) indicated mealtimes were a time of increased fetal activity. Eight participants provided detailed descriptions of increased activity around meals, with seven (37% 7 of 19) of these specifying increased fetal activity prior to meals or in the context of their own hunger. These movements were interpreted as a fetal demand for food often prompting the mother to eat. Interestingly, the women who described increased fetal activity in the context of hunger subsequently gave birth to smaller infants (mean difference 364 gm) than those who did not describe a fetal response to hunger. Food seeking behaviour may have a pre-birth origin. Maternal-fetal interaction around mealtimes could constitute an endocrine mediated

  5. Fetal first trimester growth is not associated with kidney outcomes in childhood.

    Science.gov (United States)

    Bakker, Hanneke; Gaillard, Romy; Hofman, Albert; Reiss, Irwin K; Steegers, Eric A P; Jaddoe, Vincent W V

    2017-04-01

    Impaired fetal growth is associated with increased risks of kidney diseases in later life. Because human development rates are highest during the first trimester, this trimester may be a particularly critical period for kidney outcomes. We have therefore examined the association of fetal first trimester growth with kidney outcomes in childhood. This study was embedded in a prospective population-based cohort study among 1176 pregnant women and their children. We used fetal first trimester crown-length as the growth measure among mothers with a regular menstrual cycle and a known first day of the last menstrual period. At the childhood age of 6 (median 5.7-6.8) years, we measured combined kidney volume, microalbuminuria and estimated glomerular filtration rate (eGFR) based on serum creatinine and cystatin C concentrations. No consistent associations of fetal first trimester crown-rump length with childhood combined kidney volume, eGFR and microalbuminuria were observed. Compared to children with a fetal first trimester crown-rump length in the highest quintile, those in the lowest quintile had a larger childhood combined kidney volume (difference 5.32 cm 3 , 95 % confidence interval 1.06 to 9.57), but no differences in kidney function. Our results do not support the hypothesis that fetal first trimester growth restriction affects kidney size and function in childhood. Further studies are needed to focus on critical periods in early life for kidney function and disease in later life.

  6. Autologous Adrenal Medullary, Fetal Mesencephalic, and Fetal Adrenal Brain Transplantation in Parkinson's Disease: A Long-Term Postoperative Follow-Up

    Science.gov (United States)

    Madrazo, Ignacio; Franco-Bourland, Rebecca; Aguilera, Maricarmen; Ostrosky-Solis, Feggy; Madrazo, Mario; Cuevas, Carlos; Catrejon, Hugo; Guizar-Zahagun, Gabriel; Magallon, Eduardo

    1991-01-01

    We report on the clinical status of 5 patients with Parkinson's disease (PD) 3 years after autologous adrenal medullary (AM)-to-caudate nucleus (CN) implanfion, and of 2 PD patients, 2 years after fetal ventral mesencephalon (VM)- and fetal adrenal (A)-to-CN homotransplantation. Current clinical evaluation of 4 of the AM grafted patients revealed sustained bilateral amelioration of their PD signs, most notably of rgidity, postural imbalance and gait disturbances, resulting in a substantial improvement in their quality of life. the disease-related dystonia of one of them disappeared only 2 years after surgery. The levodopa requirements of 2 of these patients and the anticholinergic therapy of another have been reduced. In agreement with the satisfactory clinical evaluation of these 4 patients, their neuropsychological and electrophysiological improvements, initially registered 3 months after surgery, have been maintained for 3 years. After 1 year of significant recovery, the 5th patient of this group has almost returned to her preoperative state. The 2 homotransplanted patients also showed sustained bilateral improvement of their PD signs. Two years after surgery, the most improved signs of the fetal VM case were rigidity, bradykinesia, postural imbalance, gait disturbances and facial expression. The fetal A case has only shown amelioration of rigidity and bradykinesia. Neither of them has shown significant neuropsychological changes. Their current levodopa requirements are less than before surgery. The improvements shown here by PD patients after brain tissue grafts go beyond those obtained using any other therapeutic approach, when levodopa fails. Although more studies and the development of these procedures are obviously required, these initial human trials appear to be resisting the test of time. PMID:1782251

  7. Maternal bisphenol a exposure impacts the fetal heart transcriptome.

    Directory of Open Access Journals (Sweden)

    Kalyan C Chapalamadugu

    Full Text Available Conditions during fetal development influence health and disease in adulthood, especially during critical windows of organogenesis. Fetal exposure to the endocrine disrupting chemical, bisphenol A (BPA affects the development of multiple organ systems in rodents and monkeys. However, effects of BPA exposure on cardiac development have not been assessed. With evidence that maternal BPA is transplacentally delivered to the developing fetus, it becomes imperative to examine the physiological consequences of gestational exposure during primate development. Herein, we evaluate the effects of daily, oral BPA exposure of pregnant rhesus monkeys (Macaca mulatta on the fetal heart transcriptome. Pregnant monkeys were given daily oral doses (400 µg/kg body weight of BPA during early (50-100 ± 2 days post conception, dpc or late (100 ± 2 dpc--term, gestation. At the end of treatment, fetal heart tissues were collected and chamber specific transcriptome expression was assessed using genome-wide microarray. Quantitative real-time PCR was conducted on select genes and ventricular tissue glycogen content was quantified. Our results show that BPA exposure alters transcription of genes that are recognized for their role in cardiac pathophysiologies. Importantly, myosin heavy chain, cardiac isoform alpha (Myh6 was down-regulated in the left ventricle, and 'A Disintegrin and Metalloprotease 12', long isoform (Adam12-l was up-regulated in both ventricles, and the right atrium of the heart in BPA exposed fetuses. BPA induced alteration of these genes supports the hypothesis that exposure to BPA during fetal development may impact cardiovascular fitness. Our results intensify concerns about the role of BPA in the genesis of human metabolic and cardiovascular diseases.

  8. Digital atlas of fetal brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Teresa; Weinberger, E. [Department of Radiology, Seattle Children' s Hospital, Seattle, WA (United States); Matesan, Manuela [University of Washington, Department of Radiology, Seattle, WA (United States); Bulas, Dorothy I. [Division of Diagnostic Imaging and Radiology, Children' s National Medical Center, Washington, DC (United States)

    2010-02-15

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download. Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development. (orig.)

  9. Digital atlas of fetal brain MRI

    International Nuclear Information System (INIS)

    Chapman, Teresa; Weinberger, E.; Matesan, Manuela; Bulas, Dorothy I.

    2010-01-01

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download. Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development. (orig.)

  10. Fetal programming by co-twin rivalry in sheep.

    Science.gov (United States)

    Casellas, J; Caja, G

    2014-01-01

    1.23 lambs per lambing. These significant differences in LS highlighted the influence of fetal programming in sheep under rangeland conditions, which implies decisive economic consequences worldwide. Moreover, these results could contribute additional information on twin biology, which could be useful in other mammalian species such as humans.

  11. MRI of the fetal spine

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Erin M. [Departement of Radiology, Children' s Hospital of Philadelphia, PA (United States)

    2004-09-01

    Magnetic resonance imaging of the fetal spine is a vital complement to fetal sonographic examination. Assessing the wide spectrum of spinal dysraphism, as well as spinal neoplasia, allows for more correct prenatal diagnoses, patient care planning, and patient counselling. Proper appraisal of the value of experimental procedures, such as fetal myelomeningocoele repair, requires a high level of diagnostic accuracy for the selection and follow-up of appropriate candidates. (orig.)

  12. MRI of the fetal spine

    International Nuclear Information System (INIS)

    Simon, Erin M.

    2004-01-01

    Magnetic resonance imaging of the fetal spine is a vital complement to fetal sonographic examination. Assessing the wide spectrum of spinal dysraphism, as well as spinal neoplasia, allows for more correct prenatal diagnoses, patient care planning, and patient counselling. Proper appraisal of the value of experimental procedures, such as fetal myelomeningocoele repair, requires a high level of diagnostic accuracy for the selection and follow-up of appropriate candidates. (orig.)

  13. Thrombophilic disorders and fetal loss: a meta-analysis.

    Science.gov (United States)

    Rey, Evelyne; Kahn, Susan R; David, Michèle; Shrier, Ian

    2003-03-15

    Our aim was to assess the strength of the controversial association between thrombophilia and fetal loss, and to examine whether it varies according to the timing or definition of fetal loss. We searched Medline and Current Contents for articles published between 1975 and 2002 and their references with terms denoting recurrent fetal and non-recurrent fetal loss combined with various thrombophilic disorders. We included in our meta-analysis case-control, cohort, and cross-sectional studies published in English, the methodological quality of which was rated as moderate or strong. Pooled odds ratios (OR) with 95% CI were generated by random effects models with Cochrane Review Manager software. We included 31 studies. Factor V Leiden was associated with early (OR 2.01, 95% CI 1.13-3.58) and late (7.83, 2.83-21.67) recurrent fetal loss, and late non-recurrent fetal loss (3.26, 1.82-5.83). Exclusion of women with other pathologies that could explain fetal loss strengthened the association between Factor V Leiden and recurrent fetal loss. Activated protein C resistance was associated with early recurrent fetal loss (3.48, 1.58-7.69), and prothrombin G20210A mutation with early recurrent (2.56, 1.04-.29) and late non-recurrent (2.30, 1.09-4.87) fetal loss. Protein S deficiency was associated with recurrent fetal loss (14.72, 0.99-218.01) and late non-recurrent fetal loss (7.39, 1.28-42.63). Methylenetetrahydrofolate mutation, protein C, and antithrombin deficiencies were not significantly associated with fetal loss. The magnitude of the association between thrombophilia and fetal loss varies, according to type of fetal loss and type of thrombophilia.

  14. Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons.

    Directory of Open Access Journals (Sweden)

    Patrick Aldrin-Kirk

    Full Text Available Synucleinopathies, characterized by intracellular aggregation of α-synuclein protein, share a number of features in pathology and disease progression. However, the vulnerable cell population differs significantly between the disorders, despite being caused by the same protein. While the vulnerability of dopamine cells in the substantia nigra to α-synuclein over-expression, and its link to Parkinson's disease, is well studied, animal models recapitulating the cortical degeneration in dementia with Lewy-bodies (DLB are much less mature. The aim of this study was to develop a first rat model of widespread progressive synucleinopathy throughout the forebrain using adeno-associated viral (AAV vector mediated gene delivery. Through bilateral injection of an AAV6 vector expressing human wild-type α-synuclein into the forebrain of neonatal rats, we were able to achieve widespread, robust α-synuclein expression with preferential expression in the frontal cortex. These animals displayed a progressive emergence of hyper-locomotion and dysregulated response to the dopaminergic agonist apomorphine. The animals receiving the α-synuclein vector displayed significant α-synuclein pathology including intra-cellular inclusion bodies, axonal pathology and elevated levels of phosphorylated α-synuclein, accompanied by significant loss of cortical neurons and a progressive reduction in both cortical and striatal ChAT positive interneurons. Furthermore, we found evidence of α-synuclein sequestered by IBA-1 positive microglia, which was coupled with a distinct change in morphology. In areas of most prominent pathology, the total α-synuclein levels were increased to, on average, two-fold, which is similar to the levels observed in patients with SNCA gene triplication, associated with cortical Lewy body pathology. This study provides a novel rat model of progressive cortical synucleinopathy, showing for the first time that cholinergic interneurons are vulnerable

  15. In utero exposure to chloroquine alters sexual development in the male fetal rat

    International Nuclear Information System (INIS)

    Clewell, Rebecca A.; Pluta, Linda; Thomas, Russell S.; Andersen, Melvin E.

    2009-01-01

    Chloroquine (CQ), a drug that has been used extensively for the prevention and treatment of malaria, is currently considered safe for use during pregnancy. However, CQ has been shown to disrupt steroid homeostasis in adult rats and similar compounds, such as quinacrine, inhibit steroid production in the Leydig cell in vitro. To explore the effect of in utero CQ exposure on fetal male sexual development, pregnant Sprague-Dawley rats were given a daily dose of either water or chloroquine diphosphate from GD 16-18 by oral gavage. Chloroquine was administered as 200 mg/kg CQ base on GD 16, followed by two maintenance doses of 100 mg/kg CQ base on GD 16 and 18. Three days of CQ treatment resulted in reduced maternal and fetal weight on GD 19 and increased necrosis and steatosis in the maternal liver. Fetal livers also displayed mild lipid accumulation. Maternal serum progesterone was increased after CQ administration. Fetal testes testosterone, however, was significantly decreased. Examination of the fetal testes revealed significant alterations in vascularization and seminiferous tubule development after short-term CQ treatment. Anogenital distance was not altered. Microarray and RT-PCR showed down-regulation of several genes associated with cholesterol transport and steroid synthesis in the fetal testes. This study indicates that CQ inhibits testosterone synthesis and normal testis development in the rat fetus at human relevant doses.

  16. Fetal MRI: techniques and protocols

    International Nuclear Information System (INIS)

    Prayer, Daniela; Brugger, Peter Christian; Prayer, Lucas

    2004-01-01

    The development of ultrafast sequences has led to a significant improvement in fetal MRI. Imaging protocols have to be adjusted to the rapidly developing fetal central nervous system (CNS) and to the clinical question. Sequence parameters must be changed to cope with the respective developmental stage, to produce images free from motion artefacts and to provide optimum visualization of the region and focus of interest. In contrast to postnatal studies, every suspect fetal CNS abnormality requires examination of the whole fetus and the extrafetal intrauterine structures including the uterus. This approach covers both aspects of fetal CNS disorders: isolated and complex malformations and cerebral lesions arising from the impaired integrity of the feto-placental unit. (orig.)

  17. Fetal MRI: techniques and protocols

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Department of Neuroradiology, University Clinics of Radiodiagnostics, Medical University Vienna, Waehringerguertel 18-10, 1090, Vienna (Austria); Brugger, Peter Christian [Department of Anatomy, Integrative Morphology Group, Medical University Vienna (Austria); Prayer, Lucas [Diagnosezentrum Urania, Vienna (Austria)

    2004-09-01

    The development of ultrafast sequences has led to a significant improvement in fetal MRI. Imaging protocols have to be adjusted to the rapidly developing fetal central nervous system (CNS) and to the clinical question. Sequence parameters must be changed to cope with the respective developmental stage, to produce images free from motion artefacts and to provide optimum visualization of the region and focus of interest. In contrast to postnatal studies, every suspect fetal CNS abnormality requires examination of the whole fetus and the extrafetal intrauterine structures including the uterus. This approach covers both aspects of fetal CNS disorders: isolated and complex malformations and cerebral lesions arising from the impaired integrity of the feto-placental unit. (orig.)

  18. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    International Nuclear Information System (INIS)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-01-01

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  19. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy, E-mail: shivanna@bcm.edu

    2015-07-15

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  20. Identification and comparative analyses of myocardial miRNAs involved in the fetal response to maternal obesity.

    Science.gov (United States)

    Maloyan, Alina; Muralimanoharan, Sribalasubashini; Huffman, Steven; Cox, Laura A; Nathanielsz, Peter W; Myatt, Leslie; Nijland, Mark J

    2013-10-01

    Human and animal studies show that suboptimal intrauterine environments lead to fetal programming, predisposing offspring to disease in later life. Maternal obesity has been shown to program offspring for cardiovascular disease (CVD), diabetes, and obesity. MicroRNAs (miRNAs) are small, noncoding RNA molecules that act as key regulators of numerous cellular processes. Compelling evidence links miRNAs to the control of cardiac development and etiology of cardiac pathology; however, little is known about their role in the fetal cardiac response to maternal obesity. Our aim was to sequence and profile the cardiac miRNAs that are dysregulated in the hearts of baboon fetuses born to high fat/high fructose-diet (HFD) fed mothers for comparison with fetal hearts from mothers eating a regular diet. Eighty miRNAs were differentially expressed. Of those, 55 miRNAs were upregulated and 25 downregulated with HFD. Twenty-two miRNAs were mapped to human; 14 of these miRNAs were previously reported to be dysregulated in experimental or human CVD. We used an Ingenuity Pathway Analysis to integrate miRNA profiling and bioinformatics predictions to determine miRNA-regulated processes and genes potentially involved in fetal programming. We found a correlation between miRNA expression and putative gene targets involved in developmental disorders and CVD. Cellular death, growth, and proliferation were the most affected cellular functions in response to maternal obesity. Thus, the current study reveals significant alterations in cardiac miRNA expression in the fetus of obese baboons. The epigenetic modifications caused by adverse prenatal environment may represent one of the mechanisms underlying fetal programming of CVD.

  1. Y-chromosome DNA is present in the blood of female dogs suggesting the presence of fetal microchimerism.

    Directory of Open Access Journals (Sweden)

    Sandra M Axiak-Bechtel

    Full Text Available Fetal microchimerism has been suggested to play contradictory roles in women's health, with factors including age of the recipient, time elapsed since microchimerism occurred, and microchimeric cell type modulating disease. Both beneficial and harmful effects have been identified in wound healing and tissue regeneration, immune mediated disease, and cancer. This area of research is relatively new, and hindered by the time course from occurrence of fetal microchimerism to the multi-factorial development of disease. Dogs represent an excellent model for study of fetal microchimerism, as they share our environment, have a naturally condensed lifespan, and spontaneously develop immune-mediated diseases and cancers similar to their human counterparts. However, fetal microchimerism has not been described in dogs. These experiments sought preliminary evidence that dogs develop fetal microchimerism following pregnancy. We hypothesized that Y chromosomal DNA would be detected in the peripheral blood mononuclear cells of female dogs collected within two months of parturition. We further hypothesized that Y chromosomal DNA would be detected in banked whole blood DNA samples from parous female Golden Retrievers with at least one male puppy in a prior litter. Amplification of DNA extracted from five female Golden Retrievers that had whelped within the two months prior to collection revealed strong positive bands for the Y chromosome. Of banked, parous samples, 36% yielded positive bands for the Y chromosome. This is the first report of persistent Y chromosomal DNA in post-partum female dogs and these results suggest that fetal microchimerism occurs in the canine species. Evaluation of the contributions of fetal microchimeric cells to disease processes in dogs as a model for human disease is warranted.

  2. Y-chromosome DNA is present in the blood of female dogs suggesting the presence of fetal microchimerism.

    Science.gov (United States)

    Axiak-Bechtel, Sandra M; Kumar, Senthil R; Hansen, Sarah A; Bryan, Jeffrey N

    2013-01-01

    Fetal microchimerism has been suggested to play contradictory roles in women's health, with factors including age of the recipient, time elapsed since microchimerism occurred, and microchimeric cell type modulating disease. Both beneficial and harmful effects have been identified in wound healing and tissue regeneration, immune mediated disease, and cancer. This area of research is relatively new, and hindered by the time course from occurrence of fetal microchimerism to the multi-factorial development of disease. Dogs represent an excellent model for study of fetal microchimerism, as they share our environment, have a naturally condensed lifespan, and spontaneously develop immune-mediated diseases and cancers similar to their human counterparts. However, fetal microchimerism has not been described in dogs. These experiments sought preliminary evidence that dogs develop fetal microchimerism following pregnancy. We hypothesized that Y chromosomal DNA would be detected in the peripheral blood mononuclear cells of female dogs collected within two months of parturition. We further hypothesized that Y chromosomal DNA would be detected in banked whole blood DNA samples from parous female Golden Retrievers with at least one male puppy in a prior litter. Amplification of DNA extracted from five female Golden Retrievers that had whelped within the two months prior to collection revealed strong positive bands for the Y chromosome. Of banked, parous samples, 36% yielded positive bands for the Y chromosome. This is the first report of persistent Y chromosomal DNA in post-partum female dogs and these results suggest that fetal microchimerism occurs in the canine species. Evaluation of the contributions of fetal microchimeric cells to disease processes in dogs as a model for human disease is warranted.

  3. Expression of stem cell markers in the human fetal kidney.

    Directory of Open Access Journals (Sweden)

    Sally Metsuyanim

    Full Text Available In the human fetal kidney (HFK self-renewing stem cells residing in the metanephric mesenchyme (MM/blastema are induced to form all cell types of the nephron till 34(th week of gestation. Definition of useful markers is crucial for the identification of HFK stem cells. Because wilms' tumor, a pediatric renal cancer, initiates from retention of renal stem cells, we hypothesized that surface antigens previously up-regulated in microarrays of both HFK and blastema-enriched stem-like wilms' tumor xenografts (NCAM, ACVRIIB, DLK1/PREF, GPR39, FZD7, FZD2, NTRK2 are likely to be relevant markers. Comprehensive profiling of these putative and of additional stem cell markers (CD34, CD133, c-Kit, CD90, CD105, CD24 in mid-gestation HFK was performed using immunostaining and FACS in conjunction with EpCAM, an epithelial surface marker that is absent from the MM and increases along nephron differentiation and hence can be separated into negative, dim or bright fractions. No marker was specifically localized to the MM. Nevertheless, FZD7 and NTRK2 were preferentially localized to the MM and emerging tubules (50% of HFK cells and predominantly co-express EpCAM(bright, indicating they are mostly markers of differentiation. Furthermore, localization of NCAM exclusively in the MM and in its nephron progenitor derivatives but also in stroma and the expression pattern of significantly elevated renal stem/progenitor genes Six2, Wt1, Cited1, and Sall1 in NCAM(+EpCAM(- and to a lesser extent in NCAM(+EpCAM(+ fractions confirmed regional identity of cells and assisted us in pinpointing the presence of subpopulations that are putative MM-derived progenitor cells (NCAM(+EpCAM(+FZD7(+, MM stem cells (NCAM(+EpCAM(-FZD7(+ or both (NCAM(+FZD7(+. These results and concepts provide a framework for developing cell selection strategies for human renal cell-based therapies.

  4. Role of melatonin in embryo fetal development

    OpenAIRE

    Voiculescu, SE; Zygouropoulos, N; Zahiu, CD; Zagrean, AM

    2014-01-01

    Melatonin is an indoleamine produced by the pineal gland and secreted in a circadian manner. In the past few decades, research over this topic has been enhanced. Melatonin has many important roles in the human physiology: regulator of the circadian rhythms, sleep inducer, antioxidant, anticarcinogenic. This paper reviews the involvement of melatonin in embryo fetal development. The pineal gland develops completely postpartum, so both the embryo and the fetus are dependent on the maternal mela...

  5. The relationship between human placental morphometry and ultrasonic measurements of utero-placental blood flow and fetal growth.

    Science.gov (United States)

    Salavati, N; Sovio, U; Mayo, R Plitman; Charnock-Jones, D S; Smith, G C S

    2016-02-01

    Ultrasonic fetal biometry and arterial Doppler flow velocimetry are widely used to assess the risk of pregnancy complications. There is an extensive literature on the relationship between pregnancy outcomes and the size and shape of the placenta. However, ultrasonic fetal biometry and arterial Doppler flow velocimetry have not previously been studied in relation to postnatal placental morphometry in detail. We conducted a prospective cohort study of nulliparous women in The Rosie Hospital, Cambridge (UK). We studied a group of 2120 women who had complete data on uterine and umbilical Doppler velocimetry and fetal biometry at 20, 28 and 36 weeks' gestational age, digital images of the placenta available, and delivered a liveborn infant at term. Associations were expressed as the difference in the standard deviation (SD) score of the gestational age adjusted ultrasound measurement (z-score) comparing the lowest and highest decile of the given placental morphometric measurement. The lowest decile of placental surface area was associated with 0.87 SD higher uterine artery Doppler mean pulsatility index (PI) at 20 weeks (95% CI: 0.68 to 1.07, P flow, respectively, and both are associated with fetal growth rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Predicting intrapartum fetal compromise using the fetal cerebro-umbilical ratio.

    Science.gov (United States)

    Sabdia, S; Greer, R M; Prior, T; Kumar, S

    2015-05-01

    The aim of this study was to explore the association between the cerebro-umbilical ratio measured at 35-37 weeks and intrapartum fetal compromise. This retrospective cross sectional study was conducted at the Mater Mothers' Hospital in Brisbane, Australia. Maternal demographics and fetal Doppler indices at 35-37 weeks gestation for 1381 women were correlated with intrapartum and neonatal outcomes. Babies born by caesarean section or instrumental delivery for fetal compromise had the lowest median cerebro-umbilical ratio 1.60 (IQR 1.22-2.08) compared to all other delivery groups (vaginal delivery, emergency delivery for failure to progress, emergency caesarean section for other reasons or elective caesarean section). The percentage of infants with a cerebro-umbilical ratio cerebro-umbilical ratio between the 10th-90th centile and 9.6% of infants with a cerebro-umbilical ratio > 90th centile required delivery for the same indication (p cerebro-umbilical ratio was associated with an increased risk of emergency delivery for fetal compromise, OR 2.03 (95% CI 1.41-2.92), p cerebro-umbilical ratio measured at 35-37 weeks is associated with a greater risk of intrapartum compromise. This is a relatively simple technique which could be used to risk stratify women in diverse healthcare settings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Animal models for clinical and gestational diabetes: maternal and fetal outcomes.

    Science.gov (United States)

    Kiss, Ana Ci; Lima, Paula Ho; Sinzato, Yuri K; Takaku, Mariana; Takeno, Marisa A; Rudge, Marilza Vc; Damasceno, Débora C

    2009-10-19

    Diabetes in pregnant women is associated with an increased risk of maternal and neonatal morbidity and remains a significant medical challenge. Diabetes during pregnancy may be divided into clinical diabetes and gestational diabetes. Experimental models are developed with the purpose of enhancing understanding of the pathophysiological mechanisms of diseases that affect humans. With regard to diabetes in pregnancy, experimental findings from models will lead to the development of treatment strategies to maintain a normal metabolic intrauterine milieu, improving perinatal development by preventing fetal growth restriction or macrosomia. Based on animal models of diabetes during pregnancy previously reported in the medical literature, the present study aimed to compare the impact of streptozotocin-induced severe (glycemia >300 mg/dl) and mild diabetes (glycemia between 120 and 300 mg/dl) on glycemia and maternal reproductive and fetal outcomes of Wistar rats to evaluate whether the animal model reproduces the maternal and perinatal results of clinical and gestational diabetes in humans. On day 5 of life, 96 female Wistar rats were assigned to three experimental groups: control (n = 16), severe (n = 50) and mild diabetes (n = 30). At day 90 of life, rats were mated. On day 21 of pregnancy, rats were killed and their uterine horns were exposed to count implantation and fetus numbers to determine pre- and post-implantation loss rates. The fetuses were classified according to their birth weight. Severe and mild diabetic dams showed different glycemic responses during pregnancy, impairing fetal glycemia and weight, confirming that maternal glycemia is directly associated with fetal development. Newborns from severe diabetic mothers presented growth restriction, but mild diabetic mothers were not associated with an increased rate of macrosomic fetuses. Experimental models of severe diabetes during pregnancy reproduced maternal and fetal outcomes of pregnant women

  8. Animal models for clinical and gestational diabetes: maternal and fetal outcomes

    Directory of Open Access Journals (Sweden)

    Kiss Ana CI

    2009-10-01

    Full Text Available Abstract Background Diabetes in pregnant women is associated with an increased risk of maternal and neonatal morbidity and remains a significant medical challenge. Diabetes during pregnancy may be divided into clinical diabetes and gestational diabetes. Experimental models are developed with the purpose of enhancing understanding of the pathophysiological mechanisms of diseases that affect humans. With regard to diabetes in pregnancy, experimental findings from models will lead to the development of treatment strategies to maintain a normal metabolic intrauterine milieu, improving perinatal development by preventing fetal growth restriction or macrosomia. Based on animal models of diabetes during pregnancy previously reported in the medical literature, the present study aimed to compare the impact of streptozotocin-induced severe (glycemia >300 mg/dl and mild diabetes (glycemia between 120 and 300 mg/dl on glycemia and maternal reproductive and fetal outcomes of Wistar rats to evaluate whether the animal model reproduces the maternal and perinatal results of clinical and gestational diabetes in humans. Methods On day 5 of life, 96 female Wistar rats were assigned to three experimental groups: control (n = 16, severe (n = 50 and mild diabetes (n = 30. At day 90 of life, rats were mated. On day 21 of pregnancy, rats were killed and their uterine horns were exposed to count implantation and fetus numbers to determine pre- and post-implantation loss rates. The fetuses were classified according to their birth weight. Results Severe and mild diabetic dams showed different glycemic responses during pregnancy, impairing fetal glycemia and weight, confirming that maternal glycemia is directly associated with fetal development. Newborns from severe diabetic mothers presented growth restriction, but mild diabetic mothers were not associated with an increased rate of macrosomic fetuses. Conclusion Experimental models of severe diabetes during pregnancy

  9. Fetal MRI

    International Nuclear Information System (INIS)

    Prayer, D.; Brugger, P.C.

    2004-01-01

    New, ultrafast sequences have made it possible to obtain MR images of the fetus without maternal sedation or immobilization of the fetus itself. While fetal MRI began as an adjunct to ultrasound, it has now been shown that MRI can provide additional information that may change prognosis, the management of pregnancy, or the treatment of the newborn child. It is of particular value in the assessment of malformations of the central nervous system. The steady development and adaptation of MR-sequences to the needs of fetal imaging has led to new indications that can support prognostic and therapeutic decisions. (orig.)

  10. Fetal MRI

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, D.; Brugger, P.C. [University Hospital of Vienna (Austria). Division of Neuroradiology

    2004-07-01

    New, ultrafast sequences have made it possible to obtain MR images of the fetus without maternal sedation or immobilization of the fetus itself. While fetal MRI began as an adjunct to ultrasound, it has now been shown that MRI can provide additional information that may change prognosis, the management of pregnancy, or the treatment of the newborn child. It is of particular value in the assessment of malformations of the central nervous system. The steady development and adaptation of MR-sequences to the needs of fetal imaging has led to new indications that can support prognostic and therapeutic decisions. (orig.)

  11. Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease

    Science.gov (United States)

    Rodríguez-Rodríguez, Pilar; Ramiro-Cortijo, David; Reyes-Hernández, Cynthia G.; López de Pablo, Angel L.; González, M. Carmen; Arribas, Silvia M.

    2018-01-01

    Lifestyle and genetic background are well known risk factors of cardiovascular disease (CVD). A third contributing factor is suboptimal fetal development, due to nutrient or oxygen deprivation, placental insufficiency, or exposure to toxic substances. The fetus adapts to adverse intrauterine conditions to ensure survival; the immediate consequence is low birth weight (LBW) and the long-term effect is an increased susceptibility to develop CVD in adult life. This process is known as Developmental Origins of Health and Disease (DOHaD) or fetal programming of CVD. The influence of fetal life for the future cardiovascular health of the individual has been evidenced by numerous epidemiologic studies in populations suffering from starvation during intrauterine life. Furthermore, experimental animal models have provided support and enabled exploring the underlying mechanisms. Oxidative stress seems to play a central role in fetal programming of CVD, both in the response of the feto-placental unit to the suboptimal intrauterine environment and in the alterations of physiologic systems of cardiovascular control, ultimately leading to disease. This review aims to summarize current knowledge on the alterations in oxidative balance in response to fetal stress factors covering two aspects. Firstly, the evidence from human studies of the implication of oxidative stress in LBW induced by suboptimal conditions during intrauterine life, emphasizing the role of the placenta. In the second part we summarize data on specific redox alterations in key cardiovascular control organs induced by exposure to known stress factors in experimental animals and discuss the emerging role of the mitochondria. PMID:29875698

  12. Cadmium-induced fetal toxicity in the rat

    International Nuclear Information System (INIS)

    Levin, A.A.

    1980-01-01

    Cadmium, a heavy metal environment contaminant, induces fetal death and placental necrosis in the Wistar rat. This study investigated fetal, maternal, and placental responses to cadmium intoxication. Subcutaneous injection of CdCl 2 to dams on day 18 of pregnancy produced a high incidence of fetal death (75%) and placental necrosis. Death in the fetus was produced despite limited fetal accumulations of cadmium. Distribution studies using 109 Cd-labeled CdCl 2 demonstrated that less than 0.1% of the injected dose was associated with the fetus. To determine if fetuses were sensitive to these low levels of cadmium, direct injections of CdCl 2 into fetuses were performed in utero. Direct injections produced fetal accumulations 8-fold greater than those following maternal injections. The 8-fold greater fetal accumulations following direct injection were associated with only a 12% fetal mortality compared to the 75% mortality following maternal injections. The data indicated that the fetal toxicity of cadmium following maternal injections was not the result of direct effects of cadmium on the fetus. In conclusion, cadmium-induced fetal death was not the result of direct effects of cadmium on the fetus but may have been induced by placental cellular injury resulting from high accumulations of cadmium in the placenta. A vascular response to placental injury, leading to decreased utero-placental bood flow and cadmium-induced alterations in trophoblastic function, resulted in fetal death

  13. The "Fetal Reserve Index": Re-Engineering the Interpretation and Responses to Fetal Heart Rate Patterns.

    Science.gov (United States)

    Eden, Robert D; Evans, Mark I; Evans, Shara M; Schifrin, Barry S

    2018-01-01

    Electronic fetal monitoring (EFM) correlates poorly with neonatal outcome. We present a new metric: the "Fetal Reserve Index" (FRI), formally incorporating EFM with maternal, obstetrical, fetal risk factors, and excessive uterine activity for assessment of risk for cerebral palsy (CP). We performed a retrospective, case-control series of 50 term CP cases with apparent intrapartum neurological injury and 200 controls. All were deemed neurologically normal on admission. We compared the FRI against ACOG Category (I-III) system and long-term outcome parameters against ACOG monograph (NEACP) requirements for labor-induced fetal neurological injury. Abnormal FRI's identified 100% of CP cases and did so hours before injury. ACOG Category III identified only 44% and much later. Retrospective ACOG monograph criteria were found in at most 30% of intrapartum-acquired CP patients; only 27% had umbilical or neonatal pH <7.0. In this initial, retrospective trial, an abnormal FRI identified all cases of labor-related neurological injury more reliably and earlier than Category III, which may allow fetal therapy by intrauterine resuscitation. The combination of traditional EFM with maternal, obstetrical, and fetal risk factors creating the FRI performed much better as a screening test than EFM alone. Our quantified screening system needs further evaluation in prospective trials. © 2017 S. Karger AG, Basel.

  14. Minimal alteration in the ratio of circulatory fetal DNA to fetal corticotropin-releasing hormone mRNA level in preeclampsia.

    Science.gov (United States)

    Zhong, Xiao Yan; Holzgreve, Wolfgang; Gebhardt, Stefan; Hillermann, Renate; Tofa, Kashefa Carelse; Gupta, Anurag Kumar; Huppertz, Berthold; Hahn, Sinuhe

    2006-01-01

    We have recently observed that fetal DNA and fetal corticotropin-releasing hormone (CRH) mRNA are associated with in vitro generated syncytiotrophoblast-derived microparticles, and that the ratio of fetal DNA to mRNA (CRH) varied according to whether the particles were derived by predominantly apoptotic, apo-necrotic or necrotic pathways. Hence, we examined whether these ratios varied in maternal plasma samples taken from normotensive and preeclamptic pregnancies in vivo. Maternal plasma samples were collected from 18 cases with preeclampsia and 29 normotensive term controls. Circulatory fetal CRH mRNA and DNA levels were quantified by real-time PCR and RT-PCR. Circulatory fetal mRNA and fetal DNA levels were significantly elevated in the preeclampsia study group when compared to normotensive controls. Alterations in the fetal mRNA to DNA ratio between the study and control groups were minimal, even when stratified into early (34 weeks of gestation) onset preeclampsia. Our data suggest that although circulatory fetal DNA and mRNA levels are significantly elevated in preeclampsia, the ratios in maternal plasma are not dramatically altered. Copyright 2006 S. Karger AG, Basel.

  15. Prenatal sonographic measurement of the fetal thyroid gland

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Young Cheol; Kim, Young Hwa; Cho, Won Soo; Bae, Won Kyung; Kim, Il Young [Chunan Hospital, Soonchunhyang University College of Medicine, Chunan (Korea, Republic of)

    2001-03-15

    To investigate whether the fetal thyroid gland could be examined by prenatal ultrasonography and to established the normal range of fetal thyroid width according to the gestational age. The width of the fetal thyroid was determined by prenatal ultrasonography from 118 pregnant women. Three of the mothers had current or previous thyroid disease and the widths of the fetal thyroid were determined from 115 normal subjects. The width of the fetal thyroid was defined by a maximum transverse distance of the thyroid gland between two carotid arteries on transverse scan of the fetal neck. We analyzed the cause of non-measurable cases. The width of the fetal thyroid and Neo-TSH were compared in 19 subjects, including 3 subjects will current or previous thyroid disease. We could measure the fetal thyroid widths in 95 cases (80%). The fetal thyroid widths of mothers without current or previous thyroid disease was 0.9-2.36 cm,which showed linear correlation with gestational age (Y=0.0506 X + 0.0439, r{sup 2}=0.5661). Causes of non-measurable cases were neck flexion (65%), prone position (22%), and overlapped fetal neck by arm or shoulder (13%). Of the 19 neonates with Neo-TSH level, one case had a mother with a thyroid disease and showed increased width of the fetal and high Neo-TSH. The fetal thyroid was measured in 80% of prenatal ultrasonography and the width of the fetal thyroid showed linear correlated with gestational age. We assumed that the width of the thyroid could be useful for diagnosing fetal thyroid disorder when maternal thyroid disease exists.

  16. Prenatal sonographic measurement of the fetal thyroid gland

    International Nuclear Information System (INIS)

    Ahn, Young Cheol; Kim, Young Hwa; Cho, Won Soo; Bae, Won Kyung; Kim, Il Young

    2001-01-01

    To investigate whether the fetal thyroid gland could be examined by prenatal ultrasonography and to established the normal range of fetal thyroid width according to the gestational age. The width of the fetal thyroid was determined by prenatal ultrasonography from 118 pregnant women. Three of the mothers had current or previous thyroid disease and the widths of the fetal thyroid were determined from 115 normal subjects. The width of the fetal thyroid was defined by a maximum transverse distance of the thyroid gland between two carotid arteries on transverse scan of the fetal neck. We analyzed the cause of non-measurable cases. The width of the fetal thyroid and Neo-TSH were compared in 19 subjects, including 3 subjects will current or previous thyroid disease. We could measure the fetal thyroid widths in 95 cases (80%). The fetal thyroid widths of mothers without current or previous thyroid disease was 0.9-2.36 cm,which showed linear correlation with gestational age (Y=0.0506 X + 0.0439, r 2 =0.5661). Causes of non-measurable cases were neck flexion (65%), prone position (22%), and overlapped fetal neck by arm or shoulder (13%). Of the 19 neonates with Neo-TSH level, one case had a mother with a thyroid disease and showed increased width of the fetal and high Neo-TSH. The fetal thyroid was measured in 80% of prenatal ultrasonography and the width of the fetal thyroid showed linear correlated with gestational age. We assumed that the width of the thyroid could be useful for diagnosing fetal thyroid disorder when maternal thyroid disease exists.

  17. Expression of immunohistochemical markers for testicular carcinoma in situ by normal human fetal germ cells

    DEFF Research Database (Denmark)

    Jørgensen, N; Rajpert-De Meyts, E; Graem, N

    1995-01-01

    study. EXPERIMENTAL DESIGN: Normal human germ cells from 10 first-trimester fetuses and 76 second- and third-trimester testes were investigated for the immunohistochemical expression of the markers of testicular carcinoma in situ. The panel of markers included in the study consisted of placental......-like alkaline phosphatase, the protooncogene c-kit protein product, and the antigens for the monoclonal antibodies TRA-1-60 and M2A. The relative numbers of fetal germ cells that demonstrated positive reaction with the markers were calculated. RESULTS: The vast majority of the germ cells (75-100%) in the first......-trimester gonads were positive for placental-like alkaline phosphatase, TRA-1-60, and M2A. The c-kit protein was detected in three out of the ten first-trimester gonads. The relative number of germ cells positive for all the markers studied declined rapidly during the first part of the second trimester...

  18. Characterization of Fetal Keratinocytes, Showing Enhanced Stem Cell-Like Properties: A Potential Source of Cells for Skin Reconstruction

    Directory of Open Access Journals (Sweden)

    Kenneth K.B. Tan

    2014-08-01

    Full Text Available Epidermal stem cells have been in clinical application as a source of culture-generated grafts. Although applications for such cells are increasing due to aging populations and the greater incidence of diabetes, current keratinocyte grafting technology is limited by immunological barriers and the time needed for culture amplification. We studied the feasibility of using human fetal skin cells for allogeneic transplantation and showed that fetal keratinocytes have faster expansion times, longer telomeres, lower immunogenicity indicators, and greater clonogenicity with more stem cell indicators than adult keratinocytes. The fetal cells did not induce proliferation of T cells in coculture and were able to suppress the proliferation of stimulated T cells. Nevertheless, fetal keratinocytes could stratify normally in vitro. Experimental transplantation of fetal keratinocytes in vivo seeded on an engineered plasma scaffold yielded a well-stratified epidermal architecture and showed stable skin regeneration. These results support the possibility of using fetal skin cells for cell-based therapeutic grafting.

  19. MR imaging of the fetal brain

    International Nuclear Information System (INIS)

    Glenn, Orit A.

    2010-01-01

    Fetal MRI is clinically performed to evaluate the brain in cases where an abnormality is detected by prenatal sonography. These most commonly include ventriculomegaly, abnormalities of the corpus callosum, and abnormalities of the posterior fossa. Fetal MRI is also increasingly performed to evaluate fetuses who have normal brain findings on prenatal sonogram but who are at increased risk for neurodevelopmental abnormalities, such as complicated monochorionic twin pregnancies. This paper will briefly discuss the common clinical conditions imaged by fetal MRI as well as recent advances in fetal MRI research. (orig.)

  20. MR imaging of the fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, Orit A. [University of California, San Francisco, Department of Radiology, Neuroradiology Section, San Francisco, CA (United States)

    2010-01-15

    Fetal MRI is clinically performed to evaluate the brain in cases where an abnormality is detected by prenatal sonography. These most commonly include ventriculomegaly, abnormalities of the corpus callosum, and abnormalities of the posterior fossa. Fetal MRI is also increasingly performed to evaluate fetuses who have normal brain findings on prenatal sonogram but who are at increased risk for neurodevelopmental abnormalities, such as complicated monochorionic twin pregnancies. This paper will briefly discuss the common clinical conditions imaged by fetal MRI as well as recent advances in fetal MRI research. (orig.)

  1. Fetal body movement monitoring.

    Science.gov (United States)

    Rayburn, W F

    1990-03-01

    Recording fetal activity serves as an indirect measure of central nervous system integrity and function. The coordination of whole body movement, which requires complex neurologic control, is likely similar to that of the newborn infant. Short-term observations of the fetus are best performed using real-time ultrasound imaging. Monitoring fetal motion has been shown to be clinically worthwhile in predicting impending death or compromise, especially when placental insufficiency is longstanding. The presence of a vigorous fetus is reassuring. Perceived inactivity requires a reassessment of any underlying antepartum complication and a more precise evaluation by fetal heart rate testing or real-time ultrasonography before delivery is contemplated.

  2. Young Human Cholinergic Neurons Respond to Physiological Regulators and Improve Cognitive Symptoms in an Animal Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Annamaria Morelli

    2017-10-01

    Full Text Available The degeneration of cholinergic neurons of the nucleus basalis of Meynert (NBM in the basal forebrain (BF is associated to the cognitive decline of Alzheimer’s disease (AD patients. To date no resolutive therapies exist. Cell-based replacement therapy is a strategy currently under consideration, although the mechanisms underlying the generation of stem cell-derived NBM cholinergic neurons able of functional integration remain to be clarified. Since fetal brain is an optimal source of neuronal cells committed towards a specific phenotype, this study is aimed at isolating cholinergic neurons from the human fetal NBM (hfNBMs in order to study their phenotypic, maturational and functional properties. Extensive characterization confirmed the cholinergic identity of hfNBMs, including positivity for specific markers (such as choline acetyltransferase and acetylcholine (Ach release. Electrophysiological measurements provided the functional validation of hfNBM cells, which exhibited the activation of peculiar sodium (INa and potassium (IK currents, as well as the presence of functional cholinergic receptors. Accordingly, hfNBMs express both nicotinic and muscarinic receptors, which were activated by Ach. The hfNBMs cholinergic phenotype was regulated by the nerve growth factor (NGF, through the activation of the high-affinity NGF receptor TrkA, as well as by 17-β-estradiol through a peculiar recruitment of its own receptors. When intravenously administered in NBM-lesioned rats, hfNBMs determined a significant improvement in memory functions. Histological examination of brain sections showed that hfNBMs (labeled with PKH26 fluorescent dye prior to administration reached the damaged brain areas. The study provides a useful model to study the ontogenetic mechanisms regulating the development and maintenance of the human brain cholinergic system and to assess new lines of research, including disease modeling, drug discovery and cell-based therapy for AD.

  3. Controversias actuales para definir las alteraciones del bienestar fetal Current controversies to define changes in the fetal wellbeing

    Directory of Open Access Journals (Sweden)

    Danilo Nápoles Méndez

    2013-02-01

    Full Text Available Como propuesta de diferentes sociedades científicas se estableció el término estado fetal no tranquilizador en sustitución de sufrimiento fetal, que era considerado inespecífico. Esta revisión bibliográfica se efectuó a fin de exponer a la comunidad médica los diferentes términos con que se definen las alteraciones del bienestar fetal y la influencia que el empleo de las expresiones estado fetal no tranquilizador y riesgo de pérdida del bienestar fetal generan en la práctica de Obstetricia. Asimismo, se puso énfasis en la necesidad de buscar un lenguaje técnico más unificado y se concluyó que la formación de estos términos no determina la correspondencia existente entre la evaluación prenatal del feto y su estado al nacer.As a proposal of different scientific societies the term non reassuring fetal status was coined, substituting it by fetal distress which was considered nonspecific. This literature review was carried out in order to show to the medical community the different terms with which the changes of the fetal wellbeing are defined and the influence that the use of the expressions non reassuring fetal status and the risk of loss of the fetal well-being generate in Obstetrics. Likewise, the necessity of looking for a more unified technical language was emphasized and it was concluded that these terms do not determine the existent correspondence between the prenatal evaluation of the fetus and its status at birth.

  4. Doppler changes as the earliest parameter in fetal surveillance to detect fetal compromise in intrauterine growth-restricted fetuses

    Directory of Open Access Journals (Sweden)

    Bansal Saloni

    2016-01-01

    Full Text Available Introduction. It is estimated that 3-10% of infants are growth restricted. Growth disturbances may have long-term issues. Doppler allows insight into the fetal response to intrauterine stress. Objective. The aim of this study was to detect fetal compromise in intrauterine growth-restricted (IUGR fetuses by means of biophysical profile (BPP vis-а-vis Doppler velocimetry studies of the fetal umbilical artery, and to find out which of the two is a better and earlier predictor of fetal compromise. Methods. A prospective study was conducted on a total of 50 singleton pregnancies with IUGR between 28 and 42 weeks of gestation. Study patients were managed expectantly with nonstress testing and amniotic fluid assessment, BPP and Doppler velocimetry studies of the fetal umbilical artery. Results. Fetal outcome was poor in 5/50 (10% of the fetuses, defined as presence of all of the following: poor Apgar test score, neonatal intensive care unit stay, necrotizing enterocolitis, and low birth weight. Of the four with abnormal BPP, 50% had poor fetal outcomes. Out of 46 with normal BPP, 6.5% had poor fetal outcomes. Conclusion. Inference drawn from the study is that the Doppler technology provides us the opportunity for repetitive noninvasive hemodynamic monitoring in IUGR pregnancies.

  5. Fetal stimulation by pulsed diagnostic ultrasound.

    Science.gov (United States)

    Fatemi, M; Ogburn, P L; Greenleaf, J F

    2001-08-01

    To show that pulsed ultrasound from a clinical ultrasonic imaging system can stimulate the fetus. Stimulation is defined mainly as increased fetal gross body movements in response to excitation. Fetuses of a group of 9 volunteer women (mean gestational age, 33.37 weeks; range, 25-40 weeks) were evaluated for body movement under 3 different conditions: (1) control, with no ultrasound exposure; (2) ultrasound in continuous wave Doppler mode; and (3) pulsed ultrasound in pulsed Doppler and B modes. A conventional external fetal monitor, with negligible ultrasonic output, was used to monitor fetal gross body motions. After an initial rest period of 3 minutes with 1 or no fetal motion, fetuses were monitored for an additional 3 minutes under the exposure criterion defined for each condition. Resulting fetal motions under the 3 conditions were compared using the Wilcoxon signed rank test. The test showed that fetuses moved significantly more frequently under condition 3 (mean +/- SD, 3.43 +/- 1.93 movements per minute) than under condition 1 (0.40 +/- 7.33 movements per minute) or condition 2 (0.63 +/- 7.67 movements per minute); P = .004 and .016, respectively. Fetal movements under conditions 1 and 2 did not differ significantly. Diagnostic ultrasound may stimulate fetal body motion.

  6. MRI of fetal acquired brain lesions

    International Nuclear Information System (INIS)

    Prayer, Daniela; Brugger, Peter C.; Kasprian, Gregor; Witzani, Linde; Helmer, Hanns; Dietrich, Wolfgang; Eppel, Wolfgang; Langer, Martin

    2006-01-01

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images

  7. MRI of fetal acquired brain lesions

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Department of Radiodiagnostics, Medical University of Vienna (Austria)]. E-mail: daniela.prayer@meduniwien.ac.at; Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna (Austria); Kasprian, Gregor [Department of Radiodiagnostics, Medical University of Vienna (Austria); Witzani, Linde [Department of Radiodiagnostics, Medical University of Vienna (Austria); Helmer, Hanns [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Dietrich, Wolfgang [Department of Neurosurgery, Medical University of Vienna (Austria); Eppel, Wolfgang [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Langer, Martin [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria)

    2006-02-15

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images.

  8. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution.

    Directory of Open Access Journals (Sweden)

    Nelle Lambert

    2011-03-01

    Full Text Available The developmental mechanisms through which the cerebral cortex increased in size and complexity during primate evolution are essentially unknown. To uncover genetic networks active in the developing cerebral cortex, we combined three-dimensional reconstruction of human fetal brains at midgestation and whole genome expression profiling. This novel approach enabled transcriptional characterization of neurons from accurately defined cortical regions containing presumptive Broca and Wernicke language areas, as well as surrounding associative areas. We identified hundreds of genes displaying differential expression between the two regions, but no significant difference in gene expression between left and right hemispheres. Validation by qRTPCR and in situ hybridization confirmed the robustness of our approach and revealed novel patterns of area- and layer-specific expression throughout the developing cortex. Genes differentially expressed between cortical areas were significantly associated with fast-evolving non-coding sequences harboring human-specific substitutions that could lead to divergence in their repertoires of transcription factor binding sites. Strikingly, while some of these sequences were accelerated in the human lineage only, many others were accelerated in chimpanzee and/or mouse lineages, indicating that genes important for cortical development may be particularly prone to changes in transcriptional regulation across mammals. Genes differentially expressed between cortical regions were also enriched for transcriptional targets of FoxP2, a key gene for the acquisition of language abilities in humans. Our findings point to a subset of genes with a unique combination of cortical areal expression and evolutionary patterns, suggesting that they play important roles in the transcriptional network underlying human-specific neural traits.

  9. Placental adaptations to the maternal-fetal environment: implications for fetal growth and developmental programming.

    Science.gov (United States)

    Sandovici, Ionel; Hoelle, Katharina; Angiolini, Emily; Constância, Miguel

    2012-07-01

    The placenta is a transient organ found in eutherian mammals that evolved primarily to provide nutrients for the developing fetus. The placenta exchanges a wide array of nutrients, endocrine signals, cytokines and growth factors with the mother and the fetus, thereby regulating intrauterine development. Recent studies show that the placenta is not just a passive organ mediating maternal-fetal exchange. It can adapt its capacity to supply nutrients in response to intrinsic and extrinsic variations in the maternal-fetal environment. These dynamic adaptations are thought to occur to maximize fetal growth and viability at birth in the prevailing conditions in utero. However, some of these adaptations may also affect the development of individual fetal tissues, with patho-physiological consequences long after birth. Here, this review summarizes current knowledge on the causes, possible mechanisms and consequences of placental adaptive responses, with a focus on the regulation of transporter-mediated processes for nutrients. This review also highlights the emerging roles that imprinted genes and epigenetic mechanisms of gene regulation may play in placental adaptations to the maternal-fetal environment. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  10. Maternal and fetal effects of chocolate consumption during pregnancy: a systematic review.

    Science.gov (United States)

    Latif, Rabia

    2018-03-13

    The purpose of this review is to explore the effects of chocolate consumption during pregnancy on fetus and mother herself. Randomized controlled trials/quasi-experimental/observational/controlled before and after studies involving chocolate/cocoa/cacao consumption (irrespective of type or dose, composition, exposure period, and method of administration) among pregnant women/animals; and measuring any outcome (beneficial or harmful) related to fetus or mother after chocolate exposure were included. Databases searched were PubMed, Web of Science and Scopus; between April and May 2017. Risk of bias within each human randomized controlled trial (RCT) and animals' experimental studies was evaluated by "The Cochrane Collaboration's tool" and SYRCLE's tool respectively. Fourteen human studies including a total of 6639 participants and nine animal studies were selected. Outcome variables investigated in human studies were maternal blood pressure, fetal heart rate, and striae gravidarum. Animal studies explored chocolate-induced teratogenicity and fetal metabolic derangements. Ten out of these 23 studies reported chocolate to be "beneficial"; five studies reported adverse effects, whereas eight studies declared chocolate as "neutral". Maternal chocolate intake has acute stimulatory effects on fetal reactivity and chronic blood pressure reducing effect in mothers. Chocolate is nonteratogenic and does not affect reproductive indices. Metabolic derangements in offsprings born to chocolate fed dams have been reported. Pregnant females must be careful about consumption of cocoa and chocolate. Future studies should be planned, keeping in view heterogeneities identified across the selected studies in this review.

  11. Fetal anatomy revealed with fast MR sequences.

    Science.gov (United States)

    Levine, D; Hatabu, H; Gaa, J; Atkinson, M W; Edelman, R R

    1996-10-01

    Although all the imaging studies in this pictorial essay were done for maternal rather than fetal indications, fetal anatomy was well visualized. However, when scans are undertaken for fetal indications, fetal motion in between scout views and imaging sequences may make specific image planes difficult to obtain. Of the different techniques described in this review, we preferred the HASTE technique and use it almost exclusively for scanning pregnant patients. The T2-weighting is ideal for delineating fetal organs. Also, the HASTE technique allows images to be obtained in 430 msec, limiting artifacts arising from maternal and fetal motion. MR imaging should play a more important role in evaluating equivocal sonographic cases as fast scanning techniques are more widely used. Obstetric MR imaging no longer will be limited by fetal motion artifacts. When complex anatomy requires definition in a complicated pregnant patient, MR imaging should be considered as a useful adjunct to sonography.

  12. Fetal Primary Cardiac Tumors During Perinatal Period

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan

    2017-06-01

    Full Text Available Fetal primary cardiac tumors are rare, but they may cause complications, which are sometimes life threatening, including arrhythmias, hydrops fetalis, ventricular outflow/inflow obstruction, cardiac failure, and even sudden death. Among fetal primary cardiac tumors, rhabdomyomas are most common, followed by teratomas, fibromas, hemangiomas, and myxomas. Everolimus, a mammalian target of rapamycin inhibitor, has been reported to be an effective drug to cause tumor remission in three neonates with multiple cardiac rhabdomyomas. Neonatal cardiac surgery for the resection of primary cardiac tumors found by fetal echocardiography has been reported sporadically. However, open fetal surgery for pericardial teratoma resection, which was performed successfully via a fetal median sternotomy in one case report, could be a promising intervention to rescue these patients with large pericardial effusions. These recent achievements undoubtedly encourage further development in early management of fetal cardiac tumors. Owing to the rarity of fetal primary cardiac tumors, relevant information in terms of prenatal diagnosis, treatment, and prognosis remains to be clarified.

  13. Fetal magnetic resonance imaging: indications, technique, anatomical considerations and a review of fetal abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Ertl-Wagner, Birgit [Department of Radiology, Klinikum Grosshadern, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany); Present address: Institute of Clinical Radiology, Klinikum Grosshadern, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany); Lienemann, Andreas; Reiser, Maximilian F. [Department of Radiology, Klinikum Grosshadern, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany); Strauss, Alexander [Department of Obstetrics and Gynecology, Klinikum Grosshadern, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany)

    2002-08-01

    Fetal MR imaging often poses a diagnostic challenge for the radiologist. Both fetal anatomy and pathology differ decidedly from pediatric and adult MR imaging. While ultrasound remains the method of choice for screening examinations of the fetus, MR imaging is playing an increasingly important role in the detection and classification of malformations not diagnosable by ultrasonography alone. Recently, advances in fast single-shot MR sequences have allowed high-resolution, high-quality imaging of the moving fetus. Preferable sequences to be applied are a true fast imaging steady precession (true-FISP) or a half-Fourier acquired single-shot turbo spin-echo (HASTE) sequence. Premedication is generally no longer required. In all fetal MR imaging, every aspect of fetal anatomy has to be scrutinized. Subsequently, any abnormalities need to be described and classified. A close collaboration with the referring obstetrician is of paramount importance. (orig.)

  14. The different effects of over-expressing murine NMDA receptor 2B subunit in the forebrain on conditioned taste aversion.

    Science.gov (United States)

    Li, Shijia; Gu, Yiran; Meng, Bo; Mei, Bing; Li, Fei

    2010-09-10

    The glutamate transmission system and the N-methyl-D-aspartate receptor (NMDA-R), in particular its 2B subunit (NR2B), have been reported to be possibly related to taste memory as a result of treatment with NMDA antagonists and agonists. In order to further study the role of the NR2B subunit in gustation memory, we applied four different taste aversive tasks to observe the behavior of a transgenic mice model in which the NR2B subunit was specifically over-expressed in the forebrain. We found that in both short- and long-term conditioned taste aversion (CTA) experiments, mice with forebrain expression of the NR2B transgene (Tg) showed significantly enhanced CTA 2 days after training. However, both the Tg and the wild-type (Wt) mice shared the same level of aversive memory on the 30th day after training. In both fast and slow extinction experiments, Tg mice maintained a higher CTA memory than that of control mice in most extinction trials. The third experiment, which involved testing the memory for familiar taste, demonstrated that NR2B augmentation had no benefit on the latent inhibition (LI) of CTA. In addition, the last experiment (two-taste LI) showed a suppression of enhanced CTA in Tg mice when the mice were exposed to both novel and familiar tastes. These data suggested that forebrain NR2B over-expression had different effects on gustatory learning and memory. The transgenic animals were only sensitive to novel but not familiar tastes, and up-regulation of NR2B resulted in enhanced CTA function for only a short period of time. 2010 Elsevier B.V. All rights reserved.

  15. Ablation of cdk4 and cdk6 affects proliferation of basal progenitor cells in the developing dorsal and ventral forebrain.

    Science.gov (United States)

    Grison, Alice; Gaiser, Carine; Bieder, Andrea; Baranek, Constanze; Atanasoski, Suzana

    2018-03-23

    Little is known about the molecular players driving proliferation of neural progenitor cells (NPCs) during embryonic mouse development. Here, we demonstrate that proliferation of NPCs in the developing forebrain depends on a particular combination of cell cycle regulators. We have analyzed the requirements for members of the cyclin-dependent kinase (cdk) family using cdk-deficient mice. In the absence of either cdk4 or cdk6, which are both regulators of the G1 phase of the cell cycle, we found no significant effects on the proliferation rate of cortical progenitor cells. However, concomitant loss of cdk4 and cdk6 led to a drastic decrease in the proliferation rate of NPCs, specifically the basal progenitor cells of both the dorsal and ventral forebrain at embryonic day 13.5 (E13.5). Moreover, basal progenitors in the forebrain of Cdk4;Cdk6 double mutant mice exhibited altered cell cycle characteristics. Cdk4;cdk6 deficiency led to an increase in cell cycle length and cell cycle exit of mutant basal progenitor cells in comparison to controls. In contrast, concomitant ablation of cdk2 and cdk6 had no effect on the proliferation of NCPs. Together, our data demonstrate that the expansion of the basal progenitor pool in the developing telencephalon is dependent on the presence of distinct combinations of cdk molecules. Our results provide further evidence for differences in the regulation of proliferation between apical and basal progenitors during cortical development. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018. © 2018 Wiley Periodicals, Inc.

  16. Ablation of Ca(V)2.1 voltage-gated Ca²⁺ channels in mouse forebrain generates multiple cognitive impairments.

    Science.gov (United States)

    Mallmann, Robert Theodor; Elgueta, Claudio; Sleman, Faten; Castonguay, Jan; Wilmes, Thomas; van den Maagdenberg, Arn; Klugbauer, Norbert

    2013-01-01

    Voltage-gated Ca(V)2.1 (P/Q-type) Ca²⁺ channels located at the presynaptic membrane are known to control a multitude of Ca²⁺-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic Ca(V)2.1 mouse models. Global Ca(V)2.1 knock-out mice lacking the α1 subunit Cacna1a gene product exhibit early postnatal lethality which makes them unsuitable to analyse the relevance of Ca(V)2.1 Ca²⁺ channels for complex behaviour in adult mice. Consequently we established a forebrain specific Ca(V)2.1 knock-out model by crossing mice with a floxed Cacna1a gene with mice expressing Cre-recombinase under the control of the NEX promoter. This novel mouse model enabled us to investigate the contribution of Ca(V)2.1 to complex cognitive functions, particularly learning and memory. Electrophysiological analysis allowed us to test the specificity of our conditional knock-out model and revealed an impaired synaptic transmission at hippocampal glutamatergic synapses. At the behavioural level, the forebrain-specific Ca(V)2.1 knock-out resulted in deficits in spatial learning and reference memory, reduced recognition memory, increased exploratory behaviour and a strong attenuation of circadian rhythmicity. In summary, we present a novel conditional Ca(V)2.1 knock-out model that is most suitable for analysing the in vivo functions of Ca(V)2.1 in the adult murine forebrain.

  17. Comprehensive Characterization of Mesenchymal Stem Cells from Human Placenta and Fetal Membrane and Their Response to Osteoactivin Stimulation

    Directory of Open Access Journals (Sweden)

    C. M. Raynaud

    2012-01-01

    Full Text Available Mesenchymal stem cells (MSCs are the most promising seed cells for cell therapy and can be isolated from various sources of human adult tissues such as bone marrow (BM-MSC and adipose tissue. However, cells from these tissues must be obtained through invasive procedures. We, therefore, characterized MSCs isolated from fresh placenta (Pl-MSC and fetal membrane (Mb-MSC through morphological and fluorescent-activated cell sorting (FACS. MSC frequency is higher in membrane than placenta (2.14%  ± 0.65 versus 15.67%  ± 0.29%. Pl/Mb-MSCs in vitro expansion potential was significantly higher than BM-MSCs. We demonstrated that one of the MSC-specific marker is sufficient for MSC isolation and that culture in specific media is the optimal way for selecting very homogenous MSC population. These MSCs could be differentiated into mesodermal cells expressing cell markers and cytologic staining consistent with mature osteoblasts and adipocytes. Transcriptomic analysis and cytokine arrays demonstrated broad similarity between placenta- and membrane-derived MSCs and only discrete differences with BM-MSCs with enrichment of networks involved in bone differentiation. Pl/Mb-MSCs displayed higher osteogenic differentiation potential than BM-MSC when their response to osteoactivin was evaluated. Fetal-tissue-derived mesenchymal cells may, therefore, be considered as a major source of MSCs to reach clinical scale banking in particular for bone regeneration.

  18. Perspectives of fetal dystocia in cattle and buffalo

    Directory of Open Access Journals (Sweden)

    Govind Narayan Purohit

    2012-04-01

    Full Text Available We review the causes of fetal dystocia in cows and buffalo. Two fetal causes are distinct fetal oversize and fetal abnormalities. Fetal oversize is common in heifers, cows of beef cattle breeds, prolonged gestations, increased calf birth weight, male calves and perinatal fetal death with resultant emphysema. Fetal abnormalities include monsters, fetal diseases and fetal maldispositions, and it is difficult to deliver such fetuses because of their altered shape. Although monsters are rare in cattle, a large number of monstrosities have been reported in river buffalo; yet also here, overall incidence is low. Diseases of the fetus resulting in dystocia include hydrocephalus, ascites, anasarca and hydrothorax. The most common cause of dystocia in cattle seems to be fetal maldispositions, of which limb flexion and head deviation appear to be the most frequent. We provide a brief description of the management of dystocia from different causes in cattle and buffalo. A case analysis of 192 and 112 dystocia in cattle and buffalo, respectively, at our referral center revealed that dystocia is significantly higher (P<0.05 in first and second parity cows and buffalo, and that dystocia of fetal origin is common in cows (65.62% but less frequent (40.17% in buffalo. In buffalo, the single biggest cause of dystocia was uterine torsion (53.57%. Fetal survival was significantly (P<0.05 higher both in cows and buffalo when delivery was completed within 12 h of second stage of labor.

  19. Prognostic Significance of Preterm Isolated Decreased Fetal Movement

    Directory of Open Access Journals (Sweden)

    Ertuğrul Karahanoğlu

    2017-12-01

    Full Text Available Objective: Our aim is to evaluate the prognostic significance of isolated, preterm decreased fetal movement following normal initial full diagnostic workup. Study design: A retrospective observational study was conducted at a tertiary centre. The applied protocol was approved by the Medical Research Ethics Department of the hospital where the research was conducted. Obstetrics outcomes of preterm- and term-decreased fetal movement were compared following an initial, normal diagnostic work up. Evaluated outcomes were birth weight, mode of delivery, stillbirth rate, induction of labour, development of gestational hypertension, small for gestational age and oligohydramnios, polyhydramnios during the follow up period. Result: Obstetric complications related to placental insufficiency develops more frequently for decreased fetal movement in preterm cases with respect to that of in term cases. Following the diagnosis of decreased fetal movement, pregnancy hypertension occurred in 17% of preterm decreased fetal movement cases and in 4.7% of term decreased fetal movement cases. Fetal growth restriction developed in 6.6% of preterm decreased fetal movement and in 2.3% of term decreased fetal movement. Amniotic fluid abnormalities more frequently developed in preterm decreased fetal movement. Conclusion: Following an initial normal diagnostic workup, preterm decreased fetal movement convey a higher risk for the development of pregnancy complications associated with placental insufficiency. The patient should be monitored closely and management protocols must be developed for initial normal diagnostic workups in cases of preterm decreased fetal movement.

  20. Medio ambiente fetal Fetal environment

    Directory of Open Access Journals (Sweden)

    César Bernardo Ospina Arcila

    1996-04-01

    Full Text Available Con base en el artículo clásico "Monte Everest in utero" se hace un análisis de la situación que afronta el feto con respecto a la disponibilidad de oxígeno; para una mejor comprensión del sufrimiento fetal se revisan los siguientes conceptos: presión barométrica, presión parcial del oxígeno atmosférico, presión parcial del oxígeno inspirado, presión barométrica intranasal, ecuación del gas alveolar y difusión de gases a través de la membrana alvéolo capilar. Based on the classical paper by Eastman "Mount Everest in utero" an analysis is made of the situation faced by the fetus with respect to the availability of oxygen; for a better under. standing of fetal distress the following concepts are reviewed: barometric pressure, partial pressure of atmosferic oxygen, partial pressure of inspired oxygen, barometric intranasal pressure, alveolar gas equation and gas diffusion through alveolo-capilar membrane.

  1. Omeprazole induces heme oxygenase-1 in fetal human pulmonary microvascular endothelial cells via hydrogen peroxide-independent Nrf2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Ananddeep; Zhang, Shaojie; Shrestha, Amrit Kumar; Maturu, Paramahamsa; Moorthy, Bhagavatula; Shivanna, Binoy, E-mail: shivanna@bcm.edu

    2016-11-15

    Omeprazole (OM) is an aryl hydrocarbon receptor (AhR) agonist and a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Recently, we showed that OM induces NAD (P) H quinone oxidoreductase-1 (NQO1) via nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent mechanism. Heme oxygenase-1 (HO-1) is another cytoprotective and antioxidant enzyme that is regulated by Nrf2. Whether OM induces HO-1 in fetal human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce HO-1 expression via Nrf2 in HPMEC. OM induced HO-1 mRNA and protein expression in a dose-dependent manner. siRNA-mediated knockdown of AhR failed to abrogate, whereas knockdown of Nrf2 abrogated HO-1 induction by OM. To identify the underlying molecular mechanisms, we determined the effects of OM on cellular hydrogen peroxide (H{sub 2}O{sub 2}) levels since oxidative stress mediated by the latter is known to activate Nrf2. Interestingly, the concentration at which OM induced HO-1 also increased H{sub 2}O{sub 2} levels. Furthermore, H{sub 2}O{sub 2} independently augmented HO-1 expression. Although N-acetyl cysteine (NAC) significantly decreased H{sub 2}O{sub 2} levels in OM-treated cells, we observed that OM further increased HO-1 mRNA and protein expression in NAC-pretreated compared to vehicle-pretreated cells, suggesting that OM induces HO-1 via H{sub 2}O{sub 2}-independent mechanisms. In conclusion, we provide evidence that OM transcriptionally induces HO-1 via AhR - and H{sub 2}O{sub 2} - independent, but Nrf2 - dependent mechanisms. These results have important implications for human disorders where Nrf2 and HO-1 play a beneficial role. - Highlights: • Omeprazole induces HO-1 in human fetal lung cells. • AhR deficiency fails to abrogate omeprazole-mediated induction of HO-1. • Nrf2 knockdown abrogates omeprazole-mediated HO-1 induction in human lung cells. • Hydrogen peroxide depletion augments

  2. The Use of Fetal Noninvasive Electrocardiography

    Directory of Open Access Journals (Sweden)

    Igor Lakhno

    2016-01-01

    Full Text Available Preeclampsia (PE is one of the severe complications of pregnancy that leads to fetal deterioration. The aim was to survey the validity of fetal distress diagnostics in case of Doppler ultrasonic umbilical vein and arteries blood flow velocity investigation and ECG parameters analysis obtained from maternal abdominal signal before labor in preeclamptic patients. Fetal noninvasive ECG and umbilical arterial and venous Doppler investigation were performed in 120 patients at 34–40 weeks of gestation. And 30 of them had physiological gestation and were involved in Group I. In Group II 52 pregnant women with mild-moderate PE were observed. 38 patients with severe PE were monitored in Group III. The most considerable negative correlation was determined in pair Apgar score 1 versus T/QRS (R=-0.50; p<0.05. So the increased T/QRS ratio was the most evident marker of fetal distress. Fetal noninvasive ECG showed sensitivity of 96.6% and specificity of 98.4% and, therefore, was determined as more accurate method for fetal monitoring.

  3. Maternal feeding controls fetal biological clock.

    Directory of Open Access Journals (Sweden)

    Hidenobu Ohta

    Full Text Available BACKGROUND: It is widely accepted that circadian physiological rhythms of the fetus are affected by oscillators in the maternal brain that are coupled to the environmental light-dark (LD cycle. METHODOLOGY/PRINCIPAL FINDINGS: To study the link between fetal and maternal biological clocks, we investigated the effects of cycles of maternal food availability on the rhythms of Per1 gene expression in the fetal suprachiasmatic nucleus (SCN and liver using a transgenic rat model whose tissues express luciferase in vitro. Although the maternal SCN remained phase-locked to the LD cycle, maternal restricted feeding phase-advanced the fetal SCN and liver by 5 and 7 hours respectively within the 22-day pregnancy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that maternal feeding entrains the fetal SCN and liver independently of both the maternal SCN and the LD cycle. This indicates that maternal-feeding signals can be more influential for the fetal SCN and particular organ oscillators than hormonal signals controlled by the maternal SCN, suggesting the importance of a regular maternal feeding schedule for appropriate fetal molecular clockwork during pregnancy.

  4. The Danish Fetal Medicine Database

    Directory of Open Access Journals (Sweden)

    Ekelund CK

    2016-10-01

    Full Text Available Charlotte Kvist Ekelund,1 Tine Iskov Kopp,2 Ann Tabor,1 Olav Bjørn Petersen3 1Department of Obstetrics, Center of Fetal Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; 2Registry Support Centre (East – Epidemiology and Biostatistics, Research Centre for Prevention and Health, Glostrup, Denmark; 3Fetal Medicine Unit, Aarhus University Hospital, Aarhus Nord, Denmark Aim: The aim of this study is to set up a database in order to monitor the detection rates and false-positive rates of first-trimester screening for chromosomal abnormalities and prenatal detection rates of fetal malformations in Denmark. Study population: Pregnant women with a first or second trimester ultrasound scan performed at all public hospitals in Denmark are registered in the database. Main variables/descriptive data: Data on maternal characteristics, ultrasonic, and biochemical variables are continuously sent from the fetal medicine units' Astraia databases to the central database via web service. Information about outcome of pregnancy (miscarriage, termination, live birth, or stillbirth is received from the National Patient Register and National Birth Register and linked via the Danish unique personal registration number. Furthermore, results of all pre- and postnatal chromosome analyses are sent to the database. Conclusion: It has been possible to establish a fetal medicine database, which monitors first-trimester screening for chromosomal abnormalities and second-trimester screening for major fetal malformations with the input from already collected data. The database is valuable to assess the performance at a regional level and to compare Danish performance with international results at a national level. Keywords: prenatal screening, nuchal translucency, fetal malformations, chromosomal abnormalities

  5. Fetal lung development on MRI. Normal course and impairment due to premature rupture of membranes; Fetale Lungenentwicklung in der MRT. Normaler Verlauf und Beeintraechtigung durch vorzeitigen Blasensprung

    Energy Technology Data Exchange (ETDEWEB)

    Kasprian, G. [Medizinische Universitaet Wien (Austria). Klinik fuer Radiodiagnostik; Zentrum fuer Anatomie und Zellbiologie der Medizinischen Universitaet Wien (Austria). Arbeitsgruppe Integrative Morphologie; Brugger, P.C. [Zentrum fuer Anatomie und Zellbiologie der Medizinischen Universitaet Wien (Austria). Arbeitsgruppe Integrative Morphologie; Helmer, H.; Langer, M. [Medizinische Universitaet Wien (Austria). Klinik fuer Frauenheilkunde; Balassy, C.; Prayer, D. [Medizinische Universitaet Wien (Austria). Klinik fuer Radiodiagnostik

    2006-02-15

    A well-organized interplay between many molecular factors as well as mechanical forces influence fetal lung development. At the end of this complex process a sufficiently sized and structurally mature organ should ensure the postnatal survival of the newborn. Besides prenatal ultrasonography, magnetic resonance imaging (MRI) can now be used to investigate normal and pathological human lung growth in utero. Oligohydramnios, due to premature rupture of membranes (PROM), is an important risk factor for compromised fetal lung growth. In these situations MR volumetry can be used to measure the size of the fetal lung quite accurately. Together with the evaluation of lung signal intensities on T2-weighted sequences, fetuses with pulmonary hypoplasia can be readily detected. (orig.) [German] Die fetale Lungenentwicklung wird einerseits durch eine Vielzahl molekularer Faktoren und andererseits durch mechanisch-physiologische Kraefte beeinflusst. Ein geordnetes Zusammenspiel dieser Mechanismen fuehrt zu einem ausreichend grossen und strukturell reifen Organ, das sofort nach der Geburt das Ueberleben des Neugeborenen sicherstellt. Neben der praenatalen Ultraschalluntersuchung bietet nun auch die Magnetresonanztomographie (MRT) die Moeglichkeit, die normale und pathologische fetale Lungenentwicklung zu untersuchen. Ein wesentlicher Risikofaktor fuer eine Beeintraechtigung der Lungenentwicklung ist die verminderte Fruchtwassermenge nach vorzeitigem Blasensprung. In diesen Faellen kann die MR-Volumetrie dazu eingesetzt werden, die Groesse der fetalen Lungen relativ genau zu bestimmen. Gemeinsam mit der Beurteilung der MR-Signalintensitaeten des Lungengewebes auf T2-gewichteten Sequenzen koennen Feten mit hypoplastischen Lungen mit zunehmender Sicherheit bereits praenatal identifiziert werden. (orig.)

  6. Fetal responses to induced maternal relaxation during pregnancy

    OpenAIRE

    DiPietro, Janet A.; Costigan, Kathleen A.; Nelson, Priscilla; Gurewitsch, Edith D.; Laudenslager, Mark L.

    2007-01-01

    Fetal responses to induced maternal relaxation during the 32nd week of pregnancy were recorded in 100 maternal-fetal pairs using a digitized data collection system. The 18-minute guided imagery relaxation manipulation generated significant changes in maternal heart rate, skin conductance, respiration period, and respiratory sinus arrhythmia. Significant alterations in fetal neurobehavior were observed, including decreased fetal heart rate (FHR), increased FHR variability, suppression of fetal...

  7. MECHANISMS IN ENDOCRINOLOGY: Neurodevelopmental disorders in children born to mothers with thyroid dysfunction: evidence of fetal programming?

    Science.gov (United States)

    Andersen, Stine Linding; Carlé, Allan; Karmisholt, Jesper; Pedersen, Inge Bülow; Andersen, Stig

    2017-07-01

    Fetal programming is a long-standing, but still evolving, concept that links exposures during pregnancy to the later development of disease in the offspring. A fetal programming effect has been considered within different endocrine axes and in relation to different maternal endocrine diseases. In this critical review, we describe and discuss the hypothesis of fetal programming by maternal thyroid dysfunction in the context of fetal brain development and neurodevelopmental disorders in the offspring. Thyroid hormones are important regulators of early brain development, and evidence from experimental and observational human studies have demonstrated structural and functional abnormalities in the brain caused by the lack or excess of thyroid hormone during fetal brain development. The hypothesis that such abnormalities introduced during early fetal brain development increase susceptibility for the later onset of neurodevelopmental disorders in the offspring is biologically plausible. However, epidemiological studies on the association between maternal thyroid dysfunction and long-term child outcomes are observational in design, and are challenged by important methodological aspects. © 2017 European Society of Endocrinology.

  8. The influence of maternal smoking on transferrin sialylation and fetal biometric parameters.

    Science.gov (United States)

    Wrześniak, Marta; Królik, Małgorzata; Kepinska, Marta; Milnerowicz, Halina

    2016-10-01

    Transferrin is a glycosylated protein responsible for transporting iron, an essential metal responsible for proper fetal development. Tobacco is a heavily used xenobiotic having a negative impact on the human body and pregnancy outcomes. Aims of this study was to examine the influence of tobacco smoking on transferrin sialic acid residues and their connection with fetal biometric parameters in women with iron-deficiency. The study involved 173 samples from pregnant women, smokers and non-smokers, iron deficient and not. Transferrin sialylation was determined by capillary electrophoresis. The cadmium (Cd) level was measured by atomic absorption and the sialic acid concentration by the resorcinol method. Women with iron deficiencies who smoked gave birth earlier than non-smoking, non-iron-deficient women. The Cd level, but not the cotinine level, was positively correlated with transferrin sialylation in the blood of iron-deficient women who smoked; 3-, 4-, 5- and 6-sialoTf correlated negatively with fetal biometric parameters in the same group. It has been shown the relationship between Cd from tobacco smoking and fetal biometric parameters observed only in the iron deficient group suggests an additive effect of these two factors, and indicate that mothers with anemia may be more susceptible to Cd toxicity and disturbed fetal development. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Impaired fetal blood gas status in polyhydramnios and its relation to raised amniotic pressure.

    Science.gov (United States)

    Fisk, N M; Vaughan, J; Talbert, D

    1994-01-01

    A substantial proportion of perinatal losses in polyhydramnios occur as unexplained normally formed stillbirths. In order to investigate the relationship between fetal condition and raised amniotic pressure (AP), fetal blood gas and acid-base status were determined together with AP in 22 pregnancies with polyhydramnios. At fetal blood sampling, 8 (36%) had a venous pH value and 16 (73%) a pO2 value below the reference range. Both fetal pH and pO2 were significantly negatively correlated with the degree of elevation in AP (y = 7.43 - 0.036x, r = 0.56, p = 0.006, where y = pH and x = AP z score, and y = -1.6 - 0.48x, r = 0.54, p = 0.01, where y = pO2 z score, respectively). Although some of these fetuses were hydropic, had congenital anomalies, or were from multiple pregnancies, univariate and multiple logistic regression analyses indicated that the above associations could not be accounted for by these potentially confounding variables. This work suggests that abnormal fetal blood gas status in human pregnancies with poly-hydramnios is associated with elevated AP.

  10. The Input-Output Relationship of the Cholinergic Basal Forebrain

    Directory of Open Access Journals (Sweden)

    Matthew R. Gielow

    2017-02-01

    Full Text Available Basal forebrain cholinergic neurons influence cortical state, plasticity, learning, and attention. They collectively innervate the entire cerebral cortex, differentially controlling acetylcholine efflux across different cortical areas and timescales. Such control might be achieved by differential inputs driving separable cholinergic outputs, although no input-output relationship on a brain-wide level has ever been demonstrated. Here, we identify input neurons to cholinergic cells projecting to specific cortical regions by infecting cholinergic axon terminals with a monosynaptically restricted viral tracer. This approach revealed several circuit motifs, such as central amygdala neurons synapsing onto basolateral amygdala-projecting cholinergic neurons or strong somatosensory cortical input to motor cortex-projecting cholinergic neurons. The presence of input cells in the parasympathetic midbrain nuclei contacting frontally projecting cholinergic neurons suggest that the network regulating the inner eye muscles are additionally regulating cortical state via acetylcholine efflux. This dataset enables future circuit-level experiments to identify drivers of known cortical cholinergic functions.

  11. Ultrasonographic determination of fetal gender

    International Nuclear Information System (INIS)

    Kim, Il Young; Kim, Dae Ho; Lee, Byung Ho; Bae, Dong Han

    1985-01-01

    Sonographic determination of fetal gender was attempted prospectively in most pregnancies of more than 26 weeks. We studied 193 cases of pregnancies with ultrasound for recent 9 months from June 1984 to February 1985 at department of radiology, Soonchunhyang university, Soonchunhyang Chunan hospital, and analysed ultrasonographic finding of fetal gender. The results were as follows; 1. Overall accuracy rate for fetal gender is 90%. 2. Accuracy rate for male fetus is 97.8%. 3. Accuracy rate for female fetus is 88.2%

  12. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).

    Science.gov (United States)

    Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E

    2014-08-01

    The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.

  13. Maternal Nodal inversely affects NODAL and STOX1 expression in the fetal placenta

    Directory of Open Access Journals (Sweden)

    Hari Krishna Thulluru

    2013-08-01

    Full Text Available Nodal, a secreted signaling protein from the TGFβ-super family plays a vital role during early embryonic development. Recently, it was found that maternal decidua-specific Nodal knockout mice show intrauterine growth restriction (IUGR and preterm birth. As the chromosomal location of NODAL is in the same linkage area as the susceptibility gene STOX1, associated with the familial form of early-onset, IUGR-complicated pre-eclampsia, their potential maternal-fetal interaction was investigated. Pre-eclamptic mothers with children who carried the STOX1 susceptibility allele themselves all carried the NODAL H165R SNP, which causes a 50% reduced activity. Surprisingly, in decidua Nodal knockout mice the fetal placenta showed up-regulation of STOX1 and NODAL expression. Conditioned media of human first trimester decidua and a human endometrial stromal cell line (T-HESC treated with siRNAs against NODAL or carrying the H165R SNP were also able to induce NODAL and STOX1 expression when added to SGHPL-5 first trimester extravillous trophoblast cells. Finally, a human TGFß-BMP-Signaling-Pathway PCR-Array on decidua and the T-HESC cell line with Nodal knockdown revealed upregulation of Activin-A, which was confirmed in conditioned media by ELISA. We show that maternal decidua Nodal knockdown gives upregulation of NODAL and STOX1 mRNA expression in fetal extravillous trophoblast cells, potentially via upregulation of Activin-A in the maternal decidua. As both Activin-A and Nodal have been implicated in pre-eclampsia, being increased in serum of pre-eclamptic women and upregulated in pre-eclamptic placentas respectively, this interaction at the maternal-fetal interface might play a substantial role in the development of pre-eclampsia.

  14. Ultrasonic prediction of fetal mass

    African Journals Online (AJOL)

    1983-02-19

    Feb 19, 1983 ... Summary. A clinically accurate method for estimating fetal. mass from fetal body parameters is reviewed. The abdominal circumference is first calculated from ... reliable clinical parameter is the impression of uterine volume,.

  15. Fetal microchimeric cells in autoimmune thyroid diseases

    Science.gov (United States)

    Lepez, Trees; Vandewoestyne, Mado; Deforce, Dieter

    2013-01-01

    Autoimmune thyroid diseases (AITD) show a female predominance, with an increased incidence in the years following parturition. Fetal microchimerism has been suggested to play a role in the pathogenesis of AITD. However, only the presence of fetal microchimeric cells in blood and in the thyroid gland of these patients has been proven, but not an actual active role in AITD. Is fetal microchimerism harmful for the thyroid gland by initiating a Graft versus Host reaction (GvHR) or being the target of a Host versus Graft reaction (HvGR)? Is fetal microchimerism beneficial for the thyroid gland by being a part of tissue repair or are fetal cells just innocent bystanders in the process of autoimmunity? This review explores every hypothesis concerning the role of fetal microchimerism in AITD. PMID:23723083

  16. Fetal position in Alzheimer’s disease. An anatomic body remodelling due to retrogenesis

    Directory of Open Access Journals (Sweden)

    Gregory TSOUCALAS

    2018-06-01

    Full Text Available Acquired fetal position by patients in end stage Alzheimer’s disease is a quite common sign. The theory of retrogenesis was proposed to explain this anatomic remodelling of the human body.

  17. Induced pluripotent stem (iPS) cells from human fetal stem cells

    OpenAIRE

    Guillot, P. V.

    2016-01-01

    Pluripotency defines the ability of stem cells to differentiate into all the lineages of the three germ layers and self-renew indefinitely. Somatic cells can regain the developmental potential of embryonic stem cells following ectopic expression of a set of transcription factors or, in certain circumstances, via modulation of culture conditions and supplementation with small molecule, that is, induced pluripotent stem (iPS) cells. Here, we discuss the use of fetal tissues for reprogramming, f...

  18. Biosynthesis of the D2-cell adhesion molecule: post-translational modifications, intracellular transport, and developmental changes

    DEFF Research Database (Denmark)

    Lyles, J M; Linnemann, D; Bock, E

    1984-01-01

    Posttranslational modifications and intracellular transport of the D2-cell adhesion molecule (D2-CAM) were examined in cultured fetal rat neuronal cells. Developmental changes in biosynthesis were studied in rat forebrain explant cultures. Two D2-CAM polypeptides with Mr of 187,000-210,000 (A...

  19. Fetal lung development on MRI. Normal course and impairment due to premature rupture of membranes

    International Nuclear Information System (INIS)

    Kasprian, G.; Zentrum fuer Anatomie und Zellbiologie der Medizinischen Universitaet Wien; Brugger, P.C.; Helmer, H.; Langer, M.; Balassy, C.; Prayer, D.

    2006-01-01

    A well-organized interplay between many molecular factors as well as mechanical forces influence fetal lung development. At the end of this complex process a sufficiently sized and structurally mature organ should ensure the postnatal survival of the newborn. Besides prenatal ultrasonography, magnetic resonance imaging (MRI) can now be used to investigate normal and pathological human lung growth in utero. Oligohydramnios, due to premature rupture of membranes (PROM), is an important risk factor for compromised fetal lung growth. In these situations MR volumetry can be used to measure the size of the fetal lung quite accurately. Together with the evaluation of lung signal intensities on T2-weighted sequences, fetuses with pulmonary hypoplasia can be readily detected. (orig.) [de

  20. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells

    Science.gov (United States)

    Zalzman, Michal; Gupta, Sanjeev; Giri, Ranjit K.; Berkovich, Irina; Sappal, Baljit S.; Karnieli, Ohad; Zern, Mark A.; Fleischer, Norman; Efrat, Shimon

    2003-06-01

    Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes.

  1. Fetal responses to induced maternal relaxation during pregnancy.

    Science.gov (United States)

    DiPietro, Janet A; Costigan, Kathleen A; Nelson, Priscilla; Gurewitsch, Edith D; Laudenslager, Mark L

    2008-01-01

    Fetal responses to induced maternal relaxation during the 32nd week of pregnancy were recorded in 100 maternal-fetal pairs using a digitized data collection system. The 18-min guided imagery relaxation manipulation generated significant changes in maternal heart rate, skin conductance, respiration period, and respiratory sinus arrhythmia. Significant alterations in fetal neurobehavior were observed, including decreased fetal heart rate (FHR), increased FHR variability, suppression of fetal motor activity (FM), and increased FM-FHR coupling. Attribution of the two fetal cardiac responses to the guided imagery procedure itself, as opposed to simple rest or recumbency, is tempered by the observed pattern of response. Evaluation of correspondence between changes within individual maternal-fetal pairs revealed significant associations between maternal autonomic measures and fetal cardiac patterns, lower umbilical and uterine artery resistance and increased FHR variability, and declining salivary cortisol and FM activity. Potential mechanisms that may mediate the observed results are discussed.

  2. Indications and technique of fetal magnetic resonance imaging

    International Nuclear Information System (INIS)

    Asenbaum, U.; Woitek, R.; Furtner, J.; Prayer, D.; Brugger, P.C.

    2013-01-01

    Evaluation and confirmation of fetal pathologies previously suspected or diagnosed with ultrasound. Ultrasound and magnetic resonance imaging (MRI). Technique for prenatal fetal examination. Fetal MRI is an established supplementary technique to prenatal ultrasound. Fetal MRI should only be used as an additional method in prenatal diagnostics and not for routine screening. Fetal MRI should only be performed in perinatal medicine centers after a previous level III ultrasound examination. (orig.) [de

  3. Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells.

    Science.gov (United States)

    Kilcoyne, Karen R; Smith, Lee B; Atanassova, Nina; Macpherson, Sheila; McKinnell, Chris; van den Driesche, Sander; Jobling, Matthew S; Chambers, Thomas J G; De Gendt, Karel; Verhoeven, Guido; O'Hara, Laura; Platts, Sophie; Renato de Franca, Luiz; Lara, Nathália L M; Anderson, Richard A; Sharpe, Richard M

    2014-05-06

    Fetal growth plays a role in programming of adult cardiometabolic disorders, which in men, are associated with lowered testosterone levels. Fetal growth and fetal androgen exposure can also predetermine testosterone levels in men, although how is unknown, because the adult Leydig cells (ALCs) that produce testosterone do not differentiate until puberty. To explain this conundrum, we hypothesized that stem cells for ALCs must be present in the fetal testis and might be susceptible to programming by fetal androgen exposure during masculinization. To address this hypothesis, we used ALC ablation/regeneration to identify that, in rats, ALCs derive from stem/progenitor cells that express chicken ovalbumin upstream promoter transcription factor II. These stem cells are abundant in the fetal testis of humans and rodents, and lineage tracing in mice shows that they develop into ALCs. The stem cells also express androgen receptors (ARs). Reduction in fetal androgen action through AR KO in mice or dibutyl phthalate (DBP) -induced reduction in intratesticular testosterone in rats reduced ALC stem cell number by ∼40% at birth to adulthood and induced compensated ALC failure (low/normal testosterone and elevated luteinizing hormone). In DBP-exposed males, this failure was probably explained by reduced testicular steroidogenic acute regulatory protein expression, which is associated with increased histone methylation (H3K27me3) in the proximal promoter. Accordingly, ALCs and ALC stem cells immunoexpressed increased H3K27me3, a change that was also evident in ALC stem cells in fetal testes. These studies highlight how a key component of male reproductive development can fundamentally reprogram adult hormone production (through an epigenetic change), which might affect lifetime disease risk.

  4. Fetal motion estimation from noninvasive cardiac signal recordings.

    Science.gov (United States)

    Biglari, Hadis; Sameni, Reza

    2016-11-01

    Fetal motility is a widely accepted indicator of the well-being of a fetus. In previous research, it has be shown that fetal motion (FM) is coherent with fetal heart rate accelerations and an indicator for active/rest cycles of the fetus. The most common approach for FM and fetal heart rate (FHR) assessment is by Doppler ultrasound (DUS). While DUS is the most common approach for studying the mechanical activities of the heart, noninvasive fetal electrocardiogram (ECG) and magnetocardiogram (MCG) recording and processing techniques have been considered as a possible competitor (or complement) for the DUS. In this study, a fully automatic and robust framework is proposed for the extraction, ranking and alignment of fetal QRS-complexes from noninvasive fetal ECG/MCG. Using notions from subspace tracking, two measures, namely the actogram and rotatogram, are defined for fetal motion tracking. The method is applied to four fetal ECG/MCG databases, including twin MCG recordings. By defining a novel measure of causality, it is shown that there is significant coherency and causal relationship between the actogram/rotatogram and FHR accelerations/decelerations. Using this measure, it is shown that in many cases, the actogram and rotatogram precede the FHR variations, which supports the idea of motion-induced FHR accelerations/decelerations for these cases and raises attention for the non-motion-induced FHR variations, which can be associated to the fetal central nervous system developments. The results of this study can lead to novel perspectives of the fetal sympathetic and parasympathetic brain systems and future requirements of fetal cardiac monitoring.

  5. THE EFFECT OF FETAL CALF SERUM ON HUMAN DENTAL PULP STEM CELLS

    Directory of Open Access Journals (Sweden)

    Jakub Suchánek

    2013-01-01

    Full Text Available Aims: Authors studied potential side effects of fetal calf serum (FCS in cultivation media on human dental pulp stem cells (DPSC during long term cultivation. Methods: Two lines of DPSC obtained healthy donors (male 22 years, female 23 years were used. Both lines were cultivated under standard cultivation conditions in four different media containing 10% or 2% FCS and substituted with growth factors. During long term cultivation proliferation ability, karyotype and phenotype of DPSC were measured. Results: Both lines of DPSC cultivated in a media containing 2% FCS and ITS supplement showed the highest number of population doublings. On the other hand the proliferation rate of DPSC cultivated in a media with 2% FCS without ITS supplement was slowest. Proliferation rate of DPSC cultivated in 10% FCS media with or without FGF-2 was comparable. DPSC cultivated in a media with 10% FCS showed a significantly higher amount of chromosomal aberrations. These chromosomal aberrations do not seem to be clonal but surprisingly we found large amounts of tetraploid cells in the 9th passage in both media containing 10% FCS. Conclusions: Our study proved that cultivation of DPSC in media containing higher concentration of FCS has critical side effects on cell chromosomal stability.

  6. The Danish fetal medicine database

    DEFF Research Database (Denmark)

    Ekelund, Charlotte Kvist; Kopp, Tine Iskov; Tabor, Ann

    2016-01-01

    trimester ultrasound scan performed at all public hospitals in Denmark are registered in the database. Main variables/descriptive data: Data on maternal characteristics, ultrasonic, and biochemical variables are continuously sent from the fetal medicine units’Astraia databases to the central database via...... analyses are sent to the database. Conclusion: It has been possible to establish a fetal medicine database, which monitors first-trimester screening for chromosomal abnormalities and second-trimester screening for major fetal malformations with the input from already collected data. The database...

  7. MRI of the fetal abdomen

    International Nuclear Information System (INIS)

    Hoermann, M.; Brugger, P.C.; Witzani, L.; Prayer, D.

    2006-01-01

    Magnetic resonance imaging (MRI) is an important diagnostic component for central nervous system and thoracic diseases during fetal development. Although ultrasound remains the method of choice for observing the fetus during pregnancy, fetal MRI is being increasingly used as an additional technique for the accurate diagnosis of abdominal diseases. Recent publications confirm the value of MRI in the diagnosis of fetal gastrointestinal tract and urogenital system diseases. The following report provides an overview of MRI-examination techniques for the most frequent diseases of the abdomen. (orig.) [de

  8. Anatomy of the normal fetal heart: The basis for understanding fetal echocardiography

    Directory of Open Access Journals (Sweden)

    Beatriz Picazo-Angelin

    2018-01-01

    Full Text Available The rapid changes that have taken place in recent years in relation to techniques used to image the fetal heart have emphasized the need to have a detailed knowledge ofnormal cardiac anatomy. Without such knowledge, it is difficult, if not impossible, to recognize the multiple facets of congenital cardiac disease. From the inception of fetal echocardiographic screening, the importance of basic knowledge of cardiac anatomy has been well recognized. The current machines used for imaging, however, now make it possible potentially to recognize features not appreciated at the start of the specialty. So as to match the advances made in imaging, we have now revisited our understanding of normal cardiac anatomy in the mid-gestational fetus. This was made possible by our dissection of 10 fetal hearts, followed by production of addition histological sections that mimic the standard ultrasound views. The fetuses ranged in gestational age from between 20 and 28 weeks. We then correlated the obtained anatomic images with the corresponding ultrasonic images used in the standard fetal screening scan. We also interrogated the anatomic sections so as to clarify ongoing controversies regarding detailed features of the normal cardiac anatomy. We have been able to show that the views now obtained using current technology reveal many details of anatomy not always appreciated at earlier times. Knowledge of these features should now permit diagnosis of most congenital cardiac malformations. The anatomic-echocardiographic correlations additionally provide a valuable resource for both the understanding and teaching of fetal echocardiography.

  9. The Results of Fetal Chondrocytes Transplantation in Patients with Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Natalya Krivoruchko

    2014-12-01

    Full Text Available Introduction. Nowadays anti-inflammatory and immunosuppressive therapy has significantly improved the quality of life and prognosis of rheumatoid arthritis (RA. Nevertheless, there are still many patients with progressive rheumatoid inflammation, resulting in the destruction of joints. Cell therapy seems like a promising direction in rheumatology. The aim of our research was to evaluate the efficacy of fetal chondrocyte transplantation in patients with RA.Methods. We examined 60 patients with rheumatoid arthritis (I - III stages between 20 and 63 years of age. They were divided into 2 groups: the first group underwent the fetal chondrocytes transplantation (n = 40, and the second was a control group who got conservative therapy (n = 20. Donor cells were taken from the chondrogenic layer of the humerus or femur heads and hip condyles of human embryos in gestation for 17-20 weeks. A suspension of fetal chondrocytes injected into affected areas of the articular surfaces under X-ray control. Cell viability was determined before the injection. Efficacy of the therapy was assessed by clinical, instrumental, and laboratory tests. This clinical trial was allowed by The Ministry of Public Health and Ethics Committee. All of our patients gave informed consent for the fetal chondrocytes transplantation.Results. Evaluation of the clinical manifestations of RA in the first group of patients showed 3.7 times decrease in pain and 1.6 times relief of synovitis. Complete reduction of contracture was observed in 82% of patients in the first group. Morphometric changes in X-ray demonstrated inhibition of the destruction in articular cartilage and surfaces of bones after transplantation of fetal chondrocytes. The dynamics of morphological changes in synovium showed 2.5 times reduction of the inflammatory reaction. Transplantation of fetal chondrocytes led to a significant reduction in ESR, CRP, fibrinogen , γ-globulin after a period of 12 months (p < 0

  10. Profiling Lgals9 splice variant expression at the fetal-maternal interface: implications in normal and pathological human pregnancy.

    Science.gov (United States)

    Heusschen, Roy; Freitag, Nancy; Tirado-González, Irene; Barrientos, Gabriela; Moschansky, Petra; Muñoz-Fernández, Raquel; Leno-Durán, Ester; Klapp, Burghard F; Thijssen, Victor L J L; Blois, Sandra M

    2013-01-01

    Disruption of fetal-maternal tolerance mechanisms can contribute to pregnancy complications, including spontaneous abortion. Galectin-9 (LGALS9), a tandem repeat lectin associated with immune modulation, is expressed in the endometrium during the mid and late secretory phases and in decidua during human early pregnancy. However, the role of LGALS9 during pregnancy remains poorly understood. We used real-time PCR and immunohistochemical staining to analyze the expression of Lgals9/LGALS9 during mouse gestation as well as in human tissues obtained from normal pregnancy and spontaneous abortions. In mice, three Lgals9 splice variants were detected, the expression of which was differentially regulated during gestation. Furthermore, decidual Lgals9 expression was deregulated in a mouse model of spontaneous abortion, whereas placental levels did not change. We further found that the LGALS9 D5 isoform suppresses interferon gamma production by decidual natural killer cells. In human patients, six Lgals9 splice variants were detected, and a decrease in Lgals9 D5/10 was associated with spontaneous abortion. Altogether, these results show a differential regulation of Lgals9 isoform expression during normal and pathological pregnancies and designate Lgals9 as a potential marker for adverse pregnancy outcomes.

  11. Intrinsic functional brain architecture derived from graph theoretical analysis in the human fetus.

    Directory of Open Access Journals (Sweden)

    Moriah E Thomason

    Full Text Available The human brain undergoes dramatic maturational changes during late stages of fetal and early postnatal life. The importance of this period to the establishment of healthy neural connectivity is apparent in the high incidence of neural injury in preterm infants, in whom untimely exposure to ex-uterine factors interrupts neural connectivity. Though the relevance of this period to human neuroscience is apparent, little is known about functional neural networks in human fetal life. Here, we apply graph theoretical analysis to examine human fetal brain connectivity. Utilizing resting state functional magnetic resonance imaging (fMRI data from 33 healthy human fetuses, 19 to 39 weeks gestational age (GA, our analyses reveal that the human fetal brain has modular organization and modules overlap functional systems observed postnatally. Age-related differences between younger (GA <31 weeks and older (GA≥31 weeks fetuses demonstrate that brain modularity decreases, and connectivity of the posterior cingulate to other brain networks becomes more negative, with advancing GA. By mimicking functional principles observed postnatally, these results support early emerging capacity for information processing in the human fetal brain. Current technical limitations, as well as the potential for fetal fMRI to one day produce major discoveries about fetal origins or antecedents of neural injury or disease are discussed.

  12. Serial measurements of serum human placental lactogen (hPL) and serial ultrasound examinations in the evaluation of fetal growth

    DEFF Research Database (Denmark)

    Sørensen, Steen; von Tabouillot, D; Schioler, V

    2000-01-01

    Serial serum hPL measurements and serial ultrasound fetometry were compared in the evaluation of fetal growth by relating these two parameters to size at birth and to clinical factors known to influence size at birth. The data were from a prospective study of 1000 consecutive pregnant women...... considered to be at risk for fetal growth retardation with retrospective analysis. Serum hPL was measured by radioimmunoassay and fetal weight estimated by ultrasound every 3 weeks during the last trimester. hPL values were expressed as multiples of the median (MoM) and linear regression analysis of the h......PL MoM values was carried out for each pregnancy to find the slope of the line (hPL-slope); at least 3 serum hPL values were required. The estimated fetal weight and weight-for-age at birth was expressed in Z-scores. The individual intrauterine growth velocity was calculated by regression analysis...

  13. Fetal programming of renal function.

    Science.gov (United States)

    Dötsch, Jörg; Plank, Christian; Amann, Kerstin

    2012-04-01

    Results from large epidemiological studies suggest a clear relation between low birth weight and adverse renal outcome evident as early as during childhood. Such adverse outcomes may include glomerular disease, hypertension, and renal failure and contribute to a phenomenon called fetal programming. Other factors potentially leading to an adverse renal outcome following fetal programming are maternal diabetes mellitus, smoking, salt overload, and use of glucocorticoids during pregnancy. However, clinical data on the latter are scarce. Here, we discuss potential underlying mechanisms of fetal programming, including reduced nephron number via diminished nephrogenesis and other renal (e.g., via the intrarenal renin-angiotensin-aldosterone system) and non-renal (e.g., changes in endothelial function) alterations. It appears likely that the outcomes of fetal programming may be influenced or modified postnatally, for example, by the amount of nutrients given at critical times.

  14. Review: Adiponectin – The Missing Link between Maternal Adiposity, Placental Transport and Fetal Growth?

    Science.gov (United States)

    Aye, Irving L. M. H.; Powell, Theresa L.; Jansson, Thomas

    2012-01-01

    Adiponectin has well-established insulin-sensitizing effects in non-pregnant individuals. Pregnant women who are obese or have gestational diabetes typically have low circulating levels of adiponectin, which is associated with increased fetal growth. Lean women, on the other hand, have high circulating levels of adiponectin. As a result, maternal serum adiponectin is inversely correlated to fetal growth across the full range of birth weights, suggesting that maternal adiponectin may limit fetal growth. In the mother, adiponectin is predicted to promote insulin sensitivity and stimulate glucose uptake in maternal skeletal muscle thereby reducing nutrient availability for placental transfer. Adiponectin prevents insulin-stimulated amino acid uptake in cultured primary human trophoblast cells by modulating insulin receptor substrate phosphorylation. Furthermore, chronic administration of adiponectin to pregnant mice inhibits placental insulin and mammalian target of rapamycin complex 1 (mTORC1) signaling, down-regulates the activity and expression of key placental nutrient transporters and decreases fetal growth. Preliminary findings indicate that adiponectin binds to the adiponectin receptor-2 on the trophoblast cell and activates p38 MAPK and PPAR-α, which inhibits the insulin/IGF-1 signaling pathway. In contrast to maternal adiponectin, recent reports suggest that fetal adiponectin may promote expansion of adipose tissue and stimulate fetal growth. Regulation of placental function by adiponectin constitutes a novel physiological mechanism by which the endocrine functions of maternal adipose tissue influence fetal growth. These findings may help us better understand the factors determining birth weight in normal pregnancies and in pregnancy complications associated with altered maternal adiponectin levels such as obesity and gestational diabetes. PMID:23245987

  15. Human autologous serum as a substitute for fetal bovine serum in human Schwann cell culture.

    Directory of Open Access Journals (Sweden)

    Parisa Goodarzi

    2014-04-01

    Full Text Available Nowadays, cell -based and tissue engineered products have opened new horizons in treatment of incurable nervous system disorders. The number of studies on the role of Schwann cells (SC in treating nervous disorders is higher than other cell types. Different protocols have been suggested for isolation and expansion of SC which most of them have used multiple growth factors, mitogens and fetal bovine sera (FBS in culture medium. Because of potential hazards of animal-derived reagents, this study was designed to evaluate the effect of replacing FBS with human autologous serum (HAS on SC's yield and culture parameters. Samples from 10 peripheral nerve biopsies were retrieved and processed under aseptic condition. The isolated cells cultured in FBS (1st group or autologous serum (2nd group. After primary culture the cells were seeded at 10000 cell/cm2 in a 12 wells cell culture plate for each group. At 100% confluency, the cell culture parameters (count, viability, purity and culture duration of 2 groups were compared using paired t-test. The average donors' age was 35.80 (SD=13.35 and except for 1 sample the others cultured successfully. In first group, the averages of cell purity, viability and culture duration were 97% (SD=1.32, 97/33% (SD=1.22 and 11.77 (SD=2.58 days respectively. This parameters were 97.33% (SD=1.00, 97.55% (SD=1.33 and 10.33 days (SD=1.65 in second group. The difference of cell count, purity and viability were not significant between 2 groups (P>0.05. The cells of second group reached to 100% confluency in shorter period of time (P=0.03. The results of this study showed that autologous serum can be a good substitute for FBS in human SC culture. This can reduce the costs and improve the safety of cell product for clinical application.

  16. Fetal first trimester growth is not associated with kidney outcomes in childhood

    NARCIS (Netherlands)

    H. Bakker (Hanneke); R. Gaillard (Romy); A. Hofman (Albert); I.K.M. Reiss (Irwin); E.A.P. Steegers (Eric); V.W.V. Jaddoe (Vincent)

    2017-01-01

    textabstractBackground: Impaired fetal growth is associated with increased risks of kidney diseases in later life. Because human development rates are highest during the first trimester, this trimester may be a particularly critical period for kidney outcomes. We have therefore examined the

  17. Outcomes of Congenital Zika Disease Depend on Timing of Infection and Maternal-Fetal Interferon Action

    Directory of Open Access Journals (Sweden)

    Jinling Chen

    2017-11-01

    Full Text Available Zika virus (ZIKV infection during pregnancy in humans results in intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we found that fetus-derived type I interferon (IFN-I signaling can enhance anti-ZIKV responses and provide clinical benefits to the fetus. Because IFN-λ shares signaling cascades and antiviral functions with IFN-I, we investigated the in vivo effects of IFN-λ in ZIKV-infected pregnant mice. IFN-λ administration during mid-pregnancy reduced ZIKV burden in maternal and fetal organs and alleviated placental injuries and fetal demise. In addition, prophylactic and therapeutic treatment of IFN-λ1 in a human trophoblast line, as well as in primary human amniotic epithelial cells, greatly reduced the ZIKV burden. Our data highlight IFN-λ1 as a potential therapeutic useful for women at risk for congenital Zika disease.

  18. Prevention of fetal demise and growth restriction in a mouse model of fetal alcohol syndrome.

    Science.gov (United States)

    Spong, C Y; Abebe, D T; Gozes, I; Brenneman, D E; Hill, J M

    2001-05-01

    Two peptides [NAPVSIPQ (NAP) and SALLRSIPA (ADNF-9)], that are associated with novel glial proteins regulated by vasoactive intestinal peptide, are shown now to provide protective intervention in a model of fetal alcohol syndrome. Fetal demise and growth restrictions were produced after intraperitoneal injection of ethanol to pregnant mice during midgestation (E8). Death and growth abnormalities elicited by alcohol treatment during development are believed to be associated, in part, with severe oxidative damage. NAP and ADNF-9 have been shown to exhibit antioxidative and antiapoptotic actions in vitro. Pretreatment with an equimolar combination of the peptides prevented the alcohol-induced fetal death and growth abnormalities. Pretreatment with NAP alone resulted in a significant decrease in alcohol-associated fetal death; whereas ADNF-9 alone had no detectable effect on fetal survival after alcohol exposure, indicating a pharmacological distinction between the peptides. Biochemical assessment of the fetuses indicated that the combination peptide treatment prevented the alcohol-induced decreases in reduced glutathione. Peptide efficacy was evident with either 30-min pretreatment or with 1-h post-alcohol administration. Bioavailability studies with [(3)H]NAPVSIPQ indicated that 39% of the total radioactivity comigrated with intact peptide in the fetus 60 min after administration. These studies demonstrate that fetal death and growth restriction associated with prenatal alcohol exposure were prevented by combinatorial peptide treatment and suggest that this therapeutic strategy be explored in other models/diseases associated with oxidative stress.

  19. A crucial role for maternal dietary methyl donor intake in epigenetic programming and fetal growth outcomes.

    Science.gov (United States)

    McGee, Meghan; Bainbridge, Shannon; Fontaine-Bisson, Bénédicte

    2018-06-01

    The fetal origins of health and disease framework has identified extremes in fetal growth and birth weight as factors associated with the lifelong generation of chronic diseases such as obesity, diabetes, cardiovascular disease, and hypertension. Maternal nutrition plays a critical role in fetal and placental development, in part by providing the methyl groups required to establish the fetus's genome structure and function, notably through DNA methylation. The goal of this narrative review is to describe the role of maternal dietary methyl donor (methionine, folate, and choline) and cofactor (zinc and vitamins B2, B6, and B12) intake in one-carbon metabolism and DNA methylation in the fetus and placenta, as well as their impacts on fetal growth and lifelong health outcomes, with specific examples in animals and humans. Based on the available evidence, it is concluded that intake of different amounts of dietary methyl donors and cofactors during pregnancy may alter fetal growth and development, thus establishing a major link between early environmental exposure and disease development in the offspring later in life.

  20. Fetal MRI: An approach to practice: A review

    Directory of Open Access Journals (Sweden)

    Sahar N. Saleem

    2014-09-01

    Full Text Available MRI has been increasingly used for detailed visualization of the fetus in utero as well as pregnancy structures. Yet, the familiarity of radiologists and clinicians with fetal MRI is still limited. This article provides a practical approach to fetal MR imaging. Fetal MRI is an interactive scanning of the moving fetus owed to the use of fast sequences. Single-shot fast spin-echo (SSFSE T2-weighted imaging is a standard sequence. T1-weighted sequences are primarily used to demonstrate fat, calcification and hemorrhage. Balanced steady-state free-precession (SSFP, are beneficial in demonstrating fetal structures as the heart and vessels. Diffusion weighted imaging (DWI, MR spectroscopy (MRS, and diffusion tensor imaging (DTI have potential applications in fetal imaging. Knowing the developing fetal MR anatomy is essential to detect abnormalities. MR evaluation of the developing fetal brain should include recognition of the multilayered-appearance of the cerebral parenchyma, knowledge of the timing of sulci appearance, myelination and changes in ventricular size. With advanced gestation, fetal organs as lungs and kidneys show significant changes in volume and T2-signal. Through a systematic approach, the normal anatomy of the developing fetus is shown to contrast with a wide spectrum of fetal disorders. The abnormalities displayed are graded in severity from simple common lesions to more complex rare cases. Complete fetal MRI is fulfilled by careful evaluation of the placenta, umbilical cord and amniotic cavity. Accurate interpretation of fetal MRI can provide valuable information that helps prenatal counseling, facilitate management decisions, guide therapy, and support research studies.